
Metaphor-based tangible toolkit for
programming education

Master’s Thesis in Computer Science

Mustafa Numic

June 4, 2020
Halden, Norway

www.hiof.no

Abstract

Metaphors have been used previously in education with positive learning effects, as well
as tangible programming. But when combining these two methods into one method or
tool it could bring positive learning effects on beginner programmers at a college course.
The research questions for this master thesis is ”How can I make a tangible metaphor to
describe a programming concept?” and that brings the sub question ”What impact does
the tangible metaphors have on student understanding?”. Based on the user testing and
interviews conducted, it shows that the metaphor based tangible programming toolkit
have a positive impact on students understanding of programming concepts

Keywords: Tangible toolkit, Metaphor based, Education, college

i

Acknowledgments

I would like to thank my supervisor Tore Marius Akerbæk for for providing feedback on
the project and the write up of the thesis.

ii

Contents

Abstract i

Acknowledgments ii

List of Figures (optional) v

List of Tables (optional) vi

1 Introduction 1
1.1 Background and motivation . 1
1.2 Research question . 2

1.2.1 Research question/Problem statement/Objectives 2
1.3 Report Outline . 2

2 Method 4
2.1 Methodology . 4
2.2 Literature review . 4
2.3 Research through design . 5
2.4 Storyboarding . 6
2.5 Prototyping . 7
2.6 Data collection . 7

2.6.1 User testing - observation . 7
2.6.2 Interviews . 8

2.7 User testing . 8

3 Related work 10
3.1 Related work . 10

3.1.1 Using Metaphors in teaching . 10
3.1.2 Programming concepts . 11
3.1.3 Metaphors used for programming concepts 12
3.1.4 Using tangible programming for education purposes 13

4 Design / Prototyping 14
4.1 Choosing a programming language . 14
4.2 Choosing a programming concept. 15

4.2.1 Variable . 15
4.2.2 While-loop . 17
4.2.3 Object and Class . 18

iii

CONTENTS iv

4.2.4 Choosing one concept . 19
4.3 Java variable in depth . 19

4.3.1 Variable types . 19
4.3.2 Java operators . 20
4.3.3 String and int . 23
4.3.4 Paper prototype . 25

4.4 Prototype technology . 27
4.4.1 Parts . 29
4.4.2 Arduino - RFID testing . 29
4.4.3 Raspberry pi . 32
4.4.4 High fidelity Prototype . 32

4.5 User testing . 38
4.5.1 Test plan . 38
4.5.2 Questions . 38
4.5.3 Results . 39

5 Discussion 43

6 Conclusion and future work 45

Bibliography 47

List of Figures

2.1 Research through design . 6

4.1 First storyboard of tangible metaphor for variable. 15
4.2 First storyboard of tangible metaphor for While loop. 17
4.3 First storyboard of tangible metaphor for object and class. 18
4.4 second part of storyboard for tangible metaphor for string. 24
4.5 Box metaphor for variable integer. 25
4.6 Box metaphor with top for variable integer. 26
4.7 Operators in the form of tokens. 27
4.8 Arduino nfc shield. 28
4.9 Raspberry pi. 28
4.10 Arduino . 29
4.11 RFID shield . 30
4.12 Arduino rfid test . 30
4.13 output from the first rfid test. 31
4.14 output from the second rfid test . 31
4.15 Raspberry pi with 3 arduinos connected. 32
4.16 Tokens with nfc tags on. 33
4.17 All three arduinos on the paper. 34
4.18 Where the user placed tokens and variables. 35
4.19 Output box. 36
4.20 variable name prompt . 36
4.21 example of the output from placing boxes and operators. 37
4.22 example of the output when lifting the lid. 37
4.23 example of the final code being displayed. 37
4.24 Graph of the answers from question one. 39
4.25 Graph of the answers from question two. 40
4.26 Graph of the answers from question three. 40
4.27 Graph of the answers from question four. 41
4.28 Graph of the answers from question five. 41
4.29 Graph of the answers from question six. 42
4.30 Graph of the answers from question one. 42

v

List of Tables

Literature review results . 5

Java primitive variables . 19
Java arithmetic operator . 20
Java bitwise operator . 21
Java relational operator . 21
Java Logical operator . 22
Java assignment operator . 23

vi

Chapter 1

Introduction

1.1 Background and motivation

Metaphors are a way of introducing something new by describing it with something that
the person already knows, therefor there must be a relationship between the new idea and
the metaphors[Sajaniemi et al., 2007].

There have been numerous studies and articles on using metaphors in teaching both
programming courses and other school courses, but we could not find any articles or studies
that have used tangible toolkits using metaphors in teaching at this time. Most studies
that are published have used metaphors for teaching programming to children ages 9 to
12, only a couple of people have tried using metaphors in higher education at college level,
and only on textual metaphors.

Based on the study done by [Hidalgo-Céspedes et al., 2018] using metaphors in edu-
cational setting do bring positive outcome in student participation and understanding.

I want to test if tangible metaphors for teaching programming can be made and have
positive effects on students understanding of programming concepts. My goal is to use
daily used metaphors and allegories to teach students programming concepts in courses
at the university level.

Based on the study done by [Salleh et al., 2013] concluded that programming tools
that uses visualization approach were much more preferred by students, meanwhile game
related elements makes the learning of programming much more interesting. They also
found that the complexity in programming is the main reason for lack of motivation among
students. When they reviewed how much research has been done on using different tools
for teaching programming they found that 12 of 45 research papers used visualization and
only 2 of 45 used physical tools. I want to try and combine that, with using metaphors
as visualization and that it is also a tangible physical tool for teaching programming
[Salleh et al., 2013].

In the study done by [Robins et al., 2003] called Learning and teaching programming:
A review and discussion, he states that introductory programming courses are hard and
has one of the biggest dropout rates. In their article they also go through some teaching
and learning methods, where they conclude that alternatives to the conventional curricula
shows promise but that none of them have yet come to dominate the theory and practice
of programming pedagogy. My approach is to supplement the conventional curriculum,
by not replacing the methods used today to learn programming but by using the same
methods and just adding the toolkit as a way to describe and learn different programming

1

1.2. Research question 2

concepts.
The project is in cooperation with the Østfold university college in Halden Norway.

1.2 Research question

1.2.1 Research question/Problem statement/Objectives

As mentioned earlier we could not find any studies or articles that have tried implementing
tangible metaphors in higher education for teaching programming concepts to students.
Since most studies that have used metaphors in programming education have tried to
implement metaphors in students aged 9 to 12, we chose to focus on students at college
level, since older students have a different understanding of metaphors than kids. A 20 year
old student will have different concepts of metaphors than a 9 year old child. For example
if using a car as a metaphor a person who drives will have a different understanding of
the metaphors than a child that does not drive.

In our study we want to make a toolkit with tangible metaphors that can then be
used to teach programming concepts to students. Based on the studies done by others
on using metaphors in programming education[Mckay, 1999],[Lynch and Fisher-Ari, 2018],
we believe that using tangible metaphors where students gets to work with their hands and
move objects to conceptualize programming concepts, will benefit students understanding
of basic programming. The first research question for this project is:

RQ 1 How can I make a tangible metaphor to describe a programming concept.

It is also important to measure the impact the tangible metaphor has on student under-
standing of programming concept. For measuring the students understanding of program-
ming concepts after using the tangible metaphor toolkit we need to have a second sub
question for the first research question which is:

RQ 1.2 What impact does the tangible metaphor have on student understanding?

1.3 Report Outline

Chapter one describes the background and motivation behind the master thesis. Chapter
one also describes the research questions. And lastly it will go through the report outline.

In chapter two I analyze what methods will be used to answer the proposed research
questions in chapter one. First I go through the literature review and how I choose which
articles are relevant for my master thesis. After going through the literature review,
chapter two describes the research method used for prototyping and user testing.

In chapter three I will go into more detail on the chosen research topic and information
on related work articles I have found while researching the topic. Where the first section
will describe the research topic, and the second section which will describe the related
work and what I got from reading the articles. The related work section will be split into
4 subsections which will be going to go into more debt on using metaphors in teaching
settings, what programming concepts previous articles have studied, metaphors that have
been used for different programming concepts and lastly using tangible programming in
educational settings.

1.3. Report Outline 3

Chapter four describes the design, prototyping and testing process used. The first
part of chapter four goes through choosing a programming language and a programming
concept. After that the chapter describes in depth the programming concept that I choose
to focus on in this master thesis. Chapter four also describes the whole process of making
the prototype and also the user testing, when the prototype was finished.

In chapter five I analyze and discuss the process and work done. Also in chapter five
I analyze if I have answered the proposed research question.

The last chapter, chapter six I analyze the future work that can be done with this
concept.

Chapter 2

Method

2.1 Methodology

To answer the proposed research questions I plan on using previous work to find some
usable metaphors. Some of the textual metaphors used in previous studies can be directly
translated to tangible metaphors others, need some tweaking to work with being tangible,
while also being able to be used in a classroom setting. The methodological approach
I plan on using in this project is a Qualitative approach. Since I could not find any
previous work that has tried doing metaphor based tangible toolkits, this project will be
exploratory in making the actual prototype. But there have been studies that has used
textual metaphors for programming which I can base my metaphors on, these metaphors
will be discussed in the chapter Related work.

For designing and producing the working prototype I plan on using the research
through design method, which means that I design and make the prototype without in-
volving the user. When I have a prototype ready then I plan on testing it with users. I
want to use field testing with semi structured interviews after the study. The field test is
planned to be in an introduction to programming course in Østfold university college.

2.2 Literature review

I will perform a literature review early in the process of the thesis, to see what has been
done before so I can build my thesis on a foundation of knowledge on the topic. The pur-
pose of the literature review is so I justify my research and how I can add more knowledge
on the topic. Lastly the literature review is meant to place my research within the context
of the existing literature done previously by other researchers. For the literature review I
used the databases Oria and ACM, with the search frases shown in the table below. All
search frases had the filters: Peer reviewed, English language and Journal article. I also
used some snowballing method for finding some of the articles.

4

2.3. Research through design 5

Search results

Search no. Search words Oria ACM

s1 Programming metaphors 5,226 17,344

s2 education metaphors 55,889 6,875

s3 Tangible toolkit for program-
ming education

456 18,697

s4 s1 and s2 3,662 18,466

Most of the search strings produced a lot of result, so I had to use some filters to filter
out the less relevant articles for my thesis. For limiting down the results gotten from the
database the first filter used was that it had to be peer reviewed articles and that it had
to be a journal article and it had to be written in English. After that when searching for
programming metaphors, I used the filter for filtering on the subject which was in this
case programming. that cut it down from 5.226 result down to 51. Lastly I go through
and read the abstracts and based on that I decide if its worth to read the whole article, if
I think that it can add some useful information to my master thesis.

When searching for education metaphors I used the same filters in the start as the first
one, Peer reviewed, journal article and English language. After adding all those filters it
still had quite a few result, so adding a filter on the subject helped eliminate a lot of the
result that did not produce any useful information. I filtered on the subject education and
then also on the subject metaphors in education, that produced 125 results which was a
lot easier than going through 55 thousand. For choosing which was relevant I read the
abstracts and decided upon reading the abstract if it was relevant for my thesis.

2.3 Research through design

Research through design is primary used in academic work in the design community. In
the encyclopedia of human computer interaction chapter 43, they first describe what is
research and what is design. Their working definition of research is doing work with the
intention to produce knowledge that will be used by other, while the definition of design is
doing work with the intention to produce a solution to improve a situation. In chapter 43
it states that research through design combines research and design by making a prototype
that plays a central role in generating knowledge[STAPPERS and GIACCARDI,].

2.4. Storyboarding 6

Figure 2.1: Research through design

In research through design the designers makes the prototype based on the knowledge
that has been produced in previous works done by other researchers and by doing other
methods for designing the prototype like sketches or storyboards. Then they use the pro-
totype they have made to do experiments and make appropriate changes to the prototype
before using it to generate more knowledge on the proposed research question, by doing
observations and interviews, as seen on figure 2.1.

In the study done by [Zimmerman et al., 2007], exploring using research through de-
sign as a method for interaction design project. He found five main benefits from using
research through design as a method for interaction design project. First he found that
research through design lets the design community explore problems that can not be easily
addressed with science and engineering methods. The second benefit they found was that
it feeds technology opportunities and unexpected behavioral to the engineers and behav-
ioral scientists, which then leads to more research done. The third benefit they found by
using research through design was that it provides a new method to transfer knowledge
that was acquired in HCI research to the HCI practice community, which then hopefully
will be transferred to products in the real world. Second to last benefit they found was
that it allows designers to make research contributions by reframing problems and making
the right thing. The last benefit they found was that it motivates the HCI community to
discuss the impact the research might have on the world.

2.4 Storyboarding

Storyboarding is sequential art that visualizes a story. This method came from motion
picture productions. Storyboarding is a good way of illustrating a idea or concept. By

2.5. Prototyping 7

making a story board of the idea, the designers can see if the concept will work. Story-
boarding can also help the designers identify errors at a early stage in the designing process,
it also helps the designers to walk in the users shoes [Truong et al., 2006]. Storyboards
are used in a lot of different activities, like when designing a new technology, a storyboard
usually illustrates the envisioned scenario of how a application feature works. And in
interaction design scenarios, the storyboards shows how the users would interact with the
proposed system.

2.5 Prototyping

Prototyping is a important part of the designing process, because it allows the designer
to test and make changes to the ideas. A prototype is a model of the proposed solution
which can be used to test or validate different aspects of a idea. Prototyping is used
to test the idea before to many resources gets used, by providing different tools and
approaches to test a idea. Prototypes can be as simple as something made from paper to
illustrate a idea or a more formed and detailed prototype to be used in pilot studies. A
prototype does not need to be the full product. Prototyping is about bringing conceptual
ideas to be tested in the real world. Research done early in the design process can bring
biases towards ones ideas, by making a prototype one can test it to reveal biases towards
your idea [Rikke Friis Dam,]. Prototypes can be split into 3 forms of prototyping, Low
fidelity, medium fidelity and high fidelity. Low fidelity is used early in the design process
and focus more on the way of using the proposed product. Low fidelity are often paper
prototypes which lets the designer make changes cheap and efficiently in the beginning.
Medium fidelity prototypes is where the product has more practical functionalities, but
is stil limited. Medium fidelity prototypes are often built upon user scenarios and story
boarding. High fidelity prototypes are a lot closer to the final product. High fidelity
prototypes gives a realistic experience of the product with actual functionalities.

The intended method I will use for making the prototype is research through design.
In this method I will make a prototype based on previous work which I will discuss in
chapter Related work, and by using story boarding for conceptualizing the metaphors I
plan on making tangible. The storyboards will help me visualize the metaphors I will be
making tangible, by illustrating what parts the prototype need to have to be able to be
used later in the testing phase. Then when I have a working prototype I will use it for
the research by doing field studies for making changes to the product as seen on the figure
2.1. The prototype will also answer the proposed research questions in my thesis.

2.6 Data collection

There are several different method for collecting data when testing the prototype. Here I
will be discussing the different methods that could be used.

2.6.1 User testing - observation

User testing is a important part of the design process. One important reason for user
testing is so that you can make something that is relevant and the users wants to use.
User testing is used to gain knowledge about the users you are designing for. People expect
product to be easy to use and learn, user testing can help designers achieve this. If the

2.7. User testing 8

designers wants users to use their products, their user experience has to be good or the
users will move on to another product[Mortensen,]. There are 3 kinds of observations
that can be done when testing the prototype [McLeod, 2015]

The first is controlled observations. A controlled observation is likely to be carried
out in a place where the researchers have chosen it to be, and at what time with which
participants. In controlled observations all the variables are controlled by the researchers
and the participants knows that they are being watched.

The second method is naturalistic observations, which means that the researchers are
observing the spontaneous behavior of the participants in the natural surroundings. In
naturalistic observations the researchers does not have any control of the variables, and
only record what the participants does.

The last form of observations is participant observations. Participant observations is a
combination of both previous forms. In participant observations the researchers joins the
group they are observing to get a deeper understanding of the participants. Participation
observations can either be where the participants thinks that the researcher is a genuine
member of the group or where the researcher revels who they are and asks for permission
to observe.

2.6.2 Interviews

A interview is a good way to have a conversation with a participant but with a purpose.
Interviews gets more personal ideas than a survey, by going into more detail and under-
standing what the users wants. interviews can be useful for collecting data regarding the
users satisfaction and thoughts after testing a product. There are four different kinds of
interviews for collecting data when trying the prototype [McLeod, 2014].

The first is structured interviews. In a structured interview the researchers have a set
of prepared closed ended questions that the participants has to answer, and they do not
deviate from the planned questions.

The second form of interviews is a unstructured interview. In a unstructured interview
the researchers has not prepared any questions in advance, the researcher tries to have
a natural conversation with the participants and tailors the questions to the participants
specific experience.

Then there is semi structured interviews which is a combination of the two methods
previously mentioned. In a semi structured interview the researchers does have some
questions prepared in advance, but can also deviate from the questions to explore each
participant and their experience.

Lastly there are focus group interviews. In a focus group interview, a group of partic-
ipants are interviewed together with a interview moderator which is there to make sure
the group interacts with each other and that they do not drift of topic.

2.7 User testing

For my project I will be using observations for gathering information on what the user
think about the experience when using the prototype combined with using semi structured
interviews to answer my research questions. By doing semi structured interviews I can
have some main questions planned to guide the conversation and keep the participants on
topic which would not be able to do with a structured interview. Since I had planned a

2.7. User testing 9

few questions in advance and had some points I had to go though with the participants I
could not conduct a unstructured interview.

The user testing will be conducted on the target group which is beginner programmer
students at a introductory programming course. After each student tries the prototype,
I will ask them if they want to answer some questions, that are discussed in the sub
chapter Questions. Ì will have some main questions prepared beforehand, and by doing
semi structured interviews I can go more in depth on the answers that the users give. The
semi structured interviews gives me the opportunity to ask the users more questions that
arise while conducting the interviews. The results acquired from the user testing and semi
structured interviews will then be discussed in chapter 4.5.3 results.

Chapter 3

Related work

3.1 Related work

3.1.1 Using Metaphors in teaching

The idea of using metaphors in teaching has existed for a long period of time[Waguespack, 1989].
Article Visual metaphors for teaching programming concepts is over 30 years old. In this
article Leslie Waguespack used metaphors for visualizing programming concepts in a in-
troductory programming course using pascal. The programming concepts he chose to use
was data types, variables, arrays, records, files, modules, module interfaces and parameter
passing. Waguespack, Leslie J. could not confirm if using metaphors for teaching pro-
gramming concepts did improve student understanding, because he could not isolate the
metaphors from the other course components.

Heather Lynn Lynch and Teresa Renae Fisher-Ari did a study in 2018 about using
metaphors in college teaching, and the effects of it. While the study does not directly
relate to programming and teaching of programming concepts, they did find out some
interesting things about using metaphors for teaching. This study was done on students
studying teaching. In their study they made the students write metaphors about the
subject curriculum. What they found out was that the metaphors the students wrote
helped them track when the class or specific individuals needed further support. And that
by using metaphors they got more student participation[Lynch and Fisher-Ari, 2018].

The study done in 2018 on the effects of oral metaphors and allegories on programming
problem solving, concluded that they did not find any difference between these two types
of teaching, but that further testing did need to occur for them to be definitive. They
also stated that the lack of significant difference between allegories and oral metaphors are
the most common recurrent result reported by previous studies. Therefor we want to try
using tangible metaphors where the student actually does something that is supposed to
be a metaphor that represents the programming concepts[Hidalgo-Céspedes et al., 2018].

Based on a study done in 2007 by Jorma Sajaniemi et al they concluded that there
are positive effects of using metaphors for learning complex tasks, but using metaphors in
simple tasks shows no effect and since programming is a complex task, using metaphors
can produce positive effects[Sajaniemi et al., 2007].

Back in 1999 Gregory Jay Gassner did a study on using metaphors in high performance
teaching. He concluded that using metaphors increases students rate of learning and is a
good way for students to acquire new athletic skills. In the study Gregory Jay Gassner says

10

3.1. Related work 11

that metaphors has a enhancing property when used in teaching, because the student has to
interpret the metaphors and act accordingly[Gassner, 1999]. While Gregory Jay Gasnner
did the study on using metaphors for high performanfce teaching and coaching, Elspeth
Mckay did a study on Exploring the Effect of Graphical Metaphors on the Performance of
Learning Computer Programming Concepts in Adult Learners. divided a focus group into
two parts, one which only got textual learning and the other part that got textual and
graphical learning. He found that the students that had both methods learned the most,
and that the answers where more innovative rather then the answers from the students
that got only the textual treatment. The answers from the students that only got the
textual treatment often resembled the text from the book[Mckay, 1999].

3.1.2 Programming concepts

First we have to identify what programming concepts there are, and which we need
metaphors for. The programming concepts used in A methodology proposal based on
metaphors to teach programming to children [Pérez-Maŕın et al., 2018], which tries to
find a method to teach young children programming. Their approch in this study was
using metaphors, and they suggested to start with these programming concepts.

• Program

• sequence

• memory

• Variable

• Input and output

• Conditional

• Loop

This article was written with focus on children that are completely new to programming.
The study a methodology proposal to teach programming to children also used the same
programming concepts, since our target group are older students but that are also com-
pletely new to programming these are some good concepts to start with[Pérez-Maŕın et al., 2018].

In the study done by Jeisson Hidalgo-Céspedes et al done in 2018 they used 3 program-
ming concepts that they then divided into either one metaphor or multiple metaphors. The
programming concepts used are:

• computer programming

• event-driven programming

• application user interface

These programming concepts are described with multiple metaphors. In this project we
plan on teaching the basic programming concepts which can be described with one single
metaphor, while in this project they used more than one metaphor[Hidalgo-Céspedes et al., 2018].

Jorma Sajaniemi et al did a study on using animation metaphors for object-oriented
concepts. In the study they animated programs with metaphors, So that its easier to

3.1. Related work 12

read. They found out that the animation did not scale to larger programs, so they
wanted to use it in elementary programming courses. The Concepts they chose to use
are [Sajaniemi et al., 2007]:

• Classes

• Object

• Method invocation

• Parameter passing

• Return value

• Object reference

• Garbage collection

These kind of programming concepts are what we want to focus on with our project.
A study done by Irina Rogozhkina et al in a Moscow kindergarten, where they wanted

to teach kindergarteners programming concepts by making them program a robot using
pictograms. They wanted to teach pre-schoolers some fundamental programming concepts
like:

• Linear programs

• Subprograms

• Programs

[Rogozhkina and Kushnirenko, 2011].

3.1.3 Metaphors used for programming concepts

Before being able to proceed with making a prototype we need to find out which metaphors
we can use for different programming concepts. In the study done by Diana Pérez-Maŕın
et al they used the metaphor recipe for describing a program or a sequence. The metaphor
they used to describe input and output, are pc screen for output and keyboard for input.
Lastly they used a child making decision for conditional and computer repeating instruc-
tions x times for loop. These metaphors are designed for children, but since this project
is targeted more for a older audience, some of the programming concepts are going to be
explored and altered to better suit the target group.

A study from 2007 on using animation metaphors for object oriented concepts,[Sajaniemi et al., 2007].
They focused on programming concepts that are more complex than input and output that
are meant for children. They chose to use blueprint as a concept for classes. This metaphor
describes really good what a class is and can be directly translated to something tangible.
For the concept of object they chose to use watch panel. They described method invo-
cation with workshop, they used envelope for describing parameter passing. For return
value they chose to use the metaphor workbench, and pennant for describing the concept
of object reference. Lastly they chose to use a garbage vehicle for describing the concept
of garbage collection.

3.1. Related work 13

3.1.4 Using tangible programming for education purposes

Danli Wang et al did a study in 2013 on using tangible blocks for teaching children aged 5
to 9 about programming. They made a computer program which then needed to be solved
by the student by combining different blocks to finish the task presented on screen. They
concluded the study with finding that students focused much more on programming then
different things around them. They compared their method with the previous method
used to teach children programming and found that their new method had better effects
and that children learned more when having fun [Wang et al., 2013].

The project done by Kunal Chawla et al found out that their tangible programming
toy attracted more than only children to try it out. They made a toy for teaching young
children programming with combining blocks. They did not do any field study or user
testing, but they managed to showcase their prototype at a expo and found that different
people came by to test it out. All from children to adults and older people who had no
experience programming found the toy very interesting [Chawla et al., 2013].

A study done by Michal Gordon et al found out that children from 4 to 8 years old,
engaged highly with the social programming robot they made. Children got a better un-
derstanding of how programming a robot is and learned some basic programming concepts
[Gordon et al., 2015].

Based on study done in 2019 by Theodosios Sapounidis et al on tangible and graphical
programming with experienced children. They tested the difference between graphical
programming and tangible programming on children aged 8 to 9 and 12 to 13. They
found that the children preferred the tangible toolkit, and that they had more retention
of the knowledge. They also found that the children had less problems coming back to the
tangible toolkit and just pick it up. Something that is also interesting is that children did
colabarate more when using the tangible programming toolkit [Sapounidis et al., 2019].

Chapter 4

Design / Prototyping

4.1 Choosing a programming language

The long term intention of the tangible programming toolkit is to offer multiple program-
ming languages as the output, with the respective language syntax and structure being
displayed on-screen as the user administers the tools in the toolkit. Given the time frame
of a master thesis, I will focus on one programming language as the output from the pro-
totype. [King, 1997] suggest Java as an introductory programming language, because of
Low cost, the tools needed to build and test java programs are available without charge.
He also suggests Java because of student enthusiasm, he states that java has gotten so
much publicity that students are going to be much more exited to learn Java. He also
states that Java is also suitable for advanced courses later on when the student has learn
the basics. He recognizes the importance of introducing students to the object-oriented
paradigm early in their learning of programming. He comes to the conclusion that Java
has a significant advantage to being used as a introductory programming language, be-
cause the students get introduced to the object-oriented paradigm without being exposed
to the complexity of C++. [Kruglyk and Lvov, 2012] did a study on what language is
best to replace pascal as a introductory programming language. In his study he compared
Pascal with C, Java, Python, C++, Object Pascal, PHP and Javascript. He concludes
that the only draw back for using pascal in introductory programming courses is its use
in real world projects. He states that C and Java are similar languages and that they
booth are very important in the IT field but also hard for beginner programmers to learn,
he also concludes that Javascript is not suitable to teach beginner programmers for its
peculiarities of use. In his study he comes to the final decision that python is a suitable
replacement for pascal as a introductory programming language, because of it is a high
level programming language for joint purposes, with an emphasis on developers produc-
tivity and readability of code. [Vujošević-Janičić and Tošić, 2008] states in their article
that the choice of the first programming language used in introductory courses is still
challenging. They also state that students should first learn object oriented programming
since it is a lot harder to shift paradigm, therefor it would be smart to start with a object
oriented programming language to avoid this shift. They found that the idea of choosing a
programming language to be used in introductory courses is going to always be discussed
and that there have been many case studies that concludes that support different lan-
guages. They state that the most important part of a introductory course is to focus on
the general programming ideas and programming concepts. That is why I want to make

14

4.2. Choosing a programming concept. 15

a toolkit that can offer multiple programming languages as the output, but based on the
time frame of a master thesis I will focus on the object oriented language Java.

4.2 Choosing a programming concept.

A lot of the studies I have found proposed using variables as a programming concept to
start with, since it is one of the first concepts a student learns when starting a introductory
course. A common metaphor for variables in these studies are a box. [Waguespack, 1989],
[Pérez-Maŕın et al., 2018]. Booth Waguespack and Perez-Marin et. al. used a variable
as one of their programming concepts. The variable as a programming concept is very
important and it is one of the first thing a student learn in a introductory course. Variables
can be described as the backbone of any programming language. 1 Based on that the
variable is one of the first programming concepts a student learn and that it has a metaphor
that is well tested in previous studies, I choose to use the variable as the programming
concept I will focus on in my master thesis.

4.2.1 Variable

Figure 4.1: First storyboard of tangible metaphor for variable.

In this concept the variable is the box. A box is used as a metaphor in a couple of
the studies done on using metaphors for teaching programming concepts.[Mckay, 1999] As
shown in the storyboard the student can choose from a toolkit with different metaphors for
describing programming concepts. The student then chooses the metaphor for a variable.
When the student has chosen the variable metaphor, he can then proceed to plug it in to

1https://howtoprogramwithjava.com/programming-101-the-5-basic-concepts-of-any-programming-
language/

4.2. Choosing a programming concept. 16

the pc. When the box has been plugged into the pc the student can name the variable by
typing the name of the variable on the keyboard. Then the student can put a number in
the box from 0 to 9 which is made as a token. When the student has put the number in
the box, the corresponding code and a description.

4.2. Choosing a programming concept. 17

4.2.2 While-loop

The next concept I tried making a metaphor for was a while loop. Here the student can
pick up a little version off a kitchen mixer, when the student plugs it into the computer
he gets to choose for how many iteration the loop Will run. then the loop starts a little
motor in the kitchen mixer that runs for the specified amount of turns. This action can
also be related to when people are beating egg whites in the kitchen. The kitchen mixer
continues to run until the egg whites are done, then the person turn the mixer off. When
the mixer starts to run through the loop the corresponding code will come up on the pc
screen, as seen on the storyboard below.

Figure 4.2: First storyboard of tangible metaphor for While loop.

4.2. Choosing a programming concept. 18

4.2.3 Object and Class

The last concept I made a metaphor for was for object and class, as seen in the storyboard
below. In this concept the student gets a blueprint, that is meant to describe a class. The
blueprint will show the student how to build a house. The house is meant to describe a
object. In the toolkit for this metaphor there will be different kinds of walls and door,
so the student can choose the color of the house. When the student is finished with the
house the corresponding code will come up on the computer. Each block of the house will
connect only to the corresponding blocks, so when all the blocks are put in the right place
it will send a message to the pc that there is a instance of that class.

Figure 4.3: First storyboard of tangible metaphor for object and class.

4.3. Java variable in depth 19

4.2.4 Choosing one concept

After I made all three of the metaphors describing programming concepts I choose to focus
on one concept and rather go more in depth in to one concept and metaphor. I choose
to go in depth on the variable metaphor and concept because the variable is where most
students starts their learning, also the use of a box or envelope as a metaphor for variable
has been well documented as a good metaphor in studies done previously by other people.

4.3 Java variable in depth

I choose to focus on the variable concept and metaphor, that means that I had to go more
in depth on what a variable is and what it is made up off.

4.3.1 Variable types

After some research on variables in Java I found that there are two types of variable, there
are primitive and non-primitive variables2. I used the Java variable documentation to find
what types of variable and operators there are in Java. Primitive variables are the most
basic data types in java. The primitve data types are:

Primitive variables

Category Types bits Minimum
value

Maximum value Example code

Byte 8 -128 127 Byte b = 50;
Char 16 0 216 − 1 Char c = ’A’;

Integer Short 16 −215 215 − 1 Short s = 50;
Int 32 −231 231 − 1 Int I = 50;
Long 64 −263 263 − 1 Long l =50L;

Floating-
point

Float 32 2−149 (2− 2−23) ∗ 2127 Float f = 50f;

Double 64 2−1074 (2− 2−52) ∗ 21023 Double d = 50.50;

Other Boolean – False True Boolean b = true;
void – – – –

The other type of variable are non primitive variables. In java non primitive variables
are array, string, class and interface. A string data type is used to store consecutive char-
acters, or whole sentences. A example of this is:
String Example = ”This is a string example”;
A non primitive variable is also known as a reference data type, since java does not hold
onto the value of the variable but the reference to the value. The other non primitive
data types are a array, class and interface. A array is used to store multiple data types
in consecutive manner. The size of the array can be specified by the programmer. The
main difference between primitive and non primitive data types in java is that primitive
data types are predefined while non primitive data types are declared by the programmer
except for string. A non primitive data type can be used to call methods to perform
certain operations, while primitive data types can not do that.

2https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html

4.3. Java variable in depth 20

4.3.2 Java operators

Java has 6 categories of different types of operators that can be used together with vari-
ables. The first category of operators are arithmetic operators. Arithmetic operators are
used in mathematical expressions. In the table below A = 7 and B = 3, The operators are:

Arithmetic operators

Operator Description Example

+(Addition) Adds together two values on either side of the
operator

A + B = 10

-(Subtraction) subtracts the right value from the left value A - B = 4

*(Multiplication) Multiplies the values on either side of the op-
erator

A * B = 21

/(Division) Divides the left value from the right value A / B = 2.3

%(Modulus) Divides the left value from the right value then
returns the remainder

A % B = 1

++(Increment) Increases the value of the variable by 1 A++ = 8

–(Decrement) decreases the value of the variable by 1 A- - = 6

4.3. Java variable in depth 21

The second type of operators are bitwise operators.Bitwise operators are operators
that is applied to integer types, it performs bit by bit operations. The bitwise operators
are:

Bitwise operators

Operator Description Example

& (bitwise and)

Binary and operator A & B = 3 (0111
& 0011 = 0011)

| (bitwise or)

Binary or operator A | B = 7 (0111 |
0011 = 0111)

~(bitwise xor)

Multiplies the values on either
side of the operator

A * B = 21

^(bitwise compliment)

Divides the left value from the
right value

A / B = 2.3

<<(left shift)

Divides the left value from the
right value then returns the
remainder

A % B = 1

>>(right shift)

Increases the value of the vari-
able by 1

A++ = 8

>>>(zero fill right shift)

decreases the value of the vari-
able by 1

A- - = 6

Relational operators only return either true or false by comparing two variables. In the
examples below A=5 and B=7 These are:

4.3. Java variable in depth 22

Relational operators

Operator Description Example

==(equal to) Checks if the values are the same
on either side of the operator

A == B = false

!=(not equal to) Checks if the values are different
on either side of the operator

A != B = true

>(greater than) checks if the left value is greater
than the right

A > B = false

<(less than) checks if the left values is less than
the right

A < B = true

>=(greater than or equal to) checks if the value of the left value
is greater than or equal to the
right

A >= B = false

<=(less than or equal to) checks if the value of the left value
is less than or equal to the right
value

A <= B = true

There are also 3 logical operators in java, these also return true or false. In these ex-
amples A is True and B is False:

Logical operators

Operator Description Example

&&(Logical and)

Checks if both variables are true/
non zero then returns true

A && B = false

||(Logical or) Checks if one of the variables are
true, then returns true

A || B = true

!(Logical not) Used to reverse the logical state of
its operand.

!(A && B) = true

The last type of operators in used in java programming is called assignment operators.
These are used to assign a value to a new variable. These are:

4.3. Java variable in depth 23

Assignment operators

Operator Description Example

= Assigns the value from the
right side to the left side vari-
able.

C = 5

+= Adds the right side value to
the left side value then assigns
it to the left side variable

C += A same as
C = C + A

-= Subtracts the right side value
to the left side value then as-
signs it to the left side variable

C -= A same as C
= C - A

∗ = Multiplies the right side value
to the left side value then as-
signs it to the left side vari-
able.

C *= A same as C
= C * A

/ = Divides the left side value
with the right side value then
assigns it to the left variable.

C /= A same as C
= C / A

%= Modulus and Assignment op-
erator

C %= A same as
C = C % A

<<=

Left shift and assignment op-
erator

C <<= 2 same as

C = C << 2

>>=

Right shift and assignment
operator

C >>= 2 same as

C = C >> 2

&= Bitwise AND assignment op-
erator

C &= 2 same as C
= C & 2

^=

Bitwise exlusive OR and as-
signment operator

C ^= 2 same as

C = C ^ 2

|= Bitwise inclusive OR and ass-
inment operator

C |= 2 same as C
= C | 2

4.3.3 String and int

Because of the time limit of this master thesis I choose to first try making metaphors for
a primitive and a non primitive variable, the data types I choose to focus on was a int and
a String. First I made a storyboard for the string metaphor, as seen on the figure below.

4.3. Java variable in depth 24

Figure 4.4: second part of storyboard for tangible metaphor for string.

4.3. Java variable in depth 25

4.3.4 Paper prototype

After making the storyboards for the variables int and String, I choose to make a paper
prototype to better illustrate my concept of how it will all work.

The box - variable

I choose to use model making foam paper to make the prototype since I was going to make
a couple of boxes.

Figure 4.5: Box metaphor for variable integer.

The first box I made as seen in figure 3.6 was for the variable int, to distinguish what
datatype the variable is, I choose to write it on the box.

4.3. Java variable in depth 26

Figure 4.6: Box metaphor with top for variable integer.

Each box has a lid on the top symbolizing that you cant see what is inside the variable
without a method to print the variable. The lid on the box is made out of the same foam
paper, and the pivoting is made by poking a wooden dowel through both the box and the
lid, as seen in figure 3.7.

4.4. Prototype technology 27

Tokens - operators and input

To be able to use more than one variable together, I choose to add operators in the form
of tokens, as seen on figure 3.8.

Figure 4.7: Operators in the form of tokens.

I also choose to use tokens as the input in variables, as seen on figure 3.9. Each token
with input numbers fits into the variable box.

4.4 Prototype technology

The prototype has to be able to recognize variable boxes with numbers inside and it has to
be able to recognize operators. It also has to be able to recognize when the user lifts the lid
to the output box. This can be done by using different technologies. My plan is to use rfid
technology for recognizing boxes with numbers inside and operators. A different approach
could be using a camera then using image recognition for the boxes and operator, but that
would then be much more complicated and would require much more setup by the user
than using rfid which would just be plug and play. The plan is that the product will be
used in teaching introductory programming so it has to be easy to set up and easy to pack
up and carry to the next class room, or else there is a bigger change of it not getting used,
that is why I want to use rfid technologies to try making a tangible metaphor toolkit. The
technologies need to be able then to recognize boxes placed on the table and operators,
for the variable prototype it needs to be able to recognize two boxes, one operator and
the user lifting the lid of the result box.

The problem with a arduino is that it can only have one nfc shield, see figure 4.8

4.4. Prototype technology 28

connected to it, so it can only read nfc tags on one location. This problem I plan on solving
with using three arduinos with three nfc shield. Arduinos does not support threads, so
when it is listening to the nfc shield it can not do anything else like talk to the other
arduinos and display information. This problem I plan on solving with using a raspberry
pi, see figure 4.9 which can get all the information from the arduinos while also displaying
the corresponding information. The raspberry pi will also be responsible for checking if
the user has lifted the lid of the result box. I plan on solving this by using some copper
wire and copper tape, when the raspberry pi reads that the signal is broken it will display
the result of the operation done by the user.

Figure 4.8: Arduino nfc shield.

Figure 4.9: Raspberry pi.

4.4. Prototype technology 29

4.4.1 Parts

For the prototype I plan on using three arduinos with nfc shield that are all connected
to a raspberry pi that will control them and display the corresponding code. Two of the
arduinos will be used to check which operators gets placed and the third arduino will be
used in one of the boxes, to check which number the user places inside.

4.4.2 Arduino - RFID testing

I used three sparkfun arduinos as seen on figure 4.1, with three RFID-RC522 rfid shields
as seen on figure 4.2.

Figure 4.10: Arduino

4.4. Prototype technology 30

Figure 4.11: RFID shield

I then used a breadboard to connect the rfid shield to the arduinos with wire as seen
on figure 4.3. The first test I ran was on the rfid shield. I tried connecting it to the arduino
and then reading a rfid chip, as seen on figure 4.4. When the rfid chip is placed near the
rfid shield the arduino scans it and outputs the UID tag, which is the id of the chip. After
scanning two chips I changed the code to output one chip as the + operator and the other
as the = operator when scanned, as seen on figure 4.5.

Figure 4.12: Arduino rfid test

4.4. Prototype technology 31

Figure 4.13: output from the first rfid test.

Figure 4.14: output from the second rfid test

4.4. Prototype technology 32

4.4.3 Raspberry pi

For my project I will be using a raspberry pi 4 computer running raspbian. The raspberry
pi will be getting the information from all three arduinos, as seen on figure 4.20. It is
running python code, which listens to the usb-inputs from the arduinos, then when there
has been placed one nfc tag on the reader the ardunios will send that id to the raspberry pi.
The code then checks which value the variable has and which operator has been placed on
the reader. When a variable has been placed on the reader with a value the code prompts
the user to write the name of the variable on a keyboard connected to the raspberry pi.
When the user has placed and named all the variables the movments of the boxes will be
translated to java code and displayed on the screen. Lastly the user can pick up the lid of
the box on the end to get the output from the variables.

Figure 4.15: Raspberry pi with 3 arduinos connected.

4.4.4 High fidelity Prototype

For the prototype I chose to use the same token and boxes I made for the paper prototype.
I started by just putting nfc tags on the underside of all the tokens and numbers, as seen
on figure 4.21.

4.4. Prototype technology 33

Figure 4.16: Tokens with nfc tags on.

Then I used a big piece of the architect paper. to glue the three ardunios with the nfc
shield on the bottom, as seen on figure 4.22

4.4. Prototype technology 34

Figure 4.17: All three arduinos on the paper.

For covering them up and making it prettier I used another piece of the paper on top
and glued the sides on so it stays in place, as seen on figure 4.23, and marked where each
nfc reader is so that the user knows where to place the tokens and variable boxes.

4.4. Prototype technology 35

Figure 4.18: Where the user placed tokens and variables.

I then used the last bit of space on the paper to make one more box with a lid on top,
as seen on figure 4.24 The lid is used as a metaphor for printing out the output. Lid as
a metaphor for printing out the output did not come from the literature review. This is
something I came up with as a tangible task that the user can do to represent the action of
a print code. When the user lifts the lid of the box the circuit breaks and the arduino send
a signal to the raspberry pi, that then prints out the code. For making the connection in
the box, I just ran two wires from one of the arduinos and connected one of them to the
box with using copper tape, and the other one to the lid the same way.

4.4. Prototype technology 36

Figure 4.19: Output box.

Placing variables

When program start it prompts the user to place a box with a number inside on the first
square. By placing the box with a number inside, it triggers the raspberry pi to prompt
the user to choose a name for the variable, as seen on figure 4.25. When the user places
the operator the program just writes which operator the user has placed. And when the
user places the last variable the program prompt the user for a name, same as the first
time. When the user has placed all the variables and operators the program translates the
placements of the boxes and variables to java code and prints them out, as seen on figure
4.26

Figure 4.20: variable name prompt

4.4. Prototype technology 37

Figure 4.21: example of the output from placing boxes and operators.

When the user opens the lid of the output box the programs writes out that the user
has asked for the output from the operation done previously, as seen on figure 4.27

Figure 4.22: example of the output when lifting the lid.

After 3 seconds from when the user lifts the lid the final code with split input and
output will be displayed, and the user can start over, as seen on figure 4.28.

Figure 4.23: example of the final code being displayed.

4.5. User testing 38

4.5 User testing

The user testing and interviews was planned to be done with students at the campus in
Høgskolen I Østfold Remmen. The target group for this project was students that study
programming. But under the circumstances of the pandemic in the world, I could not
conduct any user testing on the target group. Based on the restrictions in Norway I could
only do the user testing on those people that live in the same house as me, and some close
friends. The plan was to have at least around 20 users try the product, but I had only
acess to 7 people that could try the prototype and answer the interview questions.

4.5.1 Test plan

Since I could not do the user testing on campus with the intended target group, I had
to do conduct the testing at home. Each user got to try the prototype for as long as
they wanted, after they said that they were done with the prototype I conducted a semi
structured interview with each user. The questions I had planned on asking them are
discussed in the sub chapter questions.

4.5.2 Questions

The questions I had planned for the semi structured interview was designed to answer the
proposed research questions in my thesis. The first question is meant to see if the user has
any programming knowledge before trying the prototype. The second question was meant
to find out if the user knows what a variable is before trying the prototype, Maybe some
users knew some programming but did not know what a variable is. The third question is
to see if the user knows what a variable is after testing the prototype, if they answer yes
they had to describe it. Question four is meant to get the users feedback on using the box
as a metaphor for variable, and the fifth question is to get the feedback on using a lid as
a metaphor for the results. The last question is meant to see if the user thinks anything
has to be changed in the prototype.
1. Do you have any experience with programming?

-Yes
-No

2.Before trying the prototype, did you know what a variable was?
-Yes
-No

3.After using this prototype, did you understand what a variable was? if yes, could you
describe it?

-Yes, and explanation.
-No

If a person understood what a variable was then I would ask:
4.Was using the box a appropriate metaphor for a variable?

-Yes
-No

5.Was the lid a appropriate metaphor for seeing the result of the operation?
-Yes
-No

6.Was there anything you would like to change about the prototype or the metaphors

4.5. User testing 39

used?
Then the last question would be, what the student though about using this as a supplemen-
tation to the standard teaching methods used today in the classroom, and if they would
see any benefit to implementing it. Since I could not do the user testing and interviews
on the planned target group that question had no effect.

4.5.3 Results

As stated before the user testing could not be conducted as it was planned based on the
restrictions that the Norwegian government placed on socializing. That meant that the
school I had planned on conducting the field test on and the interviews was empty and
had no students present. That meant that I had to user the people that lived in the same
house as I, and some close friends that I could get to try it out. It also meant that the
user test had to have a lot fewer people testing it then if it could be conducted on the
target group. Each Person first got to test the prototype for as long as they wanted, then
I followed up with a interview based on the questions from the previous sub chapter.

Question one

The first question is meant to see if the person knows anything about programming before
they started using the prototype. Since I could not test it with my planned target group
I had to use the people around me. All but one of the people I had access to did not have
any knowledge about programming before they started using the prototype, as seen on
figure 4.24. This is good since my target group are students that have no experience in
programming or have just started learning.

Figure 4.24: Graph of the answers from question one.

Question two

Question two was meant to see if they knew what a variable is before trying the prototype.
All but the one person who had experience from programming before did not know what a
variable was, as seen on figure 4.25. Based on that its easier to see if they learned anything
by using this approach to learning programming concepts.

4.5. User testing 40

Figure 4.25: Graph of the answers from question two.

Question three

The third question is designed to find out if the user understood what a variable is after
using the prototype, if the user answers yes to understanding the question I ask them
to describe what a variable is. Here all but one answered yes to understanding what a
variable is, see figure 4.26. Just one person did not understand what a variable is after
testing. The six users that answered yes also gave a good description of what a variable
is and what you can use it for, see figure 4.27. Based on the descriptions that the users
gave of what a variable was, I would say that the prototype conveyed the basics of what
a variable is and what it can be used for.

Figure 4.26: Graph of the answers from question three.

4.5. User testing 41

Figure 4.27: Graph of the answers from question four.

Question four

Question four is made to get the users perspective on using a box as a metaphor for
variable. All but the one person who did not understand what a variable was though that
a box is a good metaphor for variable, see figure 4.28.

Figure 4.28: Graph of the answers from question five.

Question five

Question five is also made to get the users perspective on using a box with a lid as a
metaphor for printing out the result. In this question also all but the one user who did

4.5. User testing 42

not understand what a variable was after testing the prototype though that it was a good
metaphor, see figure 4.29. All who answered yes to this question understood that the code
will not show the result from operations without having some form of code to print it out.

Figure 4.29: Graph of the answers from question six.

Question six

The last question was designed to get feedback from the users if there was anything that
they would like to change with the prototype, see figure 4.30 for all answers. One of the
users said that they needed more information before starting, They though that it was
not clear enough. One good feedback was to add a small screen in the result box that will
also show the result of the operation done.

Figure 4.30: Graph of the answers from question one.

Chapter 5

Discussion

Metaphors have been used previously in teaching in general, and tangible toolkits have
been used to teach programming to children. Both aspects have shown positive learning
effects, which indicate that metaphors and tangible toolkits can be conjoined as a new
method to teach students programming. The tangible metaphor toolkit can be used as a
supplement to the standard curriculum to teach students programming concepts.

Based on the user test that was conducted, the metaphor based tangible programming
toolkit shows promising results. All but one of the user did not have any experience in pro-
gramming or any knowledge about programming before they started using the prototype.
After each user tested the prototype, all but one person could describe the main essence
of a variable, and what they can be used for. It is the same for the questions asking if a
box is a appropriate metaphor for a variable, and if the lid was a appropriate metaphor
for printing the result. All but one person though that it was appropriate, the only person
that though that it was not appropriate was the one person that still did not understand
what a variable was after using the prototype. Using lid as a metaphor for seeing the
result of the operation done by the user with the variables was something I came up with
in the prototype and has not taken out from the related work. This metaphor did have
positive outcome in the user test. One thing that one of the users suggested which would
have been a good idea to add to the prototype was to add a little screen or some form of
display inside the result box. This would then also display what the result was from the
operation inside the box, and not only show up on screen.

The concept for this project was to make a metaphor based tangible toolkit for pro-
gramming education. So it was important for the prototype to be easy to set up. I choose
to use three arduinos and one raspberry pi. The arduinos are all wired to the raspberry
pi, so the user only has to connect a monitor and plug it into the wall socket to be ready
to use the prototype. The prototype would also be able to be build by using a camera
and image recognition, but this would be harder for the users to set up so that the camera
could get a clear picture of all the boxes and operators.

The prototyping process answers the first research question which was: ”How can I
make a tangible metaphor to describe a programming concept.” The metaphor for a vari-
able is taken directly out from previous research on metaphors for programming concepts.
A box has been used as a metaphor in many studies done previously, as discussed in the
chapter Related work. But the metaphor for seeing the result, which I choose to use a lid
on a box. That meant that the user had to open the box to see the result done by the
operations. This metaphor was well received in the user test done at the end. The second

43

44

research question is harder to measure, based on the restrictions placed on socializing
in Norway by the government, which meant that I could not do the user testing on the
planned target group. That meant that the users had to be the people I had access to
around me. Those were family that lived in the same house as me and some close friends.
I conducted a user test where the user go to try the prototype for as long as they liked,
then I conducted a semi structured interview with each user after they were finished. By
doing the semi structured interviews I had the freedom to go outside the questions I had
planned before the interviews. The results gotten from the user tests were positive and
they could describe what a variable was, but it still could have some bias on the last
questions if the box and lid is appropriate metaphors for the programming concepts. Also
I would have liked to do the user testing on a much larger group of people and on the
planned target group for this project. /

Chapter 6

Conclusion and future work

Metaphors and tangible programming have been used separately in teaching students
previously. Both have shown positive learning effects, and combining these two as a new
method or tool for teaching programming. The tangible metaphor based programming
toolkit shows positive learning effects based on the user test that was conducted. Because
of the restrictions placed by the Norwegian government I could not conduct the user test
as planned in the start of the project, but I had to do a smaller user test not on the target
group. A bigger user test and interviews could be run on the target group as future work.
The prototype shows positive learning effects on the users I had access to, based on the
results from the user testing and interviews conducted at the end of each test.

For future work on the prototype, one of the users in the user test proposed adding
a screen inside the result box which could be a good way to illustrate the output on the
prototype as well as on the screen. Also before running a bigger test on the planned target
group, it could be better to have one more tangible metaphor for a programming concepts,
so that the students could try more than just variables.

Since I could not do the planned field study on the proposed target group, a good way
to continue the research would be doing a much bigger field study with interviews after on
the proposed target group. I had planned on asking if they thought that using this toolkit
would be beneficial to the standard curriculum, but since I could not do the tests on the
target group that question fell thru, because none of the participants had any previous
knowledge of programming or programming education. And by doing a field study on the
proposed target group the bias of that all the participants had close relationships with me.

45

Bibliography

[Chawla et al., 2013] Chawla, K., Chiou, M., Sandes, A., and Blikstein, P. (2013). Dr.
Wagon: A ’stretchable’ toolkit for tangible computer programming. In ACM Interna-
tional Conference Proceeding Series, pages 561–564.

[Gassner, 1999] Gassner, G. J. (1999). Using Metaphors for High-Performance Teaching
and Coaching. Journal of Physical Education, Recreation & Dance, 70(7):33–35.

[Gordon et al., 2015] Gordon, M., Rivera, E., Ackermann, E., and Breazeal, C. (2015).
Designing a relational social robot toolkit for preschool children to explore computa-
tional concepts. In Proceedings of IDC 2015: The 14th International Conference on
Interaction Design and Children, pages 355–358.

[Hidalgo-Céspedes et al., 2018] Hidalgo-Céspedes, J., Maŕın-Raventós, G., Lara-
Villagrán, V., and Villalobos-Fernández, L. (2018). Effects of oral metaphors and
allegories on programming problem solving. Computer Applications in Engineering
Education, 26(4):852–871.

[King, 1997] King, K. N. (1997). The case for Java as a first language. Proceedings - 35th
Annual Southeast Regional Conference, ACM-SE 1997, pages 124–131.

[Kruglyk and Lvov, 2012] Kruglyk, V. and Lvov, M. (2012). Choosing the First Educa-
tional Programming Language. Technical report.

[Lynch and Fisher-Ari, 2018] Lynch, H. L. and Fisher-Ari, T. R. (2018). What We
Learned about Using Metaphors in College Teaching: Methods and Meanings.

[Mckay, 1999] Mckay, E. (1999). Exploring the Effect of Graphical Metaphors on the
Performance of Learning Computer Programming Concepts in Adult Learners: a pilot
study. Educational Psychology, 19(4):471–487.

[McLeod, 2014] McLeod, S. (2014). The Interview Research Method — Simply Psychol-
ogy.

[McLeod, 2015] McLeod, S. (2015). How to Conduct User Observations — Interaction
Design Foundation.

[Mortensen,] Mortensen, D. H. User Research: What It Is and Why You Should Do It
— Interaction Design Foundation.

[Pérez-Maŕın et al., 2018] Pérez-Maŕın, D., Hijón-Neira, R., and Mart́ın-Lope, M. (2018).
A Methodology Proposal Based on Metaphors to Teach Programming to Children.
Revista Iberoamericana de Tecnologias del Aprendizaje, 13(1):46–53.

46

BIBLIOGRAPHY 47

[Rikke Friis Dam,] Rikke Friis Dam, T. Y. S. Design Thinking: Get Started with Proto-
typing — Interaction Design Foundation.

[Robins et al., 2003] Robins, A., Rountree, J., and Rountree, N. (2003). Learning and
teaching programming: A review and discussion. International Journal of Phytoreme-
diation, 21(1):137–172.

[Rogozhkina and Kushnirenko, 2011] Rogozhkina, I. and Kushnirenko, A. (2011). Pik-
toMir: Teaching programming concepts to preschoolers with anew tutorial environment.
In Procedia - Social and Behavioral Sciences, volume 28, pages 601–605.

[Sajaniemi et al., 2007] Sajaniemi, J., Byckling, P., and Gerdt, P. (2007). Animation
Metaphors for Object-Oriented Concepts. Electronic Notes in Theoretical Computer
Science, 178:15–22.

[Salleh et al., 2013] Salleh, S. M., Shukur, Z., and Judi, H. M. (2013). Analysis of Research
in Programming Teaching Tools: An Initial Review. Procedia - Social and Behavioral
Sciences, 103:127–135.

[Sapounidis et al., 2019] Sapounidis, T., Demetriadis, S., Papadopoulos, P. M., and Sta-
movlasis, D. (2019). Tangible and graphical programming with experienced children: A
mixed methods analysis. International Journal of Child-Computer Interaction, 19:67–
78.

[STAPPERS and GIACCARDI,] STAPPERS, P. and GIACCARDI, E. The Encyclope-
dia of Human-Computer Interaction, 2nd Ed., chapter 43.

[Truong et al., 2006] Truong, K. N., Hayes, G. R., and Abowd, G. D. (2006). Storyboard-
ing: An Empirical Determination of Best Practices and Effective Guidelines.

[Vujošević-Janičić and Tošić, 2008] Vujošević-Janičić, M. and Tošić, D. (2008). The role
of programming paradigms in the first programming courses. Teaching of Mathematics,
11(2):63–83.

[Waguespack, 1989] Waguespack, L. J. (1989). Visual metaphors for teaching program-
ming concepts. ACM SIGCSE Bulletin, 21(1):141–145.

[Wang et al., 2013] Wang, D., Zhang, Y., and Chen, S. (2013). E-block: A tangible pro-
gramming tool with graphical blocks. Mathematical Problems in Engineering, 2013.

[Zimmerman et al., 2007] Zimmerman, J., Forlizzi, J., and Evenson, S. (2007). Research
Through Design as a Method for Interaction Design Research in HCI.

	Abstract
	Acknowledgments
	List of Figures (optional)
	List of Tables (optional)
	Introduction
	Background and motivation
	Research question
	Research question/Problem statement/Objectives

	Report Outline

	Method
	Methodology
	Literature review
	Research through design
	Storyboarding
	Prototyping
	Data collection
	User testing - observation
	Interviews

	User testing

	Related work
	Related work
	Using Metaphors in teaching
	Programming concepts
	Metaphors used for programming concepts
	Using tangible programming for education purposes

	Design / Prototyping
	Choosing a programming language
	Choosing a programming concept.
	Variable
	While-loop
	Object and Class
	Choosing one concept

	Java variable in depth
	Variable types
	Java operators
	String and int
	Paper prototype

	Prototype technology
	Parts
	Arduino - RFID testing
	Raspberry pi
	High fidelity Prototype

	User testing
	Test plan
	Questions
	Results

	Discussion
	Conclusion and future work
	Bibliography

