
Self-Contained Map Based Navigation inAutonomous Robotic UnitsOddbj�rn KvalsundDecember 10, 2008

ii

AbstractAutonomous robotic units such as reconnaissance robots are dependent onreliable and precise sources of navigation data. In some circumstances the po-sitioning solutions widely available today, GPS and commercial IPS-solutions,are not enough to secure reliable positioning data due to their sensitivity toelectromagnetic- and radio-interference. This thesis proposes a set of algo-rithms and techniques that can be used as a part of a standalone position-recognition system that provides another level of redundancy in such appli-ances.

iii

iv Abstract

PrefaceThe work presented in this thesis signi�es the end result of a two year mastersdegree in computer science attained at �stfold University College, Norway.Year one of this programme was attained at the Department of Electrical andElectronic Engineering at Newcastle University, England. The �rst part ofthis thesis was written during the spring of 2006 and the �nal chapters werewritten during the summer and autumn months of 2008.Autonomous robotic units and safety-oriented systems development hasbeen the research �eld of professor Rune Winther for a number of years. Thispaper combines these two topics by describing methods for safe self-containedrobotic navigation through a semi-charted two-dimentional terrain.I wish to thank prof. Rune Winther for his knowledgeable and supportivecounseling through the completion of this thesis.Oslo, December 10th 2008 Oddbj�rn Kvalsund

v

vi Preface

Contents
1 Introduction 11.1 Problem Description . 11.2 Feature Detection . 31.3 Map Matching . 31.4 Path�nding . 51.5 Map Re�nement . 61.6 Thesis Overview . 62 Background 72.1 Digital Maps . 82.1.1 Raster Maps . 82.1.2 Vector Maps . 92.1.3 Coordinate Systems 102.1.4 Scale . 112.1.5 Distance Measures 112.2 Geometrical Transformations 122.2.1 Translation . 122.2.2 Scaling . 132.2.3 Rotation . 142.3 Feature Recognition . 142.3.1 Range Data Grouping 152.3.2 Line Approximation 162.4 Map Re�nement . 182.4.1 Object isolation and feature recognition 182.4.2 Obstacle persistency 182.4.3 Data structure order 192.4.4 EÆciency of analysis and insertion 19vii

viii CONTENTS2.4.5 Inaccuracy evaluation 192.5 Path�nding . 202.5.1 Dijkstras Algorithm 212.5.2 The A-Star Algorithm 222.5.3 Shape Compensation in Path�nding Algorithms . . . 232.6 Digital Image Processing 252.6.1 Digital Images . 262.6.2 Digital Image Representation 262.6.3 Brightness and Contrast 272.6.4 Surface Smoothing 282.6.5 Edge Detection . 292.7 Related Work . 363 Scenarios 373.1 Introduction . 373.2 Scenario 1 - Search and Rescue 383.3 Scenario 2 - Automation, Guiding and Transport 393.4 Scenario 3 - Automated Reconnaissance 403.5 Informal Requirements . 404 Implementation 434.1 Introduction . 434.1.1 Possim . 434.1.2 Using Possim . 444.2 Navigational strategy . 464.3 Path�nding . 474.3.1 Implementing the A-Star algorithm 504.3.2 Considering robot shape and size 534.3.3 Optimizing paths using route climbing 574.3.4 Performance considerations 604.4 Map Matching . 694.4.1 Introduction . 694.4.2 Extracting vector polylines 704.4.3 Correcting rotational error 774.4.4 Correcting translational error 804.5 Handling uncharted objects 804.6 Summary . 84

CONTENTS ix5 Conclusions 875.1 On the development of this thesis 875.2 The state of robotic navigation research 885.3 Conclusion . 885.4 Further work . 90

x CONTENTS

List of Figures
1.1 Possible consequence of skewed heading. 21.2 Steps involved in 2D feature recognition. 41.3 Matching range�nder data to a map. 41.4 Path�nding considering the vehicle shape and size. 52.1 A political and a geographic map of Norway. 82.2 An example of the consequences of upscaling a raster image. 92.3 Vector graphics representation with rendered output. 102.4 The rectangular coordinate system. 112.5 Simple two-dimensional translation. 132.6 Rotation by �20Æ. 152.7 A laser range�nder scan. 162.8 Simple vs. more advanced range data grouping. 172.9 The best �t line as calculated by least squares estimation. . 172.10 A possible path�nding scenario. 202.11 A weighted graph. 212.12 Obstacle misrepresentation in a map. 242.13 Finding the Minkowski Sum of two polygons. 242.14 Obstacle perimeter calculated using robot radius. 252.15 Graph showing increase in brightness. 272.16 Graph showing increase in contrast. 282.17 The visual e�ects of adjusting brightness and contrast. . . . 292.18 C-like implementation of a surface smoothing algorithm. . . 302.19 3D representation of RGB-colors. 302.20 A simple edge detectior applied to a 512x384 color picture. . 312.21 C-like implementation of a simple edge detection algorithm. 322.22 The Canny edge detector applied to a 640x480 color picture. 33xi

xii LIST OF FIGURES2.23 Parametric representation of a line. 342.24 An example of Hough lines through points. 352.25 A single Hough line and its r and �. 352.26 The Hough point-to-curve transformation. 364.1 An example screenshot of Possim 454.2 A tile route as calculated by the A-Star algorithm 474.3 A suboptimal discreet tile route. 484.4 A tile route calculated without consideration to robot shape. 494.5 An untraveable route due to unfortunate tile placement. . . 504.6 The AStarMap interface 514.7 A Java method illustrating the A-Star algorithms main loop. 524.8 Various attempts at �nding the best bounding polygon. . . . 544.9 The �nal bounding polygon's individual vertices. 574.10 A tile route consisting of many unneeded rotations. 584.11 The route climbing technique illustrated. 594.12 The route climbing algorithm as implemented in Possim. . . 614.13 The route climbing technique applied to a longer route. . . . 624.14 The maze test map used for performance testing. 634.15 Optimizing bounding polygon intersection testing. 664.16 Graph of performance optimizations. 684.17 A typical laser range�nder scan. 694.18 Laser range�nder readings grouped by REDCA. 734.19 The REDCA algorithm in Java. 744.20 The polyline approximation algorithm in Java. 764.21 Approximated polylines in Possim. 774.22 Calulating the best rotation of the laser range�nder data. . . 784.23 The rotational error correcting algorithm in Java. 814.24 The translational error correcting algorithm in Java. 834.25 Calculating the translational error. 84

List of Algorithms1 The route climbing algorithm. 602 The recursive euclidean distance clustering algorithm. 713 The collectGroup method of the REDCA algorithm. 724 The polyline approximation algorithm. 755 The rotational error correcting algorithm. 796 The translational error correcting algorithm. 82

xiii

xiv LIST OF ALGORITHMS

PrerequisitesDue to the time and space constraints of this thesis, every subject mentionedcan not be covered in full detail. Consequently it is assumed that the readeris
uent in procedural and object-oriented computer programming, has a �rmunderstanding of fundamental algorithms, algorithm analysis using big O no-tation, the most common data structures and that he or she understandsbasic geometric maths.

xv

xvi Prerequisites

Chapter 1IntroductionThe purpose of this thesis is to �nd the best possible set of techniques andalgorithms for enabling an autonomous robotic unit to navigate within a semi-charted two-dimensional terrain using only on-board maps, sensors and com-puting power. Such a system can provide yet another safety level of naviga-tional redundancy when used in conjunction with global or indoor positioningsystems. It can also be invaluable when the robot is used as a reconnaissanceunit for charting a semi-charted area in greater detail.The speci�c test-case unit used throughout the development of this thesisis the ActivMedia Robotics P3-AT robot quipped with sixteen range sonars,one 180 degree laser range device and an onboard computer running MicrosoftWindows XP. The techniques described herein are not limited to this speci�crobot, but access to a semi-powerful computer and a high precision rangedevice forms the basis of the methods described.1.1 Problem DescriptionFor a robot to be able to successfully navigate from point A to point B in asemi-charted area, it needs the following information:� The robot's current position and heading.� A map of the area of which it is to navigate, containing at least onetravelable path from point A to point B.1

2 CHAPTER 1. INTRODUCTION

 robot

 destination

actual heading

calculated heading

obstaclesFigure 1.1: Possible consequence of skewed heading.In addition to this information the robot needs to possess the followingcapabilities:� The ability to move.� The ability to calculate the possible routes from A to B avoiding ob-stacles.� The ability to re�ne the map in real time if obstacles blocking its pathare found.The fundamental problem with these criterias is that they all heavily de-pend on the very �rst criterion; at every time knowing the robots exact po-sition and heading. This information may be 100% accurate as the robotstarts moving from point A, but as inaccuracies in calculated moved distanceand rotated heading with respect to actual moved distance and rotated head-ing accumulate, the robot may have drifted enough to collide with objectsoutside its path, as in Figure 1.1. It is therefore crucial that the robot canresyncronize its position and heading during a move without third part inter-vention. The simplest method of assuring position is by using a positioningsystem such as IPS (Indoor Positioning System) or GPS (Global PositioningSystem). There are many types of IPSs available, most of which are imple-mented by triangulating beaming signals transmitted by �xed-position nodes

1.2. FEATURE DETECTION 3within, or at the bounds of, the covered area. GPS is similar to this, butis implemented on a much larger scale using more than two dozen satellitesin orbit around the earth. Traditional GPS is position-wise accurate to 5-10meters [Wing et al. 2005] and using improved systems such as Di�erentialGPS (DGPS) or Wide Area Augmentation System (WAAS) the accuracy canbe accurate within 1-2 meters [Lo et al. 2002]. These types of positioningsystem are excellent choices when the operating environment permits it, theydo however have drawbacks:� They require a certain number of �xed position nodes to be available atall times.� They are sensitive to radio interference.� Their accuracy is not always suÆcient.The focus of this thesis is therefore on developing a set of algorithmicand geometric techniques that allows the robot to determine its own positionand heading based on laser range data. In addition to this we will look intoextensions to an existing path�nding algorithm, making it suitable for realworld robotic usage.1.2 Feature DetectionA signi�cant section of this paper deals with feature-recognition in 2D rangescans, such as the 180 degree laser scans produced by the onboard laser-unit of the P3-AT. This feature-recognition can be thought of as �nding thesemantics of the data, i.e. we attribute the single-point scan results to beingpart of an obstacle within the lasers scan range. Figure 1.2 shows a possibleinterpretation of a 2D range scan. By examining the obstacles found andmatching them to a map of the relevant area, the exact position and headingof the robot can be found.1.3 Map MatchingThe purpose of doing feature detection is to enable the robot to match there�ned laser range�nder readings to a preloaded map and thereby determining

4 CHAPTER 1. INTRODUCTION

a) initial points b) related groups c) approximated linesFigure 1.2: Steps involved in 2D feature recognition.

a) estimated position b) actual range data c) actual position
after adjustmentFigure 1.3: Matching range�nder data to a map.

1.4. PATHFINDING 5

 robot

 destination

shortest path

shortest possible path

obstaclesFigure 1.4: Path�nding considering the vehicle shape and size.its exact position and heading. The actual process of matching the rangedata to the map is called map matching. This process needs to be as exactas possible, but still robust with respect to noise and uncharted objects therobot might sense in its surroundings. See �gure 1.3 for a visualisation of theproblem. Section 4.4 covers the subject of map matching in detail.
1.4 Path�ndingFor the robot to be truly autonomous it needs to be able to determine themost appropriate route from point A to point B. This process is calledpath�nding and has been thoroughly researched throughout the history ofcomputer science, with Dijkstras Algorithm [Dijkstra 1959], developed byEdsger Wybe Dijkstras in 1959, probably being the most common algorithm.However, most path�nding algorithms assume that the object that is to movefrom A to B is a single point in space or a tile in a square tile grid. It is nottaken into consideration that the moving object may have complex geomet-rical shapes as in Figure 1.4. We investigate this matter in section 4.3.2 andpropose a solution that allows the robot to calculate optimal routes and moveat a high degree of freedom, but still maintain navigational safety.

6 CHAPTER 1. INTRODUCTION1.5 Map Re�nementRecording discovered, uncharted objects in the map area allows the robot toavoid having to try a blocked route several times, thus making its operationmore e�ective. This sort of dynamic charting can also be of interest tohuman operators as it enables the robot to start out with a low-detail mapand re�ning it automatically, minimising human interaction. The subject ofmap adjustment is covered in detail in section 2.4.1.6 Thesis OverviewChapter two covers the background information that serves as a basis for thetechniques and algorithms presented in later chapters. We look into methodsof interpreting two-dimensional data, in both vector- and raster-form, so thatthe data can be processed in the speci�c context of robotic navigation. Wethen go into path�nding and analyse algorithms and problems associated withdetermining shortest possible paths between two points.Chapter three presents a selection of possible scenarios where the systemdescribed in this thesis may prove itself valuable.Chapter four describes the proposed main system of this thesis and coversdetailed coverage of speci�c issues to consider.Chapter �ve summarises our �ndings and we propose a number of ideasfor future work.

Chapter 2Background
This chapter presents the fundamental techniques and principles that formsthe basis for processing the problems addressed in this thesis.Section 2.1 presents the general form of digital 2D maps, along with themost common terms and formulas needed to work with maps.Section 2.2 covers the basic geometric transformations forming the basisfor the algorithms in chapter four.Section 2.3 focuses on the subject of feature recognition in vector graph-ics, that is the methods used to attribute higher order meaning to geometricprimitives such as points, lines and polygons.Section 2.4 presents the concept of map re�nement and the considerationsthat need to be taken when implementing such algorithms.Section 2.5 explores the problems encountered when faced with the taskof algorithmically �nding the most eÆcient paths between two points in planarspace and the existing algorithms available for these types of problems.Section 2.6 addresses the �eld of image processing, which extends thetopics dealt with in section 2.3, and the additional algorithms needed to dofeature recognition in raster form graphics. Image processing is not directlya part of this thesis, but we need to present a few techniques as basis for theideas presented as possible future work in chapter �ve.7

8 CHAPTER 2. BACKGROUND

Figure 2.1: A political and a geographic map of Norway.2.1 Digital MapsA map is a two- or three-dimensional graphical or numerical approximationof a discrete real-world area, describing one or more of the areas features.It is only an approximation due to natures in�nite complexity and resolution,but it is accurate enough for a number of applications. Maps are widely usedfor navigational purposes, but may also serve other uses, such as politicalmaps that visualise or describe population statistics, or economic maps thatvisualise economic activity and/or natural resources in an area. Simple mapsmay only describe its inherent objects by geometrical boundaries, while moresophisticated maps may contain multiple layers of information. Figure 2.1shows a simple and a more complex map of the same area.2.1.1 Raster MapsGenerally digital map representation can be divided into two categories; rastermaps and vector maps. A raster map is a map where the map area has beendivided into discrete subunits of �nite size and every subunit describes a certain

2.1. DIGITAL MAPS 9

a) 1:1 b) 10:1Figure 2.2: An example of the consequences of upscaling a raster image.feature. Raster maps are also known as bitmaps. Every map that is to bepresented in a graphical form is sooner or later converted to a raster map,since all visualisation units work in �nite resolution, e.g. a computer screenhas a given maximum pixel resolution and a printer can print a maximumnumber of points per square inch. Raster maps have the advantage of beingeasy to process and draw to various surfaces, they do however scale poorly,meaning that the perceived image quality may be reduced when the image isscaled up, as shown in Figure 2.2, they consume a lot of storage and theybear no semantics as to what features they describe.2.1.2 Vector MapsVector maps are maps where features are textually and numerically describedrather than drawn. Features are thus described in the form of geometricalprimitives such as points, lines and polygons. Vector maps scale very well,they are compact and it is easy to embed descriptive meta-information ontoevery feature. On the negative side they require potentially very advancedrendering software to visualise and manipulation of complex vector graphicscan be computationally expensive. Figure 2.3 shows an excerpt from a SVG-�le and the resulting rendering.

10 CHAPTER 2. BACKGROUND
<rect x=10 y=10 width=35 height=10

 stroke=”black” stroke-width=1

 fill=“#8CC641” />

<circle cx=50 cy=30 r=5

 stroke=”red” stroke-width=1

 fill=“#8CC641” />

<line x1=20 y1=50 x2=55 y2=50

 stroke=”black” stroke-width=5 />Figure 2.3: Vector graphics representation with rendered output.2.1.3 Coordinate SystemsThe purpose of a coordinate system is to serve as a reference point for posi-tioning of the objects in the map. All positions must be seen relative to thecoordinate system for which they are given. Two types of coordinate systemsare used in maps; the geographical coordinate system and the rectangular(or Cartesian) coordinate system. Global coordinates are usually given in ge-ographical coordinates, with the x-axis measured in 180 degrees of latitudeand the y-axis measured in 360 degrees of longitude, both of which are cen-tered around the Earth's polar axis. Smaller two-dimensional maps are usuallygiven in rectangular coordinates. Figure 2.4 shows a typical rectangular coor-dinate system, with positive x-axis pointing right and positive y-axis pointingup, containing a line of length 35 and width 2 placed in coordinate 30; 48,a circle of radius 5 placed 50; 30 and a rectangle with width 35 and height10 placed in 10; 10. It is worth mentioning that while the coordinate systemused by most computer graphics routines is similar to this, the y-axis is mostoften reversed so that the positive y-axis is downward. This can be achievedby doing a matrix multiplication with the y-value set to -1:
∣

∣

∣

∣

∣

1 00 �1 ∣

∣

∣

∣

∣

2.1. DIGITAL MAPS 11
50 x

50

y

40

30

20

10

-10

-20

-30

-40

-50

40302010-10-20-30-40-50

Figure 2.4: The rectangular coordinate system.2.1.4 ScaleFor a map to be useful to humans, we need to know how the map datarelates to the area it describes. In graphical maps, printed or in raster form,this relation is called the scale. The scale describes the ratio to which anyunit length on the map needs to be multiplied to equal the actual length themaps describes. If a map scale is expressed as 1 : 1; 000; 000 this means oneunit on the map is one million units in real length, e.g 1 cm on the map is 10km in real length. In raster maps knowing the scale of the map is essential,in vector maps we are more interested in the unit of which the coordinatesare given. The scale can be expressed asScale = DistancemapDistancereal2.1.5 Distance MeasuresTo determine the distance between two points on a two-dimensional map,two common methods exist, the Euclidean distance and the City Block/Man-

12 CHAPTER 2. BACKGROUNDhattan distance.The Euclidean distance is the direct point-to-point distance and assumesthat movement at any angle is possible. It is based on the Pythagoreantheorem h2 = o2 + a2where h is the hypotenuse of the triangle and o and a are the two sides. Theshortest distance between two points is thusde = √(o2 + a2)The other common distance measure is called the City Block/Manhattandistance. This method assumes that it is only possible to move horizon-tally and vertically and thereby simplifying the calculation, leading to a moreeÆcient, but not optimal distance algorithm. The Manhattan distance iscalculated as dm = o + a2.2 Geometrical TransformationsIn this section the three most basic and common geometrical transformationsare presented; translation, scaling and rotation. The transformations areexplained with reference to digital images, but the term \image" is here usedloosely and covers both raster images and vectorized graphic data. It isimportant to note that these transformations not only apply to full images,but also sub-images or regions of the full image. We will refer to these regionsas \image elements". The smallest image element is the point or pixel.2.2.1 TranslationTwo-dimensional translation is the simplest of the basic image transforma-tions, it involves displacing an image element at (x1; y1) by the speci�ed trans-lation (�x ; �y) as shown in Figure 2.5. Mathematically it can be describedas x2 = x1 + �xy2 = y1 + �y

2.2. GEOMETRICAL TRANSFORMATIONS 13
Figure 2.5: Simple two-dimensional translation.2.2.2 ScalingScaling is often referred to as zooming or resizing an image element. Scalingan image element by a factor of 2n with n > 0 is the simplest case, as pixelsin the image simply are repeated 2n times in both dimensions. Similarly whenreducing an image size by a factor of 12n , only every 2n pixel is kept and therest are discarded. When scaling to a factor that is not a multiple of 2, it isnot this simple. Imagine the case of scaling a 2 � 2 image element by 1:5,resulting in a 3 � 3 image, what values would be appropriate for the pixelswith coordinates x = 2 or y = 2? The answer is that the pixel value needsto be interpolated between the values proceeding and succeeding the actualpixel. A simple method of interpolating, that would work in our 2�2) 3�3example, is to simply take the mean value of the surrounding pixels. But forthe general case of scaling to a factor �, more sophisticated interpolationtechniques must be applied. The most common technique today is calledbi-cubic interpolation and it calculates a weighted average of a 4 � 4 gridaround the considered pixel. It can be expressed asF (x 0; y 0) = 2

∑m=�1 2
∑n=�1F (x +m; y + n)R(m� dx)R(n � dy)where the weighting function R(x) is de�ned asR(x) = 16 (P (x + 2)3 � 4P (x + 1)3 + 6P (x)3 � 4P (x � 1)3)and P (x) is de�ned as P (x) = max(x; 0)

14 CHAPTER 2. BACKGROUNDF (x 0; y 0) is the pixel value for the resulting image in position x 0; y 0, whichis related to F (x; y) in the original image by x 0 = x w 0w and y 0 = y h0h . dx anddy are the respective decimal parts of x and y after calculating these indices;x = x 0 ww 0 and y = y 0 hh0 .2.2.3 RotationRotating an image by an angle � around the point (xc ; yc) will result in a imagewhere the pixel (x 0; y 0) in the rotated image will correspond to the pixel (x; y)in the original image according to the following formula:x 0 = (x � xc) cos(�)� (y � yc) sin(�) + xcy 0 = (x � xc) sin(�) + (y � yc) cos(�) + ycand inverselyx = (x 0 � xc) cos(��)� (y 0 � yc) sin(��) + xcy = (x 0 � xc) sin(��) + (y 0 � yc) cos(��) + ycOne way of calculating the rotated image is to iterate over all (x 0; y 0),calculate (x; y) and simply use the pixel value of (x; y). The problem in thisapproach is that these formulae return
oating point coordinates, thus if wewant to calculate what point (x; y) corresponds to (x 0; y 0) the formula mayreturn e.g. (1:5; 1:5) or (1:666667; 1:4177) which does not make sense ina context of discrete integral array indexes. The pixel value of (x 0; y 0) musttherefore be interpolated from the surrounding pixels of (x; y).The bounding rectangle of a rotated rectangular image will also be dimen-sionally bigger than the original image for all angle values except multiples of90Æ. The new pixels (x 0; y 0) for which there is no corresponding (x; y) willusually be set transparent, if supported by the image format, or to some pre-de�ned color e.g. black or white. See Figure 2.6 for an illustration of animage rotated around its own center.2.3 Feature RecognitionFeature recognition is a term used in computer vision to describe the processof extracting meaningful information from raw sensor data. The speci�c nu-ance of feature recognition described in this paper is the process of extracting

2.3. FEATURE RECOGNITION 15

a) original image b) rotated -20°Figure 2.6: Rotation by �20Æ.polylines from laser range�nder scans. One of the main objectives of this the-sis is to describe a simple method of matching laser range scans to vectormaps to be able to accurately determine the robots position at any time.These laser range data readings are basically a set of semi-accurate distancesto the nearest re
ective object at a given angle from the sensor (see �gure2.7 for a visualization). From these isolated points in the 2D plane we wishto �nd line tendencies in the range data that can be matched to 2D map dataobjects, such as walls.2.3.1 Range Data GroupingWhen analyzing a set of range data readings to extract recognizable features,one of the �rst operations to perform is to organize the readings into relatedgroups based on reading features. This is done as part of the process to sim-plify the range data readings down to more manageable geometric shapes. Asimple range data grouping algorithm could group readings based on Euclid-ian distance alone, such that reading p belongs to group G if the Euclidiandistance from p to any reading in G is less than the threshold t1. A moresophisticated algorithm could take the group's curve into consideration, sothat reading p only belongs to group G if p diverges from G's curvature byless than the threshold t2. Figure 2.8 shows the di�erence between a simple

16 CHAPTER 2. BACKGROUND

 robot

range reading

data points

obstaclesFigure 2.7: A laser range�nder scan.and a more advanced grouping algorithm. The algorithm used when group-ing the points at the left considers only Euclidian distance between points todetermine the group a point belongs to, while the more advanced algorithm,used on the points on the right hand side, considers Euclidian distance aswell as curvature when determining how to group points. After completingthe range data grouping, the range scan data readings are organized into anumber of groups that each represent a part of a geometrical map feature orobstacle. For the remainder of this thesis I will focus on grouping range datareadings into lines as the line works well for approximating other shapes andsince the line is the simplest two dimensional shape.2.3.2 Line ApproximationAfter grouping the range data readings we need to determine the approxima-tion of the line that the readings represent. This means that we are tryingto �nd the line that best �t the reading points such that the sum of thepoint-to-line distances is minimized.One well known method of �nding such a line is called the method ofLeast-Squares Estimation. This method determines the estimators b1 and b0for the best �t line function through the reading points. The \best �t line" isde�ned as the line that minimizes the sum of vertical point-to-line distances,

2.3. FEATURE RECOGNITION 17

a) grouping algorithm
considering Euclidian distance

only

 b) grouping algorithm
considering Euclidian distance

as well as curvatureFigure 2.8: Simple vs. more advanced range data grouping.

Figure 2.9: The best �t line as calculated by least squares estimation.

18 CHAPTER 2. BACKGROUNDas illustrated in �gure 2.9. The line function is de�ned asy(x) = b1x + b0And to determine the estimators b1 and b0 the following equations areapplied b1 = n∑ xiyi �∑ xi ∑ yin∑ x2i � (∑ xi)2b0 = ∑ yi � b1 ∑ xinTo �nd the segment boundaries of the estimated line we simply calculate(xmin; y(xmin)) and (xmax ; y(xmax)).2.4 Map Re�nementWhen moving in a semi charted dynamic environment, a robot is bound tosense objects and obstacles that do not exist in the robot's preloaded map.These objects can be static or semi-static obstacles, such as furniture andmoveable walls, or highly dynamic objects such as people, animals or othermoving robots. By storing information about these discovered objects into therobots map, more eÆcient paths can be obtained by avoiding routes throughhighly dynamic areas. The following sections describe which aspects shouldbe considered when adjusting maps in real time.2.4.1 Object isolation and feature recognitionWhen a new object is discovered, its form and position need to be deter-mined. The form may have to be simpli�ed into a manageable complexityand the position needs to be adjusted from the original readings by the robotscorrected position and heading. The subject of object isolation and featurerecognition is covered in detail in chapter 4.2.4.2 Obstacle persistencyWhen dealing with moving obstacles, an object can not be considered a per-manent obstacle, but should rather have a timeout to ensure that the robot

2.4. MAP REFINEMENT 19will reevaluate the objects persistency when the timeout expires. The timeoutmechanism can be absolute in the sense that the obstacle is never reevalu-ated before the timeout expires or it can be weighted so that if the robotruns out of possible routes to its target, it reevalutes the registered obstaclesin the order they were discovered, thereby applying the assumption that the\oldest" obstacle is most likely to have moved. An even more sophistictedobstacle tracking algorithm may even try to determine a moving obstaclesdirection or pattern and use this prediction in its evalutation of the obstacle'spersistency.2.4.3 Data structure orderWhen processing large amounts of map data, it is often bene�cial to haveobjects located geographically \close" to each other also relatively close toeach other in the iterative order of the data structure. This can speed up theprocess of determining whether a node is walkable in a path�nding scenario ormake the process of asynchronously drawing a map to a screen more smoothby drawing the map area by area instead of drawing seemingly randomly or-dered objects. Due to the relatively low complexity of the maps processed aspart of this thesis, the subject of data structure order will not be covered indetail.2.4.4 EÆciency of analysis and insertionThe process of analysing the readings and updating the map data structuremay become a performance issue if the frequency of sensor data readingsand/or data amount available at each update is larger than the availableprocessing unit is able to process in due time. One should therefore carefullychoose processing algorithms and data structures that are suitable to thescenario in question. Theoretical analysis and a selection of actual test metricsfor the algorithms and data structures described in this paper are available insection 4.3.4.2.4.5 Inaccuracy evaluationIn addition to discovering uncharted obstacles, the roaming robot may alsodetect errors in the map that facilitates new routes. By correcting these errors

20 CHAPTER 2. BACKGROUND

 starting point

a b

 destinationb

a

obstaclesFigure 2.10: A possible path�nding scenario.in the map new and more eÆcient routes can be found and/or the robot cancontinue when all routes in the known map have been exhausted. Due to thecomplexities such functionality introduces, the topic of inaccuracy evaluationis not covered in this thesis.2.5 Path�ndingTo computationally �nd the shortest possible path between two points in apartially blocked two-dimensional map in the shortest possible amount of timehas been greatly researched throughout the history of computer science. Thetopic of path�nding is often referred to as the single-source shortest pathproblem. Figure 2.10 illustrates the problem; we want to �nd the shortestpossible path from A to B and we can not travel through the black rectanglein the middle of the map. However, the term "shortest" is not always 100%accurate. In many situations one is interested in �nding the path with thelowest cost, implying that some operations or moves are more costly in termsof time/resources than others. E.g. for a primitive robot the cost of rotationmight outweigh a slightly longer route if the robot has to stop, rotate andstart again for every rotation. In this paper the terms cost and distance areused interchangably.The map used in a path�nding algorithm is usually represented by a

2.5. PATHFINDING 21

vertex

link

cost4

4 4 4 4

4
5

5

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4 4 4

4 4 4

44 4 4

4 4 4 4
destination

starting point

Figure 2.11: A weighted graph.weighted graph. A weighted graph is a node-structure where every node,called a vertex, is connected to one or more vertices via a link, and thelink between vertices is associated with a given cost. In a directed weightedgraph the associated cost may di�er depending on what vertex one is movingfrom/to or moving may be restriced to one direction only. See Figure 2.11for an example weighted graph.Path�nding as discussed in this chapter is limited to discreet two-dimensionalspace and with a �xed progression of waypoints. Related problems, such asThe Traveling Salesman, are not discussed here.2.5.1 Dijkstras AlgorithmOne of the �rst solutions to the path�nding problem was Dijkstras algorithm,published by Dutch computer scientist Edsger Dijkstra in 1959. Dijkstrasalgorithm is exhaustive, meaning that it explores every possible path to ensurethat the path found is indeed the absolutely shortest. Because of this it hasa worst case complexity of O(V2), where V is the number of vertices.The general problem solved by Dijkstras algorithm is to �nd the shortestpath from s to t in the graph consisting of the set of vertices V . The algorithmmaintains two lists, S and Q, where S is the set of vertices from V for whichwe know the shortest possible path and Q is remaining vertices from V . For

22 CHAPTER 2. BACKGROUNDeach vertex v in V , the algorithm stores the shortest path known from s to v ,by storing a reference to its previous, and the total distance d between s andv . The algorithm �rst sets all vertices in V to have unde�ned previous andan in�nite distance to its previous. s is set to have distance 0, S is set as anempty set and Q to contain all vertices in V . The algorithm then goes into aloop where it selects the vertex u from Q with the lowest distance and addsthis to S, for the �rst iteration this will always be s as per the initilization.An inner loop then iterates over all vertices v connected to u to see if thedistance from s to v would be lower if v had u as previous, if so: set u to bev 's previous. Ultimately u will be equal to t and the shortest path from t tos can be found by backtracking through the previous-references.Dijkstras algorithm is widely used and is especially suited for graphs whereno initial information about the form of the graph is present, e.g. the destina-tion might not be known, so the algorithm works as a combined path�ndingand search-algorithm, already knowing the shortest possible path when thevertex ful�lling the search criteria is found. For more structured graphs algo-rithms such as the A-Star algorithm, may be more appropriate.2.5.2 The A-Star AlgorithmThe A-Star algorithm was designed by Peter Hart, Nils Nilsson, and BertramRaphael in 1968 and is perhaps the most widely known path�nding algorithm.In contrast to Dijkstras algorithm the A-Star algorithm does not simply iteratethrough every possible combination of moves through the graph, instead itemploys a heuristic, a guess, to estimate what would be the best path fromthe current vertex to the destination and explores this route �rst, before tryingthe other paths if the seemingly optimal route is blocked.Central to the A-Star algorithm is the heuristic function, h(v), that esti-mates the best-case cost of moving from vertex v to the destination t. Witha simple two-dimensional map this function may simply return the straightline distance between v and t. For every v the distance travelled from thestarting point s to v , g(v), is also stored. The total estimated cost, f (v),for a vertex v is thus g(v) + h(v).The A-Star algorithm also maintains two lists, the open-list, O, and theclosed-list, C. O contains all vertices that have not yet been visited and Cthe vertices which have been visited.

2.5. PATHFINDING 23The algorithm starts by setting C empty and O to contain only s. It thenenters an loop where for every iteration the vertex v with the lowest f (v)is moved from O to C and for every adjacent vertex u to v the following isdone:1. If u is the destination, the shortest path have been found, break fromloop.2. If u is not walkable or if it is found in C, continue to processing nextadjacent vertex.3. If u is not in O, set v as previous vertex to u, calculate h(u), g(u) andf (u) and add u to O.4. If u is in O, check if f (u) is lower with v as its previous rather thanits current previous, if so: set v as u's previous, update h(u), g(u) andf (u).5. If O is empty and the destination has not been found, there is no walk-able path, break from loop.As with Dijkstras algorithm, the shortest path from s to t can be foundby backtracking through the previous-references, starting at t.2.5.3 Shape Compensation in Path�nding AlgorithmsThe path�nding algorithms described in this chapter use obstacle maps to de-termine the shortest travelable route from start to destination. When queryinga map to determine whether a vertex is travelable or not it is easy to forgetthat the shape of the traveling object needs to be considered. The mapsused in two-dimensional path�nding are usually N � M grids, but it is notgiven that the traveling object is of size 1 � 1 and even if it was, the objectcould probably not move diagonally between two obstacles that are placeddiagonally of each other as in Figure 2.12. To handle these types of problemsfor general polygon objects many advanced methods have been designed, seethe work done by Eyal Flato [Flato 2000]. For simpler and less general ge-ometrical shapes, two di�erent approaches can be used depending on usagescenario.

24 CHAPTER 2. BACKGROUND
 robot

 destination

obstacles

gridFigure 2.12: Obstacle misrepresentation in a map.
Figure 2.13: Finding the Minkowski Sum of two polygons.Minkowski SumsFinding the Minkowski Sum of two polygons involves summing the individualvertex coordinates into a new polygon and then �nding the extreme convexarea of the resulting polygon. See �gure 2.13 for a visualisation.When working on the subject of path�nding, using Minkowski Sums isuseful for �nding the \travelable" area of the map, for a given rotation ofthe robot. By summing the vertices of the vehicle polygon to every vertex inevery map polygon and �nding the new extreme area of each map polygon, theuntravelable areas for this particular vehicle is discovered and can be excludedfrom the map.

2.6. DIGITAL IMAGE PROCESSING 25

 robot circumferense

 robot

closest obstacle perimeter

obstacles

r

r

extreme radius of robot
r

Figure 2.14: Obstacle perimeter calculated using robot radius.Considering robot radiusThe robot that forms the basis for this thesis, the ActivMedia Robotics P3-AT, has the ability to rotate around its own vertical axis. Considering thisand the fact that the robot may at any point in the route need to rotate if itruns into obstacles or needs to correct its heading, we can simplify the robotsshape into a single circle with radius equal to the distance from the robotscenter of rotation to its most distant point. When we treat the robot as acircular shape we do not need to apply any Minkowski Sums to any of themap polygons, we simply de�ne any area within distance s of a map obstacleto be untravelable, where s is the radius of the circular robot representation.This way the robot is never allowed to travel within a distance to a mapobstacle that might cause the robot to crash or to get stuck and we avoidthe complexities that techniques such as the Minkowski Sum involve. Figure2.14 shows the obstacle perimeter as calculated by this method.2.6 Digital Image ProcessingIn this section we brie
y describe a set of methods that can be useful as abackground for further work from this thesis. Some thoughts on further workare presented in chapter 5.4.

26 CHAPTER 2. BACKGROUND2.6.1 Digital ImagesDigital images may come from a variety of sources, but they can be broadlydivided into two categories; aquired and synthesised. Aquired images comefrom sensors that capture the state of some real-world situation at one pointin time, e.g. a digital photograph or a plot of robot laser range readings.Synthesised images are visualisations of non-visual data either made withhuman interaction or completely auto-generated, e.g. a digital drawing or afractal image.2.6.2 Digital Image RepresentationConventional digital images, as will be described in this section, are stored as atwo-dimensional numerical matrix, where every vertex in the matrix describesa single point in two-dimensional space called a pixel. The amount of datadescribing each pixel depends on the image format, but at least a measureof color or light intensity is required. A very simple binary image formatmay contain only the data 1 or 0 for every pixel, which we may interpret aslight or dark respectively. A greyscale image format could represent everypixel as a number between 0 and 255, giving 256 shades of grey, whilst amore complex image format may contain highly detailed color-information andlevels of transparency for every pixel. One popular model of describing coloris by separating the color into red, green and blue channels (RGB) and have a�nite set of values for each channel. An image format capable of distinguishingbetween over 16 million color variations could store each channel in one eight-bit byte, giving 28 = 256 variations for each channel, summing up to 2563 =16777216 variations for each pixel. It is generally accepted that the humaneye can not distinguish between more than 16000000 colors, so a 24-bit imagecan be said to be \true color", meaning that the image format is capable ofcontaining every color the human eye can see.To be stored as standalone �les, the image data needs to be serializedinto a byte stream and this byte stream is usually preceeded by a sectionof metadata describing the pixelformat and metrics of the image data. Thepixels in the byte stream usually come row-by-row, thus a single pixel (x,y) canbe accessed at o�set x + (y � row-width) in the byte stream. It is however,from a programmers point of view, often more convenient to be able to accesseach pixel as image[x][y] and most programming languages provices facilities

2.6. DIGITAL IMAGE PROCESSING 27

original value

5% increase

255 input

255

o
u

tp
u

t

0 Figure 2.15: Graph showing increase in brightness.for this.Digital images can easily become storage intensive, as their size often sur-passes 1000x1000 pixels. A 24-bit image at that size would require almost 2.9MB of storage, causing heavy loads on transfer and processing resources. Toease this load, a number of image compression algorithms have been devel-oped, with JPEG, PNG and GIF being the most common container-formats.The main di�erence between the image compression algorithms is whetherthey are non-lossy or lossy, meaning whether the algorithm produces a one-to-one copy of the original image when decompressing, or if an approximationis made.2.6.3 Brightness and ContrastThe brightness of an image describes the luminance of the image, that is thepercieved amount of light the image radiates. For a 8-bit greyscale image thebrightness � of a pixel is simply the greyscale value of the pixel, thus a pixelwith value 255 is at maximum brightness or saturation. For a 24-bit colorpixel the brightness � is de�ned as � = R+B+G3 . In other words the meanvalue of the color components.To increase the brightness of a greyscale image by e.g. 5%, 255 � 0:05 isadded to all pixel values and those values falling outside the range are set to

28 CHAPTER 2. BACKGROUND

original value

5% increase

255 input

255

o
u

tp
u

t

0 Figure 2.16: Graph showing increase in contrast.255, as shown in Figure 2.15.Contrast is the di�erence between maximum and minimum brightness inan image and is calculated using the formula:Contrast = �max � �min�max + �minTo increase the contrast of a greyscale image by e.g. 5%, all values below255 � 0:05 are set to black (0), all values over 255� (255 � 0:05) are set towhite (255) and all values between are scaled linearly between 0 and 255 asshown in �gure 2.16. The result of increasing the contrast of a whole imagecan be seen in Figure 2.17.2.6.4 Surface SmoothingTo simplify images so that they can more easily be processed, the �rst stepis to smoothen the image. Smoothing removes small pixel value variationsso that image sectors appear more uni�ed and the image surface appearsmore smooth, simplifying complex operations such as edge detection. Surfacesmoothing is usually done by applying a n� n sliding window over the image,sorting the values of the window and then �nding the median value and settingthis as the new pixel value. This process is called convolution and the sliding

2.6. DIGITAL IMAGE PROCESSING 29

a) +50% brightness b) original image c) +50% contrastFigure 2.17: The visual e�ects of adjusting brightness and contrast.window is sometimes called a kernel if there is given di�erent weighting onthe pixels in the window. The median is used instead of the mean so thatthe e�ect of stray noise pixels is minimised. Note that if using large kernelsthe complexity of the smoothing rises dramatically, a 3� 3 or 5� 5 windowis usually suÆcient.Using a median �lter such as the one in Figure 2.18 can cause edgesto become blurry, but by using a specialized weighted window, such as theKuwahara �lter, this e�ect can be reduced. The Kuwahara �lter divides thesquare window with sides of size K = 4L + 1, L being an integer, into fourrectangles and and sets the value of the center pixel to be the mean brightnessof the rectangle with the lowest variance (= mean squared deviation).2.6.5 Edge DetectionEdge detection is the process of �nding pixels that lie on the border betweentwo image elements with vertical or horizontal dissimilarity higher than athreshold value K. Finding edges in an image gives us the contours in theimage and thus brings us closer to computationally �nding what the imagepresents.When working with greyscale pictures the di�erence between two pixels inthe image can be determined by subtracting the lower value from the higher,but how can such a di�erence be determined for color images with colors

30 CHAPTER 2. BACKGROUND
1 v o i d smooth (Image � img)2 f3 i n t x , y ;45 f o r (y = 0 ; y < img�>h e i g h t ; y++) f6 f o r (x = 0 ; x < img�>wid th ; x++) f7 i n t kx , ky ;8 i n t k e r n e l [3] [3] ;910 f o r (ky = �1; ky < 2 ; ky++) f11 f o r (kx = �1; kx < 2 ; kx++) f12 k e r n e l [ky +1] [kx +1] =13 g e t p i x e l v a l u e (img�>data , y + ky , x + kx) ;14 g15 g16 s o r t (k e r n e l , 9) ;17 s e t p i x e l v a l u e (img�>data , y , x , med ian (k e r n e l)) ;18 g19 g20 g Figure 2.18: C-like implementation of a surface smoothing algorithm.

red (0, 0 255)

green (255, 0, 0)

blue (0, 255, 0)

Figure 2.19: 3D representation of RGB-colors.

2.6. DIGITAL IMAGE PROCESSING 31

a) original image b) simple edge detection algorithmFigure 2.20: A simple edge detectior applied to a 512x384 color picture.values represented separately as red, green and blue? The solution is torepresent the color elements as vectors in three-dimensional space as shownin Figure 2.19. The di�erence is then de�ned as the 3D Euclidian distancebetween the two pixels, de�ned as √(r1 � r2)2 + (g1 � g2)2 + (b1 � b2)2.Simple ApproachA very simple approach to edge detection would be to iterate through thepixels of the image, and if the di�erence between the current and the pixelbelow or the pixel to the right is greater than K we have found an edge.Although very simple, this algorithm can be remarkably eÆcient on someimages, see Figure 2.20 to see the results of running this algorithm on arelatively complex image and Figure 2.21 for an example implementation.Canny Edge DetectorThe Canny edge detector was developed by John F. Canny in 1986 and claimsto be an \optimal" edge detector based on the following criteria (courtesy ofhttp://en.wikipedia.org/wiki/Canny edge detector):� Good detection - the algorithm should mark as many real edges in theimage as possible.

32 CHAPTER 2. BACKGROUND

1 v o i d e d g e d e t e c t (Image � img , d o ub l e K)2 f3 un s i g n e d i n t x , y ;4 u n s i g n e d i n t b p l = img�>s i z eX � 3 ; // Byte s pe r l i n e56 f o r (y = 1 ; y < img�>s i z eY ; y++) f7 f o r (x = 0 ; x < bp l ; x += 3) f8 un s i g n e d cha r �R = (img�>da ta + (bp l � y) + (x+0)) ;9 u n s i g n e d cha r �G = (img�>da ta + (bp l � y) + (x+1)) ;10 un s i g n e d cha r �B = (img�>da ta + (bp l � y) + (x+2)) ;1112 // P r e f i x e s : c = cu r r e n t , b = be low and r = r i g h t13 un s i g n e d cha r c r = �R, b r = 0 , r r = 0 ; // Red14 un s i g n e d cha r cg = �G, bg = 0 , rg = 0 ; // Green15 un s i g n e d cha r cb = �B, bb = 0 , rb = 0 ; // B lue1617 i f (x < (bp l �1)) f18 r r = �(img�>da ta + (bp l � y) + (x+3) + 0) ;19 rg = �(img�>da ta + (bp l � y) + (x+3) + 1) ;20 rb = �(img�>da ta + (bp l � y) + (x+3) + 2) ;21 g2223 i f (y < (img�>s i z eY �1)) f24 b r = �(img�>da ta + (bp l � (y+1)) + (x) + 0) ;25 bg = �(img�>da ta + (bp l � (y+1)) + (x) + 1) ;26 bb = �(img�>da ta + (bp l � (y+1)) + (x) + 2) ;27 g2829 i f (s q r t ((cr� r r) �(cr� r r) + (cg�r g) �(cg�r g) + (cb�r b) �(cb�r b)) >= K30 j j s q r t ((cr�b r) �(cr�b r) + (cg�bg) �(cg�bg) + (cb�bb) �(cb�bb)) >= K) f31 �R = �G = �B = 0 ;32 g e l s e f33 �R = �G = �B = 255 ;34 g35 g36 g37 g Figure 2.21: C-like implementation of a simple edge detection algorithm.

2.6. DIGITAL IMAGE PROCESSING 33

a) original image b) the Canny edge detector appliedFigure 2.22: The Canny edge detector applied to a 640x480 color picture.� Good localisation - edges marked should be as close as possible to theedge in the real image.� Minimal response - a given edge in the image should only be markedonce, and where possible, image noise should not create false edges.The Canny edge detector goes through three stages, �rst it smooths theimage using a gaussian mask, then it iterates through every pixel and marksthe highest intensity edge and �nally the algorithm traces through all the highintensity lines and marks the pixels there as edges. The algorithm takes threeparameters; the size of the gaussian mask and the high and low threshold forthe line detection. Pixels that fall below the low threshold as not consideredimportant enough to be part of the line and pixels over the high threshold areconsidered noise.The Canny edge detector is highly complex, but there are freely availableimplementations in libraries such as the Intel Open Source Computer VisionLibrary. Figure 2.22 shows an original and resulting image from applying theCanny algorithm with gaussian mask size 3� 3, high threshold 0:80 and lowthreshold 0:30.

34 CHAPTER 2. BACKGROUND

angle

length from origo

θ

r

0

line

x

y

r

θFigure 2.23: Parametric representation of a line.Hough TransformThe Hough transform is a general method for �nding line tendencies in aset of separate points. The word \tendencies" is used to indicate that theHough transform can not 100% determine the lines in a set of two-dimensionalpoints, but it can indicate the probability of a particular line in the speci�edplane. The transform is tolerant of gaps in lines and image noise, but is doesnot indicate the boundaries of a line, only its orientation. This limitation canbe overcome by analysing each line and �nding the extreme points on thatthat line, but this of course increases complexity.The Hough transform represents lines in their parametric or normal form;x cos � + y sin � = rwhere r is the length from the origo ((0; 0)) to a normal on this line and � isthe angle of this normal-line with respect to the x-axis. See Figure 2.23 fora visualisation.For every edge point in the picture, found using an edge detection algo-rithm like the Canny edge detector, a number of lines at di�erent angles areplotted through the point, and r and � are calculated for each line. Figure 2.24shows the lines at angles 0, 45, 90 and 135 degrees plotted through each pointand Figure 2.25 shows r and � for one of the lines. r and � for each line arethen plotted as a sinusoidal curve to a graph as y = r sin(x+�) and the points

2.6. DIGITAL IMAGE PROCESSING 35

0

lines at 45˚ and 135˚

lines at 0˚ and 90˚

x

y

data pointsFigure 2.24: An example of Hough lines through points.

0

line at 45˚

x

y

data points

angle (45˚)

length from origo

θ

r

r

θFigure 2.25: A single Hough line and its r and �.

36 CHAPTER 2. BACKGROUND

0 x

y

sinus curve of r and θFigure 2.26: The Hough point-to-curve transformation.where two or more curves intersect indicate that a line (x cos �+ y sin � = r)exists for the values of r and � where the curves intersect. This plot of si-nusoidal curves is called the Hough point-to-curve transformation. The morecurves that intersect in the same point the more certain is the indicationof a line for these values of r and �. Figure 2.26 shows a general Houghpoint-to-curve transformation.2.7 Related WorkA lot of research has been conducted in the �eld of robotic navigation.For an overview of the available techniques, see [Borenstein et al. 1996],[DeSouza, Kak 2002] and [Thrun 2002]. The most recent work in this �eldhas been published by Dr. Longin Jan Latecki at Temple University, Philadel-phia, USA. For papers particularly related to the subject this thesis covers,see [Latecki et al. 2004] and [Latecki et al. 2006].

Chapter 3
Scenarios
3.1 IntroductionA robot is, according to the Cambridge Online Dictionary, \A machine usedto perform jobs automatically, which is controlled by a computer".What robots do usually falls into the category \automation". They performtasks that humans �nd too hard, too dangerous or simply too dull to performthemselves. But while robots are excellent at doing repetitive and structuredtasks from well de�ned instructions, they often fall short when it comes toadapting to unforeseen events and dynamically coming up with solutions toproblems which they are not explicitly programmed to handle. In the contextof robotic navigation such unforeseen events can be mobile objects movingaround in the robots environment or sensed static objects not present in therobot's map. A robot working in such an environment is said to be workingin a \dynamic environment".This thesis presents a set of algorithms well suited to the problem of path�nd-ing in a dynamic environment and this chapter describes some scenarious inwhich this type of path�nding can be useful.37

38 CHAPTER 3. SCENARIOS3.2 Scenario 1 - Search and RescueUsing robots in a search and rescue mission have several advantages. Robotscan be smaller, faster, more mobile and more precise than human beings,but most importantly; they can easily be repaired and in the extreme casethey are disposable. This property of being disposable makes them suitablefor situations where it would not be feasible to use human personnel for thesearch and rescue mission. This could be search missions such as �ndingtrapped or unconscious people in a building that is susceptible to collapse orin a building where radiation levels are too high to send in human personnel.In situations such as these it is of high importance that the robot is capableof intelligent unassisted navigation in the case communication is unavailablefor parts or the whole of the mission. The environment within such buildingsor constructions can be expected to have changed as an e�ect of the accidentthat caused the dangerous situation. Known paths may have been blockedand new paths may have formed and the robot should ideally be able to copewith this new and unknown environment.A robot suitable for search and rescue applications would need to possess thefollowing characteristics:1. Detection of objects or personnel needing attentionPerhaps the most important task for a robot to be used in search andrescue operations is the ability to precisely detect an object or personthat is in need of help. Although an interesting subject, this will not becovered in this thesis.2. EÆcient operationA search and rescue operation is in most cases time critical in nature andthe robot performing the search should avoid having to spend needlesstime roaming the search site. The route planning algorithms should beboth fast and accurate when predicting the most eÆcient route frompoint A to point B.3. Robust positional error handlingUsing a robot to navigate ie. a damaged building means that it willhave to handle moving around on contaminated surfaces containingboth small and large obstacles. A robot, such the P3AT used as thebasis for this thesis, is unable to detect obstacles that lay below or above

3.3. SCENARIO 2 - AUTOMATION, GUIDING AND TRANSPORT 39its laser range �nders vertical position, approximately 35 cm in case ofthe P3AT. This means that it will be unable to detect low obstaclessuch as small inventory or thresholds. It is therefore probable that theunit will run into objects causing the actual trajectory to di�er from theexpected. The navigational algorithms in place must therefore be ableto correct the estimated position using sensed range data.4. Logging and incorporation of uncharted objectsThe objects and obstacles discovered should be persisted within therobots computer, both to facilitate optimal route planning throughoutthe mission and to provide valuable information back to the search andrescue operators.5. The ability to determine persistency of objectsWhen faced with an uncharted object, the unit needs to be able todetermine if this is a persistent object that limits the navigational pos-sibilities of the robot or if the object is transient or noise. If the objectis persistent the robot needs to incorporate it into its route planningalgorithms.3.3 Scenario 2 - Automation, Guiding and Trans-portA less dramatic scenario than the search and rescue setting is to use a robotfor automation, guiding or transport. Thrun et.al. demonstrated an exampleapplication of such a guidance robot in [Thrun et al. 1999]. Their Minerva-robot successfully gave guided tours through the National Museum of Amer-ican History for a period of two weeks. A number of similar automated tasksin dynamic environments can be thought of:� Guide robots operating from the reception in a large facility, guidingvisitors to their destinations.� Transport units in a hospital moving patients and beds between loca-tions.� Automated cleaning robots covering larger areas within e.g. a produc-tion hall.

40 CHAPTER 3. SCENARIOS� Feeding-robots in an agricultural setting or in a zoo, feeding animals atregular intervals.� Watchdog/security robots used for patroling large semi-structured areasand reporting possible security breaches.The main di�erence between these proposed tasks and the search andrescue scenario is that most of these tasks are not time critical, but they areoperations that span over a longer period of time, and longer geographicaldistances than what was the case in Scenario 1. This means that errorsbetween estimated and actual position and heading can drift to substancialnumbers when travelling in wide, open areas that provide few reference pointsfor the robot's navigational algorithms.Another important di�erence from Scenario 1 is the amount of dynamicobjects within the robots \senseable" range, e.g imagine the crowd in a newlyopened gallery. This places great importance on the robots ability to avoidcollisions and further emphasizes its ability to di�erenciate persistent objectsfrom transient objects, to be able to plan eÆcient routes within the dynamicenvironment.3.4 Scenario 3 - Automated ReconnaissanceThe third an �nal scenario we will examine is the use of an autonomousrobot as a reconnaissance unit for military or security applications. Such arobot could be sent as a scout to scan an area for mines/bombs or simply torecord detailed geometrical data of the area to facilitate precise planning ofa forecoming operation. What kind of challenges does such a usage scenariopresent? The most important requirement is on the robots ability to recordaccurate data i.e. �lter out possible noise and to record and report persistentobjects discovered during the reconnaissance mission.3.5 Informal RequirementsFrom the list of possible usage scenarios we have examined, we collect thefollowing informal requirements for a robust robotic navigation system:

3.5. INFORMAL REQUIREMENTS 411. The system needs to be able to accurately determine its current positionand heading, based on estimated numbers and recorded sensor readings.2. The system needs to avoid collisions with both static charted objectsand dynamic uncharted objects discovered during operation.3. The system needs to be able to estimate the most eÆcient route frompoint A to point B, based on both static map data and discoveredobjects found during operation.4. The system needs to distinguish between transient and persistent ob-jects discovered and record the objects for optimal route planning andfor post-operation analysis.These four informal requirements form the basis for the rest of the workpresented in this thesis. We will present a set of algorithms and structuredapproaches that facilitate these requirements and we will use a prototype-/simulator to determine the success of the proposed approaches.

42 CHAPTER 3. SCENARIOS

Chapter 4Implementation
4.1 IntroductionThis chapter presents a set of strategies and algorithms suitable for au-tonomous robotic navigation. I will cover the practical challenges encounteredwhen developing these strategies and explore their strengths and limitations.4.1.1 PossimTo ease testing and experimentation, a robot simulator has been developed.This piece of software, called Possim, enables rapid prototyping of conceptsand screenshots from this application are used extensively throughout thischapter to illustrate problems and ideas. Possim is written as a Java Swingapplication using a highly modular structure that enables users to load di�er-ent navigation strategies and position estimation algorithms in runtime. Asthe robot-component of Possim is replaceable, it is also possible to controla robot using Possim as a graphical front end, but this has not been incor-porated in the version of Possim as delivered with this thesis. The simulatorenables the user to graphically draw and manipulate maps, as well as thepossibility to save maps and restore them at a later point in time. To testhow well the path�nding and map matching algorithms work, the user canalso place a robot in the map, set a destination and step through the robotsroute from start to destination, placing new obstacles in the way and seeinghow the algorithms cope with this.Java was chosen as the technical platform for this simulator based on its43

44 CHAPTER 4. IMPLEMENTATIONmulti-OS availability, its widespread use in education and because of Java'srich library of 2D geometrical functions that simpli�es some of the moretedious work involved in implementing such a simulator. Full source code anda set of screenshot videos of Possim in action supplement this thesis. Figure4.1 shows a screenshot of Possim.4.1.2 Using PossimPossim can be used to test various aspects of robot navigation, such apath�nding algorithms, line estimation algorithms and map matching algo-rithms. The most common usage scenario is to draw or load a map, placethe robot in the map, set a destination, calculate the route from start todestination and then to step through the route and see how well the robotestimates its own position from its simulated laser range�nder readings. Todo this in Possim, follow these steps:1. Hit the keyboard shortcut Ctrl+R and click in the main area of thePossim window to place the robot.2. Move the mouse pointer in the direction you want the robot's headingto be and click again to set the robot's heading.3. Hit Ctrl+A to start a new map obstacle polyline and click in Possim'smain window to add vertices to this polyline. Hit Escape when done.4. Press Ctrl+D and click in Possim's main window to set the robot des-tination.5. Press F5 to update the robot's laser range�nder readings.6. Press F6 to calculate the shortest route from robot position to desti-nation.7. Press F7 to move one step along the calculated route towards thedestination.To manipulate a map, use these shortcuts:

4.1. INTRODUCTION 45

Figure 4.1: An example screenshot of Possim1. Hit Ctrl+M and click a map obstacle vertex to select it. Move themouse pointer to where you want to relocate the vertex to and clickagain to place the vertex in the new location.2. Hit Ctrl+E and click a map obstacle line to add a new vertex to thisline. Move the mouse pointer to where you want the vertex to be placedand click again to place the vertex in the new location.3. Right-clicking a vertex removes the vertex from it's containing obstaclepolyline.4. Ctrl+L removes all obstacle polylines from the current map.In addition, Possim enables the user to save maps to �le, using File !Save (Ctrl+S), and to open maps, using File ! Open (Ctrl+O).

46 CHAPTER 4. IMPLEMENTATION4.2 Navigational strategyIn a 100% static and fully charted environment, robotic navigation is rathersimple. At �rst one would give the robot its starting position, then its desti-nation, and �nally ask the robot to calculate the optimal route from start todestination and then to travel the route. This means that route calculationswould only have to be performed once for every set of start- and destinationpoints and the only travel time interruption would be doing occational posi-tional corrections based on laser range�nder readings. How does this changewhen the environment is only semi charted and contains dynamic objects? Amain loop for traveling in a dynamic environment might look something likethis:1. Get laser range�nder readings.2. Update map with laser range�nder readings.3. Correct current position based on updated map.4. Calculate optimal path from current position to destination.5. Move towards destination.6. If current position equals destination, exit loop, else go to top.From this we can see that the computational complexity is severly higherthan in the static environment. Where we earlier only had to calculate theroute once, we now have to calculate it for every move. Although this mightsound dramatic, section 4.3.4 presentes a set of techniques that can reducethis complexity somewhat, but in general we are still left with a main looplooking like this:1. Recalculate own position.2. Recalculate route.3. Move towards destination.And this is the navigational strategy that forms the basis for discussion inthe next few sections.

4.3. PATHFINDING 47

Figure 4.2: A tile route as calculated by the A-Star algorithm4.3 Path�ndingAs discussed in section 2.5, path�nding is the process of computationallytrying �nding a travelable route from point A to point B in a given map. Whilethis process is trivial for humans, it has proven rather diÆcult to implementas a general and eÆcient algorithm. The most common algorithms employedfor path�nding today are Dijkstra's algorithm and the A-Star algorithm. Bothof these algorithms divide the map into a grid of discreet tiles, similar to achess board, and investigate each of a given tiles' neighbouring tiles in thedirection of the destination to determine a travelable route. Both Dijkstra'salgorithm and the A-Star algorithm are relatively complex algorithms and thefact that these algorithms operate in a discreet tile map forces us to createan approximation of the map that is more coarse grained than the originalmap to be able to calculate the route in reasonable time. The result of thisapproximation is a route that is suboptimal compared to what could have beenachieved using a 1:1 map, since we now are limited to moving from tile totile, instead of moving in the maps native units. Figure 4.2 illustrates such anexample where it is clear that the route calculated by the A-Star algorithm islonger than what the route could have been is the robot was allowed to move

48 CHAPTER 4. IMPLEMENTATION

Figure 4.3: A suboptimal discreet tile route.as close to the obstacles as allowed by the resolution of the map. Anothernegative impact of the tile approximation technique employed by Dijkstra'salgorithm and the A-Star algorithm is that only horizontal, vertical or diagonalmovement is calculated. The reason for this is that these algorithms considerthe eight neighbouring tiles in turn to determine the single tile move thatis most bene�tial to achieving the shortest route from start to destination,and a single move from one tile to any of its neighbouring tiles can onlyresult in horizontal, vertical or diagonal movement. Figure 4.3 shows howthe combination of tile approximation and only horizontal, vertical or diagonalmovement can lead to a signi�cantly suboptimal route, compared to the routethe robot could have followed if it was allowed to rotate directly towards thedestination and travel there in a continuous straight motion.The third and �nal drawback to the tile approximation technique used bythe common path�nding algorithms that we will discuss here, is the complexityinvolved in determining whether tile B is travelable coming from tile A. A verysimple algorithm might assume that if tile A is travelable and neighbouring tileB is also travelable, it is possible to move from A to B. This is however notthe case when factoring in the robots shape and size and the requirementsas to how much the robot should be allowed to rotate at any point in the

4.3. PATHFINDING 49

Figure 4.4: A tile route calculated without consideration to robot shape.
route. Figure 4.4 shows such a case where all the tiles from the start positionto the destination are travelable, but when considering the robots shape andsize it is clear that the route calculated is not travelable. To encompass thisproblem we need to extend the path�nding algorithms callback function sothat it answers not only \is tile B travelable?", but rather \is tile B travelablefrom tile A?" and within this extended function take the robots shape andsize into consideration. Futhermore, for the path�nding algorithms to �nd aroute from tile A to tile N, there needs to be a continuous set of travelablediscreet tiles available. It is not enough that there is an available area clearlybig enough for the robot to pass through, since the path�nding algorithmsare not able to combine several semi obstacled tiles. Figure 4.5 illustratesthis problem. We can see that the robot would be able to move from itsstarting position to its destination had it not been for the placement of thetiles, which unfortunately falls so that no continuous route of unobstacledtiles are available from start to destination.

50 CHAPTER 4. IMPLEMENTATION

Figure 4.5: An untraveable route due to unfortunate tile placement.4.3.1 Implementing the A-Star algorithmIn section 2.5.2 we described the A-Star algorithms history and basic logic.In this section we take a look at the inner workings of the algorithm and thecomplexities encountered when working with this algorithm.The A-Star algorithm in itself is very elegant, well de�ned and independentfrom any speci�c technical features. Accompanying this thesis is a general-ized implementations of the A-Star algorithm written in Java. The algorithmexposes a relatively simple interface, is takes a starting position, a destinationand a callback function as its input parameters and return the optimal list ofroute points if a route can be found or null if there are no possible routes.The callback function takes a two-dimentional position as its input parame-ters and returns a boolean value to signal whether the speci�ed position istravelable. The input object to the algorithm is a single object implementingthe AStarMap interface. The de�nition of the AStarMap interface can beseen in �gure 4.6.Figure 4.7 shows a basic A-Star main loop similar to how it is imple-mented in Possim. We can see that the logic is fairly straight forward andthat a program using this algorithm only needs to supply a small number of

4.3. PATHFINDING 511 impo r t j a v a . awt . Po i n t ;23 p u b l i c i n t e r f a c e AStarMap f4 p u b l i c Po i n t g e t S t a r t () ;5 p u b l i c Po i n t g e tD e s t i n a t i o n () ;6 p u b l i c b oo l e a n i sWa l k a b l e (i n t x , i n t y , i n t parentX , i n t pa r en tY) ;7 g Figure 4.6: The AStarMap interfacewell de�ned methods; getWalkableAdjacentNodes(), calculateManhattanDis-tance(), calculateEuclidianDistance() and createOrderedRoute(). calculate-ManhattanDistance() and calculateEuclidianDistance() are self explanatoryand createOrderedRoute() simply backtracks through the given Node objectsprevious references to �nd the route from start to destination. The morecomplex method is getWalkableAdjacentNodes(). This method tests all ofcurrents neighbouring tiles to see if they are travelable from current and re-turns a list of those that are. This method calls AStarMap.isWalkable() todetermine if a tile is travelable and as such all application-speci�c logic withrespect to map scaling and robot shape and size is o�-loaded to this method.From �gure 4.7 we can see that this implementation of the path�ndingalgorithm uses two lists of open and closed Node objects. These Node objectsextend the java.awt.Point object with three �elds; g, h and f (see section2.5.2 for a detailed explanation of these values). The open list contains Nodesthat are still possible candidates for the �nal optimal route, while the closedlist contains Nodes that have been found unusable by the algorithm. The �rstmethod called in the A-Star main loop is openList.getNodeWithLowestF().This method returns the Node object from the open list with the lowest fvalue, indicating that this Node is the one currently being considered as themost probable to lead to the shortest route to the �nal destination, based onits actual distance back to the starting position and its estimated distance tothe �nal destination. Using a general purpose container like an array or a listfor the open and closed lists would mean a search operation would have to beperformed to �nd the Node with the lowest f value for each iteration of themain loop. Using a more specialised container for the open list could avoidthis search operation and we will look at this more closely in section 4.3.4.In the beginning of this chapter we mentioned that the complexity of theA-Star algorithm necessitates a tile approximation of the map. In Possim thisgrid size is con�gurable and values between 50 and 100, meaning a simpli�-

52 CHAPTER 4. IMPLEMENTATION
1 p u b l i c A r r a y L i s t <Point> aS t a r (AStarMap map) f2 Po in t s t a r t = map . g e t S t a r t () ;3 Po in t d e s t i n a t i o n = map . g e tD e s t i n a t i o n () ;45 op e nL i s t . add (new Node (s t a r t)) ;67 w h i l e (t r u e) f8 Node c u r r e n t = op en L i s t . getNodeWithLowestF() ;910 i f (c u r r e n t == n u l l)11 r e t u r n n u l l ; // No p o s s i b l e r o u t e !12 e l s e i f (c u r r e n t . x == d e s t i n a t i o n . x && cu r r e n t . y == d e s t i n a t i o n . y)13 r e t u r n c r e a t eO r d e r e dRou te (c u r r e n t) ; // D e s t i n a t i o n found !1415 op e n L i s t . remove (c u r r e n t) ;16 c l o s e d L i s t . add (c u r r e n t) ;1718 A r r a yL i s t <Node> wa l k a b l eAd j a c e n tNod e s = getWa lkab l eAd j a cen tNodes (map , c u r r e n t) ;1920 f o r (Node ad j acen tNode : wa l k a b l eAd j a c e n tNod e s) f21 i f (c l o s e d L i s t . c o n t a i n s (ad j acen tNode))22 con t i n u e ;2324 i f (! o p e nL i s t . c o n t a i n s (ad j acen tNode)) f25 ad j acen tNode . g = c u r r e n t . g + ca l c u l a t eMan ha t t a nD i s t a n c e (c u r r e n t , ad j acen tNode) ;26 ad j acen tNode . h = c a l c u l a t e E u c l i d i a n D i s t a n c e (ad j acen tNode , d e s t i n a t i o n P o i n t) ;27 ad j acen tNode . f = ad j acen tNode . g + ad j acen tNode . h ;28 ad j acen tNode . p r e v i o u s = cu r r e n t ;29 op e n L i s t . add (ad j acen tNode) ;30 g e l s e f31 i f (c u r r e n t . g + ca l c u l a t eMa nh a t t a nD i s t a n c e (c u r r e n t , ad j acen tNode) < ad j acen tNode . g) f32 ad j acen tNode . g = cu r r e n t . g + ca l c u l a t eMa nh a t t a nD i s t a n c e (c u r r e n t , ad j acen tNode) ;33 ad j acen tNode . h = c a l c u l a t e E u c l i d i a n D i s t a n c e (ad j acen tNode , d e s t i n a t i o n P o i n t) ;34 ad j acen tNode . f = ad j acen tNode . g + ad j acen tNode . h ;35 ad j acen tNode . p r e v i o u s = c u r r e n t ;36 g37 g38 g39 g40 g Figure 4.7: A Java method illustrating the A-Star algorithms main loop.

4.3. PATHFINDING 53cation of 50:1 to 100:1, have been found to be sensible values. Convertingfrom the original map scale to the simpli�ed tile scale utilizes integer division;xs = ⌊xos ⌋ys = ⌊yos ⌋where xo and yo indicates the original two dimentional coordinate, xs andys are the scaled x and y values and s is the tile/grid size. To convert backfrom the simpli�ed tile scale to the center coordinate in the original map scalethe following formula is used; xo = xss + s2yo = yss + s2What does such a simpli�cation mean with respect to computational com-plexity? Let us assume that the robot is positioned in (220; 300) and wantsto move to (810; 550). Scaling this down to a grid size of 40 leaves us withthe start position (5; 7) and the destination (20; 13) giving an area of 15x6tiles and a route of 6 diagonal and 9 horizontal moves, assuming an unob-stacled area between start and destination. Since this route does not containany obstacles, the algorithm can always use the neighbouring tile with thelowest f thereby limiting the number of calls to AStarMap.isWalkable() to15. If we had not performed this scaling the AStarMap.isWalkable() methodwould have been called 340 times. This might not seem much, but as we willsee in section 4.3.2 the calculations done inside AStarMap.isWalkable() arerelatively computationally expensive and we therefore wish to limit the callsto this function to the absolute minimum.4.3.2 Considering robot shape and sizeAs discussed in section 2.5.3 and illustrated in �gure 4.4 it is important toconsider practical implications when computationally determining whether therobot can move from point A to point B in a given map. A physical robotwill always have a width and length and it might have speci�c constraintswhen it comes to the space needed to rotate. A signi�cant part of the

54 CHAPTER 4. IMPLEMENTATION
R

l

Rw

a) initial attempts b1) adjusting
for rotation

b2) obstacle inter-
section at rotation

c) final bounding polygon

R
l

Rw

R
l

Rw

R
l

Rw

R
l

R
l

R
r

R
r

Rw Rw

x

y

A

B

Figure 4.8: Various attempts at �nding the best bounding polygon.time writing this thesis has therefore been spent developing a robust, buteÆcient integration of the path�nding algorithm and a AStarMap interfaceimplementation that considers the robots shape, size and its demands withrespect to rotation area.The simplest implementation of AStarMap.isWalkable() might only takethe destination coordinate as its input parameter and determine if any obsta-cles in the map intersects the speci�ed tile and return the �nding. A moreadvanced implementation would also need to know the source coordinate/s-tart tile before answering whether the destination tile is travelable from thestart tile. Only after getting the start and destination tiles and creating aninternal representation of the area needed to move from start to destinationand cross checking this area with the obstacle map, would the algorithm beable to determine whether the distance is travelable.Initial attemptsAt �rst I attempted to tackle the problem illustrated in �gure 4.4. It isclear from this illustration that the robot has a certain width that needsto be taken into consideration when determining whether the next tile istravelable. Geometrically, this means that there needs to be an unobstacledrectangular area with width equal to the robot's width centered on the center

4.3. PATHFINDING 55of point A, going to the center of point B. But this considers only the robotswidth. To consider its length as well, we need to extends the rectangle ineach direction with half the robots length to ensure that the robot can stopperfectly centered in both the two points. Figure 4.8 a) illustrates such arectangle and we can express the four corner point in the rectangle, startingin the top left corner and going clockwise, as follows;x1 = xA � Rl2 ; y1 = yA + Rw2x2 = xB + Rl2 ; y2 = yB + Rw2x3 = x2; y3 = yB � Rw2x4 = x1; y4 = yA � Rw2Where xA, yA, xB and yB are the coordinates of points A and B, Rl is therobots length and Rw is the robots width. We call this the robots boundingrectangle from A to B. Note that these formulas assume an angle of 0degrees from point A to point B. For other rotations, simply rotate thepoints x1; y1 to x4; y4 around point A by the angle from point A to point B,as explained in 2.2.3. After calculating this rectangle we can iterate throughall the obstacle line segments in the map to see if any of them intersect anyof the rectangle sides, or if any of the obstacle line segments are completelycontained by the rectangle. If this is the case then the distance from pointA to point B is not travelable. Initial testing showed that this worked quitewell for avoiding situations where the the A-Star algorithm previously wouldreport that the distance was travelable, but it was visually obvious that themove was impossible. However, what happens if the robot does not movefrom A to B in one continuous move, but stops and discovers an obstaclethat neccessitates a rotation to continue towards the destination? Our simplestrategy does not cover this and as such we might �nd the robot in a situationwhere it is not able to rotate and continue on its route. We therefore need toexpand the shape and size considerations made in this section to also includethe need for full rotation at any point in the route.

56 CHAPTER 4. IMPLEMENTATIONAdjusting for rotationIncorporating the requirement for full rotation at any point actually makesthe formulas in the previous section somewhat simpler. We no longer needto distinguish between robot length and robot width, we now only need toconsider the robots rotational radius; Rr = max(Rl ;Rw)2 , given that the robotcan rotate 360 Æ around its own center as is the case for the P3AT robot. Werewrite our formulas; x1 = xA � Rr ; y1 = yA + Rrx2 = xB + Rr ; y2 = yB + Rrx3 = xB + Rr ; y3 = yB � Rrx4 = xA � Rr ; y4 = yA � RrWhile this change makes the bounding rectangle larger and might thuslimit the possible moves in the map for all cases, except where Rl = Rw ,we now avoid the situation where the robot gets stuck because it cannotrotate. Figure 4.8 b1) shows the extended bounding rectangle. Althoughthis extension gets us a long way towards covering all considerations withrespect to robot size when calculating travelable moves, it introduces onespecial corner case. What happens when the robot moves as close as possiblein parallel with an obstacle and the robot needs to rotate? It now turns outthat even if the robot would physically be able to rotate, our algorithms wouldindicate that the bounding rectangles corners would intersect the obstacleline segments, as illustrated in �gure 4.8 b2), and further processing wouldtherefore stop.Final adjustmentsAn extreme case of the scenario illustrated in the previous section is whenthe robot moves down a corridor with width = 2Rr . No matter how narrowa turn the robot tries to make, its bounding rectangle corners will intersectthe corridor walls and the A-Star algorithm will report that the robot is stuck.To solve this limitation we need to promote the bounding shape used forintersection testing from a rectangle to a polygon shaped as a rectangle withone half circle in each end, as illustrated in �gure 4.8 c). This way, the

4.3. PATHFINDING 57
A B

1 2

4 3Figure 4.9: The �nal bounding polygon's individual vertices.distance from the robot center to any of the bounding polygon sides cannever exceed Rr and the AStarMap.isWalkable() method will never reportany false negatives. In addition to points 1 to 4 in the previous section, wenow need to insert these points between points 2 and 3;x2n = xB + cos(�2 � nm�)Rr ; y2n = yB + sin(�2 � nm�)RrAnd we need to insert the following points between point 4 and 1;x4n = xB + cos(34� � nm�)Rr ; y4n = yB + sin(34� � nm�)Rrwhere m is number of points in the polygon half circle and n! [1; m�1].We call the resulting polygon the robots bounding polygon from point A toB. Figure 4.9 shows a simple representation of the �nal bounding polygonwith it's individual vertices.This �nal bounding polygon covers all the considerations we have to makewith regards to the robots size and rotational area demands.4.3.3 Optimizing paths using route climbingPath�nding algorithms such as Dijkstras algorithm and the A-Star algorithmconsider only the eight neighbouring tiles of the current tile as possible route

58 CHAPTER 4. IMPLEMENTATION

Figure 4.10: A tile route consisting of many unneeded rotations.targets. This leads to a �nal route where every tile is at a multiple of 45 Æangle relative to its previous and next tiles. We call this the continuous tileroute. For a robot capable of rotating in 1 Æ increments such a route can besuboptimal with respect to both the travelled distance, as illustrated in �gure4.3, and to the number of stops and rotations needed to travel the route, asseen in illustration 4.10. From the route calculated in �gure 4.10 it is clearthat this route ideally could be optimized down to only two rotations, one atthe top left corner of the obstacle polyline and one top right corner. Thisway we could both shorten the travelled distance and reduce the number ofstops/rotations. How do we proceed to achieve such an optimized route?First we need to consider what we want the resulting route to be; we wantit to be a route free of redundant route points so that every route point in theoptimal route can only be reached from its previous and next route points inthe optimal route. These route points are considered signi�cant route points.The optimal route is calculated from the continuous tile route, starting atthe �rst route point and continuing to the last route point, assuming thatthese are the start and destination points respectively. To determine the sig-ni�cant route points in a continuous tile route we have developed a techniquewe have called the route climbing technique. The route climbing algorithm

4.3. PATHFINDING 59

Figure 4.11: The route climbing technique illustrated.applies parts of an obstacle avoidance technique known as points-of-visibility,described in [DeLoura 2001]. But instead of using points-of-visibility to dopath�nding on the actual map, we use the technique on the travelable tileroute already found using the A-Star algorithm. The route climbing algorithmis de�ned in Algorithm 1, where pn�1 is the previous succeeding point of cur-rent with respect to pn. pn�1 will always be de�ned if the line from current topn intersects an obstacle, since the distance from current to the immediatefollowing p always is travelable in a well de�ned continuous tile route. Moreinformally the route climbing algorithm can be thought of as probing (\climb-ing") every succeeding point of a signi�cant route point until it �nds a routepoint that is not directly travelable from the signi�cant route point, it thensets the previous route point as the next signi�cant route point and continuesthe algorithm from this point. Figure 4.11 illustrates the route climbing tech-nique in action, with black bounding polygons to insigni�cant route points,a red bounding polygons to an untravelable point and the green boundingpolygon from the starting point to its next signi�cant route point. Figure4.13 shows the resulting route after applying the route climbing technique toa full continuous tile route. Note that to determine whether a point pn istravelable from current we employ the same bounding polygon as described

60 CHAPTER 4. IMPLEMENTATIONset current = the starting route point in the continuous tile route;1.1 set destination = the �nal route point in the continuous tile route;1.2 set signi�cantRoutePoints = an empty list;1.3 while current != destination do1.4 add current to signi�cantRoutePoints;1.5 foreach point pn after current in the continuous tile route do1.6 if pn == destination then1.7 add pn to signi�cantRoutePoints;1.8 set current = pn;1.9 break loop;1.10 else if !isWalkable(current, pn) then1.11 set current = pn�1;1.12 break loop;1.13 else1.14 continue to next pn;1.15 end1.16 end1.17 end1.18 return signi�cantRoutePoints;1.19 Algorithm 1: The route climbing algorithm.in 4.3.2. Figure 4.12 lists the route climbing algorithms as implemented inPossim.4.3.4 Performance considerationsIntroductionPath�nding is inherently complex, and although the path�nding algorithmsthemselves are not very complex in terms of logic, they are computationallycomplex and thus time consuming. The worst case complexity of the A-Staralgorithm is nf 2, where nf is the number of route points in the �nal route, andwhen considering the number of geometric operations we suggested earlierin this chapter applied to every one of those points, it is clear that a fewoptimalizations are needed to make this usable in a real world scenario. Inthis section we look at the most time consuming operations1, what makesthem complex and how we can reduce their complexity. Figure 4.14 shows1The most time consuming operations have been identi�ed using a pro�ler toolkit, re-vealing the execution time of the algorithms on a per method-level.

4.3. PATHFINDING 61

1 p r i v a t e A r r a y L i s t <Point> c a l c u l a t eO p t i ma l Ro u t e2 (A r r a y L i s t <Point> r ou te , Po i n t s t a r t , A r r a y L i s t <Line2D> o b s t a c l e L i s t , i n t g r i d R a d i u s) f3 A r r a y L i s t <Point> opt ima lRoute = new A r r a y L i s t <Point >() ;45 i n t r o u t e S i z e = r ou t e . s i z e () ;6 f o r (i n t i = 0 ; i < r o u t e S i z e � 1 ;) f7 Po in t c u r r e n t P o s i t i o n = r ou t e . ge t (i) ;89 // Use a c t u a l r o b o t p o s i t i o n r a t h e r than f i r s t10 // t i l e as s t a r t i n g p o i n t11 i f (i == 0) f12 c u r r e n t P o s i t i o n = new Po in t (s t a r t) ;13 opt ima lRoute . add (new Po in t (c u r r e n t P o s i t i o n)) ;14 g1516 f o r (i n t j = i + 1 ; j < r o u t eS i z e ; j ++) f17 Po in t n e x t P o s i t i o n = r ou t e . ge t (j) ;1819 boo l e a n onLas tRoutePo in t = (j == (r o u t eS i z e � 1)) ;20 boo l e a n c a nT r a v e lW i t h o u t C o l l i s i o n = Geome t r yU t i l s . c a n T r a v e lW i t h o u t C o l l i s i o n (c u r r e n t P o s i t i o n, n e x tP o s i t i o n , g r i dRad i u s , o b s t a c l e L i s t) ;2122 i f (onLas tRoutePo in t && c a nT r a v e lW i t h o u t C o l l i s i o n) f23 opt ima lRoute . add (new Po in t (n e x t P o s i t i o n)) ;24 i = r o u t e . s i z e () ;25 b reak ;26 g e l s e i f (! c a nT r a v e lW i t h o u t C o l l i s i o n) f27 Po in t p r e v i o u s N o n I n t e r s e c t i n g P o i n t = r ou t e . ge t (j � 1) ;28 opt ima lRoute . add (new Po in t (p r e v i o u s N o n I n t e r s e c t i n g P o i n t)) ;29 i = j � 1 ;30 b reak ;31 g32 g33 g3435 r e t u r n op t ima lRoute ;36 g Figure 4.12: The route climbing algorithm as implemented in Possim.

62 CHAPTER 4. IMPLEMENTATION

Figure 4.13: The route climbing technique applied to a longer route.the maze test map used for testing the various performance optimizationssuggested in this section. Informal testing is done by placing the robot in thebottom left-most tile and setting the destination as the bottom right-mosttile and calculating the route ten times and considering the lowest run time,with and without the suggested optimalizations. The runtimes given in thefollowing sections are calculated using a robot- and tile-size of 10 (i.e. asimpli�cation of 10:1) and 60 (simpli�cation 60:1) and calculating the routeusing these sizes and with no calculations takes 92500 ms (10) and 220 ms(60).Avoiding duplicate calls to isWalkable()From our earlier analysis we can see that the single most logically com-plex method that is being called during the path�nding algorithm is the AS-tarMap.isWalkable() method that determines whether a tile is walkable froma speci�c tile. This method contains lots of trigonometric operations whencalculating the movement bounding polygons and even a polygonal intersec-tion test for each possible tile. Limiting the number of times this method iscalled is a good starting point for performance optimization.

4.3. PATHFINDING 63

Figure 4.14: The maze test map used for performance testing.From the A-Star implementations seen in 4.7 we see that the getWalk-ableAdjacentNodes() method is called to analyse the neighbouring tiles ofcurrent and return the tiles that are walkable. After calculating these tiles,the main loop iterates over the walkable neighbouring tiles, but skips the tilesthat are in the closed list. This means that isWalkable() will be called for alot of tiles that will simply be skipped later on because they are marked as be-ing closed. Making getWalkableAdjacentNodes() aware of the list of closedtiles and avoid calling isWalkable() for the tiles in this list should improveperformance quite a bit.Testing gives a runtime of 56500 ms for tile size 10 and 156 ms for tilesize 60, indicating runtimes now being 61% and 70% with respect to theoriginal.Improving open and closed tile collection access timesAvoiding duplicate calls to isWalkable() de�nitely helps, but pro�ling a routecalculation shows that a considerable amount of time is spent iterating overthe collections of open and closed nodes to �nd tiles matching certain criteriaor to determine if a speci�c tile is contained within one of the collections. Ournaive �rst implementation applied lists of type java.lang.ArrayList for the open

64 CHAPTER 4. IMPLEMENTATIONand closed lists, resulting in linear searches through the lists. By analyzing howthe open and closed lists are used, we can apply better suited data structuresfor these collections, leading to more eÆcient route calculations.The collection of open tiles is used in two ways;� To extract the tile with the lowest estimated distance to the destination.� To search for a given tile to see if it is contained within the collection.From this we can see that the collection should be ordered by f (the des-tination distance heuristic) to enable O(1) complexity when extracting thetile with the lowest f , it should have a unique primary key enabling O(1)complexity when checking if the collection contains a speci�ed tile and asboth the collections holding open and closed tiles are constantly manipulatedthroughout the path�nding algorithm, the data structures should o�er fastobject insertions and deletions. A data structure o�ering O(1) complexity onretrieving the element that lies �rst in an ordered structure, O(1) complexityon insertion and O(logn) complexity on containment checking and deletionis the binary heap, speci�cally the min heap. The Java Collections Frame-work o�ers the java.util.TreeSet as a general implementation of the binaryheap, guaranteeing maximum O(logn) on add(), remove() and contains().Although the TreeSet o�ers a fast implementation of contains(), this methodchecks for containment based on the sort criterion f , while we want to checkfor containment based on tile coordinates. Testing various solutions to thismismatch has lead us to a compromise, where we maintain two collections ofopen tiles; one TreeSet for fast extraction of the tile with the lowest f and ajava.util.HashMap containing string concatenated tile coordinates as keys forO(1) containment checking.The collection of closed tiles is used in only one way; to check whethera speci�c tile has been visited. This requires fast containment checking andfast insertion. The hash table data structure is ideal for this as it o�ers O(1)get() and put() operations. We have used The Java Collections FrameworksHashMap class for the collection of closed tiles.Applying the TreeSet and HashMap duo for the collection of open tiles anda single HashMap for the collection of closed tiles reduces the runtimes on ourtest map to 142 ms for tile size 60 and 16250 ms for tile size 10. These areruntimes being respectively 64.5% and 17.6% of the original un-optimalizedpath�nding algorithm runtimes.

4.3. PATHFINDING 65Speeding up collision detectionOur performance tweaking so far has been quite successful, we have low-ered the runtime of the path�nding algorithm on our chosen test map fromover 95 seconds to approximately 16 seconds, but there are still a few im-provements we can implement. Re-pro�ling our application reveals the nextperformance bottleneck; 67% of the time it takes to calculate the route isspent within the GeometryUtils.canTravelWithoutCollision() method. Thismethod takes a start position and a destination as parameters, calculatesthe bounding polygon of the move, as described in section 4.3.2, and checksif any of the obstacle lines in the map are contained within or intersectsthe bounding polygon. Looking closer at this method, the pro�ler showsthat 17% of the time in canTravelWithoutCollision() is spent calling Ge-ometryUtils.getBoundingPolygon() and the remaining time is mostly spent injava.awt.Polygon.contains(java.awt.geom.Point2D), which makes sense sincedetermining if a point lies within a polygon is a rather complex operation. Ifalmost all the time in canTravelWithoutCollision() is spent calculating themovement bounding polygon and determining whether any obstacles inter-sects this bounding polygon, we need to seriously reconsider the approachused here. The following geometrical characteristics of the bounding polygonare known:� It consists of a rectangular area with the start position and destinationare placed in the middle of two parallel walls.� The parallel walls are extruded to convex half circles, to encompass fullrobot rotation in these locations.Two conditions with regard to the bounding polygon need to be true for themove to be considered walkable; no obstacle lines can intersect the edgeof the bounding polygon, and no obstacle line end points can lie within thebounding polygon.It seems that if we simplify the bounding polygon to a rectangle and twocircles, we could simply check for containment or edge intersection on thesethree objects, which is dramaticly less expensive with respect to prosessingtime than containment checking on a polygon. However, this is only simplefor a rectangle with purely vertical and horizontal edges. So in the caseswhere the angle between the starting position and the destination is not 0 Æ

66 CHAPTER 4. IMPLEMENTATION

a) original rotation b) rotation optimized for
intersection testing

Figure 4.15: Optimizing bounding polygon intersection testing.or a multiple of 90 Æ, we need to rotate the rectangle, the destination circleand all the obstacle lines around the starting position by the negative of theangle between the positions, as seen in �gure 4.15.While rotating all the obstacle lines in the map may seem awkwardly com-plex, it is actually a considerably improvement from the previous method. Onthe test map used, the path�nding algorithm now takes 20 ms for tile size 60and 1840 ms for tile size 10. These are runtimes being respectively 9% and2.18% of the original un-optimalized path�nding algorithm runtimes.Caching calculated routesHaving optimalized the path�nding algorithm from a runtime of over 92seconds down to below 2 seconds is a good improvement, but a 2 secondpath�nding algorithm is still too timeconsuming to be run while the robotis moving. Looking back at section 4.3.3 however, we know that the routethe robot actually moves by consists of only the \extreme" route points ofthe route originally calculated by the A-Star algorithm, that is the positionswhere the robot has to rotate. This also means that the next point in theoptimal route at any point in time is as far as the robot is able sense at

4.3. PATHFINDING 67that time. Knowing this, we can simplify the path�nding algorithm that runsduring movement to simply check if the distance from the current positionto the next position in the route is walkable. If this distance is walkable, therobot can continue moving without recalculating the route. If the distanceis not walkable, then the robot needs to recalculate the entire route. Themovement logic is now:1. Calculate route.2. While current position != destination:(a) If the distance from current position to the next signi�cant routepoint is travelable, move towards this route point and resync thepose.(b) Else, recalculate route.This optimization is not as measurable as the earlier improvements wehave made, but from experimenting in Possim it is clear that route cachingcan make a crucial di�erence when it comes to maintaining eÆcient
ow inthe robots movements.SummaryIncorporating all the performance optimizations proposed in the preceedingsections leaves us with a lean and eÆcient path�nding strategy. Figure 4.16gives a visual overview of the impact of every optimization. The two �guresat the left show the actual times spent calculating the routes in our test map,starting from tile size 10, going to tile size 60 in size increments of 5. The�gures at the right show the approximated curves of the left hand size plots.The two upper graphs are shown with a linear time scale, while the two at thebottom are shown in a logarithmic time scale. From the logarithmic curve wecan see that just skipping isWalkable() comes with the penalty of having tosearch through the list of closed tiles, which becomes signi�cant for tile sizessmaller than 30. Adding the hashtable overcomes this and we can see thatthe optimizations are mostly linear, meaning that they don't lower the overallcomplexity of the path�nding algorithm, rather they lower the runtimes of thesteps involved.

68 CHAPTER 4. IMPLEMENTATION

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 20 30 40 50 60

T
im

e,
 li

ne
ar

 s
ca

le
 (

m
s)

Tile size

No optimalizations
Skipping isWalkable() on closed nodes

Using hashmap for closed nodes
Using quick collision detection

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 20 30 40 50 60

T
im

e,
 li

ne
ar

 s
ca

le
 (

m
s)

Tile size

No optimalizations
Skipping isWalkable() on closed nodes

Using hashmap for closed nodes
Using quick collision detection

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60

T
im

e,
 lo

ga
rit

hm
ic

 s
ca

le
 (

m
s)

Tile size

No optimalizations
Skipping isWalkable() on closed nodes

Using hashmap for closed nodes
Using quick collision detection

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60

T
im

e,
 lo

ga
rit

hm
ic

 s
ca

le
 (

m
s)

Tile size

No optimalizations
Skipping isWalkable() on closed nodes

Using hashmap for closed nodes
Using quick collision detection

Figure 4.16: Graph of performance optimizations.This graph shows the cumulative e�ects of applying the optimizationsdescribed in this section.

4.4. MAP MATCHING 69

Figure 4.17: A typical laser range�nder scan.This laser range�nder scan has been plotted on top of the robot's percievedmap position.4.4 Map Matching4.4.1 IntroductionSo far we have concerned ourselves with path�nding and the algorithmsneeded to enable the robot to navigate within a known environment, as-suming that the robot always makes perfect moves without any rotational ortranslational errors. This is, however, not the situation in real life. When therobot moves or rotates there will always be a small error factor in the amountactually moved or rotated. This can be due to inaccuracies in the robot soft-ware and hardware, or it can be caused by external factors such as slipperysurfaces, gravel, carpets etc. To compensate for these inaccuracies we needto synchronize the robot's calculated position/orientation to its actual posi-tion/orientation after movement/rotation. To do so we need sensor-data totell us what the environment around the actual robot looks like and this isjust what a laser range�nder can provide for us.The laser range�nder supplied with the ActivMedia P3-AT robot gives

70 CHAPTER 4. IMPLEMENTATIONa 180Æ scan in approximately 1Æ intervals directed in the robots forward di-rection and this is what we simulate in Possim. We can use the data fromthe range�nder to create a detailed two-dimensional representation of therobot's environment and by matching this representation to a map, we canestimate the robot's actual position and rotation in the environment. Whilethe readings from the laser range�nder are signi�cantly more accurate thanthe readings from the P3-ATs sonar range�nder, we still observe some inaccu-racies and noise in the data and the combination of inaccurate laser readingsand errors in the robots movements makes for a complex pose estimationscenario. Figure 4.17 shows how a typical range scan looks like just afterthe robot has moved. The red circles indicate the individual laser readingsand we can see from the readings that there is a slight error in pose as thereadings are tilted left by a few degrees and that they have a horizontal andvertical o�set to the map. This tells us that the robot is actually closer tothe obstacles in the map than what its internal pose indicates and that itspose rotation should be a few more degrees to the right. Analysing 4.17 withrespect to the problem of pose correction and map matching, we divide theproblem into three subtasks:1. Extract vector polylines from raw laser range�nder readings.2. Find rotation of the polylines that correlate best to the map.3. Find translation of the rotated polylines that correlate best to the map.4.4.2 Extracting vector polylinesTo be able to do map matching of sensor rangedata to vector maps we needto convert the rangedata to a common format. As the laser rangedata isin reality an approximation of a larger structure, we choose to convert thesesensor readings to more meaningful structures such as vector polylines. Thisis a two-step process, �rst we need to group the range�nder readings intogroups that are likely to correspond to structures in the map and secondly weapproximate the polylines that these point groups resemble.

4.4. MAP MATCHING 71set k = the maximal distance allowed between two points;2.1 set groups = an empty list;2.2 set readings = the range�nder readings;2.3 while readings is not empty do2.4 set r = the �rst reading in readings;2.5 set group = an empty list;2.6 call collectGroup(readings, group, r, k);2.7 add group to groups;2.8 end2.9 return groups;2.10Algorithm 2: The recursive euclidean distance clustering algorithm.Recursive Euclidean Distance ClusteringWhen trying to extract meaningful vector map data from the laser range�nderreadings, the �rst step is to group the readings by some sort of criterion, aprocess called clustering. We have chosen to group the readings by neighbour-ing euclidian distance. This means that that the two points p1 and p2 belongin the same group if the distance between p1 and p2 is less than or equal tothreshold distance k , or if a segment S of one or more points exists betweenp1 and p2 with every point 2 S; p1; p2 having one or more neighbouring pointswithin a distance of no more than than k . This consept is easy enough tocomprehend, but rather complex to implement as an algorithm without re-sorting to high runtime complexities. A naive implementation would be toiterate over all range�nder readings and for each reading �nd all other read-ings within the distance k , and then �nally iterate over every reading again tocollect the readings that share common neighbours. However, this involvesseveral O(n2) passes over the data and also demands a lot of memory heapspace and we thus set out to �nd a more eÆcient solution. The algorithm wehave come up with is a recursive solution that we have called the recursiveeuclidean distance clustering algorithm (REDCA). This algorithm minimizesthe number of passes through the ranger�nder data by removing readingsfrom the original set as they are grouped with their related readings. REDCAis de�ned in algorithm 2.collectGroup(), as de�ned in algorithm 3, is the actual recursive elementin the REDCA algorithm and it takes the following parameters; the list of un-

72 CHAPTER 4. IMPLEMENTATIONadd r to group;3.1 remove r from readings;3.2 set neighbours = the range�nder readings in readings that are within k distance from r;3.3 foreach neighbour in neighbours do3.4 if group contains neighbour then3.5 continue to next neighbour;3.6 else3.7 call collectGroup(readings, group, neighbour, k);3.8 end3.9 end3.10Algorithm 3: The collectGroup method of the REDCA algorithm.grouped range�nder readings (readings), the reading whose neighbours shouldbe grouped (r), a list to add the grouped readings to (group) and the maxdistance threshold (k).There are two complex operations in collectGroup, the identi�cation ofneighbouring readings in step 3, and the check to see if group contains a givenneighbour in step 4a. The identi�cation of neighbours is hard to optimizeaway, but its complexity steadily decreases as the size of readings decrease asmore points are removed from it in step 2. The neighbour containment checkon group is easily optimized down to O(1) complexity by using a HashSet asthe datastructure for the grouped points. This is perfectly acceptable as thereis no need to maintain ordering of these points. In reality this comes withthe penalty of having to implement a special subtype of java.awt.Point thatallows points with identical values in the HashSet, but disallows objects tobe inserted twice. Figure 4.19 shows how the Recursive Euclidean DistanceClustering Algorithm (REDCA) is implemented in Possim.Polyline ApproximationAfter grouping related laser range�nder data together, the grouped dataneeds to be approximated into polylines. The subject of �tting lines to two-dimensional data has been thoroughly covered in science and perhaps the mostknown method of doing this is the method of least squares as described in sec-tion 2.3.2. However, these line �tting techniques are often meant for �ttingstatistical data, where one has ascending x-values and corresponding y-valuesand one wants to �nd the ascending or descending tendency in these data.

4.4. MAP MATCHING 73

Figure 4.18: Laser range�nder readings grouped by REDCA.This does not match our scenario where we might have a 100% vertical line,consisting of 10 identical x-values with 10 di�erent y-values. Applying theleast squares line �tting algorithm to these range�nder readings will, rathercounterintuitively, result in a horizontal line in a height such as to minimizethe sum of the vertical distances from the readings to the line. While this isperfectly correct from the least squares estimation standpoint, it is clear thatthis algorithm is not ideally suited to our speci�c problem.The line �tting algorithm developed for this thesis is highly speci�c to theproblem at hand. It takes the laser range�nders position into considerationand, as such, is not very general, but it solves the problem we are facing quiteeÆciently. The algorithm executes the following steps to extract a polylinefrom the grouped range�nder readings in points:1. Sort the readings (ascending or descending) in points by their angle tothe range�nders position.2. If there are consecutive readings in points with a distance greater thanmaxDistance between them, split points between these two points andtreat the groups of points separately. 22This is to handle the case where a line crosses the x-axis to the left of the range�nders

74 CHAPTER 4. IMPLEMENTATION1 p u b l i c c l a s s Po i n tGroupe r f23 p u b l i c A r r a y L i s t <HashSet<Point>> g r o u pPo i n t s (A r r a y L i s t <Point> po i n t s , d o u b l e maxDistance) f4 // Crea te work i ng l i s t5 A r r a yL i s t <Groupab l ePo i n t > p o i n t L i s t = new A r r a y L i s t <Groupab l ePo i n t >() ;6 f o r (Po i n t p : p o i n t s) f7 p o i n t L i s t . add (new G roup ab l ePo i n t (p)) ;8 g910 // C o l l e c t n e i g h b o u r i n g p o i n t s11 A r r a yL i s t <HashSet<Groupab l ePo i n t >> g roups = new A r r a yL i s t <HashSet<Groupab l ePo i n t >>() ;12 wh i l e (p o i n t L i s t . s i z e () > 0) f13 G r oup ab l ePo i n t head = p o i n t L i s t . ge t (0) ;14 HashSet<Groupab l ePo i n t > group = new HashSet<Groupab l ePo i n t >() ;1516 c o l l e c t G r o u p (p o i n t L i s t , group , head , maxDistance) ;17 g roups . add (group) ;18 g1920 // Map back to type A r r a yL i s t <HashSet<Point>>21 A r r a yL i s t <HashSet<Point>> r e t u r nG r o up s = new A r r a y L i s t <HashSet<Point >>() ;22 f o r (HashSet<Groupab l ePo i n t > hs : g roups) f23 r e t u r nG r o up s . add (new HashSet<Point >(hs)) ;24 g2526 r e t u r n r e t u r nG r o up s ;27 g2829 vo i d c o l l e c t G r o u p (A r r a yL i s t <Groupab l ePo i n t > p o i n t L i s t , HashSet<Groupab l ePo i n t > group ,G r o up ab l ePo i n t pa r en t , d o u b l e maxDistance) f30 group . add (p a r e n t) ;31 p o i n t L i s t . remove (p a r e n t) ;3233 f o r (G r o up ab l ePo i n t n e i g h bou r : g e tNe i g h bou r s (p o i n t L i s t , pa r en t , maxDistance)) f34 i f (! group . c o n t a i n s (n e i g h bou r)) f35 co l l e c t G r o u p (p o i n t L i s t , group , ne i ghbou r , maxDistance) ;36 g37 g38 g3940 p r i v a t e A r r a y L i s t <Groupab l ePo i n t > g e tNe i g h bou r s (A r r a y L i s t <Groupab l ePo i n t > p o i n t L i s t ,G r o u p a b l ePo i n t po i n t , d o u b l e maxDistance) f41 A r r a yL i s t <Groupab l ePo i n t > n e i g h b ou r s = new A r r a y L i s t <Groupab l ePo i n t >() ;4243 f o r (G r o up ab l ePo i n t p : p o i n t L i s t) f44 i f (p == p o i n t) f45 con t i n u e ;46 g4748 i f (p o i n t . d i s t a n c e (p) <= maxDistance) f49 n e i g h bou r s . add (p) ;50 g51 g5253 r e t u r n n e i g h b ou r s ;54 g55 g5657 c l a s s G r o up ab l ePo i n t e x t e n d s Po in t f5859 G r oup ab l ePo i n t (Po i n t p) f60 s u p e r (p . x , p . y) ;61 g6263 p u b l i c i n t hashCode () f64 r e t u r n System . i d e n t i t yHa s hCod e (t h i s) ;65 g6667 p u b l i c b oo l e a n e q u a l s (Ob j ec t o) f68 r e t u r n t h i s == o ;69 g70 g Figure 4.19: The REDCA algorithm in Java.

4.4. MAP MATCHING 753. Divide the list of points into sub-segments of size testSegmentLength.For each sub-segment, create a line from the �rst point in the segmentto the last. Iterate over these lines and where two consecutive lineshave a di�erence in angle of more than maxAngleVariance, a new pointis added to the polyline at the coordinate corresponding to the centerof the second sub-segment line.set i = 0;4.1 set testSegmentLength = desired test segment length;4.2 set segmentStart = 0;4.3 set segmentList = an empty list;4.4 set previousAngle = 0;4.5 while i < (points.size() - testSegmentLength) do4.6 set testSegment = line from points[i] to points[i + testSegmentLength];4.7 set angle = angle(testSegment);4.8 if i == 0 then4.9 set previousAngle = angle;4.10 increment i;4.11 else if jpreviousAngle - anglej > maxAngleVariance then4.12 add line from points[segmentStart] to points[i + testSegmentLength/2] to4.13 segmentList;set previousAngle = angle;4.14 set i = i + (testSegmentLength / 2);4.15 else4.16 increment i;4.17 end4.18 end4.19 add line from points[segmentStart] to points[points.size() - 1] to segmentList;4.20 Algorithm 4: The polyline approximation algorithm.Step 3 in this approach contains the bulk of the polyline approximationtechnique and its pseudocode is shown in Figure 4 and the Possim implemen-tation can be seen in Figure 4.20.Figure 4.21 shows this polyline approximation algorithm applied in Possim.We can see that where the angle of a cyan-green line is signi�cantly di�erentfrom its preceding lines (sorted in clockwise order with respect to angle toposition, leaving the readings with an angle to the range�nder around �180 Æ in the start ofthe list of sorted points and the readings with an angle to the range�nder around 180 Æ inthe end of the list.

76 CHAPTER 4. IMPLEMENTATION

1 p r i v a t e s t a t i c v o i d s p l i t A c t u a l L i n e S e gm en t s (A r r a yL i s t <Point> po i n t s , A r r a y L i s t <Poss imL ine>l i n eSegment s , f i n a l d o u b l e maxAng l eVa r i ance) f2 i n t t e s tSegmentLength = 10 ;3 i n t s e gmen tS t a r t I n d e x = 0 ;4 i n t f i n a l S e gm en t S t a r t I n d e x = p o i n t s . s i z e () � t e s tSegmentLength ;56 doub l e p r e v i o u s L i n eE s t i m a t o r A n g l e = 0 ;78 f o r (i n t i = 0 ; i < f i n a l S e gm en t S t a r t I n d e x ;) f9 Po in t t e s t S e gmen tS t a r tPo i n t = p o i n t s . ge t (i) ;10 Po in t t e s tSegmentEndPo in t = p o i n t s . ge t (i + te s tSegmentLength) ;11 doub l e l i n e E s t i m a t o r A n g l e = Geome t r yU t i l s . a n g l eBe twe e nPo i n t s (t e s t S e gmen tS t a r tPo i n t ,t e s tSegmentEndPo in t) ;1213 i f (i == s egmen tS t a r t I n d e x) f14 p r e v i o u s L i n eE s t i m a t o r A n g l e = l i n e E s t i m a t o r A n g l e ;15 i ++;16 g e l s e i f (Math . abs (p r e v i o u s L i n e E s t i ma t o r A n g l e � l i n e E s t i m a t o r A n g l e) > maxAng l eVa r i ance) f17 i n t s egmentEnd Index = i + (te s tSegmentLength / 2) ;1819 Po in t s e gmen tS t a r tPo i n t = p o i n t s . ge t (s e gmen tS t a r t I n d e x) ;20 Po in t segmentEndPoint = p o i n t s . ge t (s egmentEnd Index) ;21 l i n eS e gmen t s . add (new Poss imL ine (segmentSta r tPo i n t , segmentEndPoint)) ;2223 p r e v i o u s L i n eE s t i m a t o r A n g l e = l i n e E s t i m a t o r A n g l e ;24 s e gmen tS t a r t I n d e x = segmentEnd Index ;25 i = segmentEnd Index ;26 g e l s e f27 i ++;28 g29 g3031 // Add f i n a l p o i n t32 l i n eS e gmen t s . add (new Poss imL ine (p o i n t s . ge t (s e gmen tS t a r t I n d e x) , p o i n t s . ge t (p o i n t s . s i z e () � 1))) ;33 g Figure 4.20: The polyline approximation algorithm in Java.

4.4. MAP MATCHING 77

Figure 4.21: Approximated polylines in Possim.Larger red circles shows corner points in the polylines and cyan-green linesshow the sub-segments being used in the polyline approximation algorithm.the robot), the line has been broken and a large red circle has been drawn toindicate where the polyline was split.The proposed algorithm works very well when tuned to its working en-vironment, but it does depend on the two variables maxAngleVariance andtestSegmentLength to be adjusted to the range�nders accuracy and resolu-tion. We have found maxAngleVariance = 30Æ and testSegmentLength = 10to be sensible starting values.4.4.3 Correcting rotational errorAfter having converted the laser range�nder data into more manageable vec-tor data we can start the actual process of matching this data to our pre-de�ned map to determine the rotational and translational error the robotmight have. Trying to do both things at once is too complex, so we haveto split it into two tasks; to determine the rotation that makes the lines inour vectorized range�nder data lie most parallel with the lines in the map andthe translation of these rotated lines that minimizes the range�nder data to

78 CHAPTER 4. IMPLEMENTATION

Figure 4.22: Calulating the best rotation of the laser range�nder data.Green circles are the original range�nder data and the red lines are therotated line approximations.map-line distances.The algorithm proposed in this thesis for �nding the best rotation scansthrough a number of rotations to �nd the angle where total variance is low-est. This variance is comprised of the range�nder data line's lowest rotationaldi�erence with respect to a map line L, its distance from L, and its lengthwith respect to the longest range�nder data line. The main loop is describedin algorithm 5, where � is the range of angle rotations to try and longes-tRangeFinderLine is the longest of the vectorized range�nder lines. The criti-cal step when implementing this algorithm is determining the weighting of thevariance-components. Optimal weighting needs to be tailored for the robotrange�nder combination. If the robot often has large rotational errors, onewould weight the angle variance more, and if translational errors are moreprominent, one would weight the distance variance more. A possible point offuture work would be to see if the rotational error correcting algorithm could�nd and maintain this weighting dynamically. Figure 4.23 shows the algorithmas implemented in Possim and �gure 4.22 shows this algorithm applied to asimple map. Notice the weighting applied on lines 44-50 in �gure 4.23; angle

4.4. MAP MATCHING 79

set bestAngle = 0;5.1 set lowestTotalVariance = 1.5.2 foreach angle from � �2 to + �2 do5.3 set totalVariance = 0;5.4 foreach rangeFinderLine in the list of vectorized range�nder readings do5.5 set lowestVariance = 1;5.6 set rotatedLine = rangeFinderLine.rotate(angle);5.7 set rotatedLineAngle = rotatedLine.angleBetweenEndpoints();5.8 foreach mapLine in the map do5.9 set mapLineAngle = mapLine.angleBetweenEndpoints();5.10 set variance = jmapLineAngle - rotatedLineAnglej + (rotatedLine.length() /5.11 longestRangeFinderLine.length()) + rotatedLine.distance(mapLine);if variance < lowestVariance then5.12 set lowestVariance = variance;5.13 end5.14 end5.15 set totalVariance += lowestVariance;5.16 end5.17 if totalVariance < lowestTotalVariance then5.18 set bestAngle = angle;5.19 set lowestTotalVariance = totalVariance;5.20 end5.21 end5.22 return bestAngle;5.23 Algorithm 5: The rotational error correcting algorithm.

80 CHAPTER 4. IMPLEMENTATIONvariance is weighted 1:1 giving a range of 0 to 2�, line length is weightedas a ratio giving a range of 0 to 1 and distance variance is weighted 11000 ofits unit distance. These values have been found through empirical tests inPossim and should provide a good starting point for adaption to a particularrange�nder and robot.4.4.4 Correcting translational errorFrom 4.22 it can be seen that we are now getting close to correcting therobots perceived pose to its actual pose. The robots heading have beensynchronized, but we need to calculate how much the robot is o� in thevertical and horizontal directions. To do this, we employ a similar techniqueas in 4.4.3, but rather than iterating over a range of angles, we here iterateover a range of values for horizontal and vertical translation, and considerthe values that minimize the sum of polyline endpoint to closest map linedistances as the best translation. In other words, we translate every line by agiven set of values and try to �nd the translation where the combined distancefrom the translated lines endpoints to its closest map line is lowest. As withthe the rotational error correcting algorithm, this is a linear search, but dueto the relative low amount of range�nder readings the only parameter to limitis the range over which to search. The default Possim implementation ofthis algorithm uses a window size of 100 � 100 and a step size of 4 to limitthe number of iterations. Algorithm 6 details the algorithm pseudocode and�gure 4.24 shows the algorithm as implemented in Possim.From �gure 4.25, showing the algorithm applied in a simulation, we cansee the beige lines as polyline approximations of the range�nder readings, thered lines show the same polylines after correcting for rotational error, andthe blue lines after correcting for translational error. This �gure sums upthe result of applying the algorithms we have described in section 4.4 andshows that when properly tuned to the robot and range�nder at hand, thesealgorithms can be quite successful.4.5 Handling uncharted objectsFor a robot to be able to navigate in a dynamic environment where objectsmove around and not every surrounding object is present in the robots map,

4.5. HANDLING UNCHARTED OBJECTS 811 p u b l i c s t a t i c d o ub l e g e tBe s tRo t a t i o n (A r r a y L i s t <A r r a yL i s t <Point>> map , A r r a yL i s t <Poss imL ine>e s t ima t o r s , Po i n t r e f e r e n c e P o s i t i o n) f2 doub l e b e s t Ro t a t i o n = 0 . 0 ;3 doub l e l o we s t Va r i a n c e = Doub le .MAX VALUE ;45 // Get r o t a t i o n o f l i n e e s t i m a t o r t h a t g i v e s the l owe s t v a r i a n c e w i th r e s p e c t to map l i n e6 doub l e ang l eRange = Math . t oRad i a n s (45) ;7 doub l e minAng le = �(ang l eRange / 2 . 0) ;8 d oub l e maxAngle = (ang l eRange / 2 . 0) ;9 d oub l e a n g l e S t e p = Math . t oRad i a n s (1) ; // Try r o t a t i o n s i n 1 d e g r e e s t e p s1011 // Dete rm ine l o n g e s t e s t i ma t o r l i n e12 doub l e l o n g e s t L i n eE s t i ma t o r L e n g t h = 0 . 0 ;13 f o r (Pos s imL ine l i n e E s t i m a t o r : e s t i m a t o r s) f14 doub l e l i n eE s t i m a t o r L e n g t h = l i n e E s t i m a t o r . ge tLeng th () ;15 i f (l i n eE s t i ma t o r L e n g t h > l o n g e s t L i n eE s t i ma t o r L e n g t h) f16 l o n g e s t L i n eE s t i ma t o r L e n g t h = l i n eE s t i m a t o r L e n g t h ;17 g18 g1920 f o r (d o ub l e a n g l e = minAng le ; a n g l e <= maxAngle ; a n g l e += ang l e S t e p) f21 doub l e t o t a l An g l e V a r i a n c e = 0 . 0 ;2223 f o r (Pos s imL ine l i n e E s t i m a t o r : e s t i m a t o r s) f24 // Rota te e s t i m a t o r p o i n t s a round r e f e r e n c e P o s i t i o n25 Po in t l i n eE s t i ma t o r P1 = Geome t r yU t i l s . r o t a t eA r o undPo i n t (l i n e E s t i m a t o r . getP1 () ,r e f e r e n c e P o s i t i o n , a n g l e) ;26 Po in t l i n eE s t i ma t o r P2 = Geome t r yU t i l s . r o t a t eA r o undPo i n t (l i n e E s t i m a t o r . getP2 () ,r e f e r e n c e P o s i t i o n , a n g l e) ;27 doub l e e s t i ma t o r L i n eL e n g t h = l i n eE s t i m a t o r P1 . d i s t a n c e (l i n e E s t i ma t o r P 2) ;28 doub l e e s t i ma t o r L i n eA n g l e = Geome t r yU t i l s . a n g l eB e twe e nPo i n t s Po s i t i v e (l i n eE s t ima t o rP1 ,l i n eE s t i m a t o r P 2) ;2930 doub l e b e s t E s t i m a t o r V a r i a n c e = 1000000;3132 // F ind map l i n e w i th l owe s t v a r i a n c e a t t h i s r o t a t i o n33 f o r (A r r a yL i s t <Point> p o l y L i n e : map) f34 f o r (i n t i = 0 ; i < p o l y L i n e . s i z e () � 1 ; i ++) f35 Po in t mapLineP1 = p o l y L i n e . ge t (i) ;36 Po in t mapLineP2 = p o l y L i n e . ge t (i + 1) ;37 Line2D mapLine = new Line2D . Doub le (mapLineP1 , mapLineP2) ;3839 doub l e l i n eE s t i m a t o r P1D i s t a n c e = mapLine . p t S e gD i s t (l i n e E s t i ma t o r P 1 . x , l i n e E s t i ma t o r P 1 . y) ;40 doub l e l i n eE s t i m a t o r P2D i s t a n c e = mapLine . p t S e gD i s t (l i n e E s t i ma t o r P 2 . x , l i n e E s t i ma t o r P 2 . y) ;41 doub l e t o t a l D i s t a n c e = l i n eE s t i m a t o r P1D i s t a n c e + l i n e E s t i ma t o r P 2D i s t a n c e ;4243 doub l e mapLineAng le = Geome t r yU t i l s . a n g l e B e twe e nP o i n t sP o s i t i v e (mapLineP1 , mapLineP2) ;44 doub l e v a r i a n c e = Math . abs (e s t i ma t o r L i n eA n g l e � mapLineAng le) ;4546 // Weight l o n g e r l i n e s more than s h o r t l i n e s47 v a r i a n c e /= 1 .0 / (e s t i ma t o r L i n eL e n g t h / l o n g e s t L i n eE s t i m a t o r L e n g t h) ;4849 // Weight l i n e s c l o s e r to t h e i r p a r a l l e l l i n e more than l i n e s f a r t h e r from t h e i rp a r a l l e l l i n e50 v a r i a n c e �= t o t a l D i s t a n c e / 1000 . 0 ;5152 i f (v a r i a n c e < b e s t E s t i m a t o r V a r i a n c e) f53 b e s tE s t i m a t o r Va r i a n c e = v a r i a n c e ;54 g55 g56 g57 t o t a l A n g l eV a r i a n c e += b e s tE s t i m a t o r Va r i a n c e ;58 g5960 i f (t o t a l A n g l e V a r i a n c e > 0 && t o t a l A n g l eV a r i a n c e < l ow e s tV a r i a n c e) f61 l owe s t Va r i a n c e = t o t a l An g l e V a r i a n c e ;62 b e s tRo t a t i o n = ang l e ;63 g64 g6566 r e t u r n b e s t Ro t a t i o n ;67 g Figure 4.23: The rotational error correcting algorithm in Java.

82 CHAPTER 4. IMPLEMENTATION
set lowestTotalDistance = 1;6.1 set bestXTranslation = 0;6.2 set bestYTranslation = 0;6.3 set startTranslation = -(windowSize/2);6.4 set endTranslation = (windowSize/2);6.5 foreach dx from startTranslation to endTranslation do6.6 foreach dy from startTranslation to endTranslation do6.7 set totalDistance = 0;6.8 foreach approximatedLine do6.9 set distanceToClosestMapLine = 1;6.10 set translatedLine = approximatedLine.translate(dx, dy);6.11 foreach mapLine do6.12 set currentDistance = distance(translatedLine, mapLine);6.13 if currentDistance < distanceToClosestMapLine then6.14 set distanceToClosestMapLine = currentDistance;6.15 end6.16 end6.17 set totalDistance += distanceToClosestMapLine;6.18 end6.19 if totalDistance < lowestTotalDistance then6.20 set lowestTotalDistance = totalDistance;6.21 set bestXTranslation = dx;6.22 set bestYTranslation = dy;6.23 end6.24 end6.25 end6.26 return bestXTranslation, bestYTranslation6.27Algorithm 6: The translational error correcting algorithm.

4.5. HANDLING UNCHARTED OBJECTS 83
1 p u b l i c s t a t i c Po i n t g e t B e s tT r a n s l a t i o n (A r r a yL i s t <Ar r a y L i s t <Point>> map , A r r a y L i s t <Poss imL ine>e s t i m a t o r s) f2 i n t w indowS i ze = 100 ;3 i n t s t e p S i z e = 4 ;45 i n t s t a r t T r a n s l a t i o n = �(w indowS i ze / 2) ;6 i n t e n dT r a n s l a t i o n = (w indowS i ze / 2) ;78 doub l e l o we s tT o t a l D i s t a n c e = Doub le .MAX VALUE;9 i n t b e s t XT r a n s l a t i o n = 0 ;10 i n t b e s t YT r a n s l a t i o n = 0 ;1112 f o r (i n t dx = s t a r t T r a n s l a t i o n ; dx <= en dT r a n s l a t i o n ; dx += s t e p S i z e) f13 f o r (i n t dy = s t a r t T r a n s l a t i o n ; dy <= e n dT r a n s l a t i o n ; dy += s t e p S i z e) f1415 doub l e t o t a l D i s t a n c e = 0 ;1617 f o r (Pos s imL ine e s t i ma t o r : e s t i m a t o r s) f18 Po in t t r a n s l a t e d E s t i ma t o r P1 = new Po in t (e s t i m a t o r . getP1 () . x+dx , e s t i m a t o r . getP1 () . y+dy) ;19 Po in t t r a n s l a t e d E s t i ma t o r P2 = new Po in t (e s t i m a t o r . getP2 () . x+dx , e s t i m a t o r . getP2 () . y+dy) ;2021 doub l e d i s t a n c eToC l o s e s tMapL i n e = Doub le .MAX VALUE ;2223 f o r (A r r a y L i s t <Point> p o l y L i n e : map) f24 f o r (i n t i = 0 ; i < p o l y L i n e . s i z e () � 1 ; i ++) f25 Po in t mapLineP1 = p o l y L i n e . ge t (i) ;26 Po in t mapLineP2 = p o l y L i n e . ge t (i + 1) ;27 Line2D mapLine = new Line2D . Doub le (mapLineP1 , mapLineP2) ;2829 doub l e l i n eE s t i ma t o r P 1D i s t a n c e = mapLine . p t S e gD i s t (t r a n s l a t e d E s t i ma t o r P 1 . x ,t r a n s l a t e d E s t i m a t o r P 1 . y) ;30 doub l e l i n eE s t i ma t o r P 2D i s t a n c e = mapLine . p t S e gD i s t (t r a n s l a t e d E s t i ma t o r P 2 . x ,t r a n s l a t e d E s t i m a t o r P 2 . y) ;31 doub l e d i s t anceToMapL ine = l i n eE s t i ma t o r P 1D i s t a n c e + l i n eE s t i m a t o r P2D i s t a n c e ;3233 i f (d i s t anceToMapL ine < d i s t a n c eToC l o s e s tMapL i n e) f34 d i s t a n c eToC l o s e s tMapL i n e = d i s t anceToMapL ine ;35 g36 g37 g38 t o t a l D i s t a n c e += d i s t a n c eToC l o s e s tMapL i n e ;39 g4041 i f (t o t a l D i s t a n c e < l o w e s tT o t a l D i s t a n c e) f42 l owe s tT o t a l D i s t a n c e = t o t a l D i s t a n c e ;43 b e s t XT r a n s l a t i o n = dx ;44 b e s t YT r a n s l a t i o n = dy ;45 g46 g47 g4849 r e t u r n new Po in t (b e s tXT r a n s l a t i o n , b e s t YT r a n s l a t i o n) ;50 g Figure 4.24: The translational error correcting algorithm in Java.

84 CHAPTER 4. IMPLEMENTATION

Figure 4.25: Calculating the translational error.the robot needs to be able to detect un-mapped objects in it's laser range�nderreadings and take these objects into consideration when it calculates routesand moves along these routes. The subject of real time mapping and ob-ject detection has been covered in a number of research papers. In morerecent years by Latecki and Lak�amper in their papers [Latecki et al. 2004]and [Latecki et al. 2006]. Due to time constraints, this thesis will not coverhandling uncharted object, it is rather suggested as a point of future work inChapter 5.4.6 SummaryIn this chapter I have presented a strategy and set of algorithms suitable asa basis for autonomous robotic navigation. We have looked into the overallstrategy for navigation and studied in detail the complex aspects of path�nd-ing, route optimization and map matching.A number of measures to make the A-Star path�nding algorithm usablein a near real-time environment have been proposed, including algorithmicoptimizations such as using optimized data structures for the lists of open

4.6. SUMMARY 85and closed nodes and more functional optimizations such as partial routecaching.All the phases of map matching has been covered in detail. Starting o�by grouping related laser range�nder readings, then estimating the geometricprimitives that these groups represent and �nally matching these primitivesto the robots internal map representation and thereby estimating the robotsposition and heading in the map.In the process of writing this chapter, three new algorithms have been de-veloped: the route climbing technique described in section 4.3.3, the recursiveeuclidian distance clustering algorithm for laser range�nder data clustering de-scribed in section 4.4.2 and the polyline approximation technique presentedin section 4.4.2. More thoughts on the signi�cance of these algorithms arepresented in the conclusion of this thesis.

86 CHAPTER 4. IMPLEMENTATION

Chapter 5ConclusionsThis chapter sums up the work presented in this thesis and a few thoughtson the process of writing it are presented.5.1 On the development of this thesisThe initial focus, when starting this thesis, was to develop a set of algorithmsand techniques needed for a working, stable navigation system for the Activ-Media Robotics P3AT robot belonging to the faculty of Computer Sciences at�stfold University College. The goal was to develop, deploy and test such anapplication on the robot and to submit a set of videos showing the software inaction, as part of the thesis. The spring and summer 2006 was spent workingwith the P3AT. Interfacing with the C++ interface supplied with the robotwas rather time-consuming and not enough time was spent on the theoret-ical aspects of developing the system. In hindsight it is clear that the intialproblem statement was somewhat too broad for one person, without speci�cdomain knowledge, to be able to complete in six months. I believe a subsetof the initial problem, such as focusing on optimizing path�nding algorithmsor developing an optimal feature recognition algorithm for laser range�nderdata, would have been more appropriate. When I decided to revisit and com-plete this thesis in May 2008, one of the �rst decisions I made was to notfocus on the actual P3AT, but rather develop a robot simulator mimicing thebehaviour of the P3AT. This signi�cantly simpli�ed development and enabledme to focus on the interesting aspects of robotic navigation.87

88 CHAPTER 5. CONCLUSIONSSecondly, I believe it would have been bene�tial to have been two peoplewriting this thesis. A lot of the discoveries I made along the way, havecome when I have tried to explain or discuss a speci�c problem with a friendor colleague. This is a common e�ect, but it's importance should not beunderstated. Having a thesis partner would have also eased the process ofgetting an overview of the domain research available. The �eld of roboticnavigation has been greatly researched and the amount of scienti�c papersavailable on this topic can be overwhelming.5.2 The state of robotic navigation researchAs stated in the previous section, a lot of work has been done in the �eld ofrobotic navigation. A plethora of research papers are available, as well as anumber of books. This makes for a steep learning curve when trying to getan impression of the current state of the art, as it seems a lot of unrelatedresearch papers are being published. As background for this thesis, sum-maries and surveys such as [Borenstein et al. 1996], [DeSouza, Kak 2002]and [Thrun 2002] have proved very valuable, but there is no de facto \bible"for robotic navigation that takes a qualitative evaluation of the di�erent avail-able techniques. This makes it diÆcult to choose which direction, statisticalor geometrical, and what technique within that direction to pursue when set-ting out to implement a navigation system for a robot.In contrast to the large amount of available literature on robotic naviga-tion, very little actual source code is available. This further complicates theprocess of choosing a navigational strategy, as one can not simply downloadthe source code and try it, one often has to thoroughly examine the relevantresearch papers and implement the proposed algorithms from scratch.5.3 ConclusionIn the introduction to this thesis, I set out to develop a set of algorithmsand techniques that enables a robot to navigate in a preloaded map, pos-sibly containing dynamic and un-mapped objects. In section 3.5 I narrowedthis problem statement down to four informal requirements. Of these re-quirements, requirement number one has been covered by the map matching

5.3. CONCLUSION 89technique decribed in section 4.4 and requirement number two and three havebeen partially covered by the path�nding and route optimization algorithmsin section 4.3. When solving and implementing these requirements, it be-came clear that the problem of handling dynamic objects discovered duringrobot operation was too complex to be covered in this one semester thesis.Requirement number four, and the dynamic aspect of requirement two andthree, are therefore not covered in this thesis.In terms of contributions to the �eld of robotic navigation and route plan-ning, this thesis contains three signi�cant sections:� The route climbing technique described in section 4.3.3. This algo-rithm, combined with the robot's bounding polygon as described in4.3.2, greatly improves the eÆciency, in terms distance travelled androtations made, on a tile route as calculated by the A-Star or Dijkstraalgorithm.� The structured analysis of the A-Star algorithm optimization in section4.3.4. Although a lot has been written on the A-Star algorithm, Ihave not been able to �nd a structured analysis on how to signi�cantlyincrease its performance. Hopefully this section will be of use to futureimplementors.� The recursive euclidean clustering algorithm described in section 4.4.2.This two-method, one variable (max distance between points in a clus-ter), and O(n log n) clustering algorithm is ideally suited to clusteringrange�nder readings to groups that represent continuous objects in themap.To summarize, this thesis presents a good toolbox of algorithms for gettingstarted with path�nding and route planning for mobile robots. The subjectof eÆcient path�nding has been throughly covered, and all the discussedalgorithms are available as part of this thesis.With respect to the problem of map matching and robot localization/-position determination, the algorithms presented in sections 4.4.3 and 4.4.4work well for low complexity scenarios, but their high runtime complexityand somewhat inadequate handling of noise and small objects might makethem unsuitable for very noisy real world usage. It is my impression thatthe system presented by Latecki and Lak�amper in [Latecki et al. 2004] and[Latecki et al. 2006] is better suited for such noisy scenarios.

90 CHAPTER 5. CONCLUSIONS5.4 Further workAs pointed out in the previous section, the subject of map building and han-dling a dynamic environment is not covered in this thesis due to time con-straints, and this would be an interesting point of further work. By �rst imple-menting Latecki and Lak�amper's map building technique from [Latecki et al. 2004],one could possibly extend this technique with a time aspect, so that one couldtrack moving objects in the map and plan routes that avoid the moving objectby calculating it's trajectory.Another interesting scenario is the possiblity of extending map matchingto three dimensions. In the background chapter of this thesis, we brie
y touchupon a few techniques for surface smoothing and edge detection. If the robotwas �tted with one or more cameras, it could photograph it's surroundings,extract the edges/lines in the photograph and compare these line tendenciesto a two-dimensional projection of a onboard three-dimensional model of it'ssurroundings and thereby calculate it's own position in the model. Somerelated work can be found in [David et al. 2003].

Bibliography[Dijkstra 1959] Dijkstra, E. W.A note on two problems in connexion with graphsNumerische Mathematik 1, 1959[Borenstein et al. 1996] Borenstein, J.; Everett, H. R.; Feng, L.\Where am I?" - Sensors and Methods for Mobile Robot PositioningThe University of Michigan, April 1996[Thrun et al. 1999] Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A. B.;Dellaert, F.; Fox, D.; H�ahnel, D.; Rosenberg, C.; Roy, N.; Schulte, J.;Schulz, D.MINERVA: A Second-Generation Museum Tour-Guide RobotProceedings of the IEEE International Conference on Robotics andAutomation (ICRA)[Flato 2000] Flato, E.Robust and EÆcient Construction of Planar Minkowski SumsMaster thesis, Department of Computer Science, Tel-Aviv University 2000[DeLoura 2001] DeLoura, M.Game Programming Gems 2Charles River Media, 2001[Lo et al. 2002] Lo, S. C.; Akos, D.; Houck, S.; Normark, P. L.; Enge, P.WAAS Performance in the 2001 Alaska Flight Trials of the High Speed91

92 BIBLIOGRAPHYLoran Data ChannelIEEE Position Location and Navigation Symposium, 2002[Thrun 2002] Thrun, S.Robotic Mapping: A SurveySchool of Computer Science, Carnegie Mellon University, February 2002[DeSouza, Kak 2002] DeSouza, G. N.; Kak, A. C.Vision for Mobile Robot Navigation: A SurveyIEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No. 2, February 2002[David et al. 2003] David, P.; DeMenthon, D.; Duraiswami, R.; Samet, H.Simultaneous Pose and Correspondence Determination using Line Fea-turesDepartment of Computer Science, University of Maryland, 2003[Latecki et al. 2004] Latecki, J. L.; Lakaemper, R.; Sun, X.; Wolter, D.Building Polygonal Maps from Laser Range DataECAI Int. Cognitive Robotics Workshop, Valencia, Spain, August 2004[Wing et al. 2005] Wing, M. G.; Eklund, A.; Kellogg, L. D.Consumer-Grade GPS Accuracy and ReliabilityJournal of Forestry, Volume 103, Number 4, June 2005[Latecki et al. 2006] Latecki, J. L.; Lakaemper, R.Polygonal Approximation of Laser Range Data Based on PerceptualGrouping and EMIEEE Int. Conf. on Robotics and Automation, Orlando, Florida, May 2006

Appendix A
Included �lesIncluded with this thesis document is a CD with the full source code for Possimapplication described in chapter four, as well as a set of videos showing howPossim works and how to use it.Possim/possim.jarThis runnable jar �le contains a precompiled version of Possim, ready to berun from the CD.Possim/possim-src.jarThis jar �le contains the full source code for Possim, complete with all thealgorithms presented in this thesis.Videos/This folder contains a set of commented videos of Possim in action. It is agood idea to see these videos before trying to run Possim, to get an idea ofwhat the application can do and how to control it.

93

	1 Introduction
	1.1 Problem Description
	1.2 Feature Detection
	1.3 Map Matching
	1.4 Pathfinding
	1.5 Map Refinement
	1.6 Thesis Overview

	2 Background
	2.1 Digital Maps
	2.1.1 Raster Maps
	2.1.2 Vector Maps
	2.1.3 Coordinate Systems
	2.1.4 Scale
	2.1.5 Distance Measures

	2.2 Geometrical Transformations
	2.2.1 Translation
	2.2.2 Scaling
	2.2.3 Rotation

	2.3 Feature Recognition
	2.3.1 Range Data Grouping
	2.3.2 Line Approximation

	2.4 Map Refinement
	2.4.1 Object isolation and feature recognition
	2.4.2 Obstacle persistency
	2.4.3 Data structure order
	2.4.4 Efficiency of analysis and insertion
	2.4.5 Inaccuracy evaluation

	2.5 Pathfinding
	2.5.1 Dijkstras Algorithm
	2.5.2 The A-Star Algorithm
	2.5.3 Shape Compensation in Pathfinding Algorithms

	2.6 Digital Image Processing
	2.6.1 Digital Images
	2.6.2 Digital Image Representation
	2.6.3 Brightness and Contrast
	2.6.4 Surface Smoothing
	2.6.5 Edge Detection

	2.7 Related Work

	3 Scenarios
	3.1 Introduction
	3.2 Scenario 1 - Search and Rescue
	3.3 Scenario 2 - Automation, Guiding and Transport
	3.4 Scenario 3 - Automated Reconnaissance
	3.5 Informal Requirements

	4 Implementation
	4.1 Introduction
	4.1.1 Possim
	4.1.2 Using Possim

	4.2 Navigational strategy
	4.3 Pathfinding
	4.3.1 Implementing the A-Star algorithm
	4.3.2 Considering robot shape and size
	4.3.3 Optimizing paths using route climbing
	4.3.4 Performance considerations

	4.4 Map Matching
	4.4.1 Introduction
	4.4.2 Extracting vector polylines
	4.4.3 Correcting rotational error
	4.4.4 Correcting translational error

	4.5 Handling uncharted objects
	4.6 Summary

	5 Conclusions
	5.1 On the development of this thesis
	5.2 The state of robotic navigation research
	5.3 Conclusion
	5.4 Further work

