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Abstract: The introduction of electric vehicles into the transportation sector helps reduce global
warming and carbon emissions. The interaction between electric vehicles and the power grid
has spurred the emergence of a smart grid technology, denoted as vehicle-to grid-technology.
Vehicle-to-grid technology manages the energy exchange between a large fleet of electric vehicles
and the power grid to accomplish shared advantages for the vehicle owners and the power utility.
This paper presents an optimal scheduling of vehicle-to-grid using the genetic algorithm to minimize
the power grid load variance. This is achieved by allowing electric vehicles charging (grid-to-vehicle)
whenever the actual power grid loading is lower than the target loading, while conducting electric
vehicle discharging (vehicle-to-grid) whenever the actual power grid loading is higher than the
target loading. The vehicle-to-grid optimization algorithm is implemented and tested in MATLAB
software (R2013a, MathWorks, Natick, MA, USA). The performance of the optimization algorithm
depends heavily on the setting of the target load, power grid load and capability of the grid-connected
electric vehicles. Hence, the performance of the proposed algorithm under various target load and
electric vehicles’ state of charge selections were analysed. The effectiveness of the vehicle-to-grid
scheduling to implement the appropriate peak load shaving and load levelling services for the
grid load variance minimization is verified under various simulation investigations. This research
proposal also recommends an appropriate setting for the power utility in terms of the selection of the
target load based on the electric vehicle historical data.

Keywords: electric vehicles; energy management; load variance; optimal scheduling; optimization;
vehicle-to-grid

1. Introduction

Electric vehicles (EVs) have gained popularity due to their emission free and fuel independence
characteristics. Governments across the nations have established several schemes and organizations
to facilitate the electrification process of roadway vehicles in terms of the technology, market, policy
and finance. The efforts from numerous parties have successfully stimulated the deployment of the
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EV market. The recent Global EV Outlook report showed improved signs of EV adoption. In the
near future, the global EV stock is predicted to reach more than one hundred million by the year
2050 [1–5]. As a result, the anticipated large scale of EV charging will bring technical challenges to the
power grid. Extensive studies on the harmful impacts of large scale EV charging on the power grid
had been performed. The potential impacts include the overloading of power equipment, harmonics,
voltage drop, voltage instability and power losses [6–16]. A review in [17] concluded that the main
impact of EV integration into the power grid was the overloading issue, which further led to equipment
overheating and rapid aging issues. Meanwhile, the grid power quality was assessed under various
EV penetration and charging level scenarios in [18,19]. The results revealed that a large number of fast
charging EVs would introduce serious voltage deviations and voltage instability problems.

EVs utilize relatively large capacity batteries as their energy source for the vehicle propulsion.
Hence, the large scale of the grid-connected EVs can be considered as an enormous distributed energy
storage in the power grid. Moreover, the potential of EVs to share energy with the power grid has
created a new opportunity to improve the system reliability and sustainability. This concept, known as
Vehicle-to-Grid (V2G) technology, was firstly introduced by Kempton and his research team in [20–24].
The authors proposed the adoption of V2G technology to improve the reliability of the power grid,
as well as to facilitate the large scale integration of renewable energy [20]. The economic potential of
EVs in providing energy support to the power grid was also studied by Kempton in [25]. The findings
assured a significant revenue stream to the EV fleet for providing the V2G support. For a more accurate
revenue estimation, the authors had developed a calculation model in [26] to evaluate the cost and
profit in providing V2G support, mainly in the form of peak load shaving, spinning reserves and
energy regulation services. Kempton and his research team also paid attention to the willingness of
people to pay for EVs and their attributes in [27]. The research results suggested that EV cost needs
to be reduced significantly in order to have higher EV adoption in the marketplace. Additionally,
V2G management strategies and implementation steps were proposed in [28] to assist the transition of
V2G technology.

The potential of the V2G concept has urged other research and development in the supporting
technology for V2G application. The literature has presented many potential benefits for the power grid
by adopting V2G technology. These benefits include peak load shaving, load levelling, grid voltage
regulation, improvement in energy efficiency and mitigation of renewable energy intermittency [29–32].
For instance, a Vehicle-to-Home (V2H) concept was presented in [33], where EVs collaborated with
the renewable energy in a smart home system to minimize the pollution, fossil fuel depletion and
investment cost. In addition, a study in [34] utilized EVs to support the autonomous operation mode
of microgrids. During the transition to separate from the power grid, the available EVs were used by
the system frequency controller as a buffering feature to stabilize the microgrid operation.

Nevertheless, the V2G implementation requires frequent charging and discharging processes
which can cause extra deterioration to the EV batteries [35]. This downside has created a strong
social barrier that can prevent public support for the V2G concept. Hence, optimal V2G charging
and discharging scheduling with compensated incentives given to the participating EV owners will
be especially crucial for the realization of this technology. Research has been carried out to develop
the optimal planning and scheduling for the proper V2G execution. The complexity in managing the
large amount of energy exchange between the power grid and EVs represents a challenge for a power
utility. The first logical step to implement the V2G technology was proposed in [36]. The proposed
unidirectional spinning reserve V2G algorithm was able to modulate the EV charging rate according
to a Preference Operating Point (POP), where the minimal preliminary investment and EV batteries
degradation were achieved.

On the other hand, the bidirectional V2G technology has tremendous flexibility to accomplish
the EV scheduling according to the preferences of the EV owners and power grid requirements.
Many researchers have proposed EV scheduling that utilizes the Grid-to-Vehicle (G2V) and
Vehicle-to-Grid (V2G) operations to help the power grid in achieving various benefits [37–39]. From the
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economic standpoint, the authors in [40,41] emphasized the maximization of power utility profit while
developing the V2G algorithm. Meanwhile, the minimization of power system losses is also a popular
topic in the V2G application. In [42], EVs were used as reactive power resources to reduce the power
grid energy losses. Furthermore, V2G technology was also utilized to maximize the renewable energy
generation by solving the renewable energy intermittency issue [43,44]. Intelligent optimization
algorithms were proposed by the authors in [45–47] to solve the renewable energy intermittency
problem while maximizing the power grid energy efficiency.

Various optimal V2G scheduling strategies have been introduced in the literature to minimize the
power grid load variance [48,49]. This concept is well known for its effectiveness in reducing power
grid operation losses [50]. In general, this is achieved by enabling the grid-connected EVs to absorb the
extra electricity during the power grid valley load period and feed the energy back to the power grid
during the peak load period [51–54]. For instance, a V2G scheduling algorithm was proposed in [55] to
perform power grid load shaving and valley filling operations using grid-connected EVs. The operation
was achieved by regulating the power grid load at the target load pre-determined in the scheduling
algorithm. A similar demand side management concept was adopted in [56], where considerable
savings and emissions reduction were demonstrated by the results. Meanwhile, the authors in [57]
proposed a peak shaving algorithm to reduce the peak demand of the power grid. The application
of this algorithm has shown good potential in extending the lifespan of transformers, as well as
maintaining a healthy grid operation voltage profile. Another peak shaving strategy was introduced
in [58,59], which provided dynamic adjustments in EVs discharging rate without affecting the battery
usage for EV traveling purpose. This strategy limited the maximum load demand by utilizing the extra
energy in the grid-connected EVs for power grid support. In these literatures, many of the proposed
V2G scheduling for power grid load variance minimization utilized a preset target loading in the
scheduling algorithm. Nevertheless, most of the related studies have not discussed the methodology
used in determining these targets. Inaccurate setting of this target loading will reduce the effectiveness
of the V2G algorithm to achieve the minimization of load variance. The selection of this target loading
can be a challenging task, as the power grid and grid-connected EVs are dynamic in nature. Thus,
this paper will focus on the development of a V2G optimization algorithm, as well as analyzing the
influence of different target load curves on the performance of the proposed algorithm.

This paper presents a G2V/V2G optimization algorithm, which is focused on the minimization
of grid load variance by performing load levelling and peak load shaving using the available
grid-connected EVs. During the event where the actual power grid loading is lower than the target
loading, EVs are allowed to receive charging power from the power grid. This G2V operation falls
under the load leveling scenario. Meanwhile, when the actual power grid loading is larger than
the target loading, EVs are encouraged to discharge for power grid support. This V2G operation is
called the peak load shaving scenario. In general, this paper will present the proposed algorithm,
which consists of G2V and V2G operations as the V2G optimization algorithm. The V2G algorithm
instructs EV charging and discharging operations according to the proposed objective function with
the aim of minimizing the difference between the actual power grid loading and target loading.
The V2G optimization algorithm includes thorough consideration of both power grid and EV
constraints. The algorithm can also deliberate the V2G scheduling by considering the uncertain
mobility characteristics of EVs, which have random initial State of Charge (SOC) and grid connection
duration, as well as the dynamic grid connection probability. In addition, extensive analyses are
conducted to investigate the effect of different target load curves and various average initial SOC of
EV batteries on the performance of the proposed V2G optimization algorithm. A performance index
was introduced to compare and evaluate the success rate of each optimized scenario. Then, a proper
selection of the V2G target load curve based on the average initial SOC of the available grid-connected
EV batteries is recommended. In summary, the contributions of this paper include: (i) the development
of a V2G optimization algorithm to minimize grid load variance via peak load shaving and load
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levelling, and (ii) a performance analysis of the proposed V2G optimization under various target load
and average initial SOC of EV batteries.

The rest of the paper is organized into sections. Section 2 describes the power grid model for the
implementation of V2G optimization algorithm. In Section 3, the detailed formulation of the objective
function, constraints and optimization algorithm are presented. The simulation results to validate
the effectiveness of the proposed V2G optimization algorithm are discussed in Section 4. Section 5
concludes the paper.

2. Power Grid Model for V2G Implementation

The implementation of V2G technology requires extensive planning and careful management
in order to ensure the reliability of the power grid. In the initial stage of the V2G implementation,
the V2G location shall be well planned for the proper V2G application. For instance, the quantity of
EV mobility within the V2G location is crucial for the practicality of V2G technology. In this paper,
an adequate quantity of the grid-connected EVs was required to ensure the proper amount of EV
batteries’ storage capacities was available to absorb or deliver the power during the interaction with
the power grid. This is to ensure an average distributed amount of EVs shall be accessible within the
V2G location throughout the day. Thus, the selected V2G location shall be a relatively large township,
which consisted of both residential and commercial areas to ensure a sufficient and consistent EV
mobility throughout the day. Figure 1 presents an intelligent township for the V2G implementation
consisting of the commercial offices, residential areas and smart V2G car parks. The components to
realize the V2G technology are also shown in Figure 1. For instance, the township was equipped with
the dual communication system across all the commercial loads, residential loads and smart V2G car
parks with the local aggregator. Furthermore, the bidirectional V2G chargers were installed in the
smart V2G car parks, which allowed each EV to charge from and discharge to the power grid.

Figure 1. Intelligent Vehicle-to-Grid (V2G) township.

Figure 2 shows the single-line diagram of a generic township used in this paper for the
implementation of V2G technology. The generic township was a typical radial configured power
distribution grid. This township had a total of 200 units of the commercial offices and 800 units of the
residential condominiums. The maximum demand for each commercial office was 15 kW, whilst 10 kW
for each residential condominium. All the loads within the generic township were supplied via the
22 substations, where each substation had a step down transformer rated at 1 MW. Several assumptions
were made for the V2G optimization algorithm and are listed as follows:
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• All the residential, commercial and EV loads were evenly distributed to each substation in the
proposed generic township.

• The town had a total of 1800 EV mobility daily, which includes EVs from the generic and
nearby townships.

• The smart car parks had sufficient parking spaces equipped with the bidirectional V2G chargers.
• The aggregator had the appropriate bidirectional communication system to monitor the load

profile of each substation and access the information of each EV, such as the EV availability and
SOC level of EV battery.

• The aggregator was given the full authority to manage and control the amount of power sharing
between the EVs and power grid.

Figure 2. Single-line diagram of a generic township.

3. Problem Formulation

The implementation of V2G technology in the power grid usually involves multiple conflicting
objectives, which are plagued with numerous uncertainties and nonlinearities. Therefore, the utilization
of the optimization technique is crucial to execute the V2G concept in the power grid. In this paper,
the Genetic Algorithm (GA) optimization technique is employed to solve the V2G optimization
problem. This section discusses the objective function and constraints for the optimization problem.

3.1. Objective Function

In this paper, the proposed V2G optimization algorithm has the objective to optimize the
grid-connected EV charging and discharging power in order to minimize the power grid load variance.
A generalized daily power load curve is depicted in Figure 3. Besides, the desired grid loading is
achieved by performing peak load shaving and load levelling to minimize the variance between the
power grid loading and target loading as illustrated in Figure 3. The proposed V2G optimization
algorithm is performed by enabling the EV charging during the period where the power grid loading is
less than the target loading (G2V operation). On the contrary, EVs are required to discharge the energy
from the batteries when the power grid loading is larger than the target loading (V2G operation).
No power flows between the EVs and power grid when the target loading is equal to the power
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grid loading. Equations (1) and (2) express the objective function in terms of grid load variance,
target loading, charging and discharging rate:

min ∆P = Ptarget(t) − Pload(t)− PEV(t) (1)

PEV(t) =



(
N
∑

n=1
AnKn

)
× PEV,charging , when Pload < Ptarget(

N
∑

n=1
AnKn

)
× PEV,discharging , when Pload > Ptarget

0 , when Pload = Ptarget

(2)

where ∆P is the grid load variance, t is time, Ptarget is the target loading, Pload is the existing load of
the power grid, PEV is the total power of EV loads/sources, n is the EV index, N is the maximum
EV index, An is the availability of nth EV for the V2G application, Kn is the indicator of nth EV
for V2G application, PEV,charging is the EV charging rate, and PEV,discharging is the EV discharging rate.
In Equation (1), the grid load variance (∆P) was minimized by optimizing the number of grid-connected
EV to charge or discharge during valley load and peak load period, respectively. The determined
optimal grid-connected EV numbers are then reflected in the indicator of nth EV for V2G application
(Kn). Meanwhile, An refers to the availability of nth EV to the power grid prepared for the V2G
application. This variable depends on the dynamic EV mobility characteristics, where the detailed
EV grid-connection probability is discussed in Section 3.2.3. In the condition where Kn and An are
available, the nth EV will be instructed to charge or discharge the battery.

Figure 3. The concept of peak load shaving and load levelling.

3.2. Optimization Constraints

The operation of V2G system is restricted under plenty of system constraints and uncertainties.
Therefore, the proposed V2G optimization algorithm required the compliance with these power grid
and EV constraints.

3.2.1. Power Balance

The important power grid constraint to be considered in the proposed V2G optimization algorithm
is the power balance between the grid generation and demand. The supplied power from the
generation plants and distributed EV battery sources must satisfy the power grid load and EV
charging demands:

Pgrid(t) +
N

∑
n=1

AnKnPEV,discharging(t) = Pload(t) +
N

∑
n=1

AnKnPEV,charging(t) (3)

where Pgrid is the active power from the generation plant.



Energies 2017, 10, 1880 7 of 21

3.2.2. SOC of EV Battery

The SOC level of EV battery is one of the EV constraints which must be kept within certain limits
during the V2G operation. It is important to establish these limits for two reasons. The first reason is
to protect the health of the battery. Studies show that the SOC level of a lithium ion battery should
best to be limited to a 60% swing (between 30% and 90% or 25–85%) to minimize the battery health
degradation [60,61]. The second reason to keep the SOC level of the EV battery within certain limits is
to reserve a certain amount of energy for the EV travel usage. Therefore, by taking both reasons into
consideration, each EV is prevented from discharging if the battery SOC is lower than the SOCmin which
is set at 55%. Meanwhile, the EV charging process is only allowed if the SOC level of each EV battery is
below the SOCmax, which is set at 90% to prevent the battery overcharging issue. Both of the EV charging
and discharging processes are allowed if the battery SOC is within the SOCmin and SOCmax:

SOCn ≤ SOCmin, allow for charging only (4)

SOCmin ≤ SOCn ≤ SOCmax, allow for charging and discharging (5)

SOCn ≥ SOCmax, allow for discharging only (6)

where SOCn is the battery SOC for nth EV.

3.2.3. EV Grid Connection Probability

The feasibility of V2G technology requires EVs to be connected to the power grid. Nevertheless,
each EV can be connected to the power grid at different arrival and departure times in the car park,
which will lead to the dynamic EV mobility characteristics [62–69]. Hence in this paper, the EV grid
connection probability is estimated based on the driving behaviour of the township’s residents and
commercial workers. In Figure 4, the EV grid connection probability of the residential car park showed
that more EVs are available in the car park, since the beginning of the day until 06:00 o’clock in
the morning.

Figure 4. Electric Vehicle (EV) grid connection probability of the township.

Later on, most of the EV owners are away to their workplaces and schools. From 18:00 o’clock
onwards, the residents started to return home and occupied the residential car park. On the other
hand, the EV grid connection probability of the commercial car parks depicted that most of the parking
spaces are occupied during the daytime office hours. Other than these periods, the commercial car
park is almost empty. The combination of the EV grid connection probability of the residential and
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commercial car parks gave the total EV availability in the proposed generic township, as shown in
Figure 4.

An = 1, when nth EV was connected to the power grid (7)

An = 0, when nth EV was not connected to the power grid (8)

3.2.4. EV Power Exchange Rate

The power exchange rate between the EV batteries and power grid shall be restricted within
a safe margin to protect the safety and health of EV batteries throughout the power exchange periods.
A common EV battery available in the market is considered in this research. The EV battery used in
this paper a lithium-ion battery, which has the rated capacity of 50 Ah. The power exchange rate of
each EV battery is limited below 3.3 kW, which is the typical power rating for slow charging:

PEV,charging ≤ PEV,max (9)

PEV,discharging ≤ −PEV,max (10)

where PEV,max is the maximum EV exchange rate.

3.3. Optimization Algorithm

The proposed V2G optimization algorithm is implemented in MATLAB software tool (R2013a,
MathWorks, Natick, MA, USA) as shown in Figure 5.

In order to handle a large number of parameters, the GA optimization technique is adopted.
The GA is an iteration method that is capable of searching for the global optimal solution within an
execution time limit. Furthermore, the GA is inspired by the living organism evolutionary process,
which requires the representation of a potential solution as the genetic chromosome. A proper fitness
function is utilized to compute and evaluate the score of this genetic chromosome. After the evaluation,
the GA principle is repeated again to reproduce a new generation of chromosome until this iteration
converges to an optimal solution.

In the initial stage of the proposed V2G algorithm, the system parameters are obtained and
updated into the database. With this information, the GA algorithm evaluates the fitness function
of the grid load variance minimization, which later produce the next generation of solution. The
evaluation repeated itself until the iteration converged to an optimal EV charging or discharging
power. This optimization process is bound by the power grid and EV constraints. Meanwhile, the V2G
optimization algorithm is executed for every hour.

With respect to the constraint limits, the proposed V2G optimization algorithm performed the
peak load shaving and load levelling services by utilizing the EV battery storages in order to minimize
the load variance, as it is shown in Figure 5.
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Figure 5. Flowchart for the proposed V2G optimization algorithm.

4. Results and Discussion

In this section, the feasibility of the proposed V2G optimization algorithm that was investigated
under different scenarios was elaborated. Various average initial SOC of EV batteries (SOCi,ave) and
target load curve in percentage (TLCpct) were considered to examine the performance of the proposed
V2G optimization algorithm. The definitions of the SOCi,ave and TLCpct are shown in Equations (11)
and (12), correspondingly:

Average initial SOC of EV Batteries (SOCi,ave) =

N
∑

n=1
Kn AnSOCn

N
(11)

Percentage of Target Load Curve (TLCpct) =
target load curve

peak load
× 100% (12)

All the scenarios were conducted in the generic commercial-residential township as depicted in
Figure 2. Figures 6–8 present the comparison between the optimized power load curves and original
power load curves, where the TLCpct were set at 50%, 55% and 60%, respectively. In each scenario,
different SOCi,ave of 40%, 50%, 60%, 70% and 80% were applied. Based on the preset values of the
SOCi,ave and TLCpct, different optimized power load curves were acquired with the implementation
of the proposed V2G optimization algorithm. For instance, the scenario in Figure 6a shows that the
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SOCi,ave was set at 40% and the TLCpct was kept at 50% of the peak loading of the power load curve.
Since the SOCi,ave was low, the proposed V2G optimization algorithm can perform the load levelling
service by the EV charging operation, but not the EV discharging operation for the peak load shaving
service. In contrast, reversed outcomes can be observed for scenario in Figure 8e due to higher SOCi,ave
and TLCpct.

Figure 6. Optimized power load curves with 50% TLCpct and SOCi,ave of (a) 40%, (b) 50%, (c) 60%,
(d) 70% and (e) 80%.
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Figure 7. Optimized power load curves with 55% TLCpct and SOCi,ave of (a) 40%, (b) 50%, (c) 60%,
(d) 70% and (e) 80%.
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Figure 8. Optimized power load curves with 60% TLCpct and SOCi,ave of (a) 40%, (b) 50%, (c) 60%,
(d) 70% and (e) 80%.

The consideration of various values of SOCi,ave and TLCpct had led to different optimization
results. In certain scenarios, the optimized load curves were not completely flat due to the fact the
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required energy demand for peak load shaving and load levelling services exceeded the available
energy capacity of the EV batteries. In other words, EV batteries cannot supply or absorb the required
energy for the minimization of grid load variance. Therefore, an index denoted as Performance Index
was introduced to allow better comparison among the optimized power load curves. The Performance
Index indicated the percentage of successful operations of the peak load shaving, load levelling or
combination of both to achieve the preset target load curve over a day. The Performance Index can
range from zero to one, where greater value indicates higher successful rate. Table 1 presents the
Performance Index of the proposed V2G optimization algorithm for all the scenarios depicted in
Figures 6–8. Three sets of the Performance Index were calculated for peak load shaving, load levelling
and both services together.

With reference to the Performance Index in Table 1, the capability of peak load shaving
was enhanced while the capability of load levelling was reduced with the increase of SOCi,ave.
These situations were due to the increase in the available EV energy to be discharged for the peak
load shaving, as well as the reduced need of EV batteries to receive charging from the power grid and
thus limited the load levelling. Likewise, the occurrence of similar trends can be determined with
the increase of the TLCpct, where more peak load shaving service can be accomplished while fewer
load levelling can be achieved using the proposed optimization algorithm. The reason was due to the
required EV discharging energy for the peak load shaving was greatly reduced when the set point
of TLCpct was increased. However, the load levelling became more difficult to be achieved due to the
significant increase of energy required to be charged into the EV batteries.

Table 1. Performance Index of the V2G optimization algorithm under various scenarios.

Region Percentage of Target Load Curves (TLCpct)
Average Initial SOC of EV Batteries (SOCi,ave)

40% 50% 60% 70% 80%

Peak load shaving
50% 0.429 0.496 0.724 0.870 0.872
55% 0.571 0.590 1.000 1.000 1.000
60% 0.751 0.809 1.000 1.000 1.000

Load levelling
50% 1.000 1.000 1.000 0.956 0.713
55% 0.953 0.950 0.937 0.818 0.623
60% 0.830 0.826 0.791 0.694 0.526

Overall
50% 0.667 0.706 0.839 0.905 0.806
55% 0.785 0.792 0.965 0.898 0.789
60% 0.805 0.821 0.858 0.793 0.679

Other than the two individual set of Performance Index values for peak load shaving and load
levelling, the overall Performance Index shows the success percentage for both peak load shaving
and load levelling. The shaded region of the overall Performance Index in Table 1 indicates the best
TLCpct to be selected with respect to the SOCi,ave. Figures 9 and 10 illustrate the Performance Index
under various scenarios and gives a clearer perception on the overall optimized scenarios. The peak
point in Figure 10 shows the best optimized scenario with the overall Performance Index of 0.965,
which dropped under the 60% of SOCi,ave and 55% of TLCpct category. This has verified that the
selection of target loading for the V2G optimization algorithm played a significant role in ensuring the
performance of the algorithm.

A detailed analysis on the best scenario is further presented in Figure 11. With the implementation of
the proposed V2G optimization algorithm, the achieved optimized power load curve for the category of
60% of SOCi,ave and 55% of TLCpct is shown in Figure 11a. The optimized power load curve has almost met
all the target loadings throughout the day, except during the periods from 05:00 to 08:00 o’clock.

Figure 11b presents a clearer insight to explain the operations during these periods. The bar
graphs in the positive and negative regions in Figure 11b depict the maximum available capacity of
the EV batteries and stored energy for the load levelling and peak load shaving, correspondingly.
These bar graphs were obtained by considering all the constraint limits as specified in Section 3.2 and
therefore, served as the limits for the optimization process. The curve shown in Figure 11b presents the
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optimized EV charging and discharging power required to achieve the optimized power load curve as
shown in Figure 11a. During the periods from 05:00 to 08:00 o’clock, the optimized EV charging power
had reached the maximum limit of the available capacity of EV batteries for the load levelling service.
Consequently, the load levelling service was not completely achieved in the optimization process.

Figure 9. Performance Index under various scenarios: (a) peak load shaving and (b) load levelling.

Figure 10. Overall Performance Index under various scenarios.
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Figure 11. Detailed description of the best optimized scenario: (a) optimized power load curve
(b) optimized EV charging and discharging power within constraint limits.

Figure 12 shows the SOC status of some random selected EVs under the best optimized scenario.
During the load levelling periods, all the EVs experienced the charging process, except for the EVs
with the SOC level higher than the SOCmax of 90%. Meanwhile, all the EVs discharged their battery
energy during the peak shaving periods, due to having all the SOC levels of EV batteries higher than
the SOCmin of 55%. Another observation from Figure 12 is that the EVs participating in the V2G
optimization program had the tendency to reach to a similar SOC level at the end of the optimization
process. These findings indicated that the proposed V2G optimization algorithm can flatten the power
load curve with respect to the pre-determined SOC constraints.

The performance of the proposed V2G optimization algorithm was compared with other
algorithms in the latest literature. A comparative parameter defined as the percentage improvement of
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peak and valley load difference, Pi was introduced to assess the algorithm performances that were
conducted under different scopes and conditions. The formulation of Pi is expressed in (13):

Pi =

∣∣∣∣∣Pd,a f ter − Pd,be f ore

Pd,be f ore

∣∣∣∣∣× 100% (13)

where Pd,after is the peak and valley load difference after V2G optimization and Pd,before is the peak and
valley load difference before V2G optimization.

Figure 12. The SOC status of random selected EVs under the best optimized scenario.

Both Pd,after and Pd,before can be calculated using Equations (14) and (15), respectively:

Pd,a f ter = Pp,a f ter − Pv,a f ter (14)

Pd,be f ore = Pp,be f ore − Pv,be f ore (15)

where Pp,after is the peak load value after V2G optimization, Pv,after is the valley load value after V2G
optimization, Pp,before is the peak load value before V2G optimization, and Pv,before is the valley load
value before V2G optimization.

The V2G algorithm proposed in [55] was capable of performing peak shaving and valley filling
control. The power grid loading before the implementation of V2G algorithm had Pp,before of 1090 MW
and Pv,before of 855 MW. With the execution of V2G algorithm, the power grid loading presented Pp,after of
1080 MW and Pv,after of 950 MW. Hence, the computed Pi using (13) was 44.68%. A similar investigation
was conducted for the researches in [56,57], where the computed Pi acquired was 46.89% and 36.84%,
respectively. The analysis was also investigated on the best scenario (V2G optimization with 60% of
SOCi,ave and 55% of TLCpct) in this paper. The power grid loading before the implementation of the
proposed V2G algorithm presented Pp,before of 4.6 MW and Pv,before of 1.3 MW. Meanwhile, the power
grid loading after the employment of the V2G algorithm achieved Pp,after of 2.5 MW and Pv,after of
2.1 MW. Thus, Pi was acquired to be 87.88%. By comparing with the other literatures, the proposed
algorithm in this paper shows a better performance in terms of the percentage improvement of peak
and valley load difference. The details of the comparative analysis are presented in Table 2.
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Table 2. Comparative analysis of the proposed algorithm with other approaches for grid load
variance minimization.

Parameter Ref. [55] Ref. [56] Ref. [57] Proposed Algorithm

Pp,before (MW) 1090 188 0.56 4.6
Pv,before (MW) 855 98 0.37 1.3
Pd,before (MW) 235 90 0.19 3.3
Pp,after (MW) 1080 159.8 0.49 2.5
Pv,after (MW) 950 112 0.37 2.1
Pd,after (MW) 130 47.8 0.12 0.4

Pi (%) 44.68 46.89 36.84 87.88

5. Conclusions

This paper has presented the development of a V2G optimization algorithm with the objective
of minimizing the grid load variance by utilizing the grid-connected EVs to provide the peak load
shaving (V2G) and load levelling services (G2V). The proposed algorithm was examined under various
scenarios of varying TLCpct and SOCi,ave while complying with the crucial constraints, such as the
grid power balance, initial SOC of EV battery, EV grid connection probability and EV grid connection
duration. The simulation results had verified the effectiveness of the proposed algorithm in achieving
the objective of the grid load variance minimization in all scenarios. A Performance Index was
introduced in this paper to provide an excellent indication on the overall performance of the proposed
V2G optimization algorithm. The best optimized scenario was achieved at 55% of TLCpct and 60% of
SOCi,ave, with a Performance Index of 0.965. Moreover, all the participated EVs had complied with
the preset SOC limits and tended to reach to a similar SOC level at the end of the V2G scheduling.
This analysis aims to serve as a recommendation for the selection of TLCpct based on the available
historical data of SOCi,ave. As a future work, the optimal energy scheduling of an integrated system of
EVs and renewable energy resources will be investigated.
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25. Tomić, J.; Kempton, W. Using fleets of electric-drive vehicles for grid support. J. Power Sources 2007, 168,
459–468. [CrossRef]
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