Self-Contained Map Based Navigation in
Autonomous Robotic Units

Oddbjgrn Kvalsund

December 10, 2008

Abstract

Autonomous robotic units such as reconnaissance robots are dependent on
reliable and precise sources of navigation data. In some circumstances the po-
sitioning solutions widely available today, GPS and commercial IPS-solutions,
are not enough to secure reliable positioning data due to their sensitivity to
electromagnetic- and radio-interference. This thesis proposes a set of algo-
rithms and techniques that can be used as a part of a standalone position-
recognition system that provides another level of redundancy in such appli-
ances.

Abstract

Preface

The work presented in this thesis signifies the end result of a two year masters
degree in computer science attained at @stfold University College, Norway.
Year one of this programme was attained at the Department of Electrical and
Electronic Engineering at Newcastle University, England. The first part of
this thesis was written during the spring of 2006 and the final chapters were
written during the summer and autumn months of 2008.

Autonomous robotic units and safety-oriented systems development has
been the research field of professor Rune Winther for a number of years. This
paper combines these two topics by describing methods for safe self-contained
robotic navigation through a semi-charted two-dimentional terrain.

| wish to thank prof. Rune Winther for his knowledgeable and supportive
counseling through the completion of this thesis.

Oslo, December 10th 2008

Oddbjgrn Kvalsund

Vi

Preface

Contents

1

Introduction
1.1 Problem Description
1.2 Feature Detection
1.3 Map Matchingo
1.4 Pathfinding
1.5 Map Refinement.
1.6 Thesis Overview
Background
2.1 Digital Maps
2.1.1 RasterMaps
2.1.2 Vector Maps
2.1.3 Coordinate Systems
214 Scale
2.1.5 Distance Measures
2.2 Geometrical Transformations
2.2.1 Translation
222 Scaling
223 Rotation.
2.3 Feature Recognition
2.3.1 Range Data Grouping
2.3.2 Line Approximation
2.4 Map Refinement
2.4.1 Object isolation and feature recognition
2.4.2 Obstacle persistency
2.4.3 Data structure order
2.4.4 Efficiency of analysis and insertion

Vil

DO O W W =

0 0 ~N

11
11
12
12
13
14
14
15
16
18
18
18
19
19

viii

2.5

2.6

2.4.5 Inac
Pathfinding
25.1 Dik

252 The

CONTENTS

curacy evaluationo
stras Algorithm
A-Star Algorithm

2.5.3 Shape Compensation in Pathfinding Algorithms . . .
Digital Image Processing

2.6.1 Digi
2.6.2 Digi
2.6.3 Brig

tal Images.
tal Image Representation
htness and Contrast

2.6.4 Surface Smoothing
2.6.5 Edge Detection
2.7 Related Work oo

Scenarios
3.1 Introduction
3.2 Scenario 1 - Search and Rescue
3.3 Scenario 2 - Automation, Guiding and Transport
3.4 Scenario 3 - Automated Reconnaissance
3.5 Informal Requirements
Implementation
4.1 Introduction
411 Possim
4.1.2 Using Possim
4.2 Navigational strategy
4.3 Pathfinding
4.3.1 Implementing the A-Star algorithm
4.3.2 Considering robot shape and size.
4.3.3 Optimizing paths using route climbing
4.3.4 Performance considerations
4.4 Map Matching
4.4.1 Introduction
442 Extracting vector polylines
443 Correcting rotational error
4.4.4 Correcting translational error
4.5 Handling uncharted objects
4.6 Summary ...

19
20
21
22
23
25
26
26
27
28
29
36

37
37
38
39
40
40

43
43
43
44
46
47
50
53
57
60
69
69
70
77
80
80
84

CONTENTS

5 Conclusions

5.1 On the development of this thesis
5.2 The state of robotic navigation research

5.3 Conclusion .
5.4 Further work

87
87
88
88
90

CONTENTS

List

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2,11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

of Figures

Possible consequence of skewed heading.
Steps involved in 2D feature recognition.
Matching rangefinder datatoamap..
Pathfinding considering the vehicle shape and size.

A political and a geographic map of Norway.

An example of the consequences of upscaling a raster image.

Vector graphics representation with rendered output.

The rectangular coordinate system.
Simple two-dimensional translation.
Rotation by —20°.
A laser rangefinder scan.
Simple vs. more advanced range data grouping.
The best fit line as calculated by least squares estimation.

A possible pathfinding scenario.
A weighted graph.o
Obstacle misrepresentation ina map.
Finding the Minkowski Sum of two polygons.
Obstacle perimeter calculated using robot radius.
Graph showing increase in brightness.
Graph showing increase in contrast.
The visual effects of adjusting brightness and contrast. . . .
C-like implementation of a surface smoothing algorithm.

3D representation of RGB-colors.
A simple edge detectior applied to a 512x384 color picture. .
C-like implementation of a simple edge detection algorithm.

The Canny edge detector applied to a 640x480 color picture.

Xi

a s~ PN

oo

10
11
13
15
16
17
17
20
21
24
24
25
27
28
29
30
30
31
32
33

Xi

2.23
2.24
2.25
2.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

LIST OF FIGURES

Parametric representation of a line.
An example of Hough lines through points.
A single Hough lineand itsrand 6.
The Hough point-to-curve transformation.

An example screenshot of Possim
A tile route as calculated by the A-Star algorithm
A suboptimal discreet tile route.
A tile route calculated without consideration to robot shape.
An untraveable route due to unfortunate tile placement.

The AStarMap interface
A Java method illustrating the A-Star algorithms main loop.
Various attempts at finding the best bounding polygon. . . .
The final bounding polygon’s individual vertices.
A tile route consisting of many unneeded rotations.
The route climbing technique illustrated.
The route climbing algorithm as implemented in Possim.

The route climbing technique applied to a longer route. . . .
The maze test map used for performance testing.
Optimizing bounding polygon intersection testing.
Graph of performance optimizations.
A typical laser rangefinder scan.
Laser rangefinder readings grouped by REDCA.
The REDCA algorithm in Java.
The polyline approximation algorithm in Java.
Approximated polylines in Possim.
Calulating the best rotation of the laser rangefinder data. . .
The rotational error correcting algorithm in Java.
The translational error correcting algorithm in Java.
Calculating the translational error.

34
35
35
36

45
47
48
49
50
51
52
54
57
58
59
61
62
63
66
68
69
73
74
76
77
78
81
83
84

List of Algorithms

SO W N

The route climbing algorithm.

The recursive euclidean distance clustering algorithm.
The collectGroup method of the REDCA algorithm.

The polyline approximation algorithm.
The rotational error correcting algorithm. . .

The translational error correcting algorithm.

Xiii

60
71
72
75
79
82

Y LIST OF ALGORITHMS

Prerequisites

Due to the time and space constraints of this thesis, every subject mentioned
can not be covered in full detail. Consequently it is assumed that the reader
is fluent in procedural and object-oriented computer programming, has a firm
understanding of fundamental algorithms, algorithm analysis using big O no-
tation, the most common data structures and that he or she understands
basic geometric maths.

XV

XVI Prerequisites

Chapter 1

Introduction

The purpose of this thesis is to find the best possible set of techniques and
algorithms for enabling an autonomous robotic unit to navigate within a semi-
charted two-dimensional terrain using only on-board maps, sensors and com-
puting power. Such a system can provide yet another safety level of naviga-
tional redundancy when used in conjunction with global or indoor positioning
systems. It can also be invaluable when the robot is used as a reconnaissance
unit for charting a semi-charted area in greater detail.

The specific test-case unit used throughout the development of this thesis
is the ActivMedia Robotics P3-AT robot quipped with sixteen range sonars,
one 180 degree laser range device and an onboard computer running Microsoft
Windows XP. The techniques described herein are not limited to this specific
robot, but access to a semi-powerful computer and a high precision range
device forms the basis of the methods described.

1.1 Problem Description

For a robot to be able to successfully navigate from point A to point B in a
semi-charted area, it needs the following information:

e The robot’s current position and heading.

e A map of the area of which it is to navigate, containing at least one
travelable path from point A to point B.

2 CHAPTER 1. INTRODUCTION

calculated heading

': actual heading

‘ ‘. »» robot
| . —x— destination
— obstacles

Figure 1.1: Possible consequence of skewed heading.

In addition to this information the robot needs to possess the following
capabilities:

e The ability to move.

e The ability to calculate the possible routes from A to B avoiding ob-
stacles.

e The ability to refine the map in real time if obstacles blocking its path
are found.

The fundamental problem with these criterias is that they all heavily de-
pend on the very first criterion; at every time knowing the robots exact po-
sition and heading. This information may be 100% accurate as the robot
starts moving from point A, but as inaccuracies in calculated moved distance
and rotated heading with respect to actual moved distance and rotated head-
ing accumulate, the robot may have drifted enough to collide with objects
outside its path, as in Figure 1.1. It is therefore crucial that the robot can
resyncronize its position and heading during a move without third part inter-
vention. The simplest method of assuring position is by using a positioning
system such as IPS (Indoor Positioning System) or GPS (Global Positioning
System). There are many types of IPSs available, most of which are imple-
mented by triangulating beaming signals transmitted by fixed-position nodes

1.2. FEATURE DETECTION 3

within, or at the bounds of, the covered area. GPS is similar to this, but
is implemented on a much larger scale using more than two dozen satellites
in orbit around the earth. Traditional GPS is position-wise accurate to 5-10
meters [Wing et al. 2005] and using improved systems such as Differential
GPS (DGPS) or Wide Area Augmentation System (WAAS) the accuracy can
be accurate within 1-2 meters [Lo et al. 2002]. These types of positioning
system are excellent choices when the operating environment permits it, they
do however have drawbacks:

e They require a certain number of fixed position nodes to be available at
all times.

e They are sensitive to radio interference.
e Their accuracy is not always sufficient.

The focus of this thesis is therefore on developing a set of algorithmic
and geometric techniques that allows the robot to determine its own position
and heading based on laser range data. In addition to this we will look into
extensions to an existing pathfinding algorithm, making it suitable for real
world robotic usage.

1.2 Feature Detection

A significant section of this paper deals with feature-recognition in 2D range
scans, such as the 180 degree laser scans produced by the onboard laser-
unit of the P3-AT. This feature-recognition can be thought of as finding the
semantics of the data, i.e. we attribute the single-point scan results to being
part of an obstacle within the lasers scan range. Figure 1.2 shows a possible
interpretation of a 2D range scan. By examining the obstacles found and
matching them to a map of the relevant area, the exact position and heading
of the robot can be found.

1.3 Map Matching

The purpose of doing feature detection is to enable the robot to match the
refined laser rangefinder readings to a preloaded map and thereby determining

CHAPTER 1. INTRODUCTION

[J ° ° [

[} [J

° °

[] [J

C [J 4 [
o [] ° (] ®

[}

[J [} ([] [] [J
° ° ° °

° L ° ~

a) initial points b) related groups ¢) approximated lines

Figure 1.2: Steps involved in 2D feature recognition.

: 5

a) estimated position b) actual range data ¢) actual position
after adjustment

Figure 1.3: Matching rangefinder data to a map.

1.4. PATHFINDING 5

shortest possible path

........ shortest path

» x » robot
............................... i - ‘ T

I I | —x— destination

— obstacles

Figure 1.4: Pathfinding considering the vehicle shape and size.

its exact position and heading. The actual process of matching the range
data to the map is called map matching. This process needs to be as exact
as possible, but still robust with respect to noise and uncharted objects the
robot might sense in its surroundings. See figure 1.3 for a visualisation of the
problem. Section 4.4 covers the subject of map matching in detail.

1.4 Pathfinding

For the robot to be truly autonomous it needs to be able to determine the
most appropriate route from point A to point B. This process is called
pathfinding and has been thoroughly researched throughout the history of
computer science, with Dijkstras Algorithm [Dijkstra 1959], developed by
Edsger Wybe Dijkstras in 1959, probably being the most common algorithm.
However, most pathfinding algorithms assume that the object that is to move
from A to B is a single point in space or a tile in a square tile grid. It is not
taken into consideration that the moving object may have complex geomet-
rical shapes as in Figure 1.4. We investigate this matter in section 4.3.2 and
propose a solution that allows the robot to calculate optimal routes and move
at a high degree of freedom, but still maintain navigational safety.

6 CHAPTER 1. INTRODUCTION

1.5 Map Refinement

Recording discovered, uncharted objects in the map area allows the robot to
avoid having to try a blocked route several times, thus making its operation
more effective. This sort of dynamic charting can also be of interest to
human operators as it enables the robot to start out with a low-detail map
and refining it automatically, minimising human interaction. The subject of
map adjustment is covered in detail in section 2.4.

1.6 Thesis Overview

Chapter two covers the background information that serves as a basis for the
techniques and algorithms presented in later chapters. We look into methods
of interpreting two-dimensional data, in both vector- and raster-form, so that
the data can be processed in the specific context of robotic navigation. We
then go into pathfinding and analyse algorithms and problems associated with
determining shortest possible paths between two points.

Chapter three presents a selection of possible scenarios where the system
described in this thesis may prove itself valuable.

Chapter four describes the proposed main system of this thesis and covers
detailed coverage of specific issues to consider.

Chapter five summarises our findings and we propose a number of ideas
for future work.

Chapter 2

Background

This chapter presents the fundamental techniques and principles that forms
the basis for processing the problems addressed in this thesis.

Section 2.1 presents the general form of digital 2D maps, along with the
most common terms and formulas needed to work with maps.

Section 2.2 covers the basic geometric transformations forming the basis
for the algorithms in chapter four.

Section 2.3 focuses on the subject of feature recognition in vector graph-
ics, that is the methods used to attribute higher order meaning to geometric
primitives such as points, lines and polygons.

Section 2.4 presents the concept of map refinement and the considerations
that need to be taken when implementing such algorithms.

Section 2.5 explores the problems encountered when faced with the task
of algorithmically finding the most efficient paths between two points in planar
space and the existing algorithms available for these types of problems.

Section 2.6 addresses the field of image processing, which extends the
topics dealt with in section 2.3, and the additional algorithms needed to do
feature recognition in raster form graphics. Image processing is not directly
a part of this thesis, but we need to present a few techniques as basis for the
ideas presented as possible future work in chapter five.

-

8 CHAPTER 2. BACKGROUND

Nowway - Political

Greenland
(Kalaallit Nunaat) /
(Demmwank) e Barents

Svalbard

Greenland

nnnnnnn

Sea

»
ayen

Russia

 shetand.
- et

(unren
Kinoom)

.)
L

i EsTONIA!

North

Sea L5

DENMARK | L T s

Figure 2.1: A political and a geographic map of Norway.

2.1 Digital Maps

A map is a two- or three-dimensional graphical or numerical approximation
of a discrete real-world area, describing one or more of the areas features.
It is only an approximation due to natures infinite complexity and resolution,
but it is accurate enough for a number of applications. Maps are widely used
for navigational purposes, but may also serve other uses, such as political
maps that visualise or describe population statistics, or economic maps that
visualise economic activity and/or natural resources in an area. Simple maps
may only describe its inherent objects by geometrical boundaries, while more
sophisticated maps may contain multiple layers of information. Figure 2.1
shows a simple and a more complex map of the same area.

2.1.1 Raster Maps

Generally digital map representation can be divided into two categories; raster
maps and vector maps. A raster map is a map where the map area has been
divided into discrete subunits of finite size and every subunit describes a certain

2.1. DIGITAL MAPS 9

a) 1:1 b) 10:1

Figure 2.2: An example of the consequences of upscaling a raster image.

feature. Raster maps are also known as bitmaps. Every map that is to be
presented in a graphical form is sooner or later converted to a raster map,
since all visualisation units work in finite resolution, e.g. a computer screen
has a given maximum pixel resolution and a printer can print a maximum
number of points per square inch. Raster maps have the advantage of being
easy to process and draw to various surfaces, they do however scale poorly,
meaning that the perceived image quality may be reduced when the image is
scaled up, as shown in Figure 2.2, they consume a lot of storage and they
bear no semantics as to what features they describe.

2.1.2 Vector Maps

Vector maps are maps where features are textually and numerically described
rather than drawn. Features are thus described in the form of geometrical
primitives such as points, lines and polygons. Vector maps scale very well,
they are compact and it is easy to embed descriptive meta-information onto
every feature. On the negative side they require potentially very advanced
rendering software to visualise and manipulation of complex vector graphics
can be computationally expensive. Figure 2.3 shows an excerpt from a SVG-
file and the resulting rendering.

10 CHAPTER 2. BACKGROUND

<rect x=10 y=10 width=35 height=10
stroke="black” stroke-width=1
fil11="#8CC641” />

<circle cx=50 cy=30 r=5
stroke="red” stroke-width=1
fill="#8CC641” />

<line x1=20 yl=50 x2=55 y2=50
stroke="black” stroke-width=5 />

Figure 2.3: Vector graphics representation with rendered output.

2.1.3 Coordinate Systems

The purpose of a coordinate system is to serve as a reference point for posi-
tioning of the objects in the map. All positions must be seen relative to the
coordinate system for which they are given. Two types of coordinate systems
are used in maps; the geographical coordinate system and the rectangular
(or Cartesian) coordinate system. Global coordinates are usually given in ge-
ographical coordinates, with the x-axis measured in 180 degrees of latitude
and the y-axis measured in 360 degrees of longitude, both of which are cen-
tered around the Earth’s polar axis. Smaller two-dimensional maps are usually
given in rectangular coordinates. Figure 2.4 shows a typical rectangular coor-
dinate system, with positive x-axis pointing right and positive y-axis pointing
up, containing a line of length 35 and width 2 placed in coordinate 30, 48,
a circle of radius 5 placed 50,30 and a rectangle with width 35 and height
10 placed in 10, 10. It is worth mentioning that while the coordinate system
used by most computer graphics routines is similar to this, the y-axis is most
often reversed so that the positive y-axis is downward. This can be achieved
by doing a matrix multiplication with the y-value set to -1:

2.1. DIGITAL MAPS 11

50 T I

T O
° I:I
10 +

Figure 2.4: The rectangular coordinate system.

2.1.4 Scale

For a map to be useful to humans, we need to know how the map data
relates to the area it describes. In graphical maps, printed or in raster form,
this relation is called the scale. The scale describes the ratio to which any
unit length on the map needs to be multiplied to equal the actual length the
maps describes. If a map scale is expressed as 1 : 1,000, 000 this means one
unit on the map is one million units in real length, e.g 1 cm on the map is 10
km in real length. In raster maps knowing the scale of the map is essential,
in vector maps we are more interested in the unit of which the coordinates
are given. The scale can be expressed as

Distancemap

Scale = —
Distance

real

2.1.5 Distance Measures

To determine the distance between two points on a two-dimensional map,
two common methods exist, the Euclidean distance and the City Block/Man-

12 CHAPTER 2. BACKGROUND

hattan distance.

The Euclidean distance is the direct point-to-point distance and assumes
that movement at any angle is possible. It is based on the Pythagorean
theorem

h*=o0"+a
where h is the hypotenuse of the triangle and o and a are the two sides. The

shortest distance between two points is thus
de = 1/(0% 4 a?)

The other common distance measure is called the City Block/Manhattan
distance. This method assumes that it is only possible to move horizon-
tally and vertically and thereby simplifying the calculation, leading to a more
efficient, but not optimal distance algorithm. The Manhattan distance is
calculated as

d,=o0+a

2.2 Geometrical Transformations

In this section the three most basic and common geometrical transformations
are presented; translation, scaling and rotation. The transformations are
explained with reference to digital images, but the term “image” is here used
loosely and covers both raster images and vectorized graphic data. It is
important to note that these transformations not only apply to full images,
but also sub-images or regions of the full image. We will refer to these regions
as “image elements”. The smallest image element is the point or pixel.

2.2.1 Translation

Two-dimensional translation is the simplest of the basic image transforma-
tions, it involves displacing an image element at (xy, 1) by the specified trans-
lation (Bx,B,) as shown in Figure 2.5. Mathematically it can be described
as

Xo = x1 + Bx

Yo=MW0 +By

2.2. GEOMETRICAL TRANSFORMATIONS 13

Figure 2.5: Simple two-dimensional translation.

2.2.2 Scaling

Scaling is often referred to as zooming or resizing an image element. Scaling
an image element by a factor of 2”7 with n > 0 is the simplest case, as pixels
in the image simply are repeated 2" times in both dimensions. Similarly when
reducing an image size by a factor of 2i only every 27 pixel is kept and the
rest are discarded. When scaling to a factor that is not a multiple of 2, it is
not this simple. Imagine the case of scaling a 2 x 2 image element by 1.5,
resulting in a 3 x 3 image, what values would be appropriate for the pixels
with coordinates x = 2 or y = 27 The answer is that the pixel value needs
to be interpolated between the values proceeding and succeeding the actual
pixel. A simple method of interpolating, that would work in our 2x2 = 3x3
example, is to simply take the mean value of the surrounding pixels. But for
the general case of scaling to a factor B, more sophisticated interpolation
techniques must be applied. The most common technique today is called
bi-cubic interpolation and it calculates a weighted average of a 4 x 4 grid
around the considered pixel. It can be expressed as

F(X' oy = > Y. F(x+m,y+n)R(m—dx)R(n— dy)

m=—1n=-1

where the weighting function R(x) is defined as
1
R(x) =5 (P(x+2)® = 4P(x +1)° + 6P(x)* — 4P(x — 1)°)
and P(x) is defined as

P(x) = max(x, 0)

14 CHAPTER 2. BACKGROUND

F(x', y") is the pixel value for the resulting image in position x’, y’, which
. . . . o W, o h!
is related to F(x, y) in the original image by x" = x* and y' = y%. dx and
dy are the respective decimal parts of x and y after calculating these indices;
x=x'%andy =yl

2.2.3 Rotation

Rotating an image by an angle 8 around the point (x, y¢) will result in a image
where the pixel (x’, y') in the rotated image will correspond to the pixel (x, y)
in the original image according to the following formula:

X' = (x = xc) cos(6) — (y — yc)sin(f) + xc

y'=(x—xc)sin(0) + (v — yc) cos(8) + yc
and inversely

x = (x"— xc)cos(—0) — (y' — yc)sin(—0) + x.

y = (xX"—xc)sin(=0) + (v — yc) cos(—0) + yc

One way of calculating the rotated image is to iterate over all (x',y’),
calculate (x, y) and simply use the pixel value of (x, y). The problem in this
approach is that these formulae return floating point coordinates, thus if we
want to calculate what point (x, y) corresponds to (x’, y’) the formula may
return e.g. (1.5,1.5) or (1.666667,1.4177) which does not make sense in
a context of discrete integral array indexes. The pixel value of (x’, y') must
therefore be interpolated from the surrounding pixels of (x, y).

The bounding rectangle of a rotated rectangular image will also be dimen-
sionally bigger than the original image for all angle values except multiples of
90°. The new pixels (x’,y") for which there is no corresponding (x,y) will
usually be set transparent, if supported by the image format, or to some pre-
defined color e.g. black or white. See Figure 2.6 for an illustration of an
image rotated around its own center.

2.3 Feature Recognition

Feature recognition is a term used in computer vision to describe the process
of extracting meaningful information from raw sensor data. The specific nu-
ance of feature recognition described in this paper is the process of extracting

2.3. FEATURE RECOGNITION 15

a) original image b) rotated -20°

Figure 2.6: Rotation by —20°.

polylines from laser rangefinder scans. One of the main objectives of this the-
sis is to describe a simple method of matching laser range scans to vector
maps to be able to accurately determine the robots position at any time.
These laser range data readings are basically a set of semi-accurate distances
to the nearest reflective object at a given angle from the sensor (see figure
2.7 for a visualization). From these isolated points in the 2D plane we wish
to find line tendencies in the range data that can be matched to 2D map data
objects, such as walls.

2.3.1 Range Data Grouping

When analyzing a set of range data readings to extract recognizable features,
one of the first operations to perform is to organize the readings into related
groups based on reading features. This is done as part of the process to sim-
plify the range data readings down to more manageable geometric shapes. A
simple range data grouping algorithm could group readings based on Euclid-
ian distance alone, such that reading p belongs to group G if the Euclidian
distance from p to any reading in G is less than the threshold t;. A more
sophisticated algorithm could take the group’s curve into consideration, so
that reading p only belongs to group G if p diverges from G’s curvature by
less than the threshold t,. Figure 2.8 shows the difference between a simple

16 CHAPTER 2. BACKGROUND

° data points
S range reading

» robot

— obstacles

Figure 2.7: A laser rangefinder scan.

and a more advanced grouping algorithm. The algorithm used when group-
ing the points at the left considers only Euclidian distance between points to
determine the group a point belongs to, while the more advanced algorithm,
used on the points on the right hand side, considers Euclidian distance as
well as curvature when determining how to group points. After completing
the range data grouping, the range scan data readings are organized into a
number of groups that each represent a part of a geometrical map feature or
obstacle. For the remainder of this thesis | will focus on grouping range data
readings into lines as the line works well for approximating other shapes and
since the line is the simplest two dimensional shape.

2.3.2 Line Approximation

After grouping the range data readings we need to determine the approxima-
tion of the line that the readings represent. This means that we are trying
to find the line that best fit the reading points such that the sum of the
point-to-line distances is minimized.

One well known method of finding such a line is called the method of
Least-Squares Estimation. This method determines the estimators b; and by
for the best fit line function through the reading points. The “best fit line” is
defined as the line that minimizes the sum of vertical point-to-line distances,

2.3. FEATURE RECOGNITION 17

o _©00° o ®oe® o
(] [J ® [}
[] [J
[] o
° °
[J o
[J
° °
[J o
[J {
a) grouping algorithm b) grouping algorithm
considering Euclidian distance considering Euclidian distance
as well as curvature

only

Figure 2.8: Simple vs. more advanced range data grouping.

Figure 2.9: The best fit line as calculated by least squares estimation.

18 CHAPTER 2. BACKGROUND

as illustrated in figure 2.9. The line function is defined as
y(X) = le + bo

And to determine the estimators b; and by the following equations are
applied

by — Ny XiYi — 2. Xi > Yi

' I'IZX,-Q—(ZX,')2
b — > Yi— b1y x
T 0

To find the segment boundaries of the estimated line we simply calculate
(Xminr _V(Xmin)) and (XmaXr _V(Xmax))-

2.4 Map Refinement

When moving in a semi charted dynamic environment, a robot is bound to
sense objects and obstacles that do not exist in the robot’'s preloaded map.
These objects can be static or semi-static obstacles, such as furniture and
moveable walls, or highly dynamic objects such as people, animals or other
moving robots. By storing information about these discovered objects into the
robots map, more efficient paths can be obtained by avoiding routes through
highly dynamic areas. The following sections describe which aspects should
be considered when adjusting maps in real time.

2.4.1 Object isolation and feature recognition

When a new object is discovered, its form and position need to be deter-
mined. The form may have to be simplified into a manageable complexity
and the position needs to be adjusted from the original readings by the robots
corrected position and heading. The subject of object isolation and feature
recognition is covered in detail in chapter 4.

2.4.2 Obstacle persistency

When dealing with moving obstacles, an object can not be considered a per-
manent obstacle, but should rather have a timeout to ensure that the robot

2.4. MAP REFINEMENT 19

will reevaluate the objects persistency when the timeout expires. The timeout
mechanism can be absolute in the sense that the obstacle is never reevalu-
ated before the timeout expires or it can be weighted so that if the robot
runs out of possible routes to its target, it reevalutes the registered obstacles
in the order they were discovered, thereby applying the assumption that the
“oldest” obstacle is most likely to have moved. An even more sophisticted
obstacle tracking algorithm may even try to determine a moving obstacles
direction or pattern and use this prediction in its evalutation of the obstacle’s
persistency.

2.4.3 Data structure order

When processing large amounts of map data, it is often beneficial to have
objects located geographically “close” to each other also relatively close to
each other in the iterative order of the data structure. This can speed up the
process of determining whether a node is walkable in a pathfinding scenario or
make the process of asynchronously drawing a map to a screen more smooth
by drawing the map area by area instead of drawing seemingly randomly or-
dered objects. Due to the relatively low complexity of the maps processed as
part of this thesis, the subject of data structure order will not be covered in
detail.

2.4.4 Efficiency of analysis and insertion

The process of analysing the readings and updating the map data structure
may become a performance issue if the frequency of sensor data readings
and/or data amount available at each update is larger than the available
processing unit is able to process in due time. One should therefore carefully
choose processing algorithms and data structures that are suitable to the
scenario in question. Theoretical analysis and a selection of actual test metrics
for the algorithms and data structures described in this paper are available in
section 4.3.4.

2.4.5 Inaccuracy evaluation

In addition to discovering uncharted obstacles, the roaming robot may also
detect errors in the map that facilitates new routes. By correcting these errors

20 CHAPTER 2. BACKGROUND

starting point
b destination
- obstacles

Figure 2.10: A possible pathfinding scenario.

in the map new and more efficient routes can be found and/or the robot can
continue when all routes in the known map have been exhausted. Due to the
complexities such functionality introduces, the topic of inaccuracy evaluation
is not covered in this thesis.

2.5 Pathfinding

To computationally find the shortest possible path between two points in a
partially blocked two-dimensional map in the shortest possible amount of time
has been greatly researched throughout the history of computer science. The
topic of pathfinding is often referred to as the single-source shortest path
problem. Figure 2.10 illustrates the problem; we want to find the shortest
possible path from A to B and we can not travel through the black rectangle
in the middle of the map. However, the term "shortest” is not always 100%
accurate. In many situations one is interested in finding the path with the
lowest cost, implying that some operations or moves are more costly in terms
of time/resources than others. E.g. for a primitive robot the cost of rotation
might outweigh a slightly longer route if the robot has to stop, rotate and
start again for every rotation. In this paper the terms cost and distance are
used interchangably.

The map used in a pathfinding algorithm is usually represented by a

2.5. PATHFINDING 21

- 4 4 4 4
5) 5)) 5 5
4 4 4 4
5) 5) 5 5
4 4 4
6 5 5 5 4 cost
4 4 4 4 link
6 5) 5) 5) 5 | starting point
4 4 4 4 L
¢ A destination
[] vertex

Figure 2.11: A weighted graph.

weighted graph. A weighted graph is a node-structure where every node,
called a vertex, is connected to one or more vertices via a link, and the
link between vertices is associated with a given cost. In a directed weighted
graph the associated cost may differ depending on what vertex one is moving
from/to or moving may be restriced to one direction only. See Figure 2.11
for an example weighted graph.
Pathfinding as discussed in this chapter is limited to discreet two-dimensional

space and with a fixed progression of waypoints. Related problems, such as
The Traveling Salesman, are not discussed here.

2.5.1 Dijkstras Algorithm

One of the first solutions to the pathfinding problem was Dijkstras algorithm,
published by Dutch computer scientist Edsger Dijkstra in 1959. Dijkstras
algorithm is exhaustive, meaning that it explores every possible path to ensure
that the path found is indeed the absolutely shortest. Because of this it has
a worst case complexity of O(V?), where V is the number of vertices.

The general problem solved by Dijkstras algorithm is to find the shortest
path from s to t in the graph consisting of the set of vertices V. The algorithm
maintains two lists, S and Q, where S is the set of vertices from V' for which
we know the shortest possible path and @ is remaining vertices from V. For

22 CHAPTER 2. BACKGROUND

each vertex v in V, the algorithm stores the shortest path known from s to v,
by storing a reference to its previous, and the total distance d between s and
v. The algorithm first sets all vertices in V' to have undefined previous and
an infinite distance to its previous. s is set to have distance 0, S is set as an
empty set and Q to contain all vertices in V. The algorithm then goes into a
loop where it selects the vertex v from Q with the lowest distance and adds
this to S, for the first iteration this will always be s as per the initilization.
An inner loop then iterates over all vertices v connected to u to see if the
distance from s to v would be lower if v had v as previous, if so: set v to be
v's previous. Ultimately u will be equal to t and the shortest path from t to
s can be found by backtracking through the previous-references.

Dijkstras algorithm is widely used and is especially suited for graphs where
no initial information about the form of the graph is present, e.g. the destina-
tion might not be known, so the algorithm works as a combined pathfinding
and search-algorithm, already knowing the shortest possible path when the
vertex fulfilling the search criteria is found. For more structured graphs algo-
rithms such as the A-Star algorithm, may be more appropriate.

2.5.2 The A-Star Algorithm

The A-Star algorithm was designed by Peter Hart, Nils Nilsson, and Bertram
Raphael in 1968 and is perhaps the most widely known pathfinding algorithm.
In contrast to Dijkstras algorithm the A-Star algorithm does not simply iterate
through every possible combination of moves through the graph, instead it
employs a heuristic, a guess, to estimate what would be the best path from
the current vertex to the destination and explores this route first, before trying
the other paths if the seemingly optimal route is blocked.

Central to the A-Star algorithm is the heuristic function, h(v), that esti-
mates the best-case cost of moving from vertex v to the destination t. With
a simple two-dimensional map this function may simply return the straight
line distance between v and t. For every v the distance travelled from the
starting point s to v, g(v), is also stored. The total estimated cost, f(v),
for a vertex v is thus g(v) + h(v).

The A-Star algorithm also maintains two lists, the open-list, O, and the
closed-list, C. O contains all vertices that have not yet been visited and C
the vertices which have been visited.

2.5. PATHFINDING 23

The algorithm starts by setting C empty and O to contain only s. It then
enters an loop where for every iteration the vertex v with the lowest f(v)
is moved from O to C and for every adjacent vertex u to v the following is
done:

—

. If uis the destination, the shortest path have been found, break from
loop.

2. If uis not walkable or if it is found in C, continue to processing next
adjacent vertex.

3. If uis notin O, set v as previous vertex to u, calculate h(u), g(u) and
f(u) and add v to O.

4. If uisin O, check if f(u) is lower with v as its previous rather than
its current previous, if so: set v as u's previous, update h(u), g(u) and

f(u).

5. If O is empty and the destination has not been found, there is no walk-
able path, break from loop.

As with Dijkstras algorithm, the shortest path from s to t can be found
by backtracking through the previous-references, starting at t.

2.5.3 Shape Compensation in Pathfinding Algorithms

The pathfinding algorithms described in this chapter use obstacle maps to de-
termine the shortest travelable route from start to destination. When querying
a map to determine whether a vertex is travelable or not it is easy to forget
that the shape of the traveling object needs to be considered. The maps
used in two-dimensional pathfinding are usually N x M grids, but it is not
given that the traveling object is of size 1 x 1 and even if it was, the object
could probably not move diagonally between two obstacles that are placed
diagonally of each other as in Figure 2.12. To handle these types of problems
for general polygon objects many advanced methods have been designed, see
the work done by Eyal Flato [Flato 2000]. For simpler and less general ge-
ometrical shapes, two different approaches can be used depending on usage
scenario.

24 CHAPTER 2. BACKGROUND

»> robot
—x— destination
grid

. obstacles

Figure 2.12: Obstacle misrepresentation in a map.

0.0 o0 O O
? ? OOO OOO

0.0 0.0
© o o © OOOOO OOOOO @] O
O70 00 O O

0.0 00
o O o0 OOOOOO o o

A B Minkowski sum (A + B) Extreme area of (A+B)

Figure 2.13: Finding the Minkowski Sum of two polygons.

Minkowski Sums

Finding the Minkowski Sum of two polygons involves summing the individual
vertex coordinates into a new polygon and then finding the extreme convex
area of the resulting polygon. See figure 2.13 for a visualisation.

When working on the subject of pathfinding, using Minkowski Sums is
useful for finding the “travelable” area of the map, for a given rotation of
the robot. By summing the vertices of the vehicle polygon to every vertex in
every map polygon and finding the new extreme area of each map polygon, the
untravelable areas for this particular vehicle is discovered and can be excluded
from the map.

2.6. DIGITAL IMAGE PROCESSING 25

r .
—— extreme radius of robot

closest obstacle perimeter

2 | - - == - robot circumferense
1 T
" K » robot

— obstacles

Figure 2.14: Obstacle perimeter calculated using robot radius.

Considering robot radius

The robot that forms the basis for this thesis, the ActivMedia Robotics P3-
AT, has the ability to rotate around its own vertical axis. Considering this
and the fact that the robot may at any point in the route need to rotate if it
runs into obstacles or needs to correct its heading, we can simplify the robots
shape into a single circle with radius equal to the distance from the robots
center of rotation to its most distant point. When we treat the robot as a
circular shape we do not need to apply any Minkowski Sums to any of the
map polygons, we simply define any area within distance s of a map obstacle
to be untravelable, where s is the radius of the circular robot representation.
This way the robot is never allowed to travel within a distance to a map
obstacle that might cause the robot to crash or to get stuck and we avoid
the complexities that techniques such as the Minkowski Sum involve. Figure
2.14 shows the obstacle perimeter as calculated by this method.

2.6 Digital Image Processing

In this section we briefly describe a set of methods that can be useful as a
background for further work from this thesis. Some thoughts on further work
are presented in chapter 5.4.

26 CHAPTER 2. BACKGROUND

2.6.1 Digital Images

Digital images may come from a variety of sources, but they can be broadly
divided into two categories; aquired and synthesised. Aquired images come
from sensors that capture the state of some real-world situation at one point
in time, e.g. a digital photograph or a plot of robot laser range readings.
Synthesised images are visualisations of non-visual data either made with
human interaction or completely auto-generated, e.g. a digital drawing or a
fractal image.

2.6.2 Digital Image Representation

Conventional digital images, as will be described in this section, are stored as a
two-dimensional numerical matrix, where every vertex in the matrix describes
a single point in two-dimensional space called a pixel. The amount of data
describing each pixel depends on the image format, but at least a measure
of color or light intensity is required. A very simple binary image format
may contain only the data 1 or O for every pixel, which we may interpret as
light or dark respectively. A greyscale image format could represent every
pixel as a number between 0 and 255, giving 256 shades of grey, whilst a
more complex image format may contain highly detailed color-information and
levels of transparency for every pixel. One popular model of describing color
is by separating the color into red, green and blue channels (RGB) and have a
finite set of values for each channel. Animage format capable of distinguishing
between over 16 million color variations could store each channel in one eight-
bit byte, giving 28 = 256 variations for each channel, summing up to 256° =
16777216 variations for each pixel. It is generally accepted that the human
eye can not distinguish between more than 16000000 colors, so a 24-bit image
can be said to be “true color”, meaning that the image format is capable of
containing every color the human eye can see.

To be stored as standalone files, the image data needs to be serialized
into a byte stream and this byte stream is usually preceeded by a section
of metadata describing the pixelformat and metrics of the image data. The
pixels in the byte stream usually come row-by-row, thus a single pixel (x,y) can
be accessed at offset x + (y x row-width) in the byte stream. It is however,
from a programmers point of view, often more convenient to be able to access
each pixel as image[x][y] and most programming languages provices facilities

2.6. DIGITAL IMAGE PROCESSING 27

-
=]
o A
£
=
1)
2557
—_— 5% increase
‘ >
0 255 input — original value

Figure 2.15: Graph showing increase in brightness.

for this.

Digital images can easily become storage intensive, as their size often sur-
passes 1000x1000 pixels. A 24-bit image at that size would require almost 2.9
MB of storage, causing heavy loads on transfer and processing resources. To
ease this load, a number of image compression algorithms have been devel-
oped, with JPEG, PNG and GIF being the most common container-formats.
The main difference between the image compression algorithms is whether
they are non-lossy or lossy, meaning whether the algorithm produces a one-
to-one copy of the original image when decompressing, or if an approximation
Is made.

2.6.3 Brightness and Contrast

The brightness of an image describes the luminance of the image, that is the
percieved amount of light the image radiates. For a 8-bit greyscale image the
brightness u of a pixel is simply the greyscale value of the pixel, thus a pixel
with value 255 is at maximum brightness or saturation. For a 24-bit color
pixel the brightness u is defined as u = ’?JFTBJ’G. In other words the mean
value of the color components.

To increase the brightness of a greyscale image by e.g. 5%, 255 % 0.05 is
added to all pixel values and those values falling outside the range are set to

28 CHAPTER 2. BACKGROUND

-
=]
ol
£
=
1)
2557
—_— 5% increase
‘ >
0 255 input — original value

Figure 2.16: Graph showing increase in contrast.

255, as shown in Figure 2.15.
Contrast is the difference between maximum and minimum brightness in
an image and is calculated using the formula:

Kmax — /'l’mm
/'LmaX+/'Lmin

Contrast =

To increase the contrast of a greyscale image by e.g. 5%, all values below
255 % 0.05 are set to black (0), all values over 255 — (255 x 0.05) are set to
white (255) and all values between are scaled linearly between 0 and 255 as
shown in figure 2.16. The result of increasing the contrast of a whole image
can be seen in Figure 2.17.

2.6.4 Surface Smoothing

To simplify images so that they can more easily be processed, the first step
is to smoothen the image. Smoothing removes small pixel value variations
so that image sectors appear more unified and the image surface appears
more smooth, simplifying complex operations such as edge detection. Surface
smoothing is usually done by applying a n x n sliding window over the image,
sorting the values of the window and then finding the median value and setting
this as the new pixel value. This process is called convolution and the sliding

2.6. DIGITAL IMAGE PROCESSING 29

a) +50% brightness b) original image ¢) +50% contrast

Figure 2.17: The visual effects of adjusting brightness and contrast.

window is sometimes called a kernel if there is given different weighting on
the pixels in the window. The median is used instead of the mean so that
the effect of stray noise pixels is minimised. Note that if using large kernels
the complexity of the smoothing rises dramatically, a 3 x 3 or 5 x 5 window
is usually sufficient.

Using a median filter such as the one in Figure 2.18 can cause edges
to become blurry, but by using a specialized weighted window, such as the
Kuwahara filter, this effect can be reduced. The Kuwahara filter divides the
square window with sides of size K = 4L 4+ 1, L being an integer, into four
rectangles and and sets the value of the center pixel to be the mean brightness
of the rectangle with the lowest variance (= mean squared deviation).

2.6.5 Edge Detection

Edge detection is the process of finding pixels that lie on the border between
two image elements with vertical or horizontal dissimilarity higher than a
threshold value K. Finding edges in an image gives us the contours in the
image and thus brings us closer to computationally finding what the image
presents.

When working with greyscale pictures the difference between two pixels in
the image can be determined by subtracting the lower value from the higher,
but how can such a difference be determined for color images with colors

OWNOOEWN -

30 CHAPTER 2.

BACKGROUND

void smooth(lmage =img)
int x, y;

for(y = 0; y < img—>height;
for(x = 0; x < img—>width ;
int kx, ky:
int kernel [3][3]:

y++) {
x++) {

for(ky = —1; ky < 2; ky++) {
for(kx = —1; kx < 2; kx++) {
kernel [ky +1][kx+1] =
getpixelvalue (img—>data,
}

sort(kernel , 9);
setpixelvalue (img—>data,

y + ky, x + kx);

y. x, median(kernel));

Figure 2.18: C-like implementation of a surface smoothing algorithm.

v

blue (0, 255, 0)
green (255, 0, 0)
red (0, 0 255)

Figure 2.19: 3D representation of RGB-colors.

2.6. DIGITAL IMAGE PROCESSING 31

a) original image b) simple edge detection algorithm

Figure 2.20: A simple edge detectior applied to a 512x384 color picture.

values represented separately as red, green and blue? The solution is to
represent the color elements as vectors in three-dimensional space as shown
in Figure 2.19. The difference is then defined as the 3D Euclidian distance

between the two pixels, defined as \/(rl —1n)?+ (91— g2)% + (b — bo)?.

Simple Approach

A very simple approach to edge detection would be to iterate through the
pixels of the image, and if the difference between the current and the pixel
below or the pixel to the right is greater than K we have found an edge.
Although very simple, this algorithm can be remarkably efficient on some
images, see Figure 2.20 to see the results of running this algorithm on a
relatively complex image and Figure 2.21 for an example implementation.

Canny Edge Detector

The Canny edge detector was developed by John F. Canny in 1986 and claims
to be an “optimal”’ edge detector based on the following criteria (courtesy of
http://en.wikipedia.org/wiki/Canny_edge_detector):

e Good detection - the algorithm should mark as many real edges in the
image as possible.

OONOOEWN -

32 CHAPTER 2. BACKGROUND

void edge_detect(Image *ximg, double K)

{

}

unsigned int x, y;
unsigned int bpl = img—>sizeX * 3; // Bytes per line

for(y = 1; y < img—>sizeY; y++) {
for(x = 0; x < bpl; x += 3) {
unsigned char =R (img—>data + (bpl=y) + (x+0));
unsigned char =G (img—>data + (bpl=y) + (x+1));
unsigned char =B (img—>data + (bpl=y) + (x+2));

// Prefixes: ¢ = current, b = below and r = right
unsigned char cr = %R, br = 0, rr = 0; // Red
unsigned char cg = *G, bg = 0, rg = 0; // Green
unsigned char cb = *B, bb = 0, rb = 0; // Blue
if(x < (bpl—1)) {
rr = *(img—>data + (bpl y) + (x+3) + 0);
rg = x(img—>data + (bpl % y) + (x+3) + 1);
rb = =(img—>data + (bpl * y) + (x+3) + 2);
}
if (y < (img—>sizeY —1)) {
br = x(img—>data + (bpl * (y+1)) + (x) + 0);
bg = =(img—>data + (bpl * (y+1)) + (x) + 1);
bb = =(img—>data + (bpl = (y+1)) + (x) + 2);
}

if (sqrt((cr—rr)«(cr—rr) + (cg—rg)*(cg—rg) + (cb—rb)*(cb—rb)) >= K
|| sqrt((cr—br)«(cr—br) + (cg—bg)*(cg—bg) + (cb—bb)x(cb—bb)) >= K) {
*R = %G = *B = 0;
} else {
*R = G = *B = 255;
}

}
}

Figure 2.21: C-like implementation of a simple edge detection algorithm.

2.6. DIGITAL IMAGE PROCESSING 33

a) original image b) the Canny edge detector applied

Figure 2.22: The Canny edge detector applied to a 640x480 color picture.

e Good localisation - edges marked should be as close as possible to the
edge in the real image.

e Minimal response - a given edge in the image should only be marked
once, and where possible, image noise should not create false edges.

The Canny edge detector goes through three stages, first it smooths the
image using a gaussian mask, then it iterates through every pixel and marks
the highest intensity edge and finally the algorithm traces through all the high
intensity lines and marks the pixels there as edges. The algorithm takes three
parameters; the size of the gaussian mask and the high and low threshold for
the line detection. Pixels that fall below the low threshold as not considered
important enough to be part of the line and pixels over the high threshold are
considered noise.

The Canny edge detector is highly complex, but there are freely available
implementations in libraries such as the Intel Open Source Computer Vision
Library. Figure 2.22 shows an original and resulting image from applying the
Canny algorithm with gaussian mask size 3 x 3, high threshold 0.80 and low
threshold 0.30.

34 CHAPTER 2. BACKGROUND

— line

0 7 length from origo
o' \ “x 0 angle

Figure 2.23: Parametric representation of a line.

Hough Transform

The Hough transform is a general method for finding line tendencies in a
set of separate points. The word “tendencies” is used to indicate that the
Hough transform can not 100% determine the lines in a set of two-dimensional
points, but it can indicate the probability of a particular line in the specified
plane. The transform is tolerant of gaps in lines and image noise, but is does
not indicate the boundaries of a line, only its orientation. This limitation can
be overcome by analysing each line and finding the extreme points on that
that line, but this of course increases complexity.

The Hough transform represents lines in their parametric or normal form;

xcosf +ysinf =r

where r is the length from the origo ((0,0)) to a normal on this line and 6 is
the angle of this normal-line with respect to the x-axis. See Figure 2.23 for
a visualisation.

For every edge point in the picture, found using an edge detection algo-
rithm like the Canny edge detector, a number of lines at different angles are
plotted through the point, and r and 8 are calculated for each line. Figure 2.24
shows the lines at angles 0, 45, 90 and 135 degrees plotted through each point
and Figure 2.25 shows r and 6 for one of the lines. r and 6 for each line are
then plotted as a sinusoidal curve to a graph as y = rsin(x+60) and the points

2.6. DIGITAL IMAGE PROCESSING 35

- lines at 0° and 90°

I lines at 45° and 135°

1 .
o// X ° data points
1

Figure 2.24: An example of Hough lines through points.

v

y F S
(]
°
r

r length from origo
0 angle (45°)
o R B line at 45°
0! “x ° data points

Figure 2.25: A single Hough line and its r and 6.

36 CHAPTER 2. BACKGROUND

— sinus curve of r and 6

Figure 2.26: The Hough point-to-curve transformation.

where two or more curves intersect indicate that a line (xcos@+ ysin@ =r)
exists for the values of r and 6 where the curves intersect. This plot of si-
nusoidal curves is called the Hough point-to-curve transformation. The more
curves that intersect in the same point the more certain is the indication
of a line for these values of r and 6. Figure 2.26 shows a general Hough
point-to-curve transformation.

2.7 Related Work

A lot of research has been conducted in the field of robotic navigation.
For an overview of the available techniques, see [Borenstein et al. 1996],
[DeSouza, Kak 2002] and [Thrun 2002]. The most recent work in this field
has been published by Dr. Longin Jan Latecki at Temple University, Philadel-
phia, USA. For papers particularly related to the subject this thesis covers,
see [Latecki et al. 2004] and [Latecki et al. 2006].

Chapter 3

Scenarios

3.1 Introduction

A robot is, according to the Cambridge Online Dictionary, “A machine used
to perform jobs automatically, which is controlled by a computer”.

What robots do usually falls into the category “automation”. They perform
tasks that humans find too hard, too dangerous or simply too dull to perform
themselves. But while robots are excellent at doing repetitive and structured
tasks from well defined instructions, they often fall short when it comes to
adapting to unforeseen events and dynamically coming up with solutions to
problems which they are not explicitly programmed to handle. In the context
of robotic navigation such unforeseen events can be mobile objects moving
around in the robots environment or sensed static objects not present in the
robot's map. A robot working in such an environment is said to be working
in a “dynamic environment” .

This thesis presents a set of algorithms well suited to the problem of pathfind-
ing in a dynamic environment and this chapter describes some scenarious in

which this type of pathfinding can be useful.

37

38 CHAPTER 3. SCENARIOS

3.2 Scenario 1 - Search and Rescue

Using robots in a search and rescue mission have several advantages. Robots
can be smaller, faster, more mobile and more precise than human beings,
but most importantly; they can easily be repaired and in the extreme case
they are disposable. This property of being disposable makes them suitable
for situations where it would not be feasible to use human personnel for the
search and rescue mission. This could be search missions such as finding
trapped or unconscious people in a building that is susceptible to collapse or
in a building where radiation levels are too high to send in human personnel.
In situations such as these it is of high importance that the robot is capable
of intelligent unassisted navigation in the case communication is unavailable
for parts or the whole of the mission. The environment within such buildings
or constructions can be expected to have changed as an effect of the accident
that caused the dangerous situation. Known paths may have been blocked
and new paths may have formed and the robot should ideally be able to cope
with this new and unknown environment.
A robot suitable for search and rescue applications would need to possess the
following characteristics:

1. Detection of objects or personnel needing attention
Perhaps the most important task for a robot to be used in search and
rescue operations is the ability to precisely detect an object or person
that is in need of help. Although an interesting subject, this will not be
covered in this thesis.

2. Efficient operation
A search and rescue operation is in most cases time critical in nature and
the robot performing the search should avoid having to spend needless
time roaming the search site. The route planning algorithms should be
both fast and accurate when predicting the most efficient route from
point A to point B.

3. Robust positional error handling
Using a robot to navigate ie. a damaged building means that it will
have to handle moving around on contaminated surfaces containing
both small and large obstacles. A robot, such the P3AT used as the
basis for this thesis, is unable to detect obstacles that lay below or above

3.3. SCENARIO 2 - AUTOMATION, GUIDING AND TRANSPORT 39

its laser range finders vertical position, approximately 35 cm in case of
the P3AT. This means that it will be unable to detect low obstacles
such as small inventory or thresholds. It is therefore probable that the
unit will run into objects causing the actual trajectory to differ from the
expected. The navigational algorithms in place must therefore be able
to correct the estimated position using sensed range data.

4. Logging and incorporation of uncharted objects
The objects and obstacles discovered should be persisted within the
robots computer, both to facilitate optimal route planning throughout
the mission and to provide valuable information back to the search and
rescue operators.

5. The ability to determine persistency of objects
When faced with an uncharted object, the unit needs to be able to
determine if this is a persistent object that limits the navigational pos-
sibilities of the robot or if the object is transient or noise. If the object
is persistent the robot needs to incorporate it into its route planning
algorithms.

3.3 Scenario 2 - Automation, Guiding and Trans-
port

A less dramatic scenario than the search and rescue setting is to use a robot
for automation, guiding or transport. Thrun et.al. demonstrated an example
application of such a guidance robot in [Thrun et al. 1999]. Their Minerva-
robot successfully gave guided tours through the National Museum of Amer-
ican History for a period of two weeks. A number of similar automated tasks
in dynamic environments can be thought of:

e Guide robots operating from the reception in a large facility, guiding
visitors to their destinations.

e Transport units in a hospital moving patients and beds between loca-
tions.

e Automated cleaning robots covering larger areas within e.g. a produc-
tion hall.

40 CHAPTER 3. SCENARIOS

e Feeding-robots in an agricultural setting or in a zoo, feeding animals at
regular intervals.

e \Watchdog/security robots used for patroling large semi-structured areas
and reporting possible security breaches.

The main difference between these proposed tasks and the search and
rescue scenario is that most of these tasks are not time critical, but they are
operations that span over a longer period of time, and longer geographical
distances than what was the case in Scenario 1. This means that errors
between estimated and actual position and heading can drift to substancial
numbers when travelling in wide, open areas that provide few reference points
for the robot’s navigational algorithms.

Another important difference from Scenario 1 is the amount of dynamic
objects within the robots “senseable” range, e.g imagine the crowd in a newly
opened gallery. This places great importance on the robots ability to avoid
collisions and further emphasizes its ability to differenciate persistent objects
from transient objects, to be able to plan efficient routes within the dynamic
environment.

3.4 Scenario 3 - Automated Reconnaissance

The third an final scenario we will examine is the use of an autonomous
robot as a reconnaissance unit for military or security applications. Such a
robot could be sent as a scout to scan an area for mines/bombs or simply to
record detailed geometrical data of the area to facilitate precise planning of
a forecoming operation. What kind of challenges does such a usage scenario
present? The most important requirement is on the robots ability to record
accurate data i.e. filter out possible noise and to record and report persistent
objects discovered during the reconnaissance mission.

3.5 Informal Requirements

From the list of possible usage scenarios we have examined, we collect the
following informal requirements for a robust robotic navigation system:

3.5.

INFORMAL REQUIREMENTS 41

. The system needs to be able to accurately determine its current position

and heading, based on estimated numbers and recorded sensor readings.

. The system needs to avoid collisions with both static charted objects

and dynamic uncharted objects discovered during operation.

. The system needs to be able to estimate the most efficient route from

point A to point B, based on both static map data and discovered
objects found during operation.

The system needs to distinguish between transient and persistent ob-
jects discovered and record the objects for optimal route planning and
for post-operation analysis.

These four informal requirements form the basis for the rest of the work

presented in this thesis. We will present a set of algorithms and structured
approaches that facilitate these requirements and we will use a prototype-
/simulator to determine the success of the proposed approaches.

42

CHAPTER 3. SCENARIOS

Chapter 4

Implementation

4.1 Introduction

This chapter presents a set of strategies and algorithms suitable for au-
tonomous robotic navigation. | will cover the practical challenges encountered
when developing these strategies and explore their strengths and limitations.

4.1.1 Possim

To ease testing and experimentation, a robot simulator has been developed.
This piece of software, called Possim, enables rapid prototyping of concepts
and screenshots from this application are used extensively throughout this
chapter to illustrate problems and ideas. Possim is written as a Java Swing
application using a highly modular structure that enables users to load differ-
ent navigation strategies and position estimation algorithms in runtime. As
the robot-component of Possim is replaceable, it is also possible to control
a robot using Possim as a graphical front end, but this has not been incor-
porated in the version of Possim as delivered with this thesis. The simulator
enables the user to graphically draw and manipulate maps, as well as the
possibility to save maps and restore them at a later point in time. To test
how well the pathfinding and map matching algorithms work, the user can
also place a robot in the map, set a destination and step through the robots
route from start to destination, placing new obstacles in the way and seeing
how the algorithms cope with this.

Java was chosen as the technical platform for this simulator based on its

43

44 CHAPTER 4. IMPLEMENTATION

multi-OS availability, its widespread use in education and because of Java's
rich library of 2D geometrical functions that simplifies some of the more
tedious work involved in implementing such a simulator. Full source code and
a set of screenshot videos of Possim in action supplement this thesis. Figure
4.1 shows a screenshot of Possim.

4.1.2 Using Possim

Possim can be used to test various aspects of robot navigation, such a
pathfinding algorithms, line estimation algorithms and map matching algo-
rithms. The most common usage scenario is to draw or load a map, place
the robot in the map, set a destination, calculate the route from start to
destination and then to step through the route and see how well the robot
estimates its own position from its simulated laser rangefinder readings. To
do this in Possim, follow these steps:

1. Hit the keyboard shortcut Ctrl+R and click in the main area of the
Possim window to place the robot.

2. Move the mouse pointer in the direction you want the robot’s heading
to be and click again to set the robot’s heading.

3. Hit Ctrl4+A to start a new map obstacle polyline and click in Possim's
main window to add vertices to this polyline. Hit Escape when done.

4. Press Ctrl4+D and click in Possim’s main window to set the robot des-
tination.

5. Press F5 to update the robot’s laser rangefinder readings.

6. Press F6 to calculate the shortest route from robot position to desti-
nation.

7. Press F7 to move one step along the calculated route towards the
destination.

To manipulate a map, use these shortcuts:

4.1. INTRODUCTION 45

EETIEE— =lofx|

File Edit Tooks ahout

q
e
&5
%
de
Inaccuracy range: [12.0 | Nojssfactor: [0.0 | Wumber of probesi 100 | Probe lenathy [1500.0 Apply al Rescan

Figure 4.1: An example screenshot of Possim

1. Hit Ctrl+M and click a map obstacle vertex to select it. Move the
mouse pointer to where you want to relocate the vertex to and click
again to place the vertex in the new location.

2. Hit Ctrl4+E and click a map obstacle line to add a new vertex to this
line. Move the mouse pointer to where you want the vertex to be placed

and click again to place the vertex in the new location.

3. Right-clicking a vertex removes the vertex from it's containing obstacle
polyline.

4. Ctrl+L removes all obstacle polylines from the current map.

In addition, Possim enables the user to save maps to file, using File —
Save (Ctrl+S), and to open maps, using File — Open (Ctrl+O).

46 CHAPTER 4. IMPLEMENTATION

4.2 Navigational strategy

In a 100% static and fully charted environment, robotic navigation is rather
simple. At first one would give the robot its starting position, then its desti-
nation, and finally ask the robot to calculate the optimal route from start to
destination and then to travel the route. This means that route calculations
would only have to be performed once for every set of start- and destination
points and the only travel time interruption would be doing occational posi-
tional corrections based on laser rangefinder readings. How does this change
when the environment is only semi charted and contains dynamic objects? A
main loop for traveling in a dynamic environment might look something like
this:

1. Get laser rangefinder readings.

2. Update map with laser rangefinder readings.

3. Correct current position based on updated map.

4. Calculate optimal path from current position to destination.
5. Move towards destination.

6. If current position equals destination, exit loop, else go to top.

From this we can see that the computational complexity is severly higher
than in the static environment. Where we earlier only had to calculate the
route once, we now have to calculate it for every move. Although this might
sound dramatic, section 4.3.4 presentes a set of techniques that can reduce
this complexity somewhat, but in general we are still left with a main loop
looking like this:

1. Recalculate own position.
2. Recalculate route.
3. Move towards destination.

And this is the navigational strategy that forms the basis for discussion in
the next few sections.

4.3. PATHFINDING 47

File Edit Took About

|Ir\accuracy range: [0.0 Nosefactor: [0 Wumber of probes: [40 Probe length: {1.0 Apply 2l Rescan |

Figure 4.2: A tile route as calculated by the A-Star algorithm

4.3 Pathfinding

As discussed in section 2.5, pathfinding is the process of computationally
trying finding a travelable route from point A to point B in a given map. While
this process is trivial for humans, it has proven rather difficult to implement
as a general and efficient algorithm. The most common algorithms employed
for pathfinding today are Dijkstra’s algorithm and the A-Star algorithm. Both
of these algorithms divide the map into a grid of discreet tiles, similar to a
chess board, and investigate each of a given tiles’ neighbouring tiles in the
direction of the destination to determine a travelable route. Both Dijkstra’s
algorithm and the A-Star algorithm are relatively complex algorithms and the
fact that these algorithms operate in a discreet tile map forces us to create
an approximation of the map that is more coarse grained than the original
map to be able to calculate the route in reasonable time. The result of this
approximation is a route that is suboptimal compared to what could have been
achieved using a 1:1 map, since we now are limited to moving from tile to
tile, instead of moving in the maps native units. Figure 4.2 illustrates such an
example where it is clear that the route calculated by the A-Star algorithm is
longer than what the route could have been is the robot was allowed to move

48 CHAPTER 4. IMPLEMENTATION

% Possim il —1of x|

File Edit Tooks About

Figure 4.3: A suboptimal discreet tile route.

as close to the obstacles as allowed by the resolution of the map. Another
negative impact of the tile approximation technique employed by Dijkstra’s
algorithm and the A-Star algorithm is that only horizontal, vertical or diagonal
movement is calculated. The reason for this is that these algorithms consider
the eight neighbouring tiles in turn to determine the single tile move that
iIs most benefitial to achieving the shortest route from start to destination,
and a single move from one tile to any of its neighbouring tiles can only
result in horizontal, vertical or diagonal movement. Figure 4.3 shows how
the combination of tile approximation and only horizontal, vertical or diagonal
movement can lead to a significantly suboptimal route, compared to the route
the robot could have followed if it was allowed to rotate directly towards the
destination and travel there in a continuous straight motion.

The third and final drawback to the tile approximation technique used by
the common pathfinding algorithms that we will discuss here, is the complexity
involved in determining whether tile B is travelable coming from tile A. A very
simple algorithm might assume that if tile A is travelable and neighbouring tile
B is also travelable, it is possible to move from A to B. This is however not
the case when factoring in the robots shape and size and the requirements
as to how much the robot should be allowed to rotate at any point in the

4.3. PATHFINDING 49

File Edit Took About

Figure 4.4: A tile route calculated without consideration to robot shape.

route. Figure 4.4 shows such a case where all the tiles from the start position
to the destination are travelable, but when considering the robots shape and
size it is clear that the route calculated is not travelable. To encompass this
problem we need to extend the pathfinding algorithms callback function so
that it answers not only “is tile B travelable?”, but rather “is tile B travelable
from tile A?” and within this extended function take the robots shape and
size into consideration. Futhermore, for the pathfinding algorithms to find a
route from tile A to tile N, there needs to be a continuous set of travelable
discreet tiles available. It is not enough that there is an available area clearly
big enough for the robot to pass through, since the pathfinding algorithms
are not able to combine several semi obstacled tiles. Figure 4.5 illustrates
this problem. We can see that the robot would be able to move from its
starting position to its destination had it not been for the placement of the
tiles, which unfortunately falls so that no continuous route of unobstacled
tiles are available from start to destination.

50 CHAPTER 4. IMPLEMENTATION

% Possim o = B

File Edit Took About

Figure 4.5: An untraveable route due to unfortunate tile placement.

4.3.1 Implementing the A-Star algorithm

In section 2.5.2 we described the A-Star algorithms history and basic logic.
In this section we take a look at the inner workings of the algorithm and the
complexities encountered when working with this algorithm.

The A-Star algorithm in itself is very elegant, well defined and independent
from any specific technical features. Accompanying this thesis is a general-
ized implementations of the A-Star algorithm written in Java. The algorithm
exposes a relatively simple interface, is takes a starting position, a destination
and a callback function as its input parameters and return the optimal list of
route points if a route can be found or null if there are no possible routes.
The callback function takes a two-dimentional position as its input parame-
ters and returns a boolean value to signal whether the specified position is
travelable. The input object to the algorithm is a single object implementing
the AStarMap interface. The definition of the AStarMap interface can be
seen in figure 4.6.

Figure 4.7 shows a basic A-Star main loop similar to how it is imple-
mented in Possim. We can see that the logic is fairly straight forward and
that a program using this algorithm only needs to supply a small number of

NOO A WN -

4.3. PATHFINDING 51

import java.awt.Point;

public interface AStarMap {
public Point getStart();
public Point getDestination();
public boolean isWalkable(int x, int y, int parentX, int parentY);

}

Figure 4.6: The AStarMap interface

well defined methods; getWalkableAdjacentNodes(), calculateManhattanDis-
tance(), calculateEuclidianDistance() and createOrderedRoute(). calculate-
ManhattanDistance() and calculateEuclidianDistance() are self explanatory
and createOrderedRoute() simply backtracks through the given Node objects
previous references to find the route from start to destination. The more
complex method is getWalkableAdjacentNodes(). This method tests all of
currents neighbouring tiles to see if they are travelable from current and re-
turns a list of those that are. This method calls AStarMap.isWalkable() to
determine if a tile is travelable and as such all application-specific logic with
respect to map scaling and robot shape and size is off-loaded to this method.

From figure 4.7 we can see that this implementation of the pathfinding
algorithm uses two lists of open and closed Node objects. These Node objects
extend the java.awt.Point object with three fields; g, h and f (see section
2.5.2 for a detailed explanation of these values). The open list contains Nodes
that are still possible candidates for the final optimal route, while the closed
list contains Nodes that have been found unusable by the algorithm. The first
method called in the A-Star main loop is openList.getNodeWithLowestF().
This method returns the Node object from the open list with the lowest f
value, indicating that this Node is the one currently being considered as the
most probable to lead to the shortest route to the final destination, based on
its actual distance back to the starting position and its estimated distance to
the final destination. Using a general purpose container like an array or a list
for the open and closed lists would mean a search operation would have to be
performed to find the Node with the lowest f value for each iteration of the
main loop. Using a more specialised container for the open list could avoid
this search operation and we will look at this more closely in section 4.3.4.

In the beginning of this chapter we mentioned that the complexity of the
A-Star algorithm necessitates a tile approximation of the map. In Possim this
grid size is configurable and values between 50 and 100, meaning a simplifi-

OWOWNOOH WN -

52 CHAPTER 4.

IMPLEMENTATION

public ArrayList<Point> aStar(AStarMap map) {
Point start = map.getStart();
Point destination = map.getDestination ();

openlist.add(new Node(start));

while (true) {
Node current = openlList.getNodeWithLowestF();

if (current == null)
return null; // No possible route!
else if (current.x == destination.x && current.y == destination.y)

return createOrderedRoute(current); // Destination found!

openlList.remove(current);
closedList.add(current);

ArrayList <Node> walkableAdjacentNodes = getWalkableAdjacentNodes
for (Node adjacentNode : walkableAdjacentNodes) {
if(closedList.contains(adjacentNode))

continue ;

if (lopenList.contains(adjacentNode)) {

(map, current);

adjacentNode.g = current.g + calculateManhattanDistance(current, adjacentNode);

adjacentNode . h
adjacentNode . f

adjacentNode.g + adjacentNode.h;

calculateEuclidianDistance (adjacentNode, destinationPoint);

adjacentNode . previous = current;
openlist.add(adjacentNode);
} else {

if (current.g + calculateManhattanDistance (current, adjacentNode) < adjacentNode.g) {
adjacentNode.g = current.g + calculateManhattanDistance (current , adjacentNode);
adjacentNode .h = calculateEuclidianDistance (adjacentNode, destinationPoint);
adjacentNode . f = adjacentNode.g + adjacentNode .h;
adjacentNode . previous = current;

Figure 4.7: A Java method illustrating the A-Star algorithms main loop.

4.3. PATHFINDING 53

cation of 50:1 to 100:1, have been found to be sensible values. Converting
from the original map scale to the simplified tile scale utilizes integer division;

-l

-2

where x, and y, indicates the original two dimentional coordinate, xs and
ys are the scaled x and y values and s is the tile/grid size. To convert back
from the simplified tile scale to the center coordinate in the original map scale
the following formula is used;

S
XO:xss+§

S
yOZySS+§

What does such a simplification mean with respect to computational com-
plexity? Let us assume that the robot is positioned in (220, 300) and wants
to move to (810, 550). Scaling this down to a grid size of 40 leaves us with
the start position (5,7) and the destination (20, 13) giving an area of 15x6
tiles and a route of 6 diagonal and 9 horizontal moves, assuming an unob-
stacled area between start and destination. Since this route does not contain
any obstacles, the algorithm can always use the neighbouring tile with the
lowest f thereby limiting the number of calls to AStarMap.isWalkable() to
15. If we had not performed this scaling the AStarMap.is\Walkable() method
would have been called 340 times. This might not seem much, but as we will
see in section 4.3.2 the calculations done inside AStarMap.isWalkable() are
relatively computationally expensive and we therefore wish to limit the calls
to this function to the absolute minimum.

4.3.2 Considering robot shape and size

As discussed in section 2.5.3 and illustrated in figure 4.4 it is important to
consider practical implications when computationally determining whether the
robot can move from point A to point B in a given map. A physical robot
will always have a width and length and it might have specific constraints
when it comes to the space needed to rotate. A significant part of the

54 CHAPTER 4. IMPLEMENTATION

,,,,,,

v

X b,) adjusting b,) obstacle inter- ¢) final bounding polygon

for rotation section at rotation

a) initial attempts

Figure 4.8: Various attempts at finding the best bounding polygon.

time writing this thesis has therefore been spent developing a robust, but
efficient integration of the pathfinding algorithm and a AStarMap interface
implementation that considers the robots shape, size and its demands with
respect to rotation area.

The simplest implementation of AStarMap.is\Walkable() might only take
the destination coordinate as its input parameter and determine if any obsta-
cles in the map intersects the specified tile and return the finding. A more
advanced implementation would also need to know the source coordinate/s-
tart tile before answering whether the destination tile is travelable from the
start tile. Only after getting the start and destination tiles and creating an
internal representation of the area needed to move from start to destination
and cross checking this area with the obstacle map, would the algorithm be
able to determine whether the distance is travelable.

Initial attempts

At first | attempted to tackle the problem illustrated in figure 4.4. It is
clear from this illustration that the robot has a certain width that needs
to be taken into consideration when determining whether the next tile is
travelable. Geometrically, this means that there needs to be an unobstacled
rectangular area with width equal to the robot’s width centered on the center

4.3. PATHFINDING 55

of point A, going to the center of point B. But this considers only the robots
width. To consider its length as well, we need to extends the rectangle in
each direction with half the robots length to ensure that the robot can stop
perfectly centered in both the two points. Figure 4.8 a) illustrates such a
rectangle and we can express the four corner point in the rectangle, starting
in the top left corner and going clockwise, as follows;

R . R
2:)/1—)/A 2

X1 = Xa —

RI w
Xo=Xg+ ., Y2o=yYg+ —=

2 2
Ry
X3 = X2, Y3 =V T~
Ry
Xg = X1, V4 =Y Y

Where xa, va, Xg and yg are the coordinates of points A and B, R, is the
robots length and R,, is the robots width. We call this the robots bounding
rectangle from A to B. Note that these formulas assume an angle of 0
degrees from point A to point B. For other rotations, simply rotate the
points xi, y1 to Xy, ¥4 around point A by the angle from point A to point B,
as explained in 2.2.3. After calculating this rectangle we can iterate through
all the obstacle line segments in the map to see if any of them intersect any
of the rectangle sides, or if any of the obstacle line segments are completely
contained by the rectangle. If this is the case then the distance from point
A to point B is not travelable. Initial testing showed that this worked quite
well for avoiding situations where the the A-Star algorithm previously would
report that the distance was travelable, but it was visually obvious that the
move was impossible. However, what happens if the robot does not move
from A to B in one continuous move, but stops and discovers an obstacle
that neccessitates a rotation to continue towards the destination? Our simple
strategy does not cover this and as such we might find the robot in a situation
where it is not able to rotate and continue on its route. We therefore need to
expand the shape and size considerations made in this section to also include
the need for full rotation at any point in the route.

56 CHAPTER 4. IMPLEMENTATION

Adjusting for rotation

Incorporating the requirement for full rotation at any point actually makes
the formulas in the previous section somewhat simpler. We no longer need
to distinguish between robot length and robot width, we now only need to
consider the robots rotational radius;, R, = W, given that the robot
can rotate 360 ° around its own center as is the case for the P3AT robot. We
rewrite our formulas;

X1 =Xa— R, yi=ya+ R,

Xxo=xg+ R, y2=yg+ R,
x3=xg+ R, y3=ys— R,
Xo=Xa— R, ya=ya— R,

While this change makes the bounding rectangle larger and might thus
limit the possible moves in the map for all cases, except where R, = R,,,
we now avoid the situation where the robot gets stuck because it cannot
rotate. Figure 4.8 b;) shows the extended bounding rectangle. Although
this extension gets us a long way towards covering all considerations with
respect to robot size when calculating travelable moves, it introduces one
special corner case. What happens when the robot moves as close as possible
in parallel with an obstacle and the robot needs to rotate? It now turns out
that even if the robot would physically be able to rotate, our algorithms would
indicate that the bounding rectangles corners would intersect the obstacle
line segments, as illustrated in figure 4.8 b,), and further processing would
therefore stop.

Final adjustments

An extreme case of the scenario illustrated in the previous section is when
the robot moves down a corridor with width = 2R,. No matter how narrow
a turn the robot tries to make, its bounding rectangle corners will intersect
the corridor walls and the A-Star algorithm will report that the robot is stuck.
To solve this limitation we need to promote the bounding shape used for
intersection testing from a rectangle to a polygon shaped as a rectangle with
one half circle in each end, as illustrated in figure 4.8 ¢). This way, the

4.3. PATHFINDING 57

1 2
oA Be
4 3

Figure 4.9: The final bounding polygon’s individual vertices.

distance from the robot center to any of the bounding polygon sides can
never exceed R, and the AStarMap.isWalkable() method will never report
any false negatives. In addition to points 1 to 4 in the previous section, we
now need to insert these points between points 2 and 3;

n

™ n . T
Xon = Xg + COS(E — EW)Rr,an =y + 5/”(5 — ET")Rr

And we need to insert the following points between point 4 and 1;

3 n .3 n
Xan = XB + cos(Zw — EW)R,, Yan = YB + S/n(Zvr — EW)R,

where m is number of points in the polygon half circle and n — [1, m—1].
We call the resulting polygon the robots bounding polygon from point A to
B. Figure 4.9 shows a simple representation of the final bounding polygon
with it’s individual vertices.

This final bounding polygon covers all the considerations we have to make
with regards to the robots size and rotational area demands.

4.3.3 Optimizing paths using route climbing

Pathfinding algorithms such as Dijkstras algorithm and the A-Star algorithm
consider only the eight neighbouring tiles of the current tile as possible route

58 CHAPTER 4. IMPLEMENTATION

=T
File Edit Tools About
8] O
o o o
< 0] L
o o o
O O
o] o
] o
| Inacowacyrange: [0.0 Maisefactor: [10 Mumberofprobes: 0 Probelength: 150 Applval escan |

Figure 4.10: A tile route consisting of many unneeded rotations.

targets. This leads to a final route where every tile is at a multiple of 45°
angle relative to its previous and next tiles. We call this the continuous tile
route. For a robot capable of rotating in 1° increments such a route can be
suboptimal with respect to both the travelled distance, as illustrated in figure
4.3, and to the number of stops and rotations needed to travel the route, as
seen in illustration 4.10. From the route calculated in figure 4.10 it is clear
that this route ideally could be optimized down to only two rotations, one at
the top left corner of the obstacle polyline and one top right corner. This
way we could both shorten the travelled distance and reduce the number of
stops/rotations. How do we proceed to achieve such an optimized route?

First we need to consider what we want the resulting route to be; we want
it to be a route free of redundant route points so that every route point in the
optimal route can only be reached from its previous and next route points in
the optimal route. These route points are considered significant route points.
The optimal route is calculated from the continuous tile route, starting at
the first route point and continuing to the last route point, assuming that
these are the start and destination points respectively. To determine the sig-
nificant route points in a continuous tile route we have developed a technique
we have called the route climbing technique. The route climbing algorithm

4.3. PATHFINDING 59

% Possim (o) x|

File Edit Took About

Insignificant /

| «ff—— Untravelable

Next significant route point

Figure 4.11: The route climbing technique illustrated.

applies parts of an obstacle avoidance technique known as points-of-visibility,
described in [DelLoura 2001]. But instead of using points-of-visibility to do
pathfinding on the actual map, we use the technique on the travelable tile
route already found using the A-Star algorithm. The route climbing algorithm
is defined in Algorithm 1, where p, 1 is the previous succeeding point of cur-
rent with respect to p,. p,_1 will always be defined if the line from current to
pn intersects an obstacle, since the distance from current to the immediate
following p always is travelable in a well defined continuous tile route. More
informally the route climbing algorithm can be thought of as probing (“climb-
ing”) every succeeding point of a significant route point until it finds a route
point that is not directly travelable from the significant route point, it then
sets the previous route point as the next significant route point and continues
the algorithm from this point. Figure 4.11 illustrates the route climbing tech-
nique in action, with black bounding polygons to insignificant route points,
a red bounding polygons to an untravelable point and the green bounding
polygon from the starting point to its next significant route point. Figure
4.13 shows the resulting route after applying the route climbing technique to
a full continuous tile route. Note that to determine whether a point p, is
travelable from current we employ the same bounding polygon as described

60 CHAPTER 4. IMPLEMENTATION

1.1 set current = the starting route point in the continuous tile route;
1.2 set destination = the final route point in the continuous tile route;
1.3 set significantRoutePoints = an empty list;

1.4 while current != destination do

1.5 add current to significantRoutePoints;
1.6 foreach point p, after current in the continuous tile route do
1.7 if pn == destination then
1.8 add pp to significantRoutePoints;
1.9 set current = pp;
1.10 break loop;
1.11 else if lisWalkable(current, pn) then
1.12 set current = pp—1;
1.13 break loop;
1.14 else
1.15 | continue to next pp;
1.16 end
1.17 end
1.18 end

1.19 return significantRoutePoints;

Algorithm 1: The route climbing algorithm.

in 4.3.2. Figure 4.12 lists the route climbing algorithms as implemented in
Possim.

4.3.4 Performance considerations
Introduction

Pathfinding is inherently complex, and although the pathfinding algorithms
themselves are not very complex in terms of logic, they are computationally
complex and thus time consuming. The worst case complexity of the A-Star
algorithm is ng2, where n¢ is the number of route points in the final route, and
when considering the number of geometric operations we suggested earlier
in this chapter applied to every one of those points, it is clear that a few
optimalizations are needed to make this usable in a real world scenario. In
this section we look at the most time consuming operations!, what makes
them complex and how we can reduce their complexity. Figure 4.14 shows

!The most time consuming operations have been identified using a profiler toolkit, re-
vealing the execution time of the algorithms on a per method-level.

OONOOEWN -

4.3. PATHFINDING 61

private ArraylList<Point> calculateOptimalRoute
(ArraylList<Point> route, Point start, ArraylList<Line2D> obstaclelList , int gridRadius) {
ArrayList<Point> optimalRoute = new ArraylList<Point >();

int routeSize = route.size();
for (int i = 0; i < routeSize — 1;) {
Point currentPosition = route.get(i);

// Use actual robot position rather than first
// tile as starting point
if (i ==0)
currentPosition = new Point(start);
optimalRoute .add (new Point(currentPosition));

for (int j =i + 1; j < routeSize; j++) {
Point nextPosition = route.get(j);
boolean onLastRoutePoint = (j == (routeSize — 1));
boolean canTravelWithoutCollision = GeometryUtils.canTravelWithoutCollision(currentPosition

nextPosition, gridRadius , obstaclelList);

if (onLastRoutePoint && canTravelWithoutCollision) {
optimalRoute .add (new Point(nextPosition));
i = route.size();

break ;
} else if (!lcanTravelWithoutCollision) {
Point previousNonlntersectingPoint = route.get(j — 1);
optimalRoute .add (new Point(previousNonlntersectingPoint));
= - 1;
break ;
}
}
}
return optimalRoute ;

Figure 4.12: The route climbing algorithm as implemented in Possim.

62 CHAPTER 4. IMPLEMENTATION

File Edit Tools About
g | o)
o | o o

a o { o q

o/ [o o

o / c] o o

o = -

\

N2
|l.r\accuracy range: [0.0 Maise Factor: [0.0 Wurber of probes: 40 Probe length: {10.0 Apphy =l escan |

Figure 4.13: The route climbing technique applied to a longer route.

the maze test map used for testing the various performance optimizations
suggested in this section. Informal testing is done by placing the robot in the
bottom left-most tile and setting the destination as the bottom right-most
tile and calculating the route ten times and considering the lowest run time,
with and without the suggested optimalizations. The runtimes given in the
following sections are calculated using a robot- and tile-size of 10 (i.e. a
simplification of 10:1) and 60 (simplification 60:1) and calculating the route
using these sizes and with no calculations takes 92500 ms (10) and 220 ms
(60).

Avoiding duplicate calls to isWalkable()

From our earlier analysis we can see that the single most logically com-
plex method that is being called during the pathfinding algorithm is the AS-
tarMap.isWalkable() method that determines whether a tile is walkable from
a specific tile. This method contains lots of trigonometric operations when
calculating the movement bounding polygons and even a polygonal intersec-
tion test for each possible tile. Limiting the number of times this method is
called is a good starting point for performance optimization.

4.3. PATHFINDING 63

[eeemm ..
e

B Toos About

® | &
sy o s e o 5 ot of s [50—l o5 || o |

Figure 4.14: The maze test map used for performance testing.

From the A-Star implementations seen in 4.7 we see that the getWalk-
ableAdjacentNodes() method is called to analyse the neighbouring tiles of
current and return the tiles that are walkable. After calculating these tiles,
the main loop iterates over the walkable neighbouring tiles, but skips the tiles
that are in the closed list. This means that isWalkable() will be called for a
lot of tiles that will simply be skipped later on because they are marked as be-
ing closed. Making getWalkableAdjacentNodes() aware of the list of closed
tiles and avoid calling isWalkable() for the tiles in this list should improve
performance quite a bit.

Testing gives a runtime of 56500 ms for tile size 10 and 156 ms for tile
size 60, indicating runtimes now being 61% and 70% with respect to the
original.

Improving open and closed tile collection access times

Avoiding duplicate calls to isWalkable() definitely helps, but profiling a route
calculation shows that a considerable amount of time is spent iterating over
the collections of open and closed nodes to find tiles matching certain criteria
or to determine if a specific tile is contained within one of the collections. Our
naive first implementation applied lists of type java.lang.ArrayList for the open

64 CHAPTER 4. IMPLEMENTATION

and closed lists, resulting in linear searches through the lists. By analyzing how
the open and closed lists are used, we can apply better suited data structures
for these collections, leading to more efficient route calculations.

The collection of open tiles is used in two ways;

e To extract the tile with the lowest estimated distance to the destination.
e To search for a given tile to see if it is contained within the collection.

From this we can see that the collection should be ordered by f (the des-
tination distance heuristic) to enable O(1) complexity when extracting the
tile with the lowest f, it should have a unique primary key enabling O(1)
complexity when checking if the collection contains a specified tile and as
both the collections holding open and closed tiles are constantly manipulated
throughout the pathfinding algorithm, the data structures should offer fast
object insertions and deletions. A data structure offering O(1) complexity on
retrieving the element that lies first in an ordered structure, O(1) complexity
on insertion and O(/ogn) complexity on containment checking and deletion
is the binary heap, specifically the min heap. The Java Collections Frame-
work offers the java.util. TreeSet as a general implementation of the binary
heap, guaranteeing maximum O(/ogn) on add(), remove() and contains().
Although the TreeSet offers a fast implementation of contains(), this method
checks for containment based on the sort criterion f, while we want to check
for containment based on tile coordinates. Testing various solutions to this
mismatch has lead us to a compromise, where we maintain two collections of
open tiles; one TreeSet for fast extraction of the tile with the lowest f and a
Java.util. HashMap containing string concatenated tile coordinates as keys for
O(1) containment checking.

The collection of closed tiles is used in only one way; to check whether
a specific tile has been visited. This requires fast containment checking and
fast insertion. The hash table data structure is ideal for this as it offers O(1)
get() and put() operations. We have used The Java Collections Frameworks
HashMap class for the collection of closed tiles.

Applying the TreeSet and HashMap duo for the collection of open tiles and
a single HashMap for the collection of closed tiles reduces the runtimes on our
test map to 142 ms for tile size 60 and 16250 ms for tile size 10. These are
runtimes being respectively 64.5% and 17.6% of the original un-optimalized
pathfinding algorithm runtimes.

4.3. PATHFINDING 65

Speeding up collision detection

Our performance tweaking so far has been quite successful, we have low-
ered the runtime of the pathfinding algorithm on our chosen test map from
over 95 seconds to approximately 16 seconds, but there are still a few im-
provements we can implement. Re-profiling our application reveals the next
performance bottleneck; 67% of the time it takes to calculate the route is
spent within the GeometryUtils.canTravelWithoutCollision() method. This
method takes a start position and a destination as parameters, calculates
the bounding polygon of the move, as described in section 4.3.2, and checks
if any of the obstacle lines in the map are contained within or intersects
the bounding polygon. Looking closer at this method, the profiler shows
that 17% of the time in canTravelWithoutCollision() is spent calling Ge-
ometryUtils.getBoundingPolygon() and the remaining time is mostly spent in
Java.awt. Polygon.contains(java.awt.geom.Point2D), which makes sense since
determining if a point lies within a polygon is a rather complex operation. If
almost all the time in canTravelWithoutCollision() is spent calculating the
movement bounding polygon and determining whether any obstacles inter-
sects this bounding polygon, we need to seriously reconsider the approach
used here. The following geometrical characteristics of the bounding polygon
are known:

e |t consists of a rectangular area with the start position and destination
are placed in the middle of two parallel walls.

e The parallel walls are extruded to convex half circles, to encompass full
robot rotation in these locations.

Two conditions with regard to the bounding polygon need to be true for the
move to be considered walkable; no obstacle lines can intersect the edge
of the bounding polygon, and no obstacle line end points can lie within the
bounding polygon.

It seems that if we simplify the bounding polygon to a rectangle and two
circles, we could simply check for containment or edge intersection on these
three objects, which is dramaticly less expensive with respect to prosessing
time than containment checking on a polygon. However, this is only simple
for a rectangle with purely vertical and horizontal edges. So in the cases
where the angle between the starting position and the destination is not 0°

66 CHAPTER 4. IMPLEMENTATION

,
,
7
/
,
/
,
,
,
,
,
/
// ’ s N ~
\
/ N /) \
/) !
§ / !
N v N - 7

a) original rotation b) rotation optimized for 4
intersection testing

Figure 4.15: Optimizing bounding polygon intersection testing.

or a multiple of 90°, we need to rotate the rectangle, the destination circle
and all the obstacle lines around the starting position by the negative of the
angle between the positions, as seen in figure 4.15.

While rotating all the obstacle lines in the map may seem awkwardly com-
plex, it is actually a considerably improvement from the previous method. On
the test map used, the pathfinding algorithm now takes 20 ms for tile size 60
and 1840 ms for tile size 10. These are runtimes being respectively 9% and
2.18% of the original un-optimalized pathfinding algorithm runtimes.

Caching calculated routes

Having optimalized the pathfinding algorithm from a runtime of over 92
seconds down to below 2 seconds is a good improvement, but a 2 second
pathfinding algorithm is still too timeconsuming to be run while the robot
iIs moving. Looking back at section 4.3.3 however, we know that the route
the robot actually moves by consists of only the “extreme” route points of
the route originally calculated by the A-Star algorithm, that is the positions
where the robot has to rotate. This also means that the next point in the
optimal route at any point in time is as far as the robot is able sense at

4.3. PATHFINDING 67

that time. Knowing this, we can simplify the pathfinding algorithm that runs
during movement to simply check if the distance from the current position
to the next position in the route is walkable. If this distance is walkable, the
robot can continue moving without recalculating the route. If the distance
is not walkable, then the robot needs to recalculate the entire route. The
movement logic is now:

1. Calculate route.
2. While current position != destination:

(a) If the distance from current position to the next significant route
point is travelable, move towards this route point and resync the
pose.

(b) Else, recalculate route.

This optimization is not as measurable as the earlier improvements we
have made, but from experimenting in Possim it is clear that route caching
can make a crucial difference when it comes to maintaining efficient flow in
the robots movements.

Summary

Incorporating all the performance optimizations proposed in the preceeding
sections leaves us with a lean and efficient pathfinding strategy. Figure 4.16
gives a visual overview of the impact of every optimization. The two figures
at the left show the actual times spent calculating the routes in our test map,
starting from tile size 10, going to tile size 60 in size increments of 5. The
figures at the right show the approximated curves of the left hand size plots.
The two upper graphs are shown with a linear time scale, while the two at the
bottom are shown in a logarithmic time scale. From the logarithmic curve we
can see that just skipping isWalkable() comes with the penalty of having to
search through the list of closed tiles, which becomes significant for tile sizes
smaller than 30. Adding the hashtable overcomes this and we can see that
the optimizations are mostly linear, meaning that they don’t lower the overall
complexity of the pathfinding algorithm, rather they lower the runtimes of the
steps involved.

68

Time, linear scale (ms)

Time, logarithmic scale (ms)

CHAPTER 4.

IMPLEMENTATION

80000 T T T T T T 80000 T T T T
No optimalizations —+— No optimalizations
Skipping isWalkable() on closed nodes —-<--- Skipping isWalkable() on closed nodes -
Using hashmap for closed nodes - Using hashmap for closed nodes -
70000 | Using quick collision detection 4 70000 - \ Using quick collision detection
\
60000 x q 60000 \\
50000 - 41 £ so000 |
E
]
b
40000 1 5 40000 -
£
o
30000 1 E 30000
=
20000 1 20000 -
10000 q 10000
o S " o .
40 50 60 50 60
Tile size Tile size
100000 T T T 100000 T T
No optimalizations —— No optimalizations ———
Skipping isWalkable() on closed nodes —-<--- Skipping isWalkable() on closed nodes -
Using hashmap for closed nodes - Using hashmap for closed nodes -
Using quick collision detection Using quick collision detection
10000 ¢ E| 10000 |
@
&
©
]
8
\ @
o
1000 | . E . i £ 1000 |
Uit g
s % 38
g e -
e % \’ £
8 Tt =
100 B E| 100 |
8
a
a
8
a
10 L 1 1 1 1 1 10 Lt 1 1 1 1 1
10 20 30 40 50 60 10 20 30 40 50 60
Tile size Tile size

Figure 4.16: Graph of performance optimizations.

This graph shows the cumulative effects of applying the optimizations

described in this section.

4.4. MAP MATCHING 69

File Edit Tooks About

Figure 4.17: A typical laser rangefinder scan.
This laser rangefinder scan has been plotted on top of the robot's percieved
map position.

4.4 Map Matching

4.4.1 Introduction

So far we have concerned ourselves with pathfinding and the algorithms
needed to enable the robot to navigate within a known environment, as-
suming that the robot always makes perfect moves without any rotational or
translational errors. This is, however, not the situation in real life. When the
robot moves or rotates there will always be a small error factor in the amount
actually moved or rotated. This can be due to inaccuracies in the robot soft-
ware and hardware, or it can be caused by external factors such as slippery
surfaces, gravel, carpets etc. To compensate for these inaccuracies we need
to synchronize the robot’s calculated position/orientation to its actual posi-
tion/orientation after movement/rotation. To do so we need sensor-data to
tell us what the environment around the actual robot looks like and this is
Just what a laser rangefinder can provide for us.

The laser rangefinder supplied with the ActivMedia P3-AT robot gives

70 CHAPTER 4. IMPLEMENTATION

a 180° scan in approximately 1° intervals directed in the robots forward di-
rection and this is what we simulate in Possim. We can use the data from
the rangefinder to create a detailed two-dimensional representation of the
robot’s environment and by matching this representation to a map, we can
estimate the robot’s actual position and rotation in the environment. While
the readings from the laser rangefinder are significantly more accurate than
the readings from the P3-ATs sonar rangefinder, we still observe some inaccu-
racies and noise in the data and the combination of inaccurate laser readings
and errors in the robots movements makes for a complex pose estimation
scenario. Figure 4.17 shows how a typical range scan looks like just after
the robot has moved. The red circles indicate the individual laser readings
and we can see from the readings that there is a slight error in pose as the
readings are tilted left by a few degrees and that they have a horizontal and
vertical offset to the map. This tells us that the robot is actually closer to
the obstacles in the map than what its internal pose indicates and that its
pose rotation should be a few more degrees to the right. Analysing 4.17 with
respect to the problem of pose correction and map matching, we divide the
problem into three subtasks:

1. Extract vector polylines from raw laser rangefinder readings.
2. Find rotation of the polylines that correlate best to the map.

3. Find translation of the rotated polylines that correlate best to the map.

4.4.2 Extracting vector polylines

To be able to do map matching of sensor rangedata to vector maps we need
to convert the rangedata to a common format. As the laser rangedata is
in reality an approximation of a larger structure, we choose to convert these
sensor readings to more meaningful structures such as vector polylines. This
IS a two-step process, first we need to group the rangefinder readings into
groups that are likely to correspond to structures in the map and secondly we
approximate the polylines that these point groups resemble.

4.4. MAP MATCHING 71

2.1 set k = the maximal distance allowed between two points;
2.2 set groups = an empty list;
2.3 set readings = the rangefinder readings;

2.4 while readings is not empty do

2.5 set r = the first reading in readings;
2.6 set group = an empty list;

2.7 call collectGroup(readings, group, r, k);
2.8 add group to groups;

2.9 end

2.10 return groups;

Algorithm 2: The recursive euclidean distance clustering algorithm.

Recursive Euclidean Distance Clustering

When trying to extract meaningful vector map data from the laser rangefinder
readings, the first step is to group the readings by some sort of criterion, a
process called clustering. \WWe have chosen to group the readings by neighbour-
ing euclidian distance. This means that that the two points p; and p, belong
in the same group if the distance between p; and p, is less than or equal to
threshold distance k, or if a segment S of one or more points exists between
p1 and p, with every point € S, p1, p> having one or more neighbouring points
within a distance of no more than than k. This consept is easy enough to
comprehend, but rather complex to implement as an algorithm without re-
sorting to high runtime complexities. A naive implementation would be to
iterate over all rangefinder readings and for each reading find all other read-
ings within the distance k, and then finally iterate over every reading again to
collect the readings that share common neighbours. However, this involves
several O(n?) passes over the data and also demands a lot of memory heap
space and we thus set out to find a more efficient solution. The algorithm we
have come up with is a recursive solution that we have called the recursive
euclidean distance clustering algorithm (REDCA). This algorithm minimizes
the number of passes through the rangerfinder data by removing readings
from the original set as they are grouped with their related readings. REDCA
is defined in algorithm 2.

collectGroup(), as defined in algorithm 3, is the actual recursive element
in the REDCA algorithm and it takes the following parameters; the list of un-

72 CHAPTER 4. IMPLEMENTATION

3.1 add r to group;
3.2 remove r from readings;

3.3 set neighbours = the rangefinder readings in readings that are within k distance from r;
3.4 foreach neighbour in neighbours do

3.5 if group contains neighbour then
3.6 | continue to next neighbour;
3.7 else
3.8 | call collectGroup(readings, group, neighbour, k);
3.9 end
3.10 end

Algorithm 3: The collectGroup method of the REDCA algorithm.

grouped rangefinder readings (readings), the reading whose neighbours should
be grouped (r), a list to add the grouped readings to (group) and the max
distance threshold (k).

There are two complex operations in collectGroup, the identification of
neighbouring readings in step 3, and the check to see if group contains a given
neighbour in step 4a. The identification of neighbours is hard to optimize
away, but its complexity steadily decreases as the size of readings decrease as
more points are removed from it in step 2. The neighbour containment check
on group is easily optimized down to O(1) complexity by using a HashSet as
the datastructure for the grouped points. This is perfectly acceptable as there
iIs no need to maintain ordering of these points. In reality this comes with
the penalty of having to implement a special subtype of java.awt.Point that
allows points with identical values in the HashSet, but disallows objects to
be inserted twice. Figure 4.19 shows how the Recursive Euclidean Distance
Clustering Algorithm (REDCA) is implemented in Possim.

Polyline Approximation

After grouping related laser rangefinder data together, the grouped data
needs to be approximated into polylines. The subject of fitting lines to two-
dimensional data has been thoroughly covered in science and perhaps the most
known method of doing this is the method of /east squares as described in sec-
tion 2.3.2. However, these line fitting techniques are often meant for fitting
statistical data, where one has ascending x-values and corresponding y-values
and one wants to find the ascending or descending tendency in these data.

4.4. MAP MATCHING 73

File Edit Tooks About

Figure 4.18: Laser rangefinder readings grouped by REDCA.

This does not match our scenario where we might have a 100% vertical line,
consisting of 10 identical x-values with 10 different y-values. Applying the
least squares line fitting algorithm to these rangefinder readings will, rather
counterintuitively, result in a horizontal line in a height such as to minimize
the sum of the vertical distances from the readings to the line. While this is
perfectly correct from the least squares estimation standpoint, it is clear that
this algorithm is not ideally suited to our specific problem.

The line fitting algorithm developed for this thesis is highly specific to the
problem at hand. It takes the laser rangefinders position into consideration
and, as such, is not very general, but it solves the problem we are facing quite
efficiently. The algorithm executes the following steps to extract a polyline
from the grouped rangefinder readings in points:

1. Sort the readings (ascending or descending) in points by their angle to
the rangefinders position.

2. If there are consecutive readings in points with a distance greater than
maxDistance between them, split points between these two points and
treat the groups of points separately. 2

2This is to handle the case where a line crosses the x-axis to the left of the rangefinders

OWOWNOO A WN -

74 CHAPTER 4. IMPLEMENTATION

public class PointGrouper {

public ArraylList <HashSet<Point>> groupPoints(ArrayList <Point> points, double maxDistance) {
// Create working list
ArrayList <GroupablePoint > pointList = new ArraylList<GroupablePoint >();
for (Point p : points) {
pointList.add(new GroupablePoint(p));
}

// Collect neighbouring points
ArraylList <HashSet<GroupablePoint >> groups = new ArraylList <HashSet<GroupablePoint >>();
while (pointList.size() > 0) {

GroupablePoint head = pointList.get(0);

HashSet<GroupablePoint > group = new HashSet<GroupablePoint >();

collectGroup (pointList , group, head, maxDistance);
groups .add (group);
}

// Map back to type Arraylist<HashSet<Point>>
ArraylList <HashSet<Point>> returnGroups = new ArraylList <HashSet<Point>>();
for (HashSet<GroupablePoint> hs : groups) {
returnGroups .add(new HashSet<Point >(hs));
}

return returnGroups;

}

void collectGroup (ArrayList<GroupablePoint> pointList , HashSet<GroupablePoint> group ,
GroupablePoint parent, double maxDistance) {
group .add(parent);
pointList.remove(parent);

for (GroupablePoint neighbour : getNeighbours(pointList , parent, maxDistance)) {
if (!group.contains(neighbour)) {
collectGroup (pointList , group, neighbour , maxDistance);
}
}
}

private ArrayList<GroupablePoint> getNeighbours(ArrayList<GroupablePoint> pointList ,
GroupablePoint point , double maxDistance) {
ArrayList <GroupablePoint > neighbours = new ArrayList<GroupablePoint >();

for (GroupablePoint p : pointList) {
if (p == point) {
continue ;

if (point.distance(p) <= maxDistance) {
neighbours.add(p);
}
}

return neighbours;
}
}

class GroupablePoint extends Point {

GroupablePoint (Point p) {
super(p.x, p.y);

public int hashCode () {
return System.identityHashCode (this);

public boolean equals(Object o) {
return this == o;
}
}

Figure 4.19: The REDCA algorithm in Java.

4.4. MAP MATCHING 75

3. Divide the list of points into sub-segments of size testSegmentLength.
For each sub-segment, create a line from the first point in the segment
to the last. Iterate over these lines and where two consecutive lines
have a difference in angle of more than maxAngleVariance, a new point
is added to the polyline at the coordinate corresponding to the center
of the second sub-segment line.

4.1 seti=0;

4.2 set testSegmentLength = desired test segment length;
4.3 set segmentStart = 0;

4.4 set segmentList = an empty list;

4.5 set previousAngle = 0;

4.6 while i j (points.size() - testSegmentLength) do

4.7 set testSegment = line from points[i] to points[i + testSegmentLength];
4.8 set angle = angle(testSegment);
4.9 if i == 0 then

4.10 set previousAngle = angle;

4.11 increment i;

4.12 else if |previousAngle - angle| > maxAngleVariance then

4.13 add line from points[segmentStart] to points[i + testSegmentlLength/2] to

segmentList;

4.14 set previousAngle = angle;

4.15 set i = i + (testSegmentlLength / 2);

4.16 else

4.17 | increment i;

4.18 end

4.19 end

4.20 add line from points[segmentStart] to points[points.size() - 1] to segmentList;

Algorithm 4: The polyline approximation algorithm.

Step 3 in this approach contains the bulk of the polyline approximation
technique and its pseudocode is shown in Figure 4 and the Possim implemen-
tation can be seen in Figure 4.20.

Figure 4.21 shows this polyline approximation algorithm applied in Possim.
We can see that where the angle of a cyan-green line is significantly different
from its preceding lines (sorted in clockwise order with respect to angle to

position, leaving the readings with an angle to the rangefinder around —180° in the start of
the list of sorted points and the readings with an angle to the rangefinder around 180° in
the end of the list.

-

HOWOW®RNOOEWN

=

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

76

CHAPTER 4. IMPLEMENTATION

private static void splitActualLineSegments(ArrayList<Point> points, ArraylList<PossimLine>

int
int
int

lineSegments , final double maxAngleVariance) {
testSegmentlLength = 10;

segmentStartindex = 0;

finalSegmentStartindex = points.size () — testSegmentLength;

double previousLineEstimatorAngle = 0;

for

(int i = 0; i < finalSegmentStartindex;) {

Point testSegmentStartPoint = points.get(i);
Point testSegmentEndPoint = points.get(i + testSegmentLength);
double lineEstimatorAngle = GeometryUtils.angleBetweenPoints(testSegmentStartPoint,

testSegmentEndPoint) ;

if (i == segmentStartindex) {

}

}
}

previousLineEstimatorAngle = lineEstimatorAngle;

i++;

else if (Math.abs(previousLineEstimatorAngle — lineEstimatorAngle) > maxAngleVariance) {
int segmentEndindex = i + (testSegmentlLength / 2);

Point segmentStartPoint = points.get(segmentStartindex);
Point segmentEndPoint = points.get(segmentEndindex);
lineSegments .add(new PossimlLine (segmentStartPoint , segmentEndPoint));

previousLineEstimatorAngle = lineEstimatorAngle;
segmentStartindex = segmentEndlindex;

i = segmentEndlindex;

else {

i++;

// Add final point
lineSegments .add(new PossimLine(points.get(segmentStartindex), points.get(points.size() — 1)));

}

Figure 4.20: The polyline approximation algorithm in Java.

4.4. MAP MATCHING 7

% Possim il —1of x|

File Edit Tooks About

|l.r\accuracyrange: 20,0 Moisefactor: 0.0 Wumberof probes: [180 Probelength: [1500.0 Apply al escan |

Figure 4.21: Approximated polylines in Possim.
Larger red circles shows corner points in the polylines and cyan-green lines
show the sub-segments being used in the polyline approximation algorithm.

the robot), the line has been broken and a large red circle has been drawn to
indicate where the polyline was split.

The proposed algorithm works very well when tuned to its working en-
vironment, but it does depend on the two variables maxAngleVariance and
testSegmentlLength to be adjusted to the rangefinders accuracy and resolu-
tion. We have found maxAngleVariance = 30° and testSegmentLength = 10
to be sensible starting values.

4.4.3 Correcting rotational error

After having converted the laser rangefinder data into more manageable vec-
tor data we can start the actual process of matching this data to our pre-
defined map to determine the rotational and translational error the robot
might have. Trying to do both things at once is too complex, so we have
to split it into two tasks; to determine the rotation that makes the lines in
our vectorized rangefinder data lie most parallel with the lines in the map and
the translation of these rotated lines that minimizes the rangefinder data to

78 CHAPTER 4. IMPLEMENTATION

File Edit Tooks About

-l

Figure 4.22: Calulating the best rotation of the laser rangefinder data.
Green circles are the original rangefinder data and the red lines are the
rotated line approximations.

map-line distances.

The algorithm proposed in this thesis for finding the best rotation scans
through a number of rotations to find the angle where total variance is low-
est. This variance is comprised of the rangefinder data line’s lowest rotational
difference with respect to a map line L, its distance from L, and its length
with respect to the longest rangefinder data line. The main loop is described
in algorithm 5, where 6 is the range of angle rotations to try and longes-
tRangeFinderLine is the longest of the vectorized rangefinder lines. The criti-
cal step when implementing this algorithm is determining the weighting of the
variance-components. Optimal weighting needs to be tailored for the robot
rangefinder combination. If the robot often has large rotational errors, one
would weight the angle variance more, and if translational errors are more
prominent, one would weight the distance variance more. A possible point of
future work would be to see if the rotational error correcting algorithm could
find and maintain this weighting dynamically. Figure 4.23 shows the algorithm
as implemented in Possim and figure 4.22 shows this algorithm applied to a
simple map. Notice the weighting applied on lines 44-50 in figure 4.23; angle

4.4. MAP MATCHING 79

5.1 set bestAngle = 0;
5.2 set lowestTotalVariance = co.

5.3 foreach angle from —g to +% do
5.4 set totalVariance = 0;
5.5 foreach rangeFinderLine in the list of vectorized rangefinder readings do
5.6 set lowestVariance = oo;
5.7 set rotatedLine = rangeFinderLine.rotate(angle);
5.8 set rotatedLineAngle = rotatedLine.angleBetweenEndpoints();
5.9 foreach mapLine in the map do
5.10 set mapLineAngle = mapLine.angleBetweenEndpoints();
5.11 set variance = |mapLineAngle - rotatedLineAngle| + (rotatedLine.length() /
longestRangeFinderLine.length()) + rotatedLine.distance(mapLine);
5.12 if variance < lowest\Variance then
5.13 | set lowestVariance = variance;
5.14 end
5.15 end
5.16 set totalVariance += lowestVariance;
5.17 end
5.18 if totalVariance < lowest TotalVariance then
5.19 set bestAngle = angle;
5.20 set lowestTotalVariance = totalVariance;
5.21 end
5.22 end

5.23 return bestAngle;

Algorithm 5: The rotational error correcting algorithm.

80 CHAPTER 4. IMPLEMENTATION

variance is weighted 1:1 giving a range of 0 to 2m, line length is weighted
as a ratio giving a range of 0 to 1 and distance variance is weighted Wloo of
its unit distance. These values have been found through empirical tests in
Possim and should provide a good starting point for adaption to a particular

rangefinder and robot.

4.4.4 Correcting translational error

From 4.22 it can be seen that we are now getting close to correcting the
robots perceived pose to its actual pose. The robots heading have been
synchronized, but we need to calculate how much the robot is off in the
vertical and horizontal directions. To do this, we employ a similar technique
as in 4.4.3, but rather than iterating over a range of angles, we here iterate
over a range of values for horizontal and vertical translation, and consider
the values that minimize the sum of polyline endpoint to closest map line
distances as the best translation. In other words, we translate every line by a
given set of values and try to find the translation where the combined distance
from the translated lines endpoints to its closest map line is lowest. As with
the the rotational error correcting algorithm, this is a linear search, but due
to the relative low amount of rangefinder readings the only parameter to limit
is the range over which to search. The default Possim implementation of
this algorithm uses a window size of 100 x 100 and a step size of 4 to limit
the number of iterations. Algorithm 6 details the algorithm pseudocode and
figure 4.24 shows the algorithm as implemented in Possim.

From figure 4.25, showing the algorithm applied in a simulation, we can
see the beige lines as polyline approximations of the rangefinder readings, the
red lines show the same polylines after correcting for rotational error, and
the blue lines after correcting for translational error. This figure sums up
the result of applying the algorithms we have described in section 4.4 and
shows that when properly tuned to the robot and rangefinder at hand, these
algorithms can be quite successful.

4.5 Handling uncharted objects

For a robot to be able to navigate in a dynamic environment where objects
move around and not every surrounding object is present in the robots map,

26

27
28

29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
44
45

47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

4.5. HANDLING UNCHARTED OBJECTS 81

public static double getBestRotation(ArrayList<ArrayList<Point>> map, ArraylList<PossimLine>
estimators , Point referencePosition) {
double bestRotation = 0.0;
double lowestVariance = Double. MAX_VALUE;

// Get rotation of lineestimator that gives the lowest variance with respect to map line
double angleRange = Math.toRadians(45);

double minAngle = —(angleRange / 2.0);

double maxAngle = (angleRange / 2.0);

double angleStep = Math.toRadians(1l); // Try rotations in 1 degree steps

// Determine longest estimator line

double longestLineEstimatorLength = 0.0;
for (PossimLine lineEstimator : estimators) {
double lineEstimatorLength = lineEstimator .getLength ();
if (lineEstimatorLength > longestLineEstimatorLength) {
longestlLineEstimatorLength = lineEstimatorLength ;
}
for (double angle = minAngle; angle <= maxAngle; angle += angleStep) {
double totalAngleVariance = 0.0;
for (PossimLine lineEstimator : estimators) {
// Rotate estimator points around referencePosition
Point lineEstimatorPl = GeometryUtils.rotateAroundPoint(lineEstimator .getP1(),
referencePosition, angle);
Point lineEstimatorP2 = GeometryUtils.rotateAroundPoint(lineEstimator .getP2(),
referencePosition, angle);
double estimatorLineLength = lineEstimatorP1l.distance(lineEstimatorP2);
double estimatorLineAngle = GeometryUtils.angleBetweenPointsPositive (lineEstimatorP1 ,

lineEstimatorP2);
double bestEstimatorVariance = 1000000;

// Find map line with lowest variance at this rotation
for (ArrayList<Point> polyLine : map) {
for (int i = 0; i < polyLine.size() — 1; i++) {
Point mapLinePl = polyLine.get(i);
Point mapLineP2 = polyLine.get(i + 1);
Line2D mapLine = new Line2D . Double(mapLineP1l, mapLineP2);

double lineEstimatorPlDistance = mapLine.ptSegDist(lineEstimatorP1l.x, lineEstimatorP1l.
double,IineEstimatorPZDistance = maplLine . ptSegDist(lineEstimatorP2 .x, lineEstimatorP2.
double,totaIDistance = lineEstimatorP1Distance + lineEstimatorP2Distance;

double mapLineAngle = GeometryUtils.angleBetweenPointsPositive(mapLinePl, mapLineP2);
double variance = Math.abs(estimatorLineAngle — mapLineAngle);

// Weight longer lines more than short lines
variance /= 1.0 / (estimatorLineLength / longestLineEstimatorLength);

// Weight lines closer to their parallel line more than lines farther from their
parallel line
variance #= totalDistance / 1000.0;

if (variance < bestEstimatorVariance) {
bestEstimatorVariance = variance;
}

}

totalAngleVariance += bestEstimatorVariance;

if (totalAngleVariance > 0 && totalAngleVariance < lowestVariance) {
lowestVariance = totalAngleVariance;
bestRotation = angle;
}
}

return bestRotation;

y

y

Figure 4.23: The rotational error correcting algorithm in Java.

82 CHAPTER 4. IMPLEMENTATION
6.1 set lowestTotalDistance = oo;
6.2 set bestXTranslation = 0;
6.3 set bestYTranslation = 0;
6.4 set startTranslation = -(windowSize/2);
6.5 set endTranslation = (windowSize/2);
6.6 foreach dx from start Translation to endTranslation do
6.7 foreach dy from start Translation to endTranslation do
6.8 set totalDistance = 0;
6.9 foreach approximatedLine do
6.10 set distanceToClosestMaplLine = oo;
6.11 set translatedLine = approximatedLine.translate(dx, dy);
6.12 foreach mapLine do
6.13 set currentDistance = distance(translatedLine, mapLine);
6.14 if currentDistance < distance ToClosestMapLine then
6.15 | set distanceToClosestMapLine = currentDistance;
6.16 end
6.17 end
6.18 set totalDistance += distanceToClosestMapLine;
6.19 end
6.20 if totalDistance < lowest TotalDistance then
6.21 set lowest TotalDistance = totalDistance;
6.22 set bestXTranslation = dx;
6.23 set bestY Translation = dy;
6.24 end
6.25 end
6.26 end
6.27 return bestXTranslation, bestY Translation

Algorithm 6: The translational error

correcting algorithm.

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

4.5. HANDLING UNCHARTED OBJECTS

83

public static
estimators) {
int windowSize =

100;

Point getBestTranslation(ArrayList<ArrayList<Point>> map,

ArrayList <PossimLine>

int stepSize = 4;

int startTranslation = —(windowSize / 2);

int endTranslation = (windowSize / 2);

double lowestTotalDistance = Double. MAX_VALUE;
int bestXTranslation = 0;

int bestYTranslation = 0;

dx += stepSize) {
dy 4+= stepSize) {

for (int dx = startTranslation; dx <= endTranslation;
for (int dy = startTranslation; dy <= endTranslation;

double totalDistance = 0;
for (PossimLine estimator estimators) {

Point translatedEstimatorPl = new Point(estimator.getPl().x+dx,
Point translatedEstimatorP2 = new Point(estimator.getP2().x+dx,

estimator.getPl().y+dy);
estimator.getP2 () .y+dy);

Double . MAX_VALUE;

{

double distanceToClosestMaplLine =

for (ArraylList <Point>
for (int i = 0; i <
Point mapLinePl =
Point mapLineP2 =
Line2D mapLine =

polyLine : map)
polylLine .size ()
polyLine.get(i);
polyLine .get(i + 1);

new Line2D .Double (mapLineP1l ,

1 i++4) {

mapLineP2);

double lineEstimatorP1lDistance =
translatedEstimatorPl.y);

double lineEstimatorP2Distance =
translatedEstimatorP2.y);

double distanceToMaplLine = lineEstimatorP1Distance + lineEstimatorP2Distance;

mapline . ptSegDist(translatedEstimatorP1l .x,

mapline . ptSegDist(translatedEstimatorP2 .x,

if (distanceToMapLine < distanceToClosestMapLine) {
distanceToClosestMapLine = distanceToMaplLine;

}

totalDistance += distanceToClosestMapLine;

}

if(totalDistance < lowestTotalDistance) {
lowestTotalDistance = totalDistance;
bestXTranslation = dx;
bestYTranslation = dy;
}
}
}

return new Point(bestXTranslation , bestYTranslation);

Figure 4.24: The translational error correcting algorithm in Java.

84 CHAPTER 4. IMPLEMENTATION

File Edit Tooks About

® W

=}

|l.r\accuracyrange: 20,0 Moisefactor: 0.0 Wumberof probes: [180 Probelength: [1500.0 Apply al Rescan

Figure 4.25: Calculating the translational error.

the robot needs to be able to detect un-mapped objects in it’s laser rangefinder
readings and take these objects into consideration when it calculates routes
and moves along these routes. The subject of real time mapping and ob-
ject detection has been covered in a number of research papers. In more
recent years by Latecki and Lakdmper in their papers [Latecki et al. 2004]
and [Latecki et al. 2006]. Due to time constraints, this thesis will not cover
handling uncharted object, it is rather suggested as a point of future work in
Chapter 5.

4.6 Summary

In this chapter | have presented a strategy and set of algorithms suitable as
a basis for autonomous robotic navigation. We have looked into the overall
strategy for navigation and studied in detail the complex aspects of pathfind-
ing, route optimization and map matching.

A number of measures to make the A-Star pathfinding algorithm usable
in a near real-time environment have been proposed, including algorithmic
optimizations such as using optimized data structures for the lists of open

4.6. SUMMARY 85

and closed nodes and more functional optimizations such as partial route
caching.

All the phases of map matching has been covered in detail. Starting off
by grouping related laser rangefinder readings, then estimating the geometric
primitives that these groups represent and finally matching these primitives
to the robots internal map representation and thereby estimating the robots
position and heading in the map.

In the process of writing this chapter, three new algorithms have been de-
veloped: the route climbing technique described in section 4.3.3, the recursive
euclidian distance clustering algorithm for laser rangefinder data clustering de-
scribed in section 4.4.2 and the polyline approximation technique presented
in section 4.4.2. More thoughts on the significance of these algorithms are
presented in the conclusion of this thesis.

86

CHAPTER 4.

IMPLEMENTATION

Chapter 5

Conclusions

This chapter sums up the work presented in this thesis and a few thoughts
on the process of writing it are presented.

5.1 On the development of this thesis

The initial focus, when starting this thesis, was to develop a set of algorithms
and techniques needed for a working, stable navigation system for the Activ-
Media Robotics P3AT robot belonging to the faculty of Computer Sciences at
@stfold University College. The goal was to develop, deploy and test such an
application on the robot and to submit a set of videos showing the software in
action, as part of the thesis. The spring and summer 2006 was spent working
with the P3AT. Interfacing with the C++ interface supplied with the robot
was rather time-consuming and not enough time was spent on the theoret-
ical aspects of developing the system. In hindsight it is clear that the intial
problem statement was somewhat too broad for one person, without specific
domain knowledge, to be able to complete in six months. | believe a subset
of the initial problem, such as focusing on optimizing pathfinding algorithms
or developing an optimal feature recognition algorithm for laser rangefinder
data, would have been more appropriate. When | decided to revisit and com-
plete this thesis in May 2008, one of the first decisions | made was to not
focus on the actual P3AT, but rather develop a robot simulator mimicing the
behaviour of the P3AT. This significantly simplified development and enabled
me to focus on the interesting aspects of robotic navigation.

87

88 CHAPTER 5. CONCLUSIONS

Secondly, | believe it would have been benefitial to have been two people
writing this thesis. A lot of the discoveries | made along the way, have
come when | have tried to explain or discuss a specific problem with a friend
or colleague. This is a common effect, but it's importance should not be
understated. Having a thesis partner would have also eased the process of
getting an overview of the domain research available. The field of robotic
navigation has been greatly researched and the amount of scientific papers
available on this topic can be overwhelming.

5.2 The state of robotic navigation research

As stated in the previous section, a lot of work has been done in the field of
robotic navigation. A plethora of research papers are available, as well as a
number of books. This makes for a steep learning curve when trying to get
an impression of the current state of the art, as it seems a lot of unrelated
research papers are being published. As background for this thesis, sum-
maries and surveys such as [Borenstein et al. 1996], [DeSouza, Kak 2002]
and [Thrun 2002] have proved very valuable, but there is no de facto “bible”
for robotic navigation that takes a qualitative evaluation of the different avail-
able techniques. This makes it difficult to choose which direction, statistical
or geometrical, and what technique within that direction to pursue when set-
ting out to implement a navigation system for a robot.

In contrast to the large amount of available literature on robotic naviga-
tion, very little actual source code is available. This further complicates the
process of choosing a navigational strategy, as one can not simply download
the source code and try it, one often has to thoroughly examine the relevant
research papers and implement the proposed algorithms from scratch.

5.3 Conclusion

In the introduction to this thesis, | set out to develop a set of algorithms
and techniques that enables a robot to navigate in a preloaded map, pos-
sibly containing dynamic and un-mapped objects. In section 3.5 | narrowed
this problem statement down to four informal requirements. Of these re-
quirements, requirement number one has been covered by the map matching

5.3. CONCLUSION 89

technique decribed in section 4.4 and requirement number two and three have
been partially covered by the pathfinding and route optimization algorithms
in section 4.3. When solving and implementing these requirements, it be-
came clear that the problem of handling dynamic objects discovered during
robot operation was too complex to be covered in this one semester thesis.
Requirement number four, and the dynamic aspect of requirement two and
three, are therefore not covered in this thesis.

In terms of contributions to the field of robotic navigation and route plan-
ning, this thesis contains three significant sections:

e The route climbing technique described in section 4.3.3. This algo-
rithm, combined with the robot's bounding polygon as described in
4.3.2, greatly improves the efficiency, in terms distance travelled and
rotations made, on a tile route as calculated by the A-Star or Dijkstra
algorithm.

e The structured analysis of the A-Star algorithm optimization in section
4.3.4. Although a lot has been written on the A-Star algorithm, |
have not been able to find a structured analysis on how to significantly
increase its performance. Hopefully this section will be of use to future
implementors.

e The recursive euclidean clustering algorithm described in section 4.4.2.
This two-method, one variable (max distance between points in a clus-
ter), and O(nlog n) clustering algorithm is ideally suited to clustering
rangefinder readings to groups that represent continuous objects in the
map.

To summarize, this thesis presents a good toolbox of algorithms for getting
started with pathfinding and route planning for mobile robots. The subject
of efficient pathfinding has been throughly covered, and all the discussed
algorithms are available as part of this thesis.

With respect to the problem of map matching and robot localization/-
position determination, the algorithms presented in sections 4.4.3 and 4.4.4
work well for low complexity scenarios, but their high runtime complexity
and somewhat inadequate handling of noise and small objects might make
them unsuitable for very noisy real world usage. It is my impression that
the system presented by Latecki and Lakamper in [Latecki et al. 2004] and
[Latecki et al. 2006] is better suited for such noisy scenarios.

90 CHAPTER 5. CONCLUSIONS

5.4 Further work

As pointed out in the previous section, the subject of map building and han-
dling a dynamic environment is not covered in this thesis due to time con-
straints, and this would be an interesting point of further work. By first imple-
menting Latecki and Lakamper’s map building technique from [Latecki et al. 2004],
one could possibly extend this technique with a time aspect, so that one could
track moving objects in the map and plan routes that avoid the moving object

by calculating it's trajectory.

Another interesting scenario is the possiblity of extending map matching
to three dimensions. In the background chapter of this thesis, we briefly touch
upon a few techniques for surface smoothing and edge detection. If the robot
was fitted with one or more cameras, it could photograph it's surroundings,
extract the edges/lines in the photograph and compare these line tendencies
to a two-dimensional projection of a onboard three-dimensional model of it’s
surroundings and thereby calculate it’s own position in the model. Some
related work can be found in [David et al. 2003].

Bibliography

[Dijkstra 1959] Dijkstra, E. W.
A note on two problems in connexion with graphs
Numerische Mathematik 1, 1959

[Borenstein et al. 1996] Borenstein, J.; Everett, H. R.; Feng, L.
“Where am |7 - Sensors and Methods for Mobile Robot Positioning
The University of Michigan, April 1996

[Thrun et al. 1999] Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A. B;
Dellaert, F.; Fox, D.; Hahnel, D.; Rosenberg, C.; Roy, N.; Schulte, J.;
Schulz, D.

MINERVA: A Second-Generation Museum Tour-Guide Robot
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA)

[Flato 2000] Flato, E.
Robust and Efficient Construction of Planar Minkowski Sums
Master thesis, Department of Computer Science, Tel-Aviv University 2000

[DeLoura 2001] DelLoura, M.
Game Programming Gems 2
Charles River Media, 2001

[Lo et al. 2002] Lo, S. C.; Akos, D.; Houck, S.; Normark, P. L.; Enge, P.
WAAS Performance in the 2001 Alaska Flight Trials of the High Speed

91

92 BIBLIOGRAPHY

Loran Data Channel
IEEE Position Location and Navigation Symposium, 2002

[Thrun 2002] Thrun, S.
Robotic Mapping: A Survey
School of Computer Science, Carnegie Mellon University, February 2002

[DeSouza, Kak 2002] DeSouza, G. N.; Kak, A. C.
Vision for Mobile Robot Navigation: A Survey

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
24, No. 2, February 2002

[David et al. 2003] David, P.; DeMenthon, D.; Duraiswami, R.; Samet, H.
Simultaneous Pose and Correspondence Determination using Line Fea-
tures
Department of Computer Science, University of Maryland, 2003

[Latecki et al. 2004] Latecki, J. L.; Lakaemper, R.; Sun, X.; Wolter, D.
Building Polygonal Maps from Laser Range Data
ECAI Int. Cognitive Robotics Workshop, Valencia, Spain, August 2004

[Wing et al. 2005] Wing, M. G.; Eklund, A.; Kellogg, L. D.
Consumer-Grade GPS Accuracy and Reliability
Journal of Forestry, Volume 103, Number 4, June 2005

[Latecki et al. 2006] Latecki, J. L.; Lakaemper, R.
Polygonal Approximation of Laser Range Data Based on Perceptual
Grouping and EM
IEEE Int. Conf. on Robotics and Automation, Orlando, Florida, May 2006

Appendix A

Included files

Included with this thesis document is a CD with the full source code for Possim
application described in chapter four, as well as a set of videos showing how
Possim works and how to use it.

Possim/possim.jar

This runnable jar file contains a precompiled version of Possim, ready to be
run from the CD.

Possim/possim-src.jar

This jar file contains the full source code for Possim, complete with all the
algorithms presented in this thesis.

Videos/

This folder contains a set of commented videos of Possim in action. It is a
good idea to see these videos before trying to run Possim, to get an idea of
what the application can do and how to control it.

93

	1 Introduction
	1.1 Problem Description
	1.2 Feature Detection
	1.3 Map Matching
	1.4 Pathfinding
	1.5 Map Refinement
	1.6 Thesis Overview

	2 Background
	2.1 Digital Maps
	2.1.1 Raster Maps
	2.1.2 Vector Maps
	2.1.3 Coordinate Systems
	2.1.4 Scale
	2.1.5 Distance Measures

	2.2 Geometrical Transformations
	2.2.1 Translation
	2.2.2 Scaling
	2.2.3 Rotation

	2.3 Feature Recognition
	2.3.1 Range Data Grouping
	2.3.2 Line Approximation

	2.4 Map Refinement
	2.4.1 Object isolation and feature recognition
	2.4.2 Obstacle persistency
	2.4.3 Data structure order
	2.4.4 Efficiency of analysis and insertion
	2.4.5 Inaccuracy evaluation

	2.5 Pathfinding
	2.5.1 Dijkstras Algorithm
	2.5.2 The A-Star Algorithm
	2.5.3 Shape Compensation in Pathfinding Algorithms

	2.6 Digital Image Processing
	2.6.1 Digital Images
	2.6.2 Digital Image Representation
	2.6.3 Brightness and Contrast
	2.6.4 Surface Smoothing
	2.6.5 Edge Detection

	2.7 Related Work

	3 Scenarios
	3.1 Introduction
	3.2 Scenario 1 - Search and Rescue
	3.3 Scenario 2 - Automation, Guiding and Transport
	3.4 Scenario 3 - Automated Reconnaissance
	3.5 Informal Requirements

	4 Implementation
	4.1 Introduction
	4.1.1 Possim
	4.1.2 Using Possim

	4.2 Navigational strategy
	4.3 Pathfinding
	4.3.1 Implementing the A-Star algorithm
	4.3.2 Considering robot shape and size
	4.3.3 Optimizing paths using route climbing
	4.3.4 Performance considerations

	4.4 Map Matching
	4.4.1 Introduction
	4.4.2 Extracting vector polylines
	4.4.3 Correcting rotational error
	4.4.4 Correcting translational error

	4.5 Handling uncharted objects
	4.6 Summary

	5 Conclusions
	5.1 On the development of this thesis
	5.2 The state of robotic navigation research
	5.3 Conclusion
	5.4 Further work

