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Abstract

This study presents a comparison of the performance of standard machine learn-
ing techniques in predicting thrombosis. The comparison is conducted on full
and reduced variations of a clinical dataset.

The investigation demonstrates that XGBoost accomplishes the highest effi-
ciency on the full dataset. It is followed by Random Forests, Support Vector
Machines and Artificial Neural Networks. They score an accuracy of 94.56,
92.74, 92.14 and 88.82, respectively.

Random Forests yields the maximum performance on the reduced dataset, fol-
lowed by XGBoost, Artificial Neural Networks and Support Vector Machines.
They score an accuracy of 86.10, 84.29, 81.87 and 77.94, respectively.

Support Vector Machines produces the lowest number of false negatives on
the full dataset followed by XGBoost, Artificial Neural Networks and Random
Forests. They attain a recall score of 96.72, 93.44, 80.32 and 75.40, respectively.
XGBoost attains the best performance on the reduced dataset followed by Sup-
port Vector Machines, Random Forests and Artificial Neural Networks. They
score 50.81, 49.18, 40.98 and 34.42, respectively, on the recall metric.

Keywords: Quantitative Comparison, Thrombosis Prediction, Decision Sup-
port, Random Forests, XGBoost, Support Vector Machines, Artificial Neural
Networks.
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Chapter 1

Introduction

Modern society is experiencing an advancing wave of digitalisation and, comput-
ing technologies are being adopted into various aspects of present-day society.
Digitalisation has introduced automated computing systems in travel, educa-
tion, public administration, communication, hospitality, economic, healthcare
and several more divisions of the social construct. The tendency towards digi-
talisation is generating enormous amounts of digital data. This untapped data is
being utilised to benefit from the computing technologies such as machine learn-
ing. Machine learning models trained with this data are offering vital decision
support to enhance the services in various areas of society, including healthcare.

1.1 Machine Learning in Health Care

The digitalisation of the healthcare sector has enabled the collection of vital
clinical data. This increased availability of data has enabled the application of
data analytics in the field. The clinical data is employed to train machine learn-
ing models that provide decision support in healthcare. Machine learning-based
decision support is beneficial to medical specialists in diagnosing and curing var-
ious diseases, therefore research institutes and experts are conducting numerous
studies in order to benefit from this opportunity.

@stfold Hospital Kalnes has conducted a similar study in collaboration with
its international partners to investigate thrombosis. The research initiative in-
vestigates thrombosis patients and the potential application of machine learning
in the domain. Thrombosis is a fatal ailment that is caused by the abnormal
formation of thrombi inside blood vessels. It has been discussed thoroughly
in the Background chapter. The study has generated a comprehensive dataset
that describes thrombosis patients. Our study performs three investigations on
this dataset. It examines the full and reduced variations of the dataset with the
help of standard machine learning algorithms. It additionally analyses the false
negatives produced during the predictive modelling on the dataset.
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1.2 Research Objectives

This study aims to conduct a comparative investigation of the performance of
standard machine learning algorithms. It will compare the performance of the
algorithms on different variations of the dataset in predicting thrombosis. The
dataset has been provided by the investigation conducted at (Jstfold Hospital
Kalnes. It will employ two variations of the original dataset to compare the per-
formance of standard machine learning algorithms. The full dataset variation
includes all of the feasible features from the original dataset and, the reduced
dataset variation contains a limited amount of patients’ information. A thor-
ough explanation of these variations has been presented in the Ezrperimental
Setup chapter.

It is particularly significant to identify a maximum number of patients from the
mixed population to ensure that the subjects with the ailment are not disre-
garded. This necessitates that the predictive models should possess high scores
on the recall metric. A high score on the recall metric ensures that the number
of false negatives is minimised, therefore, this study additionally compares the
performance of standard machine learning algorithms on reducing the number
of false negatives.

The principal objectives of this study can be summarised with the help of the
following research questions.

e RQ I: How do standard machine learning algorithms compare in perfor-
mance on the full dataset?

e RQ II: How do standard machine learning algorithms compare in perfor-
mance on the reduced dataset?

e RQ III: How do standard machine learning algorithms compare in per-
formance on minimising the number of false negatives?

This study is structured into the following chapters. The Introduction chapter
discusses the motivation and the goals of the study. The Background chapter
presents a thorough explanation regarding thrombosis and machine learning al-
gorithms. The Related Work chapter contains a comprehensive literature review
concerning the investigation. A detailed description of the experiments has been
provided in the Ezperimental Setup chapter. The Results chapter illustrates the
outcomes obtained from the experiments, and the Discussion chapter reviews
these outcomes. The final outcomes of the investigation are presented in the
Conclusion chapter.
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Background

This chapter presents a comprehensive overview of thrombosis and machine
learning.

2.1 Thrombosis

Thrombosis is the development of blood thrombi inside blood vessels. The for-
mation of blood clots generally occurs due to the injuries sustained by blood
vessels. The immune system of the human body initiates a healing process to
stop the bleeding. The platelets and fibrin accumulate on the injured patches of
the blood vessels to form blood clots. This blood clots formation (coagulation)
can occasionally occur even when there is no injury to synthesise an embolus.
Several serious health complications can occur if the embolus detaches from the
blood vessel and travels to other vital organs such as the lungs [1]. There are two
principal types of thrombosis, venous and arterial thrombosis. Venous throm-
bosis is relatively more prevalent than arterial thrombosis, and it can cause
blockage of blood flow to different parts of the body. Pulmonary thrombosis
is a dangerous medical complication that arises when venous thromboembolism
migrates to the lungs. Arterial thrombosis may deprive the organs of oxygen-
rich blood which can result in a stroke or general organ damage [1].

The inner membranes of blood vessels and the heart are in continuous contact
with the blood due to the blood circulation. The coagulant characteristics of the
blood can lead to the formation of clotting elements on the interior portions of
the blood-rich organs, i.e. heart and blood vessels. These harmful clots are gen-
erally known as thrombus. A thrombus is usually formed by the accumulation
of platelets, insoluble fibrin, red blood cells and white blood cells. Thrombosis
can be further categorised into the white, red, mixed and transparent thrombus
depending on the situation and characteristics of the thrombus [1].
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2.1.1 Thrombotic Hazards

Thrombosis can have lethal consequences for human health. A study concluded
that venous thrombosis may have an early case fatality rate of up to 6%, and 20%
of patients can die within the first year of illness [2]. The fatalities may increase
further since the recurrence rate can be as high as 5% [3]. Thrombosis often
concludes with strokes, therefore, making it one of the most deadly ailments in
the United States [4]. The mortality rate is interestingly maximum during the
first few months of the illness and declines gradually over time [2].

Thrombosis is a lethal ailment that contributes significantly to fatalities around
the world. The recurring nature of the discase aggravates the risk further that
can jeopardise public health. A study conducted on 570 patients in Cambridge,
UK concluded that the average rate of recurrence stands at 11%. The recurrence
rate after the first unprovoked thrombosis was the highest at 19.4% and lowest
after first provoked thrombosis at 0% [5]. A few more clinical studies concluded
with high recurrence rates. The recurrence rates are significantly higher in
men than in women, and they can be as high as 30.7% [6]. The incidence of
thrombosis for the first time is contrarily higher in women than men. The
diverging recurrence rates are not precisely justified [6][7].

2.1.2 Risk Factors

There is a wide range of risk factors that can lead to complications concerning
thrombosis. They can be classified into two major categories, unprovoked and
provoked. The unprovoked category consists of older age (>65 years), long haul
travel, thrombophilia, obesity, smoking, hypertension and air pollution. The
provoked category consists of little physical movement, trauma, oral contracep-
tives, cancer, critical sickness (pneumonia, heart failure) [8].

There are several other causes linked to the occurrence of thrombosis that in-
cludes genetic disorders, environmental factors, medical procedures [3]. Gender
can affect the prevalence of thrombosis. A study performed in Tromsg, Norway
demonstrated that the thrombosis incidence rate is higher in women until age
60. After the age of 60, the incidence rate is slightly higher in men than in
women [2]. A study conducted in Sweden concluded that the incidence rates
are similar for both males and females [9]. Age is an influential factor in gen-
eral as well. The incidence rate increases steeply with the increasing age [3].
Ethnic backgrounds can influence the incidence of thrombosis to a significant
extent. Several studies have concluded that the incidence rate can be lower
in the Asian populations than in European counterparts [3]. National health
insurance claims data from Taiwan presents an incidence rate that is ten times
lower than the American and European incidence rates [10]. Several genetic risk
factors can be contributive to the incidence of thrombosis. The deficiency of
natural anticoagulants protein S, protein C and antithrombin are prominent ge-
netic risk factors [3]. The acquired risk factors can be the leading reason for the
incidence of thrombosis. There are various acquired risk factors, including, but
not limited to, medical procedures, cancer, drugs, obesity, smoking, long-haul
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travel and lack of exercise [3]. Cancer is one of the most influential acquired
risk factors, raising the risk of venous thrombosis by 50 times during the first
six months after the diagnosis [11].

2.1.3 Diagnosis

Thrombosis can be diagnosed with the help of several diagnosis techniques.
Clinical probability assessment, Measurement of fibrin D-Dimer and Compres-
sion ultrasonography constitute the bulk of thrombosis diagnosis infrastructure
[8].

Clinical probability assessment segregates the patients based on the associated
high and low clinical probability. Patients with high clinical probability are
treated with anticoagulants until the diagnosis is concluded with the help of
Compression ultrasonography. The diagnosis for patients with low or interme-
diate clinical probability can be ruled out with the aid of a D-Dimer test [8].
Fibrin D-Dimer is a degradation product whose concentration rises for patients
with venous thrombosis. D-Dimer test is remarkably efficient (95%) in classify-
ing venous thrombosis patients. 500 ug/L is generally accepted as the standard
threshold [8].

Compression ultrasonography proposes three different approaches. Only prox-
imal veins that are above the calf are subject to the diagnosis during the first
approach. This approach has a low yield rate, therefore, less effective. Proximal
and distal veins are diagnosed with Compression ultrasonography during the
second approach. This approach may initiate anticoagulation in some patients
that can lead to bleeding. The third approach is administered by conduct-
ing single Compression ultrasonography on proximal veins. Patients with an
intermediate or low clinical probability can be declared healthy if the results
are negative. The patients with a high clinical probability go through further
imaging [8].

2.1.4 Treatment

Thrombosis patients are generally treated with the help of Anticoagulant, An-
tiplatelet and Thrombolytic therapies [1].

The most fundamental treatment therapy is anticoagulation and, the majority
of patients react positively to the treatment [8]. The thrombus consists of blood
cells and fibrin as described earlier. They are found throughout the human body,
especially in blood vessels and the heart. The coagulation system and platelets
play a pivotal role in the development of thrombosis. Thrombin produces fibrin
that forms blood clots together with platelets. Anticoagulant therapy targets
the dangerous combination of platelets and the coagulation system [1]. Antico-
agulant therapy may cause bleeding during the initial phases of the treatment,
particularly in the older age. It can be avoided by halting alcohol consumption,
personal care and withdrawing the use of concurrent drugs [8]. General antico-
agulants include Heparins, Hua Falin and Fondaparinux [1][8].

Antiplatelet therapy is centred towards the platelets as the name suggests and
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it has proven to be effective. Platelets do not normally aggregate inside blood
vessels to form clots. When blood vessels are injured, platelets can interact with
the recently exposed collagen. It leads to the aggregation of platelets, therefore,
blood clots. It is possible to control the aggregation of platelets with certain
drugs to restrain thrombosis. Antiplatelet drugs decrease the adhesive char-
acteristics of platelets to restrain the excessive aggregation of platelets inside
blood vessels [1][12].

Thrombolytic therapy is another excellent approach to thrombosis treatment.
Thrombolytic drugs produce fibrinolytic enzyme from plasminogen. It disinte-
grates the fibrin inside a thrombus to dissolve it. Reteplase, Alteplase, Strep-
tokinase and Senecteplase are prominent thrombolytic drugs [1][13].

2.2 Machine Learning

We are going through the age of digitalisation. We are using computers and
smartphones to assist ourselves in our daily lives which have digitalised the busi-
ness processes. It includes but not limited to education, healthcare, shopping,
personal communication and information sharing. While we use computers to
accomplish various goals, it leads to the generation of valuable data. The cre-
ation of useful data has grown exponentially with the advent of smartphones.
Naturally generated information generally comprises patterns and regularities.
These patterns and regularities play a pivotal role in predictive modelling. We
utilise specific computer algorithms to accommodate a computer in identifying
these patterns. Computers can predict the outcomes of future incidents with
the help of these predictive models once these patterns have been identified. For
instance IBM Watson has been successful in recommending cancer treatments
with an accuracy of up to 99% [14]. The accuracy and the reliability of machine
learning models can be enhanced further with a continuous supply of quality
data [14].

Machine learning is the process of training computers to predict future out-
comes by gaining valuable knowledge from historical experience and informa-
tion. Machine learning can be classified into three principal types, supervised,
unsupervised and reinforcement learning [15].

2.2.1 Supervised Learning

Supervised learning is one of the most prominent types of machine learning.
Supervised learning has a strong focus on labelled data. The machine learning
algorithm is trained with the help of a training dataset. The training dataset
contains training examples and each example comprises the inputs and the de-
sired output. The algorithm iterates over a large number of samples and at-
tempts to learn the patterns with the help of a supervisor. As the algorithm is
provided with the correct output values, therefore, it can learn from the mistakes
while attempting to learn the relationship between the input and the output.
Once the model has processed enough examples to learn a sound mapping from
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the input to the output, it is evaluated against the test dataset. The accuracy of
models in supervised learning is highly dependent on the number and quality of
training examples. Classification and Regression are the leading types of super-
vised learning [15]. Figure 2.1 demonstrates the overall concept of supervised
learning.

Supervisor

i Sedesodo dode
Yohokk

HE—0 o
- Pefededey

Algorithm Processing

Output

Figure 2.1: A visual representation of supervised learning in machine learning.

2.2.2 Unsupervised Learning

Unsupervised learning is principally associated with unlabelled data. It oper-
ates on a dataset that consists of only inputs and no specified outputs. The
algorithm processes the bulk of data and discovers the hidden patterns and
regularities. The groups or clusters identified by the algorithm are utilised to
make informed decisions. The process has been illustrated in Figure 2.2. Un-
supervised learning is particularly beneficial since a greater portion of the data
available for processing is unlabelled. It is specifically helpful in discovering
hidden but remarkably valuable patterns in unstructured data. Clustering is an
excellent example of unsupervised learning [15].

Output
Raw Input Unknown output P

e Sk ok

Algorithm Processing

No training dataset

Figure 2.2: A visualisation of unsupervised learning in machine learning.

2.2.3 Reinforcement Learning

Reinforcement learning is moderately unrelated to supervised and unsupervised
learning. It is employed when the aim is not a single entity but a set of accurate
actions to achieve the goal (state). As the name suggests, a reinforcement



CHAPTER 2. BACKGROUND 8

learning algorithm is designed to learn from mistakes. There is naturally a
higher frequency of errors during the initial phase of learning. The algorithm
(agent) is continuously informed regarding the “good” and “bad” decisions,
therefore, reinforced to make the correct decisions. The accuracy improves
together with the process of learning. It has been described in Figure 2.3.
Reinforcement learning is relatively more sensitive to unreliable inputs because
it might lead to incorrect reinforcements. Computers learning to play video
games against humans is a well-known example of reinforcement learning [15].

Reward o Actions

Figure 2.3: A visual representation of reinforcement learning in machine learn-
ing.

Output
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2.3 Machine Learning Algorithms

There are several algorithms employed in machine learning for the learning pro-
cess, including, but not limited to, linear regression, logistic regression, decision
trees, random forest, XGBoost and artificial neural networks.

2.3.1 Linear Regression

Regression is associated with the prediction of continuous numerals from in-
dependent variables. It principally relies on the cause and effect relationship
between the variables and belongs to the supervised learning branch of machine
learning. Linear regression is one of the many varieties of regressions where
there is only one predictor variable. As the name suggests, there is a linear rela-
tionship between the predictor variable and the target variable or the dependent
variable. This relationship can be expressed in the form of a linear equation.
The equation consists of the independent variable, dependent variable and some
parameters. These parameters are adjusted during the learning process in order
to develop an equation that generates the best fitting line on all of the data
points. It has been demonstrated graphically in Figure 2.4. It is possible to
utilise multiple independent variables by employing Multiple Linear Regression

16].
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Figure 2.4: The process of fitting a regression line to the data-points using
Linear Regression.

2.3.2 Logistic Regression

Logistic regression is a machine learning algorithm to perform classification. It is
a supervised learning technique. Classification in machine learning is the process
of differentiating the dataset into different groups or classes. Logistic regression
is usually employed to perform binary classification in which the dataset is cat-
egorised into two categories. Logistic regression is influenced by the concept of
probability and a sigmoid function is used to perform the cost analysis. The sig-
moid function converts any input value into a value that lies between 0 and 1. A
threshold is established during the learning process to differentiate the dataset
into two classes depending on the probability output. Figure 2.5 presents a
visual representation of logistic regression. Similar to linear regression, gradi-
ent descent is utilised to depreciate the cost estimation. Logistic regression is
quite famous for its simplistic nature, however, other complex algorithms may
outperform it easily [16].

2.3.3 Decision Trees

Decision trees are an excellent, supervised machine learning technique. They
can be helpful in classification and regression. As the name suggests, these
algorithms process the dataset to build decision trees. Decision trees consist
of several if-else statements to perform decisions or predictions. The tree itself
consists of the root node, decision nodes, branches and leaf nodes. The nodes
where the tree splits into two branches are called decision nodes. The root
node is the first decision node in the tree. Leaf nodes do not split further into
branches, as illustrated in Figure 2.6. The position of the nodes and the splits
are governed by the measure of impurity. Decision trees use entropy and Gini
index as measures of impurity. Classification and Regression Tree (CART) is
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Figure 2.5: A visualisation of classification performed by Logistic Regression.

one of the most famous techniques to build decision trees. CART is easy to
utilise and, it can handle both numerical and categorical data. Overfitting has
always been a problem with decision trees since they are sensitive to the noise

[16].

Leaf Node Leaf Node

Leaf Node

Leaf Node Leaf Node

Figure 2.6: An illustration of a simple Decision Tree extending from a Root
node to Leaf nodes.

2.3.4 Random Forests, Gradient Boosting

Random Forests is a supervised machine learning algorithm. This algorithm is
constructed on the concept of “wisdom of crowds” that suggests, multiple mod-
els can predict better than a single model. Multiple decision trees are combined
to generate an ensemble that provides a collective prediction. During the train-
ing process, each decision tree is trained on a random number of predictors and
dataset samples. Randomness is introduced into the process to decorrelate the
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trees included in a random forest which enhances the accuracy to a significant
level. The principal parameter for Random Forests is “mtry”. It is the amount
of randomly chosen predictors that are available at a specific split during the
tree formation process. Random Forests can be utilised for classification and
regression, therefore, ensembles are built out of classification trees or regressions
trees accordingly [16]. Figure 2.7 illustrates a fundamental Random Forests con-
figuration.

Gradient boosting is closely related to Random Forests. The models/trees are
built sequentially while minimising the errors. It is accomplished by extending
the influence of high-performance models. Gradient boosting employs gradi-
ent descent to minimise the anomalies in the contributing models. Gradient
boosting has now evolved into Extreme gradient boosting that improves the
performance further [16].

Training Dataset

! v

Training Data (1) Training Data(2) | ® @ @ | Training Data (n)

Decision Decision Decision
Tree (1) Tree (2) ooeo Tree (n)

| ¢l¢ I

Prediction - oo
’ Aggregation H Final Prediction

Figure 2.7: An illustration of the basic structure of the Random Forests algo-
rithm.

2.3.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) are one of the most commended among
machine learning algorithms. They outperform decision tree-based algorithms
readily where unstructured data is involved e.g. videos, images, text. ANNs
belong to both supervised and unsupervised learning since they can process vir-
tually all sorts of data, however, they are exceptionally helpful in discovering
hidden patterns. ANNs find their applications in reinforcement learning as well.
ANNSs endeavour to imitate the biological brains. A typical ANN consists of an
input layer, one or more hidden layers and an output layer. Each layer con-
sists of several nodes that mimic neurons in a biological brain. These nodes are
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connected to one another with the help of edges, therefore, the layers of nodes
are connected. An edge possesses a specific weight (importance) which is tuned
during the training process. The node/neuron receives inputs and produces a
single output which is forwarded to another node. A node produces the output
by calculating the weighted sum of all inputs and then adding a bias to the sum,
the final output is generated by applying an activation function to the final sum
[16]. A fundamental neural network consisting of an input layer, a hidden layer
and the output layer has been demonstrated in Figure 2.8.

Hidden
Nodes

Inputs

Output (s)

Figure 2.8: The representation of an Artificial Neural Network with singular
input, hidden and output layers.



Chapter 3

Related Work

This chapter presents a thorough literature survey regarding the utilisation of
machine learning in thrombosis diagnosis.

Artificial intelligence tools are growing in terms of reliability and accuracy due
to the availability of adequate data and extensive processing power. The appli-
cation of such tools inside the healthcare sector is gaining pace, however, the
particular utilisation of artificial intelligence on thrombosis is reasonably con-
fined. There are a few studies that have addressed the application of artificial
intelligence tools to cure or diagnose thrombosis.

3.1 Literature Survey

A systematic literature survey was conducted to discover potentially relevant
studies. The databases incorporated in the primary literature survey consisted
of ACM Digital Library, IEEE Xplore, Elsevier and Google Scholar. The aca-
demic information covering the predictive analysis aspect of thrombosis is mod-
erately limited. The survey was, therefore, conducted with comparatively lesser
strict filters. The literature survey reviewed various topics related to this study.
It included the preliminary introduction to thrombosis, conventional treatment
techniques for thrombosis and the general application of machine learning in
healthcare, particularly concerning thrombosis.

3.2 Machine Learning and Thrombosis

This section presents a number of studies that have investigated the application
of machine learning for the diagnosis and treatment of thrombosis.

13
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Database

Search Keywords

Search Fields

No. of Matches

ACM Digital Li-
brary

thrombosis, ma-
chine, learning,

title, abstract

S)

artificial, intelli-
gence

thrombosis, ma-
chine, learning,
artificial, intelli-
gence

thrombosis, ma-
chine, learning,
artificial, intelli-
gence

thrombosis, ma-
chine, learning,
artificial, intelli-
gence

IEEE Xplore title, abstract ~ T

Google Scholar full text ~ T

Elsevier - Sci- full text ~5

enceDirect

Table 3.1: A concluding summary of the literature review.

Machine Learning to Predict Venous Thrombosis in Acutely
Il Medical Patients

An investigation conducted by Nafee et al. [17] has assessed the performance of
machine learning models against the IMPROVE (International Medical Preven-
tion Registry on Venous Thromboembolism) score. IMPROVE is an integer-
based risk assessment model that is used to identify high-risk thrombosis pa-
tients. It completes the risk assessment by systematically analysing the throm-
bosis risk factors. The data for analysis originated from a phase 3 clinical trial
that comprised 7513 patients. It illustrated the personal, ethnic, clinical and
historical treatment aspects of the patients. The patients included in the trial
were hospitalised for critical illness. A total of 39 machine learning models were
built which included Random Forests, Extreme Gradient Boosting, Classifica-
tion Trees and Bayesian Logistic Regression-based models. The predictions of
different models were combined with the help of the Ensemble Learning method
to generate a more accurate and unified prediction. The weights for the can-
didate models were determined with the help of cross-validation. In total two
super learners were developed depending on the number of predictors utilised
for the learning process. IMPROVE score was calculated for each patient and,
the performance was compared to the machine learning models. The c-statistic
score for the IMPROVE method stood at 0.59 as compared to the machine learn-
ing models, which scored 0.69 and 0.68, therefore, outperformed the IMPROVE
score. It has been illustrated in Figure 3.1. To summarise, the machine learning
models performed better than the integer-based IMPROVE score in predicting
thrombosis among critically ailing patients [17].
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Figure 3.1: The comparison of the performance of machine learning models and
IMPROVE score [17].

Machine Learning Approaches for Risk Assessment of Pe-
ripherally Inserted Central Catheter-Related Vein Throm-
bosis in Hospitalised Patients with Cancer

Liu et al. [18] also conducted a study on hospitalised cancer patients. The ob-
jective of the study was to predict the future incidence of peripherally inserted
central venous catheter (PICC) thrombosis in cancer patients with the help of
machine learning. The introduction of PICCs is prevalent among cancer patients
who required frequent chemotherapy sessions. PICC aided treatment can pro-
voke thrombosis formation among the patients without explicit prior symptoms,
which may endanger the patient’s life. It is possible to evade critical thrombo-
sis formation by administering anticoagulants, but it can lead to bleeding that
can be dangerous for cancer patients. Hence timely identification of high-risk
patients can aid medical experts in conducting effective treatment. A total of
348 patients were admitted to the study. The patients were monitored for 30
days after the introduction of PICC. During the monitoring period, patients
were continuously diagnosed for PICC related thrombosis using colour Doppler
ultrasonography. The attributes collected for the training purpose included the
patient’s clinical details, medical history, patient’s family’s thrombosis record,
patient’s diet, genetic information, demographic circumstances, cancer treat-
ment details and the inserted catheter data. The study implemented Random
Forests and Least Absolute Shrinkage and Selection Operator (LASSO) to build
models with high accuracy. LASSO was introduced to perform the predictor
selection and, RF was utilised to classify the patients with a high risk of PICC
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induced thrombosis. There was a 50%-50% random split between the train-
ing and the testing data. Several different models were subsequently built by
forming different combinations of RF, LASSO and Seeley. Secly is a PICC-
thrombosis assessment criterion that has been widely utilised across the field.
The RF models achieved the best performance in identifying high-risk patients
as compared to the Seeley criterion that performed the worst by identifying
all patients as negative. Machine learning models achieved scores of 0.7733,
0.7869, 0.7833 and 0.7717 as compared to the Seely criterion that scored 0.5
on the AUC scale. The performance of different models has been compared in
Figure 3.2. AUC (area under the curve) is the measure of the performance of a
classifier in classifying different classes. The accuracy of a model is directly pro-
portional to the AUC score. The study concluded by establishing that machine
learning-based models can efficiently outperform currently accepted criteria for
PICC-induced thrombosis assessment [18].

AUC-

NPV -

©
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Figure 3.2: The performance of different machine learning models in predicting
PICC thrombosis by Liu et al. [18].
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Validation of a Machine Learning Approach for Venous
Thromboembolism Risk Prediction in Oncology

Ferroni et al. [19] has conducted a similar research. The study intended to
perform the risk assessment for thrombosis in cancer patients treated with
chemotherapy, with the help of machine learning. The original dataset con-
sisted of 1433 patients. The patients were monitored for approximately ten
months. During this period, medical, demographic and biochemical data of pa-
tients were collected to utilise in the training process. The machine learning
model was a combination of kernel machine learning techniques and random
optimisation. The kernel machine learning model combined multiple Support
Vector Machines. The training set consisted of 70% of the original dataset,
similarly, the testing dataset constituted of the remaining 30%. The model was
trained in five different learning sessions that included five distinct random op-
timisations. The testing dataset was employed to calculate the accuracy of the
model and later compared it to the Khorana score. Khorana score is a risk
assessment model utilised in similar circumstances. The final comparison con-
firmed that the machine learning model exceeded Khorana score in performance.
The machine learning model scored 0.716 on the AUC scale as compared to the
Khorana score model that scored 0.589. The standard error for the machine
learning model and the Khorana score model stood at 0.036 and 0.042, respec-
tively. The comparison has been presented in Figure 3.3. The study established
that a machine learning-based risk assessment model can help identify potential
thrombosis in cancer patients [19].

100
Receiver operating characteristics KS* ML predictor
80 Sample size 605 608
2 60 Area under the ROC curve** 0.589 0.716
2
2 Standard error 0.042 0.036
3 4
Positive likelihood ratio 1.58 (0.48-4.30)  2.30 (1.70-2.82)
20 Negative likelihood ratio 0.96 (0.83-1.04)  0.46 (0.28-0.69)
0 I *Khorana score (KS) not applicable in 3 patients with glioblastoma.

0 20 40 60 80 100 **Difference between areas: 0.127, p = 0.0044.
100 - specificity

Figure 3.3: The comparison of the performance of the machine learning model
and Khorona score by Ferroni et al. [19].

Random Forest Active Learning for AAA Thrombus Seg-
mentation in Computed Tomography Angiography Images

Maiora et al. [20] also attempted to demonstrate the utilisation of machine
learning tools in thrombosis related complications. Abdominal Aortic Aneurysm
(AAA) is the enlargement of the aorta blood vessel at a specific point. Aorta
supplies blood to the body and, its deformation may cause the formation of
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thrombus. The analysis of this complication is generally performed with the help
of 3D Computerised Tomography Angiography (CTA) which is a visualisation
technology. The identification of this specific type of thrombus is particularly
challenging because it resembles the surrounding aortic tissues. This study
endeavours to develop an active learning system to separate the CTA images.
The segmentation of such images is usually influenced by the noise present in the
data, however, the proposed system would require minimal human intervention
to achieve the outcome. The study has utilised a hybrid approach to attain the
segmentation task. It consists of active learning and Random Forests. According
to the authors, active learning minimises the intervention of human inputs, data
anomalies and helps kick start learning with a small dataset. Random Forests
offers better accuracy, swift learning and adaptive nature to the incremental
datasets. The goal of the classifier is to segment the images into the target
region and the surrounding background. The system starts training with the
initial dataset and, it returns to the user for manual labelling for uncertain
images. Once manually labelled, these samples are also included in the training
dataset to improve accuracy. The training is accomplished in iterations while
each iteration adds five samples to the training dataset. The study illustrates
that the performance of the model stabilises when it tuned to implement 80
trees with a depth parameter of 20, as displayed in Figure 3.4. The study
demonstrates that accuracy up to 0.99 is achieved after at most 4 iterations.
The accuracy attained on the test images is also above 0.98 in all cases. The
research concluded that the proposed solution can be employed to effectively
differentiate the thrombus in the aorta from its surrounding tissues [20].

Accuracy

Figure 3.4: The segmentation accuracy of Random Forests over a range of depth
and number of trees [20].
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Sequential vs. Batch Machine-Learning with Evolutionary
Hyperparameter Optimization for Segmenting Aortic Dis-
section Thrombus

Morariu et al. [21] have conducted similar research on thrombus formation in
the aorta that is comparable to the study conducted by Maiora et al. [20].
Thrombus formation in the aorta can be lethal, therefore, expeditious diagnosis
is crucial. The lumen of the surrounding tissues is very similar to the thrombus
and an abundance of similar structures in the abdominal area complicates the di-
agnosis further. The diagnosis of such complication is generally performed with
the help of 3D Computerised Tomography Angiography that produces blurred
dissection images. The study has provided some mathematical background to
highlight the blurry boundaries, however, it is not directly related to our work.
This study trains the classifier in three different approaches. Firstly, to train
the model on all of the datasets. Secondly, to train the model using the result
from the previous image (slice by slice). Lastly, to train multiple classifiers that
are responsible for a specific area in the image. There are two machine learning
algorithms employed in the study, kNN and SVM. Hyperparameter tuning for
kNN includes the determination of the optimal number of nearest neighbours.
It was determined by decreasing the error with ten-fold cross-validation and
Euclidean distance was applied as the distance function. The hyperparameters
for the SVM algorithm were tuned with the help of evolutionary algorithms.
They include hyperparameters Sigma and C. Grid search was not applied in
this case for its time-consuming nature. The study concludes that SVM out-
performs kNN algorithm in terms of classification accuracy and the stability
criterion [21]. Figure 3.5 demonstrates a comparison between kNN and SVM
algorithm in terms of Recall (RC), Precision (PR) and Dice similarity coefficient
(DSC).

kNN SVM

DSC | 74.15 £ 11.74 81.93 £+ 05.65
PR | 65.32 £ 1541 76.60 £ 07.35
RC | 89.24 + 06.26  89.30 & 06.82

Figure 3.5: The comparison of the performance of kNN and SVM algorithms
over Dice Similarity Coefficient, Precision and Recall performed by Morariu et
al. [21].

The use of Artificial Neural Network Analysis can Improve
the Risk-Stratification of Patients Presenting with Suspected
Deep Vein Thrombosis

Willan et al. [22] utilised Artificial Neural Networks to stratify patients at the
risk of deep vein thrombosis. The patient cohort consisted of 11490 cases over
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a period of 7 years. The study illustrates that the D-Dimer test and Well’s
score are generally employed to exclude patients with deep vein thrombosis.
The effectiveness of these techniques is limited and, machine learning tools can
be used in addition to these tools to enhance the outcome. The study included
only those patients in the Artificial Neural Networks analysis who possessed
a comprehensive Well’s score, D-Dimer test and an ultrasound scan. A total
of 7080 patients were eligible for the final analysis. This dataset was divided
into subsets of 5270 & 1810 for training and testing datasets, respectively. The
dataset mainly consisted of age, sex, D-Dimer result and the components of
Well’s score. The study attempted to resolve the binary classification problem
that was to conclude if a patient has thrombosis. An artificial Neural Network
was constructed to accomplish this goal. It consisted of an input layer that
was constituted by 13 nodes, a hidden layer that contained 8 nodes, and the
output layer with a single node. A Support Vector Machines model and a Ran-
dom Forests model were also trained to compare the performance with Artificial
Neural Networks. The study concluded that Artificial Neural Networks outper-
formed the other two algorithms. The model was able to eliminate patients with
deep vein thrombosis without the aid of an ultrasound scan, therefore, it proved
to be superior to the D-Dimer test and Well’s score. The Artificial Neural Net-
works model proposed only 62% of patients for an ultrasound scan as compared
to the D-Dimer test whose peak performance was 87%. The performance of the
model has been illustrated in Figure 3.6.

Overall proportion of patients recommended for ultrasonography :
92% 62
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Figure 3.6: The performance of the ANN model against the D-Dimer test in
classifying thrombotic patients [22].
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Vilhena et al. [23] have also employed Artificial Neural Networks to identify
patients who are susceptible to thrombosis. The final machine learning model
was able to classify patients with an accuracy, sensitivity and specificity higher
than 95%.

Yang et al. [24] have built a machine learning model based on Random Forests
to predict venous thromboembolism. The results were compared against the
Padua linear model that is utilised for risk assessment of thrombosis. The
machine learning model scored 0.815 on the AUC scale and outperformed the
Padua model that scored 0.789.

Semiz et al. [25] have trained another machine learning model based on Lo-
gistic Regression to detect pump thrombosis in Left Ventricular Assist Devices
(LVADs). LVADs generally fail due to the development of pump thrombosis in
the device. The sensitivity, accuracy and precision of the model stood at 90.9%,
88.9% and 83.3%, respectively.

3.3 Comparing Machine Learning Techniques

Machine learning is a vast domain of computer science. It consists of several al-
gorithms that can be employed to train predictive models. This section presents
a literature review primarily focused on the selection of machine learning tech-
niques. It examines the utilisation of machine learning in the directly associated
studies to thrombosis. It additionally presents several studies that are entirely
concentrated on comparing a range of machine learning techniques.

3.3.1 Related Studies

Nafee et al. [17] developed a number of machine learning models that mainly
consisted of Random Forests, Extreme Gradient Boosting and Classification
Trees. The predictions of different models were combined with the help of the
Ensemble Learning method to generate a unified prediction. The study con-
ducted by Liu et al. [18] has also utilised the Random Forests algorithm to
predict the future incidence of Peripherally Inserted Central Venous Catheter
(PICC) thrombosis in cancer patients. The study employed Least Absolute
Shrinkage and Selection Operator (LASSO) to perform the predictor selection.
Maiora et al. [20] has also relied on Random Forests to perform machine learning
analysis of complications associated with Abdominal Aortic Aneurysm (AAA).
The Random Forests models are trained in close collaboration with active learn-
ing. Yang et al. [24] also utilised the Random Forests algorithm to predict
venous thromboembolism.

A study conducted by Ferroni et al. [19] has employed kernel machine learn-
ing techniques to perform the risk assessment for thrombosis in cancer patients
treated with chemotherapy. The kernel machine learning model combined mul-
tiple Support Vector Machines. The study has additionally considered Random
Optimisation. Morariu et al. [21] have conducted a research to predict aortic
dissection thrombus. There are two machine learning algorithms employed in
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the research, kNN and SVMs. The hyperparameters for the SVMs algorithm
were tuned with the help of evolutionary algorithms. Hyperparameter tuning
for kNN was performed by decreasing the error with ten-fold cross-validation.
An investigation performed by Willan et al. [22] has utilised Artificial Neural
Networks to stratify patients at the risk of deep vein thrombosis. The neural
network implemented in the study consisted of an input layer that was consti-
tuted by 13 nodes, a hidden layer that contained 8 nodes, and the output layer
with a single node. Vilhena et al. [23] have also employed Artificial Neural
Networks to identify patients who are susceptible to thrombosis.

Semiz et al. [25] have implemented machine learning models with help of Lo-
gistic Regression to detect pump thrombosis in Left Ventricular Assist Devices

(LVADs).

3.3.2 Comparative Studies
An Empirical Comparison of Supervised Learning Algorithms

Caruana et al. [26] have conducted an empirical comparison between differ-
ent machine learning algorithms. The algorithms incorporated in the study
consisted of Artificial Neural Networks, Support Vector Machines, Logistic Re-
gression, Random Forests, Decision Trees, boosted and bagged trees. The com-
parative study calibrated the hyperparameters for the involved algorithms to
an optimal level and, it comprised 11 binary classification problems. The final
comparison was conducted with the help of numerous performance metrics. It
includes accuracy, lift, area under the curve, average precision, cross-entropy and
root-mean-square error. Boosted trees exhibited the best performance, followed
by Random Forests, Support Vector Machines and Artificial Neural Networks.

Performance Comparison of Feed-Forward Neural Networks Trained
with Different Learning Algorithms for Recommender Systems

Hassan et al. [27] have explored Artificial Neural Networks from the perspec-
tive of the optimisation algorithms. The study concentrated on training neural
networks with the aid of different learning algorithms to build recommender
systems. These learning algorithms consisted of the Delta Rule algorithm (Ada-
line), the Backpropagation algorithm, Levenberg-Marquardt algorithm, Genetic
Algorithm and Simulated Annealing algorithm. The study employed mean
square error as the evaluation criteria. It concluded that the Adaline algo-
rithm outperformed the other algorithms involved in the study and, it required
a significantly lower number of iterations during the training process.

Performance Comparison of Machine Learning Algorithms and Num-
ber of Independent Components Used in fMRI Decoding of Belief vs.
Disbelief

A study performed by Douglas et al. [28] has compared the performance of six
machine learning algorithms. These algorithms included K-Star, Naive Bayes,
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Support Vector Machines, Decision Trees, AdaBoost and Random Forests. A
neuroimaging dataset of informed participants was employed for training the
classifiers. The hyperparameters for ecach algorithm were tuned individually to
produce the optimal results. Random Forests outperformed the remainder of
the algorithms by producing an accuracy of 92%. AdaBoost followed closely by
scoring 91%.

An Empirical Performance Comparison of Machine Learning Meth-
ods for Spam E-mail Categorization

Chih-Chin et al. [29] has also pursued a comparative study that ranks the
performance of different machine learning algorithms. The aged study com-
prised of Naive Bayes, Support Vector Machines, K-Nearest Neighbour and
Term Frequency-Inverse Document Frequency. The machine learning algorithms
were evaluated individually over a spam email segregation task. Naive Bayes
and Support Vector Machines performed reasonably well. They scored an ac-
curacy percentage of up to 93% and 92% while segregating different sections of
an email, respectively.

Performance Comparison of Intrusion Detection Systems and Appli-
cation of Machine Learning to Snort System

Shah et al. [30] have investigated the application of machine learning algo-
rithms in intrusion detection systems. This study examined the performance of
Suricata and Snort intrusion detection systems to identify suspicious traffic on
computer networks. A combination of Suricata and Support Vector Machines
were investigated to produce the most reliable outcomes. The study concluded
that an optimised version of Support Vector Machines utilising the Firefly al-
gorithm yielded the most promising results. The false-negative rate stood at
2.2%, and a false positive rate of 8.6% was recorded.

A Performance Comparison of Machine Learning Algorithms for Arced
Labyrinth Spillways

A study conducted by Salazar et al. [31] has examined the application of ma-
chine learning algorithms to optimise the geometric variables while designing
arced labyrinth spillways. Labyrinth weirs are generally employed to optimise
the construction of dams and reduce construction costs. The study compared
the performance of Random Forests and Artificial Neural Networks to deter-
mine the discharge coefficient for the weir. A weir maintains the flow of water
in dam spillways. The performance of both algorithms was compared by em-
ploying metrics such as mean error, root mean squared error, mean absolute
error and mean absolute percentage error. The study concluded that Artificial
Neural Networks outperformed Random Forests over the standard comparison
criteria, however, the performance of Artificial Neural Networks is profoundly
dependent on the initialisation of weights during training.
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3.4 Summary

After thoroughly examining the utilisation of machine learning algorithms in
Related Studies and Comparative Studies presented in the previous sections, it
is concluded that this study will utilise Random Forests, XGBoost, Artificial
Neural Networks and Support Vector Machines for the upcoming experimenta-
tion.



Chapter 4

Experimental Setup

This chapter presents a thorough description of the experimental setup for the
investigation.

4.1 Dataset Description

The data has been collected under RI Schedule research initiative by Ostfold
Hospital Kalnes, Norway. There are roughly 1600 (after removing duplicates)
thrombosis patients admitted to the study. The dataset consists of approx-
imately 195 attributes that describe a patient’s circumstances. The dataset
demonstrates the personal characteristics, clinical details, prohibited medica-
tions, prescribed therapies (medications), medical history, respective thrombo-
sis risk factors, Well’s score, physical health indicators, D-Dimer and personal
ultrasound tests of the patients. The primary target attribute in this research
is ultrasound results which conclude the thrombosis diagnosis. Once additional
data is available, the specific location of the relapse can be considered as well.

RI Schedule Dataset

Samples Attributes
Total | Positive | Negative | Total | Numerical | Categorical
1800 364 1436 195 166 29

Table 4.1: A description of the original RI Schedule dataset.

The original dataset from Ostfold Hospital Kalnes consisted of 195 attributes
and 1800 patients, including some duplicates. These attributes can be divided
into several broad categories as follows. The features describing the fundamental
characteristics of the patients are included in the baseline category. They consist
of a patient’s age, sex, medical history, medication and Well’s score that is
calculated by a thorough physical examination. It is focused on the thrombotic
symptoms. The risk factors category consists of the thrombotic history of a
patient, pregnancy status and cancer. It involves genetic risk factors as well.
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The immobilisation category generally comprises the features related to the
physical movement of the patient. It includes features regarding neurological
diseases, smoking and travel history as well.

Clinical symptoms is a broad category that encompasses clinical observations
recorded in a clinic. These observations include pain and swelling in different
parts of the body, blood pressure, bleeding, fever, excessive sweating, frostbite,
various blood tests and D-Dimer test. Some of these examinations are repeated
for patients with multiple visits. This category might include autopsy as well
if a patient included in the study passes away. The patients are eventually
diagnosed with the aid of ultrasonography. It provides a concluding diagnosis
and, this attribute has been chosen to perform the predictive analysis. The
resulting study is, therefore, a binary classification problem.

4.2 Dataset Preprocessing

Data preprocessing is a combination of techniques that are primarily related to
the manipulation of the training data. The methods generally consist of conver-
sion, addition, and truncating procedures [16]. Data preprocessing is performed
before the modelling process and, it can influence the results significantly. It
additionally provides a further extensive understanding of the dataset.

4.2.1 Preprocessing Tools and Initial Manipulation

A number of tools and software have been utilised for data preprocessing and for
the study in general. Pandas is an open-source data analysis and manipulation
tool in the Python programming language [32]. It has been thoroughly utilised
throughout the study to perform essential manipulation of the data prior to the
training process. Pandas is developed with the help of NumPy, NumPy is a
seasoned Python framework that is employed extensively by the data science
community to perform mathematical and statistical operations [33]. It is flexi-
ble and productive. Matplotlib is a Python library that can be utilised to draw
knowledgeable visualisations [34]. Matplotlib can be implemented in combina-
tion with Pandas to produce swift yet remarkably helpful plots. This study has
utilised Seaborn for some visualisations. Seaborn is a Python library that can
produce powerful plots with the help of Matplotlib. It has been developed by
Michael Waskom and the Seaborn development team.

The initial dataset was provided in two different files. One of the files contained
the data points, but the data was unlabeled, i.e., without the titles of the at-
tributes. The second file incorporated the labels (names) of the attributes. The
titles (names) were assigned to the corresponding columns in the earlier file
with the help of Pandas. The original labels were supplied in the Norwegian
language, however, they were translated to the English language to yield an
agile and easy-to-understand outcome.
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4.2.2 Expunged Attributes and Data points

This study was performed in collaboration with the medical experts from @Ostfold
Hospital Kalnes. They contributed essential information regarding the medical
aspects of the study. It was subsequently suggested to extract two subsets from
the principal dataset. The first subset comprised all feasible features from the
original dataset, however, several dysfunctional and internal administrative fea-
tures were removed. It was because they did not contribute to the outcome.
This subset has been referred to as the Full Dataset in the upcoming literature.
The features dropped from the Full dataset can be found in Appendix A.2.
The second subset essentially consisted of primary patient information, Well’s
score, basic information from the risk factors, immobilisation and clinical symp-
toms categories. It has been referred to as the Minified Dataset in the upcoming
literature. The features truncated from the Minified dataset are presented in
Appendix A.3.

The dataset comprised several duplicate patients as well. This problem was
consulted with the medical experts, who supervised the process of data collec-
tion. It was concluded that the duplicates should be truncated except for the
latest record. The dataset was therefore reduced to 1653 data points from 1800
instances originally.

4.2.3 Missing Values Management

The dataset comprised several features with missing values. These missing val-
ues can be substituted with appropriate alternatives. The alternatives generally
include mean, median and mode. This study relied solely on mode given the na-
ture of the missing values. Table 4.2 presents a summary of the management of
the missing values and Figure 4.1 presents an overall appearance of the missing
values in the dataset prior to the substitution.

Feature Name No. of Missing Val- | Substituting
ues Method

Clinic Vital Blood | 05 Mode

Pressure Diastolic

Risk Factors P Pills | 03 Mode

Type

Clinic Blood Test | 03 Mode

Results GFR

Risk Factors HRT | 02 Mode

Type

Clinic Blood Test | 01 Mode

Results CRP

Table 4.2: The substitution procedures for missing values in different features.
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Figure 4.1: A graphical illustration of the missing values in the dataset.

4.2.4 Feature Transformations

The dataset incorporated a range of features. These features were related to
various data types. The majority of the features were based on continuous
numeric values, however, the dataset contained several categorical features as
well. Most of the categorical features were truly categorical, i.c., based on dis-
crete classes and some numeric features were disguised as categorical features
due to rare occurrences of strings in the corresponding columns. These partic-
ular instances of unwanted strings were substituted with appropriate numbers
and, the datatypes of these specific columns were altered accordingly. Table 4.3
demonstrates a summary of the operations conducted.

The final diagnosis is based on ultrasonography. This feature is represented
with “UL_Proven_VTE”. The patients are diagnosed with aid of the D-Dimer
test as well prior to ultrasonography. Some Patients can therefore be declared
non-thrombotic after performing the D-Dimer test exclusively. These patients
are represented with -7 in the ultrasonography feature. It has been illustrated
in Figure 4.2. The patients with positive ultrasonography are represented with
1 and, those with negative results are assigned 0 label. The -1 label has been
substituted by 0 since both refer to non-thrombotic patients. The final feature
has been described in Figure 4.3.

4.2.5 Final Operations

The final operations performed on the dataset during the preprocessing phase
involved One-Hot Encoding, data splitting and Data Standardisation. One-Hot
Encoding is a technique that is utilised to convert categorical data into numeric
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Feature Name Unusual Term Substitute Updated
Datatype

Clinic Blood | >60 60 Float

Test Results

GFR

Clinic Blood | 11,,7 11 Float

Test Results HB

Fragmin Num- | Ingen -1 Integer

ber Of Times

Fragmin  Dose | Ukjent -1 Integer

Field

Klexane Num- | Ingen -1 Integer

ber Of Times

Klexane  Dose | Ukjent -1 Integer

Field

Table 4.3: The conversion of unusual terms in different features to numerical
terms.

data. It accomplishes the goal by encoding a categorical feature into multiple
binary features [35]. The number of binary features is associated with the num-
ber of classes in the original categorical feature. This technique was applied
to the dataset to convert the outstanding categorical data into numeric data.
Pandas library has been utilised to implement the procedure [32]. The dataset
was subsequently split into two subsets, the training set and the testing set. The
testing and training datasets comprised 20% and 80% of the original dataset,
respectively. In order to ensure reproducibility, the splitting was stratified based
on “UL_Proven_VTE” feature and employed a constant random state through-
out the study. Overfitting is a common obstacle in machine learning where the
model excessively adapts to the training set and the generalisation slides. k-Fold
Cross-Validation was employed during the training process to eliminate poten-
tial overfitting. It partitions the training dataset into multiple subsets. The
model is trained with all subsets except the first subset (first fold). It is used
for evaluation. This process is repeated for the second subset, and so on [16].
It has been demonstrated in Figure 4.4. Data standardisation was performed
with the help of Scikit-learn’s StandardScaler [36]. It rescales the data to have
a standard deviation of 1 [16]. Data standardisation can be significantly helpful
by aiding some algorithms such as Artificial Neural Networks to coverage much
faster.

4.3 Machine Learning Setup

The purpose of this investigation is to compare the performance of machine
learning algorithms in accurately predicting thrombosis. As the target attribute
suggests, it is a classification problem where the patients need to be segregated
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Figure 4.2: The distribution of classes in the original ultrasonography feature
(target attribute).

Figure 4.3: The distribution of classes in the manipulated ultrasonography fea-
ture (target attribute).

into different classes depending on the chance of occurrence of thrombosis. This
section presents comprehensive information regarding the training and evalua-
tion of machine learning models on the datasets described earlier. The machine
learning algorithms have been selected with the help of a systematic selection
procedure. It has been thoroughly described in the Related Work chapter.

4.3.1 Hyperparameter Tuning

Hyperparameter tuning shall be a crucial part of the upcoming training process.
Hyperparameters are predefined numbers or beliefs that need to be provided
to machine learning algorithms before the training process. Hyperparameters
control the overall learning process during the training of a machine learning
model [37]. For instance, “n_estimators” is a crucial hyperparameter for ran-
dom forests algorithm. It controls the number of trees involved in the tree
building and decision-making process. The learning rate, number of epochs or
iterations, activation functions, hidden layers and several more are important
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Figure 4.4: k-Fold Cross-Validation (5 Folds)

hyperparameters that need to be tuned prior to the learning process. A per-
fect combination of hyperparameter tuning can produce exceptional outcomes;
therefore, Hyperparameter tuning has been granted a particular focus during
this study to maximise the performance of the models.

There are numerous techniques to perform hyperparameter optimisation. This
study has utilised two principal techniques to perform hyperparameter tuning.
Grid search (Full factorial design) is an exhaustive hyperparameter searching
method. It examines all possible combinations on the provided ranges of the
corresponding hyperparameters [37]. Grid search can be notably computation-
intensive on parameters with extensive searching spaces. In order to address
this concern Bayesian optimisation has also been utilised to perform the tuning
process. Bayesian optimisation is an excellent method to optimise hyperpa-
rameters. It employs the Bayes theorem to find the maxima or minima of a
given function. Bayesian optimisation generates a surrogate probability model
of the objective function and updates it regularly depending on the performance
of hyperparameters [37]. It utilises the performance history of the previously
evaluated hyperparameters to direct future exploration.

4.3.2 Random Forests

Random Forests is an excellent ensemble learning algorithm. It generates a
number of decision trees to perform the predictive analysis. It has been discussed
thoroughly in the Background chapter. The algorithm has been implemented
with the help of Scikit-learn. Scikit-learn is a Python library that comprises
several tools for machine learning and statistical modelling [36].
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Model Structure and Hyperparameter Tuning

The structure of the model was established with the help of Grid Search [37].
The entire tuning process was performed while utilising k-Fold Cross-Validation
(5 folds) in order to ensure a reliable outcome [16]. The tuning model utilised
accuracy as the evaluation metric. The hyperparameter tuning included the
following hyperparameters.

e “n_estimators”: It represents the number of trees utilised for formulat-
ing a prediction. The searching space for this hyperparameter was between
1 and 500. The tuning produced 112 as the optimal value for this hyper-
parameter on the Full dataset. (Full Dataset: 112, Minified Dataset: 74)

e “max_features”: This hyperparameter defines the number of features to
consider while seeking the best split. The searching concluded with 164,
between the range of 1 and the maximum number of features, for the Full
dataset. (Full Dataset: 164, Minified Dataset: 71)

e “bootstrap”: This binary hyperparameter can be utilised to enable or
disable bootstrapping (a randomisation technique). It was concluded that
enabling bootstrap sampling produces better results. (Full Dataset: True,
Minified Dataset: True)

e “max_depth”: As the name suggests, it controls the maximum depth of
a tree. The searching space stretched between 1 and 30. It also included
“no limit over the depth of the tree” in the searching space. It concluded
with 17 as the outcome for both datasets. (Full Dataset: 17, Minified
Dataset: 17)

e “min_samples_leaf”: It ensures the minimum number of samples at a
leaf node. A split shall not be considered if it leaves fewer than the defined
number of samples in the subsequent branches. It was searched between 0
& 10 and, 1 was returned as the optimal result. (Full Dataset: 1, Minified
Dataset: 1)

e “min_samples_split”: This hyperparameter defines the minimum num-
ber of samples required to split a node in the tree. The tuning process
considered the range between 1 & 10, it was concluded with 2. (Full
Dataset: 2, Minified Dataset: 2)

e “class_weight”: It is often challenging to acquire desirable results with
imbalanced datasets. This hyperparameter can be utilised to increment
the importance of minority classes. This hyperparameter has been utilised
to increase the weight of thrombotic patients. Scikit-learn provides a
function to calculate the respective weights of the classes depending on
the frequency of their occurrence. This function is termed balanced which
utilises this formula, n_samples / (n_classes * np.bincount(y)) [36]. Keras
documentation presents a similar approach that has been described in
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the Artificial Neural Networks section. (Full Dataset: balanced, Minified
Dataset: balanced)

e “criterion”: It is employed to select the function to measure the quality
of a split. It offers two alternatives, Gini impurity and Entropy infor-
mation gain. The tuning concluded with Gini impurity as the preferred
alternative. (Full Dataset: gini, Minified Dataset: gini)

e “random_state”: Random Forests utilise randomisation techniques fre-
quently, for instance, bootstrapping and sampling of features. It may lead
to slightly different results for each training session. This difficulty can be
resolved by providing a randomisation seed to the model. “random_state”
can be utilised to establish the initial seed. This study generally employs
333 for random states. (Full Dataset: 333, Minified Dataset: 333)

The rest of the hyperparameters utilised the default values implemented by
Scikit-learn library [36].

4.3.3 XGBoost

XGBoost is a machine learning library that is based on the gradient boost-
ing framework. It offers exceptional efficiency and performance on structured
datasets [38]. Gradient Boosting has been presented in detail in the Background
chapter.

Model Structure and Hyperparameter Tuning

XGBoost library comprises a Scikit-learn wrapper that renders it highly compat-
ible with the Scikit-learn optimisation framework [38]. Grid Search has been em-
ployed for the hyperparameter optimisation of XGBoost models [37]. It utilises
k-Fold Cross-Validation (5 folds) to maximize generalisation. The hyperparam-
eter tuning model employed accuracy as the evaluation metric and it included
the following hyperparameters.

e “learning rate”: Gradient boosted trees can be expeditious in learning
that might cause overfitting. The learning process can be slowed down
with the help of this hyperparameter. It was tuned between 0.01 and
0.50 with a step size of 0.01. It settled to 0.10 for the Full dataset. (Full
Dataset: 0.10, Minified Dataset: 0.19)

e “n_estimators”: This hyperparameter is equivalent to the number of
boosting rounds since each boosting round increments the number of trees
by one [38]. The searching space spanned between 1 and 250 that con-
cluded with 31 for the Full dataset. (Full Dataset: 31, Minified Dataset:
123)

o “max_depth”: The depth of a tree is controlled by this hyperparameter.
Deeper trees might learn quicker and capture more details but, they are
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susceptible to overfitting. This difficulty can be overcome with the aid of
this hyperparameter. The searching concluded with 7, between the range
of 1 and 10, for the Full dataset. (Full Dataset: 7, Minified Dataset: 4)

e “min_child_weight”: This hyperparameter controls the sum of instance
weight in leaf nodes. The tree-building process will terminate if the parti-
tion of a node results in a leaf node with the sum of instance weight smaller
than what this hyperparameter specifies. The tuning process considered
the range between 0 and 10. It concluded with 2 for the Full dataset. (Full
Dataset: 2, Minified Dataset: 3)

e “subsample”: Subsampling can be helpful to avoid overfitting. Depend-
ing on the value of this hyperparameter, XGBoost randomly subsamples
training instances prior to the tree building process. The process is re-
peated during each boosting iteration. The searching space stretched be-
tween 0 and 1 with a step size of 0.10. The concluding outcome was 0.9
for both datasets. (Full Dataset: 0.9, Minified Dataset: 0.9)

e “colsample_bytree”: It is concerned with the subsampling of the data
features during the construction of a decision tree. This process is iterative
and takes place during every boosting iteration. The hyperparameter was
searched between 0 and 1 with a step size of 0.10. The tuning process
concluded with 0.7 as the outcome, for the Full dataset. (Full Dataset:
0.7, Minified Dataset: 1.0)

e “scale_pos_weight”: This hyperparameter is utilised to control the weights
of minority and majority classes in an imbalanced dataset. It has been
employed to increase the weight of thrombotic patients. XGBoost docu-
mentation recommends a function to calculate the respective weights of the
classes depending on the frequency of their occurrence. The weights can be
calculated by employing the following formula, sum(negative instances) /
sum(positive instances) [38]. (Full Dataset: 4.418032786885246, Minified
Dataset: 4.418032786885246)

e “objective”: This parameter is utilised to establish the problem type and
the learning objective, generally known as the objective function. Given
the nature of the problem in this study, binary:logistic has been provided
as the learning objective. (Full Dataset: binary:logistic, Minified Dataset:
binary:logistic)

e “seed”: The hyperparameter is employed to provide a launchpad for the
forthcoming randomisation during the training process. It ensures that the
results are reproducible. This study employs 0 as the seed for experiments
related to XGBoost. (Full Dataset: 0, Minified Dataset: 0)

o “tree_method”: XGBoost offers several tree construction algorithms.
This study employed hist for its faster performance and a slightly better
accuracy during the Grid Search experiments [38]. (Full Dataset: hist,
Minified Dataset: hist)
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The rest of the hyperparameters utilised the default values implemented by
XGBoost library [38].

4.3.4 Support Vector Machines

Support Vector Machines (SVMs) are a highly capable set of supervised learning
methods. SVMs are robust and offer plenty of flexibility. SVMs can perform
both classification and regression. They are generally utilised for classification
problems. SVMs are particularly effective in high dimensional spaces. SVMs
can be altered with the help of kernel functions that enables them to process a
wide array of datasets [16].

Model Structure and Hyperparameter Tuning

Scikit-learn presents an outstanding implementation of Support Vector Ma-
chines. It allows a pliable hyperparameter optimisation with the help of features
such as multiple kernel functions and regularisation tuning [36]. As discussed
in the previous sections, Grid Search has been employed for the hyperparam-
eter optimisation [37]. The tuning procedure was performed while utilising
k-Fold Cross-Validation (5 folds) [16]. The tuning model utilised accuracy as
the evaluation metric. The hyperparameter tuning included the following hy-
perparameters.

e “kernel”: This hyperparameter is employed to choose the kernel type in
a model. Scikit-learn has built-in implementations of linear, poly, rbf, sig-
moid and precomputed kernel functions. The tuning procedure included
all of the alternatives available. It concluded with sigmoid for the Full
dataset. (Full Dataset: sigmoid, Minified Dataset: linear)

e “C”: It controls the regularisation during the training process. The value
of this hyperparameter is inversely proportional to the strength of regu-
larisation and directly proportional to the cost of misclassification. The
searching space extended between 0.1 and 50 that concluded with 1 as the
outcome for the Full dataset. For the Minified dataset, the final searching
space ranged between 0.01 and 0.2 with a step size of 0.001. (Full Dataset:
1, Minified Dataset: 0.05099999999999997)

e “gamma”: This hyperparameter is utilised to adjust the kernel coeffi-
cient that controls the sensitivity between the feature vectors. It is ef-
fective in 7bf, poly and sigmoid kernel functions. Scikit-learn has listed
two rules of thumb to choose the value of this hyperparameter, “scale”
(1 / (n-features * X.var()) and “auto” (1 / n_features) [36]. It was
tuned between 0.002 and 0.004 with a step size of 0.000001. The optimal
outcome was 0.002745000000000099 for the Full dataset. (Full Dataset:
0.002745000000000099, Minified Dataset: Not applicable)

e “coef0”: This hyperparameter represents the independent term in a ker-
nel function. It influences the performance of a model that employs poly
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and sigmoid kernels. The tuning process encompassed a range from -
0.1 to 0.1 with a step size of 0.001 and, it concluded the search with
0.08400000000000016 as the outcome. (Full Dataset: 0.08400000000000016,
Minified Dataset: Not applicable)

e “tol”: It represents the tolerance for the stopping criterion. The process-
ing time can be decreased if the value of this hyperparameter is increased,
however, it affects the performance negatively. The tuning extended be-
tween 0.00001 and 0.001, the step size was 0.00001. The final outcome
was 0.00001. (Full Dataset: 0.00001, Minified Dataset: 0.00001)

o “class_weight”: As explained earlier, this hyperparameter is beneficial
in imbalanced datasets to adjust the weight of different classes. It has been
employed to increase the weight of the minority class that is thrombotic pa-
tients. Scikit-learn provides a function to calculate the respective weights
of the classes depending on the frequency of their occurrence. This func-
tion is termed balanced which utilises this formula, n_samples / (n_classes
* np.bincount(y)) [36]. (Full Dataset: balanced, Minified Dataset: bal-
anced)

e “random._state”: The hyperparameter is utilised to give a launchpad
to the upcoming randomisation during the training process. It helps in
reproducing the outcomes. This study generally employs 333 for random
states in experiments related to Scikit-learn. (Full Dataset: 333, Minified
Dataset: 333)

The rest of the hyperparameters utilised the default values implemented by
Scikit-learn library [36].

4.3.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) are an extraordinary family of machine learn-
ing algorithms. ANNSs attempt to replicate the human brain, which has an
enormous amount of interconnected neurons. ANNs are exceptionally reliable
to process unstructured data and possess a high degree of flexibility [16]. They
have been reviewed in the Background chapter.

Model Structure and Hyperparameter Tuning

This study utilises Keras to implement the experiments related to Artificial
Neural Networks. Keras is a high-level machine learning library that provides
a wide variety of Artificial Neural Networks implementations. It is uncompli-
cated, flexible and robust [39]. The study implements several feedforward neural
network models with multiple hidden layers. These models have been optimised
with the help of Bayesian optimisation [37]. The Bayesian optimisation model
employed accuracy as the evaluation metric. The maximum number of trials
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for the tuning models were limited to 250, while each trial consisted of 50 iter-
ations. The hyperparameter tuning procedure utilised a validation split of 20%
to validate the results during the optimisation process.

“Model Type”: This hyperparameter is utilised to determine the funda-
mental model type. This study has employed the Sequential model for the
experiments associated with ANNs. The Sequential model is implemented
in the form of a plain stack of layers and each layer supports a single input
and output tensor.

“Layers and Neurons”: An Artificial Neural Network consists of a
number of layers that can be classified into input, hidden and output
layers. These are the building blocks of an artificial neural network. This
study has utilised an input layer with suitable shapes depending on the
input data. There are several deeply connected dense hidden layers in the
models that contain a number of neurons. The number of hidden layers
and corresponding neurons has been optimised to yield optimum results.
The output layer, which is a dense layer, consists of a single neuron.

“Activation Functions”: This hyperparameter is helpful in selecting a
suitable activation function for a neuron. In ANNSs, activation functions
calculate the concluding output of a neuron provided an input. There
are numerous activation functions available in Keras library [39]. This
study tunes the hidden layers with Rectified Linear Activation (ReLU),
Logistic (Sigmoid) and Hyperbolic Tangent (Tanh) activation functions.
The output layer comprises Logistic (Sigmoid) activation function.

“Optimisers and Learning Rate”: ANNs comprise various optimisers
that govern the training process. Optimisers are a particular kind of al-
gorithms that can be employed to adjust the weights inside an artificial
neural network to diminish the loss. This study has tuned models by util-
ising Adam, RMSprop and Adagrad optimisers. The learning rate for the
corresponding optimisers has been additionally tuned between 0.0001 and
0.1 with the help of Bayesian optimisation.

“Loss”: This hyperparameter is employed to choose the loss function
in an Artificial Neural Network. It calculates the severity of prediction
error during the training process that is termed loss. The model improves
iteratively to diminish the loss. Given the nature of the problem, this
study practices “binary_crossentropy” as the loss function.

“Epochs”: It regulates the passage of the dataset through the Artificial
Neural Network. A single epoch is concluded when the entire dataset
traverses forward and backwards through the Artificial Neural Network.
The Bayesian optimisation model performs 50 epochs for each trial. The
final model tunes the number of epochs with the help of early stopping.
It is assessed over the validated accuracy score with the highest patience
of 10 epochs.
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e “Seeds and Random States”: It is used to provide random seeds to
the models. This practice can be incredibly effective in reproducing results
and a stable training procedure. This study has seeded the models with
333 as the random state.

e “Class Weights”: Class weights can help adjust the importance of differ-
ent classes in imbalanced datasets. This hyperparameter has been utilised
to increase the weight of thrombotic patients. The weights regarding var-
ious classes have been calculated with the help of Keras documentation,

Scikit-learn provides an identical function [39] [36].
0.6131725417439703, 1: 2.709016395442623)

Class Weights (0:

Table 4.4 has demonstrated a summary of the hyperparameter optimisation for
the Full dataset. It presents information regarding the model type, optimising
algorithms and corresponding learning rates (LR). It additionally provides the
number of hidden layers, corresponding neurons and activation functions (AF) in
each layer. The number of epochs has been provided according to the respective
activation function, in identical order.

Sequential

Optimiser LR Layers | Neurons AF Epochs

Adagrad 0.0421 | 5 208, 383, | ReLU, Sig- | 09, 01,
512, 121, 16 | moid, Tanh 06

RMSprop 0.0331 | 1 326 ReLU, Sig- | 03, 09,
moid, Tanh 13

Adam 0.0431 | 1 122 ReLU, Sig- | 02, 07,
moid, Tanh 18

Table 4.4: The structure of the ANNs models obtained from Bayesian Optimi-

sation for the Full dataset.

Table 4.5 illustrates similar information for the Minified dataset.

Sequential
Optimiser LR Layers | Neurons AF Epochs
Adagrad 0.0801 | 3 71, 373, 241 | ReLlU, Sig- | 08, 01,
moid, Tanh 07
RMSprop 0.0351 | 1 16 ReLU, Sig- | 02, 10,
moid, Tanh 08
Adam 0.0101 | 3 446, 250, 234 | ReLU, Sig- | 01, 21,
moid, Tanh 14

Table 4.5: The structure of the ANNs models obtained from Bayesian Optimi-
sation for the Minified dataset.

The rest of the hyperparameters utilised the default values implemented by

Keras library [39].
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Results

This chapter presents the results from the experiments conducted during the
investigation.

5.1 Random Forests

This section presents the performance of Random Forests algorithm on the Full
dataset and the Minified dataset.

5.1.1 Confusion Matrices

The confusion matrices are manifested below to describe the performance of the
Random Forests algorithm on the testing data. The algorithm has classified
the thrombotic patients in the Full dataset with 15 false negatives and 09 false
positives. The number of true negatives and true positives stands at 261 and
46, respectively, for the Full dataset. The performance of the algorithm on the
Minified dataset concluded with 36 false negatives, 10 false positives, 260 true
negatives and 25 true positives.

The Minified dataset comprises a higher amount of false negatives and false
positives and a lower number of true negatives and true positives than the Full
dataset. The results have been presented in Figures 5.1 and 5.2.

5.1.2 Precision Recall Curves

The precision-recall curves are given below to describe the performance of the
Random Forests algorithm on the testing data. The precision-recall curve for
the Full dataset encompasses a comparatively higher area than the Minified
dataset’s precision-recall curve. The optimal F1 score for the Full dataset is
positioned relatively higher and farther right on the graph as compared to the
optimal F1 score for the Minified dataset. A gradual increment in the recall

39
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Figure 5.1: The confusion matrix for Random Forests algorithm performance
on testing data (Full Dataset).
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Figure 5.2: The confusion matrix for Random Forests algorithm performance
on testing data (Minified Dataset).

results in a continuous decrease in the precision for both datasets. The decre-
ment in the precision is comparatively higher for the Minified dataset. The
precision-recall curves have been presented in Figures 5.3 and 5.4.
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Figure 5.3: The precision-recall curve for Random Forests algorithm perfor-
mance on testing data (Full Dataset).
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Figure 5.4: The precision-recall curve for Random Forests algorithm perfor-
mance on testing data (Minified Dataset).

Table 5.1 exhibits a summary of the performance of the Random Forests algo-
rithm on the testing and training data. All results are calculated with respect
to the minority class that is thrombotic patients.

The algorithm generally performs better on the training data than the testing
data as represented in the table. The performance on the training data is reason-
ably stable for both the Full dataset and the Minified dataset. The testing data
yields alternating performance for the Full dataset and the Minified dataset.
The algorithm achieves comparatively better scores in terms of all considered
metrics on the Full dataset than the Minified dataset.
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Testing Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 92.74 83.63 75.40 79.31 85.70
Minified Dataset 86.10 71.42 40.98 52.08 57.02
Training Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 99.92 99.59 100.0 99.79 99.99
Minified Dataset 99.92 99.59 100.0 99.79 100.0

Table 5.1: The comparison of the performance of Random Forests algorithm on
each dataset.

5.2 XGBoost

This section presents the performance of XGBoost algorithm on the Full dataset
and the Minified dataset.

5.2.1 Confusion Matrices

The confusion matrices are manifested below to describe the performance of XG-
Boost algorithm on the testing data. The algorithm has classified the thrombotic
patients in the Full dataset with 04 false negatives and 14 false positives. The
number of true negatives and true positives stands at 256 and 57, respectively,
for the Full dataset. The performance of the algorithm on the Minified dataset
concluded with 30 false negatives, 22 false positives, 248 true negatives and 31
true positives.

The Minified dataset contains a higher amount of false negatives and false pos-
itives and a lower number of true negatives and true positives than the Full
dataset. The results have been presented in Figures 5.5 and 5.6.

Confusion Matrix
- 250

True Label
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Figure 5.5: The confusion matrix for XGBoost algorithm performance on testing
data (Full Dataset).
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Figure 5.6: The confusion matrix for XGBoost algorithm performance on testing
data (Minified Dataset).

5.2.2 Precision Recall Curves

The precision-recall curves are given below to describe the performance of XG-
Boost algorithm on the testing data. The precision-recall curve for the Full
dataset encompasses a comparatively higher area than the Minified dataset’s
precision-recall curve. The optimal F1 score for the Full dataset is positioned
relatively higher and farther right on the graph as compared to the optimal F1
score for the Minified dataset. A gradual increment in the recall results in a
continuous decrease in the precision for both datasets. The decrement in the
precision is comparatively higher for the Minified dataset. The precision-recall
curves have been presented in Figures 5.7 and 5.8.
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Figure 5.7: The precision-recall curve for XGBoost algorithm performance on
testing data (Full Dataset).
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Figure 5.8: The precision-recall curve for XGBoost algorithm performance on
testing data (Minified Dataset).

Testing Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 94.56 80.28 93.44 86.36 86.61
Minified Dataset 84.29 58.49 50.81 54.38 54.19
Training Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 98.33 91.72 100.0 95.68 99.98
Minified Dataset 99.84 99.18 100.0 99.59 99.99

Table 5.2: The comparison of the performance of XGBoost algorithm on each
dataset.

Table 5.2 exhibits a summary of the performance of XGBoost algorithm on the
testing and training data. All results are calculated with respect to the minority
class that is thrombotic patients.

The algorithm generally performs better on the training data than the testing
data as represented in the table. The performance on the training data is reason-
ably stable for both the Full dataset and the Minified dataset. The testing data
yields alternating performance for the Full dataset and the Minified dataset.
The algorithm achieves comparatively better scores in terms of all considered
metrics on the Full dataset than the Minified dataset.

5.3 Support Vector Machines

This section presents the performance of Support Vector Machines (SVMs) al-
gorithm on the Full dataset and the Minified dataset.
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5.3.1 Confusion Matrices

The confusion matrices are presented below to describe the performance of Sup-
port Vector Machines algorithm on the testing data. The algorithm has classified
the thrombotic patients in the Full dataset with 02 false negatives and 24 false
positives. The number of true negatives and true positives stands at 246 and
59, respectively, for the Full dataset. The performance of the algorithm on the
Minified dataset concluded with 31 false negatives, 42 false positives, 228 true
negatives and 30 true positives.

The Minified dataset comprises a higher amount of false negatives and false
positives and a lower number of true negatives and true positives than the Full
dataset. The results have been presented in Figures 5.9 and 5.10.
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Figure 5.9: The confusion matrix for SVMs algorithm performance on testing
data (Full Dataset).
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Figure 5.10: The confusion matrix for SVMs algorithm performance on testing
data (Minified Dataset).
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5.3.2 Precision Recall Curves

The precision-recall curves are illustrated below to describe the performance of
Support Vector Machines algorithm on the testing data. The precision-recall
curve for the Full dataset encompasses a comparatively higher area than the
Minified dataset’s precision-recall curve. The optimal F1 score for the Full
dataset is positioned relatively higher and farther right on the graph as compared
to the optimal F1 score for the Minified dataset. A gradual increment in the
recall results in a continuous decrease in the precision for both datasets. The
decrement in the precision is comparatively higher for the Minified dataset. The
precision-recall curves have been presented in Figures 5.11 and 5.12.
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Figure 5.11: The precision-recall curve for SVMs algorithm performance on
testing data (Full Dataset).
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Figure 5.12: The precision-recall curve for SVMs algorithm performance on
testing data (Minified Dataset).
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Testing Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 92.14 71.08 96.72 81.94 79.65
Minified Dataset 77.94 41.66 49.18 45.11 49.07
Training Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 90.92 67.22 99.18 80.13 85.23
Minified Dataset 86.61 60.06 81.96 69.32 76.37

Table 5.3: The comparison of the performance of SVMs algorithm on each
dataset.

Table 5.3 exhibits a summary of the performance of Support Vector Machines
algorithm on the testing and training data. All results are calculated with re-
spect to the minority class that is thrombotic patients.

The algorithm generally performs better on the training data than the testing
data as represented in the table. The performance on the training data is rea-
sonably stable for both the Full dataset and the Minified dataset. SVMs models
generate a few exceptions contrary to the previous models. The algorithm scores
higher accuracy, precision and F1 score on the testing data as compared to the
training data for the Full dataset. The testing data yields alternating perfor-
mance for the Full dataset and the Minified dataset. The algorithm achieves
comparatively better scores in terms of all considered metrics on the Full dataset
than the Minified dataset.

5.4 Artificial Neural Networks

This section presents the performance of Artificial Neural Networks (ANNS)
algorithm on the Full dataset and the Minified dataset. Table 5.4 compares
the performance of various models based on different optimising algorithms
and activation functions, for the Full dataset. Table 5.5 presents outcomes for
the Minified dataset. “AC” denotes the accuracy and “AUC (PR)” represents
the area under the precision-recall curve. The models with the most reliable
performance have been discussed further.

The information presented in tables 5.4 and 5.5 has been compared to choose a
model for each dataset. The comparison considered the accuracy and the area
under the precision-recall curve. The chosen activation functions, optimisers
and scores have been reported in the bold text in the tables.

As described in table 5.4, Adagrad, RMSprop and Adam optimisers have pro-
duced competitive accuracy scores with the help of different activation func-
tions. RMSprop scored the highest accuracy of 89.12% with the combination of
Sigmoid function. The combination of Adagrad and Tanh activation function
yielded a slightly lower accuracy than RMSprop, however, it scored higher on the
AUC(PR) metric. The combination of Adagrad optimiser and Tanh activation
function has been utilised to build the final model for the Full dataset.
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Full Dataset
ReLU Sigmoid Tanh
AC | AUC (PR) | AC | AUC (PR) AC AUC (PR)
Adagrad | 88.82 64.50 81.57 16.97 88.82 77.79
RMSprop | 88.51 67.92 89.12 75.54 84.89 63.09
Adam 88.51 71.46 87.00 59.78 86.70 63.69

Table 5.4: The comparison of the performance of different optimisers and acti-
vation functions for the ANNs models on the Full dataset.

Minified Dataset
ReLU Sigmoid Tanh
AC | AUC (PR) AC AUC (PR) | AC | AUC (PR)
Adagrad | 79.45 37.21 81.57 16.49 75.83 51.90
RMSprop | 79.45 33.80 80.36 51.09 80.36 43.52
Adam 83.38 46.93 81.87 50.79 76.13 39.97

Table 5.5: The comparison of the performance of different optimisers and acti-
vation functions for the ANNs models on the Minified dataset.

Table 5.5 exhibits a thorough comparison of the performance of various op-
timising algorithms and activation functions on the Minified dataset. Adam
optimiser and ReLU activation function have scored the highest accuracy of
83.38%. The combination of Adam optimiser and Sigmoid activation function,
however, produced a higher AUC(PR) score with insignificantly lower accuracy.
The Minified dataset employs the aggregate of Adam optimiser and Sigmoid
activation function to generate the final model.

5.4.1 Confusion Matrices

The confusion matrices are presented below to describe the performance of the
Artificial Neural Networks based models on the testing data. The algorithm has
classified the thrombotic patients in the Full dataset with 12 false negatives and
25 false positives. The number of true negatives and true positives stands at
245 and 49, respectively, for the Full dataset. The performance of the algorithm
on the Minified dataset concluded with 40 false negatives, 20 false positives, 250
true negatives and 21 true positives.

The Minified dataset comprises a higher amount of false negatives and true
negatives and a lower number of false positives and true positives than the Full
dataset. The results have been presented in Figures 5.13 and 5.14.

5.4.2 Precision Recall Curves

The precision-recall curves are presented below to describe the performance of
the Artificial Neural Networks based models on the testing data. The precision-
recall curve for the Full dataset encompasses a comparatively higher area than
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Figure 5.13: The confusion matrix for ANNs model performance on testing data
(Full Dataset).
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Figure 5.14: The confusion matrix for ANNs model performance on testing data
(Minified Dataset).
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the Minified dataset’s precision-recall curve. The optimal F1 score for the Full
dataset is positioned relatively higher and farther right on the graph as compared
to the optimal F1 score for the Minified dataset. A gradual increment in the
recall results in a continuous decrease in the precision for both datasets. The
decrement in the precision is comparatively higher for the Minified dataset. The
precision-recall curves have been presented in Figures 5.15 and 5.16.
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Figure 5.15: The precision-recall curve for ANNs model performance on testing
data (Full Dataset).
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Figure 5.16: The precision-recall curve for ANNs model performance on testing
data (Minified Dataset).

Table 5.6 exhibits a summary of the performance of Artificial Neural Networks
models on the testing and training data. All results are calculated with respect
to the minority class that is thrombotic patients.

The algorithm generally performs better on the training data than the test-
ing data as represented in the table. The performance on the training data is
rcasonably stable for both the Full dataset and the Minified dataset with the
exceptions of recall and AUC(PR). The testing data yields alternating perfor-
mance for the Full dataset and the Minified dataset. The algorithm achieves
comparatively better scores in terms of all considered metrics on the Full dataset
than the Minified dataset.
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Testing Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 88.82 66.21 80.32 72.59 77.79
Minified Dataset 81.87 51.21 34.42 41.17 50.79
Training Data
Accuracy Precision Recall F1 Score AUC (PR)
Full Dataset 94.09 76.77 97.54 85.92 94.55
Minified Dataset 91.60 82.12 69.67 75.38 81.89

Table 5.6: The comparison of the performance of ANNs algorithm on each
dataset.



Chapter 6

Discussion

This chapter contains the discussion of the results presented in the Results
chapter. It is structured according to the research questions presented in the
Introduction chapter.

6.1 Research Question I

How do standard machine learning algorithms compare in performance on the
full dataset?

This study has implemented numerous machine learning models that are based
on Random Forests (RF), XGBoost (XGB), Support Vector Machines (SVMs)
and Artificial Neural Networks (ANNs). These models have been trained on the
Full dataset to differentiate between thrombotic and non-thrombotic patients.
Table 6.1 presents a summary of the outcomes of investigations conducted ear-
lier on the Full dataset.

Tree-based algorithms, i.e., Random Forests and XGBoost, have generally per-
formed comparatively more reliable than Support Vector Machines and Artifi-
cial Neural Networks. XGBoost has scored the highest accuracy and AUC(PR)
scores on the testing data, while Random Forests has scored slightly lower.
Random Forests holds the highest spot in the comparative performance on the
training data and, XGBoost lies at the second spot.

Support Vector Machines and Artificial Neural Networks have secured lower
accuracy and AUC(PR) than Random Forests and XGBoost on both testing
and training data. Support Vector Machines has outperformed Artificial Neural
Networks in reliability on the testing data, and there is an opposite outcome for
the training data.

XGBoost surpassed all other algorithms in terms of performance on the F1
Score for the testing data. It was followed by Support Vector Machines, Ran-
dom Forests and Artificial Neural Networks. Random Forests scored the highest
on the same metric for training data. XGBoost, Artificial Neural Networks and

52
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Support Vector Machines secured the second, third and fourth places, respec-
tively.

The models have performed comparatively better on the training data as com-
pared to the testing data. This behaviour is conceivably prompted by the imbal-
anced classes in the dataset that can trigger insignificant overfitting. Another
plausible rationale behind the phenomenon is the fact that training data is not
entirely unseen information to the models, contrary to the testing data that is
exclusively uncomprehended.

Testing Data
Accuracy Precision Recall F1 Score AUC (PR)

RF 92.74 83.63 75.40 79.31 85.70
XGB 94.56 80.28 93.44 86.36 86.61
SVMs 92.14 71.08 96.72 81.94 79.65
ANNs 88.82 66.21 80.32 72.59 77.79

Training Data
Accuracy Precision Recall F1 Score AUC (PR)

RF 99.92 99.59 100.0 99.79 99.99
XGB 98.33 91.72 100.0 95.68 99.98
SVMs 90.92 67.22 99.18 80.13 85.23
ANNs 94.09 76.77 97.54 85.92 94.55

Table 6.1: The performance comparison of various algorithms on the Full
dataset.

Precision-Recall curves can be exceptionally knowledgable for the datasets with
imbalanced classes. Figure 6.1 illustrates the precision-recall curves for various
algorithms that have been employed for this study. The illustration utilises con-
trasting colours to distinguish between curves of different algorithms. The figure
represents the performance of models on testing data from the Full dataset.
The curves for Random Forests and XGBoost are prominently analogous and,
XGBoost encompasses a slightly larger area under the curve. The curves for
Support Vector Machines and Artificial Neural Networks follow separate trajec-
tories over varying thresholds, however, they do not possess radically distinct
areas under the curve. The curve for Support Vector Machines secures a slightly
larger area under the curve as compared to the curve for Artificial Neural Net-
works. All algorithms generally provide a robust equilibrium between precision
and recall.

XGDBoost has yielded the most reliable efficiency in classifying thrombotic and
non-thrombotic patients on solely uncomprehended testing data from the Full
dataset. Artificial Neural Networks has produced the least efficient outcomes.
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Figure 6.1: The precision-recall curves of various algorithms utilising testing
data from the Full dataset.

6.2 Research Question II

How do standard machine learning algorithms compare in performance on the
reduced dataset?

This section presents the performance of standard machine learning algorithms
on the Minified dataset. These algorithms have been trained on the Minified
dataset to differentiate between thrombotic and non-thrombotic patients. Table
6.2 presents a summary of the outcomes of investigations conducted earlier on
the Minified dataset.

The tree-based algorithms, i.e., Random Forests and XGBoost, have performed
comparatively better than Support Vector Machines and Artificial Neural Net-
works, comparable to the previous section. Random Forests has scored the
highest accuracy and AUC(PR) scores on the testing data, while XGBoost has
scored slightly lower than Random Forests. Random Forests outperformed all
algorithms in the comparative performance on the training data and, XGBoost
lies at the second spot.

Support Vector Machines and Artificial Neural Networks have achieved lower
accuracy and AUC(PR) than Random Forests and XGBoost on both testing
and training data. Artificial Neural Networks has outperformed Support Vector
Machines in accuracy and AUC(PR) on the testing data and the training data.
Support Vector Machines have scored the lowest of all algorithms.

XGBoost exceeded all other algorithms in terms of performance on the F1 Score
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for the testing data. It was followed by Random Forests, Support Vector Ma-
chines and Artificial Neural Networks. Random Forests scored the highest on
the same metric for training data. XGBoost, Artificial Neural Networks and
Support Vector Machines secured the second, third and fourth places, respec-
tively. It is identical to the previous section, the Full dataset.

The models have performed comparatively better on the training data as com-
pared to the testing data, which is similar to the previous section, the Full
dataset. This behaviour is conceivably prompted by the imbalanced classes in
the dataset that can trigger insignificant overfitting. Another plausible ratio-
nale behind the phenomenon is the fact that training data is not entirely unseen
information to the models, contrary to the testing data that is exclusively un-
comprehended.

Testing Data
Accuracy Precision Recall F1 Score AUC (PR)

RF 86.10 71.42 40.98 52.08 57.02
XGB 84.29 58.49 50.81 54.38 54.19
SVMs 77.94 41.66 49.18 45.11 49.07
ANNs 81.87 51.21 34.42 41.17 50.79

Training Data
Accuracy Precision Recall F1 Score AUC (PR)

RF 99.92 99.59 100.0 99.79 100.0
XGB 99.84 99.18 100.0 99.59 99.99
SVMs 86.61 60.06 81.96 69.32 76.37
ANNs 91.60 82.12 69.67 75.38 81.89

Table 6.2: The performance comparison of various algorithms on the Minified
dataset.

Precision-Recall curves can be exceptionally knowledgable for the datasets with
imbalanced classes. Figure 6.2 illustrates the precision-recall curves for various
algorithms that have been employed for this study. The illustration utilises
contrasting colours to distinguish between curves of different algorithms. The
figure represents the performance of models on testing data from the Minified
dataset.

The curves for Support Vector Machines and Artificial Neural Networks are
prominently analogous and, Artificial Neural Networks encompasses a slightly
larger area under the curve. The curves for Random Forests and XGBoost follow
somewhat separate trajectories over varying thresholds, however, they do not
possess radically distinct areas under the curve. The curve for Random Forests
secures a slightly larger area under the curve as compared to the curve for XG-
Boost. The overall performance of different algorithms is low as compared to
the previous section. Random Forests scores the highest on the AUC(PR) met-
ric, while Support Vector Machines scores the lowest.

Random Forests has yielded the most reliable efficiency in classifying throm-
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botic and non-thrombotic patients on solely uncomprehended testing data from
the Minified dataset. Support Vector Machines has produced the least efficient
outcomes.
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Figure 6.2: The precision-recall curves of various algorithms utilising testing
data from the Minified dataset.

6.3 Research Question III

How do standard machine learning algorithms compare in performance on min-
imising the number of false negatives?

It can be remarkably significant to identify patients from a mixed population.
It necessitates that the predictive models should possess high scores on the re-
call metric. A high recall score ensures that the number of false negatives is
reduced to the minimum. This study performed a comparative investigation
of the performance on recall metric for Random Forests, XGBoost, Support
Vector Machines and Artificial Neural Networks. Table 6.3 exhibits a thorough
comparison of the recall scores across different datasets.

Support Vector Machines scores the highest recall on the Full dataset when it
is evaluated against the testing data. It implies that Support Vector Machines
identifies the maximum number of thrombotic patients. XGBoost, Artificial
Neural Networks and Random Forests secure the second, third and fourth po-
sitions, respectively. The performance on the training data is comparatively
higher in resemblance to the previous trend. Random Forests and XGBoost
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Full Dataset

RF XGB SVMs ANNs
Testing Data | 75.40 93.44 96.72  80.32
Training Data | 100.0 100.0 99.18  97.54
Minified Dataset

RF XGB SVMs ANNs
Testing Data | 40.98 50.81 49.18  34.42
Training Data | 100.0 100.0 81.96  69.67

Table 6.3: The comparison of the Recall scores of different algorithms on each
dataset.

acquire the first and second spots while Support Vector Machines and Artificial
Neural Networks hold the third and fourth positions, respectively.

The performance of the algorithms on the Minified dataset is comparatively
lower than the performance on the Full dataset. XGBoost scores the highest
recall on the Minified dataset when evaluated against the testing data. Support
Vector Machines, Random Forests and Artificial Neural Networks secure the
second, third and fourth positions, respectively. The performance on the train-
ing data is comparatively higher in resemblance to the previous trend. Random
Forests and XGBoost acquire the first and second spots while Support Vector
Machines and Artificial Neural Networks hold the third and fourth positions,
respectively.

The algorithms included in the study generally perform better on the Full
dataset in reducing the number of false negatives as compared to the perfor-
mance on the Minified dataset. It can be explained by the lower amount of data
contained in the Minified dataset.
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Conclusion

This chapter presents the conclusions from the investigation. It is separated
into Conclusions and Future Work sections.

This study has conducted a comparative investigation to compare the perfor-
mance of standard machine learning algorithms on the RI Schedule datasct.
The study includes Random Forests, XGBoost, Support Vector Machines and
Artificial Neural Networks in the quantitative comparison. It has been organ-
ised into three separate investigations that examine the performance on the Full
dataset, Minified dataset and the reduction of false negatives.

7.1 Conclusions

The study concluded that XGBoost yields the most reliable performance in
distinguishing between thrombotic and non-thrombotic patients on the testing
data for the Full dataset. It scored 94.56 on the accuracy metric. The second,
third and fourth places are held by Random Forests, Support Vector Machines
and Artificial Neural Networks, respectively. They scored 92.74, 92.14 and 88.82,
respectively, on the accuracy metric. Random Forests, XGBoost, Artificial Neu-
ral Networks and, Support Vector Machines secure the first, second, third and
fourth positions, respectively, on the training data. They obtained scores of
99.92, 98.33, 94.09 and 90.92, respectively, on the accuracy metric. The models
performed relatively better on the training data as compared to the testing data.

Random Forests has been the most efficient algorithm in separating throm-
botic and non-thrombotic patients on the testing data for the Minified dataset.
It scored 86.10 on the accuracy metric. It is followed by XGBoost, Artifi-
cial Neural Networks and Support Vector Machines in the descending order of
performance. They scored 84.29, 81.87 and 77.94, respectively, on the accu-
racy metric. The ranking of the models for the training data is identical, i.e.,
Random Forests, XGBoost, Artificial Neural Networks and Support Vector Ma-
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chines. They obtained scores of 99.92, 99.84, 91.60 and 86.61, respectively, on
the accuracy metric. The models performed relatively better on the training
data as compared to the testing data.

The study has employed the recall metric to indicate the number of false nega-
tives when classifying thrombotic and non-thrombotic patients. Support Vector
Machines obtained the highest recall on the testing data for the Full dataset
by scoring 96.72. It is followed by XGBoost, Artificial Neural Networks and
Random Forests. They scored 93.44, 80.32 and 75.40, respectively. XGBoost
lead the performance ranking for the testing data of the Minified dataset by
scoring 50.81. Support Vector Machines, Random Forests and Artificial Neural
Networks secured the second, third and fourth positions by scoring 49.18, 40.98
and 34.42, respectively. The performance ranking on the training data for both
Full and Minified datasets is identical, i.e., Random Forests, XGBoost, Support
Vector Machines and Artificial Neural Networks in the descending order of the
recall performance. They scored 100.0, 100.0, 99.18 and 97.54, respectively, on
the Full dataset. The respective scores for the Minified dataset are 100.0, 100.0,
81.96 and 69.67. The models generally perform poorly on the Minified dataset
as compared to the performance on the Full dataset.

7.2 Future Work

The Minified dataset has been designed to comprise only essential information
regarding the patients. It assists medical practitioners in performing a pre-
diction without requiring most of the clinical tests. It implies that reliable
performance on the Minified dataset can be remarkably beneficial in real-world
applications. The conclusions from this study illustrate that the predictive
models have a comparatively weaker performance on the Minified dataset. This
decline in performance can be further investigated.

The study has developed predictive models that can be utilised in the healthcare
sector to predict thrombosis. It necessitates that the number of false negatives
is minimised, which can be achieved by maximising the score on the recall met-
ric. The performance of the recall metric can be enhanced with the assistance
of dedicated hyperparameter tuning and custom objective functions.

The overall performance of the models can be improved and validated further
with the help of additional clinical data.
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Appendix A

Dataset Features

A.1 Original Features of RI Schedule Dataset

Table A.1: A complete list of the features in the RI Schedule
dataset.
Features
Patient ID Inclusion Month
Weight KG Height
Wells Score Fastlege Exclusion Criteria HB
Sex Age Inclusion

Exclusion Criteria Investigation 2
Hours

Exclusion Criteria Klexane

Exclusion Criteria Active Cancer
Disease

Exclusion Criteria Suspect Lung
Embolism

Exclusion Criteria Active Bleeding

Exclusion Criteria Threatening Cir-
culation

Exclusion Criteria Improper Print

Exclusion Criteria Logical Factors

Exclusion Criteria Comorbidities

Exclusion Criteria Do Not Want
Printed

Exclusion Criteria GFR

Exclusion Criteria HB

Contraindications Rivaroxaban Sig- | Contraindications Rivaroxaban
nificant Risk Factor Current Treatment
Contraindications Rivaroxaban | Contraindications Rivaroxaban
Hepatic Disease Pregnancy

Exclusion Criteria Current Treat-
ment

BaselineWellsScore Nurse Active

Cancer

BaselineWellsScore Nurse Paralysis

BaselineWellsScore Nurse Bed

BaselineWellsScore Nurse Tender-
ness

BaselineWellsScore Nurse Swelling
Throughout UEX
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BaselineWellsScore Nurse Swelling | BaselineWellsScore Nurse Pitting
Leg Edema

BaselineWellsScore Nurse Venous | BaselineWellsScore Nurse Alterna-
Collateral tive Diagnosis

BaselineWellsScore  Nurse  Total | BaselineWellsScore Doctor Active
Score Cancer

BaselineWellsScore Doctor Paraly- | BaselineWellsScore Doctor Bed

sis

BaselineWellsScore Doctor Tender- | BaselineWellsScore Doctor Swelling
ness Throughout UEX
BaselineWellsScore Doctor Swelling | BaselineWellsScore Doctor Pitting
Leg Edema

BaselineWellsScore Doctor Venous | BaselineWellsScore Doctor Alterna-
Collateral tive Diagnosis

BaselineWellsScore Doctor Total | Klexane Fragmin

Score

Klexane Dose Field

Klexane Number Of Times

Fragmin Dose Field

Fragmin Number Of Times

Ongoing Anticoagulation If Yes
Specify

Risk Factors

Risk Factors Previous DVT Le

Risk Factors Previous DVT Datel
Relative 21628

Risk Factors Previous DVT Date2
Relative 21628

Risk Factors Previous DVT Date3
Relative 21628

Risk Factors Previous Le Datel Rel-
ative 21628

Risk Factors Previous Le Date2 Rel-
ative 21628

Risk Factors DVT Le First Degree
Relatives

Risk Factors P Pills Type

Risk Factors HRT Type

Risk Factors Active Cancer Last 6
Months

Risk Factors Cancer Type

Risk Factors Myeloproliferative Dis-
ease

Risk Factors Thrombophilia

Risk Factors Thrombophilia APC

Risk Factors Thrombophilia Factor
V Heterozygous

Risk Factors Thrombophilia An-
tithrombin

Risk Factors Thrombophilia Protein
C

Risk Factors Thrombophilia Protein
S

Risk Factors Thrombophilia An-
tiphospholipid

Risk Factors Thrombophilia Pro-
thrombin

Risk Factors Pregnancy

Risk Factors Birth Last 12 Weeks

Risk Factors Immobilization Specify
Operation

Risk Factors Immobilization Other
Surgery Specify

Risk Factors Immobilization

Thromboprophylaxis

Risk Factors Immobilization LMVH
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Risk Factors Immobilization Ri-
varoxaban

Risk Factors Immobilization Apixa-
ban

Risk Factors Immobilization Dabi-
gatran

Risk Factors Immobilization
Thromboprophylaxis How Many
Days

Risk
Trauma

Factors Immobilization

Risk Factors Immobilization Neuro-
logical Disease

Risk Factors Immobilization Physi-
cal Inactivity

Risk Factors Immobilization Air
Travel

Risk Factors Immobilization Car
Train

Risk Factors Smoker

Clinic Symptoms Duration

Clinic Symptoms Pain

Clinic Symptoms Swelling

Clinic Symptoms Erythema

Clinic Vital Temp

Clinic Vital Pulse

Clinic Vital Blood Pressure Systolic

Clinic Vital Blood Pressure Dias-
tolic

Clinic Measurement Leg Knee Left

Clinic Measurement Leg Knee Right

Knee Difference V H

Clinic Measurement Leg Ankle Left

Clinic Measurement Leg Ankle
Right

Ankle Difference V H

Clinic Suspected Active Bleeding

Clinic Suspected Active Bleeding
Bruises

Clinic Suspected Active Bleeding
Hematuria

Clinic Suspected Active Bleeding
Epistaxis

Clinic Suspected Active Bleeding
Blood in Feces

Clinic Suspected Infection

Clinic Suspected Infection Fever

Clinic Suspected Infection Sweat

Clinic Suspected Infection Frostbite

Clinic Suspected Infection Reduced
General Condition

Clinic Suspected Infection Sus-
pected Erysipelas

Clinic Suspected Infection Sus-
pected Erysipelas High Fever

Clinic  Suspected Infection Sus-
pected Erysipelas Well Defined

Clinic Blood Test Results HB

Clinic Blood Test Results Platelets

Clinic Blood Test Results CRP

Clinic Blood Test Results GFR

Clinic Blood Test Results Creati-
nine

Clinic Blood Test Results D Dimer

Clinic Blood Test Results ASAT

Clinic Blood Test Results ALAT

Clinic Blood Test Results Bilirubin

Clinic Rivaroxaban Received Not
Received

Clinic Number Of
Tablets

Rivaroxaban

Clinic Nurse Assessment

Clinic Doctor Assessment

Time Course Supervised Legevakt
Fastlege Relative 21628

Time Course Arrival Emergency
Room Relative 21628

Date Visit 1 Relative 21628

Visit 1 Measurement Leg Knee Left
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Visit 1 Measurement Leg Knee
Right

Difference Leg Knee V H

Visit 1 Measurement Leg Ankle Left

Visit 1 Measurement Leg Ankle
Right

Difference Leg Ankle V H

Visit 1 HB

Visit 1 D Dimer

Date Visit 2 Relative 21628

Visit 2 Bleeding 1 Treatment

Visit 2 New UL Examination

Visit 2 New UL Examination DVT
Proven

Visit 2 Worsening Symptoms

Visit 2 Development Symptoms Pul-
monary Embolism

Visit 2 Development Symptoms Pul-
monary Embolism Specify

Visit 2 Development Symptoms Pul-
monary Embolism Treatment

Visit 2 Bleeding

Visit 2 Bleeding 1 Date Relative
21628

Visit 2 Bleeding 1 Type

Visit 2 Bleeding 1 Localization

Visit 2 Bleeding 1 Location Specify

Visit 2 Bleeding 1 HB

Visit 2 Bleeding 2 Date Relative
21628

Visit 2 Bleeding 2 Type

Visit 2 Bleeding 2 Localization

Visit 2 Bleeding 2 Location Specify

Visit 2 Bleeding 2 Treatment

Visit 2 Bleeding 2 HB

Date Visit 3 Relative 21628

Control Performed

Visit 3 New VTE VTE 1 Time Rel-
ative 21628

Visit 3 New VITE VTE 1 DVT LE

Visit 3 New VTE Treatment

Visit 3 Deaths

Visit 3 Deaths Related To Bleeding

Visit 3 Deaths Unknown Cause

Visit 3 Deaths Death Cause

Visit 3 Deaths Autopsy

Visit 3 Proven VTE After Day 2

Visit 3 Deaths Related To Recur-
rence Of VTE

Start Of Anticoagulant Last 90 Days

If Yes What Medicine

Cause Of Startup

Visit 3 Malignancy Detected

Visit 3 Malignancy Detected Type

Date UL Relative 21628

UL Proven VTE

Date Relative 21628

Anticoagulation UFH Start Up Rel-
ative 21628

Anticoagulation UFH End Date

Relative 21628

Anticoagulation LMWH Start Up
Relative 21628

Anticoagulation LMWH End Date
Relative 21628

Anticoagulation Xarelto Start Up
Relative 21628

Anticoagulation Xarelto End Date
Relative 21628

Anticoagulation Marevan Start Up
Relative 21628

Anticoagulation Marevan End Date

Relative 21628

Anticoagulation Eliquis Start Up
Relative 21628

Anticoagulation Eliquis End Date
Relative 21628

Anticoagulation Thrombolysis Start
Up 21628
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Anticoagulation Thrombolysis End
Date 21628

Anticoagulation Other Start Up
Relative 21628

Anticoagulation Other End Date
Relative 21628

Anticoagulation Type

Continues With Ongoing Treatment

Continues With Ongoing Treatment
Specify

A.2 Features Dropped From Full Dataset

Table A.2: A list of the features dropped from the Full dataset.

Features

Wells Score Fastlege

Exclusion Criteria Investigation 2
Hours

Exclusion Criteria Klexane

Exclusion Criteria Active Cancer
Disease

Exclusion Criteria Active Bleeding

Exclusion Criteria Threatening Cir-
culation

Exclusion Criteria Improper Print

Exclusion Criteria Logical Factors

Exclusion Criteria Comorbidities

Exclusion Criteria Do Not Want
Printed

Exclusion Criteria GFR

Exclusion Criteria HB

Contraindications Rivaroxaban Sig- | Contraindications Rivaroxaban
nificant Risk Factor Current Treatment
Contraindications Rivaroxaban | Contraindications Rivaroxaban
Hepatic Disease Pregnancy

Bascline Wells Score Nurse Active
Cancer

Baseline Wells Score Nurse Paralysis

Baseline Wells Score Nurse Bed

Baseline Wells Score Nurse Tender-
ness

Baseline Wells Score Nurse Swelling
Throughout UEX

Baseline Wells Score Nurse Swelling
Leg

Baseline Wells Score Nurse Pitting
Edema

Baseline Wells Score Nurse Venous
Collateral

Baseline Wells Score Nurse Alterna-
tive Diagnosis

Baseline Wells Score Nurse Total
Score

Clinic Nurse Assessment

Clinic Doctor Assessment

Time Course Supervised Legevakt
Fastlege Relative 21628

Time Course Arrival Emergency
Room Relative 21628

Control Performed

Anticoagulation UFH Start Up Rel-
ative 21628

Anticoagulation UFH End Date
Relative 21628

Anticoagulation LMWH Start Up
Relative 21628
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Anticoagulation LMWH End Date
Relative 21628

Anticoagulation Xarelto Start Up
Relative 21628

Anticoagulation Xarelto End Date
Relative 21628

Anticoagulation Marevan Start Up
Relative 21628

Anticoagulation Marevan End Date
Relative 21628

Anticoagulation Eliquis Start Up
Relative 21628

Anticoagulation Eliquis End Date
Relative 21628

Anticoagulation Thrombolysis Start
Up 21628

Anticoagulation Thrombolysis End
Date 21628

Anticoagulation Other Start Up
Relative 21628

Anticoagulation Other End Date
Relative 21628

Anticoagulation Type

Continues With Ongoing Treatment

Continues With Ongoing Treatment
Specify

A.3 Features Dropped From Minified Dataset

Table A.3: A list of the features dropped from the Minified dataset.

Features

Wells Score Fastlege

Exclusion Criteria Investigation 2
Hours

Exclusion Criteria Klexane

Exclusion Criteria Active Cancer
Disease

Exclusion Criteria Active Bleeding

Exclusion Criteria Threatening Cir-
culation

Exclusion Criteria Improper Print

Exclusion Criteria Logical Factors

Exclusion Criteria Comorbidities

Exclusion Criteria Do Not Want
Printed

Exclusion Criteria GFR

Exclusion Criteria HB

Contraindications Rivaroxaban Sig- | Contraindications Rivaroxaban
nificant Risk Factor Current Treatment
Contraindications Rivaroxaban | Contraindications Rivaroxaban
Hepatic Disease Pregnancy

Baseline Wells Score Nurse Active
Cancer

Baseline Wells Score Nurse Paralysis

Baseline Wells Score Nurse Bed

Baseline Wells Score Nurse Tender-
ness

Baseline Wells Score Nurse Swelling
Throughout UEX

Baseline Wells Score Nurse Swelling
Leg

Baseline Wells Score Nurse Pitting
Edema

Baseline Wells Score Nurse Venous
Collateral
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Bascline Wells Score Nurse Alterna-
tive Diagnosis

Bascline Wells Score Nurse Total
Score

Clinic Nurse Assessment

Clinic Doctor Assessment

Time Course Supervised Legevakt
Fastlege Relative 21628

Time Course Arrival Emergency
Room Relative 21628

Control Performed

Anticoagulation UFH Start Up Rel-
ative 21628

Anticoagulation UFH End Date
Relative 21628

Anticoagulation LMWH Start Up
Relative 21628

Anticoagulation LMWH End Date
Relative 21628

Anticoagulation Xarelto Start Up
Relative 21628

Anticoagulation Xarelto End Date
Relative 21628

Anticoagulation Marevan Start Up
Relative 21628

Anticoagulation Marevan End Date
Relative 21628

Anticoagulation Eliquis Start Up
Relative 21628

Anticoagulation Eliquis End Date
Relative 21628

Anticoagulation Thrombolysis Start
Up 21628

Anticoagulation Thrombolysis End
Date 21628

Anticoagulation Other Start Up
Relative 21628

Anticoagulation Other End Date
Relative 21628

Anticoagulation Type

Continues With Ongoing Treatment

Continues With Ongoing Treatment
Specify

Inclusion Month

Exclusion Criteria Current Treat-
ment

Klexane Fragmin

Klexane Dose Field

Klexane Number Of Times

Fragmin Dose Field

Fragmin Number Of Times

Ongoing Anticoagulation If Yes
Specify

Risk Factors

Risk Factors Previous DVT Datel
Relative 21628

Risk Factors Previous DVT Date2
Relative 21628

Risk Factors Previous DVT Date3
Relative 21628

Risk Factors Previous Le Datel Rel-
ative 21628

Risk Factors Previous Le Date2 Rel-
ative 21628

Risk Factors Thrombophilia

Risk Factors
Thromboprophylaxis

Immobilization

Risk Factors Immobilization LMVH

Risk Factors Immobilization Ri-
varoxaban

Risk Factors Immobilization Apixa-
ban

Risk Factors Immobilization Dabi-
gatran

Immobilization
How Many

Risk Factors
Thromboprophylaxis
Days

Knee Difference V H
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Ankle Difference V H

Clinic Suspected Active Bleeding

Clinic Suspected Active Bleeding
Bruises

Clinic Suspected Active Bleeding
Hematuria

Clinic Suspected Active Bleeding
Epistaxis

Clinic Suspected Active Bleeding
Blood in Feces

Clinic Rivaroxaban Received Not
Received

Clinic Rivaroxaban Number Of

Tablets

Date Visit 1 Relative 21628

Visit 1 Measurement Leg Knee Left

Visit 1 Measurement Leg Knee

Right

Difference Leg Knee V H

Visit 1 Measurement Leg Ankle Left

Visit 1 Measurement Leg Ankle
Right

Difference Leg Ankle V H

Visit 1 B

Visit 1 D Dimer

Date Visit 2 Relative 21628

Visit 2 Bleeding 1 Treatment

Visit 2 New UL Examination

Visit 2 New UL Examination DVT
Proven

Visit 2 Worsening Symptoms

Visit 2 Development Symptoms Pul-
monary Embolism

Visit 2 Development Symptoms Pul-
monary Embolism Specify

Visit 2 Development Symptoms Pul-
monary Embolism Treatment

Visit 2 Bleeding

Visit 2 Bleeding 1 Date Relative
21628

Visit 2 Bleeding 1 Type

Visit 2 Bleeding 1 Localization

Visit 2 Bleeding 1 Location Specify

Visit 2 Bleeding 1 HB

Visit 2 Bleeding 2 Date Relative
21628

Visit 2 Bleeding 2 Type

Visit 2 Bleeding 2 Localization

Visit 2 Bleeding 2 Location Specify

Visit 2 Bleeding 2 Treatment

Visit 2 Bleeding 2 HB

Date Visit 3 Relative 21628

Visit 3 New VITE VTE 1 Time Rel-
ative 21628

Visit 3 New VTE VTE 1 DVT LE

Visit 3 New VTE Treatment

Visit 3 Deaths

Visit 3 Deaths Related To Bleeding

Visit 3 Deaths Unknown Cause

Visit 3 Deaths Death Cause

Visit 3 Deaths Autopsy

Visit 3 Proven VTE After Day 2

Visit 3 Deaths Related To Recur-
rence Of VTE

Start Of Anticoagulant Last 90 Days

If Yes What Medicine

Cause Of Startup

Visit 3 Malignancy Detected

Visit 3 Malignancy Detected Type

Date UL Relative 21628

Date Relative 21628
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