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Abstract
Can instructional quality be measured using TIMSS items on how often certain instruc-
tional practices are used in the mathematics classroom? We focused on three instructional 
practices that have been the topics of longstanding debates in the educational literature: 
memorizing formulas, listening to the teacher, and relating mathematics to daily life. In a 
multi-level multiple regression analysis, we examined how class-level responses to these 
items predicted mathematics achievement. In Sweden, across four waves of TIMSS, relat-
ing to daily life was a negative predictor of achievement, whereas memorizing formulas 
and listening to the teacher were positive predictors. This was also the typical pattern of 
results across all countries participating in two waves of the international TIMSS. Our find-
ings are in line with certain positions on the abovementioned debates. Although conclu-
sions are limited by the correlational nature of the data, we argue that TIMSS is a promis-
ing tool for evaluating the effectiveness of different instructional practices. We also suggest 
several improvements.
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Introduction

Teachers seem to play a fundamental role in individual students’ success in further school-
ing as well as in life (Nye et al. 2004). Reviews of research on teacher competence show 
broad agreement that teachers need competence in three overarching areas: social com-
petence, which involves showing respect for students and interest in their work; regula-
tive competence, which involves being able to establish and uphold a productive classroom 
environment and get students involved in the work; and didactical competence, which 
involves knowing the subject matter and how it can be presented and organized for student 
learning in a flexible way (Nordenbo et al. 2008). Mathematics is one of the core subjects. 
To be able to measure and systematically improve the didactical competence of present-
ing and organizing for student learning in mathematics, the education community needs 
a clear picture of what quality teaching in mathematics looks like. On this grain-size of 
instructional quality, however, no consensus has yet emerged. Instead, the question of how 
mathematics should best be presented and organized is surrounded by several long-stand-
ing controversies (e.g., Sweller et al. 2007). It is important to find ways to move forward on 
these issues.

An available source of data is provided by the international large-scale assessments 
TIMSS and PISA. TIMSS is conducted every 4 years by IEA (International Association for 
the Evaluation of Educational Achievement). PISA is conducted every 3 years by OECD 
(the Organisation for Economic Co-operation and Development). Great efforts are invested 
in conducting these assessments, and their results tend to receive attention from policy-
makers and the press. They are therefore of great importance. The assessments involve a 
mathematics test to students as well as questionnaires to various parties. Such question-
naires may provide measures of teachers’ use of various instructional practices, which can 
then be related to student outcomes (Nilsen and Gustafsson 2016). The aim of the present 
paper is to examine what such analyses could tell us about what quality teaching in math-
ematics looks like.

The advantage of TIMSS over PISA

The TIMSS and PISA studies are designed somewhat differently. TIMSS samples entire 
classes and links students to the teacher/classroom level. Moreover, TIMSS gathers ques-
tionnaire data from both students and teachers. The PISA design is different in that the 
teacher/classroom level is not represented. PISA samples individual students, not classes, 
and gathers questionnaire data only from students. As student data from PISA cannot be 
aggregated on the teacher level, analyses of the relation between student achievement and 
student responses could be strongly confounded by the individual response style of stu-
dents. For these reasons, the TIMSS design seems better suited to yield useful information 
on what quality teaching looks like.

Two ways to approach instructional quality in TIMSS data

The remainder of the paper will focus on what TIMSS data can tell us about the relations 
between instructional practices, instructional quality, and student achievement. We shall 
here describe two different ways of approaching this question. One approach, which we will 
refer to as “normative”, takes as its starting point that we already know which instructional 
practices constitute quality teaching in mathematics. By measuring how much these quality 
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practices are used in the classroom, researchers can then get a measure of the quality of the 
instruction in that classroom. This measure of instructional quality can then be used for 
various analyses. For instance, researchers may wish to examine the effect on instructional 
quality of other variables like teacher training and teacher experience. Or researchers may 
be interested in the importance of instructional quality for student achievement, relative 
other factors such as students socio-economic background, school resources, etc.

IEA, the organization behind TIMSS, endorses the normative approach by providing an 
“Instruction to Engage Students in Learning Scale”. This scale is based on six items in the 
teacher questionnaire. These items ask teachers how often they use certain instructional 
practices in class (e.g., “How often do you relate the lesson to students’ daily lives?”). 
According to IEA (2011, Exhibit 6), the scale formed by these six items has Cronbach’s 
alpha values (one for each country) around 0.6, which indicates near-adequate internal con-
sistency. However, the same table from IEA (2011) reports that the scale has practically 
zero correlation to student achievement (Exhibit 6 in IEA 2011). A similar null result was 
recently reported by Blömeke et al. (2016).

As students’ mathematics achievement is not correlated with this normative measure of 
instructional quality, should we conclude that the quality of instruction does not matter? 
Blömeke et al. (2016) do not draw this conclusion. Instead, they voiced concerns that the 
measure obtained by the Instruction to Engage Students in Learning Scale may suffer from 
teachers’ self-reports being unreliable. There is indeed evidence that teachers’ self-reports of 
the instruction they use tend to be less reliable than the reports of their students (Kunter and 
Baumert 2006). This problem could, and should, be solved by using student reports instead.

The normative approach has another problem, however. Namely, the starting point—
that we already know which instructional practices constitute quality teaching in math-
ematics—is questionable. Perhaps the Instruction to Engage Students in Learning Scale 
includes some instructional practices that are, in fact, not so beneficial to student achieve-
ment. For instance, as we discuss in detail below, it is questionable whether the practice of 
relating the lesson to students’ daily life has generally beneficial effects on students’ learn-
ing of mathematics.

As an alternative, we advocate a “descriptive” approach to TIMSS data on instructional 
practices. Because of the long-standing controversies in the field, it seems premature to 
take for granted that some practices constitute quality teaching. Instead, researchers could 
use the data provided by TIMSS to examine the independent effect of each instructional 
practice on student achievement. An instructional practice should only be regarded as a 
characteristic of quality teaching if there is evidence that it generally has a positive effect 
on student achievement.

Instructional practices in eighth grade covered by the TIMSS student questionnaire

Eighth grade student reports of instructional practices were gathered in the 2003 and 2007 
waves of TIMSS. Unfortunately, questions on instructional practices were not generally 
included in the student questionnaires in the last two waves (2011 and 2015) of TIMSS, but 
a few items were nonetheless included in the Swedish versions of these questionnaires. We 
focus on the following three items:

1. We listen to the teacher give a lecture-style presentation.
2. We relate what we are learning in mathematics to our daily lives.
3. We memorize formulas and procedures.
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We shall now review how the instructional practices covered by these three items have 
been the topics of longstanding debates in the educational literature.

The role of teachers in instruction

Item 1 asks students how often they listen to the teacher giving a lecture-style presentation. 
This item relates to the debate in mathematics education research on so-called student-
centered approaches, typically building on constructivist ideas, versus approaches stressing 
that content should be clearly and explicitly presented by the teacher. In the former type 
of approach, as phrased by Stein and colleagues, the role of the teacher is then expected 
to change “from ‘dispenser of knowledge’ and arbiter of mathematical’ correctness’ to an 
engineer of learning environments in which students actively grapple with mathematical 
problems and construct their own understandings” (Stein et  al. 2008, p. 315). Problem-
solving-oriented approaches have at times been highly influential in developmental work 
in mathematics education, and in standards and curricula (NCTM 1989; Schoenfeld 1992). 
Research indicates that such approaches may work well (Ginsburg-Block and Fantuzzo 
1998; Gravemeijer 1997). However, there is also ample support for instructional designs 
that build on opposing principles. For low-achieving students in particular, so-called 
explicit instruction seems beneficial (Kroesbergen et al. 2004; Gersten et al. 2009). Simi-
lar to problem-solving approaches, explicit instruction typically includes giving students 
opportunities to solve problems in groups and communicate their problem-solving strate-
gies, but in contrast to problem-solving approaches it is emphasized that the instruction 
should include clear teacher think-alouds, and beforehand explanations of how a particular 
class of problems should be solved.

The cognitive underpinnings of the competing approaches have been addressed in some 
research, with a focus on the role and limitations of working memory. It has been argued 
that instruction whereby students are to learn from complex task situations places overly 
high demands on their working memory (Sweller et  al. 2007). According to a counter-
argument, high cognitive load can be beneficial to learning when the task or activity is set 
up to appropriately focus the learner’s attention (Schmidt et  al. 2007). In certain simple 
situations, it has also been confirmed that learning under creative conditions, in which the 
student is to find the solution without guidance, may have a more sustained learning effect 
than when the learning is guided to the solution followed by practice (Jonsson et al. 2014).

In sum, the two classes of approaches to classroom practices suggest different perspec-
tives on the learning tasks, the role of the students as well as the role of the teachers in 
classroom practices. Therefore, no clear guidelines have yet been established as to the 
question of how much teachers should lecture.

Mathematics and students’ daily lives

Item 2 asks students how often they relate what they are learning in mathematics to their 
daily lives. Some of the most influential ideas in mathematics education for the last hand-
ful of decades concern the connection of mathematics to everyday experience. A prime 
example of this is the theory of Realistic Mathematics Education (RME), developed by 
Freudenthal and colleagues, according to which students should be active participants in 
the educational process of developing mathematical tools and insights themselves within 
familiar contexts (Freudenthal 1968; Van den Heuvel-Panhuizen and Drijvers 2014) 
through a teacher-led process, termed guided reinvention (Gravemeijer 1999). These ideas 
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have influenced standards, national curricula and international assessment frameworks 
(Boesen et  al. 2014; NCMT 1989; OECD 1999). However, it has also been established 
that excessive reliance on students’ everyday experience can have negative effects on their 
mathematical development. For example, students may have difficulty recognizing the 
mathematics in the everyday situations that are discussed, and may not be certain about 
when it is appropriate to use knowledge based on such situations and when such knowledge 
should be ignored (Zevenbergen and Lerman 2001; Gellert and Jablonka 2009; Boaler 
1994). Cooper and Dunne (1998) used sociological theory to explain how the development 
of typically informal rules of education applies to the case of using realistic examples in 
mathematics education. Using national mathematics test data, they showed that working-
class children were almost twice as likely as serving-class children to answer mathematical 
queries involving realistic content by only referring to everyday knowledge; however, more 
recent research has indicated that the systematic variation occurred on the level of school 
class rather than social class (Schuchart et al. 2015). This indicates that the way students 
understand everyday mathematical context is determined primarily by the teaching. There 
is also experimental work showing that everyday-based explanation models can have nega-
tive effects on students’ ability to use newly introduced mathematical concepts in new con-
texts (Kaminski et al. 2008).

In sum, it is not clear when and under what conditions it is an effective teaching tech-
nique to connect the mathematics to be learned to students’ daily lives. Well-developed 
teaching models that stress everyday experiences are typically quite intricate, involving 
specifically constructed teaching sequences in which the teacher plays an active role. In 
addition, both case studies and some larger-scale studies show that reliance on everyday 
examples can cause confusion over what counts as mathematics in school.

Memorizing formulas and procedures

Item 3 asks students how often they memorize formulas and procedures. One of the most 
fundamental discussions in mathematics education concerns the extent to which the teach-
ing should focus on students’ application and memorization of rules and procedures. The 
prominence given to the practicing and memorization of rules and formulas in mathemat-
ics education is central to what has been called the Math Wars in the US (Schoenfeld 
2004). The debate goes back hundreds of years. Typically, memorization and application 
of procedures are contrasted with understanding the relation between concepts and when to 
apply them. An influential theory in this area is the characterization of instrumental under-
standing and relational understanding (Skemp 1979). Instrumental understanding should 
be understood here as knowing, for a given problem, the procedures or rules for how to 
solve it, but not necessarily knowing why these rules work or how they relate to each other. 
Relational understanding denotes having a conceptual structure from which various meth-
ods and ideas can be inferred. Many other theories in mathematics education try to cap-
ture similar dichotomies, one being that of procedural and conceptual knowledge (Hiebert 
2013). There is also research that discusses the interdependence of procedural and concep-
tual knowledge (Baroody et al. 2007).

Several of the principal standards and curricular frameworks that have been internationally 
influential have emphasized relational understanding by, for instance, focusing on ideals like 
conceptual understanding (Kilpatrick et al. 2001) or on connections as a central mathematical 
notion (NCTM 2000). Moreover, a greater emphasis on connections between concepts and 
methods in Japanese lessons versus a greater emphasis on procedural practice in US lessons 



6 K. Eriksson et al.

1 3

was hypothesized to be one of the reasons why Japanese students outperformed US students 
in international assessments (Stigler and Hiebert 1999). Throughout the 1980s and 1990s, 
many proponents of teaching for conceptual understanding referred to developments in cog-
nitive psychology in their arguments, declaring constructivist views on learning whereby it 
was argued that student activities should primarily grow out of problem situations instead of 
computational training (NCTM 1989). Researchers in cognitive science and psychology have 
declared opposite views in many cases, arguing that some of the fundamental principles in 
mathematics education research were, if anything, a misapplication of current views in cogni-
tive science. To exemplify this, a position they attack is the view that mathematics should be 
learned in contexts and in a holistic manner, whereby it does not simply become an accumula-
tion of concepts and skills. What cognitive science instead indicates (according to Anderson 
et  al. 1995) is that mathematics should be decomposed into small components that can be 
studied and practiced in decontextualized settings; it is then the role of the educator to create 
sequences of tasks and activities that give the student the opportunity to create a larger whole 
from these components. Such ideas have also been implemented in instructional software, 
through so-called tutor programs.

Thus, just as with the previously discussed topics, no consensus has been reached on how 
much emphasis should be placed on memorizing formulas and procedures.

Specific research questions

To summarize the review above, different researchers have different opinions on what repre-
sents instructional quality. Roughly speaking, researchers with their roots in the reform move-
ment are likely to argue that quality teaching connects mathematics to students’ daily lives, 
uses a problem-solving approach, and emphasizes connections between ideas rather than the 
memorization of formulas. On the other hand, researchers with their roots in psychology and 
cognitive science are likely to argue that quality teaching has a focus on the formal math-
ematical notions, involves explicit instruction whereby the teacher shows students how to 
solve classes of problems, and has students focusing on practicing and memorizing rules and 
worked examples, rather than working with problems for which they have not been presented 
with a solution strategy. Given these controversies, it seems very worthwhile to use large-scale 
assessments to shed more light on the effectiveness of these instructional practices.

Hence, our primary research aim is to estimate the independent effect of each instruc-
tional practice on students’ mathematics achievement. Such estimates will indicate answers 
to the question whether these instructional practices do or do not represent quality teaching 
(although with several caveats due to data being correlational in nature, as discussed at the end 
of the paper). We also want to know whether the answers to this question hold in general, or 
whether they depend on time and place.

Method

Datasets

We used data from the international eighth grade TIMSS studies of 2003 and 2007, which 
can be downloaded from the IEA web site. These datasets include 45 and 50 countries, 
respectively (as well as several benchmark participants, excluded in this study). We also 
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used data from the Swedish eighth grade TIMSS studies of 2011 and 2015, which we 
obtained from the Swedish National Agency for Education.

Outcome measure

To measure student achievement, TIMSS uses an elaborate method that is described in 
detail elsewhere (Mullis et al. 2012). In brief, the mathematics assessment is based on a 
pool of about 200 items. Each student responds to only a subset of these items, following a 
rotating matrix-sampling design. To obtain comparable achievement scores for all students, 
an imputation method is used. This method generates a set of five “plausible values” for 
each student. This range of values provides a means of assessing the uncertainty in results 
that arises from the imputation of scores. The scale of achievement scores was calibrated in 
1995 such that the mean mathematics achievement was 500 and the standard deviation was 
100. In each subsequent wave, the scale has been calibrated to be comparable with that of 
the 1995 wave. As the outcome measure, we used the set of five plausible values of student 
achievement in mathematics.

Measures of instruction

In addition to assessing student achievement, TIMSS includes questionnaires to students, 
teachers, and school leaders (Foy et al. 2013). The eighth-grade student questionnaires of 
TIMSS 2003 and 2007, as well as Swedish TIMSS 2011 and 2015, included the question 
“How often do you do these things in your mathematics lessons?”, followed by a list of 
items. Students gave their responses on a four-point scale: Every or almost every lesson 
(coded 1); About half the lessons (coded 2); Some lessons (coded 3); Never (coded 4). Indi-
vidual responses to the three focal items shall be referred to as variables Listen (“We listen 
to the teacher give a lecture-style presentation”), Daily (“We relate what we are learning in 
mathematics to our daily lives”), and Memo (“We memorize formulas and procedures”). 
For each of the focal items we calculated the average response in each participating class. 
These class-level measures of instruction are the main independent variables of our study. 
We shall refer to them as ClassListen, ClassDaily, and ClassMemo. In TIMSS 2003, only 
the first two class-level measures of instruction could be calculated (ClassListen and Class-
Daily) as the Memo item was not included. In TIMSS 2007 and in Swedish TIMSS 2011 
and 2015, all three class-level measures of instruction could be calculated.

Following Lüdtke et  al. (2006), we gauged the reliability of class-mean ratings of 
instruction by calculating the intraclass correlation coefficients known as ICC(1) and 
ICC(2). In the pooled Swedish data, these coefficients were lowest for the item Daily, 
ICC(1) = 0.04, ICC(2) = 0.47; somewhat higher for Memo, ICC(1) = 0.07, ICC(2) = 0.59; 
and higher still for Listen, ICC(1) = 0.18, ICC(2) = 0.81. The range and level of these 
ICC(2) values are similar to those found in other studies of student ratings of instruction 
(Lüdtke et al. 2006; Wagner et al. 2016).

Control variables

It is well known that socioeconomic background tends to be a highly important predictor 
of student achievement. Following Blömeke et al. (2016), we included as a control vari-
able the response to the item “About how many books are there in your home?”, with a 
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five-point response scale from None or very few (0–10 books) (coded 1) to Enough to fill 
three or more bookcases (more than 200) (coded 5). This item is a commonly used proxy 
of socioeconomic background. We shall refer to this variable as SES. To control for peer 
effects we also calculated the average SES in each class, referred to as ClassSES. We also 
controlled for student gender, coded 1 for boy and 2 for girl, and referred to as Gender.

Finally, we obtained from the Swedish National Agency for Education an extension of 
the Swedish dataset for TIMSS 2015 that also included the participating students’ scores 
on the national test in mathematics that they took in sixth grade, in the spring of 2013. We 
shall refer to this score as TestGr6 and to the class-average score as ClassTestGr6. The five 
sub-tests of the national test in sixth grade are carried out during 2 months in the spring of 
the pupils’ sixths school year. The sub-tests comprises a verbal test of mathematical rea-
soning administered in a group settings of 3–4 students (30 min), a test of routine tasks to 
be solved without calculator (max 60 min), two tests with word problems revolving around 
a thematic story (max 60 and 80 min respectively) and a test with one complex task (max 
60 min). For the 2013 test, the maximum test score was 122 (Petterson and Thisted 2013; 
PRIM-gruppen, 2016).

Missing data

Frequencies of missing data on the selected variables (three instruction items and students’ 
Gender, SES, and, in Swedish TIMSS 2015, TestGr6) were generally low, at most a few 
percent. Missing data were handled using the Multiple Imputation functionality of SPSS 
v. 24. Specifically, five sets of imputed data were generated. One of the five plausible val-
ues on mathematics achievement was assigned to each set of imputed data as the outcome 
measure.

Multi‑level analysis

Multi-level analysis is required to study the relation between instruction (a class-level 
variable) and mathematics achievement (an individual-level variable). Several multi-level 
analytic approaches are available. As the most transparent way to explore the independ-
ent effects of several instruction items, we settled on hierarchical linear modeling. This is 
a generalization of linear regression to multiple levels, which has been extensively used 
in educational research (O’Connell and McCoach 2008), including studies of TIMSS data 
(e.g., Webster and Fisher 2000). Following the notation of Ma et al. (2008), we have the 
following student-level model:

Here Yij denotes the mathematics achievement for student i in class j, β0j is the intercept 
in class j, γ10 measures the relation between mathematics achievement and the student’s 
socio-economic status, γ20 measures the relation between mathematics achievement and 
the student’s gender, and rij is a random error term assumed to have a normal distribution 
with a mean of zero and constant variance. The student-level variables are assumed to have 
fixed effects across classes, but the intercept is assumed to vary at the class level according 
to the following class-level model:

Yij = �
0j + �

10
SESij + �

20
Genderij + rij

�
0j = �

00
+ �

01
ClassSESj + �

02
ClassListenj + �

03
ClassDailyj + �

04
ClassMemoj + u

0j
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Here γ00 is the class-level intercept, γ01 measures the relation between class-level 
achievement and class-level socio-economic status, coefficients γ02, γ03, and γ04 measure 
the relations between class-level achievement and our three focal instruction variables, and 
u0j is a random error term representing a unique effect associated with class j. (In the analy-
sis of TIMSS 2003 data, the ClassMemo term was excluded from the model. In the analysis 
of Swedish TIMSS 2015, additional terms for TestGr6 and ClassTestGr6 were included in 
the model.)

In addition to this two-level model, we also analyzed a three-level model that included 
an additional random error term representing a unique effect at the school-level. The differ-
ence in results between the two models was negligible. For this reason, we report only the 
analyses of the two-level model.

Analyses were conducted using restricted maximum likelihood (REML) estimation in 
the linear mixed model function of SPSS v. 24. Using the SPSS functionality for analysis 
of multiply imputed data, analyses were performed on each set of imputed data and then 
pooled to yield unbiased estimates of effects and standard errors.

Results

Descriptive statistics and correlations in the Swedish data from TIMSS 2007–2015

For every wave of the Swedish data, Table 1 reports the gender distribution and the mean 
and standard deviation for the student-level measures. The SES measure (based on books 
at home) has dropped substantially from 2003 to 2015, perhaps driven by a shift to reading 
on screens. It is noteworthy that mathematics achievement nonetheless reached its highest 
mean value in 2015.

Table 2 reports the mean values and standard deviations of the class-level instruction 
variables. Note that the mean values of ClassListen and ClassMemo have both gone up 
by more than a whole standard deviation from 2007 to 2015, indicating that mathematics 
instruction in Sweden (in the eighth grade) has been changing toward more frequent lectur-
ing and memorizing during this period. For ClassDaily the trend is less clear.

The class-level instruction variables were strongly positively correlated with each other, 
and correlations were consistent across waves, see Table 3. An implication of these posi-
tive intercorrelations is that a scale formed by the three instruction variables would have 
internal consistency at a level comparable to the Instruction to Engage Students in Learn-
ing Scale (Cronbach’s alpha > .6). We return to this point in the discussion.

Table 1  Gender distribution and mean values (SD) of student-level variables in the Swedish TIMSS data

Variable 2003 (n = 4255) 2007 (n = 5215) 2011 (n = 5816) 2015 (n = 4090)

Gender 50% girls 52% girls 52% girls 52% girls
Achievement 499 (69) 493 (67) 483 (65) 503 (69)
SES 3.55 (1.25) 3.45 (1.26) 3.22 (1.29) 3.06 (1.31)
TestGr6 77.55 (24.17)
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Analysis of Swedish data from TIMSS 2003–2015

Table 4 reports estimates of fixed effects from multi-level analyses of mathematics achieve-
ment in each wave of the Swedish data. First note the strong positive effect of the students’ 
scores on the national test in grade 6, which were only available for the 2015 analysis. The 
strength of this predictor is in evidence from the proportion of variance at the student-level 
explained in the model increasing to 46% in 2015 from 8% in the previous three waves 
where this predictor was not included.

Second note that both SES and ClassSES had substantial positive effects on achieve-
ment, replicating previous findings of the importance of socioeconomic status and peer 
effects (Vandenberghe 2002).

Our focus here is on the independent effects of the three class-level instruction vari-
ables. The estimates of these effects showed a consistent pattern. Both ClassListen and 
ClassMemo had consistently positive estimated effects on achievement, whereas Class-
Daily had a consistently negative estimated effect. The 2015 analysis is of particular inter-
est as it controls for students’ results on the national test 2 years earlier, thereby providing 
some evidence of causal effects of instruction on mathematical achievement. As can be 
seen in the 2015 column of Table 4, the evidence is strongest for the effect of ClassMemo 
and weakest for ClassListen.

Unfortunately, the method of including pretest scores as a covariate, as we did in the 
2015 analysis, may lead to effects being overestimated due to regression to the mean 
(Eriksson and Häggström 2014). To address such concerns we also conducted an alterna-
tive analysis of the 2015 data using difference scores instead (Castro-Schilo and Grimm 
2018). Importantly, this alternative approach may instead underestimate effects of instruc-
tion due to not accounting for ceiling and floor effects (Eriksson and Häggström 2014). To 
make TIMSS scores and national test scores comparable we transformed both to z-scores 
(i.e., rescaled to have mean zero and unit standard deviation) before calculating the differ-
ence score. We then performed multi-level analysis (without additional controls for grade 
6 achievement) on this difference score, which represents students’ change in relative math 

Table 2  Mean values (SD) of class-level instruction variables in the Swedish data

Variable 2003 (n = 271) 2007 (n = 307) 2011 (n = 266) 2015 (n = 206)

ClassListen 2.98 (0.50) 3.07 (0.38) 3.57 (0.21) 3.64 (0.22)
ClassDaily 2.11 (0.40) 2.38 (0.33) 2.55 (0.28) 2.46 (0.31)
ClassMemo 2.54 (0.27) 2.86 (0.23) 2.89 (0.25)

Table 3  Correlations between class-level instruction variables in the Swedish data

Every correlation in the table is significantly different from zero at p < .001

Pair 2003 (271 
classes)

2007 (307 
classes)

2011 (266 
classes)

2015 
(206 
classes)

ClassListen and ClassDaily .26 .41 .38 .31
ClassListen and ClassMemo .39 .34 .49
ClassDaily and ClassMemo .44 .36 .47
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achievement from grade 6 to grade 8. In this analysis the estimated effect of ClassMemo 
remained positive and statistically significant, such that a unit increase in this variable was 
associated with an improvement in relative math achievement of 0.27 ± 0.12 standard devi-
ations, p = .022. However, the estimated effects of ClassListen and ClassDaily came out 
as non-significant (− 0.08 ± 0.14 and − 0.08 ± 0.10, respectively, p > .400). In conclusion, 
a consistent positive effect of ClassMemo on achievement was found across our analy-
ses of Swedish TIMSS data. For ClassDaily the estimated associations with achievement 
were consistently negative but whether the association was statistically significant or not 
depended on exactly how pretest scores were taken into account in the analysis.

Analysis of data from each country in TIMSS 2003 and 2007

The same multilevel analyses as for Swedish TIMSS 2003 and 2007 were performed sepa-
rately on the data from each of the 45 countries in TIMSS 2003 and each of the 50 coun-
tries in TIMSS 2007. For each country this yielded a set of coefficients estimating fixed 
effects. Median and mean effects across countries are reported in Table 5; results for each 
country are reported in Online Resource 1. Qualitative results showed consistency across 
waves as well as consistency with our findings in Sweden. Of greatest interest is the 2007 
analysis, which included all three instruction measures. Note that the strongest estimated 
effects on achievement were the positive effect of ClassMemo followed by the negative 
effect of ClassDaily. 

Table 4  Results of the multi-level model of mathematics achievement in the Swedish data

† p < .10, *p < .05, **p < .01, ***p < .001
Models included intercept, not reported above. Fixed effects are reported as coefficient ± standard error, 
with stars indicating statistical significance. The proportion of variance explained (at each level) is obtained 
by relating the unexplained variance in this model to the unexplained variance in the null model, see Ma 
et al. (2008). The ClassMemo variable was not available in the 2003 wave and therefore not included in the 
model. Data on students’ results on the Swedish national test in grade 6, the TestGr6 and ClassTestGr6 vari-
ables, were only available in connection with the 2015 wave

2003 wave 2007 wave 2011 wave 2015 wave

Fixed effects
 Gender 3.89 ± 1.78* 0.24 ± 1.94 3.00 ± 1.69† 5.65 ± 2.16*
 SES 14.29 ± 0.73*** 15.21 ± 0.79*** 14.78 ± 0.74*** 7.34 ± 0.73***
 ClassSES 38.46 ± 5.58*** 20.86 ± 3.07*** 24.23 ± 2.82*** 10.56 ± 3.43**
 TestGr6 1.80 ± 0.04***
 ClassTestGr6 0.35 ± 0.17*
 ClassListen 0.88 ± 7.65 18.68 ± 4.64*** 24.19 ± 7.80*** 5.67 ± 9.15
 ClassDaily − 11.39 ± 10.81 − 14.69 ± 5.84* − 14.57 ± 6.05** − 13.25 ± 6.52*
 ClassMemo 16.77 ± 6.36** 22.42 ± 6.83** 24.99 ± 8.11**

Proportion of variance explained
 At the student-level .08 .08 .08 .46
 At the class-level .56 .52 .63 .77
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Comparisons between countries in TIMSS 2003 and 2007

Within each wave there was considerable variation between countries in the estimated 
effects. To draw valid conclusions from these results, it is crucial to understand whether 
this variation between countries is due to random noise or whether it reflects genuine dif-
ferences between countries in the effect of instruction practices on math achievement. We 
therefore examined whether differences in estimated effects between countries were con-
sistent across TIMSS waves. For this analysis we used data on 36 countries that partici-
pated in both 2003 and 2007. As illustrated in Fig. 1, there were highly consistent country 
differences across waves with respect to mean levels of reported use of instructional prac-
tices, both for ClassListen, r = .70, p < .001, and ClassDaily, r = .91, p < .001. However, 
with respect to the estimated effects on math achievement of reported use of instructional 
practices, country differences were not consistent across waves; the Spearman correlation 

Table 5  Median and mean (SD) of fixed effect estimates across countries from multi-level analyses of 
mathematics achievement

† p < .10, *p < .05, **p < .01, ***p < .001
The p values refer to Wilcoxon signed rank test of whether the median equals zero. The ClassMemo vari-
able was not available in the 2003 wave and therefore not included in the model

2003 wave (45 countries) 2007 wave (50 countries)

Median Mean (SD) Median Mean (SD)

SES 9.51*** 9.48 (6.13) 8.54*** 10.06 (6.10)
Gender 2.42† 2.78 (9.19) 2.87 1.65 (11.48)
ClassSES 40.64*** 46.98 (21.98) 44.22*** 46.01 (24.83)
ClassListen 16.17*** 24.15 (34.79) 7.41* 14.22 (32.79)
ClassDaily − 11.39*** − 10.27 (21.62) − 13.53*** − 14.21 (19.60)
ClassMemo 17.16*** 17.22 (25.86)

Fig. 1  Dotplots of mean ClassListen (left) and mean ClassDaily (right) in the 2003 wave (x-axis) and the 
2007 wave (y-axis) for 36 countries participating in both waves. The plots show highly consistent country 
differences in instructional practices across waves
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between the estimated effects in 2003 and 2007 was virtually zero for ClassListen, ρ = .05, 
p = .78, as well as for ClassDaily, ρ = .06, p = .74. See Fig. 2.

Discussion

The purpose of this study was to investigate whether TIMSS data could shed light on the 
three debated instructional practices of lecturing, relating mathematics to students’ daily 
lives, and memorizing formulas and procedures. Our method was to examine the associ-
ation between student achievement and student-reported measures of instructional prac-
tices in four waves (2003, 2007, 2011, and 2015) of the Swedish version of TIMSS and 
two waves (2003 and 2007)  of the international version of TIMSS. Although our study 
was motivated by the question of the effectiveness of different instructional practices, it is 
important to note that observing associations between achievement and instruction does 
not necessarily answer that question. For instance, consider the observed negative asso-
ciation between student achievement and the practice of relating mathematics to students’ 
daily lives. This negative association could reflect that student achievement and relating 
math to students’ daily lives are driven in opposite directions by a third variable (e.g., if 
more effective teachers typically spend less time on everyday aspects of mathematics but 
some other factor accounts for the effectiveness of their teaching). Alternatively, the asso-
ciation could reflect a causal connection from achievement to instruction (e.g., if teachers 
instructing a low-achieving student group feel more obliged to stress connections to stu-
dents’ everyday lives).

Cross-sectional data alone cannot tell us which interpretation of observed associations is 
the most valid one. In educational research, the most common way to address this concern 
is to use additional data on achievement prior to instruction. Unfortunately, linking TIMSS 
data to such additional data is generally not possible, as TIMSS data are anonymized. 
In this study we benefited from Swedish TIMSS 2015 being a special case in which the 

Fig. 2  Dotplots of the estimated effects on mathematics achievement of ClassListen (top) and ClassDaily 
(bottom) in the 2003 wave (x-axis) and the 2007 wave (y-axis) for 36 countries participating in both waves. 
The plots show no consistent country differences in the effect of instructional practices on mathematics 
achievement across waves
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TIMSS data were linked to certain available data on the participating students’ achieve-
ment in school before the dataset was anonymized.

Associations between instructional practices and math achievement

The best data we had were from Sweden, where (with one exception) the same three items 
had been included in each of the last four waves of TIMSS. Results were consistent across 
waves: students tended to score better on the TIMSS mathematics achievement test when 
attending a classroom where students reported that they memorize formulas and listen to 
the teacher more often, and that the mathematics is connected to their daily lives less often.

Our analysis of the international TIMSS data showed that the findings in Sweden were 
typical. Both in 2003 and 2007, the median effect on math achievement of each instruc-
tional practice had the same direction as we found in Sweden. There was considerable var-
iation in results between countries. However, this between-country variation showed no 
consistency across waves; if an effect went in the atypical direction in one wave in some 
country, that effect would most often go in the typical direction in the other wave in the 
same country. This finding suggests that the between-country variation in results were 
mostly due to noise rather than any genuine differences in effects between countries. Thus, 
our tentative interpretation is that the typical associations between math achievement and 
instructional practices we obtained hold in countries in general.

In the introduction we described three longstanding debates on the role of teachers in 
instruction, the value of relating mathematics to students’ everyday lives, and the bene-
fits of memorizing formulas and procedures. We argued that all three debates could be 
regarded as a reform movement position standing against a cognitive science position. In 
our study we found that better achievement was associated with more teacher-led instruc-
tion, less connection to students’ daily lives, and—in particular—more memorizing of for-
mulas and procedure. These associations are consistent with the cognitive science positions 
in all these debates. However, due to the possibility of alternative explanations (third vari-
ables and reverse causality), we cannot draw any firm conclusions from these associations 
alone.

Of particular interest, then, are our findings in the Swedish TIMSS 2015 dataset; as it 
included data on students’ scores on the national test 2 years earlier, this dataset allowed 
analyses of change in relative achievement over time. These analyses indicated that 
improvement in relative achievement was associated with students having been subjected 
to more memorizing of formulas and procedures.

How TIMSS could become more informative for evaluating instructional practices

We shall now discuss several possibilities of improving the usefulness of TIMSS as a tool 
to evaluate instructional practices.

First, it would be valuable to strengthen the design of TIMSS so that the same students 
are tested more than once, for instance, by including in the grade 8 study a sub-sample of 
the students who participated in the grade 4 study 4 years earlier. Data from such panel 
studies would be much more informative with regards to the causal effects of instruction. 
(Obviously, more countries could also follow Sweden’s example in linking TIMSS data to 
national test scores.)

Second, measures of instructional practices should be included in the international stu-
dent questionnaire. The measures we have examined here have not been included in the 
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international sample since 2007. As we have shown, measures of instructional practices 
enable examination of relations to student achievement. Moreover, as the Swedish data 
indicated, including such measures in every wave allows changes in math instruction to be 
tracked over time.

Third, the measures of instructional practices should be more refined. The items we 
have used seem to be under-specified. For instance, the effectiveness of listening to the 
teacher lecturing is very likely to depend on the content and coherence of the lecture. A 
more sophisticated example is provided by the item on relating to students’ daily lives. 
The theoretical rationale for Blömeke et al. (2016) to include a similar item (in the teacher 
questionnaire) in their measure of instructional quality was that it reflected cognitive acti-
vation, which has been demonstrated to be an important aspect of instructional quality. 
For instance, the COACTIV project reported by Baumert et al. (2010) found a strong cor-
relation between cognitive activation and student achievement. However, the relating of 
mathematics to students’ daily lives is covered by the COACTIV framework only to the 
extent that it amounts to mathematical modeling, for which several subcategories are used 
to assess the difficulty of the modeling (Jordan et al. 2006). In sum, relating mathematics 
to daily life may or may not reflect cognitive activation; and to assess whether it does, it 
seems necessary to refine the question so that it specifically taps into the cognitive acti-
vation aspect. We believe this holds in general: Assessing the actual quality of various 
instructional activities requires more refined items than what has been included in TIMSS 
questionnaires so far.

Fourth, TIMSS should not provide scales of instructional quality for which there is no 
evidence that each item represents quality teaching. In the introduction we mentioned the 
Instruction to Engage Students in Learning Scale, provided by TIMSS, which Blömeke 
et al. (2016) used as a measure of instructional quality. This scale includes an item on relat-
ing mathematics to students’ daily lives, a practice for which we did not find any positive 
association with student learning. On this theme, we want to return to a point made in pass-
ing in the results section: the three items that we studied exhibited substantial inter-correla-
tion. In other words, classes who reported that they often listened to the teacher and often 
memorized formulas and procedures also tended to report that they often connected math 
to their everyday lives. Indeed, the three items together had a level of internal consistency 
comparable to the Instruction to Engage Students in Learning Scale. Nonetheless, achieve-
ment was positively associated with two items and negatively associated with the third one. 
A plausible interpretation is that the three items have something in common (in the sense 
that responses to these items covary), but what they have in common does not represent 
instructional quality.

Conclusions

The idea of using international assessments to evaluate, understand and improve school 
systems dates back half a century. Still, they seem to be under-utilized to inform the devel-
opment of effective instructional practices. Here we used data from TIMSS to establish 
several interesting findings: Student questionnaires seem to give useful information on the 
use of various instructional practices in the math classroom. In contrast to the scale that 
TIMSS provides from the teacher questionnaire, the data on instructional practices from 
the student questionnaire yielded meaningful associations with math achievement within 
countries. These within-country associations seem to hold in general, both across countries 
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and across time. Moreover, variation between countries in levels of use of various instruc-
tional practices tended to be consistent across waves, indicating that these measures reflect 
genuine differences in how math is taught in different countries. At the same time, data 
from four consecutive waves of TIMSS in Sweden showed some clear trends, suggest-
ing that these measures can be used to track changes in a country’s teaching culture over 
time. We have also suggested several possible improvements that could make international 
assessments like TIMSS an even better tool for studying the use and effects of instructional 
practices.
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