
Autonomous Robot Coverage Paths

Master’s Thesis in Computer Science

Tommy Joe Lund

31st May 2017
Halden, Norway

www.hiof.no

Abstract

This thesis investigates the field of coverage path planning in two-dimensional space for
the purpose of being used in autonomous robotic vacuum cleaners or similar mobile robots.
Different path-planning algorithms were investigated, of which coverage heuristics proved
most immediately pertinent due to their low cost. The problem that follows is how to
ensure the best possible coverage rate, which is achieved by finding an optimal size for
the robot, and exploring how scenes can be manipulated to best exploit the coverage
algorithm.

A platform-independent model and a platform-specific model were developed to be
employed on the robot, and a simulation environment was created to test the robot’s
coverage performance and to track statistics.

Various scenes were made to test the coverage performance under different conditions.
These scenes reflect that the robot is assumed to be in an indoor environment containing
obstacles.

Test results show that a circular robot’s radius size has major effects on both coverage
speed and maximum coverage potential. Small sizes are slow to get anything done, but
eventually perform better than large sizes. Larger sizes are very good at quickly covering
large open surfaces, but cannot reach all parts of the various scenes, and are easily out-
performed by moderate sizes. The best coverage rate after a specific duration was shown
to move towards smaller radiuses as the robot was given more time.

Obstacles introduce variance by dividing the scene into sections, creating areas that
are difficult to reach, and areas where the robot is more likely to meander and repeatedly
bump into walls and obstacles.

The maximum coverage rate is limited by obstacles. Some space is occupied by the
obstacle itself, but they also make sections of the scene inaccessible for radiuses above a
threshold. Obstacles also introduce areas which cannot be covered because of the robot’s
geometry.

A set of guidelines have been defined to assist in selecting the best possible robot size
for any scene. The key takeaway from these guidelines is to choose a moderately sized
radius if both time and coverage completion are important factors, and it is safer to select
a slightly too small robot that will perform better over time, than a slightly too large
robot that will comparatively do worse over time.

Keywords: autonomous robot, coverage path planning

i

Acknowledgements

I would like to thank my supervisor, Øystein Haugen, for all his help and support.

ii

Contents

Abstract i

Acknowledgements ii

Contents iv

List of figures vi

List of tables vii

List of listings viii

1 Introduction 1

2 Background 3

2.1 ThingML . 3

2.2 Search methods . 4

2.3 Algorithms . 7

2.4 Hardware . 15

2.5 Testing . 19

2.6 Other related topics . 21

2.7 Research Questions . 23

3 Methods 25

3.1 Scenes . 25

4 Virtual laboratory 27

4.1 The program . 27

4.2 Architecture . 27

5 Results 33

5.1 Experiment 1: Radius exploration . 33

5.2 Experiment 2: Moving the obstacles . 46

5.3 Experiment 3: Human-in-the-loop . 57

6 Discussion 59

6.1 Further work . 60

7 Conclusion 61

iii

iv CONTENTS

Bibliography 64

A Glossary 65

List of figures

2.1 Zigzag motions . 7

2.2 Spiral motions . 7

2.3 The process for random search . 9

2.4 Approximate cellular decomposition . 10

2.5 Semi-approximate cellular decomposition 12

2.6 Exact cellular decomposition . 13

3.1 An overview of the various scenes used in experiments. 26

4.1 The ThingML architecture contains Things connected in this configuration. 28

4.2 This ThingML mock interface gives the human operator controls that would
be present on a physical robot. 30

4.3 Some simulation options can be adjusted from the mock interface. 30

4.4 The Swing GUI contains a visualisation, display options, and various stat-
istics. 31

4.5 Notice the transparency where the ghost overlaps itself, and the real-time
coverage profile present in the GUI. 32

5.1 The coverage rate comparison for different radiuses at set intervals highlight
the variance for a given radius. 34

5.2 The profile curve shows how the coverage rate evolves as the robot moves
through the scene. Each radius is given its own plot, and the plots are
stacked on top of each other for ease of comparison. 35

5.3 5000 steps is not quite enough time for the coverage rates to converge in
the large room in scene 0–2. 36

5.4 The profile curve for scene 0–2 is less steep than scene 0–1 due to its larger
size. 37

5.5 Similar performance across different radius sizes is seen in the radius com-
parison for scene 1–1. 38

5.6 Large obstacles and an inaccessible area is reflected in the profile curve for
scene 1–1. 39

5.7 The 15 cm radius is a clear winner in this radius comparison. 40

5.8 The robot had great difficulty finding its way around scene 2–1 as evidenced
by the large jumps in coverage rates. 41

5.9 Two additional radius sizes are included because the two largest radius sizes
were stuck in place. 41

5.10 A performance comparison at set points in time. 42

v

vi LIST OF FIGURES

5.11 A profile of total area covered over time. 43
5.12 The variance in scene 4–1 flattens out over time as seen in the close-up

radius comparison. 44
5.13 The profile curve in scene 4–1 shows jumps in coverage rates at radiuses 25

cm and above. 45
5.14 Scenes in experiment 2 have moved the obstacles in an attempt to improve

coverage rates. 47
5.15 Major variance can be seen in the close-up of coverage rates for scene 1–2.

The maximum step count is now 2000, down from the previous 5000. 48
5.16 A greater variance than the previous experiments can be seen in the profile

curve for scene 1–2. 49
5.17 The coverage rates in the close-up for scene 2–2 show improvements in

coverage rates as compared to scene 2–1. 50
5.18 Fewer jumps in coverage rates are observed in the coverage profile for

scene 2–2. 51
5.19 This radius comparison for scene 3–2 displays worse performance for the

largest radius. 52
5.20 Scene 3–2 had similar results to scene 3–1 as seen in this coverage profile. . 53
5.21 This radius comparison shows big improvements for all radius sizes in

scene 4–2, but especially the two largest ones. 54
5.22 Moving the obstacles in scene 4–2 has removed most of the variance seen

in experiment 1. 55

List of tables

2.1 Search queries . 4
2.2 References and how they were found . 5

5.1 Results scene 1–3, radius=15 . 57
5.2 Results scene 1–3, radius=25 . 58

vii

List of listings

2.1 Distance transform algorithm [23] . 11

viii

Chapter 1

Introduction

We are interested in autonomous mobile robots that cover surfaces, which is a prob-
lem known as Coverage Path Planning (CPP). There are many applications for CPP
algorithms, such as lawn mowing, cleaning, painting, and mine clearance, however the
main consideration in this thesis are indoor floor-covering robots like vacuum cleaners,
and other robots which routinely traverse the same environment.

Because the environment we have in mind is indoors, we can make some assumptions
about boundaries, surfaces, and navigation. There is no need for additional measures to
limit the areas the robot can access, because the perimeter is defined by walls and it is
impossible for the robot to exit the site. The surface is generally friendly without too
many challenges, as it is largely flat. There are soft obstacles like doorsteps, carpets, and
wires that the robot must be able to handle, but the robot does not require an elaborate
system of transportation or safety features like cliff detection. Nor does the robot require
an expensive method of navigation. It is not reliant on GPS or other satellite systems
for localisation. It can instead use cheaper sensors in combination walls or other local
landmarks to navigate, and use a basic floor plan as a map. Walls can make environ-
ments rectilinear in nature, a feature the robot can take advantage of whenever possible:
covering long stretches in straight lines. All of these assumptions can be used to improve
performance and reduce costs.

Various obstacles are present in the environment. These are objects such as chairs,
tables, and shelves—things one typically find in homes and offices. It could also be prac-
tical to create a category of virtual obstacles as done in [8]. These obstacles are created
from areas in which the robot has become stuck. The problem areas can then be ignored
and covered separately after the other areas are completed.

Many of the commercial products available to date are based on heuristics and the
idea that if the robot covers the surface randomly, it will eventually cover the surface in
its entirety. Examples of such robots are the Roomba by iRobot, RC3000 by Karcher, and
Trilobyte by Electrolux [16].

We want to investigate how CPP algorithms can be used in situations with various
obstacles, and how the robot, the obstacles, and the environment could be fit with sensors
and actuators to facilitate the task at hand. There are three main topics of literature
required to achieve this goal:

Algorithms. We need to know what kinds of CPP algorithms exist, and which ones are
best suited for our purposes.

1

2 Chapter 1. Introduction

Hardware. The actual sensors we use are dependent on the algorithms we want to use,
and what other kinds of features we want the robot to have.

Testing. It is necessary to have sound testing environments and procedures that can be
used for consistent assessments of different robot models and versions.

As for the rest of the report, Chapter 2 provides a literature review and a background
for what methods have been chosen, including the choice of algorithms, hardware, and
test procedures. Chapter 3 contains a description of the project’s methodology, Chapter 4
describes the software in detail, experiment results are found in Chapter 5, the discussion
is in Chapter 6, the report is finally concluded in Chapter 7.

Chapter 2

Background

2.1 ThingML

The program has been written in ThingML1. ThingML is a domain-specific modeling
language named in reference to the Internet of Things. It is based on state machines, and
is an excellent tool for modeling systems that are intended to be predictable and target
multiple platforms. Each state machine is called a Thing, and they have an assortment
of features like different states, properties, and ports. Things work concurrently together,
and communicate with messages sent through ports.

ThingML provides an automatic generation of mock interfaces which allows direct
manipulation of messages. Examples can be found in Figure 4.2 and Figure ??.

Not all functionality is implemented directly in ThingML because it is a domain-specific
language, but other languages can be used in conjuction with it, in this case Java. There
are two ways to do this: writing Java code directly inside ThingML source code using
kickdown, or by writing Java code, installing it on your system as a Maven project, and
importing it into ThingML as a dependency.

ThingML excelled at programming the PIM and the PSM which were primarily de-
pendent on ports and messages, however the Simulation Environment was slightly trickier.
Functions and arrays in particular behave somewhat unexpectedly, and it would perhaps
be recommended to outsource most of these tasks to Java by using a Thing that functions
as an interface between the PSM and a Simulation Environment coded in Java.

1http://thingml.org/

3

4 Chapter 2. Background

2.2 Search methods

A few methods have been used to find literature, and they can be summarised as follows:

1. Search. Most references have been found by searching an online database. Search
queries can be found in Table 5.2.

2. Bibliographies. Relevant sources from the References section of papers have been
selected and included here.

3. Cited origin. Google Scholar provides a way to see which works have cited a specific
paper. No new literature was found using this method.

4. Author. When a reference has been very relevant, the authors’ other works have
been investigated because it is often the case that they have several publications in
the same field. No new literature was found using this method.

Every reference has been provided with a source of origin in Table 2.2. The reference
itself is listed in the first column. The second column contains the source where it was
found, which can be a search label, an author’s name, or another paper. The third column
describes the method which was used to find the reference.

Table 2.1: Search queries

Search Database Recent Results Search query

S1 Google Scholar 62400 robotic cleaning
S2 Google Scholar 113000 robot coverage
S3 Google Scholar 3570 roomba coverage
S4 Google Scholar 80100 robot area coverage
S5 Google Scholar 484000 complete coverage navigation
S6 Google Scholar 496000 coverage path planning
S7 Google Scholar 33600 robotics coverage survey
S8 Google Scholar X 2950 cleaning robot coverage
S9 Oria X 31 cleaning robot coverage
S10 Google Scholar X 33 “cleaner robot” “machine learning”
S11 Google Scholar 7410 “mobile robot navigation” survey

2.2. Search methods 5

Table 2.2: References and how they were found

Paper Origin Method

[15]
[5] S2 search
[4] S7 search
[20] S8 search
[13] S8 search
[8] S8 search
[10] S9 search
[19] S9 search
[6] S9 search
[11] S9 search
[21] S10 search
[3] S11 search
[12] [5] bibliography
[2] [5] bibliography
[7] [5] bibliography
[14] [5] bibliography
[16] [5] bibliography
[17] [5] bibliography
[18] [5] bibliography
[22] [5] bibliography
[23] [5] bibliography
[1] [4] bibliography
[9] [8] bibliography

2.3. Algorithms 7

Figure 2.1: Zigzag motions

Figure 2.2: Spiral motions

2.3 Algorithms

We need to know what algorithms exist within the field of Coverage Path Planning (CPP)
to get an idea of exactly what improvements can be made. Two surveys have been pub-
lished in the field [4, 5]. Choset’s survey from 2001 summarises CPP algorithms for mobile
robots operating in the plane, and Galceran and Carreras’ survey focuses on achievements
made in the decade leading up to 2013, including work done in three-dimensional space.
But because our robot exclusively operates on floors and similar surfaces, only planar
algorithms have been considered.

There are two types of coverage methods, heuristic and complete [4, 5]. Heuristics are
methods which do not rely on any kind of maps and cannot guarantee complete coverage.
The archetypal example of a coverage heuristic is random search. This is a looping two-step
process where the robot moves in a straight line until it reaches an obstacle, then turns in
a random direction (Figure 2.3). Complete coverage methods decompose the environment
into smaller segments called cells. In many cases, these cells can be covered with simple
motions. Two typical patterns are the zigzag pattern in which the robot covers an area
in parallel lines (Figure 2.1), and the spiral pattern where the robot covers the area in a
motion resembling a spiral (Figure 2.2).

Choset [4] suggested four categories of CPP-algorithms and his taxonomy has been used
widely in the literature. The categories are heuristics, approximate cellular decomposition,

8 Chapter 2. Background

semi-approximate cellular decomposition, and exact cellular decomposition. However,
Galceran and Carreras [5] argue that there are qualitatively different approaches within
these categories, and further categorisation can be made. Choset’s taxonomy has been
used in this chapter, but Galceran and Carreras’ considerations have been taken into
account.

Choset [4] further proposed independently categorising CPP methods as either offline
if the environment is known and the planning can be done in advance, or online if the
environment is fully or partially unknown and sensor-data must be used to understand
the environment. Online algorithms are also known as sensor-based coverage algorithms.
In our case the environment is only fully unknown the first time the robot discovers the
area, and is subsequently partially unknown because of dynamic obstacles. In practice,
this means we could map the environment separately and use an offline algorithm, or we
could use an online algorithm.

Simultaneous Localisation and Mapping (SLAM) is a technique in which the robot
generates a map of the world whilst tracking its location within it. SLAM has been used
successfully in some autonomous cleaner robots such as the Neato Botvac. It can be
practical to use this method for purposes such as combining mapping and coverage the
first time the robot navigates the environment, and classifying obstacles in subsequent
runs. It could make it possible for the robot to learn where dynamic obstacles are likely
to occur, or if changes to static obstacles have been made. More details on SLAM can be
found in Chapter 2.4.

2.3. Algorithms 9

Move forwards

until obstructed

Turn in a random

direction

Figure 2.3: The process for random search

2.3.1 Heuristics

Coverage heuristics are algorithms which follow a set of simple behaviours. They do not
guarantee complete coverage of the environment, but are still useful because they provide
a lot of utility. The advantage is they do not need all the sensors which more advanced
algorithms require, and so they are cheaper to produce.

Examples of heuristics include following walls, moving in spirals, avoiding obstacles,
etc. The most notable example of a heuristic is random search.

Random search

Random search is a simple approach where the robot moves in a straight line until an
obstacle is found, then it will turn in a random direction, and the procedure is repeated.
Even though this method does not guarantee complete coverage, it is a reasonable solution
in cases where the area is small—a typical situation for domestic cleaning robots.

The greatest advantage of this method is that it is unnecessary to have a lot of sensors
or to have any expensive computational resources [5], because it only needs sensors for
collision detection as seen in robots like RoboNet-1 [16]. However, the main disadvantage
of this method is that it is very repetitive, and it will cover the same areas repeatedly [16].

Many commercially available cleaner robots use this method, such as the Roomba by
iRobot, RC3000 by Karcher, and Trilobyte by Electrolux [16].

10 Chapter 2. Background

Figure 2.4: Approximate cellular decomposition

2.3.2 Approximate cellular decomposition

Approximate cellular decomposition methods create a map of the environment and divide
it into a grid of uniform cells, typically squares [5], as shown in Figure 2.4. The grid can
easily be represented by an array where each element of the array is a cell in the grid, and
contain information such as if the cell has been visited or if it contains an obstacle. This
method requires the robot to know where exactly it is located on a map at all times. The
biggest problem with this method is the exponential growth of memory usage.

Galceran and Carreras [5] note that this category of methods is suited for indoor mobile
robots because of the relatively small size of the area.

A common approach is to assume that once the robot has entered a cell, the cell has
been covered. When this is used, the size of the grid cells must reflect the robot’s effective
coverage range.

Most grid-based methods use rectangular cells, but other options such as triangular
cells [14] and hexagonal cells [17, 18] are available. Oh et al. [14] find that their paths
are shorter and more flexible with triangular cells, however Galceran and Carreras [5]
report that this difference is negligible and can be solved by increasing the resolution of
the rectangular grid, and that robots typically are not able to make such fine movement
adjustments. The improvements of the triangular cells comes from the fact they have 12
adjacent cells that can be used as navigational directions, whereas rectangular cells have
8. Hexagonal cells were not included in the study, however they have only 6 adjacent cells.

The first grid-based method introduced in the literature, according to Galceran and
Carreras [5], uses distance-transforms [23].

Distance transforms

The distance transform algorithm, also known as the wavefront algorithm, works by first
setting a cell as a goal, and giving every other cell a distance from this goal cell [23]. Every

2.3. Algorithms 11

Listing 2.1: Distance transform algorithm [23]

Set Star t Ce l l to Current Ce l l
Set a l l C e l l s to Not V i s i t ed
Loop

Find unv i s i t ed Neighbouring c e l l with h i ghe s t DT
i f No Neighbour Ce l l found then

Mark as V i s i t ed and Stop at Goal
i f Neighbouring Ce l l DT <= Current Ce l l DT then

Mark as V i s i t ed and Stop at Goal
Set Current c e l l to Neighbouring c e l l

Loop End

cell which is adjacent to the goal cell will get a distance of 1, every cell which is adjacent
to those cells and not already assigned a distance will get a distance of two, and so on.
A starting location is then chosen, and the robot will travel to the cells that are farthest
away from the goal cell until the goal has been reached. The algorithm does not ensure
an optimal path, but it still makes very few secondary visits to cells. The article provides
pseudo-code describing the algorithm, and can be seen in Listing 2.1.

Genetic algorithms

An evolutionary approach using genetic algorithms (GA) was suggested in [21]. Genetic
algorithms are algorithms which optimise problems via of natural selection. The paramet-
ers they used to optimise paths were the number of turns, the number of revisited cells,
and the trajectory distance.

12 Chapter 2. Background

Figure 2.5: Semi-approximate cellular decomposition

2.3.3 Semi-approximate cellular decomposition

This type of decomposition divides the environment into cell slices of equal width as shown
in Figure 2.5. The top and bottom of these cells can take any shape. These cells can be
traversed with simple motions such as the zigzag pattern (Figure 2.1).

2.3. Algorithms 13

Figure 2.6: Exact cellular decomposition

2.3.4 Exact cellular decomposition

Exact cellular decomposition methods break all the free space of the environment into non-
overlapping cells as shown in Figure 2.6. These cells can be represented by an adjacency
graph. In this graph, the nodes represent cells, and the nodes are connected by an edge
if the cells are adjacent to each other. In order to achieve coverage, a path through the
nodes needs to be determined, however it is also necessary to create a path through each
cell. This can easily be achieved because the cells do not contain any obstacles, which
means the cells can be covered by a simple zigag motion (Figure 2.1).

Two offline algorithms in this category of methods are trapezoidal decomposition and
boustrophedon decomposition.

14 Chapter 2. Background

2.3.5 Algorithms summary

We have looked at the different methods and want to explore how it relates to us and how
we might be able to take advantage of them.

Heuristics are interesting because they only require basic sensors, but are still effective
for the situations our robot will find itself in. Affordability is an important factor for
products in the consumer market, so it is sensible to find improvements in the less costly
alternatives.

Approximate cellular decompositions would let us mark virtual obstacles on the map
as seen in [8]. This type of decomposition is particularly good for this use because the
shapes of the cells would not be altered in any way. Approximate cellular decompositions
would also combine well with SLAM algorithms that represent the map as a grid. Grids
also form a good basis for genetic algorithms as seen in [21].

Semi-approximate cellular decompositions could allow us to optimise individual cells.
However, they are less practical than the other methods because obstacles can prevent cells
from being completely covered without being revisited or introducing significant travel
time. In contrast, approximate cellular decompositions have the advantage that cells are
small and can be marked as covered as soon as the robot enters it, and the cells of exact
cellular decompositions do not contain obstacles at all.

Exact cellular decompositions could also allow us to optimise individual cells. For
example, some cells could in practice be better to traverse in a zigzag motion or a spiral
motion, and it might be better to use a heuristic fallback if a cell frequently contains
dynamic obstacles. Another advantage of using this decomposition method is that the cell
order can be traversed in a different order in a computationally efficient manner without
overlap.

2.4. Hardware 15

2.4 Hardware

The hardware of the robot must offer all the functionality the algorithms require. Some
algorithms need more computing power or memory than others, or they need specific
sensors or accurate localisation abilities. It is also dependent on scale. The hardware
requirements of an algorithm can scale with the complexity of the environment or the size
of the environment.

There is, of course, also an engineering aspect to hardware. The shape and size of
the chassis is an interesting problem. It can be good for a cleaning robot to be quite
flat in order to gain access to more areas, and it could be wide so it can clean a larger
surface at a time. However, a flat robot will have less carrying capacity and less room for
hardware components, a wide robot will lose some of its flexibility, and a heavy robot will
require more energy to operate than a light one. There is also the issue of cost. Domestic
robots cannot use the most expensive hardware on the market, but have to accept cheaper
components, and as a result they do not have the same capabilities as an industrial robot
with a larger budget would have.

It is also pertinent to see what hardware has been used for robots in other studies.
This allows us to see what problems might occur with some approaches. Some examples
are included here:

– A study from 1988 [22] details a basic cleaning robot. It uses 10 ultrasonic sensors
to detect walls and obstacles. There are 6 of them at the front at 3 different heights
to get an approximate height of the obstacles in front of them, and 2 on either
side to detect obstacles on their respective side. It also has 3 bumpers for collision
detection—2 in the front and 1 in the back.

– The RoboNet-1 is a proprietary robot developed by Palacin et al. [16] based on
random movement after a collision. It has redundant methods for collision detection,
with one big frontal bumper, an accelerometer, and motor current monitoring. It
drives using two DC-motors.

16 Chapter 2. Background

2.4.1 Sensors

The different features of the robot require sensors and actuators, and they are determined
by what features they cover and can be found in this section.

Collision detection

Bumpers are useful for collision detection and can be placed in various places on the
chassis. The RoboNet-1 [16] also uses an accelerometer and motor current monitoring to
detect collisions.

Obstacle detection

Obstacle detection is typically done by using distance sensors such as infrared or ultrasonic
sensors, but can also be done in more elaborate ways such as using two cameras to create
a depth map. Our robot only needs to move in two dimensions, so a simple approach is
likely sufficient.

Yasutomi et al. used ultrasonic sensors at multiple height tiers to detect the height of
their obstacles [22].

Orientation

In some cases, it can be helpful to know the physical orientation of the robot. Gyroscopes
and accelerometers can be used for this.

Localisation

Algorithms may be dependent on the robot knowing its location within a certain margin
of error. Zelinsky et al. [23] suggest using beacons. A GPS, compass or magnetometer can
be used for navigating the environment, however our robot will stay indoors and can use
the perimeter of the environment for navigation. A bumper can be used to detect walls,
and then the robot can turn and move in a zigzag motion (Figure 2.1). Another option is
to use distance sensors to calculate the robot’s position.

Some autonomous lawnmowers define a perimeter with a wire one can lay down, and
use the area within as a working surface.

Mapping

Mapping is a necessity unless a heuristic is used. The map can be generated by the robot
itself, or it can be provided by another entity. A basic map can be created by the robot
if it drives along the walls of the room [14].

A robot which doesn’t generate its own map can be provided with one. For example,
some smartphone apps are able to generate floor plans.

Simultaneous localisation and mapping

Simultaneous localisation and mapping (SLAM) is a method that can be used for mapping
the environment whilst keeping track of the robot’s location within it. The problem
with this method is that accurate mapping requires accurate localisation, and accurate
localisation requires an accurate map.

2.4. Hardware 17

SLAM suffers from the problem that it is often computationally expensive and requires
large amounts of memory [9]. Kuo et al. [9] developed a lightweight SLAM-algorithm
for indoor use, based on Rao-Blackwellized particle filters (RBPF). Their maps use line-
segments rather than grids, which helps reduce the computational cost.

Optional features

Some features can be useful, but not entirely necessary. Safety features such as cliff
detection can prevent the robot from harm, and will allow the robot to classify more types
of obstacles.

2.4.2 Prototyping platform

We have explored prototyping platforms for the robot, and have specifically investigated
the Arduino, Raspberry Pi, and the iRobot Create, but other options are available such
as fully custom robots.

The Arduino platform is an open-source microcontroller. The Raspberry Pi, on the
other hand, is a small computer, but it does have similar capabilities for programming as
the Arduino. Various kits for creating mobile robots are available on both platforms. Both
the Arduino and the Raspberry Pi would require a chassis and additional components like
sensors and actuators to make a complete prototype, but kits include various sensors, and
it might not be necessary to add more.

The iRobot Create is a programmable robot based on the Roomba. It does not come
with any advanced sensors, but it can be used in conjunction with an Arduino or a Rasp-
berry Pi.

2.5. Testing 19

2.5 Testing

We need a good testing environment which can be used repeatedly to test with different
robot models and different iterations of our robot. The most central thing to test for every
type of robot is its ability to cover a surface, and is detailed in Section 2.5.1. Robots also
have a practical purpose they need to fulfil, but testing this is out of scope for this report.
Some examples are still included:

– A cleaning robot must be tested to see how good it is at cleaning, and this could be
done by using simulated rubbish [15].

– Lawnmower robots would need to test their ability to cut grass. In this case, it is
not only important to get full coverage, but it is also important not to damage the
grass more than necessary. In some cases it may also be of interest to cut the grass
in specific patterns.

2.5.1 Coverage

The two main things to consider when testing coverage are completeness and overlap. In
some cases it may be acceptable for the robot to cover the surface incompletely if it is more
important for the robot to be finished as quickly as possible, or it may be acceptable for
the robot to do some overlapping because the obstacles in the environments have moved.

Some algorithms may work better than others in different environments. For example,
random path planning is usually quite effective in small areas.

In the case of cleaners and lawnmowers, there is an obvious way of testing basic cov-
erage. If an area is clean or cut, it has been covered at least once. A study using this
method was published in 2002 [15].

Palacin et al. developed a system to evaluate the coverage performance of cleaning
robots, based on machine vision [16]. They set up a basic test scenario, with no obstacles,
for the robots to clean, and mounted a camera above it to record the robot as it cleaned
the surface. This setup allowed them to find various metrics like the speed of the robot
and the number of collisions and turns, but more importantly, they were able to create a
map to see the number of times an area had been cleaned. The robots used in the study
were based on random path planning.

2.5.2 Battery life

The battery life of mobile robots is a problem, and it is ideal to have a robot which can
operate for as long as possible.

2.5.3 Simulation

CPP algorithms can be simulated, and they often are before they are tested on an actual
robot. An example where this has been done is [11].

A big advantage of simulation is that it makes it possible to optimise for specific vari-
ables. CPP algorithms can be shown to be mathematically optimal, but their performance
is affected by the robot’s parameters. In a simulation, individual parameters can be more
easily altered, and the impact can be measured without elaborate setups. Changes which

20 Chapter 2. Background

are difficult or expensive to test on a prototype can more easily be changed in a simulation,
and simulated tests can be executed more quickly than their real-world counterpart.

There are, of course, disadvantages as well. Real-world results can differ significantly
from simulations if there are variables which are not accounted for. For example, the turn
rate of a robot affects how quickly it is able to complete the coverage, and moving in
straight lines allow the robot to move at greater speeds. If such variables were neglected,
the simulated model would not be a complete test.

2.6. Other related topics 21

2.6 Other related topics

This chapter contains works that may be of interest for the thesis, but which are not the
main focus. The works featured here are only be tangentially related.

2.6.1 Multiple robots

Multiple robots [7, 2] can be used for purposes such as speeding up a task, or combining
multiple tasks. One can imagine a swarm of specialised cleaning robots that work in unison,
where e.g. one type of robot does vacuum cleaning, another type does rough cleaning, and
a third type of robot cleans areas that are difficult to reach for the other robots. Or there
may be multiple of the same robot that try to finish a coverage job faster than if there
was only one.

2.6.2 Autonomous underwater vehicles

Much work in CPP has been done on the topic of autonomous underwater vehicles
(AUVs) [17, 18]. They appear to be a major focus of research done in the field of CPP
in recent years, and it might be worth looking deeper into this. However, the research is
mostly focused on three-dimensional space, which is less relevant to us than work done in
two-dimensional space.

2.6.3 Chaotic algorithms

Most algorithms move in very predictable ways, which is a major concern for some ap-
plications such as security patrolling. Chaotic paths [20] afford the ability to move in
unpredictable patterns whilst still guaranteeing complete coverage.

2.6.4 Social robots

Social robots that talk to its users exist in Japan. The Cocorobo is a singing cleaner robot
by the Sharp Corporation. Sharp teamed up with Yamaha and released a new Vocaloid
in 2016. Vocaloids are voice synthesizers that takes the form of singing idols.

Voice recognition software has become a popular trend in recent years, with products
from Amazon, Apple, Google, and Microsoft. It would be interesting to explore what
effects voice communication has on coverage performance in domestic and office environ-
ments. Smart phones or smart speakers like the Amazon Echo could be used to instruct
the robot to initiate a coverage run, or to give more specific instructions. Allowing users
to micromanage the coverage algorithms would also serve as a way to gather data which
could be used to improve coverage performance locally or to be used in a larger machine
learning dataset. The robot could also prompt the user for instructions. For example, if
the robot knows there is an area it cannot access underneath a desk, it can ask the user
to move aside.

2.7. Research Questions 23

2.7 Research Questions

So far we have seen what types of algorithms exist within the field of coverage path
planning (CPP), we have looked at what kinds of hardware we might want to use for a
prototype robot, and we have looked at different kinds of testing approaches.

Coverage path planning (CPP) algorithms can be classified as either heuristic or com-
plete. Complete algorithms can further be broken down into three categories of decompos-
ition after Choset’s taxonomy [4]: approximate, semi-approximate, and exact. Heuristics
afford the lowest cost of all the options, and are thus the primary focus for the rest of the
thesis.

In terms of hardware, we have looked at different functionalities the robot could have,
and what kind of sensors can be used to implement them. The choice in algorithms means
a sensor to detect collision in the front of the robot is definitely needed, and a bumper is
a good choice due to the nature of the indoor environment.

For testing, we have decided to simulate the problem and focus on total coverage over
time. To do this, we need a software application which can run on both a physical robot,
and in a simulation. A great programming language of choice for this is the state machine-
based ThingML which provides excellent options for developing for multiple platforms.
Java can supplement ThingML in the areas of the simulation and graphics that ThingML
is not so good at natively.

Finally, we want to present the research questions for the thesis:

RQ1 What is the optimal radius to cover the surface of a given scene?

RQ2 What impact do obstacles have on coverage rates?

RQ3 What guidelines can be created to find a good radius size for any scene?

Chapter 3

Methods

A program has been written in ThingML and Java, and is explained in detail in Chapter 4.

3.1 Scenes

We would like to test the robot in different situations, and various scenes have been created
for this reason. The scenes have been created with real rooms as their basis, and each
scene is designed to give the robot different challenges. In terms of scale, centimetres have
been chosen as the base unit for all experiments, which is reflected in the size of the robot,
the obstacles, and the rooms. Five main scenes have been created as seen in Figure 3.1.

Scene 0 is an empty room containing no obstacles. Its purpose is to be used as reference
for the other scenes, and to isolate the effect the radius has on coverage.

Scene 1 is a small office of 3 by 4 metres, containing a small set of obstacles. There is
one table, one desk, and shelving along one wall. This scene poses the challenge of having
a significant portion of the room easily blocked by the chair.

Scene 2 is a conference room with one table, and six chairs. In this case, the challenge
is to see how the coverage is affected by a large amount of small obstacles in the middle
of the room.

Scene 3 contains small obstacles along the walls. These obstacles are imagined to be
three tables in an office or workshop environment.

Scene 4 contains three rows of obstacles in a manner you might see in a warehouse or
storage facility.

25

26 Chapter 3. Methods

Scene Overview

Scene 0 Scene 1

Scene 2 Scene 3

Scene 4

Figure 3.1: An overview of the various scenes used in experiments.

Chapter 4

Virtual laboratory

Robotic vacuum cleaners on the market today are often based on random search, though
the higher end models are equipped with more advanced sensors which allow the robot to
map the environment and use an elaborate algorithm. These higher-end models provide
better user-satisfaction because of the intelligent algorithms based on maps, however they
are much more costly. Affordability is one of the most important attributes when consid-
ering a purchase for the consumer market, and therefore we believe it is desirable to find
improvements in the lower-end spectrum.

Simulation affords a flexibility beyond what is possible in the real world, and the
experiments have been performed in a simulated environment. Some of the benefits of
simulations are that specific parameters can be isolated, and experiments can be executed
much more rapidly than they could in the real world.

4.1 The program

The robot’s software has primarily been written in ThingML (described in more detail
in Section 2.1), which is a modeling language based on state machines. This language
gives us the flexibility of programming for multiple platforms. ThingML can be used
in conjunction with other programming languages—in this case Java—which gives the
programmer the ability to achieve results which are not possible in pure ThingML, such
as the graphical elements of the simulation.

ThingML can use Java in two ways. It can embed Java code with kickdown directly
in the code, or it can import a library. Both methods have been used prolifically, where
kickdown is used for smaller tasks and to make use of the libraries, and the library is used
to do the heavy lifting of Java coding. This is primarily the visualisation aspects of the
program, but some more lengthy snippets have also been delegated to a library.

4.2 Architecture

The software model is split in three parts: the platform-independent model (PIM), the
platform-specific model (PSM), and the Simulation Environment. How these parts are
connected is displayed in ThingML configuration in Figure 4.1.

The PIM describes the logic of the robot. This is where the algorithms for movement
and operation reside. An interface with the PSM provides the specific features it can
utilise.

27

28 Chapter 4. Virtual laboratory

Figure 4.1: The ThingML architecture contains Things connected in this configuration.

The PSM controls the hardware directly, and provides an interface for the PIM. The
wheel control system is the main actor in the Simulation Environment and is where the
steps originate. When the robot is moving, the wheel control system sends messages to
the Simulation Environment that the wheels are active, and the Simulation Environment
in turn updates the location of the robot, checks for collisions, and gives sensory feedback.

The Simulation Environment describes the world outside the robot’s logic. It is an
additional layer which could be considered part of the PSM, but it has been separated
for the sake of clarity. The PSM describes what the robot can physically do, and the
simulation environment is more about the environment, physics, and a simulated map of
the world and its contents. This is where, like in the real world, sensory input originates.
When the robot bumps into something, a message is sent to the PSM to be processed.
The philosophy is that when the robot acts upon the world, the Simulation Environment
sends messages back only when a sensor has been triggered. Similarly, if the world acted
upon the robot (not programmed), the Simulation Environment would send messages
without polling from the PSM. Polling sensors would originate in the PSM, be sent to the
Simulation Environment, and returne a message containing the update to the PSM, but
none have been implemented.

There is also a graphical element which merely displays what happens in the Simulation
Environment and has no effect on the robot or the world. A more elaborate description
can be found in Section 4.2.4

4.2.1 Robot

The PIM and the PSM are intended to be deployed on the robot, but the Simulation
Environment is intended to replace the real world. Effectively the robot’s physical proper-
ties are located in the Simulation Environment, meaning the physics—such as location or
velocity—exist in the Simulation Environment, but hardware controls exist in the PSM.
It’s beneficial for the robot to be programmed this way because the logic is completely
separated from the rest of the code in the PIM, and the hardware control mechanisms
and other interfaces can be placed in the PSM where changes can be made per platform
(simulation, different physical robot versions, etc).

The robot’s properties in the Simulation Environment are its location and its velocity.
Location is updated in steps, and the robot moves at a constant velocity that can easily

4.2. Architecture 29

be adjusted, but is set to be the same for all the experiments.

The focus of the simulation is the centre point of the robot. It is used to give the robot
a physical location, for collision detection, and for visualisation purposes. The robot is
circular in shape as seen from above, which means a single point can be used for collision
detection. Every time the robot makes a step, a check is made to see if the centre point is
inside any obstacles. If it is, then the intersection of where the robot would have collided
is found, and the robot is only placed at the edge of the obstacle. To prevent the rest
of the robot from overlapping the actual obstacles, an additional obstacle is generated to
reflect the robot’s physical size. This generated obstacle expands the original polygon

In this simulation, the robot’s location is updated in steps of 75 milliseconds, and it
moves at a constant speed of 7.5 centimeters per second. Every time a step is made,
a collision detection check is made against the room and every obstacle. The collision
detection procedure works as follows: A new location is calculated by adding vector ~v to
the robot’s current location (point C). A ray-casting algorithm is then used to check if the
robot is on the outside of the room or on the inside of any obstacles. If it is, then a scalar
value k between 0 and 1 is calculated to scale v. Finally, the robot’s current location is
updated: C ′ = C + k~v

4.2.2 Scenes

A scene consists of a room and a set of obstacles. There must be one and only one room,
however, there can be as many obstacles as one would like.

The room can have an arbitrary number of walls, and take any shape. A new obstacle
is created from the two points of every wall which gives a visual outline of what areas the
robot can reach, and they are used for collision detection.

Obstacles can have an arbitrary number of sides, but their shape should be convex.
If concave obstacles are desirable, they should manually be split into multiple convex
obstacles to make use of the radius expansion described in the next paragraph.

Each obstacle can be expanded based on the robot’s radius. A new set of points is
created by radially adding new points one radius distance away from the points of an
obstacle’s polygon.

4.2.3 User interface

The graphical user interface is split in two parts. The first part is a mock interface, which
is a part of ThingML. There is a mock interface made to adjust settings/parameters on the
fly for testing or experimental purposes (Figure 4.3). This is where you can move the robot
to a new location, or adjust the size of the radius. Another mock interface (Figure 4.2)
exists to give the robot commands, in place of what might be a remote control or buttons
on a physical robot.

The second part is a visualisation of the simulated environment and is detailed in
Section 4.2.4.

Some optional settings or features require the source code to be edited, or can be
adjusted in a file containing globally available read-only properties.

30 Chapter 4. Virtual laboratory

Figure 4.2: This ThingML mock interface gives the human operator controls that would be present
on a physical robot.

Figure 4.3: Some simulation options can be adjusted from the mock interface.

4.2. Architecture 31

Figure 4.4: The Swing GUI contains a visualisation, display options, and various statistics.

4.2.4 Visualisation

The visualisation is written in Java, and Swing has been selected as the graphics package
because ThingML already uses Swing to provide mock interfaces. There are four main
aspects to the visualisation: the robot, the ghost, the obstacles, and the room. The robot
is displayed as a blue circle with a one pixel white outline to contrast it aganst the ghost
and the obstacles. Following the robot is a trail of where the robot has previously been,
known as the ghost. The ghost has been given transparency to visually indicate to the user
where paths have overlapped. Obstacles are shown in red, and are also transparent for
similar reasons. Every obstacle generates an outer perimeter which is one radius greater
in size, which the robot’s centre point collides against. Effectively this means the robot
cannot reach areas that are not connected by white space. Finally, the walls of the room
are displayed in pure black.

As for the rest of the GUI, there is a button bar on top, a coverage profile underneath
it, and there is a statistics bar at the bottom. The button bar gives the user various
display options and the ability to clear the current run by deleting the ghost and resetting
all statistics. Three buttons exist to hide or reveal different aspects of the simulation, and
a final button can be activated if the user does not want a ghost with transparency. A
coverage profile is generated in real-time under the button bar. It has horizontal lines at
25%, 50%, and 75% total coverage, and vertical lines for every 500 steps. The statistics bar
contains some useful real-time information like a stopwatch, the position of the robot, the
coverage rate, and the step count. Data and statistics are logged in a separate directory,
where a new file is created—and given a timestamp in Unix time—each time the program
is executed.

Screenshots of the GUI is found in Figure 4.4 and Figure 4.5.

32 Chapter 4. Virtual laboratory

Figure 4.5: Notice the transparency where the ghost overlaps itself, and the real-time coverage
profile present in the GUI.

Chapter 5

Results

Three experiments have been performed in the virtual laboratory. The first experiment
explores the differences between radius sizes in the various scenes. The goal of the second
experiment is to see how coverage rates are affected when obstacles are moved aside to
make way for the robot. The third experiment explores what effects can be seen if the
human operator moves the robot to areas that have not yet been covered. Unfortunately,
the third experiment could not be completed in time to meet the thesis’ deadline, therefore
only a small part of it is included.

5.1 Experiment 1: Radius exploration

In the first radius experiment, the robot was allowed to run in the first scene for 5000
steps, or 375 metres, which was enough time to let the coverage rate converge in almost
all cases—the exception being the smallest radius in scene 0. This procedure was repeated
multiple times for each radius size, and the results are presented for each scene as a profile
curve, and as a direct comparison of the coverage rate at specific times.

We can see that a larger radius produces a smaller total area covered over a long time.
There are a few reasons for this. A larger robot will not reach all the way into the corners
of the room, and the area under the desk has been blocked off. The coverage statistic has
also only accounted for areas that have been covered up to the centre of the robot, which
means that some spots have been missed in areas where the robot has not run parallel to
the wall.

There is some minor variation of ± a percentage point of coverage for each radius size,
but this is to be expected due to the random nature of the coverage algorithm.

5.1.1 Experiment summary

The empty rooms in scene 0–1 and scene 0–2 showed that a large radius is an advantage
if speed is of concern. However, their early advantage becomes irrelevant as time goes on
when smaller sizes are able to capitalise on the fact they have better reach. Similar results
were found in the other scenes. Comparisons at specific intervals demonstrated that the
optimal size changes over time, but only towards smaller sizes. There were no instances
where the optimal radius moved to a larger size, but the optimal radius remained 15 cm
for the duration of scene 2–1.

33

34 Chapter 5. Results

Scene 0-1 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 3000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 4000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 5000

Figure 5.1: The coverage rate comparison for different radiuses at set intervals highlight the vari-
ance for a given radius.

5.1.2 Scene 0–1: No obstacles

Figure 5.2 shows the profile curve for scene 0–1, and a direct radius comparison is seen in
Figure 5.1. It shows that when no obstacles were present, a larger radius was beneficial,
but it is perhaps surprising that the 35 cm robot performs better than the larger 45 cm
robot. The surface was covered much faster with a large radius, however the size and
shape prevents the robot from reaching the corners of the room. This allows the smaller
radiuses to overtake total coverage after an extended period. It is also worth noting that
the smallest radius is too small to efficiently cover the entire surface in the given timeframe.
The profile curve also shows that the initial linear curve

The radius comparison figure also shows that the size that performs best slowly drifts
to a smaller size. The 35 cm radius has the greatest coverage rate at first, but the 15 cm
radius outperforms it after 5000 steps.

5.1. Experiment 1: Radius exploration 35

Scene 0-1 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Steps

Radius = 45

Figure 5.2: The profile curve shows how the coverage rate evolves as the robot moves through the
scene. Each radius is given its own plot, and the plots are stacked on top of each other for ease of
comparison.

36 Chapter 5. Results

Scene 0-2 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 3000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 4000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 5000

Figure 5.3: 5000 steps is not quite enough time for the coverage rates to converge in the large room
in scene 0–2.

5.1.3 Scene 0–2

In scene 0–1 we saw how the robot performs in a room free of obstacles, and scene 0–2
features the same scene, but it is scaled to be twice as large at 8 metres by 6 metres.

Based on the previous results, we should expect the larger radius to perform better.
The optimum, however, is expected to change for two reasons: there is more surface to be
covered, and unreachable areas have less impact. This is indeed what we observe, and the
larger room shows a more pronounced effect which is clearly visible in Figure 5.3. At the
start, a larger radius suggest vast improvements, and it is not until the robot has moved
3000 steps that a radius of 35 cm and 45 cm perform equally well, which it continues to
do for another 1000 steps. As we expected, the size of the room is a significant factor in
how well the robot covers the empty room.

The profile curve in Figure 5.4 shows the increased early variance with a radius of 45
cm that we saw in the previous scene. It is also clear that the initial linear part of the
curve gets significantly steeper as the size of the robot increases.

5.1. Experiment 1: Radius exploration 37

Scene 0-2 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Steps

Radius = 45

Figure 5.4: The profile curve for scene 0–2 is less steep than scene 0–1 due to its larger size.

38 Chapter 5. Results

Scene 1-1 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 3000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 4000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 5000

Figure 5.5: Similar performance across different radius sizes is seen in the radius comparison for
scene 1–1.

5.1.4 Scene 1–1: Small office

When the robot has only run for a short distance of 1000 steps, or 75 metres, there is
more variation in coverage rates within each radius size as seen in the coverage profile in
Figure 5.6 and the radius comparison in Figure 5.5. In the case of a smaller radius, this
can be because the robot has become stuck under the desk for a short period. However,
in most cases the total coverage is not drastically different between each run.

The relatively low coverage rate numbers can be explained by the total area covered
by obstacles which are quite large in this scene.

5.1. Experiment 1: Radius exploration 39

Scene 1-1 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Steps

Radius = 45

Figure 5.6: Large obstacles and an inaccessible area is reflected in the profile curve for scene 1–1.

40 Chapter 5. Results

Scene 2-1 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5
1
0

1
5

2
0

2
5

3
5

4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5
1
0

1
5

2
0

2
5

3
5

4
5

Steps = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5
1
0

1
5

2
0

2
5

3
5

4
5

Radius

Steps = 3000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5
1
0

1
5

2
0

2
5

3
5

4
5

Steps = 4000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5
1
0

1
5

2
0

2
5

3
5

4
5

Steps = 5000

Figure 5.7: The 15 cm radius is a clear winner in this radius comparison.

5.1.5 Scene 2–1: Small conference room

The first thing that stands out in this scene is that when the radius exceeds 30 cm, most
of the area becomes inaccessible to the robot. Results from this sizes larger than 30 cm
are therefore uninteresting, and have been omitted in favour of two smaller radiuses.

The coverage profile (Figure 5.8 and Figure 5.9) of this scene looks quite different from
the previous scenes where the curve is mostly smooth. Obstacles in this scene are situated
such that the robot bounces back and forth in a particular region, or back to a previous
region, until it enters a new place it has not yet been, resulting in very distinct steps in
the profile curve that negatively affect the coverage rate.

Variance caused by these steps are also visible in the radius comparison (Figure 5.7).
The variance is the lowest after 5000 steps because the coverage rates have had time to
converge.

5.1. Experiment 1: Radius exploration 41

Scene 2-1 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

C
o

v
e

ra
g
e

 r
a

te

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Steps

Radius = 25

Figure 5.8: The robot had great difficulty finding its way around scene 2–1 as evidenced by the
large jumps in coverage rates.

Scene 2-1 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 10

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

C
o

v
e

ra
g

e
 r

a
te

Steps

Radius = 20

Figure 5.9: Two additional radius sizes are included because the two largest radius sizes were stuck
in place.

42 Chapter 5. Results

Scene 3-1 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 3000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 4000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 5000

Figure 5.10: A performance comparison at set points in time.

5.1.6 Scene 3–1: Three tables

Scene 3–1 has three tables placed along the walls. Figure 5.11 shows a very similar profile
curve to the one in scene 1–1, but less surface area is covered or inaccessible in this scene
than in scene 1–1, so the maximum coverage rate should be greater than scene 1–1, and
this is indeed what we see.

The smallest radius does far worse at covering the area quickly, but it covers more
as time passes. Comparatively, the bigger radiuses perform slightly worse relative to
the smaller ones. This can be seen in the radius comparison in Figure 5.10. Whereas the
coverage difference between radius sizes in scene 1–1 were minor at 0–10 percentage points
at the same step count, they go as high as 20 percentage points here in scene 3–1.

5.1. Experiment 1: Radius exploration 43

Scene 3-1 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Steps

Radius = 45

Figure 5.11: A profile of total area covered over time.

44 Chapter 5. Results

Scene 4-1 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 3000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 4000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 5000

Figure 5.12: The variance in scene 4–1 flattens out over time as seen in the close-up radius com-
parison.

5.1.7 Scene 4–1: Storage shelves

There obstacles in scene 4–1 are three shelves in the middle of the room, which are expected
to give the robot some trouble, and cause jumps in coverage rates much like in scene 2–1.
The profile curve in Figure 5.13 shows exactly this. When the radius is sufficiently large
at 25 cm and above, distinct jumps are seen. They cause variance and huge spikes in
coverage rates. The variance does not last, though. Jumps are no longer visible after 2000
steps, except in the case of a 45 cm radius. This radius needed 4500 steps to ensure the
coverage rate had converged.

The radius comparison in Figure 5.12 highlight the fact that radius sizes 35 cm and 45
cm cannot achieve coverage rate as high as the smaller radiuses can. Shelves in the centre
of the room prevent the robot from accessing all areas.

5.1. Experiment 1: Radius exploration 45

Scene 4-1 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 1000 2000 3000 4000 5000

Steps

Radius = 45

Figure 5.13: The profile curve in scene 4–1 shows jumps in coverage rates at radiuses 25 cm and
above.

46 Chapter 5. Results

5.2 Experiment 2: Moving the obstacles

In this experiment, we take a look at how the scenes are affected if obstacles are moved
out of the way to make room for the robot. The coverage profiles in scenes 2 and 4 showed
very distinct jumps in coverage rate when the robot found its way to a new area. By
moving the obstacles, we hope to see that we can reduce these jumps and achieve a better
coverage rate given the same time.

Previously 5000 steps was used as the cut-off point, but we saw a major fall-off in
coverage rate after 2000 steps. A new cut-off point has therefore been chosen at 2000
steps.

5.2.1 Experiment summary

The experiment has shown the importance of obstacle placement. We saw that obstacles
can be placed strategically to reduce variance or increase coverage rates. Obstacles placed
along walls have a smaller negative effect on coverage than obstacles in the middle of the
room, and large robots are sensitive to areas that can be difficult to reach.

Scene 1–2 shows greater variance than before, but the actual coverage rate values
are about the same. Scattered obstacles have made room for bigger robots in scene 2–2.
Great variance was observed here too, but it fades off before 2000 steps and gives a greater
performance for a radius of 25 cm or below. Scene 3–2 showed negligible differences, but
there was a slight drop in performance for the largest radius caused by a hard-to-reach
area.

5.2. Experiment 2: Moving the obstacles 47

Scene Overview

Scene 1 Scene 2

Scene 3 Scene 4

Figure 5.14: Scenes in experiment 2 have moved the obstacles in an attempt to improve coverage
rates.

48 Chapter 5. Results

Scene 1-2 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 1500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

Figure 5.15: Major variance can be seen in the close-up of coverage rates for scene 1–2. The
maximum step count is now 2000, down from the previous 5000.

5.2.2 Scene 1–2: Chair pulled back

The office in Scene 1–1 contained a desk and chair that blocked the area under the desk
when the radius became large enough. To make space for the robot, the chair has been
pulled back. The hypothesis is that this access will have a noticeable impact on the
coverage rate.

What we actually observe in the coverage profile in Figure 5.16 is that there is more
variance in the first 1000 steps than before. In experiment 1, the maximum and minimum
coverage rates for a given radius was well within 10 percentage points of each other, but
the difference is now up to 20 percentage points as the radius comparison in Figure 5.15
shows.

Aside from the increased variance, the coverage rate steps remains largely the same.
The 5 cm radius looks almost identical at 1000 and 2000 steps, and the larger radiuses
follow the same pattern but is more scattered.

5.2. Experiment 2: Moving the obstacles 49

Scene 1-2 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Steps

Radius = 45

Figure 5.16: A greater variance than the previous experiments can be seen in the profile curve for
scene 1–2.

50 Chapter 5. Results

Scene 2-2 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 1500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

Figure 5.17: The coverage rates in the close-up for scene 2–2 show improvements in coverage rates
as compared to scene 2–1.

5.2.3 Scene 2–2: Chairs moved to corners and sides

Scene 2–1 contained six chairs and a table which gave the robot a lot of trouble moving
around, completely blocking the for radiuses greater than 30 cm. In a real-world situation,
it would be sensible to move the chairs to make it easier to clean. This can be done
by putting the chairs on top of the table, stacking them in a corner, or placing them
strategically around the room. We are interested in seeing how the number of obstacles
present in the scene affects coverage rates, and have used the latter method. Two chairs
have been placed in corners, and the other four chairs have been placed along the walls.
This has made more of the room accessible for larger robot radiuses, so the two biggest
radius sizes are included this time in experiment 2.

The profile curve in Figure 5.18 shows a great variance shows a great variance just
like in scene 1–2, but improvements have been made this time. A strategic placement of
obstacles has made the robot less likely to meander in the same area for extended periods,
effectively

When we look at Figure 5.17, we can see very clear improvements at 1000 steps. In
experiment 1, the radiuses 15 cm and 25 cm varied from 0.3 to 0.6, but the coverage rates
this time vary from approximately 0.6 to 0.75.

The two largest radiuses have a lot of trouble accessing the whole surface, but they
are able to achieve a coverage rate of 0.75.

5.2. Experiment 2: Moving the obstacles 51

Scene 2-2 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Steps

Radius = 45

Figure 5.18: Fewer jumps in coverage rates are observed in the coverage profile for scene 2–2.

52 Chapter 5. Results

Scene 3-2 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 1500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

Figure 5.19: This radius comparison for scene 3–2 displays worse performance for the largest radius.

5.2.4 Scene 3–2: Grouped tables

The obstacles in scene 3–2 have been grouped together in a corner. These obstacles were
aligned with the walls before they were moved.

This new setup shows very similar results as we had before when we look at the
coverage profile in Figure 5.20. The radius comparison in Figure 5.19 reveals that the
largest radius performs worse in the new setup, but the other sizes have nearly identical
results. A section in the bottom left corner became difficult to access for the largest radius,
resulting in this drop in performance.

5.2. Experiment 2: Moving the obstacles 53

Scene 3-2 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Steps

Radius = 45

Figure 5.20: Scene 3–2 had similar results to scene 3–1 as seen in this coverage profile.

54 Chapter 5. Results

Scene 4-2 Radius Comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

C
o
v
e
ra

g
e

 R
a

te

Steps = 500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Radius

Steps = 1000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 1500

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5

 1
5

 2
5

 3
5

 4
5

Steps = 2000

Figure 5.21: This radius comparison shows big improvements for all radius sizes in scene 4–2, but
especially the two largest ones.

5.2.5 Scene 4–2: Shelves moved near walls

The shelves in scene 4–2 have been placed along the walls and out of the way. The profile
curve in Figure 5.22 shows the tremendous impact this has had on coverage rates, which
converge already at 1000 steps for radiuses of 15 cm and greater. Jumps seen in the
previous experiment are also gone, which has reduced the variance, and the easier access
and greater line of sight have improved the coverage rates from below to above 0.8 at 2000
steps as seen in the radius comparison in Figure 5.21.

5.2. Experiment 2: Moving the obstacles 55

Scene 4-2 Coverage Profile

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 5

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 15

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

C
o

v
e

ra
g

e
 r

a
te

Radius = 25

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Radius = 35

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

Steps

Radius = 45

Figure 5.22: Moving the obstacles in scene 4–2 has removed most of the variance seen in experi-
ment 1.

5.3. Experiment 3: Human-in-the-loop 57

5.3 Experiment 3: Human-in-the-loop

When the robot moves randomly across the surface area, it naturally misses some spots.
Some of these spots can be quite large, and seeking them out could have significant gains.
In this experiment, the robot is manually placed in these spots by the operator.

5.3.1 Scene 1–3

Radius=15: The least covered area was typically the top right corner of the room. Nat-
urally, the robot would be placed here first. The second placement would be under the
desk. This space is covered quickly and does not require the robot to stay, so it was moved
outside after a brief period.

Radius=25: A radius of 25 cm would give one meaningful re-placement at 500 steps.
Most of the surface would already be covered at 1000 steps and beyond, with only small
sections remaining.

General: The robot would often be headed in the direction where the least surface had
been covered, causing the operator to wait a few steps to decide where to manually place
it. In some cases, the most open area would be covered completely by the robot in such
a situation, but typically, it was still the least covered area after the robot had bumped
into a wall and was headed in another direction.

Table 5.1: Results scene 1–3, radius=15

Run Number Step Count Coverage Rate

4 500 0.4859
4 1000 0.6343
4 1500 0.7297
4 2000 0.7629
5 500 0.4088
5 1000 0.5688
5 1500 0.6860
5 2000 0.7019
6 500 0.4766
6 1000 0.5871
6 1500 0.6679
6 2000 0.6914
7 500 0.4527
7 1000 0.6240
7 1500 0.7078
7 2000 0.7308

58 Chapter 5. Results

Table 5.2: Results scene 1–3, radius=25

Run Number Step Count Coverage Rate

2 500 0.5083
2 1000 0.6073
2 1500 0.6287
2 2000 0.6383
3 500 0.5024
3 1000 0.5910
3 1500 0.6462
3 2000 0.6865
4 500 0.4773
4 1000 0.5720
4 1500 0.6724
4 2000 0.7008
5 500 0.4998
5 1000 0.6259
5 1500 0.7214
5 2000 0.7296

Chapter 6

Discussion

When the robot turns in a random direction when it bumps into a wall, it quickly covers
the big open areas. After about 2000 steps or 150 metres, we begin to see more dramatic
fall-off in new coverage caused by repeatedly going over the same areas. However the
coverage along the walls is often less complete, with ‘hot spots’ in areas where the robot
has bumped multiple times.

If we look at the first few steps in each scene, we see that the profile curve is initially
linear. Linearity suggests the robot has little to no overlap, and is the best-case scenario.
The curve becomes steeper as the radius increases, but so does the variance. Which makes
sense, because the larger size can cover more area per time, and will have more difficulty
avoiding spots that have been previously covered. The profile curve starts off linear, so
when the robot does cover the same spots again, a more pronounced effect is observed
with a larger radius.

If we believe it is ideal to quickly cover as much area as possible, then we can use the
2000 steps mark as a basis. The radius comparison charts from Section 5.1 show that a
smaller radius of 15 cm has the highest coverage rate in most situations with obstacles.
The two cases where it was not optimal were Scene 0 with no obstacles, and Scene 2 where
the best coverage rate was found with a radius of 10. In Scene 0–2, the one scene where
the room is much larger than the others (4 times the surface area), the highest coverage
rate was scored by the second largest radius of 35 cm, but the 45 cm radius scored better
overall and had less variance.

A robot of a different size for every scene in the real world can be impractical, therefore
we want to investigate if it pays off to go up or down a size from the overall best scoring
radius. In scene 1–1, 3–1, and 4–1, downsizing from 15 cm to 5 cm drastically reduces
the coverage rate at 2000 steps, but only a small loss is seen if you go up a size. Further
increasing the radius shows a linear reduction in coverage rate, at approximately a 10
percentage point loss in the range of a 15 cm to 45 cm radius. Scene 2–1 has a large
number of obstacles and it shows that going up or down 10 cm in size both yield small
coverage rate losses, but going up increases the variance. More generally speaking, a
smaller radius will be able to cover more surface area when given enough time, whereas a
larger radius covers more surface area when time is restricted.

We have seen that it would be beneficial for the robot to have sensors that would allow
it to access areas that are difficult to reach. Obstacles divide the room into subsections
where the robot meanders until it slips through a gap into the next subsection.

59

60 Chapter 6. Discussion

6.1 Further work

The software application has provided a good environment for experiments, but there
are always expansions that can be made. The PIM and PSM can be further developed
to support alternative or more advanced algorithms. Some examples of algorithms are
heuristics such as following walls, or more advanced methods such as boustrophedon cell
decomposition. It would also be interesting to see how alternative patterns for random
coverage would affect coverage rates. For example, a bump could trigger the zigzag pattern.
The robot turns 90 degrees twice per cycle in this pattern in order to move in parallel
lines. If the robot bumped into something when covering the parallel line, it would not
change directions, but it would change direction if it bumped during the short line that
offsets the parallel line.

There are still many scenes that haven’t been tested. Offices and storage facilities come
in configurations of all kinds, and other types of rooms such as classrooms and kitchens
are yet to be tested. Not to mention various room sizes.

The effects of physical parameters like rotation speeds were out of scope for this thesis,
but it has a major effect on runtime in a real robot.

One can imagine robots that are able to adjust their radius size on-the-fly to achieve
even greater coverage performance.

Only circular robots have been used here, but other shapes have been used with great
success.

The robot can be equipped with more sensors to intelligently decide paths with a set
of criteria. This would be especially helpful to assist the robot in reaching areas that are
hard to access because of narrow openings, and could be used to avoid meandering in the
same area by favouring longer travel paths.

Human-in-the-loop solutions could be explored. One example is having the robot
people to move obstacles aside to give access to uncovered areas.

Chapter 7

Conclusion

We have seen that random coverage is generally reliable. It follows the same pattern
every time, albeit with some variance. The differences mainly comes from obstacles that
separate the room into subsections where the robot meanders without finding the way to
the next subsection, but the random nature of the path-finding does also contribute.

A radius of 15 centimetres is a good choice in all scenes, but does not do quite as
good a job as larger radiuses in big open spaces. Other moderate sizes like 25 cm also
perform quite well, but they have a history of being slightly too large and will cause a
lot of variance when obstacles are introduced in certain configurations where the robot
can become trapped, or is otherwise apt to bump repeatedly in the same area. Generally
speaking, a smaller radius is more consistent than a larger one, but the tradeoff is slower
and less complete coverage. In scenes where the robot is prone to get trapped, a larger
radius causes the robot to divide the room into subsections. To answer Research Question
1, the optimal radius to cover the surface of a given scene is 15 cm in most situations if
we believe it is optimal to get the greatest coverage rate after a short period of time.

Research Question 2 asks for the impact of obstacles in scenes. Experiments showed
that there is some, but not a whole lot of variance in rooms with no obstacles and in
rooms with obstacles along the walls. It is only when obstacles are placed in the middle of
the room, or when the obstacles extend into the room to effectively change the geometry
of the room, that a great variance is introduced. Obstacles can make parts of the room
completely inaccessible for radiuses above a certain size, or they can separate the room
into sections that make it difficult for random pathfinding to enter. This sectioning has a
greater effect the larger the radius, but is also significant for small radiuses. Obstacles can
also make the robot meander in specific areas of a scene. Variance caused by obstacles can
be minimised by strategic placement. Meandering can be reduced by placing the obstacles
along walls. As long as the robot

The results of experiment 1 showed that a large radius is only good if time is the only
important factor. If coverage completion is the most important factor, then a small radius
is best. A smaller robot has access to areas that would otherwise be inaccessible because
it cannot fit between obstacles, and it can reach farther inside corners. This means the
smaller the radius, the greater the potential for coverage completion. A moderately sized
robot is ideal if optimised for both time and completion, but the results show that the
optimal radius size is always smaller when given more time, and larger radiuses comparat-
ively always perform worse over time. Using this knowledge, we can settle on the following
guidelines for Research Question 3:

61

62 Chapter 7. Conclusion

– Select a large radius if only speed is important.

– Select a tiny radius if only coverage completion is important.

– Always select a moderately sized radius (10–25 cm) if both speed and coverage
completion are relevant.

– Undersizing is safer than oversizing.

Bibliography

[1] Esther M Arkin and Refael Hassin. Approximation algorithms for the geometric
covering salesman problem. Discrete Applied Mathematics, 55(3):197–218, 1994.

[2] Maxim A Batalin and Gaurav S Sukhatme. Spreading out: A local approach to
multi-robot coverage. In Distributed Autonomous Robotic Systems 5, pages 373–382.
Springer, 2002.

[3] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual navigation for mobile
robots: A survey. Journal of intelligent and robotic systems, 53(3):263–296, 2008.

[4] Howie Choset. Coverage for robotics–a survey of recent results. Annals of mathematics
and artificial intelligence, 31(1-4):113–126, 2001.

[5] Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61(12):1258–1276, 2013.

[6] Lorenz Gerstmayr-Hillen, Frank Röben, Martin Krzykawski, Sven Kreft, Daniel Ven-
jakob, and Ralf Möller. Dense topological maps and partial pose estimation for
visual control of an autonomous cleaning robot. Robotics and Autonomous Systems,
61(5):497–516, 2013.

[7] Noam Hazon and Gal A Kaminka. Redundancy, efficiency and robustness in multi-
robot coverage. In Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, pages 735–741. IEEE, 2005.

[8] Han-Gyeol Kim, Jeong-Yean Yang, and Dong-Soo Kwon. Experience based domestic
environment and user adaptive cleaning algorithm of a robot cleaner. In Ubiquitous
Robots and Ambient Intelligence (URAI), 2014 11th International Conference on,
pages 176–178. IEEE, 2014.

[9] Bor-Woei Kuo, Hsun-Hao Chang, Yung-Chang Chen, and Shi-Yu Huang. A light-
and-fast slam algorithm for robots in indoor environments using line segment map.
Journal of Robotics, 2011, 2011.

[10] Tae-Kyeong Lee, Sanghoon Baek, and Se-Young Oh. Sector-based maximal online
coverage of unknown environments for cleaning robots with limited sensing. Robotics
and Autonomous Systems, 59(10):698–710, 2011.

[11] Yuming Liang, Lihong Xu, Ruihua Wei, Bingkun Zhu, and Haigen Hu. Behavior-
based fuzzy control for indoor cleaning robot obstacle avoidance under dynamic en-
vironment. In 2011 Third International Conference on Measuring Technology and
Mechatronics Automation, volume 1, pages 637–640. IEEE, 2011.

63

64 BIBLIOGRAPHY

[12] Chaomin Luo and Simon X Yang. A bioinspired neural network for real-time concur-
rent map building and complete coverage robot navigation in unknown environments.
IEEE Transactions on Neural Networks, 19(7):1279–1298, 2008.

[13] Chaomin Luo, Simon X Yang, Hongwei Mo, and Xinde Li. Safety aware robot cov-
erage motion planning with virtual-obstacle-based navigation. In Information and
Automation, 2015 IEEE International Conference on, pages 2110–2115. IEEE, 2015.

[14] Joon Seop Oh, Yoon Ho Choi, Jin Bae Park, and Yuan F Zheng. Complete coverage
navigation of cleaning robots using triangular-cell-based map. IEEE Transactions on
Industrial Electronics, 51(3):718–726, 2004.

[15] Yong-Joo Oh and Yoshio Watanabe. Development of small robot for home floor
cleaning. In SICE 2002. Proceedings of the 41st SICE Annual Conference, volume 5,
pages 3222–3223. IEEE, 2002.

[16] Jordi Palaćın, Tomás Palleja, Ignasi Valgañón, Ramón Pernia, and Joan Roca. Meas-
uring coverage performances of a floor cleaning mobile robot using a vision system. In
Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
pages 4236–4241. IEEE, 2005.

[17] Liam Paull, Sajad Saeedi, Howard Li, and Vincent Myers. An information gain
based adaptive path planning method for an autonomous underwater vehicle using
sidescan sonar. In 2010 IEEE International Conference on Automation Science and
Engineering, pages 835–840. IEEE, 2010.

[18] Liam Paull, Sajad Saeedi, Mae Seto, and Howard Li. Sensor-driven online cover-
age planning for autonomous underwater vehicles. IEEE/ASME Transactions on
Mechatronics, 18(6):1827–1838, 2013.

[19] Hoang Huu Viet, Viet-Hung Dang, Md Nasir Uddin Laskar, and TaeChoong Chung.
Ba*: an online complete coverage algorithm for cleaning robots. Applied Intelligence,
39(2):217–235, 2013.

[20] Ch K Volos, Ioannis M Kyprianidis, and Ioannis N Stouboulos. Experimental invest-
igation on coverage performance of a chaotic autonomous mobile robot. Robotics and
Autonomous Systems, 61(12):1314–1322, 2013.

[21] Mohamed Amine Yakoubi and Mohamed Tayeb Laskri. The path planning of cleaner
robot for coverage region using genetic algorithms. Journal of Innovation in Digital
Ecosystems, 3(1):37 – 43, 2016.

[22] Fumio Yasutomi, M Yamada, and K Tsukamoto. Cleaning robot control. In Robotics
and Automation, 1988. Proceedings., 1988 IEEE International Conference on, pages
1839–1841. IEEE, 1988.

[23] Alexander Zelinsky, Ray A Jarvis, JC Byrne, and Shin’ichi Yuta. Planning paths of
complete coverage of an unstructured environment by a mobile robot. In Proceedings
of international conference on advanced robotics, volume 13, pages 533–538, 1993.

Appendix A

Glossary

approximate cellular decomposition a CPP decomposition where the environment
is divided into a fine grid. 5

cell a segment of a CPP decomposition. 5, 10
CPP Coverage Path Planning (CPP) is path plan-

ning where a robot is assigned a path which
covers every point of a surface. 1, 2, 5, 18

dynamic obstacle obstacles that move. 1, 6

exact cellular decomposition a CPP decomposition where cells cover all free
space. 5

offline CPP algorithms which can be executed in ad-
vance. 6

online real-time CPP algorithms which rely on
sensor data. 6

random search a CPP heuristic based on turning in random
directions. 5

semi-approximate cellular decomposition a CPP decomposition where cells comprise
parellel slices. 5

SLAM Simultaneous Localisation and Mapping
(SLAM) is a navigation method where the
robot navigates whilst concurrently creating
a map. 6

spiral pattern a coverage motion which spirals from the peri-
meter towards the center or vice versa. 5

static obstacle immutable obstacles. 1, 6

virtual obstacle obstacles which are exclusively enforced by
software. 1

65

66 Glossary

zigzag pattern a coverage motion consisting of parallel lines.
5

	Abstract
	Acknowledgements
	Contents
	List of figures
	List of tables
	List of listings
	Introduction
	Background
	ThingML
	Search methods
	Algorithms
	Hardware
	Testing
	Other related topics
	Research Questions

	Methods
	Scenes

	Virtual laboratory
	The program
	Architecture

	Results
	Experiment 1: Radius exploration
	Experiment 2: Moving the obstacles
	Experiment 3: Human-in-the-loop

	Discussion
	Further work

	Conclusion
	Bibliography
	Glossary

