
Improving Population-Based
Training for Neural Networks

Master’s Thesis in Computer Science

Thomas Angeland

August 3, 2020
Halden, Norway

www.hiof.no

Abstract

In recent years, there has been a rise in complex and computationally expensive machine
learning systems with many hyperparameters, such as deep convolutional neural networks.
Historically, hyperparameters have provided humans a level of control over the learning
process and the performance of the model, and it is well known that different problems
require different hyperparameter configurations in order to obtain a good model. However,
finding good configurations can be quite challenging, and complexity arises when more
hyperparameters are introduced. In addition, research has shown that some tasks may
benefit from certain hyperparameter schedules, suggesting that there exists an optimal
hyperparameter configuration for every training step.

The issue has resulted in a great deal of research on automated hyperparameter op-
timization, but there is still a lack of purpose-built methods for generating hyperparam-
eter schedules as they are much harder to estimate. Evolutionary approaches such as
Population-Based Training (PBT) has shown great success in estimating good hyperpa-
rameter schedules, successfully demonstrating that it is capable of training the network
and optimizing the hyperparameters at the same time. However, the method relies on
simple selection and perturbation techniques when exploring new hyperparameters, and
does not consider other, more advanced optimization methods.

In this thesis, we set out to improve upon the PBT method by incorporating heuris-
tics from the powerful, versatile and evolutionary optimizer called Differential Evolution
(DE). As a result, three procedures are proposed, named PBT-DE, PBT-SHADE and
PBT-LSHADE. Of the proposed procedures, PBT-DE incorporates the initially proposed
heuristics, while PBT-SHADE and PBT-LSHADE explores more recent and adaptive ex-
tensions based of SHADE and LSHADE. In addition, a purpose-built distributed queuing
system is used for processing members per generation, and allows for asynchronous parallel
training and adaption of members.

In order to assess the predictive performance, PBT and the proposed procedures were
compared on the MNIST and Fashion-MNIST datasets using the MLP and LeNet-5 net-
work architectures. The empirical results demonstrate that there is a statistical significant
difference between PBT and the proposed procedures on the F1 score. Visual and statis-
tical analysis suggest that each proposed procedure outperform PBT on all tested cases.
The result data on the Fashion-MNIST dataset indicate a 0.748% and 0.384% gain on
average accuracy with MLP and LeNet-5, respectively, when trained with PBT-LSHADE.
On the MNIST dataset, result data shows that PBT-SHADE improved average accu-
racy with 0.21% using MLP, and PBT-DE improved average accuracy with 0.068% with
LeNet-5. Furthermore, additional testing suggest that PBT-SHADE scales better with
larger population sizes when compared to PBT.

i

Acknowledgments

I would like to offer my special thanks to my supervisor, Marius Geitle, for his commitment
and professional guidance through each stage of this thesis. His willingness to give his time
so generously has been very much appreciated.

I would also like to extend my thanks to the technicians of the Østfold University College
IT department for their help in offering me the resources for running tests.

Finally, I wish to thank my family for their support and encouragement throughout my
study. Especially Nathalie Hogn̊as Hansen, for her love, dedication and patience.

iii

Contents

Abstract i

Acknowledgments iii

List of Figures viii

List of Tables ix

List of Acronyms xi

1 Introduction 1

1.1 Research Question and Method . 2

1.2 Outline . 4

2 Background 5

2.1 Research Topic . 5

2.2 Related Work . 6

2.3 Automatic Hyperparameter Adaption for Neural Networks 14

2.4 Population-Based Training . 18

2.5 Differential Evolution . 22

3 Methodology 33

3.1 Implementing the PBT Baseline . 33

3.2 Incorporating DE Heuristics Into PBT . 34

3.3 Incorporating Adaptive DE Heuristics . 39

3.4 Experiments . 43

3.5 Implementation . 50

4 Results 57

4.1 Overview . 57

4.2 Welch ANOVA Analysis . 58

4.3 Individual Performance Comparisons . 63

4.4 Time complexity . 69

4.5 Hyperparameter Schedules . 77

4.6 Impact of Population Size . 79

v

vi CONTENTS

5 Discussion 81
5.1 Research Questions . 81
5.2 Comparing to Other Methods . 83
5.3 Challenges and Limitations . 84
5.4 Future Work . 86

6 Conclusions 89

Bibliography 112

List of Figures

2.1 Approaches for automated hyperparameter optimization [123]. 7

2.2 A comparison of search space coverage between grid search and random
search with the same number of hyperparameter configuration samples. . . 9

3.1 An example of two hyperparameter schedules generated by PBT. 34

3.2 An example of hyperparameter schedules generated by DE. 43

3.3 Subsets from the MNIST and Fashion-MNIST datasets. 44

3.4 Flowchart of major system operations. 51

3.5 Hyperparameters mapped with a normalization layer. 54

4.1 The F1 scores of each procedure on four different experiments. Bright color
is minimum, medium color is average, and dark color is maximum. 58

4.2 A probability plot of the residuals, where normality is indicated by the red
diagonal. 60

4.3 Box plot comparisons between the procedures from 50 consecutive tests
performed with the MNIST dataset using MLP. 64

4.4 Line chart comparisons between the procedures from the average of 50 con-
secutive tests performed on the MNIST dataset using MLP. 65

4.5 Box plot comparisons between the procedures from 50 consecutive tests
performed with the MNIST dataset using LeNet-5. 66

4.6 Line chart comparisons between the procedures from the average of 50 con-
secutive tests performed on the MNIST dataset using LeNet-5. 68

4.7 Box plot comparisons between the procedures from 50 consecutive tests
performed with the Fashion-MNIST dataset using MLP. 69

4.8 Line chart comparisons between the procedures from the average of 50 con-
secutive tests performed on the Fashion-MNIST dataset using MLP. 70

4.9 Box plot comparisons between the procedures from 50 consecutive tests
performed with the Fashion-MNIST dataset using LeNet-5. 74

4.10 Line chart comparisons between the procedures from the average of 50 con-
secutive tests performed on the Fashion-MNIST dataset using LeNet-5. . . 75

4.11 A comparison between the procedures on the member-wise average amount
of time spent for each step on training, testing and evolving on the LeNet-5
neural network architecture. 76

vii

viii LIST OF FIGURES

4.12 Trends derived from hyperparameter schedules generated for the Fashion-
MNIST dataset using the LeNet-5 neural network architecture. The bright-
est color indicate minimum and maximum values, the middle color indicate
the standard deviation subtracted from or added to the mean, and the
darkest, strongest color indicate the mean. 78

4.13 A bar plot of different population sizes and the acquired F1 test scores, ob-
tained with the PBT and PBT-SHADE procedures on the Fashion-MNIST
dataset with the LeNet-5 neural network architecture. 80

List of Tables

3.1 Dataset Divisions . 44
3.2 MLP Implementation . 45
3.3 LeNet-5 Implementation . 46
3.4 Hyperparameter Search Space Configuration 46
3.5 Data stored in a Checkpoint . 52

4.1 The Shapiro-Wilk Test for Normality . 59
4.2 The Levene’s Test for Homogeneity of Variance 60
4.3 The Welch ANOVA Test . 61
4.4 Pairwise Games-Howell Post-Hoc Test . 62
4.5 Performance Statistics in CCE Score . 71
4.6 Performance Statistics in F1 Score . 72
4.7 Performance Statistics in Accuracy . 73

ix

List of Acronyms

BO-GP Bayesian optimization method with Gaussian Processes.

CCE Categorical Cross Entropy.

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy.

CNN Convolutional Neural Network.

DE Differential Evolution.

L-SHADE SHADE with Linear Population Size Reduction.

MAE Mean Absolute Error.

MLP Multilayer Perceptron.

MSE Mean Square Error.

PBT Population-Based Training.

PBT-LSHADE Population-Based Training with LSHADE.

PBT-SHADE Population-Based Training with SHADE.

PBT-DE Population-Based Training with Differential Evolution.

PSO Particle Swarm Optimization.

ReLU Rectified Linear Unit.

RFA Random Fitness Approximation.

SGD Stochastic Gradient Descent.

SHADE Success-History Based Parameter Adaptation for Differential Evolution.

xi

Chapter 1

Introduction

Hyperparameters are an essential part of almost every machine learning system, providing
researchers and practitioners with different ways to tune the systems in order to obtain
the optimal performance. A large variety of machine learning systems exist, ranging from
artificial neural networks [19], kernel methods [165], to ensemble models [33, 21]. Most
learners depend on an ambiguous, yet well-defined set of hyperparameters λ in order to
operate appropriately. Generally, hyperparameters are represented by a tuple of mixed
values in the form of non-fractional numbers such as integers, or fractional numbers such
as decimals, to categorical values such as strings, boolean or fixed numbers. It is up to
the user to define and assign the hyperparameters to a good state in order to get the
most out of the selected learning method. While some hyperparameters may have less
impact compared to other hyperparameters, they collectively change various aspects of
the learning algorithm, which leads to a varying degree of influence on the resulting model
and the performance. This is especially true for recent deep neural networks that depend
on various hyperparameter choices about the neural network architecture, regularization,
and optimization.

For complex systems such as neural networks, finding the optimal hyperparameter con-
figuration can be quite difficult, as it most often requires multiple test-runs with different
sets of hyperparameters. Traditionally, such searches are done manually by rule-of-thumb
[72, 76], or by testing different combinations of hyperparameters with a predefined grid
[146]). Generally, each hyperparameter combination is produced by a user with some level
of tuning knowledge (and with some level of human intuition). Each set of hyperparam-
eters are tested and scored on how well the system performed after training. If the last
score is not satisfactory, the tester will produce a new set of hyperparameters, either based
on the previous set or in an entirely new direction. This sequential tuning-process repeats
until some criteria is met.

While tuning can be simple as described above, such manual methods and semi-
automatic methods leave much to be desired. First of, they lack in terms of repro-
ducibility, as they rely on the rule-of-thumb approach. Secondly, while these methods
are practical with smaller sets of hyperparameters, they fall short for learning approaches
that provide larger sets of hyperparameters [32] and/or training processes which benefit
from hyperparameter schedules [82, 158, 5, 30, 23]. Thirdly, manual and semi-automatic
approaches require human effort, which combined with tedious, repetitive and exhaustive
tuning sessions (especially with computational expensive learning methods), can affect the
final performance of the model. In addition, some hyperparameters are depended on each

1

2 Chapter 1. Introduction

other, and it is possible that changing on hyperparameter might require changing other
hyperparameters as well [158, 5]. Lastly, for complex systems, the training and evaluation
of models will often require considerable amount of computational resources in order to
complete within an appropriate time period. With a strict time-budget, the process may
be cut short before the optimal hyperparameter configuration is found.

In order to address these issues, automated hyperparameter optimization receives in-
creasing amounts of attention in machine learning [46]. Hyperparameter optimization has
already been shown to outperform manual approaches performed by experts on multiple
problems [18, 17]. When tailored to the problem at hand, hyperparameter optimization
improves the performance of machine learning algorithms, which has led to new state-of-
the-art performances for several machine learning benchmarks [131, 172]. Compared to
manual search, hyperparameter optimization also improves the reproducibility and fair-
ness of scientific studies. It provides fair comparisons between various learning approaches,
as they all undergo the same tuning process [16, 166].

Research on the challenges of hyperparameter optimization have been conducted for
some time [96, 101, 133, 159]. In the beginning, it was made clear that different datasets
require different hyperparameters configurations [101]. Later it was found out that general-
purpose pipelines can be adapted to specific application domains with hyperparameter
optimization [49]. In recent times, it is clearly known that tuned hyperparameters yields
better model performance compared to the default setting that is provided by many of
the current machine learning libraries [129, 144, 162, 191]. While several approaches to
hyperparameter optimization was introduced since its introduction [15, 140, 203], manual
search and grid search still prevailed as the best method for hyperparameter tuning for
many years for several reasons [141, 98, 149, 204]. Inevitably, this would all change later
with the release of several powerful hyperparameter optimization algorithms [17, 172, 116,
125, 145, 123, 84, 61].

While some methods explore the hyperparameter search space in with a pre-determined
grid or with random points [146, 17], others guided by exploiting the gradient directly [26,
109], or evolutionary approaches that uses natural selection theory to define a population
of points in the search space that mutates over time [119, 130, 123, 125], they all return a
single, fixed hyperparameter configuration that achieves the best performance. While this
is the general goal of hyperparameter optimization, recent studies have looked into ways
to adapt the hyperparameters while training in order to obtain the best model directly
[84, 47].

1.1 Research Question and Method

In this study, we will attempt to improve upon Population-Based Training (PBT) [84], an
evolutionary hyperparameter adaption procedure for neural networks. PBT has demon-
strates competitive performance in several benchmarks when compared to random search.
Because the method uses simple, random perturbation to explore new hyperparameters, we
wonder whether there are ways to improve the exploration method with a well-established
and well-researched metaheuristic called Differential Evolution (DE) [179]. Interestingly,
DE has already shown some success for other evolutionary approaches [208] for training
neural networks, reporting that hybridization of different evolutionary technologies may
improve their search capability in network parameters learning. More recently, variants of
DE have been shown to perform well for hyperparameter tuning as well [61].

1.1. Research Question and Method 3

1.1.1 Research Question

The research question of this study consists of one main question with two sub-questions;
First, we need to find appropriate ways to apply DE heuristics to the PBT procedure:

RQ 1 In what way can differential evolution heuristics be incorporated into population-
based training for neural networks?

Secondly, we need to compare the proposed PBT procedure(s) to the original PBT
procedure:

RQ 1.1 In what way will the differential evolution heuristics affect the performance of
population-based training for neural networks?

Lastly, the number of members in the population is one of the most important pa-
rameters for population-based training in regards to performance and algorithmic time
complexity. Therefore, there is a compelling reason for testing different populations sizes:

RQ 1.2 In what way will the number of members in the population affect the performance
of population-based training with differential evolution?

1.1.2 Method

In order to answer the research questions, we set out to obtain a broad understanding
of the research field of hyperparameter optimization for machine learning. Therefore,
important, novel approaches for hyperparameter optimization has been researched in order
to establishing the current research field. Moreover, the original PBT [84] procedure is
presented in detail in order to obtain a clear understanding of how the procedure operate,
and which parts of the procedure that should be updated or replaced. In addition, some
of the few recent PBT extensions will also be included. In a similar manner, the initial
DE procedure will also be covered in detail, including how the algorithm works, how it
performs and recent advancements made to the original algorithm. The literature review
allows us to establish current trends and practices, as well as differences between methods
in characteristics, strengths and weaknesses.

The literature review lays the foundation for developing new procedures based of PBT
that incorporates heuristics from DE which answers RQ1. To obtain result data, developed
procedures and the PBT procedure are tested on image classification with the MNIST [110]
and Fashion-MNIST [207] datasets using the Multilayer Perceptron (MLP) and LeNet-5
network architectures in order to answer RQ1.1 and RQ1.2. The characteristics of each
procedure relevant for analysis is the predictive performance, predictive performance over
time, generalization error, time complexity and performance across different population
sizes.

Performance is measured by three individual metrics, but all statistical analysis are
based of result data by one determined metric: the F1 Score [29]. Because multiple
procedures are proposed, statistical analysis is first and foremost conducted using the
Welch ANOVA [205] test method followed up with a Pairwise Games-Howell [59] Post-Hoc
analysis. This type of test is used in order to determine whether there are a statistical
significant difference between the procedures on the result data, and if so, where the
difference exist. When that is done, descriptive statistics and visual analysis is used in
order to describe the difference between the numerical data obtained.

4 Chapter 1. Introduction

1.2 Outline

This section gives a short summary of the remaining chapters of this thesis.

Chapter 2 formulates the hyper-parameter optimization problem and explains some of
the important findings known about the problem. In addition, a large part of this
chapter consists of background information about a range of different model-free and
model-based algorithms for hyperparameter optimization that precedes the PBT pro-
cedure. After that, general and mathematical descriptions is formulated for training
and adapting neural networks with hyper-parameter optimization. Then, the chapter
provides a description of PBT, including extensions that were available at the time.
Lastly, a large portion of the chapter is reserved for giving a detailed description of
DE, as well as significant advances proposed more recently.

Chapter 3 presents the proposed procedures and as well as information about testing
setups for obtaining the experimental results. This include the implementation de-
tails regarding the PBT procedure, as well as the choice of procedure parameters
and which key parts of the procedure that are included. Furthermore, three different
PBT-based procedures with DE heuristics are proposed, where each procedure and
their operations are explained in detail. Later, information about the experimental
test setup is given, describing the various datasets and neural network architectures
selected. This include the technique used for sampling the datasets into set divisions,
as well as details about the implementation of the network architectures. Moreover,
we define and describe the types of hyperparameters that will undergo optimization,
and why certain hyperparameters were left out. At the end of the chapter, infor-
mation about the technical aspects of running the procedures is given, including
the overall flow of the system, programmatic approaches, as well as details about
the computer environment, programming language and publicly available packages
used.

Chapter 4 consists of the experimental results obtained from running the PBT proce-
dure and the procedures proposed in this study. Here, the statistical significance is
determined by running the Welch ANOVA [205] and Games-Howell [59] Post-Hoc
analysis which are performed on the result data. In addition, multiple figures and
tables are presented, describing the predictive performance of the algorithms, both
final and over time. Later, some information is given regarding the time complexity
of the procedures. Furthermore, the predictive performance results from running
tests with different population sizes is presented and analyzed. Lastly, the chapter
is ended with a visual analysis of the hyperparameter schedules generated from the
procedures, focusing on the overall trends.

Chapter 5 includes a concise summary of the principal implications of the findings. First,
the research questions are reiterated and answered based of the findings. After that,
the results are put in context with the state-of-the-art results. To end the chapter,
we acknowledge limitations and challenges and propose recommendations for future
research.

Chapter 6 concludes this thesis by summarizing the main contributions of the work and
ends on recommendations for future research.

Chapter 2

Background

This chapter consists of five sections. First of all, Section 2.1 give details about the
general objective of hyperparameter optimization, including known challenges and the
mathematical notations that will be used to describe the different methods mentioned
throughout this chapter. Section 2.2 provides insight into several well-established methods
of hyperparameter optimization, describing how they work and their characteristics. In
Section 2.3, neural network training and hyperparameter adaption are explained, covering
the major operations that is performed in order to train and optimize neural networks. In
Section 2.4, PBT is described in more detail, including recent related work that sets out to
improve upon the original procedure. Finally, Section 2.5 covers essential DE heuristics,
as well as several recent state-of-the-art adaptive DE extensions.

2.1 Research Topic

In simple terms, the general goal of machine learning applications is to optimize the train-
able parameters θ of a modelM to minimize some predefined loss function L

(
X (test);M

)
on the given test data X (test). The model M is constructed by a learning algorithm A
using a training set X (train), typically involving solving some convex optimization prob-
lem over the parameter space Θ. The goal of hyperparameter search is to find a set of D
hyperparameters λ∗ (not to be confused with θ) that yield an optimal model M∗ which
minimizes L

(
X (test);M

)
[31]. This is considered a non-differentiable, single-objective op-

timization problem for a constrained hyperparameter configuration space, or search space,
Λ = Λ1 × Λ2 × . . .ΛD of mixed data types. The domain of the n-th hyperparameter is
denoted by Λn. A hyperparameter configuration is denoted by the vector λ ∈ Λ, which
becomes Aλ when the hyperparameters of A is instantiated to λ. The problem can be
formalized as follows:

λ∗ ≈ argmin
λ∈Λ

L
(
Aλ(X (train);X (test))

)
≈ argmin

λ∈Λ
F
(
Aλ,L,X (train),X (test)

) (2.1)

As shown in Equation 2.1, the objective function F is the general function to be
optimized. It is dependent on a tuple of hyperparameters λ, as well as the machine
learning algorithm A, the chosen loss function L, and the dataset X . For supervised

5

6 Chapter 2. Background

learning, X is commonly split into a training set X (train) and a testing set X (test) using
hold-out or cross-validation methods [100, 45].

One of the major operations in the objective function F consists of training a model
M through navigating Θ by computing the loss on X (train) using L. Simply put, the loss
function L purpose is to guide the learning by applying a cost that encourage good pre-
dictions and discourage bad predictions (training is covered in more detail in Section 2.3).
There have been proposed various methods for calculating the loss, like the Mean Square
Error (MSE), Mean Absolute Error (MAE), cross-entropy [41], as well as problem-specific
ones such as loss functions for class imbalance [120]. Many of the commonly used machine
learning packages also include multiple loss functions as a categorical hyperparameter
[146, 154, 1].

After training, M is validated on X (test) by computing L or using an entirely dif-
ferent metric to describe the predictive performance. When performing hyperparameter
optimization, the model M is typically validated using a portion of the training set to
form a validation set X (valid), and final predictive performance is reported using the test
set X (test). This is done to minimize the generalization error so that the hyperparameter
optimization algorithm does not return λ∗ that is overfitted on the test set.

The time it takes to perform hyperparameter optimization by navigating Λ in order to
find the optimal set of hyperparameters λ∗ depends heavily on the available computational
resources, as well as the selected learning algorithm A and the size of the dataset X .
Certain types of hyperparameters may also have a great influence on the evaluation time;
for example, the size of ensembles [21, 33], changes to the neural network architecture
[19] or even regularization and kernel complexity for support vector machines [20]. With
this in mind, hyperparameter evaluations suddenly become an computationally expensive
issue that can take up to multiple days or even weeks [184, 42, 104].

Hyperparameters are most often defined as continuous values such as floating point
values, often related to regularization. They may also be discrete values such as integers,
commonly used to define the neural network architecture [19], parameterization of kernels
in kernel methods [165], or size of ensembles [33, 17]. In addition, some learning algorithms
also accept categorical values with no specific order, such as strings. These may be used
to set different flags that enable or disable different operations in the learning algorithm
[146]. This makes hyperparameter optimization a mixed-type problem, and special care
must be taken for optimization algorithms that perform arithmetic operations directly
with hyperparameters [91, 180, 17].

While some machine learning algorithms provide only a few hyperparameters [4, 35,
146] for optimization (effectively having a search space Λ of low dimensionality), other
complex learners might supply hundreds of hyperparameters [16]. The number of hyper-
parameters may be extended even more if various methods of pre-processing or regular-
ization (e.g. data augmentation, weight decay) are also subjected to optimization [77].
When that has been said, for many cases it has been empirically demonstrated that only
a few hyperparameters are needed in order to impact model performance [17], but that
requires the difficult task of determining which hyperparameters to prioritize.

2.2 Related Work

In machine learning, a wide variety of optimization methods have been proposed for se-
lecting optimal hyperparameters, including model-free approaches [146, 17, 86, 116] and

2.2. Related Work 7

Automated Hyperparameter Optimization

Model-Free

Grid
search

Random
search

SuccessiveHalving

Hyperband

Model-Based

Bayesian
Optimization

TPE Spearmint SMAC

Evolutionary-
Algorithms

CMA-ES PSO PBT

Figure 2.1: Approaches for automated hyperparameter optimization [123].

model-based approaches such as Bayesian optimization techniques [88, 10, 18, 46, 79, 172]
and evolutionary methods [119, 130, 123, 125, 84]. This section will provide details about
some of the fundamental hyperparameter optimization approaches for machine learning
that have been suggested over the recent years. Figure 2.1 displays an overview of these
approaches, split into model-free and model-based methods [123]. Through careful explo-
ration and exploitation, model-based methods create a surrogate model of the search space
Λ with the information obtained during optimization. Alternatively, model-free methods
refers to algorithms that do not exploit knowledge about the search space Λ.

2.2.1 Grid Search

Grid search [146] is one of the simplest ways to perform hyperparameter optimization and
is often used in combination with manual search [73, 108, 111]. The search space Λ is
partitioned into a Cartesian grid, indexed by K configuration vectors λk, which contain a
range of values for each particular hyperparameter. These values can be specified manually
by a user, or they can be generated using approaches such as through logarithmic scale
steps [17]. In order to perform grid search, every joint specification of hyperparameters
λS are created by assembling every possible combination of values from each vector in
Λ. The model M is then trained with the learning algorithm A for S =

∏K
k=1 |L(k)|

trials (one for each set of combined hyperparameters λ) and evaluated using the objective
function F . While grid search works fine for smaller sets of hyperparameters, it evidently
suffers from the curse of dimensionality ; the number of trials grows exponentially with
the number of hyperparameters at a rate of O(nk) [14], assuming that n is the same for
all hyperparameters. The time complexity issue can be mitigated with the use of parallel
computing, but compared to more recent and efficient methods, grid search stands now as a
slower, more brute-force way of approaching the problem of hyperparameter optimization.

2.2.2 Random Search

Random search [17] is another widely used hyperparameter optimization algorithm for
machine learning, known by its easy implementation and public availability in machine

8 Chapter 2. Background

learning packages [146]. The method shares similarities with grid search, but instead of
discretizing the search space with a Cartesian grid, it randomly samples it, which improves
localization of good regions for sensitive hyperparameters. At each iteration, λi is sampled
from a uniform distribution U(ul, uu) bound by the lower and upper limits, ul and uu, of
the different hyperparameter types in the search space ΛD. These bounds are defined by
the user as a vector of D dimensionality. If the sampled hyperparameter configuration λi
receives a higher objective value from the objective function f(·), it is considered the new
best evaluation λ∗. Random search is briefly summarized in Algorithm 1.

Algorithm 1 Random Search Optimization

1: function RandomSearch(max iter,ul, uu))
2: for i ∈ {0, 1, . . . , imax − 1} do
3: λi ∼ UD(ul, uu)
4: if f(λi) > f(λ∗) or i = 0 then
5: λ∗ = λi
6: end if
7: end for
8: return λ∗

9: end function

As demonstrated in Figure 2.2, random search may be more precise in finding the
optimum for each hyperparameter λk compared to grid search. The method has also
shown to be very effective for non-cubic search spaces, i.e. if different ranges of variation
are given to some of the hyperparameters. There are other reasons for why random search
works well, e.g. its easy implementation or the fact that it can be computed asynchronously
in parallel, but it still shares some of the drawbacks of manual search and grid search.
Random search does not use the information gained by previous tries. which make every
hyperparameter configuration a blind guess in the search space. As a consequence, finding
the local minimum with a high degree of precision require more samples of the search
space, which then require more resources and time to compute. While this may not be
a problem for non-complex systems with small models, fast learning algorithms and few
hyperparameters, the required time and resources drastically increase for complex systems
with large models and many hyperparameters.

There have been proposed methods for improving random search, such as Successive-
Halving [86]. Given the same set of hyperparameter configurations, SuccessiveHalving
achieves more efficient allocation of resources by improving the division and selection of
randomly generated hyperparameter configurations without increasing the amount of as-
sumptions about the nature of the hyperparameter configurations space Λ. The algorithm
consists of four steps: First, it uniformly allocate a budget to a set of hyperparameter
configurations; secondly, it evaluates the predictive performance of all currently remaining
configurations; then, it throws out the bottom half of the worst scoring configurations,
and; repeat step two until one configuration remains. This is clarified in algorithm 2.

2.2. Related Work 9

b1,U

b1,L

b0,L b0,U0

1

(a) grid search

b1,U

b1,L

b0,L b0,U0

1

(b) random search

Figure 2.2: A comparison of search space coverage between grid search and random search with
the same number of hyperparameter configuration samples.

Algorithm 2 SuccessiveHalving [86]

1: require: n sets of hyperparameter configurations λ, minimum score r, maximum
resource R, reduction factor η, minimum early-stopping rate s

2: function SuccessiveHalving(n, λ, r,R, η, s)
3: smax =

⌊
logη (R/r)

⌋
4: assert n ≥ ηsmax−s . ensure at least one configuration will be allocated R
5: λ∗ = λ
6: for i ∈ {0, . . . , smax − s} do
7: ni =

⌊
nη−i

⌋
8: ri = rηi+s

9: L = run then return loss values (f(λ), ri) : λi ∈ λ∗
10: λ∗ = return top configurations (λ∗,L, ni/η)
11: end for
12: return λ∗

13: end function

While the algorithm allocates resources exponentially to well performing hyperparam-
eter configurations, it unfortunately requires a number of hyperparameter configurations n
as an input to the algorithm. For a given task with a finite time-budget B, B/n resources
are distributed evenly to each configurations. However, for a fixed B, it is difficult to say
whether we should prioritize many hyperparameter configurations (large n) with short
training time (small B/n), or choose less hyperparameter configurations (small n) and
longer average training times (large B/n). HyperBand [116] extends the SuccessiveHalv-
ing algorithm and addresses this n versus B/n problem by testing several distinct values
of n for a fixed B. In other words, it essentially performs a grid search for possible values
of n, and effectively model the problem of hyperparameter selection as a many-armed

10 Chapter 2. Background

bandit. While parallelisation is natively supported, SuccessiveHalving and HyperBand
seem impractical for single training optimization processes due to the large amount of
computational resources that they require for the initial runs.

2.2.3 Bayesian Optimization

Bayesian optimization is a framework for sequential optimization of unknown objective
functions, where it tries to model the conditional probability p(y|λ) of the predictive
performance (given by the validation metric, y) of a given hyperparameter configuration λ.
Bayesian optimization method with Gaussian Processes (BO-GP) [172, 147] are common
algorithms for Bayesian optimization. The goal is to describe the objective function F
that is to be optimized by constructing a posterior distribution of functions (gaussian
process). The posterior distribution gets better with more observations, and the algorithm
get more certain of which regions in the hyperparameter search space that yield better
results, while balancing the need for exploration and exploitation. For each iteration, the
gaussian process learns from the points previously explored. The next point is determined
based on the posterior distribution and an exploration strategy (e.g. Upper Confidence
Bound (UCB) [174]). The method an be summarized in five steps: First, build a surrogate
probability model of the objective function F ; secondly, determine which hyperparameter
configurations that perform best on the surrogate; thirdly, apply these hyperparameters to
the true objective function F ; fourthly, update the surrogate model with the new results;
and lastly, repeat step 2–4 until B iterations or time is reached.

There have been proposed several variations of Bayesian optimization for neural net-
works. In addition to BO-GP [172, 147] and Gaussian Process Upper Confidence Bound
(GP-UCB) [174], examples include Tree-structured Parzen Estimator (TPE) [18], which is
a non-standard Bayesian optimization algorithm based on tree-structured Parzen density;
Sequential Model-Based Optimization for General Algorithm Configuration (SMAC) [79],
which uses random forests to model p(y|λ) as a Gaussian distribution; and Spearmint
[171, 185, 173], which uses Gaussian processes to model p(y|λ) and slice samples the hy-
perparameters of the gaussian process. There is also a variant that mixes Hyperband
and Bayesian optimization [51], as well as a variant that attempts to reduce inefficiency
by training on a smaller dataset (while using the full validation dataset to evaluate its
predictive performance) [99].

Compared to grid search and random search, Bayesian optimization has been shown
[78, 191, 171] to obtain better results with less evaluations, because the algorithm can
determine the quality of the distinct sets of hyperparameters before they are tested. How-
ever, the efficiency rapidly decreases for cases where the dimension of the search space Λ
increases, to the point where it is not better than random search [116]. Another major
drawback is that the algorithms are hard to parallelize due to their sequential nature; one
trial needs to be completed before the next one can be started, because any trial needs the
Gaussian process to be updated and the acquisition function to find its maximum. While
some level of parallelization can be achieved by evaluating multiple acquisition function
configurations simultaneously [62, 80, 28, 43], or by conditioning decisions on expectations
over several hallucinated performance values for currently running trials [172], full paral-
lelization appears to be more difficult to achieve as each step inherently depends on all the
information gathered at that point. In addition, Gaussian processes are computationally
expensive for large numbers of evaluations. The process requires the covariance matrix
to be inverted, which requires n2 operations, where n is the number of current evaluated

2.2. Related Work 11

configurations. Gaussian processes ultimately need O(n3) operations, which could lead to
Bayesian optimization taking significant amount of time to complete for several thousand
samples [157].

2.2.4 Covariance Matrix Adaptation Evolutionary Strategy

Evolutionary algorithms refer to a set of algorithms for population-based optimization
inspired by natural selection. In natural selection, it is believed that from a generation
of individuals, only the ones with the most beneficial traits gets to pass down their char-
acteristics to the next generation. Evolution happens gradually when each generation
becomes better adapted, or more fit, to the environment. This theory can be applied to
hyperparameter optimization, where the population consists of different configurations of
hyperparameters which undergo some level of mutation (e.g. perturbation) and tested
on the objective function in order to determine which configurations achieve the best
predictive performance.

One evolutionary approach for selecting hyperparameters is that of Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) [66, 67, 125]. In order to determining the
optimal λ∗, the algorithm iteratively samples a population of hyperparameter solutions
from a parametric distribution over the search space Λ. These configurations are then
tested and evaluated on the objective function. The evaluations are stored in tuples and
forms a dataset which the algorithm uses to update the mean and covariance matrix of the
search distribution. More precisely, the objective function F : <n → < is parametrized by
the search space λ ∈ Λ ∈ <n (Equation 2.1).

The approach maintains a multivariate Gaussian distribution over the search space as
λ ∼ N (λ; m,C), where m is a mean vector of n dimensionality and C is a n×n covariance
matrix. In each generation g, the algorithm produces a population of N configurations
from the distribution as λi ∼ N (λ;mg,Cg), i = 0, . . . , N − 1, where mg and Cg denote the
mean vector ad covariance matrix of generation g. Then, each new candidate configuration
λ is evaluated using F(λi) and sorted in an ascending order according to the achieved
objective value (best first). From these, the first µ (< N − 1) best configurations are
selected for updating the mg and Cg. As a last parameter, the global step-size σ ∈
<, defined as the global standard deviation, is required by the user and controls the
convergence rate of the covariance matrix update. The CMA-ES algorithm is summarized
in Algorithm 3.

In the algorithm, step 1 and 2 initialize the parameters {m,C, σ} which will be iter-
atively updated by step 3 to 17. Step 6 defines a multivariate normal distribution from
which new hyperparameter configuration solutions are sampled in step 7. These new con-
figurations are then evaluated by F(·) in step 8. The sorted tuple of best candidates is
denoted as yi,...,N−1. The weighted (i.e. wi = 1/µ) sum of the best candidates y is cal-
culated in step 10, and used in step 11 to updated the mean vector m. Through step 12
to 15, the covariance matrix update is calculated by three factors: the old information,
the change of mean over time pc, and the rank-µ update which considers the good varia-
tions in the last generation. Based on the conjugate evolution path, pσ, step 13 updates
the step-size control that limits the changes to be applied on the distribution in order to
achieve faster convergence to the optimum while avoiding premature convergence. The
other parameters consist of the variance effective selection mass µw, the learning rates
c1, cc, cσ, and the σ dampening factor dσ.

In contrast to many traditional methods, CMA-ES makes fewer assumptions on the

12 Chapter 2. Background

Algorithm 3 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [86]

1: Initialize m ∈ <n, σ ∈ <+, N, µ
2: Initialize C = I,pc = 0,pσ = 0
3: procedure CMA-ES(m, σ, C,pc,pσ)
4: while stopping criteria not met do
5: for i ∈ {0, 1, . . . , N − 1} do
6: yi ∼ N (0,C)
7: λi = m + σ × yi . sample candidate solution
8: fi = F(λi) . measure performance (i.e. fitness)
9: end for

10: y =
∑µ

n=0wiyi:N−1

11: m← m + σy . mean update
12: pσ ← (1− cσ)pσ +

√
cσ(2− cσ)µwC

− 1
2

y

13: σ ← σ exp
(
cσ
dσ

(
‖pσ‖
‖N (0,I)‖

))
. step-size control update

14: pc ← (1− cc)pc +
√
cc(2− cc)µwy

15: C ← (1− c1 − cµ)C + c1pcpTc + cµ
∑µ

n=0wiyi:N−1yTi:N−1 . Cov. matrix update
16: end while
17: end procedure

nature of the underlying objective function. The derivative-free algorithm only exploits
the ranking between the different hyperparameter configurations in order to learn the
sample distribution. In 2013, [126] showed that CMA-ES outperformed more than 100
hyperparameter optimization methods on different black-box functions, concluding that
it performs well for larger function evaluation budgets [125].

2.2.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was originally proposed in 1995 [91] for simulating
social behavior [92], representing the movement of organisms such as a flock of birds or
a school of fish. The philosophical aspects of PSO and swarm intelligence is described in
detail in [93]. The algorithm was recently adapted to hyperparameter optimization for
machine learning algorithms, such as support vector machines (SVMs) [119] and neural
networks [130, 123], as another way of applying evolutionary principles for finding the
optimal hyperparameter configuration λ∗. Similarly to CMA-ES, this approach also con-
siders a population of N members, but the members are represented as D-dimensional
particles that evolves over each generation by moving towards the best individuals. Each
i-th particle position represents a hyperparameter configuration vector λi ∈ Λ ∈ <D, and
has a velocity υi ∈ <D which influences its movement. Let λ∗i denote the best known po-
sition of the i-th particle, and λ∗ denotes the best known position across all generations.
A summary of the method is described in Algorithm 4.

The swarm initialization is performed in step 3 to step 10. Each i-th particle λi in
the swarm population is initialized by randomly sampling from a uniform distribution
U(bl,bu) that is bound by lower limit bl and upper limit bu of the hyperparameters.
The new, sampled particle becomes the current best particle λ∗i in the generation, and
has a chance to become the best known particle λ∗ across all generations if f(λ∗i) > (λ∗).
Similarly to the initial particles, the velocity υi is also drawn from a uniform distribution,

2.2. Related Work 13

Algorithm 4 Particle Swarm Optimization (PSO) [44, 123]

1: procedure PSO(s, gmax,bl,bu)
2: f(λ∗)← −∞
3: for i ∈ {0, 1, . . . , N − 1} do . swarm initialization
4: λi ∼ U(bl,bu)
5: λ∗i ← λ
6: if f(λ∗i) > f(λ∗) then
7: λ∗ ← λ∗i
8: end if
9: υi ← U(−|bl − bu|, |bl − bu|)

10: end for
11: g ← 1
12: while g ≤ gmax do . swarm evolution
13: for i ∈ {0, 1, . . . , N − 1} do
14: rp, rg ∼ U(0, 1)
15: υi ← ωυi + φprp(λ∗i − λi) + φgrg(λ∗ − λi)
16: λi ← λi + υi
17: if f(λ∗i) > f(λ∗) then
18: λ∗ ← λ∗i
19: if ‖λ∗ − λ∗prev‖ < δ then
20: return λ∗

21: end if
22: if f(λ∗)− f(λ∗prev) < ε then
23: return λ∗

24: end if
25: end if
26: g ← g + 1
27: λ∗prev ← λ∗

28: end for
29: end while
30: end procedure

14 Chapter 2. Background

bounded by the upper and lower bounds of the hyperparameter limits in both positive
and negative direction.

The swarm evolution is described in step 13 to step 28. Each swarm generation g,
where gmax represents the maximum number of generations, the particles and the velocity
values are updated by the following formula (step 15):

υi ← ωυi + φprp(λ
∗
i − λi) + φgrg(λ

∗ − λi). (2.2)

In order to increase search diversity, rp and rg are added as a stochastic component
to the velocity updates, where each represents a random uniform number between 0 and
1, drawn from U(0, 1). To add resistance to velocity changes, ω is used as an inertia
weight that scales the velocity. Velocity acceleration and deceleration is achieved with the
acceleration coefficient φp and φg. These factors affect the level of influence λ∗i and λ∗

have on changes in velocity. In step 16, the new velocity is used to update particle λi.
From here, the best particle position is modified for each particle (step 18), and the best
swarm position is updated only if it is outperformed by one of the new particles. The
evolution terminates when the best position λ∗ is outperformed by less than the minimum
step-size δ (step 19), or if the current best particle in the generation improves by less than
the threshold ε (step 22), or if the maximum number of generations gmax has been met
(step 12).

PSO has shown promising results [123] in terms of time-complexity, achieving the
same accuracy performance as grid search and random search on the CIFAR-10 dataset
[103], but considerably faster wall-clock time. The algorithm has also shown capable of
optimizing a deep neural network model to a performance that outperforms the same
model tuned by a human expert [124]. In terms of scalability, the algorithm scales linearly
with the number of hyperparameters, i.e. the dimensionality D, which makes it excellent
for machine learning algorithms whose model performance depends heavily on a large
number of hyperparameters. In addition, the algorithm requires only a few parameters
itself and can be easily parallelized [124].

2.3 Automatic Hyperparameter Adaption for Neural Net-
works

So far, several methods of hyperparameter optimization have been proposed with difference
in speed, efficiency, scalability and model dependency. Each method attempts to optimize
the machine learning model M by finding the optimal hyperparameter configuration λ∗

to be instantiated with the learning algorithm A. However, current literature suggest that
better predictive performance may be gained by finding a good hyper-parameter sched-
ule {λ∗t }Tt=1 = {λ∗1, λ∗2, . . . , λ∗T } instead of a constant configuration [82, 158, 5, 30, 23].
In addition, simply training a machine learning model can take long time, depending on
the algorithm A, the hyperparameter configuration λ∗, as well as dataset X . Therefore,
recent studies have researched ways to perform hyper-parameter optimization and neural
network training simultaneously, sometimes referred to as automatic hyperparameter adap-
tion, allowing the hyper-parameter schedule to be obtained in a single training session.
This section formulates automatic hyperparameter adaption for neural networks, which
includes how neural networks are trained and optimized iteratively using a sequence of
optimization steps.

2.3. Automatic Hyperparameter Adaption for Neural Networks 15

2.3.1 Neural Networks

Neural networks are essential in order for evolutionary training of multiple networks to
work, as algorithms such as PBT (described in Section 2.4) require the model M to be
transferable to another instance of a learner, regardless of how many training iterations
that have been performed. Unlike other learners where the model grows over time [57,
21, 27, 90, 154], neural networks retain their model shape and model size no matter how
many training iterations are performed, making them excellent for parallel asynchronous
training and model transfer in different training stages. Model transfer is made possible by
copying the model data, i.e. the weights θ (commonly denoted w ∈ W), which connects
the neurons a ∈ A between each layer l ∈ L in the network, to other neural network
instances of the same model shape. The shape is decided based on the hyperparameters
for network architecture, e.g. number of layers and neurons. In raw form, neural network
models are usually represented by weight-matrices W and bias-matrices B, which leads
to excellent computation speeds on graphical processing units (GPUs) because they are
efficient with matrix multiplication [54].

When Neural Networks models are learning, they are essentially searching the solution
space Θ for the best solution. Not to be mistaken by the hyperparameter search space Λ,
the solution space can be viewed as the space of all functions that a neural network can
approximate to any precision. It is commonly known that the size of the solution space
heavily depends on the depth of the network and activation functions used in the network.
With one or more hidden layers, the solution space can become very large, and it grows
exponentially with the depth of the network [156].

Neural networks learn through trial and error, which is commonly referred to as train-
ing, an iterative process that extracts and re-applies knowledge about the solution space.
The training process consists of many small steps which collectively optimizes the weights
θ, e.g. by calculating the gradient of the objective function. One step includes one forward
propagation and one back-propagation.

The mathematical steps required to perform forward and back-propagation is formu-
lated in the following sections. For notations, weights are defined as wljk, where the weight
w is connected between the k-th neuron in the (l− 1)-th layer and the j-th neuron in the
l-th layer. A similar notation is used for biases and activations as well; the bias blj is

positioned at the j-th neuron in the l-th layer, and the activation xlj is positioned at the
j-th neuron in the l-th layer.

Forward propagation

Forward propagation consist of computing the activations in each layer, where the activa-
tion xlj at the j-th neuron in the l-th layer is defined as

xlj = σ

(∑
k

wljkx
l−1
k + blj

)
. (2.3)

Here, the sum
∑

is of every activation in the previous (l−1)-th layer multiplied by the
weights wljk in the current layer and added to the bias blj . After, the activation function σ
is applied to the sum. Because the activation is related to the activations in the previous
(l − 1)-th layer, forward propagation must be computed sequentially from left to right,
layer by layer.

16 Chapter 2. Background

Calculating each neuron individually is not the most efficient approach; As a matter of
fact, Equation 2.3 can be rewritten in matrix form. In matrix form, each weight w that is
connected to the neurons in the l-th layer makes up the components of the weight matrix
W l. For example, the weight wljk is the same weight as the weight component in matrix

W l, at the j-th row and k-th column. Similarly, biases are defined similarly in matrix
form as Bl for each l-th layer, where the bias components consists of blj for all j’s in the

l-th layer. Lastly, the activations are defined as the matrix X l, whose components are the
activations blj for all j’s in the l-th layer. Now, Equation 2.3 can be re-defined in matrix
form as

Z l = W lX l−1 +Bl, (2.4)

X l = σ
(
Z l
)
, (2.5)

where the dot product of weight matrix W l and activation matrix X l−1 is added to
the bias matrix Bl in order to get Z l. After that, the activation function σ is applied
element-wise to the components in the matrix.

Back-Propagation

For backpropagation, the goal main objective is to calculate the partial derivatives δC/δW
and δC/δB of the cost function C in the network. The cost function C is determined by
the user. For example, MSE can be defined for weights w and biases b at single neurons
as

δC

δwj
=

1

n

∑
x

xj (σ (z)− y) , (2.6)

δC

δb
=

1

n

∑
x

(σ (z)− y) . (2.7)

For all neurons in all layers, the cost function C can be generalized as

C =
1

N

N∑
i=1

(f (xi|θ)− yi)2 . (2.8)

The error in the output layer, δL, is calculated using the formula

δL = 5XC � σ
′ (
ZL
)
. (2.9)

In the formula,5XC is a vector that contains the partial derivatives δC/δxLj , described
as the rate of change of C with respect to the output activations. The error in the l-th
layer, δl, is calculated using the error obtained in the next layer, δl+1, using the formula

δl =

((
W l+1

)T
δl+1

)
� σ′

(
Z l
)
, (2.10)

where (W l+1)T is the transpose of the weight matrix W l+1 for the next layer. The
transpose of the weight matrix is required in order to move backwards in the network and
obtain the error at the l-th layer. Next, the dot product of the transposed matrix and
the error in the next layer, δl+1, is calculated. Then, the result is multiplied element-wise

2.3. Automatic Hyperparameter Adaption for Neural Networks 17

(Hadamard product, �) with σ′(Z l), where σ′ is the derivative (inverse) of the activation
function.

In the network, the rate of change of the cost with respect to any bias b is defined
using

δC

δblj
= δlj , (2.11)

which states that the rate of change δC/δblj is exactly equal to the error δlj . Similarly,
the rate of change of the cost with respect to any weight w is defined as

δC

δwljk
= xl−1

k δlj , (2.12)

and demonstrates using the quantities δl and xl−1 how to obtain the partial derivatives
δC/δwljk.

Summary

The formulas for forward propagation and back-propagation sets the foundation for how
to train neural networks. Training consists of letting the network predict through forward
propagation. The prediction is then used to calculate the gradient of the cost function
which is used to update the weights and biases in hope that the update improves general-
ization towards an optimal solution. Algorithm 5 summarizes the operations required to
compute the gradient of the cost function for networks represented by matrices.

Algorithm 5 Forward propagation and back-propagation in a neural network

1: function Step(X,L,W,B,C, σ)
2: Set the corresponding activation a1 for the input layer;
3: for l = 2, 3, . . . , L do
4: Z l = W lX l−1 +Bl

5: X l = σ
(
Z l
)

. activations in the lth layer
6: end for
7: δL = 5XC � σ

′ (
ZL
)

. error in the output layer
8: for l = L− 1, L− 2, . . . , 1 do

9: δl =
((
W l+1

)T
δl+1

)
� σ′ (

Z l
)

. error in the lth layer

10: end for

11: return
δC

δwljk
= al−1

k δlj and
δC

δblj
= δlj . The gradient of the cost function

12: end function

2.3.2 Formulating Automatic Hyperparameter Adaption

As demonstrated in the previous section, training neural networks occurs in small, con-
secutive steps which iteratively updates the network model by optimizing the objective
function. These updates are often applied using an optimizer such as the Stochastic Gra-
dient Descent (SGD), which has some suitable smoothness properties.

To simplify, each step can be generalized as

θt+1 ← step(θt|λt), (2.13)

18 Chapter 2. Background

which performs one forward propagation and back-propagation with the current model
θt and current configuration of hyperparameters λt, returning the updated model θt+1.
When training neural networks with a hyper-parameter schedule, steps are performed
sequentially to converge towards some global or local minima in the neural network solution
space using

θ∗ ≈ optimize(θ|(λt)Tt=1) = step(step(. . . step(θ|λ1) . . . |λT−1|λT) [84]. (2.14)

In order to perform enough steps to approximate some optimal solution, one has to
choose the number of steps T (i.e. iterations) to perform. Determining the appropriate T
can be difficult, as the computational cost increases with how many steps that is required,
and many steps does not always imply better predictive performance (as seen later in
4.3). The problem becomes more apparent for tasks that require a large dataset X, which
further impedes the process. For such issues, SGD is a popular solution, as it lowers
the computational resources needed and reduces the time it takes to train a network by
updating the weights based on single samples x ∈ X instead of the whole dataset X . Still,
the computational cost of steps can be very high, leading to the optimization of θ taking
several days, or even several weeks. Given a poor selection of hyperparameters λ, there
is also no guarantee for the neural network to be able to find a good solution or even
converge towards any solution at all.

If not constant hyper-parameters are considered (e.g. same learning rate for all itera-
tions), the number of possible hyperparameters grows exponentially for each step. In order
to find the optimal weights θ∗ and hyperparameter schedule {λ∗t }Tt=1, we must consider
the following problem:

θ∗ ≈ optimize(θ|λ∗) (2.15)

{λ∗t }Tt=1 = {λ∗1, λ∗2, . . . , λ∗T } ≈ argmin
λ∈ΛT

(optimize(θ|λ)) (2.16)

2.4 Population-Based Training

PBT [84, 85] is a novel, Lamarckian evolutionary approach in hyperparameter optimiza-
tion for finding the optimal hyperparameter schedule {λ∗t }Tt=1 and model θ∗ by training a
series of neural network models in parallel. The method can be performed as quickly as
other methods and has shown to outperform Random Search [17] in model performance
on various benchmarks in deep reinforcement learning using A3Cstyle methods [135], as
well as in supervised learning for machine translation [196] and Generative Adversar-
ial Networks (GANs) [65]. While similar procedures have been explored independently
[83, 47], PBT has gained increasing amount of attention since it was proposed. There
has already been seen shown various use cases of PBT in AutoML, e.g. packages for
hyperparameter optimization tuning [117, 75, 70] and frameworks [114, 115, 95]. PBT
have also streamlined the experiment testing in different application-based domains with
different machine learning approaches such as auto-encoders [94], reinforcement learners
[84, 85, 60, 50, 211, 36, 71, 12, 138, 164, 58, 122, 200], neural networks [48, 84] and
generative adversarial networks [84].

In order to approach {λ∗1, λ∗2, . . . , λ∗T } and θ∗ as described in Equation 2.15–2.16, PBT
considers a population P consisting of N members {θi}Ni=1, initially formed with different
hyperparameters {λi}Ni=1 sampled from a uniform distribution. The goal is to determine

2.4. Population-Based Training 19

the optimal model θ∗ across the population, which PBT achieves by adapting the hyper-
parameters and copying weights based on some criteria. The approach defines two distinct
methods, exploit and explore, that influence λ and θ. In short, the exploit method decides
whether the member should continue exploring the current solution or simply abandon
it. If exploration is considered, the explore method is used to provide a new set of hyper-
parameters λ. The initiative for exploitation and exploration depends on the individual
performances of the entire population, where the worst performing members exploits and
explores the best performing members characteristics, while the best performing members
maintains their characteristics. Algorithm 6 summarizes the operations performed in the
PBT procedure.

Algorithm 6 Population-Based Training (PBT) [84]

1: procedure Train(P) . initial population P
2: for ((θ, λ, p, t) ∈ P (asynchronously in parallel) do
3: while not end of training do
4: θ ← step(θ|λ) . one step of optimization using hyperparameters λ
5: p← eval(θ) . current model evaluation
6: if ready(p, t,P) then
7: λ′, θ′ ← exploit(λ, θ, p,P) . use the rest of P to find better solution
8: if θ 6= θ′ then
9: λ, θ ← explore(λ′, θ′,P) . produce new hyperparameters λ

10: p← eval(θ) . new model evaluation
11: end if
12: end if
13: update P with new (θ, λ, p, t+ 1) . update population P
14: end while
15: end for
16: end procedure

All members in the population are trained and adapted individually and asynchronously
in parallel until the end-criteria is met. In step 4, each member trains its model θ indepen-
dently with the current hyperparameter configuration λ using the step-function. When
the trained model is returned, it gets evaluated using the the eval-function, which obtains
the current predictive performance p in step 5. In step 6, the member is evaluated whether
is deemed ready, e.g. by having completed a minimum number of steps t, or reached some
decided performance threshold, for exploitation and exploration. If ready, the member
may exploit the rest of the population and explore new hyperparameters in step 7–10, or
continue on without changing anything if exploitation does not yield a different model θ.
At the end of the iteration in step 13, each individual member saves their current progress
to the population P before they move on to their next (t+ 1)-th step.

The authors of PBT have suggested several different ways to perform exploitation and
exploration, stating that the implementation depends entirely on the application. In the
paper [84], the authors implemented exploit and explore differently for three of the learners
that were tested: deep reinforcement learning using A3Cstyle methods [135], supervised
learning for machine translation [196] and with GANs [65]. However, a common default
approach seems to be initially outlined, and the full process is summarized in Algorithm
7.

20 Chapter 2. Background

Algorithm 7 Default Exploit and Explore [84]

1: function ExploitAndExplore(λ, θ, p,P)
2: Fexploit ← 0.2 . exploitation factor
3: m : (λ, θ, p) ∈ P; . m is a particular member in the population
4: melitist ∼ Pbest,

where |Pbest| = bN × Fexploitc . sample a random top performing member
5: if m 6= melitist then
6: m← melitist

7: for k ∈ {1, 2, 3, . . . , D} do
8: Fexplore ∼ {0.8, 1.2} . select random exploration factor
9: λk ← λk × Fexplore . perform perturbation

10: end for
11: end if
12: return (λ, θ, p) ∈ m
13: end function

As shown in Algorithm 7, if a member is not performing well compared to the other
members, it can have its weights and hyperparameters replaced by a random member
melitist from the top bN×Fexploitc performing members in the population, Pbest (exploita-
tion), where the inherited hyperparameter configuration is perturbed using random noise
by multiplying with either 0.8 or 1.2 (exploration). If a member is one of the top perform-
ing members in Pbest, it is deemed an elitist, and can proceed with its current model and
hyperparameter configuration without any modification. In order to apply this exploit
and explore method, step 7–11 in Algorithm 6 are replaced by the operations described in
Algorithm 7.

In addition to the exploit and explore implementation, PBT also requires a couple of
additional functions and parameters. First of all, the user must define the end-criteria,
which can be a function of the entire population P that decides how long the population
will train for, or a function of individual members which decides when each members
should stop. The user must also define the is-ready-function, which decides how frequent
and under witch circumstance members should be adapted using exploit and explore. In
addition, the user needs to assign the upper and lower bounds (bL,bU) of the hyper-
parameter search space Λ in order to generate the initial hyperparameter configuration λ1

for every member in the population using a random uniform distribution.

PBT great time complexity assumes that the user has access to enough computational
resources to parallelize the algorithm linear to how many members are in the population.
The training is preferably conducted on the GPU, meaning that N GPUs are appropriate
for a population ofN members. However, obtaining enough processing devices can be quite
expensive, especially for smaller research teams and laboratories with limited resources,
and others have already proposed a distributed queuing system that allows for PBT to be
carried out using fewer devices [218].

2.4.1 Advancements in Population-Based Training

Since the proposal of PBT, we have seen several suggestions for improvement of the stan-
dard algorithm, as well as variations that implement some of its heuristics [175], or other,
entirely different algorithms that are simply inspired by it [69]. In this section, we will

2.4. Population-Based Training 21

focus on the novel extensions to the original method that have been proposed so far.

Elfwing et al. [47] proposed Online meta-learning by parallel algorithm competition
(OMPAC), which may arguably be the first method to implement hyperparameters opti-
mization for deep reinforcement learning by the population-based approach. The differ-
ence between PBT and OMPAC lies in the selection method (i.e. exploitation method);
all members in the population are evaluated synchronously after a decided number of
episodes, where each member is approved for continuous learning based on stochastic uni-
versal sampling [11]. For experiments with Feudal Networks [197] on the Atari Learning
Environment games [13], PBT used a exploitation strategy consisting of a truncation se-
lection scheme that replaces the hyperparameters λ and weights θ of the bottom 20%
performing members, using uniform sampling, by the top 20% performing members based
on episodic reward. The experimental results of OMPAC suggests their selection scheme
may be more effective in this example.

Cohen et al. [34] proposed Population-Based Training With Knowledge Sharing, which
embraces the randomness between models instead of avoiding it by extending PBT with
a novel distilling scheme [208] that enable knowledge sharing across generations. The
authors argue that model diversity is important for the evolution of the population. The
extended algorithm allows only the best individuals of the population to share some of their
characteristics with the rest of the population, where the neural networks that achieve the
best loss value are allowed to contribute to a shared teacher output for the training data.
The contribution is reflected within the loss function of all networks in the population,
and the teacher output affect the model training through the step-function. The extended
algorithm was tested on the MNIST1 [110], Fashion-MNIST2 [207] and EMNIST [34]
datasets, outperforming standard PBT on all tested cases.

Zhou et al. [217] proposed Two-stage population based training method for deep re-
inforcement learning (TS-PBT), which is an extension of PBT that proposes two stages:
pre-training stage and hyperparameter adaptation training stage. The pre-training stage
consists of training one member on fixed hyperparameters for a percentage of the total com-
putational budget (in their case, 5% of the available resources). The goal of pre-training
was to help the model obtain necessary knowledge about the hyperparameter search space
Λ and its influence on the predictive performance of model M faster than the standard
method. The second stage consists of the standard PBT algorithm with the exception
that each member in the population P is initiated with with hyperparameter configu-
ration obtained from the first stage, but perturbed with 0.8 v 1.2 (similar perturbing
method that is used in PBT). Experiments are conducted on the Atari Learning Environ-
ment [13] and shows that TS-PBT outperforms PBT in all test environments; TS-PBT
achieve faster convergence and 40% performance improvement over PBT in MsPacman,
310% in SpaceInvaders , 70% in SpaceInvaders, 2% in the Seaquest, 53% in BeamRider,
30% in Breakout and 38% in Qbert.

Zhou et al. [218] proposed an efficient online hyperparameter adaptation for deep rein-
forcement learning. Their method shares many similarities with PBT in the sense that a
population of N members train in parallel and exploit their progresses, but there are some
differences. First of, the top 20% performing members are marked as elitists, which lets
them maintain their hyperparameter configuration across multiple steps. Secondly, the
exploitation and exploration strategy is compressed into a recombination and mutation

1The MNIST dataset is available at http://yann.lecun.com/exdb/mnist/.
2The Fashion-MNIST dataset is available at https://github.com/zalandoresearch/fashion-mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

22 Chapter 2. Background

strategy. The recombination method is is performed between the remaining 80% bottom
performing members, where it creates random pairs which randomly generate two inter-
sections and exchange some hyperparameters. After recombination, the mutation method
is performed similarly to the perturbing method used in PBT. Lastly, the algorithm runs
using a distributed queue system instead of running asynchronously in parallel in separate
processes, which is better for users with limited computational resources. For experiments,
the method achieved 92% performance improvement over the PBT in MsPacmam, 70%
in SpaceInvaders, 2% in the Seaquest, and 15% in BeamRider from the Atari Learning
Environment [13].

2.4.2 Summary

Although PBT first appeared in 2017, various advances [34, 217, 218, 121] already show
that the standard PBT algorithm can be greatly improved. In the original paper [84],
PBT was also primarily tested on large datasets, and a recent study [195] shows that
it may not perform better than random search on relatively smaller datasets, and that
model transfer may even have a negative impact on the final predictive performance for
smaller datasets. Interestingly, standard PBT, as well as many of the extensions, still rely
heavily on the stochastic, random perturbation technique in order to carry out hyperpa-
rameter adaptation. In the next section, we take a look at an state-of-the-art evolutionary
algorithm for global optimization, namely DE [179].

2.5 Differential Evolution

DE [179, 152] is a well-known population-based, direction-based, stochastic meta-heuristic
method for global optimization of numeric hyperparameters of the continuous type [37,
3]. Unlike traditional evolutionary approaches, DE is derivative-free and uses the scaled
differences between randomly selected members of the current population in order to
generate the offspring’s genome, which means that a separate probability distribution is
not required in order to generate new hyperparameters [37]. The algorithm only requires
three parameters, so no extensive tuning is needed in order to find appropriate values.
DE has come a long way since it was first introduced by Ken Price and Rainer Storn in
a series of papers that followed in quick succession in the late 1990s [179, 178, 176, 180],
and later published in book-form in the late 2000s [152, 25]. As of today, the method and
its derivatives still receives frequent extensions that improves the state-of-the-art results
on a range of benchmarks and real-world applications [3], although with less significant
advances. In addition, the initial implementation have recently shown promising results
for hyperparameter optimization [163] when compared to SMAC [79], and further testing
of more advanced methods [37, 3] was encouraged by the authors.

Similar to most evolutionary algorithms, DE creates a population P of N members,
where each initial member is a randomly chosen D-dimensional vector (point) over the
parameter search space Λ, and represents a single hyperparameter configuration. The
population is defined as

Pgx = (xgi) , i = 0, 1, . . . , N − 1, g = 0, 1, . . . , gmax,

xgi =
(
xgj,i

)
, j = 0, 1, . . . ,D − 1,

(2.17)

2.5. Differential Evolution 23

where N denotes the number of vectors in the population, g =∈ {0, 1, . . . , gmax} is the
generation counter, i =∈ {0, 1, . . . , N} is the population index, and j ∈ {0, 1, . . . ,D} is
the index of parameters within vectors. The dimensionality D, which is the number of
parameters to optimize. The members of the population is initialized via

x0
j,i = randj [0, 1]× (bj,U − bj,L) + bj,L, (2.18)

where the D dimensional initialization vectors, bj,L ∈ bL and bj,U ∈ bU , indicate the
lower and upper bounds of the parameter vector xi,j ∈ xi. The hyperparameter search
space Λ is restricted to these preset bounds. Every hyperparameter is initialized with
the random number generator randj [0, 1], which returns a uniformly distributed random
number between 0 and 1, i.e. 0 ≤ randj [0, 1] < 1. The subscript j indicates that each
hyperparameter gets assigned a random value.

One of the members in the population P could at some point represent a potential so-
lution to the optimization problem. In order to generate new candidate solutions, DE first
need to select three distinct members from the population to operate on, namely the base
vector and two difference vectors. Each of these vectors are sampled from the pre-existing
hyperparameter configurations in the population. When these are known, mutation is
carried out by perturbing the base vector by some magnitude using the difference vectors,
i.e.

vgi = xgr0 + F × (xgr1 − xgr2) , (2.19)

where vgi is the generated mutation vector. The base vector xgr0 and the difference
vectors, xgr1 and xgr2, are selected based on the randomly generated indices r0, r1 and r2.
These indices must be mutually exclusive. Over time, there have been proposed several
novel ways to conduct mutation instead of using the approach described in Equation 2.19.
For example, one approach considers selecting the current best vector as base vector, and
it is also common to employ more than two difference vectors.

In DE, mutation is followed up with a crossover strategy for diversity enhancement,
which generates a trial vector by selecting and mixing hyperparameters from the mutation
vector vg

i and the target vector xg
i . At least one component from the mutation vector vgi

must be selected in order to satisfy ugi 6= xgi . This is ensured by randomly selecting the
index of a gene jrand ∈ {1, 2, . . . ,D}. There are several variants of crossover [152] such as
the commonly used binomial crossover, which is defined as

ugi =
(
ugj,0, u

g
j,1, . . . , u

g
D,N

)
=

{
vgj,i if(randj [0, 1] ≤ Cr) or j = jrand

xgj,i otherwise.
(2.20)

The last step of the DE algorithm uses a greedy, one-to-one survivor selection scheme
in order to determine whether the trial vector ugi or mutation vector vgi should survive to

the next generation g+ 1. The survivor vector xg+1
i becomes whichever vector that scores

the lowest (or highest) objective function value. The selection for minimization problems
is defined as

xg+1=
i =

{
ugi if(f(ugi) ≤ f(xgi))

xgi otherwise.
(2.21)

Equation 2.17 through Equation 2.20 describes the classic DE algorithm, and the full
process is summarized in Algorithm 8. The approach can be classified as DE/rand/1/bin
according the notation scheme proposed in [152]. The shorthand notation is a simple way

24 Chapter 2. Background

to differentiate the various, initial implementations of DE. For example, DE/best/1/bin is
the same as DE/rand/1/bin with the exception that it chooses the current best vector xgbest
instead of a random base vector xgr0. Nowadays, the notation scheme DE/x/y/z seems to
be depreciated [25] for more recent DE extensions, but it is still useful for describing the
initial implementations of the algorithm [3].

Algorithm 8 Differential Evolution (DE) [179]

1: procedure DifferentialEvolution(N,F,Cr)
2: for i ∈ {0, 1, 2, . . . , N − 1} do
3: for j ∈ {0, 1, 2, . . . , D − 1} do
4: x0

j,i = randj [0, 1]× (bj,U − bj,L) + bj,L . set random starting points
5: end for
6: end for
7: while g ≤ gmax do
8: for i ∈ {0, 1, 2, . . . , N − 1} do
9: r0 = brand(0, 1)×Nc, where r0 6= i . generate random indices

10: r1 = brand(0, 1)×Nc, where r1 6= r0 6= i
11: r2 = brand(0, 1)×Nc, where r2 6= r1 6= r0 6= i
12: jrand = brand(0, 1)×Dc . crossover dimension
13: for j ∈ {0, 1, 2, . . . ,D − 1} do
14: if rand(0, 1) ≤ Cr or j = jrand then

15: ugi,j = vgi,j = xgr0,j + F ×
(
xgr1,j − x

g
r2,j

)
. mutation

16: else
17: ugi,j = xgi,j
18: end if
19: end for
20: if f (ugi) ≤ f (xgi) then . selection

21: xg+1
i = ugi

22: else
23: xg+1

i = xgi
24: end if
25: end for
26: end while
27: end procedure

In general, DE considers three control parameters:

• the population size N , which is the total number of potential solutions in one gen-
eration;

• the mutation factor F , which is the amount of differentiation a perturbed solution
can receive, also described as the exploration length; and

• the crossover rate Cr, which serves as the probability in which a offspring genome
inherits the genes of a parent.

These parameters have great influence on the predictive performance of the algorithm,
but leave much up to the tuning knowledge of individual users. In the next section, we
will take a look at some of the recent advancements of DE which address these concerns.

2.5. Differential Evolution 25

2.5.1 Advancements in Differential Evolution

Over the years, there have been conducted extensive research on DE in general, and various
extensions to the original algorithm have been proposed. Initially, the focus was primarily
set on refining the DE algorithm and developing theories which explains its performance
[152]. During this time, several preliminary recommendations where proposed on how to
select appropriate parameter settings of DE [107, 153, 150, 151, 177]. From there, we have
seen various improvements made on the first DE algorithm by proposing new selection
rules for constraint handling [106, 105, 132], mutation schemes [52, 55, 56, 136, 137],
crossover schemes [151, 210, 118], as well as approaches for parallel DE [202, 40]. Since
the early 2000s, there is also an ongoing trend in developing adaptive DE [2, 22, 39, 53,
181, 190, 193, 194, 198, 199, 209, 215, 215], i.e. automatic adaption of DE parameters. In
the following sections, we will describe some of these methods in more detail.

SHADE

Success-History Based Parameter Adaptation for Differential Evolution (SHADE) is an
adaptive DE extension based of JADE [213] that adapts both the mutation factor F
and crossover rate CR, effectively excluding these control parameters from user selection.
When introduced, the method demonstrated to achieve significant advances in perfor-
mance compared to the initial DE implementation for general optimization [187]. In order
to adapt both F and CR, SHADE introduces new mutation, crossover and selection strate-
gies. Because the algorithm changes so many aspects of the original implementation, it is
covered in full in Algorithm 9. The following sections will provide more details about the
specifics of the algorithm.

Control parameter assignment with historical memory. Unlike DE, SHADE main-
tains a historical memory that contains H entries of the DE parameters F and Cr, denoted
MF and MCR respectively. The memory is represented with two separate lists of length
H, and each entry is initialized with 0.5 as the starting value. Whenever a trial member
is successful, the Fi and CRi are recorded to the generation-assigned lists, SF and SCR,
which are reset at the beginning of each generation.

For each member xi in each generation g, the mutation factor Fi is calculated by using
the procedure

Fi,new ∼ Ci (MF,ri , 0.1) (2.22)

Fi =

1.0 if Fi,new > 1.0

repeat 2.22− 2.23 if Fi,new < 0.0

Fi,new otherwise.

(2.23)

where the ri is a random index in the historical memory drawn from a uniform distri-
bution U [0, H). The mutation factor Fi is sampled from a Cauchy distribution Ci(µ, σ),
where the mean µ is set to the random memory value MF,ri and the standard deviation
σ set to 0.1. The formula for drawing a random sample from a Cauchy distribution is
defined as

Ci(µ, σ) = µ+ σ × tanh (π × (p− 0.5)) , (2.24)

26 Chapter 2. Background

Algorithm 9 Success-History Based Parameter Adaptation for Differential Evolution
(SHADE) [187]

1: procedure SHADE(N,G,H, p, rarc)
2: Population P = ∅, Archive A = ∅, Memory Index k = 0;
3: |A| ← round

[
N init × rarc

]
; . set extended archive size

4: Set all H values in MCR and MF to 0.5;
5: for i ∈ {0, 1, 2, . . . , N − 1} do
6: for j ∈ {0, 1, 2, . . . , D − 1} do
7: x0

j,i = randj [0, 1]× (bj,U − bj,L) + bj,L; . set random starting points
8: end for
9: end for

10: while g ≤ G do
11: SCR = ∅, SF = ∅ . Reset historical memory records from previous G
12: for i ∈ {0, 1, 2, . . . , N − 1} do
13: xgr1 ∼ P, where r1 6= i; . sample a distinct member from population P
14: xgr2 ∼ P ∪A, where r2 6= r1 6= i; . sample a distinct member from P ∪A
15: xgpbest ∼ P; . sample one of the 100× p% best members
16: jrand = brand[0.0, 1.0]×Dc; . crossover dimension
17: Generate Fi and Cri with A; . Equation 2.22 and 2.25
18: for j ∈ {0, 1, 2, . . . ,D − 1} do
19: if rand(0, 1) ≤ CRgi or j = jrand then
20: vgi,j = xgi,j + F gi ×

(
xgpbest,j − x

g
i,j

)
+ F gi ×

(
xgr1,j − x

g
r2,j

)
. mutation

21: if vgi,j < bj,L then . constrain if out-of-bounds

22: ugi,j =
(
bj,L + xgi,j

)
/2;

23: else if vgi,j > bj,L then

24: ugi,j =
(
bj,U + xgi,j

)
/2;

25: else
26: ugi,j = vgi,j ;
27: end if
28: else
29: ugi,j = xgi,j ;
30: end if
31: end for
32: if f (ugi) ≤ f (xgi) then . selection

33: xg+1
i = ugi ;

34: else
35: xg+1

i = xgi ;
36: end if
37: if f (ugi) < f (xgi) then
38: xgi → A; . add parent member to external archive
39: CRgi → SCR, F

g
i → SF ; . add parameters to historical memory

40: end if
41: end for
42: if SCR 6= ∅ and SF 6= ∅ then
43: Update MF,k and MCR,k based on SF , SCR; . Algorithm 10
44: end if
45: g ← g + 1;
46: end while
47: end procedure

2.5. Differential Evolution 27

where p is a random value drawn from a uniform distribution U(0.0, 1.0]. If Fi is higher
than 1.0, it will be truncated to 1, and if Fi becomes less than 0.0, the Equation 2.22–2.23
repeats until a valid value is generated.

Similarly, for each member x in each generation g, the crossover rate CRi is generated
using the formula

CR new
i ∼

{
0 if MCR,ri =⊥
Ni (MCR,ri , 0.1) otherwise.

(2.25)

CRi =

1.0 if CR new

i > 1.0

0.0 if CR new
i < 1.0

CR new
i otherwise.

(2.26)

CRi is set to 0.0 if the memory value MCR,ri is equal to the termination value ⊥.
Otherwise, CRi is drawn from a normal distribution Ni(µ, σ), with the mean µ set to the
random memory value MCr,ri and the standard deviation σ set to 0.1. If CRi becomes an
invalid value outside the range [0.0, 1.0], it will be clamped to the closest boundary.

Mutation. After the control parameters Fi and CRi are generated, the mutant vector
vgi is calculated by applying the DE/current-to-pbest/1/bin mutation strategy, which was
initially used in JADE [213], and is a variant of the DE/current-to-best/1/bin mutation
strategy. The p variable is the decimal percentage of how many of the top-performing
members in the population P that is considered when randomly selecting xgpbest. A small
p-value increases the greediness, and it is commonly defaulted to p = 0.2, meaning the
20% top performing members are considered when selecting xgpbest. The mutation strategy
is defined as

vgi = xgi + F gi ×
(

xgpbest − xgi

)
+ F gi ×

(
xgr1 − xgr2

)
. (2.27)

It is possible that the DE/current-to-pbest/1/bin will generate hyperparameters out-
side the search space bounds (bL, bU). In order to ensure that valid hyperparameters
are generated, the procedure uses a method [213] for constraining vgi,j for all dimensions
j ∈ [0, D):

vgi,j =

(
bj,L + xgi,j

)
/2 if vgi,j < bj,L(

bj,U + xgi,j
)
/2 if vgi,j > bj,L

vgi,j otherwise.

(2.28)

After applying the constraint, the mutant vector vgi is crossed with the base vector
xgi similar to the binomial crossover strategy in DE (Equation 2.20), except the crossover
rate is replaced with the generated CRi value from Equation 2.26, and the final formula
is defined as

ugi =

{
vgj,i if (randj [0, 1] ≤ CRi) or j = jrand

xgj,i otherwise.
(2.29)

When all trials of the vectors ugi , i ∈ [0, N) in the population P have been generated,
SHADE employs the same selection process that is used in DE (Equation 2.21).

28 Chapter 2. Background

Diversity with external archive. Just like JADE, SHADE also includes an optional
approach for maintaining diversity by using an external archive A that keeps records of
the parent members xgi that were replaced by the trial members ugi in the selection process
(Equation 2.21). Where DE disposes individuals and thereby excludes them for passing
their characteristics down to future generations, SHADE uses the archive in union with
the current population, i.e. P ∪ A, as an additional source for sampling xgr2 used in
Equation 2.27. Just like in JADE, the archive has a predefined size |A| decided by a scalar
parameter rarc multiplied with the population size N and rounded to the nearest integer,
i.e bN × rarce. In order to ensure that A never exceeds the size limit, a random selection
from the archive is removed before appending the next parent member, if the size of the
archive |A| is equal to or exceeds the maximum size limit, bN × rarce.

Updating the historical memory. For each member in each generation, whenever
the control parameters Fi and CRi are successful in generating a trial member ugi that
performs better than the parent member xgi , the control parameters are appended to SF
and SCR, each respectively. When the generation reaches its end, the historical memory
is updated using Algorithm 10.

Algorithm 10 SHADE memory update [187]

1: procedure UpdateMemory(SF , SCR)
2: if SCR 6= ∅ and SF 6= ∅ then
3: if Mg

CR,k =⊥ or max(SCR) = 0.0 then

4: Mg+1
CR,k =⊥; . terminate memory for crossover rate, or

5: else
6: Mg+1

CR,k = meanWL(SCR); . update memory for crossover rate
7: end if
8: Mg+1

F,k = meanWL(SCF); . update memory for mutation factor
9: if k < |H| then

10: k = k + 1; . increment entry index, or
11: else
12: k = 0; . reset entry index
13: end if
14: else
15: Mg+1

F,k = Mg
F,k; . maintain historical memory as it is

16: Mg+1
CR,k = Mg

CR,k;
17: end if
18: end procedure

As shown in Algorithm 10, the memory is only updated if at least one of the individuals
in the generation g is successful in generating a trial member that performs better than
the parent member. Moreover, only one position in the memory is updated each time it
is called. That position is decided by index k ∈ 0 ≤ k < H, which is always initialized
to 0 at the beginning of the algorithm. In other words, in generation g, the k-th element
in memory is updated for the next generation g + 1. After the memory is updated, the
index k is updated; if the index is equal to H − 1 or higher, it is reset to 0, otherwise it is
incremented by 1.

2.5. Differential Evolution 29

Both MF and MCR uses the weighted Lehmer mean defined in Equation 2.30 for
updating memory records. As shown, the current k-th entry in MF is updated directly
with meanWL(SF). The k-th entry in MCR, on the other hand, is updated only if two
conditions are met: (1) the current memory record Mg

CR,k is not equal to the termination
value ⊥, and (2) the maximum value in SCR is higher than 0.0. If the conditions are not
satisfied, the new memory record Mg+1

CR,k is assigned the termination value perp. Otherwise,
the new record is generated using the weighted Lehmer mean, meanWL(SCR).

The weighted Lehmer mean is calculating using

meanWL(S) =

∑|S|
k=0wk × S2

k∑|S|
k=0wk × Sk

, (2.30)

wk =
∆fk∑|S|
l=0 ∆fl

, (2.31)

∆fk =
∣∣f (ugk)− f (xgk)∣∣ , (2.32)

where the weight wgk used to calculate the weighted Lehmer mean for Sgk is defined as
the absolute score ∆fgk between the parent member xgi and trial member ugi , as formulated
in Equation 2.32, divided by the sum of all absolute scores for each Sk as shown in Equation
2.31. Finally, the weighted Lehmer mean is calculated by dividing the sum of all weights
w multiplied with the square of all memory records S, with the sum of all weights w
multiplied with all memory records S, as shown in Equation 2.31.

2.5.2 LSHADE

Over time, it is not uncommon to see more and more members ending up exploring the
same region in the search space (although with finer granularity). Such scenarios may
waste computational budget on late exploration that is deemed too excessive for the task
at hand, and a case can be made for reducing the complexity of the algorithm so that
more budget is spent on fewer and fewer individuals towards the end of the generation
span.

To address this concern, SHADE with Linear Population Size Reduction (L-SHADE)
[188] extends SHADE by applying linear decay to the number of members in the popula-
tion, periodically eliminating the least performing members. While L-SHADE employs a
rather simple linear population size reduction (LPSR) technique, it has shown to provide
significant improvements over SHADE with same budget [188], given the reduction in time
complexity that it provides.

In implementation, L-SHADE extends SHADE with a simple population size N ad-
justment formula; at the end of each generation g, the population size N in the next
generation g + 1 is defined as

Ng+1 = round

[
Nmin −N init

NFEmax
×NFEg +N init

]
, (2.33)

where N init is the initial population size and Nmin is the final population size min-
imum. NFEg is the number of fitness evaluations after generation g, and NFEmax is

30 Chapter 2. Background

the maximum number of fitness evaluations to be processed, which is incremented for
every selection procedure (Algorithm 9, line 32). The full implementation of L-SHADE is
described in Algorithm 11.

Algorithm 11 SHADE with Linear Population Size Reduction (L-SHADE) [188]

1: procedure L-SHADE(N init, Nmin, G, p,H, rarc, NFEmax)
2: perform initialization as in SHADE;
3: NFE = 0, N = N init;
4: while g ≤ G do
5: perform mutation, crossover and selection as in SHADE;
6: update historical memory as in SHADE;

7: Ng+1 = round

[
Nmin −N init

NFEmax
×NFEg +N init

]
8: if Ng < Ng + 1 then
9: ∆Ng = Ng −Ng+1

10: P ← P \ P∆Ngworst; . delete the ∆Ng worst members in P
11: |A| ← round [Ng+1 × rarc]; . resize archive size according to |P|
12: end if
13: g ← g + 1;
14: end while
15: end procedure

2.5.3 Current state-of-the-art DE advancements

Recently, adaptive DE has emerged as one of the best techniques used to improve upon the
initial implementation. In order to obtain better performance, adaptive DE automates the
control parameter tuning process by sequentially adjusting one or several of the control
parameters {N,F,Cr} using novel adaptation strategies. In 2018, an extensive study [3]
of different state-of-the-art adaptive DE schemes was published, describing the various
approaches in depth with focus on their advantages and disadvantages.

The study estimates that the overall best performances are achieved by DE algorithms
with advanced mutation strategies such as JADE with archive [213], MDE pBX [81] and
DEGL [38], because these could handle deficiencies in the standard DE algorithm such as
greediness in DE/best/1/bin strategy as well as maintaining balance between exploration
and exploitation. When combining advanced algorithm schemes such as DE/current-
to-pbest/1/bin with parameter adaptive schemes, algorithms such as SHADE [187, 189]
obtained the best algorithmic design performance. In addition, great performances is also
achieved with dynamic selection of multiple DE strategies during the evolution process,
e.g.in EPSDE [127], HSPEADE [128] and CoDE [201], which impose different search step
size at each step in the evolution in order to guide the search towards better direction. Of
the 24 different algorithms listed in the study, only a few are deemed superior in terms of
performance.

Awad et al. [7] proposed ensemble sinusoidal differential covariance matrix adapta-
tion with Euclidean neighborhood (L-SHADE-cnEpSin), which adopts the DE/current-
to-pbest/1/bin [213] mutation strategy. The algorithm uses a crossover operator that is
modified by a covariance matrix learning C = BDBT , with Euclidean neighborhood be-
tween the best member and the rest of the members in the population. Here, B and BT are

2.5. Differential Evolution 31

orthogonal matrices and D is diagonal matrix with Eigen values. The number of members
in the population, N , is adapted in each generation, using the same technique as [6] for
linear population size reduction. The F value is also adapted during the evolution using
adaptive sinusoidal increasing adjustment and non-adaptive sinusoidal decreasing adjust-
ment. For each generation, the crossover rate Cr is adapted using normal distribution as
in L-SHADE.

Awad et al. [9] proposed ensemble sinusoidal differential evolution with niching reduc-
tion (EsDEr-NR), which is an enhanced version of L-SHADE with ensemble parameter
sinusoidal adaptation (L-SHADE-EpSin) [6]. During the evolution, the algorithm updates
the value of F with multiple significant adaptation merits that mixes two sinusoidal meth-
ods with a Cauchy distribution. Additionally, the algorithm reduces the population size
N using a novel niching-based reduction scheme. In order to improve quality of the solu-
tions found, the algorithm also implements a restart method that is activated when the
population size is reduced to 20 members, where half of the members are re-initialized
using a modified Gaussian walk formula [9].

Lastly, Awad et al. [8] proposed differential crossover strategy based on covariance
matrix learning with Euclidean neighborhood (L-covnSHADE). Like L-SHADE-cnEpSin
[9], the algorithm uses the DE/current-to-pbest/1/bin [213] mutation strategy. In addition,
the algorithm modifies the crossover operator with a covariance matrix learning C =
BD2BT , with Euclidean neighborhood between the best member and the rest of the
members in the population. Here, B and BT are orthogonal matrices and D2 is diagonal
matrix with Eigen values. The mutation factor F is adapted with a Cauchy distribution,
and the crossover rate Cr is adapted with normal distribution with the same methodology
as used in L-SHADE.

Chapter 3

Methodology

This chapter provides the implementation details necessary to answer the research ques-
tions of this thesis. First, the implementation of the original PBT procedure is described in
Section 3.1. In the next two sections, three methods of hyperparameter adaptation based of
the PBT procedure incorporated with DE heuristics are proposed. The Population-Based
Training with Differential Evolution (PBT-DE) procedure is first proposed in Section 3.2,
describing how it applies the initial DE heuristics to PBT in order to improve upon the
hyperparameter exploration strategy. In Section 3.3, the PBT-DE procedure is expanded
upon, and two additional procedures are proposed, called Population-Based Training with
SHADE (PBT-SHADE) and Population-Based Training with LSHADE (PBT-LSHADE),
based of the adaptive DE schemes, SHADE [187] and L-SHADE [188], respectively. In
Section 3.4, four different experiments using the MNIST and Fashion-MNIST datasets
and MLP and LeNet-5 neural network architectures are established, including the imple-
mentation details about the neural network architectures, learning algorithms, datasets,
hyperparameters, loss function and evaluation metrics that will be used to measure the
performances of each procedure. Lastly, given that training multiple neural networks in
parallel is a complicated process, and because there is limited information and established
practices on how to carry out such a process, technical details about the system and the
flow of major operations are included in Section 3.5.

3.1 Implementing the PBT Baseline

Before DE heuristics could be incorporated, it was decided that a comparison measure
was needed in order to know how the implementation performed. Therefore, PBT was
implemented as described in Algorithm 6, using the assumed, default exploit and explore
method as described in Algorithm 7, which exploits both θ and λ and explores just λ. As
shown in the algorithm, the parameter for exploitation was defaulted to 0.8, which means
80% of the least performing members copies the θ and λ from the top 20% performing
members. The perturbation parameters for exploration was defaulted to {0.80, 1.20},
which means that the hyperparameters are multiplied with either 0.80 or 1.20, chosen
randomly based of a uniform distribution.

It was decided to implement the PBT procedure [84] using a distributed queuing system
[47, 218] (see Section 3.5). This allows for members to be trained and adapted individually
and asynchronously, and ensures that each member wont proceed to the next iteration
before every individual in the population is finished. This effectively makes it possible to

33

34 Chapter 3. Methodology

process members per generation rather than individually, and is essential for comparing the
PBT procedure and the proposed procedures (see Section 3.2–3.3). The PBT procedure
[84] was originally intended to be distributed over N processing devices (e.g. GPUs),
which unfortunately allows for variance in computing speed across processors to affect
individual member progression [218]. By ensuring that the training loop is synchronized
between generations, member progression will not be affected by differences in processing
devices.

Moreover, this thesis will not optimize hyperparameters that describe the neural net-
work architecture, which ensure that eachM is structured equally in terms of the number
trainable network parameters. This ensures that the number of operations required to
train, evaluate and adapt each member to be equal across generations, and it was con-
firmed early on in development that the observed wall-clock times for individual steps
were almost equivalent on identical processing devices.

Current literature seem to indicated that hyperparameters are more likely to decay over
time rather than increase over time when using the stochastic perturbation approach [84].
Early testing confirmed this notion, as it was noticed that that the implemented exploit
and explore method produced similar schedules if enough time was given and assuming
the chance of randomly selecting between 0.8 and 1.2 are equally weighted. Figure 3.1
demonstrates this behavior visually.

2000 4000 6000 8000 10000
steps

0.00

0.02

0.04

0.06

0.08

0.10

va
lu

e

optimizer/lr
mean
best

(a) learning rate

2000 4000 6000 8000 10000
steps

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

va
lu

e

optimizer/momentum
mean
best

(b) momentum

Figure 3.1: An example of two hyperparameter schedules generated by PBT.

3.2 Incorporating DE Heuristics Into PBT

Since its introduction, DE has received many improvements over the initial algorithm,
proposing novel mutation, crossover and selection schemes that achieve state-of-the-art
performances on the established benchmarks. Despite the promising work that has been
done, it was not clear which procedure that would be a good candidate for improving
PBT. Given the uncertainty, and the fact that this may be the first time PBT has been
incorporated with DE for neural networks, it was decided to start out with the most initial
approach: the DE/rand/1/bin strategy, described in Algorithm 8. The decision helped
establish a firm baseline, which proved useful when incorporating adaptive DE heuristics
later in Section 3.3.

3.2. Incorporating DE Heuristics Into PBT 35

This section describes the proposed PBT-DE procedure. The procedural structure
was based of the common structure found in the original algorithm, as well as current
extensions, described in Section 2.5. With this general knowledge, a list was constructed,
containing each specific and distinct operation that must be considered (in the presented
order) in addition to the operations required by the PBT procedure:

1. The operations preceding the next generation.

2. The method that generates the trial member with the mutation and crossover strat-
egy and current population P. This replaces the exploit and explore used in PBT.

3. The method that measures the fitness of the parent and trial in order to determine
which is considered best, called fitness.

4. The method that selects between the parent and trial member based on their fitness
score.

5. The operations after all members in the generation have selected their offspring.

Using these operations as basis for structuring the procedure, the first version of PBT
incorporated with heuristics from DE was constructed, called PBT-DE, and is summarized
in Algorithm 12.

PBT-DE uses most of the same algorithmic structure found in the PBT procedure,
but it is merged with the necessary operations required by DE in order to incorporate DE
heuristics, allowing members to be processed in generations. Like PBT, each member is
trained, evaluated and adapted asynchronously in parallel, but the procedure wont proceed
to the next generation before all members have completed their progression. Due to
how different types of hyperparameters are implemented and represented numerically (see
Section 3.5.4), all mathematical operations from DE were carried out without requiring any
modifications of the DE/rand/1/bin strategy. In other words, the operations required for
generating new hyperparameters were more or less identical to the original DE algorithm.
This removed any potential bias in inducing unnecessary changes that might alter the
heuristics of DE.

As shown in Algorithm 12, the PBT-DE procedure starts by initializing a population P
of unordered members m : {θ, λ, p, t}, where the initial hyperparameter configurations are
sampled using a random, uniform distribution. Each individual performs t steps of training
with θ and λ, followed up with a full evaluation of the trained θ before the hyperparameter
search space is explored in order to generate the new θ′. If the ready-criterion is not
met, the member skips the exploration of new hyperparameters and proceeds to step 20.
However, if the the ready-criterion is met, a trial member is generated using the existing
member, referred to as the parent member, and both the parent and trial member are
measured and compared in order to decide which gets to pass on their genome. In the
next sections, we will go into more detail about the algorithm and the specifics of each
operation.

3.2.1 Parameters

Like most algorithms and procedures, PBT-DE requires a set of parameters that must
be defined by the user. In addition to the population size N , the user must specify the

36 Chapter 3. Methodology

Algorithm 12 Population-Based Training with Differential Evolution (PBT-DE)

1: procedure Adapt(P, N, ts, te,bL,bU , F, CR)
2: initialize P ← {m1,m2, . . . ,mN} . create N members
3: where {θi, λi, pi, ti} ∈ member,
4: λ1,j ∼ U [bj,L, bj,U); . sample each λ from a uniform distribution
5: t1 ← 0;
6: while not end of training synchronously do
7: for m : {θ, λ, p, t} ∈ P asynchronously in parallel do

8: θ, t←
ts
step
b=t

(θ, λ); . ts steps optimization of θ with X (train)

9: p← eval(θ); . full evaluation of θ with X (valid)

10: if ready(θ, λ, p, t,P) then
11: with CR,F, λr0, λr1, λr2, jrand, . generate trial member

using DE/rand/1/bin, do
θ′, λ′, p′, t′ ← evolve(θ, λ, p,P);

12: θ, p, t← fitness(θ, λ, p, t, te); . measure fitness with Algorithm 13
13: θ′, p′, t′ ← fitness(θ′, λ′, p′, t′, te);
14: if p′ ≤ p then . selection
15: m′ ← {θ′, λ′, p′, t′};
16: else
17: m′ ← {θ, λ, p, t};
18: end if
19: end if
20: m′ = m→ P; . update population P
21: end for
22: end while
23: end procedure

lower and upper boundaries, bL and bU , of the hyperparameter search space Λ. Much
like DE, the bounds are necessary for spawning the initial points in the search space as
shown in step 4 in Algorithm 12. Moreover, the bounds are used for constraining the
hyperparameters to a valid range as required by the DE/rand/1/bin strategy. Naturally,
the user must also assign the mutation factor F and crossover rate CR that are required
by initial DE algorithm.

There are also a couple of new parameters being introduced: the training steps ts and
fitness steps te. Of these, ts describes how many steps of training to perform previous to
new hyperparameter generation, and te describes how many steps to train and evaluate in
order to measure fitness. Both ts and te are decided by the user and will have an effect on
both the performance and execution time of the algorithm. When the maximum number
of generations G is know, the PBT-DE procedure has order of O(G× (n× ts + 2n× te))
complexity.

3.2.2 Members

Similar to PBT, PBT-DE represents each member in the population P with the tuple
{θ, λ, p, t}, where λ and p is the equivalent of the parent member xgi and the fitness score
f(xgi) from DEs notation, respectively. As this thesis works primarily with neural networks,

3.2. Incorporating DE Heuristics Into PBT 37

θ represents the current weights and biases that represent the network model. Naturally,
λ is the current hyperparameter configuration sampled from the search space Λ, and p is
the current score that the member has obtained so far. Together, these values form the
member state, which is given more detail in Section 3.4.3. Similarly, the trial member ugi
is represented by the tuple {θ′, λ′, p′, t′}, which is the altered version of the parent member
state. While not shown, t and t′ remains the same for the parent and trial member.

3.2.3 Training and Evaluating

When comparing the PBT procedure with the proposed PBT-DE procedure, one of the
operations that stand out is how the step-function is performed; particularly, the notation
has changed to represent steps more clearly. To clarify, the phrase ”t steps” is the short-
hand notation for performing forward- and backward propagation t consecutive times with
the training set X (train) as defined in Equation 2.14. In this thesis, steps are performed
using subsets of the training set, called batches, so t is also equivalent to the number of
batched samples to use as inputs in the forward propagation. In Algorithm 12, where
the total number of batches, Bmax, in the training set is the ceiling value of the num-
ber of samples in the training set X (train) divided by the batch size B, a training step is
formulated as

if Bmax =
⌈
|X (train)|/B

⌉
and t′ = (t+ ∆t) mod Bmax,

then θ, t′ ←
∆t
step(θ, λ)

b=t

.

(3.1)

Underset (b = t) marks the starting batch index in the training set X (train), and the
overset ∆t is the number of batches, or steps, to perform from t. If the the number of
batches t+∆t exceeds the total amount of batches in X (train), i.e. t+∆t > Bmax, the out-
of-bound indices will be replaced by the first ((t + ∆t) mod Bmax)-th indices, effectively
looping back to the start of X (train).

The PBT-DE procedure includes the existing eval-function from PBT, defined as

p← eval(θ), (3.2)

which measures the predictive performance of the network model θ with the entire
validation set X (valid).

The notation has also been extended to include evaluation of specific batch indices
from X (valid) using

p← evalK(θ), (3.3)

where K is the set of batch indices found in the batch-divided validation set X (valid).
When using this notation, evaluation will be performed exclusively with the specified
batches pointed to by the indices K.

3.2.4 Generating New Trial Members

In step 11, the exploit and explore method from PBT has been replaced with the DE/rand/1/bin
mutation strategy from DE, denoted by the evolve-function, which generates the new trial

38 Chapter 3. Methodology

member {θ′, λ′, p′, t′}. Details about the specific procedure for generating the trial mem-
ber (u) is described in step 9–19 in Algorithm 8. λ′ is the only components of the trial
members that is different from the parent members, as the DE/rand/1/bin strategy was
used exclusively to generate new hyperparameter configurations. This means that model
transfer is not performed, as early testing indicated worse performance, and is discussed
more in Chapter 5.

3.2.5 Measuring Fitness

One of the challenges with developing PBT-DE was implementing a method for evaluating
different hyperparameter configurations on the same model θ. Unlike PBT, DE compares
the pre-existing member (parent) and the generated member (trial) (Equation 2.21) in
order to determine which one that gets to pass on their genome. The comparison is
traditionally done by computing the fitness score, originally denoted f(·), of both the
parent member and trial member and determining which score is considered the best.
For non-complex fitness functions that would not take up much time compared to the
remaining operations in the optimization algorithm, measuring fitness between members
is a non-issue in terms of overall wall-clock time.

For neural networks, the only straight-forward way to test how good λ is for the cur-
rent model theta, is to train theta with λ using training samples and evaluate performance
using validation samples. In other words, the fitness function became essentially at least
one step in a computational-heavy black-box optimization algorithm, i.e. deep neural net-
work forward- and backward propagation with gradient descent. That made comparisons
computationally more complex, as the operation would require a separate training step
with X (train), and a full evaluation of the updated θ′ using X (valid), for both the parent
member as well as a the trial member.

Comparing members suddenly became a problem in terms of efficiency, and while it
could be done as described above, the focus was set on finding another way to approximate
the measure by reducing the amount of training and validation samples needed. In order
to reduce complexity, a novel method for measuring the fitness of new hyperparameter
configurations has been proposed, called Random Fitness Approximation (RFA), which
acts as a surrogate for the actual fitness-function that is being optimized. In step 12
and step 13, RFA is used as the fitness-function in order to measure the performance of
both the parent and trial member generated by the evolve-function. The RFA function is
described in more detail in Algorithm 13.

Algorithm 13 Random Fitness Approximation (RFA)

1: function Fitness(θ, λ, p, t, te)

2: θ, t←
te
step
b=t

(θ, λ); . te steps optimization of θ with X (train)

3: K
rand∼ {r0, . . . , r(te−1)} ∈

[
0, |X (valid)|

)
; . sample te random indices from X (valid)

4: pr ← evalK(θ); . evaluation of θ with |K| random samples from X (valid)

5: w ← te ×B
|X (valid)| ; . calculate the weight of the fitness measure

6: p← p× (1.0− w) + p′ × w; . calculate the weighted average of p and pr
7: return θ, p, t
8: end function

3.3. Incorporating Adaptive DE Heuristics 39

Of RFAs five arguments, θ, λ and p represents the member that is considered for
fitness evaluation. Furthermore, t is the the current amount of steps that the member has
performed, and te is the amount of steps (or batches) to use when training and evaluating
the member. The algorithm starts by training the network model θ from the t-th step
for te steps with the training set X (train), which returns the updated θ and t. From
there, the member is evaluated by selecting the indices of te random batches from the
validation set X (valid), which returns the unweighted score, pr. Lastly, the member score p
is updated to the weighted average between p and pr in order to maintain balance between
the approximated performance pr and the previous, fully-evaluated performance p. This
is done to ensure fair comparisons between individuals in the population P. This also
ensures that good characteristics that perform generally well across the entire evaluation
set is prioritized.

3.2.6 Selecting Between Parent- and Trial Members

In step 14, after measuring the fitness score of both the parent and trial member with
the fitness-function, the results are used to to compare the members. The selection
determines whether the parent (θ, λ, p, t) or the trial (θ′, λ′, p′, t′) gets to pass on their
characteristics; an essential step derived from DEs method of selection (Equation 2.21).
Like the initial DEs implementation, the lowest (or highest) value wins the competition.

3.3 Incorporating Adaptive DE Heuristics

In the DE algorithm, the step size in the hyperparameter search space Λ is heavily de-
pendent on the mutation factor F , which decides how much distance between the two
randomly selected points in the search space sampled from the current generation that
is used to generate new points. One may view F to be the equivalent of learning rate
for neural network optimization. From literature, it is known that periodically adapt-
ing the learning rate, or other hyperparameters for that matter, improves neural network
performance [82]. In PBT-DE, the control parameters F and CR are constant values
that do not change after they have been assigned by the user. Similarly to how hyperpa-
rameter optimization has been successful for neural networks, it has been demonstrated
that adaptive DE algorithms, which automatically and periodically adapt one or several
control parameters, obtain far better results, and state-of-the-art DE extensions typically
consists of one or more adaptive parameter schemes (see Section 2.5.1). In this section,
two additional procedures are proposed, namely PBT-SHADE and PBT-LSHADE, and
the following sub-sections introduces the implementation details.

3.3.1 Population-Based Training with SHADE

Given that many state-of-the-art DE extensions are based of SHADE [187], it was deter-
mined that this was a good adaptive DE scheme to incorporate, and the greedy DE/current-
to-pbest/1/bin mutation strategy was implemented in order to generate better trial mem-
bers with adapted F and CR parameters. In order to generate F and CR, the historical
memory of successful parameters was implemented. In order to obtain the pbest member,
the extended archive of parent members was implemented as well. The advantage of using
SHADE is that it does not require any tuning of the mutation factor F , nor the crossover
rate CR. Instead, it adds two new parameters that define the size of the historical memory

40 Chapter 3. Methodology

M and external archive A. All essential SHADE heuristics are covered in greater detail
in the Section 2.5.1.

Following the same naming convention, the extended PBT-DE procedure is named
PBT-SHADE. It implements all mandatory and optional operations from SHADE, and
the procedure is described in Algorithm 14.

Algorithm 14 Population-Based Training with SHADE (PBT-SHADE)

1: procedure Adapt(P, N, ts, te,bL,bU , pbest, rarc)
2: initialize P ← {m1,m2, . . . ,mN} . create N members
3: where mi ← {θi, λi, pi, ti},
4: λi,j ∼ U [bj,L, bj,U), . sample each λ from a uniform distribution
5: t1 ← 0;
6: Archive A = ∅; MCR ← {0.5, . . . }; MF ← {0.5, . . . }; . initialize SHADE
7: |A| ← round

[
N init × rarc

]
; . set extended archive size

8: while not end of training synchronously do
9: SF = ∅; SCR = ∅; Sw = ∅; . initialize/reset temporary memory

10: for m : {θ, λ, p, t} ∈ P asynchronously in parallel do

11: θ, t←
ts
step
b=t

(θ, λ); . ts steps optimization of θ with X (train)

12: s← eval(θ); . full evaluation of θ with X (valid)

13: if ready(θ, λ, p, t,P) then
14: with CRi, Fi, λr1, λr2, λpbest, jrand, . generate trial member

using DE/current-to-pbest/1/bin, do
θ′, λ′, p′, t′ ← evolve(θ, λ, p,P);

15: θ, p, t← fitness(θ, λ, p, t, te); . measure fitness with Algorithm 13
16: θ′, p′, t′ ← fitness(θ′, λ′, p′, t′, te);
17: if p′ ≤ p then . selection
18: m′ ← {θ′, λ′, p′, t′};
19: else
20: m′ ← {θ, λ, p, t};
21: end if
22: if p′ < p then
23: m→ A; . add parent to external archive
24: wi ← |p− p′|; . calculate the absolute delta score
25: CRi → SCR; Fi → SF ; wi → Sw; . extend temporary memory
26: end if
27: end if
28: m′ = m→ P; . update population P
29: end for
30: if SCR 6= ∅ and SF 6= ∅ and Sw 6= ∅ then
31: update (MF , MCR) using SF , SCR and Sw; . update historical memory
32: end if
33: end while
34: end procedure

In step 9, before each asynchronous generation call, PBT-SHADE resets the temporary
historical memory sets SF , SCR and Sw. Please notice that Sw is not present in SHADE

3.3. Incorporating Adaptive DE Heuristics 41

(Algorithm 9), and was included in order to store the absolute delta score w between p
and p′. In SHADE, w is normally defined in the weighted Lehmer mean function as one of
the weights which is used to update the historical memory. The change does not affect the
results in any way, but greatly decrease the time it take to update the historical memory
because the fitness function does not need to be called more than once for each member.

As mentioned, PBT-SHADE replaces the initial DE/rand/1/bin mutation strategy
with DE/current-to-pbest/1/bin, which introduces a new parameter pbest that is decided
by the user, and share close similarities with the exploitation factor in PBT. The pbest
variable is the decimal percentage of the best members in the generation that is needed
to sample λpbest (or xpbest) which is used to generate trial members. Smaller pbest-values
increase the greediness as fewer top-performing members are considered for sampling.
In SHADE heuristics, pbest is referred to as p, but to avoid collision with the already-
established PBTs parameter p, for score, the notation was changed.

From step 22 to 26, the external archive A and temporary memory (SF , SCR, Sw) is
updated if the trial member outperforms the parent member. While the entire parent
member state {θ, λ, p, t} is appended to the external memory as denoted by m← A, only
the hyperparameter configuration λ and fitness score p is used.

In step 31, after all members have completed the current generation, the next entries
MF,k and MCR,k in the historical memory is updated by calculated the weighted Lehmer
mean of both SF , SCR with the weights Sw. The entry index k is then incremented to the
next entry or reset to zero if the current entry is positioned at the last index.

3.3.2 Population-Based Training with LSHADE

In order to fit more training steps within the time budget, it was decided that the next
logical step would be look at how the budget is spent. Early testing indicated that the
population of members would work towards a similar solution across the training span,
regardless of how scattered they initially where. Figure 3.2 demonstrates this behavior.
This decreased the average distance between points in Λ, and effectively promoted shorter
steps within the search space region. Seeing that members would end up exploring a
smaller and smaller region in the search space (although with finer granularity), there
may be a possibility that computational resources are wasted in similar hyper-parameter
configurations. These resources might be better spent training a smaller portion of the
population for longer, which can be implemented by periodically eliminating bad members
from the population, effectively shrinking the population size over time. For general opti-
mization, there has already been proposed an novel extension to SHADE that implements
this scheme.

L-SHADE [188], being an extension SHADE, was used to extend the PBT-SHADE
procedure to include the additional operations that perform linear population size reduc-
tion over time, and the resulting procedure was named PBT-LSHADE. In practice, these
operations shrink the population size from the initial size down to specified target size,
which would free up resources over time and allow for two possibilities: (1) it could allow
for more iterations within the same time budget, or (2) reduce the time complexity of
the algorithm. The L-SHADE algorithm is described in more detail in Section 2.5.2. The
PBT-LSHADE procedure is summarized in Algorithm 15.

In Algorithm 15, step 35–40 describes the population size reduction. First, the new
population size Ng+1 is calculated, which is decided by the initial population size N init the
target population size Nmin, the target maximum number of fitness evaluations NFEmax,

42 Chapter 3. Methodology

Algorithm 15 Population-Based Training with LSHADE (PBT-LSHADE)

1: procedure Adapt(P, N init, Nmin, NFEmax, ts, te,bL,bU , pbest, rarc)
2: initialize P ← {m1,m2, . . . ,m(N init)} . create N members
3: where mi ← {θi, λi, pi, ti},
4: λ1,j ∼ U [bj,L, bj,U), . sample each λ from a uniform distribution
5: t1 ← 0;
6: Archive A = ∅; MCR ← {0.5, . . . }; MF ← {0.5, . . . }; . initialize SHADE
7: |A| ← round

[
N init × rarc

]
; . set extended archive size

8: Number of fitness evaluations NFE ← 0; . initialize L-SHADE
9: while not end of training synchronously do

10: SF = ∅; SCR = ∅; Sw = ∅; . initialize/reset temporary memory
11: for m : {θ, λ, p, t} ∈ P asynchronously in parallel do

12: θ, t←
ts
step
b=t

(θ, λ); . ts steps optimization of θ with X (train)

13: s← eval(θ); . full evaluation of θ with X (valid)

14: if ready(θ, λ, p, t,P) then
15: with CRi, Fi, λr1, λr2, λpbest, jrand, . generate trial member

using DE/current-to-pbest/1/bin, do
θ′, λ′, p′, t′ ← evolve(θ, λ, p,P);

16: θ, p, t← fitness(θ, λ, p, t, te); . measure fitness with Algorithm 13
17: θ′, p′, t′ ← fitness(θ′, λ′, p′, t′, te);
18: if p′ ≤ p then . selection
19: m′ ← {θ′, λ′, p′, t′};
20: else
21: m′ ← {θ, λ, p, t};
22: end if
23: if p′ < p then
24: m→ A; . add parent to external archive
25: wi ← |p− p′|; . calculate the absolute delta score
26: CRi → SCR; Fi → SF ; wi → Sw; . extend temporary memory
27: end if
28: NFE ← NFE + 1 . Increment the number of fitness evaluations by 1.
29: end if
30: m′ = m→ P; . update population P
31: end for
32: if SCR 6= ∅ and SF 6= ∅ and Sw 6= ∅ then
33: update (MF , MCR) using SF , SCR and Sw; . update historical memory
34: end if

35: Ng+1 = round

[
Nmin −N init

NFEmax
×NFE +N init

]
36: if Ng < Ng + 1 then
37: ∆Ng = Ng −Ng+1

38: P ← P \ P∆Ngworst; . delete the ∆Ng worst members in P
39: |A| ← round [Ng+1 × rarc]; . resize archive size according to |P|
40: end if
41: end while
42: end procedure

3.4. Experiments 43

2000 4000 6000 8000 10000
steps

0.00

0.02

0.04

0.06

0.08

va
lu

e

optimizer/lr
mean
best

(a) learning rate

2000 4000 6000 8000 10000
steps

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

va
lu

e

optimizer/momentum
mean
best

(b) momentum

Figure 3.2: An example of hyperparameter schedules generated by DE.

and the current number of fitness evaluations NFE registered so far. For each member,
after each selection between the parent and trial, the number of fitness evaluations NFE
is incremented by 1. If Ng+1 is smaller than the current population size Ng, the worst
∆Ng members are deleted from the population P.

3.4 Experiments

The following section covers the implementation details about each experiment performed
in this thesis. For hyperparameter optimization on neural networks, an experiment usually
defines a particular dataset and network combination that is commonly used for perfor-
mance testing and analysis in a specific research field or for a certain application. To
ensure that the results are repeatable, all used datasets and network architectures are well
documented and publicly available. In order to carry out experiments, the MNIST [110]
and Fashion-MNIST [207] datasets were used to evaluate model performances, as these are
light-weight datasets for image classification that are still very popular within the research
community. Complimenting the datasets, the MLP [134] and LeNet-5 [110] neural network
architectures were used to define the network model. All experiments used the the SGD
optimizer and the Categorical Cross Entropy (CCE) [41] loss function for updating the
network model, and model performances are reported in the CCE, F1 [29] and accuracy
score. The specific implementation details are reserved for the following sub-sections.

3.4.1 Datasets

The MNIST [110] and Fashion-MNIST [207] datasets are divided into three distinct sets
for training, validation and testing as described in Table 3.1. A subest from both datasets
are visually presented in Figure 3.3. These datasets were selected due to their maturity
and popularity as benchmarks for hyperparameter optimization, among many other ap-
plications. In addition, the images contained within these datasets are black and white
and of low resolution, which reduces the time and network architecture size required to
process them. This is favorable, as training multiple neural networks in parallel is a
computationally heavy task.

44 Chapter 3. Methodology

Table 3.1: Dataset Divisions

Set MNIST Fashion-MNIST

training 50 000 50 000
validation 10 000 10 000
testing 10 000 10 000

Total 70 000 70 000

Note. The numbers of samples, grouped by three dis-
tinct sets extracted from the MNIST and Fashion-MNIST
dataset.

(a) MNIST (b) Fashion-MNIST

Figure 3.3: Subsets from the MNIST and Fashion-MNIST datasets.

MNIST

MNIST is a well-established and well-researched dataset of real-world data for machine
learning classification and pattern recognition. The dataset consists of exactly 70 000
images of handwritten digits with a resolution of 28x28 pixels in 1-channel (grayscale).
The images are classified as single digits from 0 to 9. While the dataset could be considered
solved in the sense that a near-perfect score has already been achieved [102], it is still
used for benchmarking in current studies, including studies of PBT-extensions [143]. The
dataset comes pre-divided into a training set of 60 000 images and a testing set of 10 000
images. In order to generate the validation set, 10 000 images from the training set was
sampled using a stratified random sampling technique in order to maintain the same class
distribution found in the training set. It is worth mentioning that the distribution was
already highly balanced, so the training set might have consisted of enough samples that
a simple random sampling would have provided a similarly balanced distribution.

Fashion-MNIST

Similarly to MNIST, Fashion-MNIST also contains 70 000 grayscale images with a reso-
lution of 28x28 pixels that are associated with a label from 10 classes. The images are of
different types of human clothing. While similar in form, Fashion-MNIST classification
is considered a harder task for learners to perform, as MNIST digits are simply more

3.4. Experiments 45

distinguishable than images of clothing, resulting in a considerable gap in performance by
the state-of-the-art [182, 206, 89, 87, 142, 74]. Similar to MNIST, Fashion-MNIST comes
pre-divided into a training set and testing set, and the same stratified random sampling
technique was used to generate the validation samples. The result was a training set of
numprint50000 images, validation set of 10 000 images and testing set of 10 000 images.

Data Augmentation

Both MNIST and Fashion-MNIST were preprocessed using the same data augmentation
techniques. All images were normalized with a mean of 0.1307 and standard deviation of
0.3081. All images were also increased to a resolution of 32x32 pixels using zero-padding,
a technique which simply adds black pixels to all sides of the image in order to increase
its resolution without increasing its quality or perform scale transformations. This was
necessary in order to use the current network implementations of MLP and LeNet-5, as
these expect an image input resolution of 32x32 pixels.

3.4.2 Models

As previously mentioned, the architecture of a neural network model can heavily influence
the final model performance for any regression or classification task. In order to ensure
repeatability for the experiments, it was decided to adopt two pre-defined architectures
that vary in depth and complexity and are commonly used in literature: MLP [134, 143]
and LeNet-5 [110]. The networks are in some aspects outdated compared to more complex,
deeper network architectures, e.g. VGG16 [169], but they take considerable less time to
train on limited hardware, given the number of free parameters each architecture consists
of.

MLP

MLP is a feedforward neural network with multiple densely connected layers. While
this model is very simple in design, especially compared to more recent architectures for
pattern recognition, it could be described as the quintessential example of a deep learning
model [64]. Just recently, MLP was used as one of the testing models in a PBT related
paper [143]. As described in Table 3.2, the implementation of MLP consists of 3 densely
connected layers followed up with a linear output layer. Each dense layer is followed up
with a Rectified Linear Unit (ReLU) [139] activation layer.

Table 3.2: MLP Implementation

layer neurons parameters

dense 256 200 960
dense 128 32 896
dense 64 8 256
linear 10 650

total parameters 242 762

Note. Each dense layer is followed up with
ReLU activation.

46 Chapter 3. Methodology

LeNet-5

The second model used in the experiments was LeNet-5 [110], a classical Convolutional
Neural Network (CNN) used for handwritten and machine-printed character recognition.
The LeNet-5 architecture consists of two pairs of convolutional and pooling layers, which
are followed by a flattening convolutional layer connected to two fully-connected dense
layers which is completed by a softmax classifier. Each pooling layer and dense layer is
followed up with a ReLU activation layer. The implementation is described in Table 3.3.

Table 3.3: LeNet-5 Implementation

layer neurons kernel size stride parameters

convolutional 6 5× 5 1× 1 156
max pooling 6 2× 2 2× 2 0
convolutional 16 5× 5 1× 1 2 416
max pooling 16 2× 2 2× 2 0
flatten - - - 0
dense 120 - - 48 120
dense 84 - - 10 164
linear 10 - - 850

total parameters 61 706

Note. Each pooling layer and dense layer is followed up with ReLU
activation.

3.4.3 Defining the Hyperparameter Search Space

In this thesis, hyperparameters are divided into two groups: The first is defined as the
hyperparameters that influence the neural network model, and the second is defined as the
hyperparameters that influence the optimization procedure. The same optimizer procedure
is used for all experiments. A overview of the different types of hyperparameters that are
optimized in the experiments are summarized in Table 3.4.

Table 3.4: Hyperparameter Search Space Configuration

name group type lower bound upper bound

learning rate continuous float 10−5 10−1

momentum continuous float 0.8 1.0
weight decay continuous float 0.0 10−3

Note. A summary of each hyperparameter considered for optimization,
including the lower- and upper boundaries.

As shown, Table 3.4 lists the lower- and upper boundaries vectors, bL = {10−5, 0.8, 0.0}
and bU = {10−1, 1.0, 10−2}, respectively, and these are used to define the explorable region
in the search space Λ. The values are chosen based on the general knowledge of the
machine learning research community. Smaller and larger values than the ones specified
are uncommon. Negative values are considered invalid.

3.4. Experiments 47

Parameterization of the Network Model

For neural networks, the hyperparameter search space is first and foremost the parameters
that define the solution space, i.e. the model architecture. It is important to establish
that this thesis will not be including hyperparameters that change the number of neurons
and hidden layers. As previously hinted, the reasoning behind that decision is that neural
networks of unequal sizes cannot directly inherit each others weights and biases as the
matrices that represent them are of unequal dimensions. While there exists frameworks
that propose adaption of model architecture hyperparameters [115], this will not be tested
in this thesis. However, that could be an excellent follow-up study, knowing that the
network architecture have great influence on how well a network model is able to learn
certain tasks.

Parameterization of the Network Optimizer

Except from model architecture that defines the solution space, most of the hyperparam-
eters for neural networks are conventionally associated with the optimizer, and it was
decided to use the SGD-optimizer for all experiments. SGD is an excellent and efficient
optimizer with smoothing properties, and it was implemented in the original PBT pa-
per [84]. Like most optimizers, common implementations of SGD1 considers a couple of
hyperparameters that can be optimized.

It is known that the number of training steps is essential to the final outcome of the
model, where more training steps gives the learning optimizer more chances to update the
network. Increasing the number of steps generally result in better performance, but only
up to a certain point in time. The learning rate η is generally one of the most commonly
tuned hyperparameters for neural network optimization, and influences the amount of
update performed on the weights and biases by the optimizer in each training step, which
decides how the neural network solution space is navigated. Typically, when traversing
the solution space, the measured loss would usually end up in a region with either a
local or global minima. If the learning rate is assigned too small, the amount of update
applied will be smaller, resulting in slower learning speed, as well as higher chance that
the network ends up in a local minima, but learning is also more stable. On the other
hand, large learning rates allows for larger updates, which results in faster initial learning,
and the learner is less likely to become stuck in a local minima, but learning might become
unstable and more likely to miss good regions in the solution space. The learning rate is
typically assigned to a value of 0.1 or lower, so it was decided to use the lower- and upper
bounds of [10−5, 10−1] for all experiments.

One of the most common hyperparameter associated with SGD is called the momentum
[148, 155], which is a simple addition to the original algorithm. The hyperparameter
is parameterized as a continuous numeric value commonly defaulted to 0.9, and helps
accelerate gradients in the right direction. When momentum is applied, the optimizer
updates the neural network model according to the exponentially weighted average of
the gradient. It is known that when the network is properly initialized, SGD performs
remarkably better with momentum if the hyperparameter is properly tuned [183]. It is
also commonly known that good momentum values usually reside between [0.8, 1.0], so
these were used as the lower- and upper bounds in the search space for all experiments.

1SGD is implemented using the optim -module from PyTorch: https://pytorch.org/docs/stable/

optim.html.

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

48 Chapter 3. Methodology

Current implementations of SGD also typically include regularization techniques such
as weight decay [146, 1]. Weight decay, also known as L2 penalty, is parameterized with
a continuous numeric value that controls the amount of regularization that is to be ap-
plied. Regularization is commonly used as a counter measure for overfitting, which is
not uncommon for neural network solution spaces that are very rich. The weight decay
hyperparameter is traditionally set very small (e.g. 0.01), and then manually balanced ac-
cording to the model performance on unseen data in order to reduce generalization error.
For all experiments, it was decided to constrain weight decay values the the lower- and
upper bounds of [0.0, 10−3].

3.4.4 Metrics

In machine learning, metrics are specific types of measurements that have been developed
to paint a picture of how well a model M performs in a certain area. So far, there is no
universal way to measure network performance, although some metrics are used more than
others. There exists a large variety of metrics for assessing models like neural networks,
where some focuses on simply calculating how far the prediction is from the ground truth
[170], to others who weights the measurement according to how well certain classes are
represented [120]. Metrics are mainly created for three different types of tasks: regression,
binary classification and multi-class classification. It is common to select at least two
metrics for hyperparameter optimization; one metric for measuring loss L that is to be
minimized by the optimizer that updates the neural network, and a validation metric for
evaluating how well the model performs after training with the current hyperparameter
configuration.

When measuring the performance of the hyperparameter algorithms relevant to this
thesis, it was decided to use the same metrics for all experiments. Because each experiment
considers a multi-class classification problem, the metric used for measuring loss, i.e. the
loss function L, is the CCE Score [41]. The evaluation metric used is called the F1 Score
[29]. Lastly, accuracy was used as a third metric as it is very common in literature, used
primarily for monitoring and analysis and has no effect on the algorithm.

Loss

CCE [41] is a class probability metric and loss function for both binary and multi-class
classification. The metric is both easy to interpret and commonly used for various classi-
fication tasks. The equation for calculating the CCE2 loss is defined as

L = − 1

N

N∑
n=1

C∑
c=1

1yi ∈ Cc log (Pmodel [yi ∈ Cc]) (3.4)

where the double sum is over the N observations, and over the C classes. 1yi∈Cc is a
therm for the indicator function of observation ith belonging to class cth. The pmodel[yi ∈
Cc] is the probability predicted by the classifier for the i-th observation to belong to the
cth class. For multi-class classification (i.e. for more than two classes), the CCE outputs
a vector C probabilities, where each component contains the probability of how likely the
input belongs to a specific class, and the sum of these probabilities adds up to 1.0.

2CCE is calculated using the torch.nn module from PyTorch, at https://pytorch.org/docs/master/
generated/torch.nn.CrossEntropyLoss.html.

https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html

3.4. Experiments 49

Evaluation

The F1 score [29], also known as balanced F-score or F-measure, is another class-based
metric. The metric can be described as the weighted, harmonic mean of the precision and
recall (sensitivity). Precision is defined as

Precision =
True Positive

True Positive + False Positive

=
True Positive

Total Predicted Positive
,

(3.5)

and recall is defined as

Recall =
True Positive

True Positive + False Negative

=
True Positive

Total Actual Positive
.

(3.6)

With the precision and recall, the F1 score for binary classification is defined as

F1 = 2× Precision× Recall

Precision + Recall
. (3.7)

In order to obtain the F1 score for multi-class classification, i.e. for more than two
classes, the F1 score was calculated for every class using the one vs. rest strategy, then
averaged. The F1 score was calculated using the f1 score module3 provided by the
scikit-learn [146] package.

3.4.5 Algorithm Parameters

All procedures were performed with a initial population size of N = 30. The procedures
ran until the end criterion, i.e. not end of training, was met, for which the cumulative
number of iterations per generation was monitored and training was ended when it reached
N × 40 = 1200 times. That would ensure that the algorithm would run for at least 40
generations. For PBT, a step size of t = 250 was used between each exploitation and
exploration. For PBT-DE, a training step size of t = 242 and fitness step size of te = 8
were used, which would add up to be equal to the number of steps performed by PBT for
each member in each generation.

PBT was implemented using an exploitation factor of 0.2 and an exploration factors of
∼ [0.8, 1.2], as suggested by the initial paper [84].

PBT-DE was implemented using a mutation factor of F = 0.2 and a crossover rate of
CR = 0.8, as suggested by the original authors [152].

3F1 score from scikit-learn at https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.f1_score.html.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

50 Chapter 3. Methodology

PBT-SHADE was implemented using the default parameters H = 5 and rarc = 2.0,
meaning that bothMF ,MCR in the historical memory was initialized to {0.5, 0.5, 0.5, 0.5, 0.5},
and the external archive size |A| was equal to rarc×N = 2.0×30 = 60. These param-
eters are described in more detail in Section 2.5.1. In addition, the procedure also
requires a decimal percentage, pbest, of how many top performing members to con-
sider when assigning xpbest. It was decided to use the default value of pbest = 0.2 in
all experiments, meaning that only the 20% top performing members are considered
for exploitation.

PBT-LSHADE was implemented using the same parameters as used for PBT-SHADE
across all tests that were conducted. The L-SHADE-specific parameters used are
derived from the default settings proposed by Tanabe and Fukunaga [188]. The
targeted population size was set to Nmin = 4, seeing that the DE/current-to-
pbest/1/bin mutation strategy requires a minimum of 4 members. The targeted
number of fitness evaluations was set to NFEmax = N × 40 = 30× 40 = 1200.

In order to obtain enough data to answer the research questions, each individual ex-
periment was performed 50 consecutive times. Each test was performed in a Linux en-
vironment with two NVIDIA RTX 2080Ti GPUs with 10 989 GB of video memory each,
where all member training and adaptation processes are distributed evenly among the
GPU processors. All experiments used a batch size of B = 64, meaning a single batch
consisted of 64 images from the datasets, and each of these images were transferred from
CPU memory to GPU memory in order to perform a single forward- and backward step
in the neural network.

3.5 Implementation

When implementing the proposed procedures, it was discovered that there was a lack
of purpose-built tools and technologies available that could facilitate the testing require-
ments. Therefore, we implemented a system for carrying out neural network training and
hyperparameter adaption asynchronously in parallel on limited processing budget using
a distributed queuing system. The system allowed for greater flexibility throughout the
development, and ensured that each procedures were carried out using a shared framework
employed by the system, inspired by a recently proposed PBT framework [115].

3.5.1 System Flow

Figure 3.4 is a flowchart of the main operations carried out by the system. The system flow
process starts with defining each part that makes up the experiments: The hyperparam-
eter search space, network model, network optimizer, evolution procedure (e.g. distinct,
parameterized operations performed by PBT-LSHADE), the dataset and the sampled set
divisions and an optional database connection (local or remote). With all required exper-
iment parameters appropriately assigned, the controller process is started.

Workers

Before training and adaption can begin, the controller uses multiprocessing technologies
to define a worker pool which spawns a specified number of processes, Np (i.e. n jobs),

3.5. Implementation 51

Sy
nc

hr
on

ou
s

m
ai

n
lo

op

As
yn

ch
ro

no
us

 in
 p

ar
al

le
l

Yes

No
is	end	criteria

met?

stop	controller
and	workers

network
model

load	dataset

training	set
validation	set
testing	set

start
controller

start	worker
processes

create	initial
population	of
checkpoitns

distribute
checkpoints
to	workers

update	database
and	clean	up	old
checkpoints	

complete
evolution

network
optimizer

hyper-
parameter
search	space

evolution
procedure

device	0 device	n

enqueue	members

dequeue	members

load
checkpoint

train	and
evaluate		model

asynchronous	device	thread	task

unload
checkpoint

evolve	hyper-
parameters	and

model

Yes

No
is	ready?

prepare
evolution

update
population	of
checkpoints

best
member

database

thread
task	n

thread
task	1

thread
task	n

thread
task	1

database
connection

augment	data

Figure 3.4: Flowchart of major system operations.

52 Chapter 3. Methodology

called workers. Each worker are assigned one and one only processing device (e.g. gpu:0

for the 1th GPU, or gpu:1 for the 2th GPU). The number of workers, Np, should be
set as large as possible for more distributed parallel processing, but is restricted to how
much collective system memory or video memory that is available on the CPU or GPU
processing units, respectively. When using GPU processing in this system, each worker
must initialize the CUDA environment, which uses some of the available video memory.

In this thesis, 16 worker processes where employed, and the worker pool distributed
the GPU devices evenly among these workers. A larger number of workers would have
caused a CUDA out-of-memory error as only two GPUs where used in this thesis.

Population

In the next step of the system, all members in the population P of size N are initialized
using the operations from each procedure that decides how hyperparameters are spawned
in the search space. In this case, spawning process is equal for all processes. The population
P is represented in system memory as a custom dictionary with a member identifier/key-
value pair. Therefore, members are accessed and updated by unique identifier in order to
ensure that the dictionary always consists of a distinct set of members.

At any step in the system, members are represented by a checkpoint, which is a data
object that stores the current state of the member. The state is represented by several
data components described in Table 3.5. These include the current state of the neural
network model represented by the weight and bias matrices. The hyperparameters are
represented by a special type of ordered dictionary that contains the current value, the
lower and upper boundary, and the programmatic name of the hyperparameter. The
optimizer parameters contains the current state of the network optimizer. In addition, the
checkpoint state includes the number of steps and epochs in order to know where in the
training process the member currently resides. The checkpoint also records the last score
that was measured. Member checkpoints allow member-specific data to be constrained to
single objects, which allows for better accessibility wherever members are referenced in
the program.

Table 3.5: Data stored in a Checkpoint

Description Variable Name Data Type

Neural network weights/biases model state Dictionary of Tensors

Optimizer parameters and state optimizer state Dictionary of Tensors

Hyperparameters parameters Ordered Dictionary of Floats (*)

Steps steps Integer

Epochs epochs Integer

Loss loss Table of Floats

Note. (*) Hyperparameters are stored in a custom, ordered dictionary type that contains the upper
and lower bounds.

After the members and workers are initialized, the main loop is entered. First, the
system performs all the procedure operations that are required prior to generating the
next generation of members. The PBT and PBT-DE procedures do not need this step
as no prior operations are needed, but the PBT-SHADE and PBT-LSHADE procedures

3.5. Implementation 53

require it as they need to reset the historical memory H.

Workers and Asynchronous Processes

Next, the main loop enters the asynchronous part of the system. Here, the worker pool
distributes the population P of N member checkpoints in chunks C of size NC = bN/Npc.
These chunks are then queued across the worker processes along with the asynchronous
process. If the number of chunks |C| are not evenly divisible with the number of members
N , one of the worker processes receives a chunk of extended size N∗C = nc+1. As such, it is
recommended to use a number of workers that ensures N mod Np = 0, if possible. Each
worker processes the chunk Ci of member checkpoints with the asynchronous process in
parallel using a pool of |Ci| threads. When a thread task completes, the adapted member
checkpoint gets immediately returned back to the worker pool via the return queue. In
practice, this allows for members to be accessible the moment they are finished.

Post-Operations

After all members return from training and adaption and leaves the asynchronous portion
of the system, any post operations required by the evolution procedure is performed at
this point in the process. These are exclusively used by PBT-SHADE and PBT-LSHADE
in order to update the historical memory. In addition, PBT-LSHADE performs linear
population decay, which may shrink the population by one or more members.

Then, all remaining members are saved as the next g + 1-th generation, and each
member checkpoint may also be saved to the database if a database provider is specified.
Instead of relying on more complex database systems such as local SQL or cloud services,
the database system we use creates and maintains a simple, accessible, local folder struc-
ture that can be easily navigated by the researcher during or after the training process has
completed for analysis. In our case, the checkpoints of all members across all generations
where saved, and these were used to construct data frames that would serve as the main
source of data for the results, post-analysis and figures.

Depending on the size of the network model, checkpoint states could become quite
large. In order to ensure that the system does not use up all accessible system memory,
old member checkpoints are saved to a database and then removed from memory at the end
of each generation. The system also optionally deletes old network model and optimizer
states from old checkpoints in the database that is no longer of use in order to save space
in database file system. Deletion is performed as the database can become quite large in
size.

At last, the system checks to see whether the training adaptation process is finished
by checking the end criteria. In our case, the end criteria is whether all members have
performed t steps equal or above the specified max steps value, i.e. t ≥ N × 40. If true,
the system exists the main loop, closes all workers processes and returns the best member.
Otherwise, the system proceeds to generate the next (g + 1)-th generation of members.

3.5.2 Evolution Engines

The evolution engine is presented in the program as a framework for adapting members
with evolutionary techniques. Several evolution engines where created for this system in
order to carry out the testing, namely the exploit and explore method performed in the

54 Chapter 3. Methodology

Hyper-parameter	Search	Space

Normalization	layer

	Λ:	ℝn	=	{λ1,	λ2,	...,	λn},	where	bL	≤	λ	≤	bU

	A:	ℝn	=	{a1,	a2,	...,	an},	where	0.0	≤	a	≤	1.0

Translate

Figure 3.5: Hyperparameters mapped with a normalization layer.

original PBT procedure, as well as the mutation, crossover and selection strategies derived
from DE, SHADE and L-SHADE. In order to get adaptive DE to work for multiprocessing,
the external archive A and historical memory H were implemented as global registries that
could be shared across all processes using a memory manager.

3.5.3 Controller

The component that orchestrate the entire evolution and training process is the controller.
It decides when to call the evolver functions, and when to perform asynchronous training
and evaluation of adapted members. It can also optionally do monitoring tasks like writing
logs and creating real-time graphs using the TensorBoard [1] package4. More importantly,
it makes sure to back up each generation to the database while it is running, and it
performs garbage collection to remove any checkpoint states from the database that are
no longer needed.

3.5.4 Hyperparameters

There are a few requirements for the implementation of Hyperparameters for neural net-
works. Fundamentally, each parameter is a value from either a continuous, discrete or
categorical search space constrained to a predefined lower and upper boundary. While
arithmetic operations come natural for both continuous and discrete numeric values, it
poses a challenge for categorical parameters, e.g. strings. Therefore, categorical hyperpa-
rameters are not directly supported by DE, because it is a numeric optimizer where all
hyperparameters must be able to be changed by arithmetic methods. While there could be
implemented an exception for categorical values which uses methods like random selection
to navigate the search space [115], this would alter the original heuristics from DE. In-
stead, it was decided to implement a layer on top of the underlying search space that maps
numerical, continuous values to the underlying continuous, discrete or categorical values.
This mapping layer is practically a normalized, continuous search space constrained from
a lower limit of 0.0 to a upper limit of 1.0. The mapping of parameters are visualized in
Figure 3.5.

For continuous and discrete hyperparameters, the mapping is a simple translation and

4Tensorboard is available at https://www.tensorflow.org/tensorboard.

https://www.tensorflow.org/tensorboard

3.5. Implementation 55

defined as

xtranslated:Y = ymin + (ymax − ymin)× x− xmin
xmax − xmin

, (3.8)

where x is the a value from the source space X to be mapped, xmin and xmax is the
lower bound and upper bound of X, and ymin and ymax is the upper and lower bound of
the target space Y . Because the normalized value must be a value between 0.0 and 1.0,
the formula can be simplified as

λtranslated:A = 0.0 + (1.0− 0.0)× λ− bL
bU − bL

=
λ− λmin
bU − bL

,

(3.9)

where bL and bU are the upper and lower bounds of λ.
On the other hand, categorical parameters are treated a bit different. The categorical

search space is represented by a one-dimensional list with indices 0 to l− 1, where l is the
number of categorical parameters. The mapping layer cannot interface with the categorical
parameters directly, but it can interface with the indices. Therefore, in a similar way to
how discrete and continuous values are translated, the indices are translated too, and the
categorical value can be retrieved.

For example, if the parameters are a discrete value from 0 to 100, a normalized value
in the mapping layer of 0.50 would point to 50 in the underlying search space. Similarly, a
normalized value of 0.734 would point to 73. For categorical values, where the underlying
search space is represented by a list {string1, string2, string3}, a normalized value of
0.20 would point to index 0 which points to string1. Similarly, a normalized value of 0.67
would point to index 2 which points to string3.

The hyperparameter mapping layer is simply a view into the underlying search space,
and allows us to limit arithmetic operations to the normalized value. This way has the
advantage of enabling any type of hyperparameter to support any algorithm that generates
new values based on the search space Λ, e.g. DE.

One downside of the mapping strategy is that categorical search spaces of just a few
values does not reflect immediate change if the step size is too small. That is, if a step
in the search space yields a normalized value that still points to the previous categorical
value, no change has been made to the hyperparameter. This is especially noticeable for
binary search spaces, e.g. True-False values where half of the search space points to one
value.

3.5.5 Environment

The system was implemented in a Linux environment with Python5 (version 3.7.6) – a
popular high-level programming language that is widely used by both researchers and
practitioners in the machine learning community. The processing is conducted mainly on
multiple CUDA-enabled GPUs powered by the CUDA Toolkit6 (version 10.2). Among
many available machine learning packages in Python, we chose to use an open source
machine learning framework called PyTorch7 (version 1.5) to define and run deep learning

5Python is available at https://www.python.org.
6CUDA Toolkit is provided by NVIDIA at https://developer.nvidia.com/cuda-downloads.
7PyTorch is available at https://pytorch.org.

https://www.python.org
https://developer.nvidia.com/cuda-downloads
https://pytorch.org

56 Chapter 3. Methodology

models. While Python is a high-level programming language, some of its components
are implemented using low-level C-code (i.e. CPython), which makes it more efficient for
certain tasks, despite its high-level abstraction.

Chapter 4

Results

This chapter presents the results and analysis obtained from running the PBT procedure
(Section 3.1) against the PBT-DE, PBT-SHADE and PBT-LSHADE procedures (pro-
posed in 3.2 and Section 3.3) on the aforementioned experiments established in Section
3.4. The result data are obtained by running 50 individual and consecutive tests with
each procedure on the four different experiments that consists of the product of two dif-
ferent kinds of neural networks architectures, MLP and LeNet-5, as well as two different
datasets for image classification, MNIST and Fashion-MNIST. The data presented is an
accumulation of each best performing member in the last generation generated by the
PBT, PBT-DE, PBT-SHADE and PBT-LSHADE procedures. Each of the best perform-
ing members are determined by the F1 score obtained from evaluating the member’s model
M on the validation set X (valid) derived from the dataset that is currently used as mea-
sure. While multiple metric types are included in several figures and tables, the focus is
primarily on the F1 score in order to determine how the procedures perform.

First, a comprehensive Welch ANOVA [205] and Post-Hoc analysis is presented in
Section 4.2 in order to assess whether there is statistical significant difference between the
tested procedures. Secondly, several figures and tables are presented in Section 4.3 on
the train-, validation- and test scores obtained by calculating the CCE, F1 and accuracy
across generations. Thirdly, some results are presented in regards to the procedures time
complexity in Section 4.4. Next, the most common hyperparameter schedule trends are
visualized in Section 4.5. Lastly, in order to understand how procedure parameters affect
the predictive performance in relation to the time complexity, several tests are presented
on different population sizes in Section 4.6.

4.1 Overview

Figure 4.1 shows the minimum, average and maximum F1 score obtained by the procedures
on each experiment. Based on the results, it is clear that the PBT-SHADE and PBT-
LSHADE procedures achieved the highest average on the MNIST and Fashion-MNIST
datasets, each respectively. The highest recorded maximum F1 score is obtained primarily
by the PBT-LSHADE procedure, except from the experiment that involved the MNIST
dataset with the MLP neural network architecture. In this case, the maximum F1 score
was obtained by the PBT-DE procedure. Overall, it was determined that the PBT-
DE, PBT-SHADE and PBT-LSHADE procedures outperform the PBT procedure on all
experiments. When that has been said, please refer to Section 4.3 for more in-depth

57

58 Chapter 4. Results

0.968

0.972

0.976

0.980

MNIST w/ MLP

0.984

0.987

0.990

0.993

MNIST w/ LeNet-5

0.850

0.860

0.870

0.880
FashionMNIST w/ MLP

0.880

0.888

0.896

0.904
FashionMNIST w/ LeNet-5

PBT PBT-DE PBT-SHADE PBT-LSHADE

Figure 4.1: The F1 scores of each procedure on four different experiments. Bright color is minimum,
medium color is average, and dark color is maximum.

analysis of the predictive performances of the individual procedures.

4.2 Welch ANOVA Analysis

Because multiple procedures (or groups) was measured, the Welch ANOVA (Analysis
of Variance) [205] method was used in order to determine whether there is a statistical
significant difference found in the procedures. For all tests, the dependent variable was
the F1 score obtained from using the test dataset division X (test) on the final model M.
A significance level of α = 0.01 was used for all tests, and is the probability of rejecting
the null hypothesis when it is true. The hypotheses tested by the Welch ANOVA method
is defined as

H0 : x̄1 = x̄2 = x̄3 = · · · = x̄k

H1 : At least one x̄i differ,
(4.1)

where the null hypothesis H0 was accepted if all F1 means for each procedure was
equal, otherwise the hypothesis H1 was accepted if at least one of the means are different.
The variable k is the number of procedures, which was k = 4 for this case.

4.2.1 Assumption Check

In order for the Welch ANOVA tests to be considered valid, it was ensured that all test
data are mutually exclusive, and there are no repeated measures. Furthermore, the data
was also tested for normality by using the Shapiro–Wilk [167] test. The null hypothesis

4.2. Welch ANOVA Analysis 59

Table 4.1: The Shapiro-Wilk Test for Normality

Dataset Model Procedure statistic p-value

MNIST

MLP

PBT 0.954811 0.053948
PBT-DE 0.975883 0.394113

PBT-SHADE 0.976781 0.425588
PBT-LSHADE 0.981376 0.61126

LeNet-5

PBT 0.987843 0.883427
PBT-DE 0.953751 0.0487421

PBT-SHADE 0.961217 0.0999691
PBT-LSHADE 0.977046 0.435194

Fashion
MNIST

MLP

PBT 0.966956 0.173563
PBT-DE 0.968978 0.210258

PBT-SHADE 0.978189 0.478392
PBT-LSHADE 0.964433 0.136303

LeNet-5

PBT 0.980565 0.576026
PBT-DE 0.970892 0.251519

PBT-SHADE 0.96304 0.119192
PBT-LSHADE 0.945705 0.0227907

Note. The test is used to assess whether the data is normally distributed. If the p-value is less
than the chosen significance level α = 0.01, the data is not normally distributed.

of a Shapiro-Wilk test is that the data is normally distributed. If the p-value generated
with the Shapiro-Wilk test is less than the alpha level, α = 0.01, i.e. p < 0.01, the null
hypothesis is rejected. The results from the Shapiro-Wilk test are presented in 4.1 for each
experiment, and it was clear that all p-values are greater than the alpha value. According
to these findings, it can be determine with 99% certainty that the data was normalized.
As an extra reassurance, a probability plot of the residuals for each individual group was
included in Figure 4.2. It was clear that the ordered values follow along the diagonal
line across the theoretical quantiles, indicating that the graphical testing supported the
statistical findings that the data was normalized.

The reason for why the Welch ANOVA test was used instead of the traditional One-Way
ANOVA test was because the method does not assume there is homogeneity of variances
in the data. Using the Levene’s method [113] for assessing equality of variances on the
dependent variable for each experiment, it was observed that all experiments except for
the MNIST dataset with the LeNet-5 architecture passed the test (see Table 4.2), meaning
that any findings provided by the one-way ANOVA test could not be statistically trusted
for the results obtained using the MNIST dataset with the LeNet-5 architecture.

4.2.2 Results

Table 4.3 presents the Welch ANOVA test results1. It is clear that, for all experiments,
the p-values are very small, and ultimately less than the pre-established significance level,
α = 0.01, meaning it can be said with a 99% certainty that there was a statistically
significant difference between at least two of the procedures for every experiment. The

1The Welch ANOVA test was carried out using a publicly available Python package, https://

pingouin-stats.org/generated/pingouin.welch_anova.html

https://pingouin-stats.org/generated/pingouin.welch_anova.html
https://pingouin-stats.org/generated/pingouin.welch_anova.html

60 Chapter 4. Results

0.880

0.890

Fa
sh
io
nM

N
IS
T

/w
Le

N
et
-5

PBT PBT-DE PBT-SHADE PBT-LSHADE

0.860

0.870

Fa
sh
io
nM

N
IS
T

/w
M
LP

0.988

0.990

M
N
IS
T

/w
Le

N
et
-5

−2 0 2

0.972

0.975

0.977

M
N
IS
T

/w
M
LP

−2 0 2 −2 0 2 −2 0 2

Theoretical quantiles

Figure 4.2: A probability plot of the residuals, where normality is indicated by the red diagonal.

Table 4.2: The Levene’s Test for Homogeneity of Variance

Dataset Model statistic p-value

MNIST
MLP 1.40579 0.242347

LeNet-5 4.53437 0.00425292

Fashion
MNIST

MLP 2.74165 0.0444369
LeNet-5 1.8056 0.147454

Note. The test is used to assess whether the data is equal in variance.
If the p-value is less than the chosen significance level α = 0.01, it
means there is no homogeneity of variance found in the data.

4.2. Welch ANOVA Analysis 61

Table 4.3: The Welch ANOVA Test

Dataset Model d.f.N. d.f.D. F-value p-value

MNIST
MLP 3 107.66085 32.17127 6.32× 10−15

LeNet-5 3 107.85942 9.23710 1.72× 10−5

Fashion
MNIST

MLP 3 107.18582 54.66338 1.62× 10−21

LeNet-5 3 108.23603 12.51375 4.37× 10−7

Note. If the p-value is below the significance level α = 0.01, it means there is a statistically
significant difference between the procedures.

Welch ANOVA results alone does not specify which procedures that are statistically and
significantly different, so the tests are naturally followed up with a Post-Hoc analysis.

Post-Hoc Analysis

The Pairwise Games-Howell [59] Post-Hoc test method was used for each experiment in
order to assess which procedure pairs that were statistically and significantly different.
While the Games-Howell test is similar to the Tukey’s Honestly Significant Difference
(Tukey’s HSD) [192] Post-Hoc test, it is more robust to heterogeneity of variances, and so
it is optimal after a Welch ANOVA test. Table 4.4 displays the results from the Games-
Howell test2.

From the data presented, it can be stated with a 99% certainty that there was a
statistical significant difference between the PBT procedure compared with the PBT-DE,
PBT-SHADE and PBT-LSHADE procedures from the test scores obtained from using the
MNIST dataset and MLP neural network architecture. On the same experiment, it cannot
be stated with 99% certainty that there was a statistical significant difference between the
PBT-DE, PBT-SHADE and PBT-LSHADE procedure.

On the experiment with the MNIST dataset with the LeNet-5 architecture, it can be
stated with 99% certainty that there was a statistical significant difference between the
PBT and PBT-DE procedures, as well as the PBT and PBT-LSHADE procedure. For all
other procedure pairs, the null hypothesis was rejected with a 99% certainty.

On the experiment with the Fashion-MNIST dataset with the MLP architecture, it can
be stated with 99% certainty that there was a statistical significant difference between the
PBT procedure and the PBT-DE, PBT and PBT-SHADE, PBT-LSHADE procedures.
Moreover, there was also a statistical significant difference between the PBT-DE and
PBT-SHADE procedures, and the PBT-DE and PBT-LSHADE procedures. The only
procedure pair that failed the test, was the PBT-SHADE and PBT-LSHADE procedures.

Lastly, it can be said with 99% certainty that there was a statistical significant differ-
ence between the PBT and PBT-SHADE procedures, and the PBT and PBT-LSHADE
procedures on the experiment with the Fashion-MNIST dataset and the LeNet-5 architec-
ture. Furthermore, on the same experiment, it can be stated with 99% certainty that there
was a statistical significant difference between the PBT-DE and PBT-SHADE procedure,
as well as the PBT-DE and PBT-LSHADE procedures. For all other procedure pairs, it
cannot be stated that there was a statistical significant difference.

2The Games-Howell test was carried out using a publicly available Python package, https://

pingouin-stats.org/generated/pingouin.pairwise_gameshowell.html

https://pingouin-stats.org/generated/pingouin.pairwise_gameshowell.html
https://pingouin-stats.org/generated/pingouin.pairwise_gameshowell.html

62 Chapter 4. Results

Table 4.4: Pairwise Games-Howell Post-Hoc Test

Dataset Model Procedures S.E. T-value d.f. p-value

MNIST

MLP

PBT & PBT-DE 0.00019 -7.48914 96.44685 0.00100
PBT & PBT-SHADE 0.00019 -7.42833 97.57683 0.00100
PBT & PBT-LSHADE 0.00017 -9.54680 86.49154 0.00100

PBT-DE & PBT-SHADE 0.00018 -0.15442 97.63001 0.90000
PBT-DE & PBT-LSHADE 0.00016 -1.41861 92.26055 0.48795

PBT-SHADE & PBT-LSHADE 0.00016 1.19252 89.59553 0.61521

LeNet-5

PBT & PBT-DE 0.00011 -4.47966 95.15235 0.00100
PBT & PBT-SHADE 0.00013 -2.36873 83.35057 0.08563
PBT & PBT-LSHADE 0.00011 -4.48197 97.13978 0.00100

PBT-DE & PBT-SHADE 0.00014 1.30806 91.54714 0.55055
PBT-DE & PBT-LSHADE 0.00012 0.18933 97.37374 0.90000

PBT-SHADE & PBT-LSHADE 0.00014 1.18470 87.92620 0.61958

Fashion
MNIST

MLP

PBT & PBT-DE 0.00043 -7.87083 92.22133 0.00100
PBT & PBT-SHADE 0.00051 -11.03481 97.14250 0.00100
PBT & PBT-LSHADE 0.00041 -11.58976 86.27826 0.00100

PBT-DE & PBT-SHADE 0.00046 -4.79091 88.03916 0.00100
PBT-DE & PBT-LSHADE 0.00035 -3.93764 96.36414 0.00100

PBT-SHADE & PBT-LSHADE 0.00044 -1.84570 81.67583 0.25400

LeNet-5

PBT & PBT-DE 0.00052 -1.36620 97.04208 0.51802
PBT & PBT-SHADE 0.00063 -5.03446 93.09950 0.00100
PBT & PBT-LSHADE 0.00053 -4.62757 97.33800 0.00100

PBT-DE & PBT-SHADE 0.00060 -4.03364 88.82178 0.00100
PBT-DE & PBT-LSHADE 0.00050 -3.44474 97.97160 0.00350

PBT-SHADE & PBT-LSHADE 0.00061 -1.16478 89.60407 0.63074

Note. If the p-value is below the significance level α = 0.01, it means there is a statistically
significant difference between the procedures.

4.3. Individual Performance Comparisons 63

4.3 Individual Performance Comparisons

This section presents the individual performances between the procedures on from all ex-
periments. The following sub-sections is first divided on the different datasets, MNIST
and Fashion-MNIST, and then on the different neural network architectures, MLP and
LeNet-5. The result data obtained from each experiment is reported in every metric type
for each dataset divisions. Of the divisions, the testing set X (test) was considered the most
important benchmark for assessing the predictive performance between the different pro-
cedures. Furthermore, the training- and validation sets are included because the difference
between the scores obtained from each dataset division over time says something about
how well the neural network model performs in terms of generalization.

In order to determine how well each optimization procedure performs across the entire
generation span on unseen data, performance on the testing set X (test) from the dataset
was recorded at for each member at each step in the training. It is important to note
that the results obtained from running these tests were not used by any of the procedures
in any way, as this would have gone against good algorithmic testing practice where the
unseen data is supposed to be unknown to the procedure. Otherwise, the final results
would be skewed and biased. Furthermore, as an extra measure to reduce any potential
researcher bias, these tests were not performed during development of the procedures; the
result data obtained across generations was used purely for analytical purposes after the
procedures had been tested.

Lastly, an overall numeric representation of the test data is included. The CCE score,
F1 score and accuracy are presented in Table 4.5. Table 4.6 and Table 4.7, each respec-
tively. Note that the F1 testing score for each dataset and network architecture was of
most relevance when assessing the performance of each procedure. For convenience, the
deemed best values are highlighted in bold.

4.3.1 Results from the MNIST Dataset

This section presents the results obtained from running the MLP and LeNet-5 architectures
on the MNIST dataset. The results are first and foremost visualized through box plots,
which is a type of plot used for representing groups of numerical data through their
quartiles. Each figure consists of 9 box plots; one box plot for each product of the different
evaluation metrics and dataset divisions. The first row shows the CCE, the second row
shows the F1 score and third row shows the accuracy for all three dataset divisions.

Results with the MLP Architecture

Figure 4.3 depicts the box plots of the results from testing with the MLP architecture. It
is clear that when viewing the test scores, the PBT-DE, PBT-SHADE and PBT-LSHADE
procedures outperformed the PBT procedure in terms of highest (best) F1 mean obtained.
Of the four, the PBT-LSHADE procedure achieved the highest recorded F1 score, but its
variance was considerable higher than the rest, leading it to also achieving the second-
to-lowest F1 score. Furthermore, the PBT-SHADE demonstrated the lowest amount of
variance, meaning that the results it produced was more consistent compared to the rest
of the procedures. In addition, PBT-SHADE also achieved the highest F1 mean of all the
procedures at 0.9774, which lead us to determine that PBT-SHADE was the most consis-
tently highest performing procedure on the MNIST dataset with the MLP architecture in

64 Chapter 4. Results

0.000

0.025

train_cce

0.075

0.100

eval_cce

0.075

0.100

test_cce

0.990

0.995

train_f1

0.9725
0.9750
0.9775

eval_f1

0.975

0.980
test_f1

PBTPBT-DEPBT-SHADEPBT-LSHADE

99.5

100.0
train_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

97.75

98.00

eval_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

97.5

98.0

test_acc

PBT PBT-DE PBT-SHADE PBT-LSHADE

Figure 4.3: Box plot comparisons between the procedures from 50 consecutive tests performed
with the MNIST dataset using MLP.

terms of F1 score.

In order to understand how each procedure performed over time, the metric scores
obtained at every step across the duration of the procedure are displayed in Figure 4.4.
The data points at each step represents the average score between the 50 tests that have
been performed. The data is visualized over time (i.e. steps) with a line chart as a
mean to view how well each procedure performed across generations. This is especially
important as each procedure was tested with the same number of total accumulated steps,
which allowed the PBT-LSHADE procedure to produce more than twice the amount of
generations. In order to provide a good visualization of the data, the x-axis is compressed
by a factor of 50% for the last generations generated by PBT-LSHADE. The plots are first
divided by the metric types CCE score, f1 score and accuracy score in groups of three,
where each row within the groups contain a different dataset division.

In Figure 4.4, it was observed that on all metrics, PBT performed better in the first
3 000 steps, but eventually stopped improving and was overtaken by the other procedures
in the range between 3000 and 5000 steps. Out of the three DE-based procedures, PBT-
DE displayed the lowest F1 score in the first 9000 steps, but finally performs similar to
PBT-SHADE and PBT-LSHADE.

It is clear that when viewing how PBT-LSHADE performs over time, the procedure did
not benefit too much from the extra steps it managed with the same budget. Moreover,
PBT-LSHADE seemed to overfit the training set, which was reflected in the CCE score
when comparing the training set with the evaluation and testing set. Despite the fact that
the procedures was given control over weight decay as a mean to mitigate overfitting, the
regularization technique seemed to not prevent overfitting due to excessive training. One
explanation for why the procedures failed to reduce overfitting could be explained by the
F1 validation score, which seemed to be not affected by the overfitting. Whether reducing
overfitting or not would provide better results was not clear, but it could be interesting
to see the outcome if a metric that is more capable of detecting overfitting was used for

4.3. Individual Performance Comparisons 65

CCE

F1 Score

Accuracy

0.025
0.050
0.075

tr
ai
n

0.025
0.050
0.075

0.070
0.080
0.090
0.100

va
lid

0.070
0.080
0.090
0.100

0.070
0.080
0.090

te
st

0.070
0.080
0.090

0.976
0.984
0.992
1.000

tr
ai
n

0.976
0.984
0.992
1.000

0.968
0.972
0.976

va
lid

0.968
0.972
0.976

0.969
0.972
0.975
0.978

te
st

0.969
0.972
0.975
0.978

97.60
98.40
99.20

100.00

tr
ai
n

97.60
98.40
99.20
100.00

97.20
97.50
97.80
98.10

va
lid

97.20
97.50
97.80
98.10

0 2000 4000 6000 8000 10000

97.20
97.50
97.80
98.10

te
st

15000 20000

97.20
97.50
97.80
98.10

PBT PBT-DE PBT-SHADE PBT-LSHADE

steps

Figure 4.4: Line chart comparisons between the procedures from the average of 50 consecutive
tests performed on the MNIST dataset using MLP.

66 Chapter 4. Results

0.00

0.01

train_cce

0.03

0.04
eval_cce

0.02

0.03

test_cce

0.9950

0.9975

train_f1

0.9875

0.9900
eval_f1

0.9875

0.9900

test_f1

PBTPBT-DEPBT-SHADEPBT-LSHADE

99.75

100.00
train_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

99.00

99.25

eval_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

99.00

99.25

test_acc

PBT PBT-DE PBT-SHADE PBT-LSHADE

Figure 4.5: Box plot comparisons between the procedures from 50 consecutive tests performed
with the MNIST dataset using LeNet-5.

validation, like the CCE. When that has been said, the F1 test score does show some
degradation in the range between 15 000 and 23 500 steps, which means the score would
be better if the training was ended sooner, around the 15 000 step mark.

It is also important to note that despite PBT-LSHADE using linear population decay,
which reduces the number of members linearly over time, it did not seem to affect the
predictive performance when compared to PBT-SHADE, which is the same procedure,
but without linear population decay. That would suggest that a lower population size
N < 30 could provide similar results, which would save the DE-procedures a generous
amount of time if the number of GPUs or CPUs used are lower than the population size,
which is true in our case.

Results with the LeNet-5 Architecture

The results from testing with the LeNet-5 architecture is shown in Figure 4.5. Similar to
the results found from testing with the MLP architecture, PBT was outperformed once
again by the PBT-DE, PBT-SHADE and PBT-LSHADE procedures on the averagely ob-
tained F1 score. The L-SHADE obtained the highest F1 score this time as well, but it also
had the highest amount of variance as well. In addition, PBT-DE demonstrated to achieve
the lowest amount of variance, and while it did not achieve one of the highest F1 scores,
it obtained the highest F1 mean at 0.9900. Considering what have been learned from the
results, it was determined that PBT-DE displayed the best predictive performance on the
MNIST dataset with the LeNet-5 architecture because of its consistent high F1 scores.

Figure 4.6 displays the obtained average score data from each procedure visualized over
time. When inspecting the F1 test score, it was clear that the PBT procedure performed
better than the other procedures for the first 4000 or so steps, but was eventually over-
taken by the PBT-LSHADE procedure, and later by both the PBT-DE and PBT-SHADE
procedures. In contrast with the results obtained from using the MLP architecture, PBT-
DE performed considerably worse the first 8000 steps when compared to the rest, but

4.3. Individual Performance Comparisons 67

eventually catch up before the 10 000 step mark.
As seen in the results obtained from testing with the MNIST dataset and MLP archi-

tecture, the extra steps performed by L-SHADE lead to overfitting the training set, which
is reflected in the range between the training and validation CCE score. However, the
amount of overfitting seemed to be lower than the other tests, and there was a noticeable
degradation in both the F1 validation score and F1 testing score (as well as the accuracy
equivalents). The reduction in overfitting could have happened because of the change in
neural network architecture, but there is also a chance that the procedures were more
successful in reducing some of the overfitting by optimizing the weight decay. Because of
the overfitting, PBT-LSHADE procedure may have performed worse than both the PBT-
DE and PBT-SHADE procedures. If the PBT-LSHADE procedure was stopped earlier,
it would have achieved better results, and better time complexity as well.

4.3.2 Results from the Fashion-MNIST Dataset

This section presents the results obtained from running the MLP and LeNet-5 architectures
on the Fashion-MNIST dataset for classifying human clothing from images. Figure 4.7
displays the box plots that show the results from testing with the MLP architecture.
Each of the rows shows the CCE, F1 score and accuracy for all three dataset divisions,
respectively.

In Figure 4.7, it is clear that the PBT-DE, PBT-SHADE and PBT-LSHADE proce-
dures outperformed the PBT procedure on all tested metrics. Of the procedures, PBT-
LSHADE displayed the highest amount of variance, which may have lead it to obtain both
the best and worst recorded F1 score. While PBT-LSHADE displayed higher variance,
it still obtained the highest F1 mean, and PBT-SHADE achieved the second-highest F1
mean.

Figure 4.8 displays the average metric scores obtained at every step, divided by each
metric and dataset division. In the first steps, PBT performed better than the other
procedures, but was eventually overtaken by all DE-based procedures in the range from
4 000 to 7 000 steps. For the first 10 000 steps, the PBT-SHADE procedure peformed
better than the other procedures on all metrics.

From Figure 4.8, it was noticed that the number of members in the population seemed
to have an effect on the predictive performance of the network model in all cases, something
that cannot be noticed in earlier results from the MNIST dataset in Figure 4.4. It was
clear that the PBT-LSHADE procedure did not perform as well as both the PBT-DE
and PBT-SHADE procedure for the first 10 000 steps. As the PBT-SHADE and PBT-
LSHADE procedures are essentially the same procedures except for the linear population
decay performed in PBT-LSHADE, the only explanation for the performance difference
must be correlated with difference in population size over time.

When that has been said, the aforementioned difference was not reflected in the final
results because PBT-LSHADE ran an additional 13 500 steps and managed to overtake
on both the F1 and accuracy metric. Also, similar to other tests, the PBT-LSHADE
procedure displayed signs of overfitting as seen in the CCE metric charts in Figure 4.8,
but that is hardly noticeable in the other metrics.

In Figure 4.9, we display the box plots of the results from training and testing the
Fashion-MNIST dataset with the LeNet-5 architecture. Similar to earlier examples, the
PBT comes out the weakest of the four procedures on the average test F1 score. Out of the
four procedures, the PBT-LSHADE procedure displays the highest amount of variance and

68 Chapter 4. Results

CCE

F1 Score

Accuracy

0.000
0.020
0.040
0.060

tr
ai
n

0.000
0.020
0.040
0.060

0.032
0.040
0.048

va
lid

0.032
0.040
0.048

0.024
0.030
0.036
0.042

te
st

0.024
0.030
0.036
0.042

0.976
0.984
0.992
1.000

tr
ai
n

0.976
0.984
0.992
1.000

0.982
0.985
0.987

va
lid

0.982
0.985
0.987

0.984
0.986
0.988
0.990

te
st

0.984
0.986
0.988
0.990

97.60
98.40
99.20

100.00

tr
ai
n

97.60
98.40
99.20
100.00

98.60
98.80
99.00
99.20

va
lid

98.60
98.80
99.00
99.20

0 2000 4000 6000 8000 10000

98.80
99.00
99.20

te
st

15000 20000

98.80
99.00
99.20

PBT PBT-DE PBT-SHADE PBT-LSHADE

steps

Figure 4.6: Line chart comparisons between the procedures from the average of 50 consecutive
tests performed on the MNIST dataset using LeNet-5.

4.4. Time complexity 69

0.2

0.3
train_cce

0.300

0.325

eval_cce

0.325

0.350

test_cce

0.900

0.925

train_f1

0.87

0.88

eval_f1

0.86

0.88
test_f1

PBTPBT-DEPBT-SHADEPBT-LSHADE

90.0

92.5

train_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

88

89

eval_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

87
88
89

test_acc

PBT PBT-DE PBT-SHADE PBT-LSHADE

Figure 4.7: Box plot comparisons between the procedures from 50 consecutive tests performed
with the Fashion-MNIST dataset using MLP.

obtains both the lowest and highest registered F1 score, while the PBT procedure displays
the lowest amount of variance. Even so, the PBT-LSHADE procedure still obtains the
highest average F1 test score, and PBT-LSHADE achieves the second highest average F1
test score.

When measuring predictive performance over time as shown in Figure 4.10, it is clear
that the PBT-LSHADE procedure performed strongly the first 10 000 steps when com-
pared to the other procedures, but because the PBT-LSHADE procedure was able to train
for more than twice the amount of steps, it managed to overtake the other procedures and
come out on top. The PBT procedure performed strong the first 6 000 steps, but was
eventually overtaken by the other procedures.

Similarly to the results obtained from using the MLP neural architecture (Figure 4.8),
it became evident that linear population decay over time hurt the predictive performance
of the PBT-LSHADE procedure when compared to the PBT-SHADE procedure. Further-
more, it was clear that overfitting occurred with this architecture as well, as seen in the
range from 17 000 to the end, both in the CCE validation curve and the final gap between
the train CCE score and validation CCE score. However, overfitting did not seem to hurt
predictive performance when inspecting the F1 and accuracy metric. When that has been
said, it was noticed that the difference between the training scores and validation scores
became greater after the 10 000 step mark.

4.4 Time complexity

For neural network hyperparameter adaption, time complexity describes the relation be-
tween the number of steps (or epochs), the population size and time. In order to say some-
thing about the time complexity of the PBT, PBT-DE, PBT-SHADE and PBT-LSHADE
procedures, time was measured by registering the amount of time taken to perform three
distinct tasks for each member in each generation. The tasks performed by each member

70 Chapter 4. Results

CCE

F1 Score

Accuracy

0.200
0.240
0.280
0.320

tr
ai
n

0.200
0.240
0.280
0.320

0.300
0.320
0.340

va
lid

0.300
0.320
0.340

0.330
0.345
0.360
0.375

te
st

0.330
0.345
0.360
0.375

0.870
0.885
0.900
0.915

tr
ai
n

0.870
0.885
0.900
0.915

0.864
0.872
0.880

va
lid

0.864
0.872
0.880

0.856
0.864
0.872

te
st

0.856
0.864
0.872

88.50
90.00
91.50

tr
ai
n

88.50
90.00
91.50

87.60
88.20
88.80
89.40

va
lid

87.60
88.20
88.80
89.40

0 2000 4000 6000 8000 10000
86.40
87.00
87.60
88.20

te
st

15000 20000
86.40
87.00
87.60
88.20

PBT PBT-DE PBT-SHADE PBT-LSHADE

steps

Figure 4.8: Line chart comparisons between the procedures from the average of 50 consecutive
tests performed on the Fashion-MNIST dataset using MLP.

4.4. Time complexity 71

Table 4.5: Performance Statistics in CCE Score

Dataset Model Set Algorithm median mean std min max

MNIST

MLP

train

PBT 0.0219 0.0226 0.0052 0.0139 0.0416
PBT-DE 0.0155 0.0160 0.0054 0.0066 0.0308
PBT-SHADE 0.0126 0.0134 0.0048 0.0051 0.0262
PBT-LSHADE 0.0096 0.0089 0.0065 0.0005 0.0225

valid

PBT 0.0790 0.0795 0.0031 0.0729 0.0898
PBT-DE 0.0723 0.0727 0.0036 0.0649 0.0792
PBT-SHADE 0.0712 0.0719 0.0041 0.0657 0.0865
PBT-LSHADE 0.0743 0.0819 0.0169 0.0622 0.1442

test

PBT 0.0699 0.0706 0.0034 0.0639 0.0843
PBT-DE 0.0654 0.0655 0.0032 0.0586 0.0729
PBT-SHADE 0.0641 0.0647 0.0040 0.0578 0.0792
PBT-LSHADE 0.0670 0.0730 0.0155 0.0552 0.1331

LeNet-5

train

PBT 0.0114 0.0111 0.0031 0.0050 0.0233
PBT-DE 0.0085 0.0095 0.0042 0.0051 0.0264
PBT-SHADE 0.0087 0.0086 0.0025 0.0041 0.0165
PBT-LSHADE 0.0079 0.0073 0.0039 0.0003 0.0142

valid

PBT 0.0330 0.0329 0.0020 0.0287 0.0410
PBT-DE 0.0301 0.0304 0.0026 0.0262 0.0408
PBT-SHADE 0.0296 0.0294 0.0024 0.0251 0.0358
PBT-LSHADE 0.0309 0.0343 0.0094 0.0263 0.0654

test

PBT 0.0269 0.0271 0.0023 0.0235 0.0334
PBT-DE 0.0253 0.0258 0.0030 0.0219 0.0401
PBT-SHADE 0.0251 0.0257 0.0026 0.0206 0.0331
PBT-LSHADE 0.0263 0.0294 0.0093 0.0213 0.0627

Fashion
MNIST

MLP

train

PBT 0.2588 0.2623 0.0155 0.2314 0.3022
PBT-DE 0.2326 0.2346 0.0121 0.2149 0.2607
PBT-SHADE 0.2292 0.2288 0.0136 0.2014 0.2597
PBT-LSHADE 0.2205 0.2190 0.0234 0.1616 0.2590

valid

PBT 0.3118 0.3142 0.0079 0.3020 0.3366
PBT-DE 0.3015 0.3026 0.0049 0.2933 0.3133
PBT-SHADE 0.2995 0.2997 0.0053 0.2885 0.3099
PBT-LSHADE 0.2985 0.3030 0.0183 0.2859 0.3954

test

PBT 0.3395 0.3420 0.0094 0.3234 0.3675
PBT-DE 0.3276 0.3291 0.0054 0.3194 0.3413
PBT-SHADE 0.3243 0.3255 0.0051 0.3142 0.3356
PBT-LSHADE 0.3263 0.3299 0.0188 0.3138 0.4100

LeNet-5

train

PBT 0.1973 0.1968 0.0117 0.1711 0.2244
PBT-DE 0.1928 0.1925 0.0171 0.1520 0.2364
PBT-SHADE 0.1790 0.1775 0.0132 0.1388 0.1973
PBT-LSHADE 0.1659 0.1655 0.0206 0.1257 0.2063

valid

PBT 0.2661 0.2664 0.0068 0.2520 0.2854
PBT-DE 0.2616 0.2633 0.0067 0.2517 0.2824
PBT-SHADE 0.2611 0.2608 0.0059 0.2470 0.2781
PBT-LSHADE 0.2604 0.2700 0.0231 0.2476 0.3540

test

PBT 0.2766 0.2776 0.0082 0.2647 0.3038
PBT-DE 0.2745 0.2752 0.0083 0.2601 0.2955
PBT-SHADE 0.2698 0.2703 0.0067 0.2569 0.2819
PBT-LSHADE 0.2710 0.2800 0.0257 0.2534 0.3712

Note. The best values are highlighted in bold.

72 Chapter 4. Results

Table 4.6: Performance Statistics in F1 Score

Dataset Model Set Algorithm median mean std min max

MNIST

MLP

train

PBT 0.9932 0.9929 0.0019 0.9854 0.9957
PBT-DE 0.9948 0.9945 0.0019 0.9890 0.9972
PBT-SHADE 0.9962 0.9955 0.0017 0.9907 0.9974
PBT-LSHADE 0.9971 0.9967 0.0015 0.9921 0.9980

valid

PBT 0.9730 0.9729 0.0012 0.9690 0.9755
PBT-DE 0.9760 0.9759 0.0012 0.9714 0.9781
PBT-SHADE 0.9762 0.9762 0.0007 0.9745 0.9779
PBT-LSHADE 0.9764 0.9763 0.0010 0.9740 0.9795

test

PBT 0.9754 0.9751 0.0014 0.9708 0.9773
PBT-DE 0.9771 0.9771 0.0012 0.9749 0.9807
PBT-SHADE 0.9774 0.9774 0.0010 0.9754 0.9793
PBT-LSHADE 0.9771 0.9771 0.0013 0.9731 0.9798

LeNet-5

train

PBT 0.9953 0.9952 0.0010 0.9917 0.9968
PBT-DE 0.9959 0.9954 0.0016 0.9881 0.9970
PBT-SHADE 0.9959 0.9959 0.0009 0.9930 0.9973
PBT-LSHADE 0.9965 0.9963 0.0013 0.9933 0.9980

valid

PBT 0.9873 0.9873 0.0008 0.9856 0.9889
PBT-DE 0.9884 0.9884 0.0008 0.9862 0.9901
PBT-SHADE 0.9889 0.9889 0.0005 0.9876 0.9901
PBT-LSHADE 0.9885 0.9884 0.0009 0.9857 0.9898

test

PBT 0.9892 0.9893 0.0007 0.9876 0.9908
PBT-DE 0.9899 0.9900 0.0009 0.9869 0.9915
PBT-SHADE 0.9901 0.9900 0.0008 0.9877 0.9916
PBT-LSHADE 0.9899 0.9897 0.0011 0.9871 0.9919

Fashion
MNIST

MLP

train

PBT 0.8972 0.8964 0.0056 0.8827 0.9094
PBT-DE 0.9073 0.9073 0.0046 0.8971 0.9174
PBT-SHADE 0.9094 0.9094 0.0055 0.8953 0.9208
PBT-LSHADE 0.9107 0.9111 0.0097 0.8949 0.9324

valid

PBT 0.8754 0.8745 0.0034 0.8647 0.8813
PBT-DE 0.8804 0.8800 0.0022 0.8757 0.8840
PBT-SHADE 0.8814 0.8815 0.0023 0.8766 0.8867
PBT-LSHADE 0.8821 0.8820 0.0036 0.8691 0.8876

test

PBT 0.8646 0.8641 0.0034 0.8529 0.8702
PBT-DE 0.8692 0.8689 0.0026 0.8613 0.8732
PBT-SHADE 0.8709 0.8708 0.0023 0.8661 0.8753
PBT-LSHADE 0.8725 0.8720 0.0037 0.8600 0.8799

LeNet-5

train

PBT 0.9195 0.9202 0.0048 0.9097 0.9314
PBT-DE 0.9222 0.9226 0.0068 0.9069 0.9379
PBT-SHADE 0.9284 0.9289 0.0057 0.9186 0.9458
PBT-LSHADE 0.9328 0.9327 0.0082 0.9175 0.9476

valid

PBT 0.8933 0.8933 0.0036 0.8848 0.9011
PBT-DE 0.8955 0.8951 0.0025 0.8877 0.8995
PBT-SHADE 0.8973 0.8976 0.0020 0.8945 0.9024
PBT-LSHADE 0.8981 0.8978 0.0036 0.8873 0.9028

test

PBT 0.8895 0.8891 0.0039 0.8783 0.8976
PBT-DE 0.8908 0.8901 0.0035 0.8808 0.8973
PBT-SHADE 0.8925 0.8926 0.0036 0.8832 0.8992
PBT-LSHADE 0.8945 0.8936 0.0049 0.8796 0.9023

Note. The best values are highlighted in bold.

4.4. Time complexity 73

Table 4.7: Performance Statistics in Accuracy

Dataset Model Set Algorithm median mean std min max

MNIST

MLP

train

PBT 99.550 99.520 0.1713 98.825 99.769
PBT-DE 99.692 99.670 0.1777 99.170 99.929
PBT-SHADE 99.823 99.766 0.1577 99.315 99.951
PBT-LSHADE 99.909 99.871 0.1427 99.449 100.0

valid

PBT 97.771 97.758 0.1083 97.402 98.010
PBT-DE 98.013 98.008 0.1025 97.672 98.202
PBT-SHADE 98.040 98.037 0.0700 97.862 98.174
PBT-LSHADE 98.042 98.043 0.0936 97.833 98.363

test

PBT 97.870 97.853 0.1188 97.502 98.069
PBT-DE 98.044 98.038 0.1058 97.840 98.338
PBT-SHADE 98.069 98.063 0.0826 97.900 98.238
PBT-LSHADE 98.049 98.042 0.1177 97.651 98.308

LeNet-5

train

PBT 99.747 99.737 0.0956 99.425 99.900
PBT-DE 99.799 99.760 0.1509 99.084 99.898
PBT-SHADE 99.800 99.800 0.0813 99.543 99.925
PBT-LSHADE 99.858 99.840 0.1164 99.570 99.994

valid

PBT 99.074 99.070 0.0646 98.935 99.194
PBT-DE 99.158 99.157 0.0679 98.931 99.272
PBT-SHADE 99.186 99.191 0.0520 99.111 99.318
PBT-LSHADE 99.158 99.145 0.0824 98.921 99.262

test

PBT 99.124 99.126 0.0635 98.975 99.254
PBT-DE 99.194 99.194 0.0727 98.915 99.333
PBT-SHADE 99.199 99.188 0.0694 99.005 99.323
PBT-LSHADE 99.174 99.165 0.1021 98.955 99.363

Fashion
MNIST

MLP

train

PBT 90.525 90.430 0.5285 89.125 91.681
PBT-DE 91.488 91.455 0.4364 90.464 92.386
PBT-SHADE 91.641 91.655 0.5112 90.332 92.686
PBT-LSHADE 91.877 91.899 0.9001 90.417 93.883

valid

PBT 88.699 88.631 0.2940 87.759 89.172
PBT-DE 89.172 89.153 0.2092 88.706 89.480
PBT-SHADE 89.238 89.272 0.2328 88.753 89.801
PBT-LSHADE 89.369 89.358 0.3305 88.210 89.867

test

PBT 87.749 87.706 0.3116 86.644 88.286
PBT-DE 88.177 88.153 0.2304 87.629 88.625
PBT-SHADE 88.361 88.325 0.2214 87.858 88.754
PBT-LSHADE 88.505 88.454 0.3381 87.520 89.092

LeNet-5

train

PBT 92.622 92.681 0.4450 91.650 93.706
PBT-DE 92.859 92.893 0.6430 91.398 94.360
PBT-SHADE 93.406 93.483 0.5282 92.624 95.051
PBT-LSHADE 93.920 93.924 0.7707 92.474 95.384

valid

PBT 90.486 90.484 0.3307 89.749 91.252
PBT-DE 90.654 90.640 0.2504 89.954 91.060
PBT-SHADE 90.854 90.892 0.2044 90.569 91.335
PBT-LSHADE 90.923 90.886 0.3501 89.916 91.402

test

PBT 90.053 90.004 0.3459 89.072 90.695
PBT-DE 90.147 90.087 0.3467 89.301 90.685
PBT-SHADE 90.336 90.319 0.3388 89.341 90.904
PBT-LSHADE 90.496 90.388 0.4364 89.112 91.083

Note. The best values are highlighted in bold.

74 Chapter 4. Results

0.15

0.20

train_cce

0.25

0.30
eval_cce

0.275

0.300

test_cce

0.92

0.94

train_f1

0.89

0.90

eval_f1

0.88

0.90

test_f1

PBTPBT-DEPBT-SHADEPBT-LSHADE

92.5

95.0

train_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

90

91

eval_acc

PBTPBT-DEPBT-SHADEPBT-LSHADE

89
90
91

test_acc

PBT PBT-DE PBT-SHADE PBT-LSHADE

Figure 4.9: Box plot comparisons between the procedures from 50 consecutive tests performed
with the Fashion-MNIST dataset using LeNet-5.

was categorized as training, testing and evolving.

The training-task is the procedure where the neural network is training with forward
and backward propagation. For PBT, PBT-DE, PBT-SHADE and PBT-LSHADE, this
included the step. and eval-function that preceded the generation of new hyperparameters.
Next, the evolving-task consists of the operations conducted in order to generate new trial
members. For the PBT procedure, the evolve task includes the exploit- and explore
method. For the PBT-DE, PBT-SHADE and PBT-LSHADE procedures, the evolve task
is defined by the operations required to generate new trial hyperparameters as well as
compare the parent and trial with RFA. Lastly, the testing-task is whenever the test
dataset X (test) is used to measure how members are performing. This is an optional
operation that has no effect on the outcome of the procedures, but it was included as it
can be subtracted from the total time in order to obtain an approximate total if no testing
was conducted.

The time for all three tasks at each step is visualized in Figure 4.11 for the Fashion-
MNIST dataset with the LeNet-5 neural network architecture. Each data point represents
the step-wise average of the 50 tests that were performed. For convenience, the total time
is also included at the bottom of the figure.

In Figure 4.11, the PBT, PBT-DE and PBT-SHADE procedures display similar to-
tal time. Moreover, it is clear that the PBT-LSHADE procedure benefit from reducing
the number of members over time. When considering the predictive performance mea-
surements that PBT-LSHADE provided the first 10 000 steps as shown and discussed in
earlier results, the procedure showed capabilities of providing competitive results with less
operations when compared to the other procedures tested in this thesis.

Except from the PBT-LSHADE procedure that showed linear time decay across all
tasks, there were some noticeable differences found in the evolve task. Especially the PBT
procedure, which spent almost no time performing exploitation and exploration when
compared to the DE-based procedures. Of the four procedures, PBT-SHADE spent the

4.4. Time complexity 75

CCE

F1 Score

Accuracy

0.150
0.200
0.250
0.300

tr
ai
n

0.150
0.200
0.250
0.300

0.260
0.280
0.300
0.320

va
lid

0.260
0.280
0.300
0.320

0.280
0.300
0.320

te
st

0.280
0.300
0.320

0.880
0.900
0.920
0.940

tr
ai
n

0.880
0.900
0.920
0.940

0.872
0.880
0.888
0.896

va
lid

0.872
0.880
0.888
0.896

0.872
0.880
0.888
0.896

te
st

0.872
0.880
0.888
0.896

90.00
92.00
94.00

tr
ai
n

90.00
92.00
94.00

88.80
89.60
90.40

va
lid

88.80
89.60
90.40

0 2000 4000 6000 8000 10000
88.00
88.80
89.60
90.40

te
st

15000 20000
88.00
88.80
89.60
90.40

PBT PBT-DE PBT-SHADE PBT-LSHADE

steps

Figure 4.10: Line chart comparisons between the procedures from the average of 50 consecutive
tests performed on the Fashion-MNIST dataset using LeNet-5.

76 Chapter 4. Results

6

12

18

24

6

12

18

24

average training time for each member (in seconds)

2

4

6

8

2

4

6

8

average testing time for each member (in seconds)

0.0

0.8

1.6

2.4

0.0

0.8

1.6

2.4

average evolving time for each member (in seconds)

0 2000 4000 6000 8000 10000

8

16

24

32

15000 20000

8

16

24

32

average total generation time for each member (in seconds)

PBT PBT-DE PBT-SHADE PBT-LSHADE
steps

Figure 4.11: A comparison between the procedures on the member-wise average amount of time
spent for each step on training, testing and evolving on the LeNet-5 neural network architecture.

4.5. Hyperparameter Schedules 77

most time when generating new trial members and performing the fitness comparisons
with RFA.

Another notion is the fact that there was a slight difference between the PBT procedure
and the PBT-DE and PBT-SHADE procedures in training and testing time. The training
time can be explained by the difference step sizes, as the PBT procedure trained for 250
steps with the X (train), and performed av full evaluation on X (valid), while the PBT-DE,
PBT-SHADE and PBT-LSHADE procedures performed 242 steps on X (train) and a full
evaluation on X (valid). The remaining 8 training steps were performed in the RFA method,
which would also explain larger evolution time.

4.5 Hyperparameter Schedules

From the perspective of the neural network optimization algorithm, and except from neural
network state sharing conducted in the PBT procedure, the only difference between the
PBT, PBT-DE, PBT-SHADE and PBT-LSHADE procedures is the final hyperparameter
schedules that each procedure generates. In Figure 4.12, the hyperparameter schedules
for the Fashion-MNIST dataset using the LeNet-5 neural network architecture, divided by
each procedure, are presented. Because there was a lot of result data, the mean is displayed
in strong, bold color, as well as the standard deviation which is displayed as dashed lines
added and subtracted from the mean. Like earlier figures, data is compressed for the
additional generations generated with PBT-LSHADE after 10 000 steps. It is also worth
mentioning that we will not include hyperparameter schedules from the other experiments
as they are very similar.

It is well known that reducing the learning rate over time typically lead to better results
when training a neural network. In Figure 4.12, all four procedures generated learning
rate schedules that are in line with that notion. While it is clear that each procedure
generated similar-looking learning rate schedules, the PBT procedure generated learning
rate schedules that deviated less from the mean when compared to the other procedures,
meaning it typically found consistently similar schedules across multiple runs. In addition,
the first learning rate values generated by the PBT procedure were approximately close to
0.08, while the learning rate generated by the PBT-DE, PBT-SHADE and PBT-LSHADE
procedures typically started around 0.05.

In Figure 4.12, it is evident that the momentum schedules generated by each procedure
varied more than the learning rate schedules, especially for the PBT-DE, PBT-SHADE and
PBT-LSHADE procedures. There is also a difference in trend, where the PBT procedure
generally and gradually reduced the momentum mean from 0.88 to 0.81, where most values
oscillated between 0.80 and 0.85, providing the most stable schedules. On the other hand,
PBT-DE procedure generated more varying momentum values that oscillate with greater
power, where the mean was increasing slightly from 0.83 to 0.87. Lastly, both the PBT-
SHADE and PBT-LSHADE procedures produced similar momentum schedules, where the
momentum mean generally increased from 0.83-0.84 to 0.89-0.90 for the first 10 000 steps,
and then slowly dipped down to 0.88 for the last steps generated by the PBT-LSHADE
procedure. It is also clear that the momentum values generated by the PBT-DE procedure
oscillated the most for the first steps.

Lastly, Figure 4.12 displays the trends derived from the weight decay hyperparameter
schedules. When comparing the weight decay schedules to the other hyperparameters
schedules, regardless of which procedure in question, there was not a clear indication

78 Chapter 4. Results

Learning Rate

0.03
0.05
0.08

Momentum

0.85
0.90
0.95

Weight Decay

2.5

5.0

7.5

×10−4

0.03
0.05
0.08

0.85
0.90
0.95

2.5

5.0

7.5

×10−4

0.03
0.05
0.08

0.85
0.90
0.95

2.5

5.0

7.5

×10−4

0.03
0.05
0.08

0.85
0.90
0.95

2.5

5.0

7.5

×10−4

PBT PBT-DE PBT-SHADE PBT-LSHADE
steps

Figure 4.12: Trends derived from hyperparameter schedules generated for the Fashion-MNIST
dataset using the LeNet-5 neural network architecture. The brightest color indicate minimum and
maximum values, the middle color indicate the standard deviation subtracted from or added to
the mean, and the darkest, strongest color indicate the mean.

4.6. Impact of Population Size 79

to how this type of hyperparameter generally evolves in conjunction with the learning
rate and momentum hyperparameters. There was some indication that the weight decay
schedules generated by the PBT procedure are generally decreasing, and there was a
similar indication found for the PBT-LSHADE procedure.

4.6 Impact of Population Size

When testing PBT, PBT-DE, PBT-SHADE and PBT-LSHADE, several parameters re-
quired by the procedures needed to be defined, and there were some uncertainty to which
ranges of values that were appropriate for the tasks at hand. However, when examining
current literature, some of these parameters were given more clarification. More precisely,
the end-criterion, i.e. the number of cumulative steps a procedure should perform, as well
as the step sizes used in the experimental testing, was inspired by the work conducted
in another PBT-related study [143]. Furthermore, and as stated earlier, the parameters
by the PBT and DE-based method were determined by their default values suggested by
the original authors. What remains is the population size, N , which was decided to be
N = 30 for all experiments.

However, it is common knowledge in evolutionary literature that population size N
can play a large role in the final performance of the optimizer, both in terms of time
complexity and predictive performance. Therefore, it was decided to perform additional
tests with the PBT and PBT-SHADE procedures on the Fashion-MNIST dataset with the
LeNet-5 neural network architecture on a range of population sizes. Figure 4.13 displays
the results obtained from testing a population of 10, 20, 30, 40, 50, and 60 initial members.
The experiments were conducted five times for each population size for 10 000 steps. The
results shown is the average of the tests.

In Figure 4.13, it is clear that each metric follow a similar trend, and it is evident
that PBT-SHADE achieved the highest predictive performance on all metrics for each
population size. Based on these results, it seems that PBT did not obtain a significant
benefit from higher population sizes, and peaks around 30 ≤ N ≤ 40 on all metrics. On
the other hand, the PBT-SHADE procedure indicated a gradual increase in predictive
performance on all metrics with the number of members in the population, which lead to
an increase in the performance gap between the average PBT and PBT-SHADE.

80 Chapter 4. Results

0.260

0.270

0.280

C
C
E

sc
or
e

0.885

0.890

0.895

F
1
sc
or
e

10 20 30 40 50 60
population size

89.50

90.00

90.50

A
cc
ur
ac
y

PBT PBT-SHADE

Figure 4.13: A bar plot of different population sizes and the acquired F1 test scores, obtained with
the PBT and PBT-SHADE procedures on the Fashion-MNIST dataset with the LeNet-5 neural
network architecture.

Chapter 5

Discussion

This chapter presents a concise summary of the principal implications of the obtained
results and findings. In Section 5.1, the research questions are restated and provided an
answer based on the methods proposed in Chapter 3 and the results presented in Chapter
4. Next, the results will be put in context with the state-of-the-art results achieved on
the MNIST and Fashion-MNIST dataset in Section 5.2. Lastly, we will acknowledge the
limitations and challenges of this thesis and propose recommendations for future research
in Section 5.3.

5.1 Research Questions

This section restates and answers each of the research questions. The answers are based
of the work that has been conducted by this thesis.

5.1.1 RQ1

The main research question of this thesis regards how differential evolution heuristics can
be incorporated into population-based training for neural networks (RQ1). Based on the
sparse studies on PBT (given its recency), as well as the comprehensive research avail-
able for DE, we have proposed three novel procedures based of the initial PBT procedure
[84], namely PBT-DE, PBT-SHADE and PBT-LSHADE, that successfully incorporate
heuristics from both the original DE procedure [179], as well the adaptive and more recent
DE extensions, SHADE [187] and L-SHADE [188]. In order to incorporate the heuristics
without major modifications, members were processed on a per generation basis while
trained and adapted individually using a purpose-built distributed queuing system de-
signed specifically for training multiple neural networks in parallel. The system ensured
that the computing speed of different processing devices did not affect the individual mem-
ber progression. For each proposed procedure, the inherited DE mutation, crossover and
selection schemes have replaced the hyperparameter exploitation and exploration method
used by PBT in order to generate better members. In order to selection which member
that gets to pass on their genome, fitness was measured in the F1 metric using a novel
function for assessing the predictive model performance on a subset of the training and
validation samples, named RFA (Algorithm 13).

81

82 Chapter 5. Discussion

5.1.2 RQ1.1

The second research question, RQ1.1, main interest is the potential predictive performance
difference between the PBT procedure and any procedures that incorporate DE heuristics
into PBT. More specifically, in order to answer RQ1.1, four experiments were carried out
using the MNIST and Fashion-MNIST datasets and the MLP and LeNet-5 neural network
architectures. Each procedure were tested using an initial population of 30 members. The
obtained results were tested using the Welch’s ANOVA statistical significance test, followed
up with a Games-Howel post-hoc analysis in order to determine if the results obtained
from running the procedures are statistically and significantly differential. The test showed
that for all cases, there was a statistical significant difference between the PBT procedure
and at least one of the PBT-DE, PBT-SHADE or PBT-LSHADE procedures. Based of
these findings, more accurate observations could be made from the predictive performance
comparison analysis conducted in Section 4.3, and it was observed that for all tested
cases, the PBT procedure was outperformed by the PBT-DE, PBT-SHADE and PBT-
LSHADE procedures on the F1 score. Among the proposed procedures, PBT-SHADE
and PBT-LSHADE obtained the best results on average, and PBT-SHADE showed to
be most consistent. With the same budget, the PBT-LSHADE procedure managed to
increase the number of epochs to more than double the number of epochs performed by
the other procedures, given the reduction in time complexity by the linear population
decay. Moreover, the PBT-LSHADE procedure showed comparable results to the other
procedures with a smaller budget that allowed up to 10 000 steps. With more than 10 000
steps, the results obtained by the PBT-LSHADE procedure increased in F1 score and
accuracy, yet showed signs of overfitting as the procedure processed more of the same
samples in the training set. The findings suggest that the benefit of the PBT-LSHADE
procedure is given by its time complexity, and provides good balance between time and
predictive performance, especially for smaller budgets that consists of just a few processing
devices. All in all, based on the results obtained, we can with 99% certainty state that DE
heuristics have statistically and significantly improved upon the predictive performance of
the PBT procedure.

5.1.3 RQ1.2

The third and last research question regards how the number of members in the ini-
tial population, N , affect the predictive performance of the PBT procedure with DE
heuristics when compared to the original PBT procedure. In this case, the proposed
PBT-SHADE procedure was tested against the PBT procedure with a set of population
sizes, N ∼ {10, 20, 30, 40, 50, 60}. The results shown in Section 4.6 suggested that the
PBT-SHADE procedure benefit from higher population sizes, while the PBT procedure
gave inconclusive results that failed to determine whether it benefit from more members.
When comparing the two procedures, the results suggested that the PBT-SHADE proce-
dure outperformed the PBT procedure on all population sizes. The results also indicated
that the performance difference increased with larger population sizes. It is important to
note that population sizes did not exceed N = 60, and there is a possibility that larger
population sizes would have given more clarity or introduced different trends. However,
larger population sizes drastically increase the time complexity, so there is a point to be
made about the impracticability that comes with large population sizes. When the amount
of processing devices is equal the population size, time becomes a smaller issue, as the

5.2. Comparing to Other Methods 83

most demanding computation can be distributed among the devices for both the PBT and
PBT-SHADE procedure. Although, obtaining a large number of processing devices might
not be viable for smaller research teams.

5.2 Comparing to Other Methods

In literature, performances on the MNIST and Fashion-MNIST datasets for classification
are often reported in accuracy across different experimental setups. From Table 4.7, the
findings show that the best score obtained on the MNIST and Fashion-MNIST datasets
where 99.363% and 91.083% accuracy, respectively, on the LeNet-5 architecture with no
dataset augmentations other than normalization and zero-padding. Keep in mind, the
goal of this thesis was never to compete with the state of the art on image classification.
No extensive data augmentation techniques such as like scaling, rotation or other trans-
formations have been conducted, which have empirically demonstrated to improve results
considerably [30, 89, 216]. Furthermore, deeper and more complex network architectures
with more free parameters that require considerable more time to train [216] have not been
explored either. It is also important to mention that 10 000 of the existing 60 000 training
samples from both the MNIST and Fashion-MNIST dataset were reserved for validation,
something that is not necessary when model validation is not required. Regardless, here
are some of the recent results obtained on the MNIST and Fashion-MNIST datasets.

Lorenzo et al. [123] applied PSO to deep neural networks. PSO is already covered in
some detail in Section 2.2.5. The hyperparameter optimization algorithm is applied on the
SimpleNet-1 network architecture and obtains an accuracy of 98.92% using 16 particles
(i.e. population size) and 10-fold cross validation on the MNIST dataset. In addition, the
LeNet-4 network architecture was also tested, and the results show an accuracy of 99.34%
on the MNIST dataset using 10-fold cross validation.

Wu [206] propose a general neural network framework which they call ProdSumNet,
and demonstrates that good accuracy on the MNIST and Fashion-MNIST dataset can be
achieved with a small number of trainable parameters. The results are obtained by apply-
ing the ProdSumNet framework to a custom LeNet-5 implementation which uses ReLU
activation and dropout layers, and achieve a 99.34% accuracy on the MNIST dataset, and
a 92.5% accuracy on the Fashion-MNIST dataset.

Sun et al. [182] propose a method for learning approximations to nonlinear dynamical
systems using DNN (NeuPDE). The network architecture used approximates the forward
integration of a first-order in time differential equation similar to ResNet and ODENet.
When testing, no dataset augmentation was used other than normalization (similar to our
approach). The NeuPDE method achieves an accuracy of 99.49% on the MNIST dataset,
and an accuracy of 92.4% on the Fashion-MNIST dataset.

Ciregan et al. [30] propose a neural network architecture called Multi-column Deep
Neural Networks for Image Classification (MCDNN). The network is optimized using
Online Gradient Descent [24], and uses a learning rate decay schedule where the initial
learning rate start at 0.001 and is multiplied by 0.993 every epoch. In addition, training
samples are augmented with random translation by a maximum factor of 5% of the image
height and width. The results show that MCDNN achieves 99.77% accuracy on the MNIST
dataset.

Kabir et al. [89] propose SpinalNet – a neural network architecture that is heavily
inspired by the human somatosensory system in order to receive large data efficiently and

84 Chapter 5. Discussion

to achieve better performance. The network architecture consists of an input row, an
intermediate row, and an output row. The intermediate row consists of multiple hidden
layers, where each layer receives a part of the input. Each layer except the input layer
receives the output from the preceding layer. Finally, the last layer, output layer, combines
the weighted outputs of the hidden neurons in the intermediate row. When combined
with VGG-5, SpinalNet achieves a accuracy of 99.72% on the MNIST dataset, and 94.68%
accuracy on the Fashion-MNIST accuracy. Both datasets are augmented with random
perspective and random rotation between 0 to 10 degrees.

Hirata and Takahashi [74] propose a neural network architecture which they call En-
sNet, which is composed using a CNN and multiple fully connected sub-networks. In the
model, last convolutional layer in the CNN distributes the feature maps it generates into
the disjoint subsets. Each subnet is trained independently in order to predict the class
label from the subset of assigned feature-maps. The output of the network is determines
by majority vote of the CNN and the sub-networks. EnsNet obtains 99.84% accuracy on
the MNIST dataset, and 95.30% accuracy on the Fashion-MNIST dataset.

Zhong et al. [216] propose a Random Erasing data augmentation method which dur-
ing training, randomly selects rectangle regions in images and changes its pixels with
random values. The data augmentation method is carried out in order to reduce over-
fitting as well as making the model more robust to occlusion. The method is tested with
the ResNet, Wide Residual Networks (WRN) and ResNeXt neural network architectures,
and obtains a maximum performance of 96.35% accuracy on the Fashion-MNIST dataset
with the WRN-28-10 architecture configuration. Harris et al. [68] propose a different data
augmentation method called FMix, which uses a binary mask obtained by using a thresh-
old of low frequency images sampled from Fourier space. The FMix method used with
the ResNet nerual network architecture achieves an accuracy of 96.36% on the Fashion-
MNIST dataset. Lastly, Jayasundara et al. [87] propose a data augmentation technique
which generates entirely new training samples from existing dataset samples. The new
samples attempts to maintain the same variation found in human handwriting by adding
random controlled noise. In addition, reconstruction is improved by combining several
loss functions. The technique demonstrates an accuracy of 99.71% on the MNIST dataset
and 93.71% on the Fashion-MNIST dataset, using the CapsNet [160] neural network ar-
chitecture.

Byerly et al. [23] propose a convolutional neural network architecture that extracts
features with different receptive fields and abstractions by allowing the network design to
branch out after certain convolutions. Each branch transforms the output filters into two
homogeneous vector capsules, referred to as filter capsules, which are merged later using
a special merge strategy. The training samples are augmented using random rotation,
random translation in both directions, random horizontal scaling and random erasure
similar to the approach proposed by Zhong et al. [216]. The network is trained for 300
epochs using the Adam [97] optimizer with a initial learning rate of 0.001, which is decayed
every epoch by a factor of 0.98. The results show an accuracy of 99.84% on the MNIST
dataset – the highest accuracy on MNIST that we were able to observe in literature.

5.3 Challenges and Limitations

In this section, different challenges and limitations are pointed out and discussed.

5.3. Challenges and Limitations 85

5.3.1 Synchronous vs. Asynchronous

A lot of thought was given on how to carry out the comparative tests and analysis between
the PBT procedure and the proposed procedures. The problem was that training and
adaption in PBT is carried out individually by each member, while DE heuristics are
carried out generation-wise. Eventually, a decision was made to incorporate heuristics
with as few alterations as possible, seeing that other studies had faced similar issues [218].
This lead to PBT being implemented using the same distributed queuing system used by
the proposed procedures, leaving only the method that trains and adapts members up for
comparison. This allowed for fair and unbiased comparisons to be made on the procedures
across generations. In other words, it was ensured that the only difference between the
procedures was how new members were generated at each step. If PBT was implemented
purely asynchronously, other factors such as variance in processor computing speed could
have effected on the final outcome. For the sake of testing consistency and repeatability,
the processing devices should only affect the time it takes to run the procedures, not the
final result. Enforcing synchronization is not exclusive to this thesis; other PBT-related
studies [47, 218] have proposed synchronized variations of PBT, using approaches such as
a distributed queuing system similar to ours to efficiently carry out the operations on each
member.

5.3.2 Knowledge About the Hyperparameter Search Space

There is also some things to be said about the assumptions of how much knowledge
humans should have about the hyperparameter search space. Traditionally, humans have
performed hyperparameter tuning manually be sequentially adjusting the hyperparameter
configuration until when the result is determined to be good enough for the task at hand.
The manual, rule-of-thumb method, as well as semi-automatic methods such as grid search,
requires some form of pre-established knowledge about good hyperparameter ranges in the
search space. Even fully automatic hyperparameter optimization methods [17, 172, 116,
125, 145, 123, 84, 61] required some knowledge about where in the search space that good
hyperparameter values might reside. Methods that completely to remove the user from
the optimization process is few and far between [63].

In case of the PBT procedure and the proposed procedures, initial points are deter-
mined by sampling values from a uniform distribution within the range of lower and upper
boundaries which must be determined by the user. For all experiments, these boundaries
were selected based on initial testing and current knowledge about the hyperparameter
search space. When different ranges were tested, it was made clear how important it
was to select appropriate bounds for each hyperparameter type, suggesting that poorly
defined bounds will lead to worse predictive performance. Given the importance of these
parameters, it was ensured to explicitly specify the upper and lower boundaries for each
hyperparameter in this thesis so that each test is repeatable for future research.

5.3.3 Regulating Deep Networks

Although larger neural networks have demonstrated empirically to outperform human
performance on difficult tasks [112, 186], overfitting, i.e. high generalization error, still
remains as one of the fundamental issues of deep networks [161]. In order to prevent over-
fitting, the weight decay regularization technique was used when optimizing the network

86 Chapter 5. Discussion

model in hope that the proposed procedures would be able to generate a good regular-
ization schedule (see Section 3.4.3). Based on the results, it seems that weight decay
might not have prevented overfitting entirely, something the was especially noticeable in
the results obtained by PBT-LSHADE.

There have been suggestions for other regularization techniques that attempt to reduce
the generalization error. A commonly used technique that is often included in machine
learning packages [146, 1] is early stopping, which is a procedure that monitors the evalu-
ation score and decides when it is time to stop the training process (preferably just before
any overfitting occurs). This technique was not used in order to ensure each procedure
was tested using up all the available budget.

Another common technique is to insert dropout layers in the network, which randomly
deactivates a sample of neurons in the network. The deactivation has two effects: (1)
from the point of a deactivated neuron, any activation of downstream neurons will be
temporarily disabled in the forward pass, and (2) the deactivated neuron will not receive
any weight update in the backward pass. However, dropout layers were not used in this
thesis as it was decided to not alter the pre-established neural network architectures.

Another regularization technique is to use data augmentation to reduce overfitting
[168] by increasing the number of training samples in order to accommodate for the in-
creased number of free trainable parameters provided by deeper networks. The only data
augmentation techniques used in this thesis were normalization and padding.

Although these techniques have shown to help reduce overfitting, Zhang et al. [212]
demonstrated that explicit regularization is not a solution for reducing generalization er-
ror, and by observing the hyperparameter trend results in Section 4.5, it is clear that each
tested procedure fails to find a good weight decay schedule. As of now, we might lack
control over how neural networks generalizes training samples, and tools such as regu-
larization techniques are still steps away from a perfect solutions that maintains perfect
balance between memorization and generalization.

5.4 Future Work

In this section, some recommendations for future research are made on the topic.

5.4.1 Asynchronous Implementation

A synchronized generation loop may not be the best solution in terms of time complexity
for future work that may investigate tuning of hyperparameters related to the neural
network architecture (e.g. number of hidden layers). For such cases, an asynchronous
optimization loop may be more appropriate, but this needs to be researched as there could
be multiple ways to implement asynchronous operations for PBT with DE heuristics. This
would also inherently impose modification on DE operations, which traditionally assume
an iterative and synchronized procedure loop.

5.4.2 Network Sharing

In the PBT procedure, one of the key operations exploitation is the sharing of partially
trained neural network models, i.e. model transfer among members in the population. So
far, few network sharing strategies based of PBT have been proposed. Stepleton et al.
[175] proposed an adapted PBT procedure which leaves the hyperparameters unchanged

5.4. Future Work 87

throughout the process. Instead, each set of network weights is allowed to ”jump” between
members while the hyperparameters remain in place, allowing hyperparameter schedules to
adapt implicitly. On the other hand, Van Moere [195] showed that for smaller datasets like
MNIST, weight copying may have a negative impact on the final accuracy, and concludes
that PBT may not even perform better than random search [17] on datasets of similar
size.

In this thesis, none of the proposed procedures implement network weight sharing.
Early on when developing the procedures, a similar network sharing strategy to the one
initially proposed was attempted by allowing the pbest member to share its modelMpbest

with the other members. The results of the initial testing of PBT-DE and PBT-SHADE
with network sharing indicated worse predictive performance when compared to the same
procedures without network sharing. Based on these early observations, it was concluded
that the implementation of network sharing did not benefit the predictive performance of
the final procedures, and that bad performance may have been caused by less diversity in
the member models, as more members became increasingly more similar. Less diversity
may tip off the balance between exploitation and exploration, making the procedures cover
less regions in the solution space Θ that could end up leading to a good model θ. However,
it is not clear how network sharing should be implemented for PBT with DE heuristics,
and we would like to encourage future studies to investigate potential network sharing
strategies.

5.4.3 Comparative Study

The results and analysis from Chapter 4 serve as comparative measures between the
original PBT procedure and the proposed procedures. Therefore, there is a need for a
complete comparative study between the proposed procedures and the state-of-the-art on
different application-based benchmarks in a controlled testing environment. The reason
for why a controlled comparative study is recommended is based on the challenging and
problematic aspects about making appropriate comparisons between different methods in
machine learning. Based on observation, research articles may sometimes leave out critical
implementation details on how the datasets are sampled, how the samples are augmented
and how the learning algorithms are implemented. There is also great variety in research
trends, techniques and challenges [214].

In order to compete against state-of-the-art methods, some recommendations will be
suggested. Based on existing literature as the ones mentioned in Section 5.2, it is clear
that combinations of different data augmentation techniques as well as using more complex
learning algorithms are commonly used approaches when testing methods against the
state-of-the-art [112, 186, 168]. Data augmentation seems to be especially important for
deeper neural networks [168]. Future work should also test whether the procedures are
able to successfully optimize network-specific parameters such as the number of hidden
layers, or regularization techniques such as the probability in dropout layers.

Chapter 6

Conclusions

This thesis has investigated three research problems. First (RQ1), how to improve upon
the initial PBT procedure by incorporating DE heuristics in order to improve exploration
of new hyperparameters. Second (RQ1.1), determine the performance difference between
the PBT procedure and the proposed procedures that implements DE heuristics, and third
(RQ1.2), find out how PBT and the proposed procedures scale with different population
sizes.

Three novel approaches for training and adapting multiple neural networks in parallel
based of the PBT method and incorporated with DE heuristics, were proposed in order
to answer RQ1. The first procedure proposed, named PBT-DE, is based of the initial DE
algorithm. The other proposed procedures were named PBT-SHADE and PBT-LSHADE,
and are inspired by adaptive DE extensions called SHADE and L-SHADE, respectively. In
addition, a distributed queuing system was designed specifically for this task, and allowed
for training and adapting each member in the population in parallel while keeping them
synchronized between each generation.

Four experiments were carried out using the MNIST and Fashion-MNIST datasets
and the MLP and the LeNet-5 neural network architectures in order to answer RQ1.1.
Each experiment was carried out in the setting where all procedures are processed using
a synchronized generation loop enclosing an asynchronous parallel training and adaption
loop. The result data was reported in three metrics: the CCE score, F1 score and accu-
racy, where the F1 score was used primarily for assessing the performance. The findings
demonstrated that the proposed procedures outperformed the PBT procedure in all ex-
periments with an initial population of 30 members. Of the proposed procedures, the
PBT-LSHADE procedure demonstrated the overall best scores, but the PBT-SHADE
procedure displayed competitive scores with greater consistency. The highest registered
scores were obtained by PBT-LSHADE, achieving an accuracy of 99.363% and 91.083%
on the MNIST and Fashion-MNIST datasets, respectively, using the LeNet-5 architecture
with no dataset augmentations other than normalization and zero-padding.

The PBT and PBT-SHADE procedure was tested using a range of additional popu-
lation sizes, (10, 20, 30, 40, 50, 60), on the Fashion-MNIST dataset using the LeNet-5 neu-
ral network architecture, in order to answer RQ1.2. The results demonstrate that the
PBT-SHADE procedure scales better with larger population sizes compared to the PBT
procedure, although additional testing of larger population sizes is suggested in order to
obtain the full picture.

While the results in Chapter 4 are promising, the experiments were evidently carried

89

90 Chapter 6. Conclusions

out using a distributed queuing system that is not present in the original implementa-
tion of PBT. The decision has been thoroughly discussed in Chapter 5, and is based of
the challenge of keeping fair comparison while promoting unbiased incorporation of DE
heuristics without major modification. Therefore, it is still unknown how PBT with DE
heuristics will perform in a truly asynchronous environment, and it is recommended that
future work should investigate this further.

The promising results are achieved without using any model transfer between partially
trained members. A similar network sharing strategy as the one suggested by PBT was
initially attempted for both PBT-DE and PBT-SHADE, but both versions demonstrated
poor predictive performance when compared to the same procedures without network
sharing. There may still exist a better way to share network states between members, so
future work in this area is highly recommended.

The successful improvements made to PBT means there could exist other modifications
that may improve the procedure even further. Current findings are limited to image
classification on the relatively old MNIST dataset. Therefore, future research is highly
encouraged for more recent, real-life tasks that span different domain-based applications.
Especially using larger and more complex neural networks, as well as more advanced data
augmentations techniques. More advanced DE extensions should also be considered.

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System
for Large-Scale Machine Learning, 2016. URL https://www.tensorflow.org/.

[2] H A Abbass. The self-adaptive Pareto differential evolution algorithm. In Proceedings
of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600),
volume 1, pages 831–836, 2002. ISBN VO - 1. doi: 10.1109/CEC.2002.1007033.

[3] Rawaa Dawoud Al-Dabbagh, Ferrante Neri, Norisma Idris, and Mohd Sapiyan
Baba. Algorithmic design issues in adaptive differential evolution schemes:
Review and taxonomy. Swarm and Evolutionary Computation, 43:284–311,
12 2018. ISSN 22106502. doi: 10.1016/j.swevo.2018.03.008. URL https:

//www.sciencedirect.com/science/article/pii/S2210650217305837https:

//linkinghub.elsevier.com/retrieve/pii/S2210650217305837.

[4] N S Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Re-
gression. The American Statistician, 46(3):175–185, 8 1992. ISSN 0003-1305. doi:
10.1080/00031305.1992.10475879. URL https://www.tandfonline.com/doi/abs/

10.1080/00031305.1992.10475879.

[5] Nii O Attoh-Okine. Analysis of learning rate and momentum term in backpropaga-
tion neural network algorithm trained to predict pavement performance. Advances in
Engineering Software, 30(4):291–302, 1999. ISSN 0965-9978. doi: https://doi.org/
10.1016/S0965-9978(98)00071-4. URL http://www.sciencedirect.com/science/

article/pii/S0965997898000714.

[6] N H Awad, M Z Ali, P N Suganthan, and R G Reynolds. An ensemble sinusoidal
parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark
problems. In 2016 IEEE Congress on Evolutionary Computation (CEC), pages 2958–
2965, 2016. ISBN VO -. doi: 10.1109/CEC.2016.7744163.

[7] N H Awad, M Z Ali, and P N Suganthan. Ensemble sinusoidal differential covariance
matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark

91

https://www.tensorflow.org/
https://www.sciencedirect.com/science/article/pii/S2210650217305837 https://linkinghub.elsevier.com/retrieve/pii/S2210650217305837
https://www.sciencedirect.com/science/article/pii/S2210650217305837 https://linkinghub.elsevier.com/retrieve/pii/S2210650217305837
https://www.sciencedirect.com/science/article/pii/S2210650217305837 https://linkinghub.elsevier.com/retrieve/pii/S2210650217305837
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
http://www.sciencedirect.com/science/article/pii/S0965997898000714
http://www.sciencedirect.com/science/article/pii/S0965997898000714

92 BIBLIOGRAPHY

problems. In 2017 IEEE Congress on Evolutionary Computation (CEC), pages 372–
379, 2017. ISBN VO -. doi: 10.1109/CEC.2017.7969336.

[8] Noor H Awad, Mostafa Z Ali, Ponnuthurai N Suganthan, Robert G Reynolds, and
Ali M Shatnawi. A novel differential crossover strategy based on covariance matrix
learning with Euclidean neighborhood for solving real-world problems. In 2017 IEEE
Congress on Evolutionary Computation (CEC), pages 380–386. IEEE, 6 2017. ISBN
978-1-5090-4601-0. doi: 10.1109/CEC.2017.7969337. URL http://ieeexplore.

ieee.org/document/7969337/.

[9] Noor H Awad, Mostafa Z Ali, and Ponnuthurai N Suganthan. Ensem-
ble of parameters in a sinusoidal differential evolution with niching-based
population reduction. Swarm and Evolutionary Computation, 39:141–156,
4 2018. ISSN 22106502. doi: 10.1016/j.swevo.2017.09.009. URL http:

//www.sciencedirect.com/science/article/pii/S2210650217305321https:

//linkinghub.elsevier.com/retrieve/pii/S2210650217305321.

[10] François Bachoc. Cross Validation and Maximum Likelihood estimations of hyper-
parameters of Gaussian processes with model misspecification. Computational Statis-
tics & Data Analysis, 66:55–69, 2013. ISSN 0167-9473. doi: https://doi.org/10.1016/
j.csda.2013.03.016. URL http://www.sciencedirect.com/science/article/pii/

S0167947313001187.

[11] James E Baker. Reducing Bias and Inefficiency in the Selection Algorithm. In Pro-
ceedings of the Second International Conference on Genetic Algorithms on Genetic
Algorithms and Their Application, pages 14–21, Hillsdale, NJ, USA, 1987. L. Erl-
baum Associates Inc. ISBN 0-8058-0158-8. URL http://dl.acm.org/citation.

cfm?id=42512.42515.

[12] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Fran-
cis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes,
Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G Bellemare, and Michael
Bowling. The Hanabi challenge: A new frontier for AI research. Artificial In-
telligence, 280:103216, 2020. ISSN 0004-3702. doi: https://doi.org/10.1016/
j.artint.2019.103216. URL http://www.sciencedirect.com/science/article/

pii/S0004370219300116.

[13] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade
Learning Environment: An Evaluation Platform for General Agents. Journal of
Artificial Intelligence Research, 7 2012. doi: 10.1613/jair.3912. URL http://arxiv.

org/abs/1207.4708http://dx.doi.org/10.1613/jair.3912.

[14] R E Bellman. Adaptive Control Processes: A Guided Tour. Princeton Legacy
Library. Princeton University Press, 1961. ISBN 9781400874668. URL https:

//books.google.no/books?id=iwbWCgAAQBAJ.

[15] Yoshua Bengio. Gradient-Based Optimization of Hyperparameters. Neural Compu-
tation, 12:1889–1900, 2000.

[16] J Bergstra, D Yamins, and D D Cox. Making a Science of Model Search: Hy-
perparameter Optimization in Hundreds of Dimensions for Vision Architectures.

http://ieeexplore.ieee.org/document/7969337/
http://ieeexplore.ieee.org/document/7969337/
http://www.sciencedirect.com/science/article/pii/S2210650217305321 https://linkinghub.elsevier.com/retrieve/pii/S2210650217305321
http://www.sciencedirect.com/science/article/pii/S2210650217305321 https://linkinghub.elsevier.com/retrieve/pii/S2210650217305321
http://www.sciencedirect.com/science/article/pii/S2210650217305321 https://linkinghub.elsevier.com/retrieve/pii/S2210650217305321
http://www.sciencedirect.com/science/article/pii/S0167947313001187
http://www.sciencedirect.com/science/article/pii/S0167947313001187
http://dl.acm.org/citation.cfm?id=42512.42515
http://dl.acm.org/citation.cfm?id=42512.42515
http://www.sciencedirect.com/science/article/pii/S0004370219300116
http://www.sciencedirect.com/science/article/pii/S0004370219300116
http://arxiv.org/abs/1207.4708 http://dx.doi.org/10.1613/jair.3912
http://arxiv.org/abs/1207.4708 http://dx.doi.org/10.1613/jair.3912
https://books.google.no/books?id=iwbWCgAAQBAJ
https://books.google.no/books?id=iwbWCgAAQBAJ

BIBLIOGRAPHY 93

In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pages I–115–I–123. JMLR.org, 2013. URL
http://dl.acm.org/citation.cfm?id=3042817.3042832.

[17] James Bergstra and Yoshua Bengio. Random Search for Hyper-parameter Op-
timization. J. Mach. Learn. Res., 13:281–305, 2012. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=2188385.2188395.

[18] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
Hyper-parameter Optimization. In Proceedings of the 24th International Confer-
ence on Neural Information Processing Systems, NIPS’11, pages 2546–2554, USA,
2011. Curran Associates Inc. ISBN 978-1-61839-599-3. URL http://dl.acm.org/

citation.cfm?id=2986459.2986743.

[19] Christopher M Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, Inc., New York, NY, USA, 1995. ISBN 0198538642.

[20] Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston. Support Vector
Machine Solvers. In Large-Scale Kernel Machines, page 1. MITP, 2007. URL http:

//ieeexplore.ieee.org/document/6279971.

[21] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001. ISSN
1573-0565. doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:

1010933404324.

[22] Janez Brest and Mirjam Sepesy Maučec. Self-adaptive differential evolution algo-
rithm using population size reduction and three strategies. Soft Computing, 15
(11):2157–2174, 2011. ISSN 1433-7479. doi: 10.1007/s00500-010-0644-5. URL
https://doi.org/10.1007/s00500-010-0644-5.

[23] Adam Byerly, Tatiana Kalganova, and Ian Dear. A Branching and Merging
Convolutional Network with Homogeneous Filter Capsules. 2020. URL http:

//arxiv.org/abs/2001.09136.

[24] N Cesa-Bianchi, P M Long, and M K Warmuth. Worst-case quadratic loss bounds for
prediction using linear functions and gradient descent. IEEE Transactions on Neural
Networks, 7(3):604–619, 1996. ISSN 1941-0093 VO - 7. doi: 10.1109/72.501719.

[25] Uday K. Chakraborty, editor. Advances in Differential Evolution, volume 143 of
Studies in Computational Intelligence. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1 2008. ISBN 978-3-540-68827-3. doi: 10.1007/978-3-540-68830-3. URL
http://link.springer.com/10.1007/978-3-540-68830-3.

[26] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choos-
ing Multiple Parameters for Support Vector Machines. Machine Learning, 46(1):
131–159, 2002. ISSN 1573-0565. doi: 10.1023/A:1012450327387. URL https:

//doi.org/10.1023/A:1012450327387.

[27] Tianqi Chen and Carlos Guestrin. XGBoost. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
785–794, New York, NY, USA, 8 2016. ACM. ISBN 9781450342322. doi: 10.1145/
2939672.2939785. URL https://dl.acm.org/doi/10.1145/2939672.2939785.

http://dl.acm.org/citation.cfm?id=3042817.3042832
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2986459.2986743
http://dl.acm.org/citation.cfm?id=2986459.2986743
http://ieeexplore.ieee.org/document/6279971
http://ieeexplore.ieee.org/document/6279971
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s00500-010-0644-5
http://arxiv.org/abs/2001.09136
http://arxiv.org/abs/2001.09136
http://link.springer.com/10.1007/978-3-540-68830-3
https://doi.org/10.1023/A:1012450327387
https://doi.org/10.1023/A:1012450327387
https://dl.acm.org/doi/10.1145/2939672.2939785

94 BIBLIOGRAPHY

[28] Clément Chevalier and David Ginsbourger. Fast Computation of the Multi-Points
Expected Improvement with Applications in Batch Selection BT - Learning and
Intelligent Optimization. In Giuseppe Nicosia and Panos Pardalos, editors, Learning
and Intelligent Optimization, pages 59–69, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-44973-4.

[29] Nancy Chinchor. MUC-4 Evaluation Metrics. In Proceedings of the 4th Conference
on Message Understanding, MUC4 ’92, page 22–29, USA, 1992. Association for
Computational Linguistics. ISBN 1558602739. doi: 10.3115/1072064.1072067. URL
https://doi.org/10.3115/1072064.1072067.

[30] D Ciregan, U Meier, and J Schmidhuber. Multi-column deep neural networks for
image classification. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3642–3649, 2012. ISBN 1063-6919 VO -. doi: 10.1109/CVPR.
2012.6248110.

[31] Marc Claesen and Bart De Moor. Hyperparameter Search in Machine Learning. In
The 10th Metaheuristics International Conference, Agadir, Morocco, 2 2015. URL
http://arxiv.org/abs/1502.02127.

[32] Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau, and Bart De Moor. Easy
Hyperparameter Search Using Optunity. In International Workshop on Technical
Computing for Machine Learning and Mathematical Engineering, 12 2014. URL
https://arxiv.org/abs/1412.1114.

[33] Marc Claesen, Frank De Smet, Johan A K Suykens, and Bart De Moor. Ensem-
bleSVM: A Library for Ensemble Learning Using Support Vector Machines. Journal
of Machine Learning Research, 15:141–145, 2014. URL http://jmlr.org/papers/

v15/claesen14a.html.

[34] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik. EMNIST:
Extending MNIST to handwritten letters. In 2017 International Joint Conference
on Neural Networks (IJCNN), pages 2921–2926. IEEE, 5 2017. ISBN 978-1-5090-
6182-2. doi: 10.1109/IJCNN.2017.7966217. URL http://ieeexplore.ieee.org/

document/7966217/.

[35] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learning,
20(3):273–297, 1995. ISSN 1573-0565. doi: 10.1023/A:1022627411411. URL https:

//doi.org/10.1023/A:1022627411411.

[36] Wojciech Marian Czarnecki, Siddhant M. Jayakumar, Max Jadcrbcrg, Leonard
Hasenclever, Yec Whye Tch, Simon Osindero, Nicolas Heess, and Razvan Pascanu.
Mix & match - Agent curricula for reinforcement learning. In Jennifer Dy and An-
dreas Krause, editors, 35th International Conference on Machine Learning, ICML
2018, volume 3, pages 1761–1773, 6 2018. ISBN 9781510867963.

[37] S Das and P N Suganthan. Differential Evolution: A Survey of the State-of-the-Art.
IEEE Transactions on Evolutionary Computation, 15(1):4–31, 2011. ISSN VO - 15.
doi: 10.1109/TEVC.2010.2059031.

https://doi.org/10.3115/1072064.1072067
http://arxiv.org/abs/1502.02127
https://arxiv.org/abs/1412.1114
http://jmlr.org/papers/v15/claesen14a.html
http://jmlr.org/papers/v15/claesen14a.html
http://ieeexplore.ieee.org/document/7966217/
http://ieeexplore.ieee.org/document/7966217/
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411

BIBLIOGRAPHY 95

[38] S Das, A Abraham, U K Chakraborty, and A Konar. Differential Evolution Using a
Neighborhood-Based Mutation Operator. IEEE Transactions on Evolutionary Com-
putation, 13(3):526–553, 2009. ISSN VO - 13. doi: 10.1109/TEVC.2008.2009457.

[39] S Das, A Mandal, and R Mukherjee. An Adaptive Differential Evolution Algo-
rithm for Global Optimization in Dynamic Environments. IEEE Transactions on
Cybernetics, 44(6):966–978, 2014. ISSN VO - 44. doi: 10.1109/TCYB.2013.2278188.

[40] Swagatam Das, Sankha Subhra Mullick, and P.N. Suganthan. Recent advances in
differential evolution – An updated survey. Swarm and Evolutionary Computation,
27:1–30, 4 2016. ISSN 22106502. doi: 10.1016/j.swevo.2016.01.004. URL http:

//www.sciencedirect.com/science/article/pii/S2210650216000146https:

//linkinghub.elsevier.com/retrieve/pii/S2210650216000146.

[41] Pieter-Tjerk de Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A
Tutorial on the Cross-Entropy Method. Annals of Operations Research, 134(1):19–
67, 2005. ISSN 1572-9338. doi: 10.1007/s10479-005-5724-z. URL https://doi.

org/10.1007/s10479-005-5724-z.

[42] Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V
Le, Mark Z Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
and Andrew Y Ng. Large Scale Distributed Deep Networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, pages 1223–1231, USA, 2012. Curran Associates Inc. URL http://dl.

acm.org/citation.cfm?id=2999134.2999271.

[43] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing Exploration-
Exploitation Tradeoffs in Gaussian Process Bandit Optimization. Journal of Ma-
chine Learning Research, 15:4053–4103, 2014. URL http://jmlr.org/papers/v15/

desautels14a.html.

[44] R Eberhart and J Kennedy. A new optimizer using particle swarm theory. In
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pages 39–43, 1995. ISBN VO -. doi: 10.1109/MHS.1995.494215.

[45] Bradley Efron and Gail Gong. A Leisurely Look at the Bootstrap, the Jackknife,
and Cross-Validation. The American Statistician, 37(1):36–48, 1983. ISSN 00031305.
doi: 10.2307/2685844. URL http://www.jstor.org/stable/2685844.

[46] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper
Snoek, Holger H Hoos, and Kevin Leyton-brown. Towards an empirical foundation
for assessing Bayesian optimization of hyperparameters. In In NIPS Workshop on
Bayesian Optimization in Theory and Practice, 2013.

[47] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Online meta-learning by parallel al-
gorithm competition. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 426–433. ACM, 2018. ISBN 1450356184.

[48] O H Elibol, G Keskin, and A Thomas. Semi-supervised and Population Based Train-
ing for Voice Commands Recognition. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6371–6375,
2019. ISBN 2379-190X VO -. doi: 10.1109/ICASSP.2019.8683265.

http://www.sciencedirect.com/science/article/pii/S2210650216000146 https://linkinghub.elsevier.com/retrieve/pii/S2210650216000146
http://www.sciencedirect.com/science/article/pii/S2210650216000146 https://linkinghub.elsevier.com/retrieve/pii/S2210650216000146
http://www.sciencedirect.com/science/article/pii/S2210650216000146 https://linkinghub.elsevier.com/retrieve/pii/S2210650216000146
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://jmlr.org/papers/v15/desautels14a.html
http://jmlr.org/papers/v15/desautels14a.html
http://www.jstor.org/stable/2685844

96 BIBLIOGRAPHY

[49] Hugo Jair Escalante, Manuel Montes, and Luis Enrique Sucar. Particle Swarm
Model Selection. J. Mach. Learn. Res., 10:405–440, 2009. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=1577069.1577084.

[50] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr Mnih,
Tom Ward, Boron Yotam, Firoiu Vlad, Harley Tim, Iain Dunning, Shane Legg,
and Koray Kavukcuoglu. IMPALA: Scalable Distributed Deep-RL with Importance
Weighted Actor-Learner Architectures. In 35th International Conference on Machine
Learning, ICML 2018, volume 4, pages 2263–2284, 2 2018. ISBN 9781510867963.

[51] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. CoRR, abs/1807.0, 2018. URL http:

//arxiv.org/abs/1807.01774.

[52] Hui-Yuan Fan and Jouni Lampinen. A Trigonometric Mutation Operation to Dif-
ferential Evolution. Journal of Global Optimization, 27(1):105–129, 2003. ISSN
1573-2916. doi: 10.1023/A:1024653025686. URL https://doi.org/10.1023/A:

1024653025686.

[53] Q Fan and X Yan. Self-Adaptive Differential Evolution Algorithm With Zoning
Evolution of Control Parameters and Adaptive Mutation Strategies. IEEE Trans-
actions on Cybernetics, 46(1):219–232, 2016. ISSN VO - 46. doi: 10.1109/TCYB.
2015.2399478.

[54] K Fatahalian, J Sugerman, and P Hanrahan. Understanding the Efficiency of
GPU Algorithms for Matrix-matrix Multiplication. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS ’04,
pages 133–137, New York, NY, USA, 2004. ACM. ISBN 3-905673-15-0. doi:
10.1145/1058129.1058148. URL http://doi.acm.org/10.1145/1058129.1058148.

[55] V Feoktistov and S Janaqi. Generalization of the strategies in differential evolu-
tion. In 18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings., page 165, 2004. ISBN VO -. doi: 10.1109/IPDPS.2004.1303160.

[56] Vitaliy Feoktistov and Stefan Janaqi. New Strategies in Differential Evolution. In I C
Parmee, editor, Adaptive Computing in Design and Manufacture VI, pages 335–346.
Springer London, London, 2004. ISBN 978-0-85729-338-1.

[57] Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997. ISSN 0022-0000. doi: https://doi.org/
10.1006/jcss.1997.1504. URL http://www.sciencedirect.com/science/article/

pii/S002200009791504X.

[58] Alexandre Galashov, Siddhant M. Jayakumar, Leonard Hasenclever, Dhruva Tiru-
mala, Jonathan Schwarz, Guillaume Desjardins, Wojciech M. Czarnecki, Yee Whye
Teh, Razvan Pascanu, and Nicolas Heess. Information asymmetry in KL-regularized
RL. In International Conference on Learning Representations, 5 2019. URL http:

//arxiv.org/abs/1905.01240https://openreview.net/forum?id=S1lqMn05Ym.

http://dl.acm.org/citation.cfm?id=1577069.1577084
http://arxiv.org/abs/1807.01774
http://arxiv.org/abs/1807.01774
https://doi.org/10.1023/A:1024653025686
https://doi.org/10.1023/A:1024653025686
http://doi.acm.org/10.1145/1058129.1058148
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://arxiv.org/abs/1905.01240 https://openreview.net/forum?id=S1lqMn05Ym
http://arxiv.org/abs/1905.01240 https://openreview.net/forum?id=S1lqMn05Ym

BIBLIOGRAPHY 97

[59] Paul A Games and John F Howell. Pairwise Multiple Comparison Procedures
with Unequal N’s and/or Variances: A Monte Carlo Study. Journal of Educa-
tional Statistics, 1(2):113–125, 7 1976. ISSN 03629791. doi: 10.2307/1164979. URL
http://www.jstor.org/stable/1164979.

[60] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S M Ali Eslami, and Oriol Vinyals.
Synthesizing Programs for Images using Reinforced Adversarial Learning. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
1666–1675, Stockholmsmässan, Stockholm Sweden, 2018. PMLR. URL http://

proceedings.mlr.press/v80/ganin18a.html.

[61] Marius Geitle and Roland Olsson. A New Baseline for Automated Hyper-Parameter
Optimization. In International Conference on Machine Learning, Optimization,
and Data Science, pages 521–530, Cham, 2019. ISBN 978-3-030-37599-7. doi:
10.1007/978-3-030-37599-7{\ }43. URL http://link.springer.com/10.1007/

978-3-030-37599-7_43.

[62] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging Is Well-
Suited to Parallelize Optimization. In Yoel Tenne and Chi-Keong Goh, editors,
Adaptation Learning and Optimization, pages 131–162. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2 edition, 2010. ISBN 978-3-642-10701-6. doi: 10.1007/
978-3-642-10701-6{\ }6. URL https://doi.org/10.1007/978-3-642-10701-6_

6http://link.springer.com/10.1007/978-3-642-10701-6_6.

[63] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D. Sculley. Google Vizier: A Service for Black-Box Optimization. In Daniel
Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Elliot Karro,
and D Sculley, editors, Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 1487–1495, New York, NY,
USA, 8 2017. ACM. ISBN 9781450348874. doi: 10.1145/3097983.3098043. URL
https://dl.acm.org/doi/10.1145/3097983.3098043.

[64] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. ISBN 0262035618. URL http://www.deeplearningbook.org.

[65] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In
Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’14, pages 2672–2680, Cambridge, MA, USA, 2014. MIT
Press. URL http://dl.acm.org/citation.cfm?id=2969033.2969125.

[66] Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-
Adaptation in Evolution Strategies. Evol. Comput., 9(2):159–195, 2001. ISSN
1063-6560. doi: 10.1162/106365601750190398. URL http://dx.doi.org/10.1162/

106365601750190398.

[67] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the
Time Complexity of the Derandomized Evolution Strategy with Covariance Ma-
trix Adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18, 3 2003. ISSN

http://www.jstor.org/stable/1164979
http://proceedings.mlr.press/v80/ganin18a.html
http://proceedings.mlr.press/v80/ganin18a.html
http://link.springer.com/10.1007/978-3-030-37599-7_43
http://link.springer.com/10.1007/978-3-030-37599-7_43
https://doi.org/10.1007/978-3-642-10701-6_6 http://link.springer.com/10.1007/978-3-642-10701-6_6
https://doi.org/10.1007/978-3-642-10701-6_6 http://link.springer.com/10.1007/978-3-642-10701-6_6
https://dl.acm.org/doi/10.1145/3097983.3098043
http://www.deeplearningbook.org
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1162/106365601750190398

98 BIBLIOGRAPHY

1063-6560. doi: 10.1162/106365603321828970. URL https://doi.org/10.1162/

106365603321828970.

[68] Ethan Harris, Antonia Marcu, Matthew Painter, Mahesan Niranjan, Adam Prügel-
Bennett, and Jonathon Hare. FMix: Enhancing Mixed Sample Data Augmentation.
2 2020. URL http://arxiv.org/abs/2002.12047.

[69] Greg Heinrich and Iuri Frosio. Metaoptimization on a Distributed System for Deep
Reinforcement Learning. arXiv preprint arXiv:1902.02725, 2019.

[70] Lars Hertel, Julian Collado, Peter Sadowski, and Pierre Baldi. Sherpa: hyperpa-
rameter optimization for machine learning models. In 2018 Conference on Neural
Information Processing Systems, 2018.

[71] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,
and Hado van Hasselt. Multi-Task Deep Reinforcement Learning with PopArt.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01 SE - AAAI
Technical Track: Machine Learning), 7 2019. doi: 10.1609/aaai.v33i01.33013796.
URL https://www.aaai.org/ojs/index.php/AAAI/article/view/4266.

[72] Geoffrey E Hinton. A Practical Guide to Training Restricted Boltzmann Ma-
chines. In Grégoire Montavon, Geneviève B Orr, and Klaus-Robert Müller, ed-
itors, Neural Networks: Tricks of the Trade, pages 599–619. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/
978-3-642-35289-8{\ }32. URL https://doi.org/10.1007/978-3-642-35289-8_

32http://link.springer.com/10.1007/978-3-642-35289-8_32.

[73] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm
for Deep Belief Nets. Neural Comput., 18(7):1527–1554, 2006. ISSN 0899-7667. doi:
10.1162/neco.2006.18.7.1527. URL http://dx.doi.org/10.1162/neco.2006.18.

7.1527.

[74] Daiki Hirata and Norikazu Takahashi. Ensemble learning in CNN augmented with
fully connected subnetworks. 3 2020. URL http://arxiv.org/abs/2003.08562.

[75] Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, and Xi Chen. Population Based
Augmentation: Efficient Learning of Augmentation Policy Schedules. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, pages 2731–2741, Long Beach, California, USA,
5 2019. PMLR. URL http://proceedings.mlr.press/v97/ho19b.html.

[76] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A Practical Guide to Sup-
port Vector Classification. Technical report, Department of Computer Science,
National Taiwan University, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/

papers.html.

[77] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS:
An Automatic Algorithm Configuration Framework. J. Artif. Int. Res., 36(1):
267–306, 9 2009. ISSN 1076-9757. URL http://dl.acm.org/citation.cfm?id=

1734953.1734959.

https://doi.org/10.1162/106365603321828970
https://doi.org/10.1162/106365603321828970
http://arxiv.org/abs/2002.12047
https://www.aaai.org/ojs/index.php/AAAI/article/view/4266
https://doi.org/10.1007/978-3-642-35289-8_32 http://link.springer.com/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32 http://link.springer.com/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://arxiv.org/abs/2003.08562
http://proceedings.mlr.press/v97/ho19b.html
http://www.csie.ntu.edu.tw/~cjlin/papers.html
http://www.csie.ntu.edu.tw/~cjlin/papers.html
http://dl.acm.org/citation.cfm?id=1734953.1734959
http://dl.acm.org/citation.cfm?id=1734953.1734959

BIBLIOGRAPHY 99

[78] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential Model-Based
Optimization for General Algorithm Configuration. In Carlos A Coello Coello, edi-
tor, International Conference on Learning and Intelligent Optimization, pages 507–
523. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-25566-
3. doi: 10.1007/978-3-642-25566-3{\ }40. URL http://link.springer.com/10.

1007/978-3-642-25566-3_40.

[79] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential Model-
Based Optimization for General Algorithm Configuration. In Proceedings
of the 5th International Conference on Learning and Intelligent Optimiza-
tion, LION’05, pages 507–523. Springer-Verlag, Berlin, Heidelberg, 2011.
ISBN 978-3-642-25565-6. doi: 10.1007/978-3-642-25566-3{\ }40. URL
http://dx.doi.org/10.1007/978-3-642-25566-3_40http://link.springer.

com/10.1007/978-3-642-25566-3_40.

[80] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Parallel Algo-
rithm Configuration. In Youssef Hamadi and Marc Schoenauer, editors, In-
ternational Conference on Learning and Intelligent Optimization, pages 55–70.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-34413-8.
doi: 10.1007/978-3-642-34413-8{\ }5. URL http://link.springer.com/10.1007/

978-3-642-34413-8_5.

[81] S M Islam, S Das, S Ghosh, S Roy, and P N Suganthan. An Adaptive Dif-
ferential Evolution Algorithm With Novel Mutation and Crossover Strategies for
Global Numerical Optimization. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 42(2):482–500, 2012. ISSN VO - 42. doi:
10.1109/TSMCB.2011.2167966.

[82] Robert A Jacobs. Increased rates of convergence through learning rate adaptation.
Neural Networks, 1(4):295–307, 1988. ISSN 0893-6080. doi: https://doi.org/10.1016/
0893-6080(88)90003-2. URL http://www.sciencedirect.com/science/article/

pii/0893608088900032.

[83] Sam Adé Jacobs, Nikoli Dryden, Roger Pearce, and Brian Van Essen. Towards
Scalable Parallel Training of Deep Neural Networks. In Proceedings of the Machine
Learning on HPC Environments, MLHPC’17, pages 5:1–5:9, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-5137-9. doi: 10.1145/3146347.3146353. URL http:

//doi.acm.org/10.1145/3146347.3146353.

[84] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. Population Based Training of Neural
Networks. 1:1–2, 11 2017. URL http://arxiv.org/abs/1711.09846.

[85] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos,
Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo,
David Silver, Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel. Human-
level performance in 3D multiplayer games with population-based reinforcement
learning. Science, 364(6443):859–865, 5 2019. ISSN 10959203. doi: 10.1126/

http://link.springer.com/10.1007/978-3-642-25566-3_40
http://link.springer.com/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-25566-3_40 http://link.springer.com/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-25566-3_40 http://link.springer.com/10.1007/978-3-642-25566-3_40
http://link.springer.com/10.1007/978-3-642-34413-8_5
http://link.springer.com/10.1007/978-3-642-34413-8_5
http://www.sciencedirect.com/science/article/pii/0893608088900032
http://www.sciencedirect.com/science/article/pii/0893608088900032
http://doi.acm.org/10.1145/3146347.3146353
http://doi.acm.org/10.1145/3146347.3146353
http://arxiv.org/abs/1711.09846

100 BIBLIOGRAPHY

science.aau6249. URL http://dx.doi.org/10.1126/science.aau6249https://

www.sciencemag.org/lookup/doi/10.1126/science.aau6249.

[86] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and
hyperparameter optimization. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, AISTATS 2016, pages 240–248, 2 2016. URL
http://arxiv.org/abs/1502.07943.

[87] Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Jathushan Ra-
jasegaran, Suranga Seneviratne, and Ranga Rodrigo. TextCaps: Handwritten Char-
acter Recognition With Very Small Datasets. 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), 1 2019. doi: 10.1109/wacv.2019.00033.
URL http://dx.doi.org/10.1109/WACV.2019.00033.

[88] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient Global Op-
timization of Expensive Black-Box Functions. Journal of Global Optimization,
13(4):455–492, 1998. ISSN 1573-2916. doi: 10.1023/A:1008306431147. URL
https://doi.org/10.1023/A:1008306431147.

[89] H M Dipu Kabir, Moloud Abdar, Seyed Mohammad Jafar Jalali, Abbas Khosravi,
Amir F Atiya, Saeid Nahavandi, and Dipti Srinivasan. SpinalNet: Deep Neural
Network with Gradual Input. In Computer Vision and Pattern Recognition, 2020.

[90] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. LightGBM: A Highly Effi-
cient Gradient Boosting Decision Tree. In I Guyon, U V Luxburg,
S Bengio, H Wallach, R Fergus, S Vishwanathan, and R Garnett, edi-
tors, Advances in Neural Information Processing Systems 30, pages 3146–
3154. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf.

[91] J Kennedy and R Eberhart. Particle swarm optimization. In Proceedings of ICNN’95
- International Conference on Neural Networks, volume 4, pages 1942–1948, 1995.
ISBN VO - 4. doi: 10.1109/ICNN.1995.488968.

[92] James Kennedy. The particle swarm: social adaptation of knowledge. Proceedings
of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97),
pages 303–308, 1997.

[93] James Kennedy, Russel C. Eberhart, and Youhui Shi. Swarm Intelligence.
Elsevier, San Francisco, CA, USA, 1 edition, 2001. ISBN 978-1-55860-595-4.
doi: 10.5555/370449. URL http://www.sciencedirect.com/science/article/

pii/B9781558605954500000https://linkinghub.elsevier.com/retrieve/pii/

B9781558605954500000.

[94] Mohammad Reza Keshtkaran and Chethan Pandarinath. Enabling hy-
perparameter optimization in sequential autoencoders for spiking neu-
ral data. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alche-Buc,
E. Fox, and R. Garnett, editors, 33rd Conference on Neural Information
Processing Systems (NIPS 2019), pages 15937–15947, Vancouver, Canada,
8 2019. Curran Associates, Inc. URL http://papers.nips.cc/paper/

http://dx.doi.org/10.1126/science.aau6249 https://www.sciencemag.org/lookup/doi/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aau6249 https://www.sciencemag.org/lookup/doi/10.1126/science.aau6249
http://arxiv.org/abs/1502.07943
http://dx.doi.org/10.1109/WACV.2019.00033
https://doi.org/10.1023/A:1008306431147
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://www.sciencedirect.com/science/article/pii/B9781558605954500000 https://linkinghub.elsevier.com/retrieve/pii/B9781558605954500000
http://www.sciencedirect.com/science/article/pii/B9781558605954500000 https://linkinghub.elsevier.com/retrieve/pii/B9781558605954500000
http://www.sciencedirect.com/science/article/pii/B9781558605954500000 https://linkinghub.elsevier.com/retrieve/pii/B9781558605954500000
http://papers.nips.cc/paper/9722-enabling-hyperparameter-optimization-in-sequential-autoencoders-for-spiking-neural-data.pdf

BIBLIOGRAPHY 101

9722-enabling-hyperparameter-optimization-in-sequential-autoencoders-for-spiking-neural-data.

pdf.

[95] Jinwoong Kim, Minkyu Kim, Heungseok Park, Ernar Kusdavletov, Dongjun Lee,
Adrian Kim, Ji-Hoon Kim, Jung-Woo Ha, and Nako Sung. CHOPT : Automated
Hyperparameter Optimization Framework for Cloud-Based Machine Learning Plat-
forms. 10 2018. URL http://arxiv.org/abs/1810.03527.

[96] R. D. King, C. Feng, and A. Sutherland. StatLog: comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence, 9(3):289–
333, 5 1995. ISSN 0883-9514. doi: 10.1080/08839519508945477. URL https:

//doi.org/10.1080/08839519508945477.

[97] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations, page 13, San Diego, 2015.
Ithaca, NY: arXiv.org. URL http://arxiv.org/abs/1412.6980.

[98] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671 LP – 680, 5 1983. doi: 10.1126/science.220.4598.671. URL
http://science.sciencemag.org/content/220/4598/671.abstract.

[99] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast
Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets.
CoRR, abs/1605.0, 2016. URL http://arxiv.org/abs/1605.07079.

[100] Ron Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Estimation
and Model Selection. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1-55860-363-8. URL
http://dl.acm.org/citation.cfm?id=1643031.1643047.

[101] Ron Kohavi and George H John. Automatic Parameter Selection by Minimizing
Estimated Error. In In Proceedings of the Twelfth International Conference on
Machine Learning, pages 304–312. Morgan Kaufmann, 1995.

[102] Kamran Kowsari, Mojtaba Heidarysafa, Donald E Brown, Kiana Jafari Meimandi,
and Laura E Barnes. RMDL: Random Multimodel Deep Learning for Clas-
sification. In Proceedings of the 2nd International Conference on Information
System and Data Mining, pages 19–28, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. ISBN 9781450363549. doi: 10.1145/3206098.
3206111. URL http://dx.doi.org/10.1145/3206098.3206111http://dl.acm.

org/citation.cfm?doid=3206098.3206111.

[103] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. University
of Toronto, 5 2012.

[104] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. Commun. ACM, 60(6):84–90, 2017. ISSN
0001-0782. doi: 10.1145/3065386. URL http://doi.acm.org/10.1145/3065386.

http://papers.nips.cc/paper/9722-enabling-hyperparameter-optimization-in-sequential-autoencoders-for-spiking-neural-data.pdf
http://papers.nips.cc/paper/9722-enabling-hyperparameter-optimization-in-sequential-autoencoders-for-spiking-neural-data.pdf
http://papers.nips.cc/paper/9722-enabling-hyperparameter-optimization-in-sequential-autoencoders-for-spiking-neural-data.pdf
http://arxiv.org/abs/1810.03527
https://doi.org/10.1080/08839519508945477
https://doi.org/10.1080/08839519508945477
http://arxiv.org/abs/1412.6980
http://science.sciencemag.org/content/220/4598/671.abstract
http://arxiv.org/abs/1605.07079
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dx.doi.org/10.1145/3206098.3206111 http://dl.acm.org/citation.cfm?doid=3206098.3206111
http://dx.doi.org/10.1145/3206098.3206111 http://dl.acm.org/citation.cfm?doid=3206098.3206111
http://doi.acm.org/10.1145/3065386

102 BIBLIOGRAPHY

[105] J Lampinen. A constraint handling approach for the differential evolution algorithm.
In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No.02TH8600), volume 2, pages 1468–1473, 2002. ISBN VO - 2. doi: 10.1109/CEC.
2002.1004459.

[106] Jouko Lampinen. Solving Problems Subject to Multiple Nonlinear Constraints by the
Di erential Evolution. In Proceedings of MENDEL’01-7th International Conference
on Soft Computing, Brno, Czech Republic, pages 50–57, 2001.

[107] Jouni Lampinen, Ivan Zelinka, and others. On stagnation of the differential evolution
algorithm. In Proceedings of MENDEL, pages 76–83, 2000.

[108] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. An Empirical Evaluation of Deep Architectures on Problems with Many
Factors of Variation. In Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pages 473–480, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-793-3. doi: 10.1145/1273496.1273556. URL http://doi.acm.org/10.1145/

1273496.1273556.

[109] J Larsen, L K Hansen, C Svarer, and M Ohlsson. Design and regularization of
neural networks: the optimal use of a validation set. In Neural Networks for Signal
Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop,
pages 62–71, 1996. ISBN VO -. doi: 10.1109/NNSP.1996.548336.

[110] Y Lecun, L Bottou, Y Bengio, and P Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. ISSN
1558-2256 VO - 86. doi: 10.1109/5.726791.

[111] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
BackProp. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of
a 1996 NIPS Workshop, pages 9–50, London, UK, UK, 1998. Springer-Verlag. ISBN
3-540-65311-2. URL http://dl.acm.org/citation.cfm?id=645754.668382.

[112] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521
(7553):436–444, 2015. ISSN 1476-4687. doi: 10.1038/nature14539. URL https:

//doi.org/10.1038/nature14539.

[113] Howard Levene. Robust tests for equality of variances. Contributions to probability
and statistics. Essays in honor of Harold Hotelling, pages 279–292, 1960.

[114] Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu, David
Budden, Tim Harley, and Pramod Gupta. Population Based Training as a Service.
In NIPS Systems for ML Workshop, Montréal, Canada, 2018.

[115] Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu,
David Budden, Tim Harley, and Pramod Gupta. A Generalized Framework for
Population Based Training. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19, pages 1791–1799,
New York, NY, USA, 7 2019. ACM. ISBN 9781450362016. doi: 10.1145/3292500.
3330649. URL http://doi.acm.org/10.1145/3292500.3330649https://dl.acm.

org/doi/10.1145/3292500.3330649.

http://doi.acm.org/10.1145/1273496.1273556
http://doi.acm.org/10.1145/1273496.1273556
http://dl.acm.org/citation.cfm?id=645754.668382
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://doi.acm.org/10.1145/3292500.3330649 https://dl.acm.org/doi/10.1145/3292500.3330649
http://doi.acm.org/10.1145/3292500.3330649 https://dl.acm.org/doi/10.1145/3292500.3330649

BIBLIOGRAPHY 103

[116] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimiza-
tion. Journal of Machine Learning Research, 18:1–52, 3 2018. ISSN 15337928. URL
http://arxiv.org/abs/1603.06560.

[117] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez,
and Ion Stoica. Tune: A Research Platform for Distributed Model Selection and
Training. In International Conference on Machine Learning AutoML workshop, 7
2018. URL http://arxiv.org/abs/1807.05118.

[118] Chuan Lin, Anyong Qing, and Quanyuan Feng. A comparative study of crossover
in differential evolution. Journal of Heuristics, 17(6):675–703, 2011. ISSN
1572-9397. doi: 10.1007/s10732-010-9151-1. URL https://doi.org/10.1007/

s10732-010-9151-1.

[119] Shih-Wei Lin, Kuo-Ching Ying, Shih-Chieh Chen, and Zne-Jung Lee. Particle Swarm
Optimization for Parameter Determination and Feature Selection of Support Vector
Machines. Expert Syst. Appl., 35(4):1817–1824, 11 2008. ISSN 0957-4174. doi:
10.1016/j.eswa.2007.08.088. URL http://dx.doi.org/10.1016/j.eswa.2007.08.

088.

[120] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Fo-
cal Loss for Dense Object Detection. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 42(2):318–327, 2 2020. ISSN 0162-8828. doi:
10.1109/TPAMI.2018.2858826. URL http://arxiv.org/abs/1708.02002https:

//ieeexplore.ieee.org/document/8417976/.

[121] Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and
Thore Graepel. Emergent Coordination Through Competition. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, 2 2019. URL http:

//arxiv.org/abs/1902.07151.

[122] Jiancheng Long, Hongming Zhang, Tianyang Yu, and Bo Xu. Iterative Update
and Unified Representation for Multi-Agent Reinforcement Learning. 8 2019. URL
http://arxiv.org/abs/1908.06758.

[123] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sanchez Ramos,
and José Ranilla Pastor. Particle Swarm Optimization for Hyper-parameter Se-
lection in Deep Neural Networks. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’17, pages 481–488, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4920-8. doi: 10.1145/3071178.3071208. URL
http://doi.acm.org/10.1145/3071178.3071208.

[124] Pablo Ribalta Lorenzo, Jakub Nalepa, Luciano Sanchez Ramos, and José Ranilla
Pastor. Hyper-parameter Selection in Deep Neural Networks Using Parallel Particle
Swarm Optimization. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’17, pages 1864–1871, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4939-0. doi: 10.1145/3067695.3084211. URL http://doi.

acm.org/10.1145/3067695.3084211.

http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1807.05118
https://doi.org/10.1007/s10732-010-9151-1
https://doi.org/10.1007/s10732-010-9151-1
http://dx.doi.org/10.1016/j.eswa.2007.08.088
http://dx.doi.org/10.1016/j.eswa.2007.08.088
http://arxiv.org/abs/1708.02002 https://ieeexplore.ieee.org/document/8417976/
http://arxiv.org/abs/1708.02002 https://ieeexplore.ieee.org/document/8417976/
http://arxiv.org/abs/1902.07151
http://arxiv.org/abs/1902.07151
http://arxiv.org/abs/1908.06758
http://doi.acm.org/10.1145/3071178.3071208
http://doi.acm.org/10.1145/3067695.3084211
http://doi.acm.org/10.1145/3067695.3084211

104 BIBLIOGRAPHY

[125] Ilya Loshchilov and Frank Hutter. CMA-ES for Hyperparameter Optimization of
Deep Neural Networks. In International Conference on Learning Representations, 4
2016. URL http://arxiv.org/abs/1604.07269.

[126] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Bi-population CMA-ES
agorithms with surrogate models and line searches. In GECCO, 2013.

[127] R Mallipeddi, P N Suganthan, Q K Pan, and M F Tasgetiren. Differential evolu-
tion algorithm with ensemble of parameters and mutation strategies. Applied Soft
Computing, 11(2):1679–1696, 2011. ISSN 1568-4946. doi: https://doi.org/10.1016/j.
asoc.2010.04.024. URL http://www.sciencedirect.com/science/article/pii/

S1568494610001043.

[128] Rammohan Mallipeddi. Harmony Search Based Parameter Ensemble Adaptation
for Differential Evolution. J. Applied Mathematics, 2013:1–750819, 2013.

[129] Rafael Gomes Mantovani, Tomás Horváth, Ricardo Cerri, Joaquin Vanschoren, and
André Carlos Ponce de Leon Ferreira de Carvalho. Hyper-Parameter Tuning of a
Decision Tree Induction Algorithm. 2016 5th Brazilian Conference on Intelligent
Systems (BRACIS), pages 37–42, 2016.

[130] Michael Meissner, Michael Schmuker, and Gisbert Schneider. Optimized Par-
ticle Swarm Optimization (OPSO) and its application to artificial neural net-
work training. BMC Bioinformatics, 7(1):125, 2006. ISSN 1471-2105. doi:
10.1186/1471-2105-7-125. URL https://doi.org/10.1186/1471-2105-7-125.

[131] Gábor Melis, Chris Dyer, and Phil Blunsom. On the State of the Art of Eval-
uation in Neural Language Models. In 6th International Conference on Learn-
ing Representations, ICLR 2018 - Conference Track Proceedings, 7 2018. URL
https://arxiv.org/abs/1707.05589.

[132] Efrén Mezura-Montes, Carlos A Coello Coello, and Edy I Tun-Morales. Simple
feasibility rules and differential evolution for constrained optimization. In Mexican
International Conference on Artificial Intelligence, pages 707–716. Springer, 2004.

[133] Donald Michie, D J Spiegelhalter, C C Taylor, and John Campbell, editors. Machine
Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River,
NJ, USA, 1994. ISBN 0-13-106360-X.

[134] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to computa-
tional geometry. MIT press, 1969. ISBN 9780262130431.

[135] Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning. In 33rd International Conference
on Machine Learning, ICML 2016, volume 4, pages 2850–2869, 2 2016. ISBN
9781510829008. URL http://arxiv.org/abs/1602.01783.

[136] Ali Wagdy Mohamed. An improved differential evolution algorithm with trian-
gular mutation for global numerical optimization. Computers & Industrial En-
gineering, 85:359–375, 2015. ISSN 0360-8352. doi: https://doi.org/10.1016/j.

http://arxiv.org/abs/1604.07269
http://www.sciencedirect.com/science/article/pii/S1568494610001043
http://www.sciencedirect.com/science/article/pii/S1568494610001043
https://doi.org/10.1186/1471-2105-7-125
https://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1602.01783

BIBLIOGRAPHY 105

cie.2015.04.012. URL http://www.sciencedirect.com/science/article/pii/

S0360835215001618.

[137] Ali Wagdy Mohamed and Ali Khater Mohamed. Adaptive guided differential
evolution algorithm with novel mutation for numerical optimization. Interna-
tional Journal of Machine Learning and Cybernetics, 10(2):253–277, 2019. ISSN
1868-808X. doi: 10.1007/s13042-017-0711-7. URL https://doi.org/10.1007/

s13042-017-0711-7.

[138] Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J. Rezende.
Towards Interpretable Reinforcement Learning Using Attention Augmented Agents.
In 33rd Conference on Neural Information Processing Systems, Vancouver, Canada,
6 2019. URL http://arxiv.org/abs/1906.02500.

[139] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted Boltz-
mann Machines. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, ICML’10, page 807–814, Madison, WI,
USA, 2010. Omnipress. ISBN 9781605589077.

[140] Alexander Nareyek. Choosing Search Heuristics by Non-Stationary Reinforce-
ment Learning. In Mauricio G C Resende and Jorge Pinho de Sousa, edi-
tors, Metaheuristics: Computer Decision-Making, pages 523–544. Springer US,
Boston, MA, 2003. ISBN 978-1-4757-4137-7. doi: 10.1007/978-1-4757-4137-7{\
}25. URL https://doi.org/10.1007/978-1-4757-4137-7_25http://link.

springer.com/10.1007/978-1-4757-4137-7_25.

[141] J A Nelder and R Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4):308–313, 1 1965. ISSN 0010-4620. doi: 10.1093/comjnl/7.
4.308. URL https://doi.org/10.1093/comjnl/7.4.308.

[142] Arild Nøkland and Lars Hiller Eidnes. Training Neural Networks with Local Error
Signals. In International Conference on Machine Learning, 2019.

[143] Stefan Oehmcke and Oliver Kramer. Knowledge Sharing for Population Based
Neural Network Training. In Frank Trollmann and Anni-Yasmin Turhan, editors,
Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelli-
genz), pages 258–269. Springer International Publishing, Cham, 2018. ISBN 978-3-
030-00111-7. doi: 10.1007/978-3-030-00111-7{\ }22. URL http://link.springer.

com/10.1007/978-3-030-00111-7_22.

[144] Randal S Olson, William La Cava, Zairah Mustahsan, Akshay Varik, and Jason H
Moore. Data-driven advice for applying machine learning to bioinformatics prob-
lems. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 23:
192–203, 2018. ISSN 2335-6936. URL https://www.ncbi.nlm.nih.gov/pubmed/

29218881https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890912/.

[145] Yoshihiko Ozaki, Masaki Yano, and Masaki Onishi. Effective hyperparameter op-
timization using Nelder-Mead method in deep learning. IPSJ Transactions on
Computer Vision and Applications, 9(1):20, 2017. ISSN 1882-6695. doi: 10.1186/
s41074-017-0030-7. URL https://doi.org/10.1186/s41074-017-0030-7.

http://www.sciencedirect.com/science/article/pii/S0360835215001618
http://www.sciencedirect.com/science/article/pii/S0360835215001618
https://doi.org/10.1007/s13042-017-0711-7
https://doi.org/10.1007/s13042-017-0711-7
http://arxiv.org/abs/1906.02500
https://doi.org/10.1007/978-1-4757-4137-7_25 http://link.springer.com/10.1007/978-1-4757-4137-7_25
https://doi.org/10.1007/978-1-4757-4137-7_25 http://link.springer.com/10.1007/978-1-4757-4137-7_25
https://doi.org/10.1093/comjnl/7.4.308
http://link.springer.com/10.1007/978-3-030-00111-7_22
http://link.springer.com/10.1007/978-3-030-00111-7_22
https://www.ncbi.nlm.nih.gov/pubmed/29218881 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890912/
https://www.ncbi.nlm.nih.gov/pubmed/29218881 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890912/
https://doi.org/10.1186/s41074-017-0030-7

106 BIBLIOGRAPHY

[146] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blon-
del, P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau,
M Brucher, M Perrot, and E Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[147] Martin Pelikan, David E Goldberg, and Erick Cantú-Paz. BOA: The Bayesian Op-
timization Algorithm. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation - Volume 1, GECCO’99, pages 525–532, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-611-4. URL
http://dl.acm.org/citation.cfm?id=2933923.2933973.

[148] B T Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. ISSN
0041-5553. doi: https://doi.org/10.1016/0041-5553(64)90137-5. URL http://www.

sciencedirect.com/science/article/pii/0041555364901375.

[149] M J D Powell. A Direct Search Optimization Method That Models the Objective
and Constraint Functions by Linear Interpolation. In Susana Gomez and Jean-Pierre
Hennart, editors, Advances in Optimization and Numerical Analysis, pages 51–67.
Springer Netherlands, Dordrecht, 1994. ISBN 978-94-015-8330-5. doi: 10.1007/
978-94-015-8330-5{\ }4. URL https://doi.org/10.1007/978-94-015-8330-5_

4http://link.springer.com/10.1007/978-94-015-8330-5_4.

[150] K V Price. Differential evolution vs. the functions of the 2/sup nd/ ICEO. In
Proceedings of 1997 IEEE International Conference on Evolutionary Computation
(ICEC ’97), pages 153–157, 1997. ISBN VO -. doi: 10.1109/ICEC.1997.592287.

[151] Kenneth Price. An Introduction to Differential Evolution. In New Ideas in Optimiza-
tion, pages 79–108. McGraw-Hill Ltd., UK, London, UK, 1999. ISBN 0077095065.

[152] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution.
Natural Computing Series. Springer-Verlag, Berlin/Heidelberg, 2005. ISBN 3-540-
20950-6. doi: 10.1007/3-540-31306-0. URL http://link.springer.com/10.1007/

3-540-31306-0.

[153] Kenneth V Price and Rainer Storn. Differential Evolution-A simple evolution strat-
egy for fast optimization. Dr. Dobb’s Journal of Software Tools 22, 4:18–24, 1997.

[154] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Doro-
gush, and Andrey Gulin. Catboost: unbiased boosting with categorical fea-
tures. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, pages 6638–6648, Montréal, Canada, 6 2018. URL http:

//arxiv.org/abs/1706.09516.

[155] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1):145–151, 1999. ISSN 0893-6080. doi: https://doi.org/
10.1016/S0893-6080(98)00116-6. URL http://www.sciencedirect.com/science/

article/pii/S0893608098001166.

[156] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-
Dickstein. On the Expressive Power of Deep Neural Networks. In Doina Precup

http://dl.acm.org/citation.cfm?id=2933923.2933973
http://www.sciencedirect.com/science/article/pii/0041555364901375
http://www.sciencedirect.com/science/article/pii/0041555364901375
https://doi.org/10.1007/978-94-015-8330-5_4 http://link.springer.com/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4 http://link.springer.com/10.1007/978-94-015-8330-5_4
http://link.springer.com/10.1007/3-540-31306-0
http://link.springer.com/10.1007/3-540-31306-0
http://arxiv.org/abs/1706.09516
http://arxiv.org/abs/1706.09516
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://www.sciencedirect.com/science/article/pii/S0893608098001166

BIBLIOGRAPHY 107

and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
2847–2854, International Convention Centre, Sydney, Australia, 2017. PMLR. URL
http://proceedings.mlr.press/v70/raghu17a.html.

[157] Carl Edward Rasmussen and Christopher K I Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006. ISBN 0-262-18253-X.

[158] Apostolos Nicholas Refenes, Achileas Zapranis, and Gavin Francis. Stock Per-
formance Modeling Using Neural Networks: A Comparative Study with Regres-
sion Models. Neural Netw., 7(2):375–388, 1994. ISSN 0893-6080. doi: 10.1016/
0893-6080(94)90030-2. URL https://doi.org/10.1016/0893-6080(94)90030-2.

[159] Brian David Ripley. Statistical Aspects of Neural Networks. In O.E. Barndor-
Nielsen, J.L. Jensen, and W.S. Kendall, editors, Networks and Chaos - Statistical
and Probabilistic Aspects, pages 40–123. Chapman & Hall, 1993.

[160] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic Routing Be-
tween Capsules. In I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus,
S Vishwanathan, and R Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 3856–3866. Curran Associates, Inc., 2017. URL http:

//papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf.

[161] Shaeke Salman and Xiuwen Liu. Overfitting Mechanism and Avoidance in Deep
Neural Networks. 1 2019. URL http://arxiv.org/abs/1901.06566.

[162] S Sanders and C Giraud-Carrier. Informing the Use of Hyperparameter Optimization
Through Metalearning. In 2017 IEEE International Conference on Data Mining
(ICDM), pages 1051–1056, 2017. ISBN VO -. doi: 10.1109/ICDM.2017.137.

[163] Mischa Schmidt, Shahd Safarani, Julia Gastinger, Tobias Jacobs, Sebastien Nicolas,
and Anett Schulke. On the Performance of Differential Evolution for Hyperparameter
Tuning. In Proceedings of the International Joint Conference on Neural Networks,
volume 2019-July, 4 2019. ISBN 9781728119854. doi: 10.1109/IJCNN.2019.8851978.
URL https://arxiv.org/abs/1904.06960.

[164] Simon Schmitt, Jonathan J. Hudson, Augustin Zidek, Simon Osindero, Carl Doersch,
Wojciech M. Czarnecki, Joel Z. Leibo, Heinrich Kuttler, Andrew Zisserman, Karen
Simonyan, and S. M. Ali Eslami. Kickstarting Deep Reinforcement Learning. 3
2018. URL http://arxiv.org/abs/1803.03835.

[165] Bernhard Scholkopf and Alexander J Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,
USA, 2001. ISBN 0262194759.

[166] D Sculley, Jasper Snoek, Alexander B Wiltschko, and Ali Rahimi. Winner’s Curse?
On Pace, Progress, and Empirical Rigor. In ICLR, 2018.

[167] S S Shapiro and M B Wilk. An Analysis of Variance Test for Normality (Complete
Samples). Biometrika, 52(3/4):591–611, 7 1965. ISSN 00063444. doi: 10.2307/
2333709. URL http://www.jstor.org/stable/2333709.

http://proceedings.mlr.press/v70/raghu17a.html
https://doi.org/10.1016/0893-6080(94)90030-2
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
http://arxiv.org/abs/1901.06566
https://arxiv.org/abs/1904.06960
http://arxiv.org/abs/1803.03835
http://www.jstor.org/stable/2333709

108 BIBLIOGRAPHY

[168] Connor Shorten and Taghi M Khoshgoftaar. A survey on Image Data Augmentation
for Deep Learning. Journal of Big Data, 6(1):60, 2019. ISSN 2196-1115. doi: 10.
1186/s40537-019-0197-0. URL https://doi.org/10.1186/s40537-019-0197-0.

[169] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In ICLR 2015, 2015.

[170] Sapna Singh, Daya Shankar Singh, and Shobhit Kumar. Modified Mean Square
Error Algorithm with Reduced Cost of Training and Simulation Time for Character
Recognition in Backpropagation Neural Network BT - Proceedings of the Interna-
tional Conference on Frontiers of Intelligent Computing: Theory and Applicat. pages
137–145, Cham, 2014. Springer International Publishing. ISBN 978-3-319-02931-3.

[171] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Optimiza-
tion of Machine Learning Algorithms. In Advances in Neural Information Pro-
cessing Systems, volume 4, pages 2951–2959, 6 2012. ISBN 9781627480031. URL
https://arxiv.org/abs/1206.2944.

[172] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimiza-
tion of Machine Learning Algorithms. In Proceedings of the 25th International Con-
ference on Neural Information Processing Systems - Volume 2, NIPS’12, pages 2951–
2959, USA, 2012. Curran Associates Inc. URL http://dl.acm.org/citation.cfm?

id=2999325.2999464.

[173] Jasper Snoek, Kevin Swersky, Richard Zemel, and Ryan P. Adams. Input Warp-
ing for Bayesian Optimization of Non-stationary Functions. In 31st International
Conference on Machine Learning, ICML 2014, volume 5, pages 3654–3662, 2 2014.
ISBN 9781634393973. URL http://arxiv.org/abs/1402.0929.

[174] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger.
Information-Theoretic Regret Bounds for Gaussian Process Optimization in the
Bandit Setting. IEEE Transactions on Information Theory, 58(5):3250–3265, 12
2012. ISSN 00189448. doi: 10.1109/TIT.2011.2182033. URL https://arxiv.org/

abs/0912.3995.

[175] Thomas Stepleton, Razvan Pascanu, Will Dabney, Siddhant M Jayakumar, Hubert
Soyer, and Remi Munos. Low-pass Recurrent Neural Networks-A memory architec-
ture for longer-term correlation discovery. arXiv preprint arXiv:1805.04955, 2018.

[176] R Storn. On the usage of differential evolution for function optimization. In Proceed-
ings of North American Fuzzy Information Processing, pages 519–523, 1996. ISBN
VO -. doi: 10.1109/NAFIPS.1996.534789.

[177] R Storn. On the usage of differential evolution for function optimization. In Proceed-
ings of North American Fuzzy Information Processing, pages 519–523, 1996. ISBN
VO -. doi: 10.1109/NAFIPS.1996.534789.

[178] R Storn and K Price. Minimizing the real functions of the ICEC’96 contest by differ-
ential evolution. In Proceedings of IEEE International Conference on Evolutionary
Computation, pages 842–844, 1996. ISBN VO -. doi: 10.1109/ICEC.1996.542711.

https://doi.org/10.1186/s40537-019-0197-0
https://arxiv.org/abs/1206.2944
http://dl.acm.org/citation.cfm?id=2999325.2999464
http://dl.acm.org/citation.cfm?id=2999325.2999464
http://arxiv.org/abs/1402.0929
https://arxiv.org/abs/0912.3995
https://arxiv.org/abs/0912.3995

BIBLIOGRAPHY 109

[179] Rainer Storn and Kenneth Price. Differential Evolution - A simple and efficient
adaptive scheme for global optimization over continuous spaces. Technical report,
International Computer Science Institute, 1947 Center Street, Berkeley, 1995.

[180] Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces. Journal of Global Op-
timization, 11(4):341–359, 1997. ISSN 1573-2916. doi: 10.1023/A:1008202821328.
URL https://doi.org/10.1023/A:1008202821328.

[181] P N Suganthan, Swagatam Das, Satrajit Mukherjee, and Sarthak Chatterjee. Adap-
tation methods in differential evolution: A review. In 20th International Conference
on Soft Computing MENDEL, volume 2014, pages 131–140, 2014.

[182] Yifan Sun, Linan Zhang, and Hayden Schaeffer. NeuPDE: Neural Network Based
Ordinary and Partial Differential Equations for Modeling Time-Dependent Data,
2019.

[183] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton B
T Proceedings of the 30th International Conference on Machine Learn-
ing. On the importance of initialization and momentum in deep learning,
2 2013. URL http://proceedings.mlr.press/v28/sutskever13.pdfhttp://

proceedings.mlr.press/v28/sutskever13.html.

[184] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with
Neural Networks. In Advances in Neural Information Processing Systems, volume 4,
pages 3104–3112, 9 2014. URL http://arxiv.org/abs/1409.3215.

[185] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian Optimiza-
tion. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’13, pages 2004–2012, USA, 2013. Curran As-
sociates Inc. URL http://dl.acm.org/citation.cfm?id=2999792.2999836.

[186] V Sze, Y Chen, T Yang, and J S Emer. Efficient Processing of Deep Neural Networks:
A Tutorial and Survey. Proceedings of the IEEE, 105(12):2295–2329, 2017. ISSN
1558-2256 VO - 105. doi: 10.1109/JPROC.2017.2761740.

[187] R Tanabe and A Fukunaga. Success-history based parameter adaptation for Dif-
ferential Evolution. In 2013 IEEE Congress on Evolutionary Computation, pages
71–78, 2013. ISBN 1941-0026 VO -. doi: 10.1109/CEC.2013.6557555.

[188] R Tanabe and A S Fukunaga. Improving the search performance of SHADE
using linear population size reduction. In 2014 IEEE Congress on Evolution-
ary Computation (CEC), pages 1658–1665, 2014. ISBN 1941-0026 VO -. doi:
10.1109/CEC.2014.6900380.

[189] Ryoji Tanabe and Alex Fukunaga. Evaluating the performance of SHADE on CEC
2013 benchmark problems. In 2013 IEEE Congress on evolutionary computation,
pages 1952–1959. IEEE, 2013.

[190] Jason Teo. Exploring dynamic self-adaptive populations in differential evolu-
tion. Soft Computing, 10(8):673–686, 2006. ISSN 1433-7479. doi: 10.1007/
s00500-005-0537-1. URL https://doi.org/10.1007/s00500-005-0537-1.

https://doi.org/10.1023/A:1008202821328
http://proceedings.mlr.press/v28/sutskever13.pdf http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.pdf http://proceedings.mlr.press/v28/sutskever13.html
http://arxiv.org/abs/1409.3215
http://dl.acm.org/citation.cfm?id=2999792.2999836
https://doi.org/10.1007/s00500-005-0537-1

110 BIBLIOGRAPHY

[191] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-
WEKA: Combined Selection and Hyperparameter Optimization of Classification
Algorithms. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’13, volume Part F1288, page 847,
New York, New York, USA, 8 2013. ACM Press. ISBN 9781450321747. doi: 10.
1145/2487575.2487629. URL http://arxiv.org/abs/1208.3719http://dl.acm.

org/citation.cfm?doid=2487575.2487629.

[192] John W Tukey. Comparing Individual Means in the Analysis of Variance. Biometrics,
5(2):99–114, 7 1949. ISSN 0006341X, 15410420. doi: 10.2307/3001913. URL http:

//www.jstor.org/stable/3001913.

[193] Josef Tvrd́ık. Adaptation in differential evolution: A numerical comparison. Ap-
plied Soft Computing, 9(3):1149–1155, 2009. ISSN 1568-4946. doi: https://doi.
org/10.1016/j.asoc.2009.02.010. URL http://www.sciencedirect.com/science/

article/pii/S1568494609000301.

[194] Onay Urfalioglu and Orhan Arikan. Self-adaptive randomized and rank-based
differential evolution for multimodal problems. Journal of Global Optimization,
51(4):607–640, 2011. ISSN 1573-2916. doi: 10.1007/s10898-011-9646-9. URL
https://doi.org/10.1007/s10898-011-9646-9.

[195] Anton Van Moere. Exploring the edges of simplicity in machine learning with creative
neural network models. PhD thesis, Ghent University, 2017. URL https://lib.

ugent.be/fulltxt/RUG01/002/494/502/RUG01-002494502_2018_0001_AC.pdf.

[196] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
In Advances in Neural Information Processing Systems, volume 2017-Decem, pages
5999–6009, 6 2017. URL http://arxiv.org/abs/1706.03762.

[197] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. FeUdal Networks for Hierarchical
Reinforcement Learning. In 34th International Conference on Machine Learning,
ICML 2017, volume 7, pages 5409–5418, 3 2017. ISBN 9781510855144. URL https:

//arxiv.org/abs/1703.01161.

[198] Adam Viktorin, Roman Senkerik, Michal Pluhacek, and Tomas Kadavy. Archive
analysis in SHADE. In International Conference on Artificial Intelligence and Soft
Computing, pages 688–699. Springer, 2017.

[199] Hui Wang, Shahryar Rahnamayan, and Zhijian Wu. Parallel differential evolution
with self-adapting control parameters and generalized opposition-based learning for
solving high-dimensional optimization problems. Journal of Parallel and Distributed
Computing, 73(1):62–73, 2013. ISSN 0743-7315. doi: https://doi.org/10.1016/j.
jpdc.2012.02.019. URL http://www.sciencedirect.com/science/article/pii/

S0743731512000639.

[200] Jane X Wang, Edward Hughes, Chrisantha Fernando, Wojciech M Czarnecki,
Edgar A Duéñez-Guzmán, and Joel Z Leibo. Evolving intrinsic motivations for altru-
istic behavior. In Proceedings of the 18th International Conference on Autonomous

http://arxiv.org/abs/1208.3719 http://dl.acm.org/citation.cfm?doid=2487575.2487629
http://arxiv.org/abs/1208.3719 http://dl.acm.org/citation.cfm?doid=2487575.2487629
http://www.jstor.org/stable/3001913
http://www.jstor.org/stable/3001913
http://www.sciencedirect.com/science/article/pii/S1568494609000301
http://www.sciencedirect.com/science/article/pii/S1568494609000301
https://doi.org/10.1007/s10898-011-9646-9
https://lib.ugent.be/fulltxt/RUG01/002/494/502/RUG01-002494502_2018_0001_AC.pdf
https://lib.ugent.be/fulltxt/RUG01/002/494/502/RUG01-002494502_2018_0001_AC.pdf
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1703.01161
https://arxiv.org/abs/1703.01161
http://www.sciencedirect.com/science/article/pii/S0743731512000639
http://www.sciencedirect.com/science/article/pii/S0743731512000639

BIBLIOGRAPHY 111

Agents and MultiAgent Systems, pages 683–692. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2019. ISBN 1450363091.

[201] Y Wang, Z Cai, and Q Zhang. Differential Evolution With Composite Trial Vector
Generation Strategies and Control Parameters. IEEE Transactions on Evolutionary
Computation, 15(1):55–66, 2011. ISSN VO - 15. doi: 10.1109/TEVC.2010.2087271.

[202] Matthieu Weber, Ferrante Neri, and Ville Tirronen. Shuffle or update parallel
differential evolution for large-scale optimization. Soft Computing, 15(11):2089–
2107, 2011. ISSN 1433-7479. doi: 10.1007/s00500-010-0640-9. URL https:

//doi.org/10.1007/s00500-010-0640-9.

[203] Claus Weihs, Karsten Luebke, and Irina Czogiel. Response Surface Methodology for
Optimizing Hyper Parameters. Technical report, TU Dortmund University, 2006.
URL http://dx.doi.org/10.17877/DE290R-14252.

[204] Thomas Weise. Global Optimization Algorithms - Theory and Application. Self-
Published, second edition, 2009. URL http://www.it-weise.de/.

[205] B L Welch. On the Comparison of Several Mean Values: An Alternative Approach.
Biometrika, 38(3/4):330–336, 7 1951. ISSN 00063444. doi: 10.2307/2332579. URL
http://www.jstor.org/stable/2332579.

[206] Chai Wah Wu. ProdSumNet: reducing model parameters in deep neural networks
via product-of-sums matrix decompositions, 2018.

[207] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. 8 2017. URL https:

//arxiv.org/abs/1708.07747http://arxiv.org/abs/1708.07747.

[208] Rui Xu, Ganesh K. Venayagamoorthy, and Donald C. Wunsch. Modeling of gene
regulatory networks with hybrid differential evolution and particle swarm opti-
mization. Neural Networks, 20(8):917–927, 10 2007. ISSN 0893-6080. doi: 10.
1016/J.NEUNET.2007.07.002. URL https://www.sciencedirect.com/science/

article/pii/S0893608007000998#!

[209] Daniela Zaharie. Parameter adaption in differential evolution by controlling the
population diversity. Analele Universităţii din Timişoara. Seria Matematică-
Informatică, 40, 1 2002.

[210] Daniela Zaharie. A comparative analysis of crossover variants in differential evo-
lution. Proceedings of the International Multiconference on Computer Science and
Information Technology, pages 171–181, 5 2006.

[211] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol
Vinyals, and Peter Battaglia. Deep reinforcement learning with relational induc-
tive biases. In International Conference on Learning Representations, 6 2018. URL
https://arxiv.org/abs/1806.01830http://arxiv.org/abs/1806.01830.

https://doi.org/10.1007/s00500-010-0640-9
https://doi.org/10.1007/s00500-010-0640-9
http://dx.doi.org/10.17877/DE290R-14252
http://www.it-weise.de/
http://www.jstor.org/stable/2332579
https://arxiv.org/abs/1708.07747 http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747 http://arxiv.org/abs/1708.07747
https://www.sciencedirect.com/science/article/pii/S0893608007000998#!
https://www.sciencedirect.com/science/article/pii/S0893608007000998#!
https://arxiv.org/abs/1806.01830 http://arxiv.org/abs/1806.01830

112 BIBLIOGRAPHY

[212] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. In International
Conference on Learning Representations, 2017.

[213] J Zhang and A C Sanderson. JADE: Adaptive Differential Evolution With Optional
External Archive. IEEE Transactions on Evolutionary Computation, 13(5):945–958,
2009. ISSN VO - 13. doi: 10.1109/TEVC.2009.2014613.

[214] J M Zhang, M Harman, L Ma, and Y Liu. Machine Learning Testing: Survey,
Landscapes and Horizons. IEEE Transactions on Software Engineering, page 1,
2020. ISSN 1939-3520 VO -. doi: 10.1109/TSE.2019.2962027.

[215] Shuguang Zhao, Xu Wang, Liang Chen, and Wu Zhu. A Novel Self-adaptive Differen-
tial Evolution Algorithm with Population Size Adjustment Scheme. Arabian Journal
for Science and Engineering, 39(8):6149–6174, 2014. ISSN 2191-4281. doi: 10.1007/
s13369-014-1248-7. URL https://doi.org/10.1007/s13369-014-1248-7.

[216] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random Erasing
Data Augmentation. Proceedings of the AAAI Conference on Artificial Intelligence,
34(07):13001–13008, 2020. ISSN 2159-5399. doi: 10.1609/aaai.v34i07.7000.

[217] Yinda Zhou, Weiming Liu, and Bin Li. Two-stage population based training method
for deep reinforcement learning. In Proceedings of the 3rd International Conference
on High Performance Compilation, Computing and Communications, pages 38–44.
ACM, 2019. ISBN 1450366384.

[218] Yinda Zhou, Weiming Liu, and Bin Li. Efficient Online Hyperparameter Adaptation
for Deep Reinforcement Learning BT - Applications of Evolutionary Computation.
In Paul Kaufmann and Pedro A Castillo, editors, International Conference on the
Applications of Evolutionary Computation (Part of EvoStar), pages 141–155, Cham,
2019. Springer International Publishing. ISBN 978-3-030-16692-2.

https://doi.org/10.1007/s13369-014-1248-7

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Question and Method
	Outline

	Background
	Research Topic
	Related Work
	Automatic Hyperparameter Adaption for Neural Networks
	Population-Based Training
	Differential Evolution

	Methodology
	Implementing the PBT Baseline
	Incorporating DE Heuristics Into PBT
	Incorporating Adaptive DE Heuristics
	Experiments
	Implementation

	Results
	Overview
	Welch ANOVA Analysis
	Individual Performance Comparisons
	Time complexity
	Hyperparameter Schedules
	Impact of Population Size

	Discussion
	Research Questions
	Comparing to Other Methods
	Challenges and Limitations
	Future Work

	Conclusions
	Bibliography

