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Abstract 

Recently, there has been an increased interest in using artificial neural networks in the              
severely resource-constrained devices found in Internet-of-Things networks, in order to          
perform actions learned from the raw sensor data gathered by these devices. Unfortunately,             
training neural networks to achieve optimal prediction accuracy requires tuning multiple           
hyper-parameters, a process which has traditionally taken many times the computation time            
of a single training run of the neural network. In this paper, we empirically evaluate the                
Population Based Training algorithm, a method which simultaneously both trains and tunes            
a neural network, on datasets of similar size to what we might encounter in an IoT scenario.                 
We determine that the population based training algorithm achieves prediction accuracy           
comparable to a traditional grid or random search on small datasets, and achieves             
state-of-the-art results for the ​Biodeg​ dataset. 

1 Introduction 
Over the last few years, we have seen a significant increase in research and              
development of novel Internet-of-Things (IoT) devices, and they are now used for            
controlling industrial machinery ​[1]​, monitoring crowds ​[2]​, managing energy in smart           
buildings ​[3]​, and in autonomous vehicles ​[4]​, to name a few. 

Because IoT devices, especially in the edge, are typically severely constrained in            
terms of energy, computation, storage, and bandwidth resources, early approaches to           
using machine learning (ML) in IoT networks were often cloud-centric, in which            
predictions were made in the cloud. This approach required transferring all necessary            
data to the cloud, which prevented use-cases in which the necessary bandwidth and             
latency allowances were not available. Lately, prediction has mostly been moved to the             
nodes, where possible, but this move still requires the training to be done before              
deployment or in the cloud and therefore prevents using ML in situations where the data               
is not available before deployment, and the available bandwidth is insufficient for            
transfer to the cloud. 

Among the most successful ML algorithms for learning from complex sensor           
signals are artificial neural networks (ANN); however, the majority of research into            
ANNs in the last decade has focused on improving the predictive performance on large              
datasets using an abundance of computational resources. This trend has resulted in a             
situation where even training a small state-of-the-art ANN on a small dataset can be too               
resource-demanding for an IoT node. 

One of the reasons for the large resource requirements of training an ANN is that               
conventional approaches for tuning the hyper-parameters consist of an outer          
optimization loop based on strategies like random search ​[5]​, Bayesian optimization ​[6]​,            
and evolutionary computation ​[7]​. The time required to tune the parameters is then the              
product of the training time and the number of hyper-parameter configuration           
evaluations. Recently, a promising new algorithm called Population Based Training          
(PBT) was proposed by Jaderberg et al. ​[8]​, which reduces the tuning time by both               
training and tuning the neural network simultaneously. However, the method was           
developed and tested on cases with an abundance of resources, and it is unclear whether               
it works well for small datasets. 

This paper was presented at the NIK 2019 conference. For more information, see http://www.nik.no/.  
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In this paper, we empirically evaluate how well PBT performs using small datasets,             
and we have discovered that the PBT algorithm can achieve results similar to a simple               
grid-search approach, both using the gradient descent (GD) optimization algorithm to           
update the weights. 

The remainder of this paper is structured as follows: in Section 2, we give a brief                
overview of related work, then describe the PBT implementation in Section 3. We go on               
to describe our two experiments in Section 4. Finally, we discuss the results and future               
work in Section 5. 

2 Related work 
Training the ML models outside of the cloud is a natural progression of the recent trend                
of moving services out of the cloud and closer to the consumers. An early example of                
this is the concept of edge computing, which involves processing the data closer to the               
user before transferring it to the cloud ​[9]​. Training ML models on edge nodes can be                
difficult due to resource constraints, and doing so when the IoT network has only              
weaker nodes might require novel techniques such as federated learning ​[10]​, transfer            
learning ​[11]​ or online learning ​[12]​. 

More recently, however, the concept of fog computing has been proposed ​[13]​. Fog             
computing can be thought of as extending the concept of the cloud out and towards the                
edge by using more powerful processing gateways. With these more powerful nodes            
available, it is worth considering training ANNs locally, as these are powerful models,             
and prediction is typically fast. 

Traditional approaches which involved automatically tuning the hyper-parameters        
of ANNs has so far involved either grid search ​[14]​, random search ​[5]​, Bayesian              
optimization ​[6]​, or evolutionary computation ​[7]​. However, these approaches require          
independent trials of each hyper-parameter configuration being evaluated, causing a          
linear increase in the computation time required to train and tune a network.             
Additionally, optimizing schedules using these approaches requires manually specifying         
the model beforehand, often at the cost of increasing the number of hyper-parameters             
that must be optimized. 

The PBT algorithm solves these problems by continually updating the parameters           
and hyper-parameters simultaneously, in addition to improving the accuracy of the           
model. However, it is unclear how well PBT will handle the higher noise in the               
evaluation of individual networks and the increased risk of overfitting caused by the             
smaller datasets. 

3 Population based training 
The PBT algorithm is a combined training and tuning algorithm proposed by Jaderberg             
et al. ​[8]​. The outline of the algorithm can be seen in Algorithm 1. 

It employs a population of N “cooperating” individuals, each exploring the problem            
space with randomly initialized hyperparameters. For the training algorithm, we use the            
standard ​traingd gradient descent with the backpropagation algorithm from MATLAB’s          
Deep Learning ​Toolbox in a feed-forward neural network. For every 20 epochs, the            
entire population is evaluated on the validation set, and all individuals can have their              
weights and hyperparameters updated externally by two methods:  
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Initialize population P with random hyperparameters and weights 

while not​ end of training​ do 
  for​ p​

i​ ∈ P do 

    train p​
i​ one step 

  ​loop 
  ​if​ ready for evaluation(P) ​then 
    ​evaluate (P) 
    for​ p​

i​ ∈ P do 

      p​
i​ ← exploit (p​i​, P) 

      if ​exploited ​then 
        p​

i​ ← explore (p​i​) 
      ​end if 
    loop 

  end if 

loop 

Algorithm 1: High-level Population Based Training algorithm. 

● Exploit​: Replaces the weights and hyperparameters of the worst individuals from           
the bottom 20% quantile with randomly sampled individuals from the top 20%            
quantile. In their paper, Jaderberg et al. ​[8] named this ​truncation selection and             
noted that it, in general, gave better results than ​binary tournament and ​T-test             
selection​. 

● Explore​: Proposes new hyperparameters to potentially better explore the         
problem space of an individual which has in the current evaluation already been             
a target for exploitation. Two methods were tried. We have only reported on             
perturb​, in which each hyperparameter is independently and randomly scaled by           
a factor of either 0.8 or 1.2. We also implemented ​resample​, in which each              
hyperparameter is resampled from the original prior distribution, but results          
from this test are not included as it did not give an improved performance in our                
tests. 

The principles of ​exploit and ​explore very much resemble inheritance and mutation,            
respectively, as used in evolutionary computation (EC). Unlike EC, the crossover           
operation is not part of PBT. Instead, weights are inherited and hyperparameters are             
mutated. However, the rate of mutation is decoupled from the rate of learning, where              
learning is performed using standard training methods, in our case gradient descent.            
This process is similar to Lamarckian evolution with the Baldwin effect ​[15]​. 

When the entire population is trained to completion, in our case either 600 or 2,000               
epochs in total, the best ranked individual is selected and evaluated on the test set. This                
structure also makes the PBT algorithm well suited for parallel training. 

4 Experiments 
For our experiments, we wanted to see whether we could train models which achieve              
similar or improved predictive performance with PBT when compared to the traditional            
grid search with gradient descent (GSGD) approach for classification problems with a            
small number of examples. In order to make the comparison fair, we made sure that the                
total number of epochs was the same when using GSGD compared to a given              
population size N of PBT, e.g. for PBT with N=20 individuals which are trained for 600                
epochs, the grid search was divided into 20 discrete values which are also trained for               
600 epocs. Early stopping was not enabled in any of our two experiments to make sure                
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that the number of epochs was identical. The architecture was also the same for both               
experiments. 

The first experiment was done with an implementation of PBT where only learning             
rate was tuned, to get an impression of how well it performed on various datasets. The                
second experiment expanded on this to tune two hyperparameters, learning rate and            
regularisation level, to see how it affected a small, unbalanced dataset. 

While Jaderberg et al. ​[8] have used a variety of specialized measurements for             
measuring the performance of the trained models, we are interested in an automated             
approach for any classification dataset. While accuracy is one of the most used ranking              
metrics for classification performance, it can easily mischaracterize the predictive          
performance when used with unbalanced datasets ​[16]​. Therefore, we opted to optimize            
the Area Under the Receiver Operating Characteristics Curve (AUC) for all datasets            
since AUC has been suggested as a better measure than accuracy [17]. 

4.1 Datasets 
We have used four small, binary classification datasets retrieved from UCI , which            1

contains between 1 055 and 11 055 instances. Additionally, we also used the ​HIGGS            
dataset, also from UCI, which contains 11 million instances, and are likely larger than              
what would be relevant when training the ANN in an IoT node. These sets are               
unbalanced to a variable degree, as shown in Table 1. 

Dataset # instances # features Minority share 
Biodeg ​[17] 1,055 41 34 % (356) 
HIGGS ​[18] 11,000,000 21/28  2 47% 
HIGGS subset 100,00 21 47% 
Phishing websites ​[19] 11,055 30 44% (4,898) 
Spambase ​[20] 4,601 57 39% (1,813) 
Wilt ​[21] 4,839 6 5% (261) 

Table 1: Overview of the datasets used, the number of samples, number of features, and minority share in 
percent (absolute numbers) for each dataset. 

These datasets were selected because they were of small size, with a moderate             
number of features and without missing values. The ​HIGGS dataset was used as a              
reference as it is nearly balanced and much larger. However, only 100,000 instances and              
21 features were used in our experiment due to run-time constraints. Each dataset was              
divided into three parts: 20% for the test set, 16% for the validation set, and 64% for the                  
training set. 

4.2 Basic PBT experiment 
We ran the initial PBT experiment with 10, 20, and 40 individuals in each population               
for 600 and 2,000 epochs. Each experiment was repeated 20 times on a network with               
three hidden layers, each consisting of 20 nodes. The results are reported as the              
arithmetic average of all trials. 

The only hyperparameter to be optimized for this first experiment was the learning             
rate (LR), η. For PBT, it was randomly initialized from a uniform distribution between              
0.0001 and 0.1, and for GSGD the same range was uniformly divided to match the               
respective number of individuals in PBT. The results can be seen in Table 2 and Figure                
1.  

1 http://archive.ics.uci.edu/ml/index.php 
2 21 features are low-level, kinematic properties measured by the particle detectors in an accelerator,               

and seven features are functions of the first 21 features: high-level features derived by physicists to help                 
discriminate between the two classes. 
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Epochs 600 2,000 

Population size (N) 1 10 20 40 1 10 20 40 
Dataset         
Biodeg, PBT  0.900 0.894 0.896  0.900 0.906 0.904 
Biodeg, GSGD 0.897 0.906 0.908 0.908 0.912 0.920 0.930 0.917 
HIGGS subset, PBT  0.560 0.564 0.568  0.595 0.595 0.596 
HIGGS subset, GSGD 0.537 0.553 0.555 0.558 0.560 0.580 0.584 0.585 
Phishing websites, PBT  0.976 0.976 0.976  0.983 0.983 0.984 
Phishing websites, GSGD 0.951 0.975 0.975 0.976 0.976 0.980 0.981 0.981 
Spambase, PBT  0.898 0.906 0.918  0.901 0.945 0.933 
Spambase, GSGD 0.867 0.915 0.920 0.919 0.939 0.944 0.948 0.948 
Wilt, PBT  0.843 0.879 0.897  0.922 0.947 0.947 
Wilt, GSGD 0.771 0.861 0.872 0.930 0.779 0.932 0.945 0.959 

Table 2: AUC results of the initial PBT implementation and GSGD rounded to three significant digits for 
all datasets for four different population sizes and two different run-times in epochs. 

Biodeg​ (a) HIGGS​ (b) 

Phishing Websites​ (c) Spambase​ (d) 

 

Wilt​ (e) 
Figure 1: Graphical representation of AUC (y-axis) for the ​Biodeg​ (a), ​HIGGS subset​ (b), ​Phishing 

Websites​ (c), ​Spambase​ (d), and ​Wilt​ (e) datasets for PBT and GSGD. The x-axis shows the population 
size for PBT or the equivalent number of grid values for GSGD. Only LR has been optimized. 

 



4.2.1 Results 
For the ​HIGGS and ​Phishing Websites datasets, PBT scores better than GSGD. These             
two datasets are also the two largest with 100,000 and 11,000 instances, respectively.             
This indicates that PBT is more sensitive to the number of samples than GSGD.              
Jaderberg et al. ​[8] got their results using either very large datasets or generating as               
many samples as they needed. 

For the other three datasets, PBT scores worse or comparable to GSGD. This result              
could be caused by overfitting because of the low number of training instances in              
combination with a relative high architecture complexity. However, it could also be            
caused by the AUC metric being too sensitive to the small number of examples in the                
dataset, as described by Hanczar et al. ​[22]​. 

While PBT achieves better predictive performance on one dataset, and only slightly            
worse results on three of five datasets compared to the state-of-the-art results for these              
datasets, see Table 6, the results are still impressive given that the state-of-the-art results              
were achieved using methodology which was optimized for each dataset. 

Even though the PBT and GSGD optimize the hyper-parameters with respect to the             
AUC, the predictive performance of the models could still suffer when the models are              
trained on imbalanced datasets. In our next experiment, we will address this by             
attempting to balance the dataset using oversampling. 

4.3 PBT with oversampling and ​L​2​ regularisation 
Several strategies have been developed to deal with class imbalance, and Buda et al.              
[23] have discussed several of these methods and their use for training convoluted             
neural networks and concluded that imbalance is detrimental to classification          
performance. They also use AUC as an evaluation metric and justify this by arguing that               
overall accuracy metric is associated with notable difficulties for imbalanced data.           
Chawla et al. ​[24] note that oversampling can lead to overfitting for general machine              
learning techniques. To mitigate this and other problems, they developed Synthetic           
Minority Oversampling TEchnique (SMOTE). This technique works by adding         
synthetic data. However, they only compared against undersampling and did not           
consider the case of training a neural network. Therefore we will consider regular             
random, minority oversampling to deal with class imbalance for our next experiment. 

In ​[14]​, Goodfellow et al. discuss several methods to handle overfitting and some of              
the computationally less expensive methods are drop out, ​L​1 and ​L​2 regularisation. We             
have used a variant of ​L​2 regularisation which modifies the normal performance            
function, the mean sum of squares of the network errors, by adding the term mean sum                
of the squares of the network weights and biases as described in ​Equation 2​. 

(1 ) λmsew = 1
N − λ ∑

N

i=1
(t )i − αi

2 + n
1 ∑

n

j=1
wj

2 (​2​)  

This is from the MATLAB 2018a implementation, which is similar, but not            
identical, to how others like Krogh and Hertz ​[25] and Goodfellow et al. ​[14] describe               
L​2​ regularisation, but the general principle, and therefore the result should be similar. 

Based on the results of the previous experiment, we opted to focus only on the               
Biodeg dataset since this dataset achieved the worst performance in our N experiment,             
when compared to GSGD. In order to keep the complexities down, we looked at only               
two variants for this experiment, one with only oversampling and one with both             
oversampling and ​L​2​ regularisation. 
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For this experiment we trained PBT for 600 epochs with a population of N=20              
individuals for 20 independent trials, but to rule out any overfitting in the relatively              
large architecture in the first experiment, we tested multiple different architectures; one,            
two and three hidden layers with five, ten, fifteen, and twenty nodes. For GSGD, we               
used the same architectures as for PBT and the same single level grid search for               
learning rate as in the first experiment. Also, the hyperparameter distribution is the same              
as described in the first experiment for both PBT and GSGD. The results can be seen in                 
Table 3 and Figure 3a. 
 

Architecture 

AUC Accuracy in % 

PBT, LR 
(SD) 

PBT, LR, 
oversampling 
(SD) 

GSGD, LR 
(SD) 

GSGD, LR, 
oversampling, 
(SD) 

PBT, LR 
(SD) 

PBT, LR, 
oversampling
(SD) 

GSGD, LR 
(SD) 

GSGD, LR, 
oversampling 
(SD) 

5x1 0.895 (0.015) 0.905 (0.012) 0.900 (0.025) 0.909 (0.016) 80.3 (2.40) 82.1 (1.81) 83.1 (3.03) 82.9 (2.57) 
10x1 0.897 (0.013) 0.911 (0.012) 0.912 (0.026) 0.918 (0.013) 80.9 (1.76) 83.0 (2.24) 84.4 (2.47) 83.9 (3.00) 
15x1 0.895 (0.019) 0.908 (0.012) 0.917 (0.016) 0.926 (0.020) 80.9 (2.48) 82.9 (1.67) 84.9 (2.56) 85.5 (3.37) 
20x1 0.899 (0.011) 0.909 (0.013) 0.915 (0.019) 0.924 (0.016) 81.2 (1.68) 82.7 (1.47) 84.5 (1.95) 84.1 (2.33) 
5x2 0.900 (0.015) 0.910 (0.009) 0.917 (0.018) 0.923 (0.022) 81.9 (2.01) 83.4 (1.12) 85.2 (1.94) 85.5 (2.97) 
10x2 0.904 (0.015) 0.910 (0.013) 0.919 (0.028) 0.915 (0.028) 82.2 (1.87) 83.0 (1.49) 84.9 (2.85) 84.7 (3.25) 
15x2 0.904 (0.011) 0.911 (0.014) 0.910 (0.022) 0.921 (0.022) 81.6 (1.84) 83.0 (1.64) 84.2 (1.85) 84.1 (3.30) 
20x2 0.902 (0.012) 0.908 (0.017) 0.924 (0.024) 0.925 (0.019) 81.9 (1.91) 82.5 (1.59) 85.2 (2.30) 84.6 (2.50) 
5x3 0.900 (0.016) 0.903 (0.024) 0.916 (0.023) 0.915 (0.024) 82.2 (2.19) 82.9 (2.60) 85.3 (2.63) 84.5 (2.81) 
10x3 0.900 (0.020) 0.910 (0.013) 0.915 (0.016) 0.918 (0.017) 81.8 (1.99) 82.9 (1.53) 84.6 (2.18) 84.3 (3.40) 
15x3 0.898 (0.019) 0.907 (0.011) 0.917 (0.024) 0.923 (0.017) 81.4 (2.14) 82.5 (1.56) 85.1 (2.70) 84.0 (2.51) 
20x3 0.899 (0.016) 0.911 (0.012) 0.922 (0.026) 0.921 (0.013) 81.5 (2.00) 83.1 (1.72) 84.4 (3.35) 84.4 (2.61) 

Table 3: AUC and accuracy results with standard deviation in parenthesis for the ​Biodeg​ dataset. Only 
learning rate was optimised for PBT. For GSGD, single level grid search on learning rate was done. 

Results are with and without oversampling rounded to three significant digits for twelve different 
architectures. 

In order to find out how ​L​2 regularisation works on this dataset, we compared GSGD               
with only L​2 regularisation and with both oversampling and ​L​2 regularisation with levels             
of 𝜆=[0.0, 1.0] in steps of 0.1. We randomly initialized η from a uniform distribution               
between 0.0001 and 0.1. The results can be seen in Figure 2. 
 

(a) (b) 
Figure 2: Graphical representation of AUC (y-axis) for GSGD for various architectures and levels of ​L​2 

regularisation with (b) and without (a) oversampling for different architecture complexities (x-axis). 
𝜆 ​=1.0 is not shown as it is equivalent to random classification with AUC ~= 0.5. 

𝜆=1, 𝜆=0.9, 𝜆=0.8, and to a lesser extent also 𝜆=0.7, particularly without            
oversampling, have a clear, negative impact on the performance for all architectures.            
Particularly noticeable is this for the less complex architectures with only five nodes in              
each layer. Otherwise, there is little difference between the results with or without             

 



oversampling. For PBT’s ​exploit we, therefore, decided to draw 𝜆 from a uniform             
distribution between 0.0 and 0.7, and for ​explore, we truncated 𝜆 to 0.7. GSGD was run                
as a grid search with 𝜆=[0.0, 0.7] in steps of 0.23… and η=[0.0001, 0.1001] in steps of                 
0.025. The result can be seen in Table 4 and Figure 3b. 
 

Architecture 
PBT, 
LR & ​L​2 
(SD) 

PBT, 
LR & ​L​2​, 
oversampling 
(SD) 

GSGD, 
LR & ​L​2 (SD) 

GSGD, 
LR & ​L​2​, 
oversampling 
(SD) 

5x1 0.909 (0.023) 0.912 (0.021) 0.909 (0.022) 0.919 (0.020) 
10x1 0.902 (0.023) 0.908 (0.020) 0.901 (0.029) 0.917 (0.021) 
15x1 0.904 (0.021) 0.910 (0.027) 0.912 (0.021) 0.911 (0.017) 
20x1 0.914 (0.020) 0.913 (0.019) 0.910 (0.023) 0.921 (0.020) 
5x2 0.905 (0.013) 0.908 (0.020) 0.917 (0.015) 0.916 (0.023) 
10x2 0.910 (0.019) 0.914 (0.016) 0.925 (0.013) 0.915 (0.013) 
15x2 0.898 (0.023) 0.916 (0.017) 0.917 (0.017) 0.917 (0.015) 
20x2 0.899 (0.019) 0.908 (0.017) 0.913 (0.021) 0.924 (0.019) 
5x3 0.900 (0.030) 0.907 (0.029) 0.913 (0.026) 0.909 (0.017) 
10x3 0.905 (0.025) 0.910 (0.023) 0.914 (0.019) 0.920 (0.026) 
15x3 0.908 (0.017) 0.916 (0.018) 0.924 (0.017) 0.922 (0.019) 
20x3 0.902 (0.027) 0.911 (0.022) 0.912 (0.016) 0.921 (0.021) 

Table 4: AUC and standard deviation results of PBT and GSGD for the ​Biodeg​ dataset. For PBT both 
learning rate and ​L​2​ regularisation is tuned. For GSGD a 5 x 4 grid search was used. Results are with and 

without oversampling rounded to three significant digits for twelve different architectures. 

(a) (b) 
Figure 3: Graphical representation of AUC (y-axis) for PBT and GSGD with LR optimization with (b) 
and without (a) ​L​2​ regularisation optimization, with and without oversampling for different architecture 

complexities (x-axis). 

4.3.1 Results 
From Figure 3a, we can see that oversampling alone gives a better overall performance              
for PBT while it does not show overall improvements for GSGD. 

Comparing Figure 3a and 3b, ​L​2 regularisation appears to overall have a positive             
effect on PBT without oversampling, but not with oversampling nor for GSGD. The             
p-value for conducting an independent two-tailed Student’s t-test comparing the best           
results of PBT and GSGD with and without oversampling from Table 3 and 4 are given                
in Table 5. 

Based on this, we can therefore reject the alternative hypothesis that there is a              
statistically significant difference between the best results optimizing only the learning           
rate and optimizing both learning rate and ​L​2 regularisation term within a 5%             
significance level.  

 



 
Results LR (SD) 

(from Table 3)
LR & ​L​2​ (SD) 
(from Table 4) p​-value 

PBT 0.904 (0.011) 0.914 (0.020) 0.081 
PBT, oversampling 0.911 (0.012) 0.916 (0.017) 0.307 
GSGD 0.924 (0.024) 0.925 (0.013) 0.816 
GSGD, oversampling 0.926 (0.020) 0.924 (0.019) 0.760 

Table 5: Overview of the best AUC and standard deviation results from the ​Biodeg​ datasets for PBT and 
GSGD with only LR optimization and with both LR and L​2​ regularisation optimization, with and without 

oversampling and the calculated ​p​-value. 

This indicates that oversampling and ​L​2 regularisation has little or no effect on the              
Biodeg dataset. This possibility is supported by Figure 2, where there is little difference              
in results between 𝜆=[0.0, 0.7] with and without oversampling. 

Similarly, the ​p​-values comparing the best results of PBT with the best result of              
GSGD (bold in Table 4) are 0.042 and 0.169 without and with oversampling,             
respectively. We can, therefore, accept the alternative hypothesis that there is a            
statistically significant difference between PBT and GSGD without oversampling, but          
not with oversampling, within a 5% significance level. 

Our overall best results (bold in Table 4) has as 95% CI at [0.909, 0.923] for PBT                 
and [0.919, 0.931] for GSGD. Both PBT and GSGD are better than state-of-the-art             
results listed in Table 6. 

5 Discussion and future work 
In this paper, we have proposed a general PBT configuration to train neural networks on               
classification datasets. We then evaluated the PBT configuration on a selection of            
binary classification problems using small datasets in a scenario that is relevant for IoT              
applications. We have shown that our PBT configuration outperforms GSGD on the            
larger of these datasets. But on the smallest datasets, PBT performs comparable or only              
slightly worse than GSGD. Using the Biodeg dataset, we have also shown that it can               
optimize both the learning rate η and the penalty term 𝜆 of ​L ​2 regularisation              
simultaneously, and we have established that oversampling, when relevant, has a           
positive effect on PBT. 

When compared to the state-of-the-art results reported in the literature for these            
datasets, as summarised in Table 6, both PBT and GSGD give better results for ​Biodeg​. 

 

Dataset Best-in-class 
Experiment 1 Experiment 2 

Best initial PBT 
(from Table 2) 

Best PBT with LR 
(from Table 3) (SD) 

Best PBT with LR & ​L​2 
(from Table 4) (SD) 

Biodeg 0.887 ​[26] 0.906 0.911 (0.012) 0.916 (0.017) 
HIGGS 0.891 ​[27] 0.596 (subset)   
Phishing websites 0.993 ​[28] 0.984   
Spambase 0.980 ​[29] 0.945   
Wilt 0.990 ​[30] 0.947   

Table 6: Overview of the datasets used giving state-of-the-art results found in published papers to the best 
of our abilities together with the best results from our experiments. 

We found that PBT achieves better or similar results on four of five datasets              
compared to the state-of-the-art results for these datasets, see Table 6. Given that the              
state-of-the-art results were achieved using a methodology which was optimized for           
each dataset, this is quite impressive and strengthen the idea that state-of-the-art or near              
state-of-the-art results can be achieved in constrained IoT devices in the edge. The             
inferior performance on the ​HIGGS dataset, is likely because we only used a subset of               
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the complete dataset, in addition to only considering a small class of network             
architectures. 

Jaderberg et al. ​[8] claim that PBT does not have wall-clock run time that is greater                
than that of a single optimization process and is also able to use fewer computational               
resources than conventional search methods. In a separate paper by Jaderberg et al. ​[31]              
describing how they used PBT to train a neural network to playing the game of ​Quake                
III Arena Capture the Flag against human players using reinforcement learning on in             
real-time on the same commodity workstations used by the human players without            
adversely affecting the frame-rate of the game.  

This presents intriguing possibilities for using PBT to train neural network           
architectures on low-powered IoT devices such as smart light bulbs, microwaves, and            
thermostats; devices where powerful processors are not available, and training common           
neural network architectures are currently not possible, thereby enabling new          
technologies that require these low-powered devices to learn, in vivo, how to respond to              
complex sensor information which will not be available until after deployment and            
when methods based on online learning is not suitable. 

Automated training after deployment also highlights an important difference         
between our work and that of Jaderberg et al. ​[8]​. Training after deployment will likely               
prevent the oversight of a human machine learning practitioner and therefore will            
require the training method to consistently achieve satisfactory predictive performance.          
In our experiments, we only used a single setup for all datasets, and still achieved               
results that either surpass or are similar to the state-of-the-art on those datasets. This is               
in contrast to the experiments by Jaderberg et al. ​[8] where the PBT algorithm only               
served as a framework which were extensively adapted to every problem. 

This paper serves as a starting point for creating a general PBT configuration for              
training neural networks on classification datasets, and further work is likely to yield             
significant improvements. In the remainder of this section we will outline some possible             
further work. 

In our experiments, we used the error rate as a measure of fitness to calculate the                
gradient during GD. Cortes and Mori ​[32] have pointed out that directly optimizing             
performance using AUC instead of indirectly by minimizing the error rate, can result in              
substantially better AUC scores. 

In our experiments, we only tuned at most two hyper-parameters; the learning rate             
and the ​L​2​-regularisation level. But PBT can, in principle, tune any number of             
hyper-parameters, and Jaderberg et al. ​[8] have tuned up to four hyper-parameters in             
their experiments. The complexity of optimizing hyper-parameters grows exponentially         
with the number of tunable hyper-parameters for a given algorithm using a grid search.              
PBT utilizes a property similar to random search ​[5]​, which should lead to much faster               
convergence, since the good regions of the hyper-parameters are explored more. More            
distinct values are used for each hyper-parameter to identify the good regions of             
hyper-parameters and ensures that they are explored more. Therefore, more complex           
algorithms with more hyper-parameters might produce better results with PBT. 

The PBT algorithm itself also has hyper-parameters such as the size of quantile,             
time of evaluation, size of population and perturbation factors. Further work should            
explore ways of dispensing with these, or provide generally justified values. An option             
is to treat these parameters as tunable by PBT itself, together with the architecture as               
described by Zoph and Le ​[33]​. This could make the optimization process more             
automated and robust. This is a type of automation that is an emerging strategy in the                
neural architecture search, a subfield of AutoML, according to Elsken et al. ​[34]​. 
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