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Abstract

Hyperparameters are essential to the predictive performance of machine learning models
and require unique configurations to best fit a given task. The notion of optimizing
hyperparameters for prediction performance is referred to as hyperparameter optimization.
Hyperparameters are typically handled as one set of values used universally in the training
procedure of machine learning models. However, certain complex model types require
multiple sets of hyperparameters based on contained components. For instance, this is
relevant for artificial neural networks, which have both global hyperparameters that affect
the entire network and per-layer hyperparameter that define aspects relevant to each
layer. Both the global and per-layer hyperparameters in this context are essential to
neural networks’ predictive performance. Gradient boosting algorithms are another type
of machine learning method that produces complex models in the form of decision tree
ensembles. In such ensembles the contained decision trees work together to make predictions
by directly compensating for each other inaccuracies. The hyperparameters of gradient
boosting algorithms are handled in the typical way where all trees are defined by the same
set of hyperparameters. However, it seems reasonable to theorise that such ensembles could
benefit from per-tree hyperparameters, considering that each tree can be conceptualized to
fit individual tasks.

In this thesis we define per-tree hyperparmeters for gradient boosting ensembles as the
term "flexible ensemble structures", and propose two approaches to their optimization.
These are respectively named Holistic and Incremental flexible ensemble structure optimization.
We investigate the application of flexible ensemble structures through 5 experiments based
on XGBoost ensembles of 5 trees. Specifically, we focus on their benefit to prediction
performance, determine how applicable they are, based on their optimization difficulty, and
investigate how they can be effectively optimized. From the results of the experiments, we
find that flexible ensemble structures seem significantly beneficial, based on the fact that
they considerably outperformed traditional structures in terms of prediction performance
while remaining manageable in optimization difficulty. In fact, we find indications that in
certain scenarios it is practically easier to obtain good prediction performance with flexible
ensemble structures than with traditional ones. Comparing the proposed optimization
approaches, we find that the Holistic approach was clearly more effective, and we suggest
this as the standard for flexible ensemble structure optimization. Beyond this, we find
several aspects with the potential to be exploited for increased optimization effectiveness.
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Chapter 1

Introduction

In machine learning algorithms, hyperparameters is the term for parameters who’s values,
among other things, define the architecture of the model(s) produced by the algorithm.
Due to their nature, tuning algorithms’ hyperparameters can significantly impact produced
models’ prediction performance for better or worse. Additionally, the hyperparameters of a
given machine learning method affects prediction performance differently for each dataset,
and therefore need to be configured uniquely for a given task to reach optimal prediction
performance. This makes tuning hyperparameters to optimize prediction performance,
referred to as hyperparameter optimization, an absolutely essential part of most machine
learning tasks [64, 3.

Hyperparameters are typically input-parameters to the algorithm itself, and are usually
defined as one static set of values used universally in all aspects of the training procedure
[64]. This is inherently fine for algorithms that produce simple models, like singular decision
trees, but can be sub-optimal for ones that produce more "complex" models. This can be
demonstrated with artificial neural networks, which can have both "global hyperparameters"
that affect the entire network, and "per-layer hyperparameters," which define aspects of
individual layers. The number of hyperparameters for neural networks therefore depends
on the number of hidden layers. More importantly; The prediction performance of neural
networks is very sensitive to the values of their per-layer hyperparameters |16, 2|. Per-layer
hyperparameters are thus absolutely essential to the prediction performance of artificial
neural networks, and should not be excluded from optimization processes.

Gradient boosting decision tree algorithms are types of algorithms that also produces
complex models and are widely used due to their effectiveness in both classification and
regression tasks, general versatility, and potential to be paralellized [12]. Gradient boosting
algorithms are based on boosting, which is the notion of combining many iteratively created
trees, with weak individual performance, into an ensemble of trees with strong performance
[19]. Gradient boosting takes this principle a step further by treating the task of iteratively
adding trees like a gradient descent problem in functional space [12]. While this is already
very effective as it allows the algorithm to make the iteratively created trees compensate
for the inaccuracies of the previously added components, there is still an aspect which
potentially could be improved; All ensemble trees are defined by the same hyperparameter
configuration. Because each ensemble tree is generated to compensate for the inaccuracies
of the earlier trees [24], they can be conceptually thought of as fitting to individually
unique tasks. And as we already know that hyperparameters achieve best prediction
performance when they are fine tuned to a given task [3], it seems reasonable to theorize
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that the prediction performance of the finalized ensemble could benefit from each of its
contained trees having unique hyperparameter configurations. However, because much of
the model architecture relevant to each component is defined universally by the same set of
hyperparameters, this is currently not the case. Thus, investigating the effects of per-tree
hyperparameter configurations for gradient boosting ensemble trees could be worthwhile.

1.1 Research Questions and Method

The potential benefits of per-tree hyperparameters are largely determined by how they
affect prediction performance, as this is the primary benefit of hyperparameter optimization
in general [64]. However, regardless of how beneficial they are to prediction performance,
the application of per-tree hyperparameter configurations can depend on other factors. One
such factor is the difficulty of optimization. Each hyperparameter added to an optimization
process exponentially increases the number of unique configurations. This phenomena is
often referred to as the curse of dimentionality [64]. Due to the curse of dimentionality, it is
possible that the difficulty of optimizing per-tree hyperparameters with gradient boosting
scales similarly. If this is the case, the application of per-tree hyperparameters could
quickly become unreasonable, due to extreme requirements for computational resources.
Beyond these aspects, we do not know how per-tree hyperparameters for gradient boosting
ensembles are best optimized, of which insight is necessary to standardize and effectivize
their use. Thereby, we define the following research questions:

RQ1: To what extent are per-tree hyperparameters beneficial for the prediction performance
of gradient boosting ensembles?

RQ2: To what extent are per-tree hyperparameters detrimental to the optimization difficulty
of gradient boosting ensembles?

RQ3: How can gradient boosting ensembles with per-tree hyperparameters be effectively
optimized?

1.1.1 Method

To answer the research questions, we first need a solid understanding of hyperparameter
optimization and gradient boosting algorithms. We also need insights into concepts in other
contexts of machine learning similar to per-tree hyperparameters with gradient boosting
ensembles. The obtained knowledge will provide a foundation for how we explore and
evaluate the effects of per-tree hyperparameter for gradient boosting ensembles.

Because per-tree hyperparmaeters for gradient boosting ensembles is a novel concept,
we need to clearly define it in relation to how the hyperparameters of gradient boosting
ensembles are traditionally handled. We also need to establish a few approaches for how
they can be optimized. Thereafter, we will need to obtain relevant insights surrounding
the research questions by conducting a set of experiments based on gradient boosting
ensembles with per-tree hyperparameters. Because we do not know how the inclusion of
per-tree hyperparameters affects prediction performance, we will investigate relatively small
ensembles of 5 trees. This way we can (hopefully) keep the search difficulty manageable,
while still optimizing enough ensemble trees to investigate the effects of the per-tree
hyperparmeters.
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Based on the results of the experiments, we will provide an answer to each of the
presented research questions and outline their relevancy in the context of machine learning
research.

1.2 Outline

This section provides an overview of the remaining chapters of the thesis.

Chapter 2 provides background information relevant to the thesis. The chapter begins by
providing an overview of the hyperparameter optimization problem and outline some
common methods for this task. Thereafter, the concepts of boosting and gradient
boosting are explained, and some well known and used machine learning algorithms
based on these concepts are abstractly described. Lastly, a collection of earlier research
relevant to the thesis topic is discussed.

Chapter 3 defines per-tree hyperparameters for gradient boosting ensembles as the term
"flexible ensemble structures", and explains it in relation to how gradient boosting
ensembles’ hyperparameters are typically handled. Furthermore, two approaches to
how flexible ensemble structures can be optimized are proposed.

Chapter 4 outlines the groundwork for the experiments of the thesis. This includes
the selection of datasets, gradient boosting algorithm, hyperparameters to optimize,
hyperparameter optimization methods, and hardware used for computations.

Chapter 5 defines the thesis experiments and describes their individual methodologies.
Chapter 6 presents the results of each experiment.

Chapter 7 provides a discussion around the thesis. The research questions are here
restated and answered based on the experiment results, the relevancy of the results
are discussed in relation to earlier research, and the limitations of the thesis are
acknowledged.

Chapter 8 outlines some implications for future work based on the limitations of the
thesis. Some additional ideas for how flexible ensemble structures could be handled
and modified are also discussed.

Chapter 9 wraps up the thesis by summarizing its contents before providing a clear
conclusion.






Chapter 2

Background

In this chapter, we outline the background and related work of thesis. The chapter is divided
into three sections. In Section 2.1, we explain the concept of hyperparameter optimization,
and outline some of the most common techniques for this task. Specifically; Grid Search,
Random Search, Evolutionary Algorithms, and Bayesian Optimization. In Section 2.2, we
define the concepts of boosting and gradient boosting, and abstractly describe some well
known and used machine learning algorithms based on these concepts: AdaBoost, XGBoost,
LightGBM, and CatBoost. Finally, in Section 2.3, we outline and discuss earlier research
relevant to the topic of the thesis.

2.1 Hyperparameter Optimization

Machine learning algorithms typically have two types of parameters. The first type is
referred to as model parameters, being internal parameters native to produced models that
are automatically tuned by the algorithm during the training procedure. The other type
of parameters, however, are not automatically tuned during training, but on the contrary,
help define how the training procedure is to be executed and/or define the architecture of
the models to be produced. These types of parameters are named hyperparameters and are
usually set as input parameters of the algorithm itself [64]. Given their nature, the values
of the algorithm’s hyperparameters can greatly impact the performance of produced models.
Thus, tuning algorithms’ hyperparameters to optimize model performance is an essential
part of machine learning, and is usually referred to as hyperparameter optimization [3].

However, hyperparameter optimization is not trivial. Optimal hyperparameter configurations
for a given machine learning algorithm varies greatly based on the dataset used, and different
machine learning algorithms typically have different hyperparameters altogether. These
factors, coupled with the fact that there is no consistent way to predict good hyperparameter
configurations, encourages the use of black box methods |2, 64, 25]. These types of methods
are typically based on approaches similar to "trial and error, though they can be much
more sophisticated than this description would imply. Some of the most common methods
to hyperparameter optimization are outlined in the sections below. Namely; Grid Search,
Random Search, Evoluationary Algorithms and Bayesian Optimization.
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2.1.1 Grid Search

Grid Search is one of the most simple and commonly used methods to hyperparameter
optimization. It finds hyperparameter configurations by brute-forcing all possible combinations
of a defined grid of values [64]. However, Grid Search is generally considered a very
inefficient method due to its exhaustive search approach, especially when optimizing
many hyperparameters. This is because the amount of unique configurations increases
exponentially with each hyperparameter to optimize. Exploring the entire search space
with Grid Search thus quickly becomes extremely computationally expensive [64]. Grid
Search also suffers from wasting resources on exploring uneventful areas of the search space

[2]-

2.1.2 Random Search

Random Search is another simple and widely used approach to hyperparameter optimization.
As implied by its name, Random Search optimizes hyperparameters by evaluating random
configurations based on lower and upper value bounds for each hyperparameter. Despite
being just as simple in implementation as Grid Search, it is significantly more efficient. This is
because different hyperparameters have different levels of impact on prediction performance.
Compared to Grid Search, Random Search therefore spends less computational resources
on optimizing non-effective hyperparameters |2, 64]. Random Search was additionally made
more efficient by Geitle and Olsson [25], who added functionality for adaptively narrowing
the search space as the number of iterations increases, while keeping the method simple in
implementation.

2.1.3 Evolutionary Algorithms

Evolutionary Algorithms is an umbrella-term for search algorithms inspired by principles
found in natural evolution [46, 35|. According to Charles Darwin [14], natural evolution in
the animal kingdom is determined by the following aspects: The variation of characteristics
between parents and child, the heritability of characteristics, and a competitive environment
that ensures that only the fittest individuals can survive and reproduce. These are in turn
what forms the basis for the functionality of Evolutionary Algorithms.

Evolutionary Algorithms optimize a given objective by producing sets of solutions,
commonly referred to as populations of individuals, where each iteration is called a
generation. For each generation, a set of new individuals are created by in some way
reproducing the individuals of the previous generation. Some of the most common methods
of reproducing individuals, are crossover and mutation. Crossover is typically the primary
method of reproduction, and works by producing a new individual by combining the
characteristics of multiple individuals from the previous generation. Mutation is generally
used as a secondary method to reproduction, usually in combination with crossover, and
works by in some what altering certain aspects of singular individuals. Both of these
methods are typically stochastic to ensure that produced individuals are different from
their parents. To determine the "fitness" of the individuals, each one is evaluated on a
fitness function, which in the context of optimization tasks, is equivalent to the objective
function. Reproduction is often prioritized for individuals of higher fitness, to explore the
well performing areas of the search space [46].
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There are many different Evolutionary Algorithms, each with their own strategies and
optimal application areas. To name a few: Genetic Algorithms [28], Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [26], Differential Evolution [58|, Success-History
based Adaptive Differential Evolution (SHADE) [59], and Particle Swarm Optimization
[34] are well known, and widely used examples.

2.1.4 Bayesian Optimization

Abstractly speaking, Bayesian Optimization algorithms are procedures that iteratively
optimizes a given objective through points of evaluation, each based on the results of
the previous evaluations. This is achieved through a sophisticated method utilizing two
components: a surrogate model and an acquisition function. These components have a
cyclic relation ship. The surrogate model attempts to predict results on the objective, based
on the observed results of earlier evaluations, and the acquisition function uses the surrogate
model to determine the next point of evaluation. New points of evaluation are determined
based on balancing two factors. One factor is to exploit the surrogate model’s predictions for
promising areas of the search landscape, the other is to explore areas currently not covered.
By balancing these two factors, the acquisition function attempts to find increasingly better
results, while ensuring that the algorithm does not converge to a local optima, by routinely
exploring new areas of the search landscape [64].
The general procedure of Bayesian Optimization algorithms on hyperparmeter optimization

problems can thus be outlined as follows [64]:

1. Create an initial surrogate model.

2. Use the acquisition function to determine a hyperparameter configuration to evaluate
based on the predictions of the surrogate model, while balancing the factors of
exploitation and exploration.

3. Evaluate the selected hyperparamter configuration on the objective function.

4. Update the surrogate model with the results of the evaluated hyperparameter
configuration.

5. Repeat steps 2 to 4 for the number of iterations specified by the user.

Generally speaking, there are three types of Bayesian Optimization algorithms, based on
the type of surrogate model used [64]: Gaussian Process [55], Random Forest [30], and Tree
Parzen Estimator [2]. For each of these types, there are frameworks frameworks that contain
Bayesian Optimization implementations. For instance, for the Gaussian Process surrogate
model type, there are Spearmint [57|, BayesOpt [40], Scikit-optimize [39], GpFlowOpt
[36], and Sherpa [27]. For the Tree Parzen Estimator type, there are Hyperopt |4], BOHB
[17], Optunity [13], and Osprey [41]. Random Forest seems to be the least implemented
surrogate model type, but SMAC [38] is a good example.

2.1.5 Method Comparisons

Generally, Random Search is considerably more efficient than Grid Search for optimizing
hyperparameters. However, as these methods typically do not have abilities of adapting
the search space, with some exceptions like Adaptive Random Search [25], they are both
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considered inefficient compared to Evolutionary Algorithms and Bayesian Optimization.
Each of these two methods have their benefits and drawbacks. Evolutionary Algorithms are
often relatively simple in search approach and easy to parallelize, but can require a large
amount of iterations to find optimal configurations. Comparably, Bayesian Optimization
methods typically find good hyperparameter configurations in less iterations, but are based
on complex search approaches that are computationally demanding and hard to parallelize
[64].

2.2 Boosting

Boosting refers to a general machine learning principle based on producing accurate
predictive models by creating an ensemble of comparatively inaccurate models [20]. The
basis for boosting originates from the "PAC" learning model [33], a theoretical framework
for studying machine learning. With this learning model, Kearns and Valiant [32] introduced
the term weak learner, being defined as a model that have predictive capabilities only
slightly better than random guessing. Kearns and Valiant also raised the question of
whether weak learners could be "boosted" into a strong learner with an arbitrarily high
accuracy to the training data. This in turn inspired the first proposed boosting algorithms
[54, 19| which were based on this very theory.

A common factor of how the ensemble of weak learners is created in boosting algorithms
is that each iterativly added weak learner is made to compensate for the inaccuracy of the
previously added weak learners. How the weak learners are made to compensate, however,
varies with different boosting methods and algorithms. Different methods and a few selected
boosting algorithms; AdaBoost, XGBoost, Light GBM and CatBoost, are outlined below.

2.2.1 AdaBoost

AdaBoost (short for Adaptive Boosting), proposed by Freund and Schapire [21], is generally
considered to be the first practical boosting algorithm [20, 42]. The goal of AdaBoost is
to reach a final model which has low error, relative to the training data, after a certain
amount of iterations. To accomplish this, the algorithm generates for each iteration a weak
learner that is added to an ensemble. The final model then becomes this ensemble of a
number of weak learners, equal to the number of iterations in the algorithm, where final
predictions are calculated based on a weighted majority vote [21].

As mentioned in Section 2.2, in boosting algorithms, the iteratively added weak learners
are made to compensate for the inaccuracies of the previously added weak learners. AdaBoost
handles this through the use of weights. Weights are numbers attached to each instance
in the training data, which represent how much individual training instances should be
taken into account when generating weak learners. Higher weights corresponds to higher
influence how the weak learner is generated. The weights are initially set to be equal for all
data instances, and are for each iteration in the algorithm updated. Updates to the weights
are based on the performance of the previous iteration’s generated weak learner, and are
tweaked so that inaccurately predicted instances of the previous iteration are weighted
higher in the current iteration. In this way the weak learners are generated adaptively
based on the results of previous iterations. This is in turn where the name, AdaBoost, is
derived from [21].
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2.2.2 Gradient Boosting Decision Tree Algorithms

Friedman [23] introduced in 2001 the principle of treating additive expansion of trees as
steepest descent minimization. In this principle decision trees that best minimize error
for a given iteration in the boosting procedure are regarded as steps towards the steepest
descent. In other words; Tree boosting is practically treated as a gradient descent problem
in functional space. Friedman also incorporated the notion of shrinkage into the gradient
boosting principle, being a regularization method. Regularization methods are designed
to prevent overfitting by constraining the fitting procedure [23]. Shrinkage is, in this
context, defined as scaling each update of the boosting model by the value of a learning rate
parameter. Gradient boosting algorithms thereby have a minimum of two regularization
parameters, being the learning rate and the number of components (iterations), which a
natural parameter given that gradient boosting is a form of additive expansion.

Both the learning rate and the number of components can individually affect the optimial
value of the other. Interestingly, Friedman found, in relation to this, that lower learning
rate values result in better performance. However, this comes at the cost of requiring a
higher number of components, thus resulting in longer training times and larger, more
complex models [23]. This trade-off can often be a great inconvenience when working with
machine learning problems, especially when training on very large datasets, or when using
gradient boosting algorithms in real-time systems.

Stochastic gradient boosting can be abstractly explained as elements of randomness
added into the gradient boosting procedure |24]. Specifically, it is the gradient boosting
algorithm modified to a minor degree by, in each iteration, randomly drawing a subsample
(without replacement) from all training instances and using this subsample, as opposed to
the full training set, to fit the weak learner [24]. Fitting models to drawn subsamples of
data instances is referred to as "bagging" and was first introduced by Breiman [6] in 1996.
Breiman further extended on this idea in 1999 by proposing "adaptive bagging" 7], being a
combination of boosting and bagging, where the regular weak learners of boosting algorithms
where replaced with bagged weak learners. This was in turn the primary inspiration behind
Stochastic Gradient Boosting.

2.2.3 XGBoost

XGBoost, proposed by Chen & Guestrin [12], is an open source gradient boosting decision
tree algorithm that is widely considered state-of-the-art, as it has frequently been featured
in winning models of machine learning competitions, hosted on websites such as Kaggle
1. One of the main attractions of XGBoost is that it is designed to be scalable to as
many scenarios as possible. This is achieved as a result of several implemented innovations
compared to earlier boosting algorithms. The primary innovations are; the ability to handle
sparse data; a proposed theoretically justified weighted quantile sketch for efficient proposal
calculation; the algorithm is made to be parallelizable through a sparsity-aware algorithm;
and the algorithm exploits out-of-core computation, which makes it very efficient. The
algorithm also makes minor improvements to the regularized learning objective, compared
to Friedman’s 22| earlier proposal. Specifically, XGBoost uses shrinkage of weights added
per iteration to regulate the influence of individual trees, as well as random subsampling
of columns (features) and rows to avoid overfitting, as seen in, e.g., RandomForest [8].
XGBoost also uses an "approximate greedy algorithm" for finding the best feature split,

"https://www.kaggle.com/
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which is designed to be less computationally demanding than an "exact greedy algorithm"
[12]. However, it could still be argued that efficency and scalablility is unsatisfactory in the
split-finding aspects when working with large datasets due to having to scan every instance
in order to calculate the split information gains [31].

2.2.4 LightGBM

With the proposal of Light GBM [31], the authors set out to improve on the implementations
of earlier gradient boosting decision tree algorithms, XGBoost included. Specifically,
LightGBM attempts to improve on earlier implementations’ approach to split-finding. The
changes proposed with Light GBM are based on the idea of reducing the number of instances
and features of a given dataset, and can be summarized into two techniques; Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) [31].

GOSS utilizes the notion that data instances with different gradients affect the computation
of information gain differently. Specifically that instances with larger gradients contribute
more to the information gain [31]. Thus when the data is down-sampled, instances with
larger gradients should be kept to retain accuracy of information gain estimation, and
instances with smaller gradients should be randomly dropped. The authors proved that
this can give better accuracy of information gain estimation compared to uniform random
sampling [31].

EFB, on the other hand, exploits the observation that many datasets have a large
number of features which are often times quite sparse. This means that the number of
effective features can potentially be reduced nearly losslessly. An example of this is datasets
where many of the features are independent of each other (exclusive), similar to resulting
datasets of executing one-hot encoding. Feature Bundling of the independent features can
therefore be assimilated to a graph coloring problem. The graph coloring problem is in this
context based on feature defined vertices with edges between every non-mutually exclusive
feature, which is solved with a greedy algorithm with constant approximation ratio [31].

Compared to other gradient boosting methods like XGBoost, the innovations proposed
with Light GBM led to it having significantly faster training times, while achieving competitive
prediction performance [31].

2.2.5 CatBoost

CatBoost (short for Categorical Boosting) [48] is another open-source gradient boosting
decision tree library that technically outperforms both XGBoost and Light GBM. The
authors discovered a problem present in all previously implemented gradient boosting
algorithms. Namely, what they call a prediction shift, which is caused by a certain type
of target leakage. This prediction shift comes as a result of a prediction model, obtained
after a number of boosting iterations, being reliant on the training instances’ targets, which
further leads to a shift in the distribution of training instances from the distribution of
the test instances. Prediction shifts are bad because they negatively affects the model’s
generalization ability, and thereby their predictive performance.

To combat the prediction shift the authors introduced what they named ordered boosting,
being a permutation-driven alternative to classic approaches. Ordered boosting was derived
from a proposed ordering principle, inspired by online learning algorithms that sequentially
receive training instances through time. The theoretical reasoning behind the ordering
principle and ordered boosting is quite elaborate and complex, and we will therefore not
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extensively cover it in this thesis, though the details can obviously be read about in the
original paper [48|. Practically, however, ordered boosting operates by maintaining a set of
models that were trained with separate data instances. These models are utilized when
calculating the residual for a specific training instance by then using a model that was
trained without this instance.

The result is that CatBoost’s innovations successfully prevent the aforementioned
prediction shift, and thereby achieve better prediction performance than earlier gradient
boosting algorithms. However, this comes at the caveat of often requiring a large number
of trained models, making CatBoost a sub-optimal choice for machine learning tasks with
restrictions on model complexity and memory requirements.

2.2.6 Algorithm Comparisons

Generally, the methods of gradient boosting; XGBoost, Light GBM and CatBoost, are
stronger than regular boosting methods, like AdaBoost, while each have their benefits
and downsides. For instance, Light GBM is very efficient in terms of training time and
memory consumption, but can sometimes struggle to achieve as good prediction performance
as the other alternatives [31]. CatBoost achieves the strongest prediction performance,
especially for datasets of catagorical data, but typically requires larger ensemble sizes than
LightGBM and XGBoost to achieve this [48]. While XGBoost lands somewhere in between
the other two methods. It is generally slower to train, but can achieve better prediction
performance with smaller ensembles, based on its greedy and exhaustive tree-generation
process [12, 31, 48].

2.3 Related Work

To our knowledge, attempting to improve upon gradient boosting methods by exploring
per-tree hyperparameter configurations has not been researched in the past. The typical
method of improving upon gradient boosting algorithms have mostly focused on altering
the procedure of which trees are generated, and rarely on the structure of models produced.
This can be demonstrated with the improvements made with XGBoost [12] from the
original gradient boosting method [23|, and those made thereafter with Light GBM [31] and
CatBoost [48]. The closest examples to our topic, are a couple of papers that implemented
gradient boosting where the diversity of ensemble trees were encouraged, which had positive
findings |51, 5|. However, the promotion of diversity was here mostly centred around
deterministically selecting the training data of each tree. Allowing diversity in the ensemble
trees’ hyperparameters was not investigated. In fact, hyperparameter related research
regarding to gradient boosting almost exclusively focus on the optimization methods
[49, 63|, rather than obtaining insight or altering how the hyperparameters are handled in
the algorithm. Some of the few exceptions are Probst et al. [47], who attempted to find
optimal standard values of the hyperparameters of XGBoost, among other algorithms, and
a quite recent paper by Qreback and Geitle [66], which explored XGBoost’s hyperparmeters
with the use of 3D visualizations.

However, that is not to say that having multiple contained hyperparameter configurations
in an ensemble model is a completely novel concept. While this, to our knowledge, has not
been investigated for gradient boosting ensembles, it is not uncommon in certain other types
of ensembles. Most predominantly; stacking ensembles [62], and ensembles produced with
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ensemble selection [11] or derivatives. These types of ensembles are different from gradient
boosting ensembles in that the base learners do not feed into each other. They are individual
models, of which individual predictions are in some way combined into a singular ensemble
prediction. Both of these types of ensembles allow the base learners of a given ensemble to
be full models produced by different machine learning methods, though they can also be
homogeneous. As a result, it is natural that the base learners have separate hyperparameter
configurations. There have been proposed several methods for how ensembles of these
types should be built and optimized in relation to their hyperparameters. For instance
Feurer et al. [18] proposed a post hoc ensemble generation procedure, based on ensemble
selection. In this procedure, a regular hyperparameter optimization approach is carried
out, typically with Bayesian Optimization, but the models produced with the explored
configurations are stored and later greedily combined into an ensemble that maximizes
prediction performance. Lévesque et al. [37] extended on this approach by combining the
hyperparameter optimization procedure, based on Bayesian Optimization, with ensemble
training. Here, each iteration of Bayesian Optimization optimizes a single base learner,
and between interations, cycles through the base learners to optimize. Shahhosseini et
al. [56] proposed a procedure of which base learners’ hyperparameters and weights for
prediction calculation were optimized in a nested process. Wistuba et al. [61] proposed
a framework called Automatic Frankensteining, for automatically generating and tuning
complex ensembles, here referred to as Frankenstein ensembles. And Wenzel et al. [60]
designed "deep" ensemble approaches that generate ensembles, based on artificial neural
networks, with focus on diversity in (neural network) weights and hyperparameters. All of
these different approaches have shown great benefits of per-base learner hyperparameter
configurations, and their optimization, in ensembles. Beyond this, there are several examples
of these ensemble types being implemented in practical applications with positive results
[45, 50, 52].

Another comparison to make with per-tree hyperparameters for gradient boosting
ensembles is how artificial neural networks are hyperparameter optimized. Artificial neural
networks consist of multiple layers, where each layer can be of a different type, have a
different number of nodes, different activation functions, etc. The hyperparameters of
neural networks are thus divided into two types: Global hyperparameters that apply to
the whole network, of which the number of hidden layers is a good example, and per-layer
hyperparameters defining only the characteristics their associated layer. Optimizing the
per-layer hyperparameters in artificial neural networks is absolutely essential to achieving
optimal prediction performance |16, 2]. Models of boosting ensembles and artificial neural
networks are also relatively similar based on the fact that they are both "feed forwards"
oriented, meaning the inputs are received, transformed and passed from one "component"
to another.



Chapter 3

Flexible Ensemble Structure
Optimization

The research questions explore per-tree hyperparameter configurations with gradient
boosting ensembles. In this chapter, we define this concept as what we call "flexible
ensemble structures". To explain the concept, in Section 3.1, we first outline how boosting
ensembles are traditionally structured with illustrations and descriptions, and compare
these to that of flexible ensemble structures. Thereafter, in Section 3.2, we define and
discuss different possible approaches to how flexible ensemble structures can be optimized.
Specifically, we define two general approaches, Holistic and Incremental flexible ensemble
structure optimization, demonstrated with illustrations and pseudo codes.

3.1 Flexible Ensemble Structures

As discussed in Section 2.1, hyperparameters influence the training procedure and/or the
architecture of produced machine learning models. In the context of gradient boosting
ensembles, instances of architecture can be exemplified as the number of trees (the ensemble
size) or the trees’ depth. For this thesis, we define a more general term, structure, which
refers to any and all effects of hyperparameters on produced ensembles. Gradient boosting
ensemble structures are traditionally defined by only one set of hyperparameters. In practise,
this means that all ensemble trees are uniformly defined by the same hyperparameter
configuration. An example of a traditional ensemble structure of 3 trees is illustarated in
Figure 3.1 However, we theorize that traditional structures, with their uniformly configured
trees, are preventing gradient boosting ensembles from achieving their full predictive
potential. Hyperparameter values are already essential to achieving the best possible
prediction performance on machine learning tasks and need to be custom tuned to each
dataset. In the gradient boosting ensemble building process, each tree is generated to
minimize the ensemble’s prediction errors, based on where the previous tree left off. In
practise, this means that each tree is given a slightly different prediction problem, and
thereby a slightly different dataset. It therefore seems reasonable to theorize that optimizing
each tree for their respective prediction problem, by giving them individual hyperparameter
configurations, would be more optimal for prediction performance.

We call the concept of having individual hyperparameter configurations per ensemble
tree, flexible ensemble structures, of which an example is illustrated in Figure 3.2. Compared
to traditional structures, we can see that all trees in this example ensemble have individual

13
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Figure 3.1: Visual example of a traditional ensemble structure of 3 trees. The trees are
symbolised as line-connected collections of nodes, each with an associated hyperparameter
configuration, in cartesian coordinate format, on their left. The arrows indicate how the
trees feed into each other. Moving left to right, the left furthermost ensemble tree is thereby
the first, and the furthermost right, the last. In regards to the hyperparmeter configurations,
these are illustrated to contain two parameters, one continuous and one integer, and are
identical across all three trees. This demonstrates the very limited flexibility between the
trees’ regularization, and thereby their individual predictive capabilities.

hyperparameter configurations. In practice, this means that each tree can be completely
different in all aspects, from their size to how they are generated. Of course, this level of
flexibility also allows for the trees to be identical in structure, should this be optimal.

0.2 0.8 0.6
1 2 2

Figure 3.2: Visual example of a flexible ensemble structure of 3 decision trees based
on individual hyperparmeter configurations. The trees are symbolised as line-connected
collections of nodes, each with an associated hyperparameter configuration, in cartesian
coordinate format, on their left. The arrows indicate how the trees feed into each other.
Moving left to right, the left furthermost ensemble tree is thereby the first, and the
furthermost right, the last. In regards to the hyperparmeter configurations, these are
illustrated to contain two parameters, one continuous and one integer, and are individual
for each tree. This demonstrates the increased flexibility between the trees’ regularization,
and thereby their individual predictive capabilities, compared to traditional structures.

3.2 Approaches to Flexible Ensemble Structure Optimization

To explore the research question we needed to establish a few different approaches of flexible
ensemble structure optimization. Specifically, we explored two approaches; The first was
to optimize all per-tree hyperparameter configurations in the same procedure. We call
this, Holistic flexible ensemble structure optimization. The second was to optimize each
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tree individually and separately from from the others, specifically in tandem with their
generation in the ensemble building process. We call this, Incremental flexible ensemble
structure optimization.

In the sections below, we discuss the two optimization approaches to clearly demonstrate
their building and optimization processes, as well as outline their pseudo code. The pseudo
codes are made neutral to implementation details, such as how models are trained and
evaluated. Instead, they contain an associated objective-function, based on input-influenced
output values, to be optimized with a selected hyperparameter optimization method. This
objective-function is further referred to as the Objective.

0.3 0.5 0.9
Tter. 1: —>D —D
0.7 0.9 05

0.5 0.1 0.2
Iter. 2: P D

0.6 0.4 0.8

0.2 0.6 0.4
Iter. 3: —D —D

0.5 0.7 0.9

Figure 3.3: Visual demonstration of Holistic optimization of flexible ensemble structures.
Ensembles are represented as collections of nodes (trees), with associated cartesian
coordinate hyperparameter confugurations on their left, connected by arrows indicating
input/output flow. The visualization contains three ensemble instances, each representing
the result of one search iteration with Holistic flexible ensemble structure optimization.
Comparing these iterations, we can see that each one generates a full-sized ensemble with
individual hyperparameter configurations for each contained tree.

3.2.1 Holistic Flexible Ensemble Structure Optimization

Holistic flexible ensemble structure optimization is inherently quite similar to how traditional
structures are optimized, where all hyperparameters are handled simultaneously. This is of
course under the presumption that a pipeline optimization-process is not used. However,
where traditional structures only have one configuration containing a certain number
of hyperparameters, flexible structures have one such configuration for each tree in the
ensemble. The benefit of this approach is that produced ensembles, with their contained
per-tree hyperparameter configurations, are evaluated as a whole. This means that each
tree’s configuration will be optimized to aid the entire ensemble’s prediction performance.
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The downside of optimizing flexible structures holistically, is that this practically means
that the number of hyperparameters to be optimized simultaneously increases linearly with
the ensemble size. This is a potential problem because the search complexity, in terms of
unique value combinations, increases exponentially for each added hyperparameter [64].
This optimization problem thus becomes comparable to that of neural networks. Neural
networks can have many layers that can be of different types, contain different numbers of
nodes, use different activation functions etc. Optimizing the structure of neural networks
is therefore a task that gets exponentially more complex the larger the size. Regardless,
due to the benefits of large (deep) neural networks, optimization strategies are continually
being developed and improved upon [16, 65, 43]. This demonstrates that even though
investigating Holistic flexible ensemble structure optimization can seem like a daunting task,
especially with larger ensembles, it may yet be possible and worth exploring for its benefits.
Holistic flexible ensemble structure optimization is visually demonstrated in Figure 3.3.

3.2.1.1 Procedure

The pseudo code of Holistic optimization is contained in Figure 3.4. The procedure has
three input parameters. The first, C, is a positive integer that denotes the number of trees
the produced ensemble is to contain. The second, I, is a positive integer that denotes
number of iterations of a selected hyperparameter optimizaton method the ensemble is to
be optimized through. And the third, S, denotes the configuration search space, being a set
of value-ranges, each based on a lower value, [, and an upper value, u. Note that each range
is here associated with a unique hyperparameter, of which the total number is denoted as
M. The value type of each range is therefore dependent on the associated hyperparameter.

procedure HoLisTic(C, I € N, S = {range of (I3, u1), ..., range of (Ips, upr)})
procedure OBJECTIVE(H = flexible ensemble structure configuration
represented as an array of C per-tree
hyperparameter configurations in the
form (hq, ..., hpr), where each h is a
value for a unique hyperparameter)
FEy < empty ensemble
for ¢+ 1to C do
t. + boosting tree with H. per-tree hyperparameter configuration
E. + t. added to E._1
end for
p < prediction performance of F¢
return p, Eo
end procedure
FEpest < the best ensemble of [ iterations of a hyperparameter
optimization method, each producing a flexible ensemble structure
configuration, H, based on the search space, S, evaluated on the
Objective
return Ej.q
end procedure

Figure 3.4: Pseudo code for Holistic flexible ensemble structure optimization.
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Most of the Holistic flexible ensemble structure optimization process is contained within
the Objective. The Objective has one input parameter passed from the optimization method;
H, being a flexible ensemble structure configuration. The structure is represented as an
array containing C' per-tree hyperparameter configurations, each in the form (hy, ..., has),
where each h is a value for a unique hyperparameter. The Objective begins by initializing
an empty ensemble, Fy. This ensemble is then gradually built one tree at a time, as denoted
by the for-loop with a total of C' run-troughs, For each run-through, ¢, a boosting tree t. is
generated based on its associated per-tree hyperparameter configuration in H, H., before
it is added to the ensemble, denoted as F.. Once the ensemble is finalized, denoted as F¢,
its prediction performance, p, is measured. Finally, p and E¢ are returned as the result of
the Objective. The Objective is optimized through I iterations of the optimization method,
each producing a flexible ensemble structure configuration, H, based on the search space,
S, and evaluating it on the Objective. After all iterations, the best performing ensemble,
FEpest, 1s returned as the result of Holistic flexible ensemble structure optimization.

3.2.2 Incremental Flexible Ensemble Structure Optimization

Contrary to the Holistic approach, Incremental flexible ensemble structure optimization is
handled quite differently from traditional structures. For this approach, the ensemble trees
are not optimized as a unit, but instead, each in their own isolated procedure. While this
approach can be handled in various ways, we chose to optimize the trees in tandem with
their generation in the training process. This way, the hyperparameter optimization task
can be treated like a gradient decent problem, and can be conceptualized as an extension
of how gradient boosting is already designed, as outlined in Section 2.2.2. This would
also largely abstract the hyperparameters away from users, which would make applications
of boosting algorithms significantly simpler. Search difficulty would also be much more
manageable compared to the Holistic approach, only optimizing the hyperparameters of
one tree at at a time. However, the potential downside of this method is that each tree is
optimized as an extension of the current ensemble. This means that each tree is optimized
without the consideration of proceeding trees, which could negatively impact the predictive
abilities of finalized ensembles. Incremental flexible ensemble structure optimization is
visually demonstrated in Figure 3.5.

3.2.2.1 Procedure

The pseudo code for Incremental flexible ensemble structure optimization is contained in
Figure 3.6. Just as with the Holistic approach, the procedure has three input parameters.
The first; C', denoting the number of trees the produced ensemble is to contain. The second;
I, denoting number of iterations of a selected hyperparameter optimization method each
tree is to be optimized through. And the third; .5, denoting the configuration search space,
being a set of M unique hyperparameter value-ranges, each based on a lower value, [, and
an upper value, u.

Incremental flexible ensemble structure optimization begins by initializing an empty
ensemble, Fy. As with the Holistic approach, this ensemble is gradually built, tree by
tree, through a for-loop with a total of C' run-throughs. However, differently from the
Holistic approach, where this process is contained within the Objective, the opposite is
the case for Incremental flexible ensemble structure optimization. The Objective has one
input-parameter; H, being one per-tree hyperparameter configuration in the form (hy,
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Figure 3.5: Visual demonstration of Incremental optimization of flexible ensemble structures.
Ensembles are represented as as collections of nodes (trees), with associated cartesian
coordinate hyperparameter configurations on their left, connected by arrows indicating
input/output flow. The visualization contains three ensemble instances, each representing
the result of one iteration of Incremental flexible ensemble structure optimization.
Comparing these iterations, we can see that each iteration hyperparameter optimizes
and adds one tree to the ensemble.

wul

procedure INCREMENTAL(C, I € N, S = {range of (I1, u1), ..., range of (Iar, upr)})
FEy + empty ensemble
for c<+1to C do
procedure OBJECTIVE( H = per-tree hyperparameter configuration
in the form (hy, ..., har), where each h is a
value for a unique hyperparameter)
t < boosting tree with H per-tree hyperparameter configuration
FE..: < t added to E._1
Pext < prediction performance of Feyy
return Dext, Eext
end procedure
E. < best extended ensemble of I iterations of a hyperparameter
optimization method, each producing a per-tree hyperparameter

configuration, H, based on the search space, S, evaluated on the Objective
end for

return Eo
end procedure

Figure 3.6: Pseudo code for Incremental flexible ensemble structure optimization.
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..oy har), where each h is a value for a unique hyperparameter. The Objective begins by
defining a boosting tree, t, with its associated hyperparameter configuration, H. The current
ensemble, F. 1, is then extended with ¢, denoted as E.,;, and its prediction performance,
Dext, 18 measured, before both pe,: and Feyt are returned as the result of of the Objective.
For each run-though, ¢, of the for-loop, the selected hyperparameter optimization method is
ran with [ iterations, each producing a per-tree hyperparameter configuration, H, based on
the search space, S, and evaluating it on the Objective. After all iterations, the extended
ensemble of best performance is returned and defined as the updated ensemble, E.. After
all trees are added, the finalized ensemble, E¢, is returned as the result of Incremental
flexible ensemble structure optimization.






Chapter 4

Groundwork for the Experiments

To answer the research questions, we conducted 5 experiments, of which methodologies
are described in Chapter 5 and results are presented in Chapter 6. This chapter outlines
the groundwork for these experiments. Section 4.1, outlines the different datasets and how
they were selected, preprocessed and baselined. Section 4.2 discusses the selection of the
algorithm used in experiments, XGBoost. In Section 4.3 the selected hyperparameters of
XGBooost are discussed. Section 4.4 discusses the hyperparmeter optimization methods
used in the experiments. Finally, Section 4.5 outlines the hardware used for computations
and how this influenced the experiments.

4.1 Datasets

To answer the research questions, we needed to select a few different datasets to serve
as optimization tasks. To promote generalizable results, we selected both regression and
classification datasets of varying characteristics, such as size, number of features, feature
datatypes, range of targets, and skewness in target distributions. To ensure fast runtimes
during investigations, we limited the size of datasets to be no larger than 20000 datainstances.
The necessity for this is discussed in Section 4.5. An overview of the selected regression
datasets are tabulated in Table 4.1, while the selected classification datasets are tabulated
in Table 4.2. These datasets were used in all experiments.

Dataset Instances Nr. Features Feature Type(s) Value Range
Concrete' 1030 8 Real 2.33 - 82
Energy Prediction? 19735 27 Real 10 - 1080
Housing® 506 13 Real 5 -50
Seoul Bike Sharing® 8760 13 (17) Real & Categorical 0 - 3418

Table 4.1: The selected regression datasets used to train and evaluate ensembles.

"https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
2http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
3https://archive.ics.uci.edu/ml/machine-learning-databases/housing/?C=N;0=D
‘https://archive.ics.uci.edu/ml/datasets/Seoul +Bike+Sharing+Demand
Shttps://archive.ics.uci.edu/ml/datasets/car+evaluation
Shttp://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
"https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

21
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Dataset Instances Nr. Features Feature Type(s) N Classes
Car Evaluation® 1728 6 Ordinal 4
Statlog Satelite® 6435 36 Real 6
Winequality-red” 1599 11 Real 6

Table 4.2: The selected classification datasets used to train and evaluate ensembles.

To investigate the datasets’ skewness of outputs, we generated histograms with 50 bins
for regression, and bins equal to the number of classes for classification. Of the regression
datasets, illustrated in Figure 4.1, we can see that Concrete (Subfigure (a)) and Housing
(Subfigure (c)) are relatively balanced with what seems like normal distributions of outputs.
Energy Prediction (Subfigure (b)) and SeoulBike Sharing (Subfigure (d)), on the other hand,
are both quite skewed towards the lower end of the output value spectrum. Specifically,
while Energy Predictions outputs range from 0 to 1080, most of the outputs are located
within 0 to 200, and for Seoul Bike Sharing, most outputs are located within 0 to 1500 out
of the total 0 to 3418 value range.
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Figure 4.1: Histograms demonstrating the skewness of the regression datasets’s outputs.

Of the classification datasets, illustrated in Figure 4.2, Car Evaluation (Subfigure (a))
and Winequality Red (Subfigure (c)) are similarly skewed towards half of their respective
classes, while Statlog Satelite (Subfigure (b)) is more evenly distributed in its classes.



4.1. DATASETS 23

1200 4
1000 4

1000 4
800

600 1

600 1

200 4 400 4

200 1 200

unacc acc wgood good

(a) Car Evaluation (b) Statlog Satelite

700 4

600 1

500 4

400 1

300 4

200 4

100 1

e
3 4 5 6 8

(c) Winequality Red

Figure 4.2: Histograms demonstrating the skewness of the classification dataset’s outputs

4.1.1 Preprocessing

As per common machine learning practice, the selected datasets were split into training-sets
used to generate models, and test-sets to evaluate their performance. To ensure that outputs
were equally represented in both the training and test setting, all datasets were split with
stratified random sampling at a ratio of 80% for training and 20% for testing. An exception
to this treatment was, however, given to Statlog Satelite which had predetermined training-
and test-sets with proportionally similar output distributions. While this treatment was
applied for all datasets, these splits were not used for most experiments. The reasoning
for this is that cross validation is typically more fit for hyperparameter optimization tasks,
and as most of the datasets were relatively small in size, we prioritized a larger number
of training data by running cross validation on the full datasets. For datasets containing
categorical text-values, these were converted to numerical values through one-hot encoding,
as this is a good way of representing the nature of categorical values to machine learning
algorithms [9]. Data-instances with missing values were kept, while any id- or date-columns
were removed from the datasets, as these do not provide any benefits to the learning process.

4.1.2 Baselines

An additional factor we needed to take into account in the datasets’ selection was gradient
boosting algorithms being the used machine learning method. Gradient boosting algorithms
are known for their ability to solve complex, large-scale problems with minimal resources
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[12]. Because of this, a potential occurence when working with smaller datasets is perfect
prediction rates, even at low numbers of ensemble trees. This would be problematic, as
distinguishing between the effectiveness of investigated approaches to optimizing flexible
ensemble structures would be impossible. We therefore needed to ensure that selected
datasets were challenging enough to not be perfectly predicted by a given gradient boosting
algorithm at small ensemble sizes. We therefore baselined all selected datasets on XGBoost,
Light GBM and CatBoost with various hyperparmeter configurations, and controlled them
to not have a 100% correct test set prediction rate.

Datasets Algorithm Standard n*e.stimators:l nies:tirnators:m
Parameters learning rate=0.5 | learning rate=0.5
Train Test Train Test Train Test
XGBoost 0.40 3.07 18.13 18.80 1.85 4.15
Concrete Light GBM 1.40 3.07 8.45 9.16 2.70 4.05
CatBoost 1.27 2.71 9.75 9.58 3.75 4.61

XGBoost 22.82 37.01 52.58 51.77 38.04 43.78
Energy Prediction | LightGBM | 32.34 38.75 54.31 54.53 41.75 45.14
CatBoost 30.00 37.11 56.59 55.88 47.47 48.01

XGBoost 0.01 1.95 11.37 10.91 0.89 2.30
Housing LightGBM | 0.91 2.20 4.22 4.02 1.63 2.16
CatBoost 044  1.75 4.62 4.24 1.98 2.45

XGBoost 71.27 148. 371.75 379.05 | 127.35 154.39
Seoul Bike Sharing | LightGBM | 108.88 140.60 | 320.83 327.69 | 140.08 159.98
CatBoost 104.91 142.89 | 350.19 353.66 168.67 176.74

Table 4.3: The Baseline for the regression datasets on XGBoost, Light GBM and CatBoost.
The ensembles were trained on the training-set and evaluated on the test-set of each
dataset. MAE was used as the performance metric. Bold values indicate the best prediction
performance for a given hyperparameter configuration.

Datasets Aleorithm Standard n_estimators=1 n_estimators=10
& Parameters learning rate=0.5 | learning rate=0.5
Train Test Train Test Train Test

XGBoost 100% 97.97% | 95.51% 93.06% | 99.78% 97.97%
Car Evaluation | LightGBM | 94.57%  92.48% | 94.57%  92.48% 100% 97.97%
CatBoost 100%  97.39% | 81.11%  81.21% | 98.76%  94.79%
XGBoost 100%  90.15% | 92.26% 85.80% | 98.12% 88.85%
Statlog Satellite | LightGBM | 100%  90.70% | 89.44%  84.55% | 99.70% 88.85%
CatBoost 99.93% 91.05% | 79.41%  76.50% | 89.22%  85.00%
XGBoost 100%  67.50% | 74.43% 61.56% | 93.66% 64.37%
Winequality-red | LightGBM | 100% 67.81% | 65.83%  58.12% | 88.89%  62.50%
CatBoost 100%  66.87% | 58.32%  56.25% | 68.56%  58.43%

Table 4.4: The Baseline for the classification datasets on XGBoost, Light GBM and CatBoost.
The ensembles were trained on the training-set and evaluated on the test-set of each dataset.
Accuracy was used as the performance metric. Bold values indicate the best prediction
performance for a given hyperparameter configuration.

The baselines for the standard parameters, and two more tested configurations are
tabulated in Table 4.3 (regression) and Table 4.4 (classification). The train/test splits are
described in Section 4.1.1.
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Naturally, we also needed to ensure that the datasets’ outputs were possible to predict
at rates higher than random guessing, as the alternative would practically result in the
same problem as with perfect prediction rates. We therefore additionally controlled the
classification datasets to have a Cohen’s Kappa Score greater than 0, while for regression we
compared the prediction performance with different ensemble sizes (values of n_estimators)
to control that prediction performance improvement was possible.

4.2 Selected Gradient Boosting Algorithm: XGBoost

With the research questions being centered around the effects of optimizing flexible ensemble
structures with gradient boosting algorithms, we needed to establish a gradient boosting
algorithm to use in experiments. We were thereby left to decide between two choices;
designing and implementing a boosting algorithm from scratch, or use a preexisting boosting
algorithm implementation to build and test upon. We chose the latter, as implementing a
boosting algorithm from scratch would likely be a cumbersome and extensive process which
could result in bugs and problems influencing the validity of experiment results. Such a
ground-up implementation would most likely also be inefficient in terms of computation
time. This is undesirable, as hyperparameter investigations tend to be computationally
expensive.

We chose XGBoost as the algorithm to use in experiments. This decision was based on
the discussions in Section 2.2.6, and the baselines in Section 4.1.2, where XGBoost and
Light GBM were competitive, but XGBoost seemed to come out slightly ahead. XGBoost
also has good documentation® and the simplest logic of the discussed gradient boosting
algorithms. This makes potential modifications of the source code more approachable.
Relevant to this, we needed to generate ensembles with per-tree hyperparameter configurations,
something that, to our knowledge, is not by standard supported with XGBoost. To
accomplish this, we instead used XGBoost’s method of saving and continuing training
processes’. In relation to this method, we found that upon loading a saved model,
the hyperparameters of the previous training procedure were kept up until the point
of continuation. We could thereby iteratively build flexible ensemble structures through
the following procedure:

1. Define the hyperparameters for the tree to be added.
Load the current model. (Skip if first tree)
Train one tree. (n_estimators = 1)

Save model.

AN

Repeat 1 to 4 until ensemble is complete.

4.3 Selected Hyperparameters

As experiments largely revolved around hyperparameter optimization, we needed to select
a set of XGBoost’s hyperparameters to optimize in experiments. For this purpose, we
selected learning rate, max depth, subsample and colsample bytree.

Shttps://xgboost.readthedocs.io/en/latest/python/python_intro.html
‘https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
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Learning rate is a parameter that scales the tree’s influence on ensemble predictions as
a whole. The motivation behind selecting this parameter was the possibility that the trees
have different levels of "value" to ensemble prediction, in which case, individual levels of
influence for the different trees seems likely to be beneficial. Values of learning rate are
continuous and typically range between 0 and 1, which is also the search range we used in
experiments.

Max _depth is a parameter that regulates the size of trees, with the purpose of explicitly
preventing overfitting by restricting trees’ ability to accurately model their training data,
thereby forcing them to make more general predictions. It is theoretically possible that
ensemble trees should optimally be diverse in generalizability, depending on their individual
prediction problems. This was in turn the motivation behind the selection of this parameter.
Max _depth values are integers that can technically be any whole number equal to or above
1. However, as the trees’ natural maximum depth is partially determined by the amount of
dataset features, we decided to use 1 to the number of features as the search range for this
parameter.

A similar motivation to that of max depth was relevant to the selection of subsample
and colsample bytree, which are also regularization parameters, though comparably more
implicit in their effects. Subsampling is the principle of generating each decision tree
from a randomly selected subset of the available training-data. This implicitly enforces
ensemble generalizability by encouraging diversity between trees. The subsample parameter
specifically controls the size of the subsampled dataset based on a percentage of the full
dataset size. Column sampling is principally similar to subsampling, but is instead applied
to dataset features (columns). Colsample bytree in particular, controls the number of
features to be randomly selected for tree-generation, based on a percentage value of the
total number of features. Due to representing percentages, values of both subsample
and colsample bytree are continuous, and between 0 and 1. However, due to the fact
that training on too few data instances or features can counter-productively lead to poor
prediction performance, we use 0.6 to 1 as the search range for subsample, and 0.8 to 1 for
colsample bytree.

Another important hyperparameter of XGBoost is n__estimators, which controls the
number of ensemble trees. The number of trees is important to ensembles’ prediction
performance because it directly influences the number of iterations errors are minimized.
However, because the research questions explore the effects of flexible ensemble structures,
it is implicit that they needed to be compared with traditional structures. Optimizing
n_estimators dynamically, would therefore complicate things, as it would become difficult
to distinguish between differences based on n_estimators, and ones based on the other
hyperparameters. Therefore, we instead used a static n_estimators value for all experiments.
Because the optimization difficulty of flexible ensemble structures is unknown, we set this
value as 5. This way ensembles would be large enough for us to observe observe potential
effects based on flexible ensemble structures, while (hopefully) small enough to keep search
difficulty manageable.

Note that while these are the selected hyperparameters for the experiments, not all of the
experiments optimize every hyperparameter. In cases where hyperparameters are left out of
optimization processes, we used the standard parameters for these, except for n_estimators,
where 5 was used regardless. The standard values for the selected hyperparameters and
their used search ranges are tabulated in Table 4.5.
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Hyperparameter ~ Standard Parameter Used Search Range

learning rate 0.3 0.01-1
max _depth 6 1 - N. Features
subsample 1.0 06-1
colsample bytree 1.0 0.8-1
n_estimators 100 (5 is used) 5

Table 4.5: The standard hyperparameter values of XGBoost, and search ranges used in
experiments.

4.4 Selected Hyperparameter Optimization Methods

Different hyperparameter optimization methods have different strengths and weaknesses.
The conducted experiments were varied in objective, but can be abstracted to primarily
obtain insights based on one of two aspects; Configurations of good prediction performance
and more general aspects of configuration landscapes.

As discussed in greater detail in Section 2.1.5, Bayesian Optimization is one of the most
efficient hyperparameter optimization methods, in regards to number of iterations, due
to its ability to dynamically adjust its search procedure based on earlier evaluations. We
therefore used this method in experiments where obtaining well performing configurations
was the primary necessity. Specifically, we used the Hyperopt!" implementation.

Observing aspects related to configuration landscapes requires observations of a wide
variety of configurations. Random Search was a good choice of method for this purpose. It
generates completely random configurations, and generally searches quite evenly within
each hyperparameter value range, given enough iterations [3]. Random Search was therefore
used in experiments where insights based on configuration landscapes were the focal point.

4.5 Hardware and Computational Resources.

The experiments in the following chapters were ran on a computer with an Intel i5-
4670K CPU, 16 GB of RAM, and an Nvidia GTX 970 graphics card. However, due to
implementation details, the graphics card could not be used in computations. These relied
solely on the CPU and available RAM. Due to the relatively outdated CPU, aspects such
as the number of search iterations in optimization processes and dataset sizes, needed to be
kept relatively low to run the experiments in a reasonable amount of time. This need was
further reinforced by the fact that the implementation details of flexible ensemble structures
with XGBoost required reading and writing to disk for each tree in the building process, as
discussed in Section 4.2.

Ohttp://hyperopt.github.io/hyperopt/






Chapter 5

Experiments

To the extent of our knowledge, flexible ensemble structures have not yet been explored
with XGBoost or other gradient boosting algorithms. As a result we do not know to what
extent flexible structures are useful. The first and most necessary aspect for evaluating
flexible ensembles structures usefulness, is establishing whether there is a significant benefit
to prediction performance by utilizing flexible ensemble structures (RQ1), compared to
traditional ones. A second aspect, quite necessary for establishing the applicability of
flexible ensemble structures, is how difficult they are to optimize (RQ2). This is necessary
due to the fact that the number of unique flexible ensemble structure configurations
increases exponentially with more trees. This creates a possibility that that the difficulty of
finding optimally performing configurations could increase similarly, which would increase
requirements for computational resources, and thereby discourage the application of flexible
structures. And considering the lack of research into flexible ensemble structures with
gradient boosting algorithms, we also needed to investigate how flexible ensemble structures
can and should be optimized (RQ3).

This chapter outlines the methodology of the five experiments conducted in this thesis.
Specifically, the methodology of Experiment 1 through 5 are contained in Section 5.1
through 5.5, respectively. The experiment results are presented in Chapter 6.

5.1 Experiment 1

Experiment 1 was conducted to obtain insight into RQ1 by comparing the prediction
performance of flexible and traditional ensemble structures. To achieve this, we needed to
obtain as optimal prediction performance as possible for each structure type and compare
the values to get a measure of how much better or worse flexible structures are in this
respect. Therefore, we implemented Bayesian Optimization as the method of optimizing
configurations for both traditional and flexible ensemble structures. The optimized ensembles
to be compared consisted of 5 trees, and their structure configurations were evaluated with
2 repetitions of 5-fold cross validation. Mean Absolute Error was used as the prediction
performance metric for the regression datasets, while Error was used for the classification
datasets. For the traditional structures, Bayesian Optimization was ran with 1000 iterations,
which we observed to be more than enough to converge prediction performance for this
structure type. The flexible ensemble structures were optimized through 2000 evaluations to
compensate for the difference in search complexity and ensure that the obtained structure
configurations were sufficiently optimized.
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While looking at raw difference in prediction performance values can give a give a
certain amount of insight into which structure type is superior, the significance of the
differences are not obvious from these values alone. Thus, to determine a significance
of difference, the prediction performance values of the traditional and flexible ensemble
structures needed to be compared relative to something else. For this reason, we additionally
measured the difference between a given 5-tree traditional ensemble structure to one of 6
trees (extended by one tree), separately optimized. We could then obtain a measure of
significance by comparing the differences between the flexible and traditional structured
ensembles of 5 trees, to the differences between the traditionally structured ensembles of
5 and 6 trees. Specifically, we used the prediction performance of the 5-tree traditional
ensemble structure as the baseline value, and calculated the percentage of improvement
obtained with the flexible ensemble structure, relative to the improvement obtained by
extending the traditional structure by one tree. We further refer to this as the percentage
of improvement in prediction performance with a given flexible ensemble structure.

The comparison between the prediction performance of traditional and flexible ensemble
structures was carried out on all datasets outlined in Section 4.1. For each dataset, we
investigated four scenarios of hyperparameter optimization. Meaning combinations of the
hyperparameters outlined in section 4.3. These scenarios were:

Scenario 1: learning rate optimized in isolation.
Scenario 2: max_depth optimized in isolation.
Scenario 3: learning rate, max depth and subsample optimized in isolation.

Scenario 4: learning rate, max_depth, subsample and colsample bytree optimized in
isolation.

5.1.1 Flexible Ensemble Structure Procedure

The pseudo code for the flexible ensemble structure generation procedure of Experiment
1 is contained in Figure 5.1, and builds upon the pseudo code of the Holistic approach,
as outlined in Section 3.2.1. Of the procedure’s input-parameters; C, I and S remain the
same, respectively denoting the number of ensemble trees, the number of optimization
method iterations, and the search space. X is an added input-parameter denoting the
dataset, being a set of N data instances, each in the form (x, y).

The specific inputs used were as follows: X was set to the full version of the relevant
dataset, C' was set to 5, I was set to 2000, while S was set to be a combination of
ranges for learning rate, max depth, subsample and colsample bytree, depending on the
relevant hyperparameter scenario. The ranges were the same as outlined in Section 4.3;
For learning rate, it was 0 to 1, with values being uniformly selected decimal numbers; for
max_depth, 1 to the number of features in the relevant dataset, with values being uniformly
selected integers; the range for subsample was 0.6 to 1, with values being uniformly selected
decimal numbers; and the range for subsample, was 0.8 to 1, with values also being uniformly
selected decimal numbers.

As the flexible ensemble structure generation procedure of Experiment 1 is based on
Holistic flexible ensemble structure optimization, the overall pseudo code is quite similar
to that outlined in Figure 3.4 of Section 3.2.1. However, it differs in returned objects and
evaluation method, being cross validation. The Objective’s input-parameter, H, is an array
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procedure EXPERIMENT 1(X = {(x1, y1), ..., (XN, yN)},
C, I € N, S = {range of (I3, u1),
..., range of (Iar, upr)})
procedure OBJECTIVE(H = flexible ensemble structure configuration
represented as an array of C per-tree
hyperparameter configurations in the
form (hq, ..., hpr), where each h is a
value for a unique hyperparameter)
P+0
F + set of cross validation folds in the form (Xirqin, Xya), where
each Xyrqin and X4 are subsets of X
for each Xipqin, Xpq in F do
FEy < empty ensemble
for c+1to C do
t. < XGBoost tree with H. per-tree hyperparameter configuration
FE. + t. added to E._1
end for
p < prediction performance of E¢ trained on Xi.4i, and evaluated on
Xoal
P+~ PUp
end for
return average(P)
end procedure
DPrest, Hpest < best prediction performance and ensemble configuration
of I iterations of Bayesian Optimization, each producing a flexible
ensemble structure configuration, H, based on the search space, S,
evaluated on the Objective
return Pbest, Hbest
end procedure

Figure 5.1: The pseudo code for the generation procedure of one flexible ensemble structure
in Experiment 1. The procedure is based on the Holistic approach to flexible ensemble
structure optimization.

representing a flexible ensemble structure configuration. The Objective begins by initializing
an empty set, P, to contain the prediction performance evaluated on the different cross
validation folds. The training- and validation-folds are initialized in the set F', each in the
form (Xirain, Xvat), where Xipqin and X4 are subsets of X. The cross validation is then
executed as a for-loop, iterating through each X;.qin and X4 in F. For each run-through,
an empty XGBoost ensemble, Fp, is initialized and gradually built through a for-loop with
a total of C' run-throughs; One for each tree. For each step in the building process, an
XGBoost tree, t., is defined with its associated per-tree hyperparameter configuration in H,
H_.. This tree is then added to the ensemble, denoted as E.. When the building process is
complete, the finalized ensemble, E¢, is trained on Xi.q;, and evaluated on X,,,; to obtain
the prediction performance value, p, which is added to P. After H has been evaluated on
all cross validation folds, the cross validation score is calculated as the average of P, and
returned as the result of the Objective. The Objective is optimized through I iterations of
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Bayesian Optimization, each producing a flexible ensemble structure configuration based
on the search space, S, and evaluating it on the Objective. Finally, the best prediction
performance, ppes; and the associated flexible ensemble structure, Hpes:, are determined
from the optimization iterations, and returned as the result of the procedure.

5.1.2 Investigating the Possibility of Overfitting

An important thing to rule out was the possibility that the results could be inaccurate due
to overfitting to the cross validation folds. To investigate whether this was the case, we
investigated an instance of Scenario 4 on the largest dataset, Energy Prediction, separate
from the earlier, where we used a hold-out test set. We used the largest dataset to minimize
the probability that the training- and test-sets would be unrepresentative of each other.
Holistic optimization was implemented as with the pseudo code in Figure 5.1, with X being
set to the training-set. After this procedure was completed, we built an ensemble based on
the obtained flexible structure configuration and evaluated it on the test-set.

5.2 Experiment 2

Experiment 2 was conducted to obtain insight into RQ3 by comparing the prediction
performances of Holistic and Incremental flexible ensemble structure optimization. To
achieve this, in this experiment, we optimized flexible ensemble structures with the
Incremental approach and compared their prediction performance to those obtained in
Experiment 1. To ensure that the prediction performances would be reasonable to compare,
the Incremental flexible ensemble structure approach was implemented with very similar
factors to the Holistic approach in Experiment 1. For instance, to achieve as optimally
performing configurations as possible with the Incremental structure optimization approach,
we again implemented Bayesian Optimization as the optimization method. The number
of ensemble trees remained 5, and the ensembles were again evaluated with 2 repetitions
of 5-fold cross validation. Mean Absolute Error was used as the prediction performance
metric for the regression datasets, while Error was used for the classification datasets.
One flexible ensemble structure was produced with the Incremental structure optimization
approach for each of the datasets outlined in Section 4.1. Each tree was optimized in
isolation with 200 iterations of Bayesian Optimization. There was, however, an exception
made for classification datasets, where the first tree does not by itself impact prediction
performance due to XGBoost implementation details. For this reason, the first two trees were
optimized together for the Car Evaluation, Statlog Satellite, and Winequality-red datasets.
The investigated and compared hyperparameter for this experiment was learning rate,
equivalent to Scenario 1 of Experiment 1.

5.2.1 Flexible Ensemble Structure Procedure

The pseudo code for the flexible ensemble structure generation procedure of Experiment 2
is contained in Figure 5.2, and builds upon the pseudo code of the Incremental approach to
flexible ensemble structure optimization, as outlined in Section 3.2.2. Of the procedure’s
input-parameters; C, I and S remain the same, respectively denoting the number of
ensemble trees, the number of optimization method iterations, and the search space. X is
an added input-parameter denoting the dataset, being a set of IV data instances, each in
the form (x, y).
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procedure EXPERIMENT 2(X = {(x1, y1), ..., (Xn, yn)}, C, I € N,
S = {range of (I1, u1), ..., range of (Ips, ups)})
FEy < empty ensemble
P, < empty array
H,j < empty array
for c<+ 1to C do
procedure OBJECTIVE(H = per-tree hyperparameter configuration in
the form (hy, ..., har), where each h is a value
for a unique hyperparameter)
t «+ XGBoost tree with H per-tree hyperparameter configuration
FE..: < t added to E._1
Peact < q)
F + set of cross validation folds in the form (Xirqin, Xya), where
each Xyrqin and X4 are subsets of X
for each Xi,qin, Xpq in F do
Pext < prediction performance of Egyy, trained on Xy,qs, and evaluated
on Xyl
Pext < Pext U Pext
end for
return average(Peyt), Fext
end procedure
Pe, He, B < the best prediction performance, per-tree hyperparameter
configuration and extended ensemble of I iterations of Bayesian
Optimization, each producing a per-tree hyperparameter configuration,
H, evaluated on the Objective
Pa” < Pe added to Pall
H, < H. added to Hyy
end for
return P, H,y
end procedure

Figure 5.2: The pseudo code for the generation procedure of one flexible ensemble structures
in Experiment 2. The procedure is based on the Incremental approach to flexible ensemble
structure optimization.

The specific inputs used were as follows: X was set to the full version of the relevant
dataset, C' was set to 5, I was set to 200, and S contained the range for learning rate,
being 0 to 1, with values being uniformly selected decimal numbers.

As the flexible ensemble structure generation procedure of Experiment 2 is based on
Incremental flexible ensemble structure optimization, the overall pseudo code is largely
similar to that outlined in Figure 3.6 of Section 3.2.2. The primary differences are the
use of cross validation as the evaluation method, and how returned objects are handled.
The procedure begins by initializing an empty ensemble, Ey, and two empty arrays,
P,; and Hgjy, to respectively contain the prediction performance values and per-tree
hyperparameter configurations obtained after all incrementally added trees in the ensemble
building process. The ensemble is then built though a for-loop of C' run-thoughs. The
Objective’s inputparameter, H, remains unchanged, being a per-tree hyperparameter
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configuration. The Objective begins by defining an XGBoost tree, ¢, based on the per-tree
hyperparameter configuration, H, and the current ensemble, E._1, is extended with this
tree. An empty set, P, is initialized to contain the prediction performance values on the
different cross validation scores, the folds of which are denoted as F. For each training-
and validation-fold, Xyyq;n and X4, in F, the prediction performance, pe.:, based on
FEeyt trained on Xypqin and evaluated on X4, is measured and added to P.,:. The cross
validation score, the average of P, and E,,; are returned as the result of the Objective.
The Objective is optimized with Bayesian Optimization through [ iterations, each producing
a single per-tree hyperparameter configuration and evaluating it on the Objective. After all
iterations, the best prediction performance, p., per-tree hyperparameter configuration, H.,
and extended ensemble, E., are defined. p. is then added to Py, and H, is added to H;.
After the ensemble building process is complete, P, and Hy; are returned as the result of
the procedure.

5.3 Experiment 3

Experiment 3 was conducted to obtain insight into RQ2 by investigating how the general
difficulty of finding well performing configurations compares between flexible and traditional
ensemble structures. To achieve this, we needed to compare a wide variety of configurations
between traditional and flexible ensemble structures. Therefore, we used Holistic flexible
ensemble structure optimization with Random Search to generate a set of random configurations
for both traditional and flexible ensemble structures, and evaluated their prediction
performance for further analysis. Specifically, we generated 1000 ensembles of 5 trees
for each structure type and evaluated the prediction performance of each configuration with
2 repetitions of 5-fold cross validation on full datasets. Mean Absolute Error was used as
the prediction performance metric for the regression datasets, while Accuracy was used for
the classification datasets.

The experiment was executed separately for two hyperparameter scenarios on all datasets
outlined in Section 4.1. These hyperparameter scenarios were:

Scenario 1: learning rate optimized in isolation.

Scenario 2: learning rate and max_depth optimized together.

To analyze the results, further discussed in Section 6.4, we extracted the average, best,
and worst prediction performance for each structure type so these could be compared. We
also generated histograms of the prediction performance values for visual comparisons. This
was executed on all datasets discussed in Section 4.1.

5.3.1 Flexible Ensemble Structure Procedure

The pseudo code for the flexible ensemble structure generation procedure of Experiment
3 is contained in Figure 5.3, and builds upon the Holistic approach to flexible ensemble
structure optimization, as outlined in Section 3.2.1. Of the input parameters, C, I and
S remain the same, denoting the number of ensemble trees, the number of optimization
method iterations, and the search space, respectively. X is an added input-parameter
denoting the dataset, being a set of N data instances, each in the form (x, y).
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procedure EXPERIMENT _3( X = {(x1, v1), ..., (Xn, UN)},
C,IeN, S = {range of (I1, u1), ...,
range of (Ias, unr)})
procedure OBJECTIVE( H = flexible ensemble structure configuration
represented as an array of C per-tree hyperparameter
configurations in the form (hq, ..., has), where
each h is a value for a unique hyperparameter)
P+
F «+ set of cross validation folds in the form (Xyrqin, Xyal), Where
each Xyprqin and X, are subsets of X
for each Xi,qin, Xypq in F' do
FEy < empty XGBoost ensemble
for c+ 1to C do
t. < XGBoost tree with H. per-tree hyperparameter configuration
E. + t. added to E._1
end for
p < prediction performance of E¢ trained on Xi.qi, and evaluated on
Xval
P+~ PuUp
end for
return average(P)
end procedure
R <+ set of all cross validation scores from [ iterations of
Random Search, each producing a random flexible ensemble structure
configuration, H, based on the search space S, and evaluating it on
the Objective
return R
end procedure

Figure 5.3: The pseudo code for the generation procedure of all flexible ensemble structures
in Experiment 3. The procedure is based on the Holistic approach to flexible ensemble
structure optimization.

The specific inputs used were as follows: X was set to the full version of the relevant
dataset, C was set to 5, I was set to 1000, while S was set to be a combination of ranges for
learning rate, and max_depth, depending on the relevant hyperparameter scenario. The
range for learning rate was 0 to 1, with values being uniformly selected decimal numbers.
And the range for max depth was 1 to the number of features in the relevant dataset, with
values being uniformly selected integers.

As Experiment 3 is based on Holistic flexible ensemble structure optimization, the overall
procedure remains largely the same as the pseudo code outlined in Figure 3.4 of Section
3.2.1. The primary difference lies in the implementation of cross validation as the evaluation
method, as well as the procedure’s returned objects. The Objective’s input-parameter, H,
remains unchanged, being a flexible ensemble structure configuration in the form of an array.
The Objective begins by initializing an empty set, P, to contain the prediction performance
evaluated on the different cross validation folds. The training- and validation-folds are
initialized in the set F', each in the form (Xirqin, Xyar), where Xipqin and X, are subsets
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of X. The cross validation is then executed as a for-loop, iterating through each Xy.qin
and X,q in F. For each run-through, an empty XGBoost ensemble, Ey, is initialized and
gradually built through a for-loop with a total of C' run-throughs. One for each tree. For
each step in the building process an XGBoost tree, t., is defined with its associated per-tree
hyperparameter configuration in H, H.. This tree is then added to the ensemble, denoted
as E.. When the building process is complete, the finalized ensemble, F¢, is trained on
Xirain and evaluated on X, to obtain the prediction performance value, p, which is added
to P. After H has been evaluated on all cross validation folds, the cross validation score is
calculated as the average of P, and returned as the result of the Objective. The Objective
is optimized through I iterations of Random Search, each producing a random flexible
ensemble structure configuration based on the search space, S, and evaluating it on the
Objective. Finally, all iterations’ cross validation scores, denoted as R, are returned as the
result of the procedure.

5.4 Experiment 4

Experiment 4 was conducted to obtain insight into RQ2 and RQ3 by investigating how
the characteristics of flexible ensemble structure configurations might be tied to prediction
performance. To achieve this we, needed to produce a wide variety of flexible structures so
we could could compare their characteristics in relation to their prediction performance. For
this purpose, we used Holistic flexible ensemble structure optimization with Random Search.
Specifically, we generated 5000 randomly configured flexible ensemble structures of 5 trees,
each trained on the datasets’ dedicated training-sets and evaluated on their dedicated
test-sets, as described in Section 4.1.1. Cross validation was not used for this investigation,
as the "correctness" of the prediction performance values was not as important as the
characteristics tied to them. The computational limitation discussed in Section 4.5, was
also a considered factor. Mean Absolute Error was used as the prediction performance
metric for the regression datasets, while Accuracy was used for the classification datasets.
The optimized hyperparameter was learning rate.

For the analysis of the results, we ordered the configurations based on their prediction
performance, and created two groups of 10 configurations based on the best and worst
prediction performance. The overall procedure was executed on all datasets discussed in
Section 4.1.

5.4.1 Flexible Ensemble Structure Procedure

The pseudo code for Experiment 4 is contained in Figure 5.4, and, as with Experiment 3,
builds upon Holistic flexible ensemble structure optimization, outlined in Section 3.2.1. The
input parameters, C, I and S, remain the same, denoting the number of ensemble trees,
the number of optimization method iterations and the search space, respectively. Xt qin
and Xies are added pararameters for the training- and test-set, respectively, each a set of
N data instances in the form (x, y).

The specific inputs used were as follows: Xyqin and Xyesr were respectively set to the
training- and test-spits of the relevant dataset, as discussed in 4.1.1. C was set to 5, I was
set to 5000, while S contained the range for learning rate, being 0 to 1, with values being
uniformly selected decimal numbers.



5.4. EXPERIMENT 4 37

procedure EXPERIMENT _ 4(Xypain, Xtest = {(X1, y1)s -y (XN, YN)},
C, I €N, S = {range of (I1, u1), ...,
range of (Ias, unr)})
procedure OBJECTIVE( H = flexible ensemble structure configuration
represented as an array of C per-tree hyperparameter
configurations in the form (hq, ..., has), where each
h is a value for a unique hyperparameter)
FEy + empty ensemble
for c+1to C do
t. < XGBoost tree with H. per-tree hyperparameter configuration
FE. + t. added to E._1
end for
p < prediction performance of E¢, trained on Xj.qin, and evaluated

on Xiest
return p

end procedure
R < array of all results of I iterations of Random Search, each
producing a random flexible ensemble structure, H, based on the
search space, S, evaluated on the Objective
R, < array of the prediction performance values of R
Ry + array of the flexible ensemble structure configurations of R
return R,, Ry

end procedure

Figure 5.4: The pseudo code for the generation procedure of all flexible ensemble structures
in Experiment 4. The procedure is based on the Holistic approach to flexible ensemble
structure optimization.

As with Experiment 3, the procedure of Experiment 4 remains largely the same as
the abstract pseudo code for Holistic flexible ensemble structure optimization. Details of
evaluation and returned objects, however, differ. The Objective’s input-parameter, H, is
an array representing a flexible ensemble structure configuration. The Objective begins by
initializing the empty ensemble, Ey, which is gradually built in the following for-loop of C'
run-throughs. For each step in the building process, an XGBoost tree, t., is defined with
its associated per-tree hyperparameter configuration in H, H., before it is added to the
ensemble. The updated ensemble is denoted as E.. With the finalized ensemble, E¢, the
prediction performance, p, is trained on Xi.q;n and evaluated on X;es. p is then returned
as the result of the Objective. The Objective is optimized with Random Search through
1 iterations, each evaluating a random flexible ensemble structure configuration based on
the search space, S. An array of the results, meaning the performance values and flexible
ensemble structure configurations, of all iterations is then defined as R and further split into
two arrays; R, and Ry. These respectively contain all iterations’ prediction performance
values and flexible ensemble structure configurations. Finally, R, and Ry are returned as
the result of the procedure.
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5.5 Experiment 5

Experiment 5 was conducted to obtain insight into RQ3 by investigating the effects of
reducing the amount of unique configurations by restricting the detail of hyperparameter
values. To achieve this we implemented Holistic flexible ensemble structure optimization
with Bayesian Optimization, as it was implemented in Experiment 1. We then used this
implementation to compare two value selection methods native to Hyperopt. Specifically;
uniform and quniform. Both methods uniformly return a random value based on lower and
upper bounds. However, they differ in that quniform additionally restricts the number of
decimals of returned values through a sophisticated rounding method. The formula of this
method is as follows!:

round(uniform(l, h) / ¢) X ¢

[ and h are here the variables for the lower and upper bounds, and ¢ is a number, typically
between 0 and 1, that dictates the rounding of selected values.

The two value methods were compared based on prediction performance values obtained
in three separate processes, each executed with both value method. Specifically, the three
processes optimized the learning rate hyperparameter for ensembles of 5 trees, with 500,
1000 and 2000 iterations of Bayesian Optimization, respectively. The reason for the three
processes was to investigate whether hyperparameter values selected with quniform results
in better prediction performance with less iterations, compared to uniformly selected
hyperparameter values. The learning rate search range was 0 - 1 for both uniform and
quniform. For the quniform method, the rounding value, ¢, was set to be 0.01. In practise,
this rounds selected values to two decimals, limiting the number of unique values for a given
per-tree learning rate to roughly 100. The prediction performance values were evaluated
with 2 repetitions of 5 fold cross validation on the full version of all datasets discussed in
Section 4.1. The results were thereby obtained by comparing the prediction performance
values achieved with each value selection method, uniform and quniform, across the three
optimization processes.

"http://hyperopt.github.io/hyperopt/getting-started/search_spaces/



Chapter 6

Results

This chapter contains the results of the five experiments outlined in Chapter 5. First we
provide an overview of the results in Section 6.1, thereafter we present the results of the
individual experiments. The results of Experiment 1 through 5 are discussed in Section
6.2 through 6.6. To save space, the results are written to abstractly discuss all explored
datasets. However, the explicit results per dataset are also included in Appendix A through
E for Experiment 1 through 5, respectively.

6.1 Overview

Table 6.1 shows the best prediction performances for traditional structures, Holistically
optimized flexible structures, and Incrementally optimized flexible structures, each based
on ensembles of 5 trees. Based on these results we can see that flexible ensemble structures
obtained better prediction performance than traditional structures for 6 out of 7 datasets.
This was specifically the case for the flexible structures optimized with the Holistic approach.
On the other hand, the ones optimized Incrementally were considerably worse than both
the Holistically optimized flexible structures and the traditional, for all datasets. This
demonstrates that the Holistic approach to flexible ensemble structure optimization is more
effective than the Incremental approach. To put the results into a wider perspective we
also compare the results to the baselines, discussed in Section 4.1.2, and state-of-the-art
prediction performance. From this we can see that the flexible ensemble structures managed
to surpass the baselines for the Energy Prediction and Car Evaluation. This was, however,
also the case with the traditional structures, and is thus most likely not a result of the
per-tree hyperparameters. The flexible structures did not surpass any of the included
state-of-the-art prediction performances. This was the expected outcome due to the small
sizes of ensembles optimized in experiments. Also worth to note; The state-of-the-art values
are also obtained with a variety of machine learning methods, preprocessing procedures,
and methods of evaluation. It therefore difficult to accurately derive insights by comparing
the thesis results to these values.

Beyond these results, we also found that it practically seemed easier to obtain good
prediction performance with flexible ensemble structures, compared to traditional structures.
This was specifically observed in the case of evaluating random configurations. This was a
quite interesting result, considering the exponentially larger amount of unique hyperparmeter
configurations with flexible structures. Additionally we found many implications of how
optimization processes can potentially be made more effective by exploiting reoccurring
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Thesis Main Results Baseline State-of-The-Art
. . Felxible Flexible
Dataset Metric  Traditional . Method Value Method Value
(Holistic)  (Incremental)

Concrete MAE 3.8093 3.4615 4.6703 CatBoost 2.71 HENSM [1] 0.0490
Energy Prediction MAE 33.0760 32.7644 44.1813 XGBoost 37.01 SVM-Radial [10] 31.3600
Housing MAE 2.4912 2.3143 2.8731 CatBoost 1.75 - -
Seoul Bike Sharing MAE 147.64 146.99 171.55 Light GBM 140.60 GBM [53] 109.78
Car Evaluation Error 0.014181 0.015330 0.019101 XGBoost 0.020300 | Rotation Forest [15]  0.013889
Statlog Satellite Error 0.092540 0.091297 0.102408 CatBoost 0.089500 | - -
Winequality-red Error 0.325826 0.323957 0.356157 LightGBM  0.321900 | EF-KNN (k=9) [29]  0.306000

Table 6.1: The best obtained prediction performances of traditional ensemble structures,

Holistically optimized flexible structures, and Incrementally optimized flexible structures.

All ensemble structures consist of 5 trees. Note that the combination of hyperparameters
the prediction performances are based on, are different for each value. To put the results
into a wider perspective, we have also for each dataset included the best baseline prediction
performance (see Section 4.1.2), and state-of-the-art prediction performance. All included
baseline prediction performances were based on the standard parameters of the given
gradient boosting method. The state-of-the-art prediction performances were based on the
best we could find in other research. However, we could not find any clear or comparable
state-of-the-art prediction performances for the Housing, and Statlog Satellite datasets.

aspects in relation to hyperparameter configurations. Such aspects included: Optimally
performing combinations of optimized hyperparameters; Common hyperparameter value
ranges and value developments between trees; Common locations and a discovered leniency
of the area of best performance in hyperparameter search landscapes; And the result
that reducing search complexity by restricting the detail of hyperparameter values can be
employed without major repercussions to prediction performance.

With that said, please refer to the following sections to read a more detailed overview
of the results of each Experiment.

6.2 Experiment 1 Results

As detailed in Section 5.1, Experiment 1 was based on a comparison between flexible and
traditional ensemble structures of 5 trees, each optimized with Bayesian Optimization to
obtain good prediction performance. Four hyperparameter scenarios were investigated:

Scenario 1: learning rate optimized in isolation.
Scenario 2: max_depth optimized in isolation.

Scenario 3: learning rate, max_depth and subsample optimized together.

Scenario 4: learning rate, max depth, subsample and colsample bytree optimized toghether.

The primary goal of Experiment 1 was to obtain insight into RQ1; to what extent
flexible structures are beneficial to prediction performance. The results of Experiment 1
that are relevant to RQ1 are thus further referred to as the main results of this experiment.
The main results were specifically obtained by observing which structure type achieved the
best prediction performance for the different hyperparameter scenarios of each explored
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dataset, as well as the significance of the relative percentage of improvement (see Section
5.1) obtained with the flexible ensemble structures. We considered any relative percentage
of prediction performance improvement above 10% as significant, and anything less, not.
As discussed in Section 5.1, we also investigated whether the results could be a due to
overfitting to the cross validation folds, by training and evaluating a flexible ensemble
structure on the dedicated training- and test-sets of the Energy Prediction dataset. A
summary of the experiment’s empirical results are contained in Table 6.2 and 6.3.

Dataset Metrics Scenario 1 Scenario 2 Scenario 3 Scenario 4
T-5 MAE 4.0203 7.2300 3.8093 4.0348

Concrote T-6 MAE 3.8706 5.7934 3.6577 3.8341
F-5 MAE 3.7416 7.1497 3.4615 3.6985
PI 186.17% 5.58% 229.41% 167.56%

T-5 MAE | 41.8208  36.0835  33.5753  33.0760
- Predict: T-6 MAE | 415993 344128  33.0812  33.0011
nergy Frediction | p s NMAE | 418156 34.5437  32.8321  32.7644

PI 2.34% 92.16% 150.41%  416.02%
T-5 MAE 2.4912 4.3459 2.4958 2.5538
Housing T-6 MAE 2.4593 3.4740 2.4101 2.5252
F-5 MAE 2.3143 4.3119 2.3690 2.4000
PI 554.54% 3.89% 147.95% 537.76%
T-5 MAE 162.05 185.91 148.42 147.64
Seoul Bike Sharing T-6 MAE 158.70 166.12 147.28 146.96
F-5 MAE 159.18 184.98 147.74 146.99
PI 85.67% 4.69% 59.64% 95.58%

Table 6.2: Empirical results from Experiment 1 for the regression datasets: MAE of the
5-tree traditional structure (T-5), the 6-tree traditional structure (T-6), the 5-tree flexible
structure (F-5), and the percentage of improvement (PI) between T-5 and F-5, relative
to the improvement obtained with T-6 from T-5. Prediction performance values were
evaluated with 2 repeats of 5 fold cross validation.

The main results of Experiment 1 are outlined in Section 6.2.1 and 6.2.2. Generally,
these demonstrate that flexible ensemble structures achieved significantly better prediction
performance than traditional structures for most datasets and hyperparameter scenarios,
with no indication that this was caused by overfitting. The level of significance did, however,
vary between datasets and hyperparameter scenarios.

However, having generated a wide variety of well optimized flexible ensemble structures
that surpassed the predictive abilities of traditional structures, we saw an opportunity
for obtaining results beyond the primary goal of Experiment 1. We refer to these as
the experiment’s secondary results. The secondary results focused largely on obtaining
insight relevant to RQ3; how flexible ensemble structures, small in size, can be effectively
optimized. Useful insights for this topic typically include knowledge that can be exploited
to effectivize optimization processes. We, specifically, investigated which hyperparameter
combinations seemed to be best for prediction performance, by observing the frequency of
which different hyperparameter scenarios achieved the best performing flexible structure; We
attempted to obtain insight into reoccurring and exploitable characteristics of configurations,
by comparing configurations grouped by hyperparameter scenario; And we investigated
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Dataset Metrics Scenario 1  Scenario 2 Scenario 3 Scenario 4
T-5 Error 0.017362 0.052659  0.014181  0.028938
T-6 Error 0.013021 0.048898 0.009841 0.024884
F-5 Error | 0.015339 0.054106 0.020547 0.029226
PI 46.60% -38.47% -146.68% -7.10%

T-5 Error 0.102641 0.098989 0.095027 0.092540
T-6 Error 0.099067 0.096736 0.092229 0.091142
F-5 Error | 0.099533 0.098445 0.092463  0.091297
PI 86.96% 24.14% 91.63% 88.63%

T-5 Error 0.346769 0.336783 0.327406 0.325826
T-6 Error 0.337714 0.334283 317392 0.321144
F-5 Error | 0.343971 0.332394 0.32427  0.323957
PI 30.90% 175.55% 31.31% 39.91%

Car Evaluation

Statlog Satellite

Winequality-red

Table 6.3: Empirical results from Experiment 1 for the classification datasets: Error of
the 5-tree traditional structure (T-5), the 6-tree traditional structure (T-6), the 5-tree
flexible structure (F-5), and the percentage of improvement (PI) between T-5 and F-5,
relative to the improvement obtained with T-6 from T-5. Prediction performance values
were evaluated with 2 repeats of 5 fold cross validation.

whether hyperparameters influenced each others behavior when optimized together, by
comparing the configuration characteristics between different hyperparameter scenarios.

The secondary results of Experiment 1 are outlined in Section 6.2.3, 6.2.4 and 6.2.5. From
these we generally found that Scenario 4, optimizing learning rate, max depth, subsample
and colsample bytree, was the best performing combination of hyperparameters, which
indicates that optimizing more hyperparameters in combination is beneficial for prediction
performance. We found several reoccurring aspect that have the potential of being exploited
for the effectiveness of optimization. For instance, we found that learning rate values
tended to rise with later trees and were never below 0.15, max depth values were often
at the higher end of the value range, 1 to the number of dataset features, and subsample
values were mostly above 0.75. We also found that the hyperparameters seemed to influence
each others optimal values quite a bit, which indicates that pipeline-oriented optimization
approaches are not likely to be beneficial.

6.2.1 The Prediction Performance of Flexible Ensemble Structures

The flexible structures achieved better prediction performance than the traditional structures
for 6 out of the 7 datasets. For these 6 datasets, the prediction performance was additionally
better in all four hyperparameter scenarios. The only dataset where the flexible structures
could not surpass the traditional ones, was the classification dataset, Car Evaluation. For
this dataset, only the flexible Structure in Scenario 1 achieved better prediction performance,
while the rest achieved worse.

Most of the scenarios across the datasets had significant percentages of prediction
performance improvement for the flexible structures. Of these, several flexible structures
seemed very beneficial for prediction performance, having over 100% relative percentage
of improvement. This specifically occurred in one or more scenario within each of the
following 4 datasets: Concrete, Energy Prediction, Housing and Winequality-red. The
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largest observed percentage of improvement was 554.54% in Scenario 1 for the Housing
dataset. This was also the scenario that achieved the best prediction performance for this
dataset.

There were, however, other scenarios where the percentage of improvement was not
significant. This was specifically the case in Scenario 1 of the Energy Prediction dataset,
and in Scenario 2 of Concrete, Housing and Seoul Bike Sharing. As mentioned earlier, there
was also the instance of the Car Evaluation dataset, where prediction performances of the
flexible structures were worse than the traditional for Scenario 2, 3 and 4. These add up
to 7 of the 28 total unique hyperparameter optimization scenarios. Of these, 4 instances
were of Scenario 2, with max depth optimized in isolation. This could in turn indicate
that flexible ensemble structures are usually not beneficial for this parameter optimized
in isolation. The low significance of prediction performance improvement for the instance
of Scenario 1 of the Energy Prediction dataset, was most likely a conincidence with this
particular scenario. The found flexible structure configuration was here relatively similar
to that of the traditional structure. In other words; the traditional structure happened to
be quite fitting for this particular scenario and dataset, which in turn lowered benefit of
the flexible ensemble structure. The remaining 2 scenarios are of course of Car Evaluation.
This dataset was a bit of an odd case. It seemed like bayesian optimization was not as
effective for optimizing the flexible structures with this dataset as with the others. For
instance, the max depth range for this dataset, was 1 to 6. Despite the much lower search
complexity than with many other explored scenarios, Bayesian Optimization was not even
able to obtain the same prediction performance as the traditional structure, by finding the
same configuration, being 6 for all trees. Thus, these scenario instances might not fully
represent the abilities of flexible ensemble structures.

6.2.2 Investigating the Possibility of Overfitting

As outlined in Section 5.1, we also investigated whether overfitting to the cross validation
folds was something that could have occurred and obscured the results. This was done
by optimizing an ensemble for Scenario 4 with the training-set of the Energy Prediction
dataset, and evaluated with a hold out test-set. We then compared the cross validation
score to the prediction performance on the test-set. The result of this was a cross validation
score of 34.2314 MAE and a test score of 31.6840. From this we can see that the test-score
was not significantly worse than the cross validation score, but in fact better. Thereby,
there were no signs that overfitting to the cross validation folds was a factor obscuring the
results.

6.2.3 Best Performing Hyperparameter Combinations

To obtain insights into which combinations of hyperparameters seemed optimal for optimization,
we observed how frequently the flexible structure of the different scenarios achieved the best
prediction performance on the different datasets. We found that the most frequent scenario
of best prediction performance, was Scenario 4. This scenario obtained the best prediction
performance for 4 of the datasets; Energy Prediction, Seoul Bike Sharing, Statlog Satellite
and Winequality-red. Scenario 1 and 3 each obtained the best prediction performance for
one dataset, Housing and Concrete, respectively. While the best prediction performance of
Car Evaluation, was not obtained by a flexible ensemble structure. Thus, the only scenario
that did not achieve the best prediction performance for any dataset, was Scenario 2.
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These observations indicate most datasets benefit from more regularization, considering
that Scenario 3 and 4 optimize combinations of multiple hyperparameters, while Scenario
1 and 2 optimize hyperparameters in isolation. They also indicate that learning rate is
a quite important hyperparameter to optimize, even in isolation, considering this lone
hyperparameter obtained the best prediction performance for Housing. Max depth, on the
other hand, does not seem to benefit from being optimized in isolation.

6.2.4 Comparing Configurations of the Same Hyperparameter Scenario

For the purpose of obtaining insight into reoccurring and exploitable aspects of flexible
structure configurations, we analyzed each scenario between the datasets and looked for
similarities and differences in aspects such as the percentage of improvement with the flexible
structures, the characteristics of the configurations, and value ranges of the hyperparameters.
The results for each Scenario are discussed in the following sub-sections.

6.2.4.1 Scenario 1

For Scenario 1, only the flexible structure of the Energy Prediction dataset had an
insignificant percentage of improvement. However, the primary reason for the low significance
in this case was most likely that the optimal configuration for Scenario 1 of this dataset
happened to be quite similar to that of the obtained traditional structure. Regardless,
it is clear that learning rate was typically a very beneficial hyperparameter to optimize
flexibly. The fact that this scenario, consisting only of learning rate, also obtained the
best performing flexible structure for one dataset, Housing, further supports this argument.

The learning rate values ranged between 0.19 and 1.0. This indicates that it might be
reasonable to exclude values less than 0.19 in search processes, at least in the case of such
small ensembles. Additionally, we observed that the learning rate values, for 5 out of 7
datasets, somewhat appeared to be gradually rising with later trees. The relevant datasets
were specifically; Concrete, Housing, Seoul Bike Sharing, Statlog Satellite, and Winequality-
red. This observed behaviour is also something that can potentially be exploited in search
processes, for instance by employing a bias towards this behavior.

6.2.4.2 Scenario 2

Scenario 2 overall seemed a little variable in terms of the significance of the flexible structures
prediction performance improvement. For 4 out of 7 datasets, the improvement was not
significantly better than the traditional structures. These datasets were specifically; Car
Evaluation, Concrete, Housing, and Seoul Bike Sharing. For the remaining 3 datasets;
Energy Prediction, Statlog Satellite, and Winequality-red, however, the prediction performance
improvement was quite significant. This indicates that the benefit of optimizing max depth
in isolation is quite dependent on the dataset, but might have a tendency of being low.
This is further exemplified by the fact that this scenario did not achieve the best prediction
performance for any of the datasets.

It seemed to be a common occurrence that the max depth values were at the higher end
of the dataset-relative value range of 1 to the number of features. Especially noticeable were
in the datasets, Car Evaluation, Concrete, Seoul Bike Sharing, and Winequality-red. This
might be an indication that regularization is not the primary benefit of this hyperparameter,
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but rather optimizing how fast the ensemble learns by increasing the trees individual
predictive ability through their size.

6.2.4.3 Scenario 3

The flexible structures of Scenario 3 significantly improved prediction performance for 6 out
of 7 datasets, and obtained the best performing flexible structure for the Concrete dataset.
The only exception was on the Car Evaluation dataset. This result makes sense, considering
the higher degree of regularization with more hyperparameters. However, it is interesting
how the increased search complexity did not seem to prevent significant improvement in
prediction performance.

The learning rate values of the obtained configurations, similarly to that of Scenario 1,
ranged between 0.15 and 1.0, and for 4 out of 7 datasets, the values were observed to rise
with later trees. The relevant datasets were; Concrete, Energy Prediction, Housing, and
Statlog Satellite. Again, these result can likely be exploited to effectivize search processes.
As with Scenario 2, max depth values were frequently observed to be at the higher end of
value ranges. This was especially apparent for 4 of 7 datasets; Car Evaluation, Concrete,
Energy Prediction, and Winequality-red. Subsample values were also observed to mostly be
at the higher end, above 0.75, of the total value range, being 0.6 to 1.0. This indicates that
smaller amounts of subsampling is generally more beneficial, which can likely be exploited
to effectivize search processes.

6.2.4.4 Scenario 4

The flexible structures obtained with Scenario 4 were, as those with Scenario 3, beneficial
for 6 out of 7 datasets, Car Evaluation being the only exception. Additionally, Scenario 4
obtained the flexible structure of best performance for 4 out of 7 datasets, being Energy
Prediction, Seoul Bike Sharing, Statlog Satellite, and Winequality-red. This is a strong
indicator that more regularization, by optimizing more hyperparameters, tend to be
beneficial for prediction performance.

The learning rate values ranged between 0.18 and 0.97, and appeared to be rising in
value with later trees for 1 out of 7 datasets (Energy Prediction), most max depth values
were at the higher end of the relevant value ranges, most subsample values were higher than
0.8, while colsample bytree typically ranged the entire value range of 0.8 to 1.0. Of course,
all these are aspects that can be exploited in search processes to make them more efficient.

6.2.5 Comparing Configurations of Different Hyperparameter Scenarios

To investigate how hyperparameters influenced each others optimal values, we compared
configuration characteristics between different hyperparameter scenarios. Specifically, on a
per dataset basis. Generally, we found the differences between scenario configurations to
be considerable. It was thus clear that the hyperparameters influenced each other when
optimized together. This implies that pipeline processes that optimize one hyperparameter
at a time, are most likely not going to be effective for optimizing flexible structures.
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6.3 Experiment 2 Results

As detailed in Section 5.2, Experiment 2 was based on comparing flexible ensemble structures,
thoroughly optimized with the Incremental approach, to ones thoroughly optimized with
the Holistic approach. The goal of Experiment 2 was to obtain insight into RQ3: how

Dataset Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 | Ex. 1 S1

MAE | 6.7243  5.4630 5.0550  4.7785  4.6703 3.7416

Concrete v 0.9997  0.9670  0.9891  0.9970  0.8650

MAE | 45.1400 44.4539 44.2411 44.1956 44.1813 | 41.8156

Energy Prediction | 17 " |y 7635 (9695 01708 00849  0.0539

MAE | 3.4046  3.0257 2.9388  2.9043  2.8731 2.3143

Housing I_r | 09999 09220 0.6546 0.4905  0.4804

MAE | 208.34 186.14  179.42  174.29  171.55 159.18

Seoul Bike Sharing | 17" 0690 08542 0.7885  0.8043  0.6278

Table 6.4: From Experiment 2: The flexible structures on the regression datasets obtained
with Incremental flexible structure optimization, with the MAE and learning rate for
each tree, compared to the best MAE obtained in Scenario 1 of Experiment 1. Prediction
performance values were evaluated with 2 repeats of 5 fold cross validation.

flexible structures of small ensembles can be effectively optimized. This was obtained
by investigating which approach to flexible ensemble structure optimization, between
Holistic and Incremental optimization, was best for obtaining good prediction performance.
Specifically, we thoroughly optimized a flexible ensemble structure, based on learning rate,
with the Incremental approach, and compared the achieved prediction performances to
those obtained with the Holistic approach from Scenario 1 of Experiment 1. The results
based on this comparison are thus the main results of Experiment 2, and are discussed in
Section 6.3.1. A summary of the experiment’s empirical results are contained in Table 6.4
and 6.5. In general, we found that the Incremental approach was considerably worse than
both the Holistic approach and the traditional one, cementing Holistic optimization as the
better of these two approaches.

Dataset Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 | Ex. 1 S1

Car Evaluation Error - 0.043974 0.033272 0.026040 0.019101 | 0.015339
l r 0.9943  0.9949 0.9886 0.8403 0.8215

Statlog Satellite Error - 0.115462 0.110800 0.105905 0.102408 | 0.099533
l r 0.7413  0.9986 0.8689 0.9856 0.9616

Winequality-red Error - 0.377115 0.369919 0.360537 0.356157 | 0.343971
l r 0.5842  0.7139 0.9412 0.8153 0.9709

Table 6.5: From Experiment 2: The flexible structures on the classification dataset, obtained
with Incremental flexible structure optimization, with the Error and learning rate for each
tree, compared to the best MAE obtained in Scenario 1 of Experiment 1. Note that the
Error for the fist tree is not included as Tree 1 and 2 needed to be optimized together.
Prediction performance values were evaluated with 2 repeats of 5 fold cross validation.

With these results, we also saw an opportunity to observe the differences between
flexible structure configurations obtained with the Holistic and Incremental approach, with
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the goal of obtaining exploitable knowledge for effectivizing optimization processes. The
secondary results of Experiment 2 are discussed in Section 6.3.2. Generally, we found that
learning rate values of Incrementally optimized flexible structures often seemed to decrease
with later trees, and generally seemed higher than those obtained with the Holistic approach.
These results thus indicate that these characteristics should be avoided in optimization
processes.

6.3.1 The Best Approach to Flexible Ensemble Structure Optimization

Overall the Incremental approach to flexible ensemble structure optimization achieved
clearly worse results compared to those of the Holistic approach. The obtained prediction
performances were considerably worse in all of the 7 datasets. In fact, the Incremental
approach achieved worse results than the traditional one for 6 of 7 datasets. The only
instance were Incremental surpassed the traditional approach was with the Statlog Satellite
dataset. However, even here the prediction performance increase was quite small, being
only about 6.51%, relative to the difference between the 5- and 6-tree traditional ensemble
structures. It was thus quite clear that Incremental flexible structure optimization, was not
only completely inferior to the Holistic flexible approach, but also to the traditional one
for most datasets. Thus, Holistic seems to be the go-to method for optimizing boosting
ensembles flexibly.

6.3.2 Comparing the Approaches’ Obtained Configurations

For the purpose of obtaining exploitable knowledge for effectivizing optimization processes of
flexible ensemble structures, we compared the characteristics of obtained structures between
the two explored approaches. Opposed to the Holistic approach, where learning rate values
were frequently observed to seemingly rise in values with later trees (see Section 6.2.4), the
opposite was the case with the Incremental approach. The learning rate values appeared
to decrease in values with later trees for 4 out of 7 datasets. Specifically, Car Evaluation,
Energy Prediction, Housing, and Seoul Bike Sharing. Additionally, the learning rate values
generally seemed higher than what observed with the configurations obtained with the
Holistic approach. This was especially apparent in the datasets, Concrete, Housing, Seoul
Bike Sharing, and Statlog Satellite. These are indications that the Incremental approach is
too greedy, which causes convergence of prediction performance, making the optimization
approach suboptimal, and arguably detrimental to prediction performance. These behaviors
can therefore probably be avoided to effective optimization processes.

6.4 Experiment 3 Results

As detailed in Section 5.3, Experiment 3 was based on comparing random configurations of
traditional and flexible ensemble structures. The goal of Experiment 3 was to obtain insight
into RQ2: to what extent flexible structures are detrimental to optimization difficulty. The
results were specifically obtained by comparing the best, worst and average prediction
performance, as well as histograms, between 1000 random configurations of each traditional
and flexible ensemble structures. Two hyperparameter scenarios were investigated:

Scenario 1: learning rate optimized in isolation.
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Scenario 2: learning rate and max_depth optimized in combination

A summary of the empirical results are tabulated in Table 6.6 and 6.7, while the results
are discussed in Section 6.4.1. Generally, we found that it seemed easier to obtain better
prediction performance with the flexible structures, especially for the regression datasets,
whereas it seemed more competitive with the traditional structures for the classification

datasets.

Scenario 1 Scenario 2
Dataset Avg Best Worst Avg Best Worst
Traditional | 8.3171 4.0149 35.1962 9.2206 3.8162 35.2361
Concrete Flexible 4.8377 3.9042 13.8173 | 5.4038 3.8034 16.1442
Difference 3.4797 0.1107 21.3789 3.8168 0.0128 19.0919
Traditional | 48.7335 41.8257  97.1359 45,133 33,8593 96,7704
Energy Prediction | Flexible 45.9559 42.2148 51.8404 | 37,1433 33,3772 61,1627
Difference 2.7776 -0.3891 45.2955 7.9897 0.4821 35.6077
Traditional | 5.1684 2.4964 22.0247 5.434 2.4937 21.9435
Housing Flexible 2.9258 2.4475 11.998 2.9825 2.4198 12.7407
Difference 2.2426 0.0489 10.0267 2.4515 0.0739 9.2028
Traditional | 240.85 162.15 704.05 248.17 150.28 702.2
Seoul Bike Sharing | Flexible 174.25 161.36 361.69 216.19 169.98 456.73
Difference 66.6 0.79 342.36 31.98 -19.70 245.47

Table 6.6: From Experiment 3: The average, best and worst MAE scores obtained for the
regression datasets, with traditional and flexible structures, in Scenario 1 and 2. The bold
values mark the best performing structure type for a given type of value. The prediction
performance values were evaluated with 2 repetitions of 5 fold cross validation.

Scenario 1 Scenario 2
Dataset Avg Best Worst Avg Best Worst
Traditional | 95.70% 98.26%  92.10% 87.41% 99.50%  70.02%
Car Evaluation | Flexible 95.86% 97.85% 92.82% | 91.00% 97.16% 70.22%
Difference 0.16% -0.41% 0.72% 3.59% -2.34% 0.20%
Traditional | 89.03%  89.72% 86.81% 89.07% 90.34% 74.20%
Statlog Satellite | Flexible 88.96% 89.83% 87.63% | 89.46% 90.40% 86.00%
Difference -0.07% 0.11% 0.82% 0.39% 0.06% 11.80%
Traditional | 63.50%  65.04% 59.88% 62.80% 67.32% 54.25%
Winequality-red | Flexible 63.18% 65.47% 60.66% | 63.41% 66.91% 56.69%
Difference -0.32% 0.43% 0.78% 0.61% -0.41% 2.44%

Table 6.7: From Experiment 3: The average, best and worst Error scores obtained for
the classification datasets, with traditional and flexible structures, in Scenario 1 and 2.
The bold values mark the best performing structure type for a given type of value. The
prediction performance values were evaluated with 2 repetitions of 5 fold cross validation.

6.4.1 The Practical Search Difficulty of Flexible Ensemble Structures

The following subsections contain the results of Experiment 3 separated by the two
investigated hyperparameter scenarios.
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6.4.1.1 Scenario 1

For Scenario 1, the best prediction performance achieved with the flexible structures was
better than those achieved with the traditional structures for 5 out of 7 datsets. These
were, specifically; Concrete, Housing, Seoul Bike Sharing, Statlog Satellite and Winequality-
red. The average prediction performance was also better with the flexible structures for
5 out of 7 datasets, being Concrete, Energy Prediction, Housing, Seoul Bike Sharing and
Car Evaluation. While the worst obtained prediction performance was better for the
flexible structures across all datasets. These are relatively strong indications that it is
practically easier to obtain good prediction performance with flexible structures, compared
to traditional structures, and harder to obtain bad prediction performance.

For the average prediction performances, both datasets where the flexible structures
performance worse than the traditional structure were classification datasets. Additionally,
the differences between the worst prediction performances of the flexible and traditional
structures were smaller for the classification dataset. These could be indications that
classification problems affect the search difficulty differently from regression problems, and
that they are potentially harder to optimize. In terms of the histograms, the ones for the
flexible structures were for all regression datasets more concentrated in a range of better
performance, compared to the traditional structures, where a larger portion of values were
of worse prediction performance. An example of this can be seen in Figure 6.1. This could
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Figure 6.1: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on the
Seoul Bike Sharing dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

again indicate that obtaining bad prediction performance is harder with flexible structures,
compared to traditional structures. The histograms of the classification datasets, on the
other hand, were relatively similar for both structure types, the biggest difference being a
slightly larger number of worse values for the traditional structures. An example can be
seen in Figure 6.2.
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Figure 6.2: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on the
Winequality-red dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.
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Figure 6.3: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on the
Seoul Bike Sharing dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

6.4.1.2 Scenario 2

For Scenario 2, the best prediction performance of the flexible structures were better
than those of the traditional structures for 4 out of 7 datasets. Namely; Concrete Energy
Prediction, Housing and Statlog Satellite. The average and worst prediction performances
were better for the flexible structures for all datasets. As with Scenario 1, these are relatively
strong indication that it was practically easier to obtain good prediction performance
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with flexible structures than with traditional ones, and harder to obtain bad prediction
performance. The histograms of the prediction performances obtained with the flexible
structures were for all regression datasets more concentrated in a range of better prediction
performance compared to the histograms from the traditional structures (see Figure 6.3).
And the histograms for the classification datasets were relatively similar between the
structure types, but the traditional structures seemed to contain a slightly larger amount of
worse prediction performances (see Figure 6.4). Generally, it seemed easier to obtain better
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Figure 6.4: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on the
Winequality-red dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.

prediction performance with the flexible structures, especially for the regression datasets,
whereas it seemed more competitive for the classification datasets.

6.5 Experiment 4 results

As detailed in Section 5.4, Experiment 4 was based on comparing flexible ensemble structure
configurations of good and bad prediction performance. The goal of Experiment 4 was to
obtain insight into RQ2: to what extent flexible structures are detrimental to optimization
difficulty, and RQ3: how flexible structures can be effectively optimized. The results were
specifically obtained by grouping the 10 best and 10 worst performing flexible ensemble
structures out of 5000 random configurations based on learning rate. We could then
observe the average value and standard deviation of each tree’s learning rate.

A summary of the experiment’s empirical results are tabulated Table 6.8, and the
results are discussed in Section 6.5.1. Generally. we found indications that the area of
best prediction performance is relatively lenient and differentiable from the area of worst
prediction performance. These results not only imply that search difficulty is manageable,
but are also aspects that could be exploited for optimization effectiveness.
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Dataset Tree 1 Tree2 Tree3d Treed4d Treed
Avg Best 0.3479 0.6568 0.8122 0.7841 0.7125
Std Best 0.1777 0.2221 0.1467 0.1678 0.2699
Avg Worst | 0.1147 0.0959 0.1402 0.1837 0.1441
Std Worst | 0.1163 0.0815 0.0946 0.1422 0.0997
Avg Best 0.2151 0.2664 0.2595 0.2835 0.3378
Std Best 0.0494 0.1136 0.1072 0.1163 0.0546
Avg Worst | 0.1082 0.1100 0.0974 0.1025 0.1069
Std Worst | 0.0992 0.1182 0.0833 0.1051 0.0788
Avg Best 0.2141 0.6007 0.7105 0.6470 0.7082
Std Best 0.1081 0.2852 0.1895 0.3625 0.2289
Avg Worst | 0.1171  0.1779 0.1284 0.0949 0.1228
Std Worst | 0.0712 0.1255 0.1150 0.0737 0.0740
Avg Best 0.4614 0.6049 0.6911 0.7620 0.7723
Std Best 0.0935 0.1486 0.1210 0.1689 0.1491
Avg Worst | 0.1561 0.1110 0.1142 0.0728 0.1723
Std Worst | 0.1047 0.1079 0.0836 0.0602 0.1206
Avg Best 0.8498 0.6755 0.5666 0.6814 0.6620
Std Best 0.2212 0.1566 0.2530 0.1523 0.1564
Avg Worst | 0.0812 0.2305 0.1799 0.5276 0.4296
Std Worst | 0.0924 0.1286 0.1169 0.3736 0.3537
Avg Best 0.7143 0.6543 0.8039 0.6749 0.8186
Std Best 0.1267 0.1601 0.1232 0.2781 0.1615
Avg Worst | 0.1011 0.1553 0.3939 0.3598 0.1417
Std Worst | 0.1576 0.2581 0.4122 0.3676 0.1525
Avg Best 0.6943 0.6537 0.5318 0.5526 0.5928
Std Best 0.0728 0.3212 0.2427 0.2757 0.2888
Avg Worst | 0.1352 0.5643 0.3381 0.4550 0.4379
Std Worst | 0.0670 0.3895 0.2349 0.3271 0.3073

Concrete

Energy Prediction

Housing

Seoul Bike Sharing

Car Evaluation

Statlog Satellite

Winequality-red

Table 6.8: From Experiment 4: The averages and standard deviations of each tree’s
learning_rate values, based the 10 best and worst configurations. Prediction performance
values were obtained by training the configurations on each dataset’s training-set and
evaluating it on their test-set.

6.5.1 Comparison of Best and Worst Performing Configurations

The best and worst configurations were generally quite different. Specifically, the worst
values typically had much lower learning rate values for all trees. This can be demonstrated
by the considerably lower tree-averages of the worst configurations. This in turn indicates
that it should generally be very possible to differentiate between the areas of best and worst
prediction performance. The search difficulty will therefore not be increased by conflicting
areas of good and bad performance. Thereby it should be possible to avoid the area of
worst performance, and encourage searches within the area of best performance.

For both the best and the worst performing flexible structure configurations obtained in
Experiment 4, the characteristics of the configurations native to each group were relatively
similar. This can be demonstrated by the relatively low standard deviations, which were
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generally below 0.3 for the best configurations, and generally well below 0.2 for the worst.
However, considering that the standard deviations were not 0, the configurations within
both groups were indeed similar, but not identical. These results indicate that the area of
best and worst performance are relatively lenient, and can likely be discovered or predicted,
and thereby exploited in search processes. Noteworthy, however, was the observation that
the standard deviations for the worst structures, were considerably lower than those of the
best. This could indicate that the area of worst performance is smaller compared to the
area of the best.

6.6 Experiment 5 results

As detailed in Section 5.5, Experiment 5 was based on investigating the possibility of
rounding hyperparameter values to reduce search complexity. The primary goal was thus
to obtain insight into RQ3: how flexible structures of small ensembles can be effectively
optimized. The results were specifically obtained by comparing the prediction performance
obtained with the uniform and quniform value-selection methods native to Hyperopt.

The empirical results of the experiment are tabulated in Table 6.9 and 6.10, and the
results are discussed in Section 6.6.1. Generally, the results indicate that reducing search
complexity by restricting hyperparameter value detail could be reasonable for achieving
better prediction performance in less iterations, at least for learning rate values, though it
is not clear whether the benefit is significant.

Dataset 500 Iterations 1000 Iterations 2000 Iterations
Concrote Uniform 3.8946 3.8281 3.8109
Quniform 3.8416 3.8784 3.8006
Energy Prediction Uniform 41.9186 41.8411 41.7953
Quniform 41.8425 41.8388 41.7235
Housing Uniform 2.3813 2.3596 2.3210
Quniform 2.4047 2.3397 2.3175
: . Uniform 161.09 160.44 159.76
Seoul Bike Sharing | o iform 160.42 160.23 159.64

Table 6.9: From Experiment 5: The MAEs obtained with uniform and quniform, in
processes of 500, 1000 and 2000 search iterations, on the regression datasets. The prediction
performance values were evaluated with 2 repetitions of 5 fold cross validation.

6.6.1 Investigating the Possibility of Hyperparameter Value Rounding

In Experiment 5, the quniform value selection method was observed to obtain better
performing configurations than those obtained with uniform for 5 out of 7 datasets:
Concrete, Energy Prediction, Housing, Seoul Bike Sharing and Winequality-red. However,
for most of the datasets, quniform still required 2000 iterations to find the best performing
configurations.

For the two datasets where uniform obtained the best prediction performance, the value
was only slightly worse for quniform of the Car Evaluation dataset, while seeming a bit
more considerable for the Statlog Satellite dataset. Quniform additionally achieved the
best prediction performance in the majority of optimization processes for most dataset.
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Dataset 500 Iterations 1000 Iterations 2000 Iterations
Car Evaluation Uniform 0.018808 0.016786 0.015625
Quniform 0.018230 0.015628 0.015628
Statlog Satellite Uniform 0.099456 0.099689 0.099689
Quniform 0.100777 0.099844 0.100466
Winequality-red Uniform 0.346778 0.344907 0.343666
Quniform 0.343972 0.347097 0.343045

Table 6.10: From Experiment 5: The Errors obtained with uniform and quniform, in
processes of 500, 1000 and 2000 search iterations, on the classification datasets. The
prediction performance values were evaluated with 2 repetitions of 5 fold cross validation.

The most notable exception was the Statlog Satellite dataset, where quniform achieved
worse prediction performance in all contained processes. Thus it seemed like quniform
was generally able to achieve better prediction performance a bit more effectively than
uniform, but still required a relatively large amount of search iterations. This indicates that
hyperparameter value detail is not required to be that specific to achieve good prediction
performance, at least not in the case of learning rate. It is, however, not clear whether the
benefit of using value selection methods like quniform is actually significant and should be
utilized in search processes.



Chapter 7

Discussion

In Chapter 3, we defined the concept of per-tree hyperparameters for gradient boosting
ensembles as the the term "flexible ensemble structures", and proposed two approaches
to their optimization; Holistic and Incremental flexible ensemble structure optimization.
The Holistic approach optimizes all per-tree hyperparameters in the same procedure,
while Incremental optimizes each tree incrementally as they generated and added to the
ensemble. The thesis research questions presented in Chapter 1 were investigated though
five experiments. These experiments were defined in Chapter 5, all of which were based
on hyperparameter optimizing XGBoost ensembles of 5 trees on 7 datasets of varying
characteristics. This chapter provides a discussion around thesis by explicitly answering the
research questions, discussing the relevancy of the results and acknowledging the limitations
of the thesis. In Section 7.1, the research questions are restated and answered based on
the experiments and their results. In Section 7.2, the results and their implications are
discussed in relation to earlier research to demonstrate their relevancy. Finally, in Section
7.3, we acknowledge some limitations of the thesis. Some ideas for future work derived
from these limitations are further discussed in Chapter 8.

7.1 Research Questions

This section restates and answers the research questions based on the experiments defined
in Chapter 5 and their results, presented in Chapter 6.

7.1.1 RQ1

RQ1 asked the question; To what extent are per-tree hyperparameters beneficial for the
prediction performance of gradient boosting ensembles? The motivation behind this question
was to establish whether the unexplored approach of optimizing per-tree hyperparameters of
gradient boosting ensembles, can be used to the benefit of ensemble prediction performance.
The answer to RQ1 is based on the results of Experiment 1, detailed in Section 6.2. Generally,
Experiment 1 was based on comparing the obtained prediction performance between flexible
and traditional ensemble structures of 5 trees, each thoroughly optimized with Bayesian
Optimization. To measure the significance of differences, we calculated the percentage of
improvement in prediction performance achieved with the flexible structure, relative to the
improvement obtained by extending and re-optimizing the traditional structure by one tree.
We conducted this comparison in four separate hyperparameter scenarios:

95
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Scenario 1: learning rate optimized in isolation.

Scenario 2: max_depth optimized in isolation.

Scenario 3: learning rate, max depth and subsample optimized together.

Scenario 4: learning rate, max depth, subsample and colsample bytree optimized together.

We found that the flexible structures achieved better prediction performance than the
traditional structures with 6 out of the 7 datasets. With these 6 datasets, the prediction
performance was additionally better in all four hyperparameter scenarios. This did, however,
entail that the flexible structures obtained inferior prediction performance compared to
traditional structures for one dataset, being the classification dataset, Car Evaluation.
Here the flexible structures only achieved better prediction performance in Scenario 1.
This result implies that flexible structures in general are capable of achieving better
prediction performance than traditional structures. Additionally, the flexible structures’
prediction performance improvement from the traditional structure, relative to extending
the traditional structure with one tree, was significant in most scenarios across the datasets.
In one or more scenarios of 4 separate datasets, the relative percentage of improvement
(see Section 5.1) was above 100%. This practically means that the flexible structures in
these cases were more beneficial for prediction performance than extending the traditional
structure with one tree. The largest observed percentage of improvement was 554.54%.
This implies that flexible ensemble structures in certain cases can be more beneficial to
prediction performance than adding more trees to a traditional structure. This practically
means that this approach can create ensembles that are more compact relative to prediction
performance. It is, however, important to note that we do not know exactly how much
more compact flexible ensembles can become, beyond that the improvement is significant.

However, there were also hyperparameter scenarios were the percentage of improvement
was insignificant (less than 10%). This was specifically the case with 7 of the 28 total
unique hyperparameter scenarios. Of these, 1 instance were of Scenario 1. This was,
however, likely to be coincidence, as the obtained flexible structure configuration happened
to be quite similar to the obtained traditional structure. 4 instances were of Scenario 2,
where max_depth was optimized in isolation. This could be an indication that flexible
structures are not particularly effective with this hyperparameter optimized in isolation.
The 2 remaining scenario instances, and one of the Scenario 2 instances, were all of the
same dataset, being Car Evaluation. This dataset seemed like a bit of an odd case, in
general. As mentioned earlier, this was the only dataset were flexible structures did not
outperform traditional structures. This could potentially be caused by the optimization
difficulty of this particular dataset. For instance, the max depth range for this dataset,
was 1 to 6, which is much lower than with many other datasets. Despite this, Bayesian
Optimization could not, in 2000 iterations, find a configuration for Scenario 2 equal to the
traditional structure. Regardless of any speculation, it was clear that flexible ensemble
structures did not perform well on this particular dataset.

As a part of Experiment 1, we also investigated whether the results could have been
influenced by overfitting to the cross validation folds. This investigation was based on
optimizing an ensemble for Scenario 4, with the training-set of the largest dataset, Energy
Prediction, and evaluating it with a hold out test-set. We could then compare the cross
validation score to the prediction performance on the test-set. The result was a cross
validation score of 34.2314 MAE, and a test score of 31.6840. From this we can see that
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the test-score was not significantly worse than the cross validation score, but in fact better.
Thereby, there were no signs that overfitting to the cross validation folds was a factor
obscuring the results. We did, however, only validate the possibility of overfitting on one
dataset. We can therefore not be entirely certain about the other datasets, even though
overfitting seems unlikely.

In summary, we can answer RQ1 by stating that optimizing per-tree hyparparmeters
of gradient boosting ensembles seems significantly beneficial for prediction performance.
This supports the theory that motivated the thesis; that gradient boosting ensembles would
benefit from per-tree hyperparamters because each tree is given a unique prediction task.
We do, however, not know if this is actually the reason for the benefits of flexible ensemble
structures.

On a side note; In Section 6.1, we compared the best prediction performance values
achieved with flexible ensemble structures to the best values from the baselines in Section
4.1.2 and state-of-the-art prediction performances for the different datasets [1, 10, 53, 15, 29|.
The best baseline prediction performance was surpassed for two datasets. However, we
determined that this was not due to the ability of flexible ensemble structures, as the
same observation was made with the traditional structures of these datasets. The flexible
structures did not surpass the state-of-the-art prediction performances in any of the dataset.
However, this was entirely expected, considering that the ensembles were limited to 5 trees.
Thus, these observations do not detract from the other results, as their focus was comparing
flexible and traditional structures, not obtaining the best prediction performance in general.

7.1.2 RQ2

RQ2 asked the question; To what extent are per-tree hyperparameters detrimental to the
optimization difficulty of gradient boosting ensembles? The motivation behind this question
was to determine if the optimization of per-tree hyperparameters for gradient boosting
ensembles is doable with a reasonable amount of computational resources. The answer
to RQ2 is based on the results of Experiment 3 and 4, detailed in Section 6.4 and 6.5,
respectively.

Generally, Experiment 3 was based on comparing the average, best and worst obtained
prediction performance, between 1000 random configurations of each traditional and flexible
ensemble structures. This comparison was made within two separate hyperparameter
scenarios:

Scenario 1: learning rate optimized in isolation.
Scenario 2: learning rate and max_depth optimized together.

From Scenario 1 of Experiment 3, we found that the best achieved prediction performance
of the flexible structures were better than those achieved with the traditional structures for
5 out of the 7 explored datasets. The same observation was made in 4 datasets of Scenario
2. The average prediction performance values were also better with the flexible structures
for most explored datasets. Specifically, with 5 datasets in Scenario 1, and all datasets in
Scenario 2. The worst prediction performance values were better with the flexible ensemble
structures for all datasets in both Scenarios. These are relatively strong indications that
it was practically easier to obtain good prediction performance with the flexible ensemble
structures, relative to traditional ones. Specifically, in terms of best, average and worst
value when evaluating a set of random configurations. This was somewhat of an unexpected



o8 CHAPTER 7. DISCUSSION

result, considering the curse of dimentionality [64], which makes the number of unique
configurations increase exponentially with each optimized hyperparmeter. We theorize
that the reason for this result is that a large number of flexible configurations have better
prediction performance than those covered by traditional structures. This would in turn
increase the chance of obtaining a well performing configuration when searching the flexible
structure space.

In terms of the prediction performance histograms of Experiment 3, we found that
the ones based on the flexible structures were more concentrated in a range of better
prediction performance, compared to those of the traditional structures. The histograms
of the classification datasets, on the other hand, were relatively similar for both structure
types, the biggest difference being a slightly larger number of worse values for the traditional
structures. This was found to be the case in both hyperparameter scenarios. These results
might indicate that it is practically easier to obtain good prediction performance with
flexible structures for the regression datasets, compared to the classification datasets.

Experiment 4 was based on comparing learning rate based flexible ensemble structure
configurations of good and bad prediction performance. The good and bad configurations
were grouped from a pool of 5000 random flexible ensemble structures. The comparisons
between the two groups were specifically based the the average learning rate values and
standard deviations of each tree. From this experiment, we found that the best and
worst configurations were generally quite different in characteristics. Specifically, the worst
values typically had much lower learning rate values for all trees. This in turn indicates
that it should generally be very possible to differentiate between the areas of best and
worst prediction performance. The search difficulty is therefore not negatively affected by
conflicting areas of good and bad performance. Thereby it should be possible to avoid the
area of worst performance, and encourage searches within the area of best performance.

In summary, we can answer RQ2, by stating that utilizing per-tree hyperparameter
configurations for gradient boosting algorithms is not obviously detrimental to optimization
difficulty. In fact, it can with certain optimization methods comparably result in better
prediction performance than traditional hyperparameter configurations in the same amount
of spent resources. We found no indications of aspects that would negatively impact search
performance, such as conflicting areas of good and bad prediction performance.

7.1.3 RQ3

RQ3 asked the question; How can gradient boosting ensembles with per-tree hyperparameters
be effectively optimized? The motivation behind this question was to establish a standard
for how per-tree hyperparameters should be optimized, as well as gain insights into aspects
that could benefit such processes. The answer to RQ3 is based primarily on the results of
Experiment 2, detailed in Section 6.3, with additional insights derived from the results of
Experiment 1, 4 and 5, detailed in Section 6.2, 6.5 and 6.6, respectively.

Experiment 2 was based on comparing the effectiveness of the Holistic and Incremental
approach to flexible ensemble structure optimization. Specifically, we compared the
prediction performance of flexible ensemble structures, thoroughly optimized with the
Incremental approach, to that of ones thoroughly optimized with the Holistic approach.
From the results of this experiment we found that the Incremental approach achieved
considerably worse prediction performance that the Holistic approach in all of the 7
explored datasets. In fact, the Incremental approach achieved worse results than the
traditional approach for 6 of the 7 explored datasets. This is a quite clear indication
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that the Incremental approach is not only worse than the Holistic approach, but seems
detrimental to prediction performance. We theorize that this is the case because the
Incremental approach is too greedy in optimization of each ensemble tree by not considering
how following trees are affected.

Experiment 1 was primarily focused on providing insights into RQ1 through comparing
the prediction performance of flexible and traditional ensemble structures. However, we
saw an oppurtunity to also obtain insights relevant to RQ3. We, specifically investigated
which hyperparameter combinations seemed to be best for prediction performance, by
observing the frequency of which different hyperparameter scenarios achieved the best
performing flexible structure; We investigated whether hyperparameters influenced each
others behavior when optimized together, by comparing the configuration characteristics
between different hyperparameter scenarios; And we attempted to obtain insight into
reoccurring and exploitable characteristics of configurations, by comparing configurations
grouped by hyperparameter scenario.

Based on the results of Experiment 1, we found that flexible structures of Scenario 4
were the ones most frequently achieving the best prediction performance. This scenario
specifically achieved the best prediction performance for 4 of the 7 datasets. Scenario 1
and 3 got a shared second place, having the best prediction performance for one dataset
each. Scenarios of the last dataset, Car Evaluation, was excluded from this particular
point of investigation because the best prediction performance, was not achieved by a
flexible ensemble structure. Thus, the only scenario that did not achieve the best prediction
performance for any dataset, was Scenario 2. These observations indicate that most datasets
benefit from more regularization, considering that Scenario 3 and 4 optimize combinations
of multiple hyperparameters, while Scenario 1 and 2 optimize hyperparameters in isolation.
They also indicate that learning rate is a quite important hyperparameter to optimize, even
in isolation, considering this lone hyperparameter obtained the best prediction performance
for one dataset. Max depth, on the other hand, does not seem to benefit from being
optimized in isolation. This implies that optimizing flexible ensemble structures based on
multiple hyperameters should probably be the standard.

Based on comparing the configuration characteristics between different hyperparameter
scenarios, we found that these were considerably different from one hyperparameter scenario
to another. This indicates the hyperparameters influenced each others optimal values when
optimized together. This is inherently not surprising, considering that this type of behavior
has been observed since the dawn of gradient boosting. For instance with learning rate
and n_estimators [23]. The implication here, is that optimizing the hyperparameters in
a pipeline process is most likely not going to be effective, because these processes often
assume that the hyperparameters are relatively independent.

We also found several reoccurring aspects in the configurations. For instance we found
that learning rate values often seemed to rise with with later trees. This was specifically
observed in 5 datasets with Scenario 1, in 4 datasets with Scenario 3, and in 1 dataset with
Scenario 4. This totals to 10 of the 21 total relevant scenarios with this hyperparameter.
Learning rate values were additionally never observed as less than 0.15. Max_depth values
were observed to often be at the higher end of value ranges, while subsample values were
observed to be mostly above 0.75. These findings are thereby implications that a bias
towards rising learning rate values and higher end max_depth values could be beneficial to
search processes. And also that the search ranges can potentially be narrowed. The implicit
value ranges from these particular results are 0.15 to 1 for learning rate and 0.75 to 1 for



60 CHAPTER 7. DISCUSSION

subsample. However, we should not assume that these biases and value ranged should be
used without further investigation, as we know that the hyperparameters influence each
other. These ranges could thus become obsolete with larger ensembles.

To gain even further insights into these types of aspects and reoccurring behaviors,
we used the results of Experiment 2 to additionally analyze the characteristics of flexible
structure configurations optimized with the Incremental approach. From this analysis, we
observed that learning rate values frequently appeared to decrease in values with later
trees. Specifically, this was observed in in 4 of the 7 explored datasets. This is the opposite
of what was observed with the Holistically optimized flexible structures from Experiment 1.
From these observations, we can derive an implication that such learning rate behaviors
are indeed tied to predictive performance, and can likely be exploited in search processes.

From Experiment 4, which was based on comparing flexible ensemble structure configurations
(learning rate) of good and bad prediction performance, we found indications that well
performing areas of search landscapes are relatively lenient size, and can be differentiated
from the areas of bad prediction performance. This was based the observation that the
configurations grouped by best prediction performance were generally quite similar in
conceptualized landscape location, but were still clearly distinguishable in characteristics.
Similar observations were made with with the worst values, though in a different area of the
landscape and with less distinguishable characteristics. Similarity was specifically measured
based on learning rate standard deviations grouped by tree, which were generally below
0.3 for the best configurations, and below 0.2 for the worst. These observations imply that
the areas of good performance can be discovered and focused on in search processes, while
safely avoiding areas of bad performance.

Experiment 5 was based on investigating the possibility of rounding hyperparameter
values to reduce search complexity. More specifically, we compared the prediction performance
obtained with the quniform and uniform value selection methods, native to Hyperopt, in
three different optimization processes of 500, 1000 and 2000 iterations. All processes
optimized learning rate in isolation. From this experiment, we found that the quniform
value selection method, native to Hyperopt, obtained configurations of better prediction
performance, compared to the regular uniform value selection method. This was specifically
observed with 5 of the 7 explored datasets when optimizing learning rate. However, for
most of the datasets, quniform still required 2000 iterations to find the best performing
configurations. This indicates that reducing search complexity by restricting hyperparameter
values could be a reasonable method for achieving better prediction performance in less
search iterations. However, it is unclear whether the benefits of this method are substantial.
At the very least, we can say that restricting the detail of hyperparameters is not inherently
detrimental to searches.

In summary, we answer RQ3 by stating that per-tree hyperparameters of gradient
boosting ensembles should by standard be optimized holistically and together in the
same process. We also found many indications of aspects that could help effectivize
optimization processes. Such aspects include: Optimally performing combinations of
optimized hyperparameters; Common hyperparameter value ranges and value developments
between trees; Common locations and a discovered leniency of the area of best performance
in hyperparameter search landscapes; And the result that reducing search complexity by
restricting the detail of hyperparameter values can be employed without major repercussions
to prediction performance.
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7.2 Relevancy of the Thesis Results

To the extent of our knowledge, per-tree hyperparameters have not been previously been
investigated in the context of gradient boosting. The closest research we could find was a
couple of papers that investigated the benefits of promoting diversity in gradient boosting
ensemble trees based on per-tree training data [51, 5]. This type of diversity was here found
to be promising for prediction performance.

While not in the context of gradient boosting, per-component hyperparamters have been
explored in other contexts. For instance, stacking ensembles [62] and ensembles produced
with ensemble selection [11| have per-component hyperparameters as the norm, which
here benefits prediction performance by promoting diversity. We can also draw a parallel
to artificial neural networks, where per-layer hyperparameters greatly impact prediction
performance, and thus require careful optimization [16, 2].

The results’ indications that per-tree hyperparameters for gradient boosting ensembles
are significantly beneficial to prediction performance is thus very much in alignment with
earlier research into other contexts, where component diversity based on hyperparameters,
or otherwise, positively impacts prediction performance. This demonstrates, that per-tree
hyperparameters are also beneficial with gradient boosting ensembles, and is thus a useful
concept that should be utilized in further research and practical applications.

We do not have a lot in insight into how per-component hyperparameters affect
optimization difficulty in other contexts. It is, however, worth to mention that neural
networks most likely have a relatively similar optimization difficulty, considering their often
times large amount of per-layer hyperparameters. Regardless, the per-layer hyperparameters
are optimized in practise, which demonstrates that the difficulty is manageable in this
context [16]. We found that it can be practically easier to obtain good prediction
performance with per-tree hyperparameters in gradient boosting than with traditionally
handled hyperparameters. This demonstrates that the optimization difficulty of per-tree
hyperparameters not only seems manageble, as with neural networks, but could potentially
be easier than with traditionally handled hyperparameters. This is a strong motivation to
further investigate per-tree hyperparameters, based on the potential that this approach
could replace how the hyperparameters are traditionally handled.

Throughout the thesis we have investigated two approaches to the optimization of
per-tree hyperparameters; Holistic and Incremental. Comparing these approaches to that
of earlier research, we can see that the Holistic approach is practically quite similar to
how neural networks are optimized, where all hyperparameters are handled in the same
procedure [16, 2|. The Incremental approach can be compared to certain optimization
approaches applied in the context of model types like stacking ensembles, where each set
of per-component hyperparmameters are either optimized completely separately [18], or
more relevantly, in some kind of iterative way [37]. The iterative methods have previously
in these contexts had great success over optimizing all hyperparameters in the same
procedure. The results for the optimization of per-tree hyperparmeters in gradient boosting
ensembles did, however, not align those of these contexts. We found that the Incremental
approach achieved considerably worse prediction performance than both the Holistic and
the traditional optimization approaches. This demonstrates that per-tree hyperparmeter
optimization in gradient boosting ensembles most likely has to be handled holistically, while
incremental or iterative processes seems less beneficial. This is likely because gradient
boosting ensembles consist of base-learners that directly depend on each other, which
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means that you cannot optimize one base-learner without influencing the others. Stacking
ensembles, on the other hand, contain base-learners that are generally quite independent
[62].

By analyzing different characteristics of obtained hyperparameter configurations of
flexible structures, we found several indications of aspects that can be exploited to
effectivize optimization processes. Exploitable aspects of gradient boosting hyperparameters
is generally quite lacking in research. There are, however, a couple of papers that
have investigated standard hyperparmeters and optimal ranges of XGBoost [47, 66].
These emphasize the importance of such insights for the accessibility and effectiveness
of optimization. Thus, we can say these results are important for standardizing the
optimization of per-tree hyparparameters for gradient boosting ensembles, and for the
design of future optimization approaches.

7.3 Limitations of the Thesis

While the results are quite positive for the usefulness of flexible ensemble structures, it
is important to emphasize some of their limitations. For instance, prior to obtaining the
results, we did not know how manageable search difficulty would be. Because of this, we
kept the size of ensembles to 5 trees in all experiments, as a preemptive measure. The
results of this thesis thus provides no direct insight into the effects of applying flexible
structures with larger ensembles. It is therefore uncertain if flexible structures continue to
be beneficial in such scenarios. However, we have no current reason to believe that their
benefits would not persist with larger ensembles.

XGBoost was the only gradient boosting algorithm flexible ensemble structures were
experimented with. Therefore, we cannot with full confidence say that flexible ensemble
structures are useful in other gradient boosting variants, like Light GBM and Catboost.
Though, considering the general similarites in the ensemble building procedure and types
of hyperparameter between different implementations (See Section 2.2), the results seem
likely to remain similar.

While the 7 datasets used in experiments were selected to promote generalizability by
being varied in characteristics and prediction problem (See Section 4.1), the number and
size of these datasets were relatively small. The generalizability of the results could thus
still have room for improvement.

In Experiment 1, we did not use a standardized method of measuring flexible ensemble
structures’ improvement in prediction performance from traditional structures because
this does not exist, as far as we know. We instead defined the significance based on a
percentage of flexible structures’ prediction performance improvement from the traditional
ones, relative to the improvement achieved by extending the traditional structure by one
tree. The actual significance of improvement can therefore be put into question. However,
we would still argue that this measure of significance is valid, considering that adding more
trees to a gradient boosting ensemble is one of the most effective and primary methods of
improving their prediction performance [23].

Somewhat similarly to the previous discussed limitation, most of the results relating
to exploitable aspects for the benefit of optimization effectiveness were obtained with
non-standardized methods of analysis. This, coupled with the fact that most of these
aspects were not computationally confirmed, means that these particular results should be
taken with a grain of salt. We would, however, like to emphasise that these results were not
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essential to answering any of the research questions, but primarily provided implications
for standardization and further exploration of optimization strategies.

An additional thing that is worth mentioning, is the fact that cross validation overfitting
was only validated to not be present for one dataset. While cross validation overfitting is
generally rare, it can happen [44]. We can therefore not be entirely certain that this did
not occur with the 6 remaining dataset, though we have no suspicion that it did. It would
regardless not be too detrimental to the results, considering that prediction performances
were primarily used to compare flexible and traditional structures. Generalizability to new
data was thus not prioritized.

As a more optimistic limitation; We do not know if the best performing configurations
obtained different experiments were optimized to their full potential. These were specifically
obtained with 2000 iterations of Bayesian Optimization. This is a decent number of
iterations with this method, but it could certainly go higher. Thereby, it is possible that the
benefits of flexible ensemble structures on prediction performance are even more significant
than the results demonstrate.

Finally; In this thesis, we have investigated two approaches to optimizing flexible
ensemble structures. However, because of their flexible nature, the optimization of flexible
ensemble structures allows for a lot of creativity in approach. Therefore, it is possible that
there are other optimization approaches that could be more effective than the ones we have
experimented with. Some ideas for such approaches are outlined in Chapter 8.






Chapter 8

Future Work

In this chapter, we outline some implications for future work based on the limitations
outlined in Section 7.3. We also present some ideas for how the concept of flexible ensemble
structures can be extended. In Section 8.1, we discuss some implications for future work
based on the results. Thereafter, in Section 8.2, we present some ideas for how flexible
ensemble structure can be effectively handled with larger ensemble sizes. Finally, In Section
8.3, we discuss some additional ideas for how ensemble structures can be modified.

8.1 Further Investigations Based on the Results

First and foremost, we need to ensure that the results of the thesis are generalizable. For
this reason, running the experiments on more datasets, especially of larger size should
hold high priority. Implementing flexible ensemble structures with other gradient boosting
algorithms, like Light GBM and CatBoost, is also important to investigate whether the
benefits of flexible structure extends beyond XGBoost.

Based on the results, there are also many natural points of investigation for future work.
For instance, we found certain implications that the value ranges of certain hyperparameters,
like learning rate can reasonably be restricted. It should be investigated if this is actually
the case, and what the potential benefits would be. We also observed reoccurring behavior
in several of the explored hyperparameters: Learning rate values often seemed to rise
with later trees, max depth values tended to be at the higher end of the explored ranges,
and subsample values were often above 0.75. Attempting to effectivize search processes
by implementing biases towards these behaviours should thus be investigated to document
whether this is beneficial. It is also quite possible that max depth values larger than
the number of features for a given dataset could be beneficial, and larger ranged should
therefore be investigated.

We also found implications that areas of best prediction performance, in the search
landscapes with flexible ensemble structures, are relatively lenient and easily differentiable
from the worst performing area. Considering this, methods like Adaptive Random Search [25|
and Evolutionary Algorithms are likely effective for this search problem. And though they
typically require a higher amount of iterations to find optimally performing configurations,
compared to methods like Bayesian Optimization, they are more parallellizable. The
leniency of the areas of best prediction performance was however observed by looking solely
on learning rate. Also investigating if this is the case for the other hyparparameters,
is therefore important. Investigating the hyperparameters with visualization methods,
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similarly to @reback and Geitle [66], would also be an interesting point of investigation.
The visualization method would, however, be adjusted to handle the visualization of more
than two hyperparameters.

8.2 Flexible Structures with Larger Ensemble Sizes

Another point of investigation that is important, is to establish the effects of flexible
structures with larger ensembles. Specifically, if this approach continues to be beneficial
for prediction performance, and how the larger ensemble size affects the search difficulty.
Conducting the experiments of the thesis in this problem case should thus hold high priority
for future work.

While it is difficult to say exactly how the search difficulty will be affected, we expect
that it will, at the very least, increase requirements for computational resources. For
this reason, we preemptively outline some possible approaches that can help balance the
(presumed) benefits of the flexible structures and the computational cost to obtain them.

One approach that is likely to be effective is to give higher optimization priority to earlier
ensemble trees, and lower priority to later trees. This is based on the fact that individual
trees added later to gradient boosting ensembles have less impact on the ensembles prediction
performance, compared to earlier added trees. This can be demonstrated with the baselines
in Table 4.3 and 4.4, from Section 4.1, where we can see that the differences in prediction
performances from the ensembles of 1 tree to the ones of 10 trees, are considerably larger than
between the ensembles of 10 trees and the ones of 100 trees. Prioritizing the optimization of
earlier trees is thus natural, as the individual hyperparameter configurations for these will
be much more significant for the prediction performance, and this should also considerably
save computational resources. The prioritization could, for instance, be implemented with
restricted values, such as with quniform of Hyperopt, or more sophisticated methods. Of
course, methods based on random search are also good for such problem cases, as they
naturally ignore insignificant hyperparameters |[2].

A second possible approach, is to optimize the ensemble flexibly, but at a lower resolution.
For example: Let us assume the size of the ensemble is 100 trees. We start by grouping
the contained trees based on their position. For instance, we can create 5 groups, the first
consisting of tree 1 to 20, the second, 21 to 40, etc. We can then optimize the trees within
a given group traditionally, but flexibly between the groups. The search complexity of the
ensemble of 100 trees from this example, would thus be equivalent to that of ensembles
of 5 trees, as optimized in the thesis experiments. Variable group sizes can also be used.
Of course, we do not know if such semi-flexible ensemble structures are viable. However,
if they, they can be used for similar purposes as with the first outlined approach, where
earlier trees can be optimized at a higher resolution, while later trees can be grouped.

There is a possibility that the abstract structures, referring to the general development
of configurations between the trees, of small and large ensembles, are relatively similar.
Under the condition that this is the case, search ranges for the configurations of large
ensembles can be predicted from those of small ensembles. An approach of effectivizing
the optimization of large ensembles, for a given dataset, can thereby be to first optimize a
small ensemble, use it to generate a predictive graph for the abstract ensemble structure,
and then base individual tree search ranges for larger ensembles around this graph.

Finally, a fourth and very hypothetical approach, with the goal of reducing time spent
on generating decision tree, could be to independently generate a wide variety of trees based
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on training data and hyperparameter configuration, and apply a method for assembling
them into an gradient boosting ensemble, much like post hoc ensemble generation [18].
However, this approach might very well be counter productive considering that decision
trees for gradient boosting are generated based on the data provided by their previous tree.
The amount of unique trees that would be required to effectively do this, could therefore
be unreasonably high, and the approach very possibly less effective than simply optimizing
flexible structures with Bayesian Optimization.

8.3 Additional Structure Modifications

As the thesis results demonstrate that flexible structures are beneficial, at the very least for
small ensembles, this opens up the possibility that modifying ensemble structures in other
ways could be also be beneficial. For instance; how the trees are connected. As we know,
gradient boosting ensemble trees are connected linearly, but this is not necessarily the only
way they can be connected. An example of an alternative connection structure could be
one of multiple paths, where each tree in the ensemble has multiple alternatives, which
use could depend on the data to be predicted. This kind of multi-path structure would,
however, also require a method of determining which path through the ensemble is optimal.

Another alternative, that could be regarded as an extended idea of the multi-path
structure, could be to implement a connection structure similar to that of artificial neural
networks. In such a structure each tree could practically function as singular nodes that
can receive inputs combined from multiple trees, transform the input, and pass it on again
to multiple following trees. Such a neural network ensemble structure would obviously also
require implementations of strategies similar those found in artificial neural networks, such
as connection weights and tree-node biases, tuned via backpropagation. Hyperparameter
optimization of these structure types could be handled as they are in neural networks, as a
collection of layers, or it could be handled entirely flexibly, with a unique configuration for
each tree-node.






Chapter 9

Conclusion

Hyperparameter values significantly impact prediction performance with machine learning
models and require unique configurations for a given task. Hyperparameter optimization is
therefore an essential part of machine learning. The hyperparameters of gradient boosting
decision tree ensembles are traditionally defined as one set of hyperparameter values that
universally define all contained trees. Considering that each ensemble tree is added to
compensate for the inaccuracies of earlier trees, each tree can be conceptualized as fitting
to a unique task. Based on this, we theorized that per-tree hyperparameters for gradient
boosting ensembles could be beneficial.

In this thesis, we investigated three research questions relating to per-tree hyperparameters
with gradient boosting ensembles. The first research question (RQ1) asked to what degree
per-tree hyperparameters are beneficial to prediction performance in order to determine their
primary benefit in the context of hyperparameter optimization. The second (RQ2) attempted
to determine if per-tree hyperparameters are reasonably applicable to the optimization of
gradient boosting by investigating to what extent they are detrimental to optimization
difficulty. The final research question (RQ3) asked how per-tree hyperparameters can be
effectively optimized to obtain insights needed for standardizing their use.

We defined the concept of per-tree hyperparameters for gradient boosting ensembles
as the term "flexible ensemble structures" and proposed two optimization approaches.
The first approach to flexible ensemble structure optimization, "Holistic", optimizes all
per-tree hyperparameters in one procedure. The second, "Incremental", optimizes the
hyperparameters of each tree incrementally as they are generated in the ensemble building
process.

To answer the research questions, we conducted 5 experiments that each provided
their own insights. These were based on hyperparameter optimizing flexible structures
of ensembles containing 5 trees. The ensembles were specifically based on the XGBoost
algorithm and were for each experiment trained and evaluated on 7 datasets of varying
characteristics. To investigate RQ1, we thoroughly optimized both flexible and traditional
ensemble structures with Bayesian Optimization and compared their achieved prediction
performances. From this, we found that flexible ensemble structures were significantly
beneficial for prediction performance, as they considerably outperformed the traditional
structures in 6 of the 7 datasets.

To investigate RQ2, we generated 1000 random configurations for both flexible and
traditional ensemble structures and compared their average, best and worst achieved
prediction performances. We also observed differences between good and bad flexible

69



70 CHAPTER 9. CONCLUSION

ensemble structures based on a pool of 5000 random configurations to determine if areas
of good and bad performance were conflicting. We found that no indications that the
optimization of flexible ensemble structures was overwhelmingly difficult or prevented. In
fact we found that the flexible ensemble structures obtained better prediction performance
on average, in the best and in the worst cases for most datasets. This indicates that
obtaining good prediction performance could practically be easier for this structure type in
certain aspects.

RQ3 was primarily investigated by comparing Holistic and Incremental flexible ensemble
structure optimization, based on achieved prediction performance. We investigated the
possibility of reducing the number of unique configurations in optimization processes by
restricting the value detail of hyperparameters. Specifically, we investigated rounding
of hyperparameter values. We also obtained insights that could effectivize optimization
processes, by analyzing the characteristics of obtained flexible ensemble structure configurations
across the different experiments. We found that the Holistic approach was considerably
more effective than the Incremental approach for achieving good prediction performance. In
fact the Incremental approach seemed detrimental to prediction performance. We also found
that reducing the number of unique configurations in search processes with hyperparameter
value rounding could be employed without major repercussions. Lastly, we found many
implications of exploitable aspects for optimization effectiveness. Such aspects included:
Optimally performing combinations of optimized hyperparameters; common hyperparameter
value ranges and value developments between trees; as well as common locations and a
discovered leniency of the area of best performance in hyperparameter search landscapes.

While the experiment results were quite positive, they do have some limitations. Most
predominantly; they are based exclusively on XGBoost ensembles of 5 trees. Investigating
flexible ensemble structures with other gradient boosting implementations and ensemble
sizes is thus recommended to ensure generalizability.

Per-component hyperparameters have previously been utilized in certain machine
learning contexts with great success or due to necessity, such as with stacking ensembles
and artificial neural networks. Per-tree hyperparameters with gradient boosting ensembles,
however, have not been investigated prior to this thesis. Based on the experiment
results, we conclude the thesis by stating that flexible ensemble structures for gradient
boosting seem significantly beneficial for prediction performance while remaining manageable
in optimization difficulty. As a standard approach, we suggest to optimize all per-
tree hyperparameters holistically. With that said, we highly encourage further research
into flexible ensemble structures to solidify their benefits with other gradient boosting
implementations and ensemble sizes. Research into alternative optimization approaches is
also recommended to further standardize their use.
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Appendix A

Experiment 1 Per-Dataset Results

A.1 Concrete

This section contains the results of the comparison between traditional and flexible structures,
each optimized with Bayesian Optimization, on the Concrete dataset. The results are divided
into four hyperparmeter scenarios; Scenario 1: learning rate; Scenario 2: max_depth;
Scenario 3: learning rate, max depth and subsample; and Scenario 4: learning rate,
max__depth, subsample and colsample bytree.

For all scenarios, the 5-tree flexible structure improved prediction performance compared
to the 5-tree traditional structure. The only scenario where the improvement was of arguably
low significance, was in Scenario 2, with max depth optimized in isolation. The percentage
of improvement from the 5-tree traditional structure, relative to the improvement gained
with the 6-tree traditional structure, was here only 5.58%. For Scenario 1, 3 and 4, the
relative percentages of improvement were 186.17%, 229.41% and 167.56%, respectively.
Scenario 3 thus had the largest relative percentage of improvement, and was also the scenario
that produced the best MAE of the stuctures for this dataset, being 3.4615. The best MAE
of the 5-tree traditional structures was comparably 3.8093, from the same scenario.

Regarding the characteristics of the flexible structure, there were some similarities
between the scenarios’ optimal hyperparameter values. For instance, learning rate values
somewhat seemed to rise with later trees for Scenario 1 and 3, and max_depth values were
quite frequently 8 in all relevant scenarios, which is the highest possible value of the search
range. Beyond this, however, the differences between the scenarios were considerable, and it
was quite apparent that the hyperparameters influenced each other’s optimal values when
optimized together.

A.1.1 Scenario 1

For Scenario 1 of the Concrete dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.1, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.2. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.3. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 186.17% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was very beneficial for prediction performance
with the optimization scenario of learning rate for this dataset.
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In regards to the structure’s characteristics, the traditional structures had quite different
learning rate values, with roughly 0.72 for the 5-tree ensemble, and 0.55 for the 6-tree
ensemble. The flexible structure had values ranging between 0.34 to 0.94, and appeared to
be gradually rising with later ensemble trees.

5 Trees 6 Trees
MAE 4.0203  3.8706
Learning rate 0.7151  0.5477

Table A.1: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 1. The learning rate was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Concrete dataset.

MAE 3.7416
]l rTreel 0.3473
1 rTree2 0.6041
1 rTree 3 0.5513
]l rTree4 0.8236
1 rTreeb5 0.9307

Table A.2: The MAE score and hyperparameter configuration of a flexible ensemble structure
of 5 trees, based on hyperparameter Scenario 1. The learning rate values for each tree
were optimized through 2000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Concrete dataset.

MAE improvement with added tree 0.1497
MAE improvement with flexible structure  0.2787
Relative percentage improvement 186.17%

Table A.3: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 1 on the Concrete dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.

A.1.2 Scenario 2

For Scenario 2 on the Concrete dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.4, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.5. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.6. From the
5-tree traditional structure, the 5-tree flexible structure improved prediction performance
equivalent to 5.58% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was only slightly beneficial for prediction
performance with the optimization scenario of max depth for this dataset.



A.1. CONCRETE 79

In regards to the structure’s characteristics, the traditional structures were both
configured with the max depth value, 8. For the flexible structure, the max depth
values ranged between 5 to 8.

5 Trees 6 Trees
MAE 7.2300 5.7934
Max _depth 8 8

Table A.4: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 2. The max depth was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Concrete dataset.

MAE 7.1497
m_d Tree 1 8
m_d Tree 2 7
m_d Tree 3 6
m_d Tree 4 8
m_d Tree b 5

Table A.5: The MAE score and hyperparameter configuration of a flexible ensemble structure
of 5 trees, based on hyperparameter Scenario 2. The max depth values for each tree were
optimized through 2000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Concrete dataset.

MAE improvement with added tree 1.4366
MAE improvement with flexible structure 0.0803
Relative percentage improvement 5.58%

Table A.6: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 2 on the Concrete dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.

A.1.3 Scenario 3

For Scenario 3 on the Concrete dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.7, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.8. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.9. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 229.41% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that flexible structure was very beneficial for prediction performance
with the optimization scenario of learning rate, max depth and subsample for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
similar in all hyperparameter values, with learning rate being roughly 0.63 and 0.5,
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max__depth being 8 for both structures, and subsample being roughly 1.0 and 0.99. The
flexible structure had learning rate values ranging between 0.48 to 0.94, with with the
values somewhat seeming to rise with later trees. The max depth values were 8 for all
trees except Tree 2, where it was 1. The subsample values ranged between 0.71 to 1.0, with
the values of the last three trees being over 0.93.

5 Trees 6 Trees

MAE 3.8093  3.6577
learning rate 0.6296 0.5534
max_depth 8 8

subsample 0.9996 0.9924

Table A.7: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 3. Learning rate, max depth
and subsample were optimized though 1000 iterations of Bayesian Optimization, and
evaluated with cross validation on the Concrete dataset.

learning rate max_depth subsample

Tree 1 0.4878 8 0.8605
Tree 2 0.7776 1 0.7131
Tree 3 0.6412 8 0.9753
Tree 4 0.6899 8 0.9349
Tree 5 0.9339 8 0.9916
MAE 3.4615

Table A.8: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 3. The learning rate, max depth
and subsample values for each tree were optimized through 2000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Concrete dataset.

MAE improvement with added tree 0.1516
MAE improvement with flexible structure  0.3478
Relative percentage improvement 229.41%

Table A.9: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 3 on the Concrete dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.

A.1.4 Scenario 4

For Scenario 4 on the Concrete dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.10, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.11. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.12. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
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equivalent to 167.56% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that flexible structure was very beneficial for prediction performance with
the optimization scenario of learning rate, max depth, subsample and colsample bytree
for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
similar in all hyperparameter values. Learning rate values were roughly 0.65 and 0.60,
max__depth were 8 for both structures, subsample were roughly 0.99 and 1.0, and were
roughly 0.85 and 0.82 for colsample bytree. The flexible structure had learning rate values
were all relatively high, ranging between 0.57 to 0.92. Max depth values were 8 for Tree 3,
4 and 5, and were 1 and 6 for Tree 1 and 2, respectively. Subsample values were relatively
low for most trees, ranging from 0.62 to 0.77 for Tree 1, 2, 3 and 5, while Tree 4 was roughly
0.98. Colsample bytree values were also relatively low, ranging from 0.80 to 0.87 for Tree
1, 2, 4 and 5, while being roughly 0.98 for Tree 3.

5 Trees 6 Trees

MAE 4.0348  3.8341
learning rate 0.6537  0.5988
max_depth 8 8

subsample 0.9867  0.9996

colsample bytree 0.8477  0.8212

Table A.10: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 4. Learning rate, max_depth,
subsample and colsample bytree were optimized though 1000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Concrete dataset.

learning rate max depth subsample colsample bytree

Tree 1 0.8897 1 0.6267 0.8029
Tree 2 0.5746 6 0.7141 0.8641
Tree 3 0.6331 8 0.7387 0.9838
Tree 4 0.7834 8 0.9795 0.8363
Tree 5 0.9175 8 0.7671 0.8655
MAE 3.6985

Table A.11: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 4. The learning rate, max depth,
subsample and colsample bytree values for each tree were optimized through 2000 iterations
of Bayesian Optimization, and evaluated with cross validation on the Concrete dataset.
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MAE improvement with added tree 0.2007
MAE improvement with flexible structure  0.3363
Relative percentage improvement 167.56%

Table A.12: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 4 on the Concrete dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.

A.2 Energy Prediction

This section contains the results of the comparison between traditional and flexible structures,
each optimized with Bayesian Optimization, on the Energy Prediction dataset. The results
are divided into four hyperparmeter scenarios; Scenario 1: learning rate; Scenario 2:
max _depth; Scenario 3: learning rate, max depth and subsample; and Scenario 4:
learning rate, max_depth, subsample and colsample bytree.

For all scenarios, the 5-tree flexible structure improved prediction performance compared
to the 5-tree traditional structure. The only scenario where the improvement was of arguable
low significance, was in Scenario 1, with learning rate optimized in isolation. The percentage
of improvement from the 5-tree traditional structure, relative to the improvement gained
with the 6-tree traditional structure, was here only 2.34%. For Scenario 2, 3 and 4, the
relative percentages of improvement were 92.16%, 150.41% and 416.02%, respectively.
Scenario 4 thus had the largest relative percentage of improvement, and was also the
scenario that produced the best MAE of the stuctures for this dataset, being 32.7644. The
best MAE of the 5-tree traditional structures was comparably 33.0760, from the same
scenario.

Regarding the characteristics of the flexible structure, there were some similarities
between the scenarios’ optimal hyperparameter values. For instance, learning rate values
somewhat seemed to rise with later trees for Scenario 3 and 4, and max_depth ranged
most of the possible value space, but all trees except one, or maximum two, had values at
the higher end of the range. Beyond this, however, the differences between the scenarios
were considerable, and it was quite apparent that the hyperparameters influenced each
other’s optimal values when optimized together.

A.2.1 Scenario 1

For Scenario 1 of the Energy Prediction dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.13, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.14. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.15. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 2.34% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was only slightly beneficial for prediction
performance with the optimization scenario of learning rate for this dataset.

In regards to the structure’s characteristics, the traditional structures had quite similar
learning rate values, being roughly 0.27 and 0.23 for the 5-tree and 6-tree ensembles,
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respectively. The flexible structure had values ranging between 0.19 and 0.32, thus all
having quite low and similar values. This could explain the low percentage of improvement
with the flexible structure.

5 Trees 6 Trees
MAE 41.8208 41.5993
Learning rate 0.2681  0.2261

Table A.13: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 1. The learning rate was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Energy Prediction dataset.

MAE 41.8156
] rTreel 0.2956
1 rTree2 0.2387
] rTree3 0.3044
l rTree4 0.3124
] rTreed 0.1988

Table A.14: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 1. The learning rate values for
each tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated
with cross validation on the Energy Prediction dataset.

MAE improvement with added tree 0.2215
MAE improvement with flexible structure 0.0052
Relative percentage improvement 2.34%

Table A.15: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 1 on the Energy Prediction dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.2.2 Scenario 2

For Scenario 2 on the Energy Prediction dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.16, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.17. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.18. From the
b-tree traditional structure, the 5-tree flexible structure improved prediction performance
equivalent to 92.16% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was significantly beneficial for prediction
performance with the optimization scenario of max depth for this dataset.

In regards to the structure’s characteristics, the traditional structures were configured
with the max_depth values, 12 and 16, for the 5-tree and 6-tree ensembles, respectively.
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For the flexible structure, the max depth values ranged between 1 and 27, being the entire
possible value range. However, only Tree 1 and 3 had values less than 21, being 1 and 10,
respectively.

5 Trees 6 Trees
MAE 36.0835 34.4128
Max_depth 12 16

Table A.16: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 2. The max depth was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Energy Prediction dataset.

MAE 34.5437
m_d Tree 1 1
m_d Tree 2 21
m_d Tree 3 10
m_d Tree 4 27
m_d Tree b 26

Table A.17: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 2. The max depth values for each
tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated with
cross validation on the Energy Prediction dataset.

MAE improvement with added tree 1.6707
MAE improvement with flexible structure 1.5398
Relative percentage improvement 92.16%

Table A.18: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 2 on the Energy Prediction dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.2.3 Scenario 3

For Scenario 3 on the Energy Prediction dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.19, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.20. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.21. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 150.41% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that flexible structure was very beneficial for prediction performance
with the optimization scenario of learning rate, max depth and subsample for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
similar in most hyperparameter values, with learning rate being roughly 0.43 for the 5-tree
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ensemble and 0.41 for the 6-tree ensemble, max depth being 26 and 20, and subsample
being roughly 0.98 and 0.97. The flexible structure had learning rate values ranging
between 0.15 and 0.74, somewhat seeming to rise with later trees. The max depth values
ranged from 2 to 26. However, only Tree 3 had a value under 18. These values also had a
somewhat conceptual pattern, being 18 and 20 for the two first trees, respectively, before
sinking to 2 for Tree 3, and rising to 26 for Tree 4 and 5. The subsample values ranged
between 0.77 and 1.0, being somewhat similar in conceptual value patterns to that of
max__depth, being roughly 0.99 and 0.89 for the first two trees, sinking to roughly 0.78 for
Tree 3, and rising to roughly 0.86 and 0.94 for Tree 4 and 5, respectively.

5 Trees 6 Trees

MAE 33.5753 33.0812
learning rate 0.4259  0.4109
max_depth 26 20

subsample 0.9839  0.9680

Table A.19: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 3. Learning rate, max depth
and subsample were optimized though 1000 iterations of Bayesian Optimization, and
evaluated with cross validation on the Energy Prediction dataset.

learning rate max_depth subsample

Tree 1 0.1558 18 0.9904
Tree 2 0.2144 20 0.8939
Tree 3 0.6645 2 0.7769
Tree 4 0.5122 26 0.8550
Tree 5 0.7350 26 0.9380
MAE 32.8321

Table A.20: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 3. The learning rate, max_depth
and subsample values for each tree were optimized through 2000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Energy Prediction dataset.

MAE improvement with added tree 0.4941
MAE improvement with flexible structure  0.7432
Relative percentage improvement 150.41%

Table A.21: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 3 on the Energy Prediction dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.
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A.2.4 Scenario 4

For Scenario 4 on the Energy Prediction dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.22, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.23. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.24. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 416.02% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that flexible structure was very beneficial for prediction performance with
the optimization scenario of learning rate, max _depth, subsample and colsample bytree
for this dataset.

In regards to the structure’s characteristics, the traditional structures were quite different
in most hyperparameter values. The learning rate values were roughly 0.43 and 0.36,
the max depth values were 19 and 22, the subsample values were roughly 1.0 and 0.97,
while the colsample bytree values were roughly 0.81 and 0.92. The flexible structure had
learning rate values ranging between 0.18 and 0.69, somewhat seeming to rise with later
trees. Max depth values ranged from 1 to 24, with Tree 2 being the only tree with a
value lower than 18. Subsample values ranged between 0.68 and 1.0, with Tree 2 being the
only tree with a value lower than 0.81. Colsample by tree values ranged between 0.8 to
0.99, with Tree 5 being the only tree with a value higher than 0.87, and values somewhat
appeared to be rising with later trees.

5 Trees 6 Trees

MAE 33.0760 33.0011
learning rate 0.4334  0.3620
max_depth 19 22

subsample 0.9994  0.9681

colsample bytree 0.8089  0.9248

Table A.22: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 4. Learning rate, max _depth,
subsample and colsample bytree were optimized though 1000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Energy Prediction dataset.

learning rate max _depth subsample colsample bytree

Tree 1 0.1844 18 0.9997 0.8000
Tree 2 0.3608 1 0.6894 0.8217
Tree 3 0.3250 19 0.9912 0.8861
Tree 4 0.6609 24 0.9931 0.8699
Tree 5 0.6877 22 0.8166 0.9845
MAE 32.7644

Table A.23: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 4. The learning rate, max depth,
subsample and colsample bytree values for each tree were optimized through 2000 iterations
of Bayesian Optimization, and evaluated with cross validation on the Energy Prediction
dataset.



A.3. HOUSING 87

MAE improvement with added tree 0.0749
MAE improvement with flexible structure  0.3116
Relative percentage improvement 416.02%

Table A.24: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 4 on the Energy Prediction dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.3 Housing

This section contains the results of the comparison between traditional and flexible structures,
each optimized with Bayesian Optimization, on the Housing dataset. The results are divided
into four hyperparmeter scenarios; Scenario 1: learning rate; Scenario 2: max _depth;
Scenario 3: learning rate, max depth and subsample; and Scenario 4: learning rate,
max_depth, subsample and colsample bytree.

For all scenarios, the 5-tree flexible structure improved prediction performance compared
to the 5-tree traditional structure. The only scenario where the improvement was of arguably
low significance, was in Scenario 2, with max depth optimized in isolation. The percentage
of improvement from the 5-tree traditional structure, relative to the improvement gained
with the 6-tree traditional structure, was here only 3.89%. For Scenario 1, 3 and 4, the
relative percentages of improvement were 554.54%, 147.95% and 537.76%, respectively.
Scenario 1 thus had the largest relative percentage of improvement, and was also the scenario
that produced the best MAE of the stuctures for this dataset, being 2.3143. The best MAE
of the 5-tree traditional structures was comparably 2.4912, from the same scenario.

Regarding the characteristics of the flexible structure, there were some similarities
between the scenarios’ optimal hyperparameter values. For instance, learning rate values
somewhat seemed to rise with later trees for Scenario 1 and 3, and max depth, for both
Scenario 3 and 4, had relatively conceptual pattern in values between the trees. Beyond
this, however, the differences between the scenarios were considerable, and it was quite
apparent that the hyperparameters influenced each other’s optimal values when optimized
together.

A.3.1 Scenario 1

For Scenario 1 of the Housing dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.25, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.26. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.27. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 554.54% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was very beneficial for prediction performance
with the optimization scenario of learning rate for this dataset.

In regards to the structure’s characteristics, the traditional structures had relatively
different learning rate values, being roughly 0.67 for the 5-tree ensemble, and 0.49 for
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the 6-tree ensemble. The flexible structure had values ranging between 0.19 to 0.81, and
somewhat appeared to be gradually rising with later ensemble trees.

5 Trees 6 Trees
MAE 2.4912  2.4593
Learning rate 0.6670  0.4862

Table A.25: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 1. The learning rate was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Housing dataset.

MAE 2.3143
1 rTreel 0.1945
1 rTree 2 0.5608
1 rTree3 0.5349
1 rTree4 0.8080
1 rTreeb 0.7611

Table A.26: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 1. The learning rate values for
each tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated
with cross validation on the Housing dataset.

MAE improvement with added tree 0.0319
MAE improvement with flexible structure  0.1769
Relative percentage improvement 554.54%

Table A.27: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 1 on the Housing dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.

A.3.2 Scenario 2

For Scenario 2 on the Housing dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.28, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.29. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.30. From the
5-tree traditional structure, the 5-tree flexible structure improved prediction performance
equivalent to 3.89% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was only slightly beneficial for prediction
performance with the optimization scenario of max depth for this dataset.

In regards to the structure’s characteristics, the traditional structures were both
configured with the max depth value, 8. For the flexible structure, the max depth
values ranged between 2 and 9.
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5 Trees 6 Trees
MAE 4.3459  3.4740
Max _depth 5 5

Table A.28: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 2. The max depth was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Housing dataset.

MAE 4.3119
m_d Tree 1 9
m_d Tree 2 4
m_d Tree 3 9
m_d Tree 4 )
m_d Tree b 2

Table A.29: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 2. The max depth values for each
tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated with
cross validation on the Housing dataset.

MAE improvement with added tree 0.8719
MAE improvement with flexible structure 0.034
Relative percentage improvement 3.89%

Table A.30: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 2 on the Housing dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.

A.3.3 Scenario 3

For Scenario 3 on the Housing dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.31, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.32. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.33. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 147.95% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that flexible structure was very beneficial for prediction performance
with the optimization scenario of learning rate, max depth and subsample for this dataset.

In regards to the structure’s characteristics, the traditional structures differed a bit
in several hyperparameter values, with learning rate being roughly 0.67 for the 5-tree
ensemble and 0.49 for the 6-tree ensemble, max depth being 6 and 7, and subsample
both being roughly 0.99. The flexible structure had learning rate values ranging between
0.39 and 0.9, with values seemingly rising with later trees. The max depth values ranged
between 4 and 11, beginning with 8 for Tree 1, then sinking to 4 before rising to 11, and
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then sinking to 9 then 5 for the final tree. The subsample values ranged between 0.82 and
1.0 with Tree 2 being the only tree with a value less than 0.92.

5 Trees 6 Trees

MAE 2.4958  2.4101
learning rate 0.6666  0.4931
max_depth 6 7

subsample 0.9927  0.9868

Table A.31: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 3. Learning rate, max depth
and subsample were optimized though 1000 iterations of Bayesian Optimization, and
evaluated with cross validation on the Housing dataset.

learning rate max_ depth subsample

Tree 1 0.3970 8 0.9242
Tree 2 0.3961 4 0.8269
Tree 3 0.5906 11 0.9934
Tree 4 0.7686 9 0.9933
Tree 5 0.8973 ) 0.9494
MAE 2.3690

Table A.32: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 3. The learning rate, max depth
and subsample values for each tree were optimized through 2000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Housing dataset.

MAE improvement with added tree 0.0857
MAE improvement with flexible structure  0.1268
Relative percentage improvement 147.95%

Table A.33: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 3 on the Housing dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.

A.3.4 Scenario 4

For Scenario 4 on the Housing dataset, the traditionally optimized structures of 5 and
6 trees are tabulated in Table A.34, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.35. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.36. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 537.76% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that flexible structure was very beneficial for prediction performance with
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the optimization scenario of learning rate, max depth, subsample and colsample bytree
for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
similar in all hyperparameter values except max depth. The learning rate values were
roughly 0.56 and 0.54, the max_depth values were 5 and 10, subsample values were roughly
0.98 and 0.96, and colsample bytree values were roughly 9.5 and 0.93. The flexible structure
had learning rate values ranging between 0.33 and 0.91. Max depth values ranged between
5 and 12, and had a somewhat symetrical pattern between the trees; being 7 for the first
tree, rising to 12, sinking to 10 before rising to 12 again, and finally sinking to 5 for the
last tree. Subsample values ranged between 0.89 and 1.0. Colsample bytree values ranged
between 0.81 and 0.95.

5 Trees 6 Trees

MAE 2.5538  2.5252
learning rate 0.5612  0.5391
max__depth ) 10

subsample 0.9827  0.9633

colsample bytree 0.9468 0.9265

Table A.34: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 4. Learning rate, max depth,
subsample and colsample bytree were optimized though 1000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Housing dataset.

learning rate max_depth subsample colsample bytree

Tree 1 0.4715 7 0.9920 0.8197
Tree 2 0.6227 12 0.9457 0.9491
Tree 3 0.3326 10 0.9158 0.8954
Tree 4 0.3781 12 0.9005 0.9210
Tree 5 0.9041 5 0.8938 0.8471
MAE 2.4000

Table A.35: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 4. The learning rate, max _depth,
subsample and colsample bytree values for each tree were optimized through 2000 iterations
of Bayesian Optimization, and evaluated with cross validation on the Housing dataset.

MAE improvement with added tree 0.0286
MAE improvement with flexible structure  0.1538
Relative percentage improvement 537.76%

Table A.36: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 4 on the Housing dataset. And the percentage
of improvement obtained with the flexible structure, relative to that obtained with the
added tree.
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A.4 Seoul Bike Sharing

This section contains the results of the comparison between traditional and flexible structures,
each optimized with Bayesian Optimization, on the Seoul Bike Sharing dataset. The
results are divided into four hyperparmeter scenarios; Scenario 1: learning rate; Scenario
2: max_ depth; Scenario 3: learning rate, max depth and subsample; and Scenario 4:
learning rate, max_depth, subsample and colsample bytree.

For all scenarios, the 5-tree flexible structure improved prediction performance compared
to the 5-tree traditional structure. The only scenario where the improvement was of arguably
low significance, was in Scenario 2, with max depth optimized in isolation. The percentage
of improvement from the 5-tree traditional structure, relative to the improvement gained
with the 6-tree traditional structure, was here only 4.69%. For Scenario 1, 3 and 4, the
relative percentages of improvement were 85.67%, 59.64% and 95.58%, respectively. Scenario
4 thus had the largest relative percentage of improvement, and was also the scenario that
produced the best MAE of a flexible structure for this dataset, being 146.99. The best
MAE of the 5-tree traditional structures was comparably 147.64, from the same scenario.

Regarding the characteristics of the flexible structures, there were very considerable
differences between the scenarios’ optimal hyperparameter values. However, there were
some minor re-occurrences, like how for learning rate, Tree 1, 2, 3 and 4 seemed to often
be at the lower half of the 0 to 1 value range, while Tree 5 always was at the higher end,
and how subsample values always were above 0.8. Regardless, it was obvious that the
hyperparameters influenced each other’s optimal values when optimized together.

A.4.1 Scenario 1

For Scenario 1 of the Seoul Bike Sharing dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.37, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.38. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.39. From the
5-tree traditional structure, the 5-tree flexible structure improved prediction performance
equivalent to 85.67% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was significantly beneficial for prediction
performance with the optimization scenario of learning rate for this dataset.

In regards to the structure’s characteristics, the traditional structures were quite
similarilly configured, with learning rate values of roughly 0.56 and 0.54. The flexible
structure had values ranging between 0.49 to 0.82, and somewhat appeared to gradually
rise with later ensemble trees. However, Tree 2 to 3 were notably of very similar values,
roughly around 0.6.

5 Trees 6 Trees
MAE 162.05  158.70
Learning rate 0.5638  0.5367

Table A.37: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 1. The learning rate was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Seoul Bike Sharing dataset.
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MAE 159.18
]l rTreel 0.4953
1 rTree2 0.6034
]l rTree3 0.6115
1 rTreed 0.6115
]l rTreed 0.8170

Table A.38: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 1. The learning rate values for
each tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated
with cross validation on the Seoul Bike Sharing dataset.

MAE improvement with added tree 3.35
MAE improvement with flexible structure  2.87
Relative percentage improvement 85.67%

Table A.39: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 1 on the Seoul Bike Sharing dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.4.2 Scenario 2

For Scenario 2 on the Seoul Bike Sharing dataset, the traditionally optimized structures
of 5 and 6 trees are tabulated in Table A.40, while the flexible structure obtained with
Holistic optimization is tabulated in Table A.41. The prediction performance comparison
between the traditional structures and the flexible structure is tabulated in Table A.42.
From the 5-tree traditional structure, the 5-tree flexible structure improved prediction
performance equivalent to 4.69% of the improvement achieved with the 6-tree traditional
structure. This demonstrates that the flexible structure was only slightly beneficial for
prediction performance with the optimization scenario of max depth for this dataset.

In regards to the structure’s characteristics, the traditional structures were both
configured with the max depth value, 10. The flexible structure was similarly configured
close to this value, with max depth values ranging between 9 to 11.

5 Trees 6 Trees
MAE 185.91  166.12
Max depth 10 10

Table A.40: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 2. The max depth was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Seoul Bike Sharing dataset.
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MAE 184.98
m_d Tree 1 10
m_d Tree 2 11
m_d Tree 3 10
m_d Tree 4 9
m_d Tree b 10

Table A.41: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 2. The max depth values for each
tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated with
cross validation on the Seoul Bike Sharing dataset.

MAE improvement with added tree 19.79
MAE improvement with flexible structure  0.93
Relative percentage improvement 4.69%

Table A.42: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 2 on the Seoul Bike Sharing dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.4.3 Scenario 3

For Scenario 3 on the Seoul Bike Sharing dataset, the traditionally optimized structures of
5 and 6 trees are tabulated in Table A.43, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.44. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.45. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 59.64% of the improvement achieved with the 6-tree traditional structure. This
demonstrates that flexible structure was significantly beneficial for prediction performance
with the optimization scenario of learning rate, max depth and subsample for this dataset.

In regards to the structure’s characteristics, the traditional structures were quite similar
in values across all hyperparameters, with learning rates being roughly 0.49 and 0.46,
max_depth being 11 for both structures, and subsample values being roughly 0.94 and
0.98. The flexible structure had learning rate values ranging between 0.31 to 0.99 with
Tree 1, 3 and 4 being relatively close to 0.34. Max depth values ranged from 9 to 14,
starting and ending with 9, and with values at the higher end of the range for tree 2, 3 and
4. Subsample values ranged from 0.81 to 0.97.
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5 Trees 6 Trees

MAE 148.42  147.28
learning rate 0.4948  0.4639
max_depth 11 11

subsample 0.9373  0.9769

Table A.43: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 3. Learning rate, max depth
and subsample were optimized though 1000 iterations of Bayesian Optimization, and
evaluated with cross validation on the Seoul Bike Sharing dataset.

learning rate max_depth subsample

Tree 1 0.3149 9 0.8415
Tree 2 0.4447 11 0.9685
Tree 3 0.3442 14 0.9242
Tree 4 0.3671 14 0.8126
Tree 5 0.9827 9 0.9324
MAE 147.74

Table A.44: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 3. The learning rate, max_depth
and subsample values for each tree were optimized through 2000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Seoul Bike Sharing dataset.

MAE improvement with added tree 1.14
MAE improvement with flexible structure 0.68

Relative percentage improvement 59.64%

Table A.45: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 3 on the Seoul Bike Sharing dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.4.4 Scenario 4

For Scenario 4 on the Seoul Bike Sharing dataset, the traditionally optimized structures
of 5 and 6 trees are tabulated in Table A.46, while the flexible structure obtained with
Holistic optimization is tabulated in Table A.47. The prediction performance comparison
between the traditional structures and the flexible structure is tabulated in Table A.48.
From the 5-tree traditional structure, the 5-tree flexible structure improve prediction
performance equivalent to 95.58% of the improvement achieved with the 6-tree traditional
structure. This demonstrates that flexible structure was significantly beneficial for prediction
performance with the optimization scenario of learning rate, max depth, subsample and
colsample bytree for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
similar in values across all hyperparameters. Learning rate values were roughly 0.51 and
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0.46, max_depth was 10 for both structures, the subsample values were roughly 1.0 and 0.97,
while colsample were roughly 0.92 and 0.97. The flexible structure had learning rate values
ranging from 0.28 to 0.97. The learning rate values were relatively similar for Tree 1, 2 and
4, between 0.4 and 0.47. Max_depth values ranged from 8 to 15 with somewhat descending
values with later trees. Subsample values were all between 0.94 and 1.0. Colsample bytree
values ranged from 0.8 and 0.97, with all trees except Tree 4 being under 0.9.

5 Trees 6 Trees

MAE 147.64  146.96
learning rate 0.5134 0.4638
max_depth 10 10

subsample 0.9996 0.9748

colsample bytree 0.9177  0.9657

Table A.46: The MAE score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 4. Learning rate, max_depth,
subsample and colsample bytree were optimized though 1000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Seoul Bike Sharing dataset.

learning rate max_depth subsample colsample bytree

Tree 1 0.4048 15 0.9996 0.8859
Tree 2 0.4127 16 0.9443 0.8022
Tree 3 0.2819 13 0.9506 0.8436
Tree 4 0.4652 12 0.9849 0.9622
Tree 5 0.9652 8 0.9589 0.8831
MAE 146.99

Table A.47: The MAE score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 4. The learning rate, max depth,
subsample and colsample bytree values for each tree were optimized through 2000 iterations
of Bayesian Optimization, and evaluated with cross validation on the Seoul Bike Sharing
dataset.

MAE improvement with added tree 0.68
MAE improvement with flexible structure 0.65
Relative percentage improvement 95.58%

Table A.48: The MAE improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 4 on the Seoul Bike Sharing dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.
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A.5 Car Evaluation

This section contains the results of the comparison between traditional and flexible structures,
each optimized with Bayesian Optimization, on the Car Evaluation dataset. The results
are divided into four hyperparmeter scenarios; Scenario 1: learning rate; Scenario 2:
max__depth; Scenario 3: learning rate, max depth and subsample; and Scenario 4:
learning rate, max depth, subsample and colsample bytree.

Of all the scenarios, only the 5-tree flexible structure of Scenario 1 improved prediction
performance compared to the 5-tree traditional structure. The percentage of improvement
from the 5-tree traditional structure, relative to the improvement gained with the 6-tree
traditional structure, was here 46.60%. For Scenario 2, 3 and 4, the relative percentages of
improvement were -38.47%, -146.68% and -7.10%, respectively. These scenarios were thus
detrimental to prediction performance compared to the traditional approach to ensemble
structure optimization. Scenario 1, being the only scenario with an improvement in
prediction with the flexible structure, was also the scenario with the best flexible structure
Error, being 0.015339. The best Error of the traditional structures of 5 trees, was comparably
Error 0.014181, from Scenario 3. Thus, the flexible ensemble structures could not surpass
the best obtained prediction performance of the traditional structures for this dataset.

Regarding the characteristics of the flexible structure, there were some similarities
between the scenarios’ optimal hyperparameter values. For instance, learning rate values
were generally quite high for all scenarios, and max depth was very commonly 6, the
highest possible value, for most trees. Beyond this, however, the differences between the
scenarios were considerable, and it was quite apparent that the hyperparameters influenced
each other’s optimal values when optimized together.

A.5.1 Scenario 1

For Scenario 1 of the Car Evaluation dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.49, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.50. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.51. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 46.60% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was significantly beneficial for prediction
performance with the optimization scenario of learning rate for this dataset.

In regards to the structure’s characteristics, the traditional structures had very similar
learning _rate values, both being roughly 0.93. The flexible structure also had quite similar
and high learning rate values, ranging between 0.91 and 1.0.

5 Trees 6 Trees
Error 0.017362 0.013021
Learning rate  0.9315 0.9270

Table A.49: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 1. The learning rate was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Car Evaluation dataset.
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Error 0.015339
] rTreel  0.9187
1 rTree2 09777
] rTree3  0.9979
1 rTree4d  0.9816
] rTreed  0.9489

Table A.50: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 1. The learning rate values for
each tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated
with cross validation on the Car Evaluation dataset.

Error improvement with added tree 0,004341
Error improvement with flexible structure 0,002023
Relative percentage gain 46.60%

Table A.51: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 1 on the Car Evaluation dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.5.2 Scenario 2

For Scenario 2 on the Car Evaluation dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.52, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.53. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.54. From the
5-tree traditional structure, the 5-tree flexible structure improved prediction performance
equivalent to -38.47% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was not beneficial for prediction performance
with the optimization scenario of max depth for this dataset.

In regards to the structure’s characteristics, the traditional structures were both
configured with the max depth value, 6. For the flexible structure, the max depth
values were 4 and 5 for Tree 1 and 5, respectively, and 6 for the others.

Considering the value range of max depth being only 1 to 6, the search complexity
should be relatively low. It is therefore quite strange how Bayesian Optimization was not
able to obtain at least an equal prediction performance to the traditional structure, by
finding the equivalent configuration.
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5 Trees 6 Trees
Error 0.052659 0.048898
Max depth 6 6

Table A.52: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 2. The max depth was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Car Evaluation dataset.

Error 0.054106
m_d Tree 1 4
m_d Tree 2 6
m_d Tree 3 6
m_d Tree 4 6
m_d Tree 5 )

Table A.53: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 2. The max depth values for each
tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated with
cross validation on the Car Evaluation dataset.

Error improvement with added tree 0.003761
Error improvement with flexible structure -0.001447
Relative percentage gain -38.47%

Table A.54: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 2 on the Car Evaluation dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.5.3 Scenario 3

For Scenario 3 on the Car Evaluation dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.55, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.56. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.57. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to -146.68% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that flexible structure was detrimental for prediction performance with
the optimization scenario of learning rate, max depth and subsample for this dataset.

In regards to the structure’s characteristics, the traditional structures were nearly
identical in all hyperparameter values, with learning rate being roughly 1.0, max depth
being 6, and subsample being roughly 0.99 for both structures. The flexible structure had
learning rate values ranging between 0.75 and 0.95, the max _depth values were 6 for all
trees, while the subsample values ranged between 0.68 and 0.98. However, Tree 5 was the
only tree with a subsample value less than 0.89.
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5 Trees 6 Trees

Error 0.014181 0.009841
learning rate  0.9992 0.9998
max_ depth 6 6
subsample 0.9896 0.9872

Table A.55: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 3. Learning rate, max depth
and subsample were optimized though 1000 iterations of Bayesian Optimization, and
evaluated with cross validation on the Car Evaluation dataset.

learning rate max_depth subsample

Tree 1 0.7554 6 0.9588
Tree 2 0.8824 6 0.8956
Tree 3 0.8270 6 0.9800
Tree 4 0.7974 6 0.9322
Tree 5 0.9475 6 0.6818

Error 0.020547

Table A.56: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 3. The learning rate, max_depth
and subsample values for each tree were optimized through 2000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Car Evaluation dataset.

Error improvement with added tree 0.00434
Error improvement with flexible structure -0.006366
Relative percentage gain -146.68%

Table A.57: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 3 on the Car Evaluation dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.5.4 Scenario 4

For Scenario 4 on the Car Evaluation dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.58, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.59. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.60. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to -7.10% of the improvement achieved with the 6-tree traditional structure. This
demonstrates that flexible structure was slightly detrimental to prediction performance with
the optimization scenario of learning rate, max depth, subsample and colsample bytree
for this dataset.

In regards to the structure’s characteristics, the traditional structures were quite similar
in most hyperparameter values. The learning rate values were roughly 1.0 and 0.96, the
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max_depth values were 6 for both structures, the subsample values were roughly 0.75 and
0.77, while the colsample bytree values were roughly 0.90 and 0.91. The flexible structure
had learning rate values ranging between 0.82 and 0.95. The max depth values were 6
for all trees except the first, where it was 5. Subsample values ranged between 0.68 and
0.88, with only the values of Tree 3 and 5 being lower than 0.85. Colsample bytree values
ranged between 0.81 and 0.99.

5 Trees 6 Trees

Error 0.028938 0.024884
learning rate 0.9985 0.9640
max_ depth 6 6
subsample 0.7498 0.7676

colsample bytree  0.9039 0.9058

Table A.58: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 4. Learning rate, max _depth,
subsample and colsample bytree were optimized though 1000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Car Evaluation dataset.

learning rate max_depth subsample colsample bytree

Tree 1 0.8270 ) 0.8686 0.8244
Tree 2 0.9429 6 0.8554 0.8137
Tree 3 0.8677 6 0.6852 0.9122
Tree 4 0.9270 6 0.8726 0.9832
Tree 5 0.9003 6 0.7260 0.8512

Error 0.029226

Table A.59: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 4. The learning rate, max _depth,
subsample and colsample bytree values for each tree were optimized through 2000 iterations
of Bayesian Optimization, and evaluated with cross validation on the Car Evaluation dataset.

Error improvement with added tree 0.004054
Error improvement with flexible structure -0.000288
Relative percentage gain -7.10%

Table A.60: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 4 on the Car Evaluation dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.6 Statlog Satellite

This section contains the results of the comparison between traditional and flexible structures,
each optimized with Bayesian Optimization, on the Statlog Satellite dataset. The results
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are divided into four hyperparmeter scenarios; Scenario 1: learning rate; Scenario 2:
max__depth; Scenario 3: learning rate, max depth and subsample; and Scenario 4:
learning rate, max_depth, subsample and colsample bytree.

For all scenarios, the 5-tree flexible structure significantly improved prediction performance
compared to the 5-tree traditional structure. The percentage of improvement from the
5-tree traditional structure, relative to the improvement gained with the 6-tree traditional
structure, was 86.96%, 24.14%, 91.63% and 88.91%, for Scenario 1 through 4, respectively.
Scenario 3 thus had the largest relative percentage of improvement. However, Scenario 4
produced the best Error, being 0.091297. The best Error of the 5-tree traditional structures
was comparably 0.092540, from the same Scenario.

Regarding the characteristics of the flexible structure, there were some similarities
between the scenarios’ optimal values. For instance, for both Scenario 1 and 3 had
learning rate values that somewhat appeared to rise with later trees. The same was
observed to be the case for the max depth values of Scenario 2. In Scenario 3 and 4,
max_depth values were observed to exclusively be close to either the lower or higher
end of their respective value ranges; 14 to 33 and 12 to 36. Beyond this, however, the
differences between the scenarios were considerable, and it was quite apparent that the
hyperparameters influenced each other’s optimal values when optimized together.

A.6.1 Scenario 1l

For Scenario 1 of the Statlog Satellite dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.61, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.62. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.63. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 86.96% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was significantly beneficial for prediction
performance with the optimization scenario of learning rate for this dataset.

In regards to the structure’s characteristics, the traditional structures had quite similar
learning rate values, being roughly 0.91 and 0.92 for the 5-tree and 6-tree structure,
respectively. The flexible structure had values ranging between 0.34 and 1.0, somewhat
appearing to rise with later trees.

5 Trees 6 Trees
Error 0.102641  0.099067
Learning rate  0.9135 0.9164

Table A.61: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 1. The learning rate was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Statlog Satellite dataset.
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Error 0.099533
] rTreel  0.3498
]l rTree2 0.6041
] rTree3 0.9401
1 rTree4  0.9019
] rTreed  0.9998

Table A.62: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 1. The learning rate values for
each tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated
with cross validation on the Statlog Satellite dataset.

Error improvement with added tree 0.003574
Error improvement with flexible structure 0.003108
Relative percentage gain 86.96%

Table A.63: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 1 on the Statlog Satellite dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.6.2 Scenario 2

For Scenario 2 on the Statlog Satellite dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.64, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.65. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.66. From the
5-tree traditional structure, the 5-tree flexible structure improved prediction performance
equivalent to 24.14% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was significantly beneficial for prediction
performance with the optimization scenario of max depth for this dataset.

In regards to the structure’s characteristics, the traditional structures were both
configured with the max depth value, 13. For the flexible structure, the max_depth
values ranged from 9 to 28, somewhat appearing to rise with later trees.

5 Trees 6 Trees
Error 0.098989 0.096736
Max depth 13 13

Table A.64: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 2. The max depth was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Statlog Satellite dataset.
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Error 0.098445
m_d Tree 1 9
m_d Tree 2 12
m_d Tree 3 26
m_d Tree 4 21
m_d Tree 5 28

Table A.65: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 2. The max depth values for each
tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated with
cross validation on the Statlog Satellite dataset.

Error improvement with added tree 0.002253
Error improvement with flexible structure 0.000544
Relative percentage gain 24.14%

Table A.66: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 2 on the Statlog Satellite dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.6.3 Scenario 3

For Scenario 3 on the Statlog Satellite dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.67, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.68. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.69. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 91.63% of the improvement achieved with the 6-tree traditional structure. This
demonstrates that flexible structure was significantly beneficial for prediction performance
with the optimization scenario of learning rate, max depth and subsample for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
different in hyperparameter values, with learning rate being roughly 0.68 and 0.61,
max_depth being 36 and 24, and subsample being roughly 0.99 and 0.94. The flexible
structure had learning rate values ranging between 0.43 and 0.90, with values rising with
later trees. The max depth values ranged from 14 to 33, with Tree 2, 3 and 5 being close
to the lower value, while the remaining two were close to the higher. Subsample values
ranged between 0.77 and 0.97.
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5 Trees 6 Trees

Error 0.095027  0.092229
learning rate  0.6756 0.6105
max_ depth 36 24
subsample 0.9886 0.9408

Table A.67: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 3. Learning rate, max depth
and subsample were optimized though 1000 iterations of Bayesian Optimization, and
evaluated with cross validation on the Statlog Satellite dataset.

learning rate max_depth subsample

Tree 1 0.4393 33 0.7711
Tree 2 0.7400 14 0.9511
Tree 3 0.8196 15 0.8655
Tree 4 0.8476 32 0.9657
Tree 5 0.8914 14 0.8345

Error 0.092463

Table A.68: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 3. The learning rate, max_depth
and subsample values for each tree were optimized through 2000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Statlog Satellite dataset.

Error improvement with added tree 0.002798
Error improvement with flexible structure 0.002564
Relative percentage gain 91.63%

Table A.69: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 3 on the Statlog Satellite dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.6.4 Scenario 4

For Scenario 4 on the Statlog Satellite dataset, the traditionally optimized structures
of 5 and 6 trees are tabulated in Table A.70, while the flexible structure obtained with
Holistic optimization is tabulated in Table A.71. The prediction performance comparison
between the traditional structures and the flexible structure is tabulated in Table A.72.
From the 5-tree traditional structure, the 5-tree flexible structure improve prediction
performance equivalent to 88.91% of the improvement achieved with the 6-tree traditional
structure. This demonstrates that flexible structure was significantly beneficial for prediction
performance with the optimization scenario of learning rate, max depth, subsample and
colsample bytree for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
different in hyperparameter values. The learning rate values were roughly 0.58 and 0.65,
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the max depth values were 18 and 28, the subsample values were both roughly 0.98,
while colsample bytree values were roughly 0.84 and 0.88. The flexible structure had
learning rate values ranging between 0.36 and 0.91. Max_depth values ranged from 12
to 36, with Tree 1 and 3 being close to the lower value, and the rest close to the higher.
The subsample values ranged between 0.83 and 0.97. The colsample bytree values ranged
between 0.82 and 0.95.

5 Trees 6 Trees

Error 0.092540 0.091142
learning rate 0.5802 0.6491
max_depth 18 28
subsample 0.9758 0.9760

colsample bytree  0.8419 0.8823

Table A.70: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 4. Learning rate, max_depth,
subsample and colsample bytree were optimized though 1000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Statlog Satellite dataset.

learning rate max _depth subsample colsample bytree

Tree 1 0.3676 12 0.8885 0.9379
Tree 2 0.5305 36 0.8707 0.8236
Tree 3 0.9014 13 0.8309 0.9491
Tree 4 0.8453 36 0.9694 0.9262
Tree 5 0.7685 33 0.9464 0.8501

Error 0.091297

Table A.71: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 4. The learning rate, max depth,
subsample and colsample bytree values for each tree were optimized through 2000 iterations
of Bayesian Optimization, and evaluated with cross validation on the Statlog Satellite
dataset.

Error improvement with added tree 0.001398
Error improvement with flexible structure 0.001243
Relative percentage gain 88.91%

Table A.72: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 4 on the Statlog Satellite dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.7 Winequality-red

This section contains the results of the comparison between traditional and flexible structures,
each optimized with Bayesian Optimization, on the Winequality-red dataset. The results
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are divided into four hyperparmeter scenarios; Scenario 1: learning rate; Scenario 2:
max__depth; Scenario 3: learning rate, max depth and subsample; and Scenario 4:
learning rate, max_depth, subsample and colsample bytree.

For all scenarios, the 5-tree flexible structure improved prediction performance compared
to the 5-tree traditional structure. The percentage of improvement from the 5-tree traditional
structure, relative to the improvement gained with the 6-tree traditional structure, was
30.90%, 175.56%, 31.31% and 39.91%, for Scenario 1 through 4, respectively. Scenario 2
thus had the largest relative percentage of improvement. However, Scenario 4 produced
the best Error, being 0.323957. The best MAE of the 5-tree traditional structures was
comparably 0.325826, from the same scenario.

Regarding the characteristics of the flexible structure, there were some similarities
between the scenarios’ optimal values. For instance most trees of Scenario 2, 3 and 4 had
max_depth values ranging from 8 to 11, and Scenario 3 and 4 both had a noticeably lower
subsample value for Tree 3. Beyond this, however, the differences between the scenarios
were considerable, and it was quite apparent that the hyperparameters influenced each
other’s optimal values when optimized together.

A.7.1 Scenario 1

For Scenario 1 of the Winequality-red dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.73, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.74. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.75. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 30.90% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was significantly beneficial for prediction
performance with the optimization scenario of learning rate for this dataset.

In regards to the structure’s characteristics, the traditional structures had relatively
different learning rate values, being roughly 0.94 and 0.85 for the 5-tree and 6-tree structure,
respectively. The flexible structure had values ranging between 0.40 and 0.91, somewhat
appearing to rise with later trees.

5 Trees 6 Trees
Error 0.346769 0.337714
Learning rate  0.9356 0.8504

Table A.73: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 1. The learning rate was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Winequality-red dataset.
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Error 0.343971
] rTreel  0.4042
1 rTree2  0.6531
] rTree3 0.6745
1 r Tree4d  0.9063
] rTreed 0.7769

Table A.74: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 1. The learning rate values for
each tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated
with cross validation on the Winequality-red dataset.

Error improvement with added tree 0.009055
Error improvement with flexible structure 0.002798
Relative percentage gain 30.90%

Table A.75: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 1 on the Winequality-red dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.7.2 Scenario 2

For Scenario 2 on the Winequality-red dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.76, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.77. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.78. From the
5-tree traditional structure, the 5-tree flexible structure improved prediction performance
equivalent to 175.56% of the improvement achieved with the 6-tree traditional structure.
This demonstrates that the flexible structure was very beneficial for prediction performance
with the optimization scenario of max depth for this dataset.

In regards to the structure’s characteristics, the traditional structures were both
configured with the max depth value, 11. For the flexible structure, the max_depth
values ranged between 3 and 11. However, only Tree 4 had a value less than 9.

5 Trees 6 Trees
Error 0.336783 0.334283
Max depth 11 11

Table A.76: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 2. The max depth was
optimized though 1000 iterations of Bayesian Optimization, and evaluated with cross
validation on the Winequality-red dataset.
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Error 0.332394
m_d Tree 1 10
m_d Tree 2 11
m_d Tree 3 9
m_d Tree 4 3
m_d Tree 5 11

Table A.77: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 2. The max depth values for each
tree were optimized through 2000 iterations of Bayesian Optimization, and evaluated with
cross validation on the Winequality-red dataset.

Error improvement with added tree 0.0025
Error improvement with flexible structure 0.004389
Relative percentage gain 175.56%

Table A.78: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 2 on the Winequality-red dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.7.3 Scenario 3

For Scenario 3 on the Winequality-red dataset, the traditionally optimized structures of 5
and 6 trees are tabulated in Table A.79, while the flexible structure obtained with Holistic
optimization is tabulated in Table A.80. The prediction performance comparison between
the traditional structures and the flexible structure is tabulated in Table A.81. From the
5-tree traditional structure, the 5-tree flexible structure improve prediction performance
equivalent to 31.31% of the improvement achieved with the 6-tree traditional structure. This
demonstrates that flexible structure was significantly beneficial for prediction performance
with the optimization scenario of learning rate, max depth and subsample for this dataset.

In regards to the structure’s characteristics, the traditional structures were slightly
different in hyperparameter values, with learning rate being roughly 0.64 and 0.59,
max _depth being 10 for both structures, and subsample being roughly 0.92 and 0.6.
The flexible structure had learning rate values ranging between 0.57 and 0.97. The
max__depth values ranged from 8 to 11. And subsample values ranged between 0.67 and
0.89, though only Tree 3 had a value less than 0.77.
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5 Trees 6 Trees

Error 0.327406 0.317392
learning rate  0.6438 0.5881
max_ depth 10 10
subsample 0.9176 0.9578

Table A.79: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 3. Learning rate, max depth
and subsample were optimized though 1000 iterations of Bayesian Optimization, and
evaluated with cross validation on the Winequality-red dataset.

learning rate max_depth subsample

Tree 1 0.5794 8 0.8880
Tree 2 0.7289 11 0.8182
Tree 3 0.9633 10 0.6719
Tree 4 0.6776 8 0.8362
Tree 5 0.7411 9 0.7760
Error 0.32427

Table A.80: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 3. The learning rate, max_depth
and subsample values for each tree were optimized through 2000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Winequality-red dataset.

Error improvement with added tree 0.010014
Error improvement with flexible structure 0.003136

Relative percentage gain 31.31%

Table A.81: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 3 on the Winequality-red dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.7.4 Scenario 4

For Scenario 4 on the Winequality-red dataset, the traditionally optimized structures
of 5 and 6 trees are tabulated in Table A.82, while the flexible structure obtained with
Holistic optimization is tabulated in Table A.83. The prediction performance comparison
between the traditional structures and the flexible structure is tabulated in Table A.84.
From the 5-tree traditional structure, the 5-tree flexible structure improve prediction
performance equivalent to 39.91% of the improvement achieved with the 6-tree traditional
structure. This demonstrates that flexible structure was significantly beneficial for prediction
performance with the optimization scenario of learning rate, max depth, subsample and
colsample bytree for this dataset.

In regards to the structure’s characteristics, the traditional structures were relatively
different in hyperparameter values. The learning rate values were roughly 0.91 and 0.65,
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the max_depth values were 11 and 9, the subsample values were roughly 0.94 and 0.96,
while the colsample bytree values were roughly 0.91 and 0.93. The flexible structure had
learning rate values ranging between 0.58 and 0.75. Max depth values were all relatively
high, ranging between 8 and 11. The subsample values ranged between 0.67 and 0.97, but
only Tree 3 had a value less than 0.82. Colsample bytree values ranged between 0.81 and
0.98.

5 Trees 6 Trees

Error 0.325826 0.321144
learning rate 0.9125 0.6495
max_depth 11 9
subsample 0.9377 0.9626

colsample bytree  0.9134 0.9323

Table A.82: The Error score and hyperparameter configuration of the traditionally structured
ensembles of 5 and 6 trees, based on hyperparameter Scenario 4. Learning rate, max_depth,
subsample and colsample bytree were optimized though 1000 iterations of Bayesian
Optimization, and evaluated with cross validation on the Winequality-red dataset.

learning rate max _depth subsample colsample bytree

Tree 1 0.5899 9 0.9289 0.8424
Tree 2 0.7496 9 0.8400 0.9526
Tree 3 0.6835 8 0.6703 0.9539
Tree 4 0.6946 10 0.8264 0.8128
Tree 5 0.7484 11 0.9667 0.9769

Error 0.323957

Table A.83: The Error score and hyperparameter configuration of a flexible ensemble
structure of 5 trees, based on hyperparameter Scenario 4. The learning rate, max depth,
subsample and colsample bytree values for each tree were optimized through 2000 iterations
of Bayesian Optimization, and evaluated with cross validation on the Winequality-red
dataset.

Error improvement with added tree 0.004682
Error improvement with flexible structure 0.001869
Relative percentage gain 39.91%

Table A.84: The Error improvement, compared to the traditional structure of 5 trees, with
adding another tree to the traditional structure, and with the 5 tree flexible ensemble
structure, based on hyperparameter Scenario 4 on the Winequality-red dataset. And the
percentage of improvement obtained with the flexible structure, relative to that obtained
with the added tree.

A.8 Hold-out Test-set

To ensure that the obtained MAEs were not overfitted to the cross validation folds, we
conducted an additional optimization process with a hold-out test-set. For this process,
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we selected Energy Prediction as the dataset, as this is the largest of the selected datasets.
The ensemble was optimized with Energy Prediction’s dedicated training-set through the
same process as described in 5.1. After the final ensemble configuration was obtained, its
cross validation score was documented, it was trained on the training-set and evaluated on
the test-set, held out during optimization and training.

The obtained flexible ensemble configuration, along with its cross validation- and test
MAE, is tabulated in Table A.85. Comparing the cross validation MAE and the test
MAE, we can see that the test MAE was actually quite a bit better than that of the cross
validation. This demonstrates that overfitting to the cross validation folds is likely not an
issue.

learning rate max_depth subsample colsample bytree

Tree 1 0.1574 25 0.8785 0.8848
Tree 2 0.5622 3 0.7534 0.9606
Tree 3 0.2927 27 0.9725 0.8790
Tree 4 0.4942 27 0.9739 0.9557
Tree 5 0.4738 22 0.9748 0.9747
CV MAE 34.2314

Test MAE 31.6840

Table A.85: A flexible ensemble structure, based on hyperparameter Scenario 4, optimized
based on cross validation, and evaluated on a hold-out test set on the Energy Prediction
dataset. The learning rate, max_depth, subsample and colsample bytree values for each
tree were optimized through 2000 iterations of Bayesian Optimization.
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Experiment 2 Per-Dataset Results

B.1 Concrete

The results of Experiment 1-2 on the Concrete dataset are tabulated in Table B.1. We can
see that the first tree obtained an MAE of roughly 6.72, and was gradually improved with
the following trees until the final MAE of roughly 4.67, was reached with Tree 5. We can,
however, see that the improvement in prediction performance decreased with each added
tree.

In regards to to the learning rate values, all were very high, ranging between 0.86 and
1.0. However, besides Tree 5, all trees had values higher than 0.96.

Tree MAE  Selected learning rate

Tree 1 6.7243 0.9997
Tree 2 5.4630 0.9670
Tree 3 5.0550 0.9891
Tree 4 4.7785 0.9970
Tree 5 4.6703 0.8650

Table B.1: The flexible ensemble structure obtained with the Incremental optimization
approach for the Concrete dataset. The MAE score and selected learning rate values for
each tree, optimized through 200 iterations of Bayesian Optimization, are included.

B.2 Energy Prediction

The results of Experiment 1-2 on the Energy Prediction dataset are tabulated in Table B.2.
We can see that the first tree obtained an MAE of 45.14, and was gradually improved with
the following trees until the final MAE of roughly 44.18 was reached with Tree 5. We can,
however, see that the improvement in prediction performance significantly decreased with
each added tree. For instance, Tree 4 and 5 were nearly identical in prediction performance.

Regarding the learning rate values, these ranged between 0.05 and 0.76. However,
besides Tree 1, all trees had values less than 0.27, decreasing with each tree. The fact that
the learning rate values quickly became so low, could be an indicator that the prediction
performance has converged or gotten stuck in a local optima.
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Tree MAE  Selected learning rate

Tree 1 45.1400 0.7633
Tree 2 44.4539 0.2625
Tree 3 44.2411 0.1708
Tree 4 44.1956 0.0849
Tree 5 44.1813 0.0539

Table B.2: The flexible ensemble structure obtained with the Incremental optimization
approach for the Energy Prediction dataset. The MAE score and selected learning rate
value for each tree, optimized through 200 iterations of Bayesian Optimization, are included.

B.3 Housing

The results of Experiment 1-2 on the Housing dataset are tabulated in Table B.3. We can
see that the first tree obtained an MAE of roughly 3.4, and was gradually improved with
the following trees until the final MAE of roughly 2.87 was reached with Tree 5. We can,
however, see that the improvement in prediction performance significantly decreased with
each added tree.

Regarding the learning rate values, these ranged between roughly 0.48 and 1.0,
beginning with the higher value and decreasing with later added trees.

Tree MAE  Selected learning rate

Tree 1  3.4046 0.9999
Tree 2 3.0257 0.9220
Tree 3 2.9388 0.6546
Tree 4 2.9043 0.4905
Tree 5 2.8731 0.4804

Table B.3: The flexible ensemble structure obtained with the Incremental optimization
approach for the Housing dataset. The MAE score and selected learning rate value for
each tree, optimized through 200 iterations of Bayesian Optimization, are included.

B.4 Seoul Bike Sharing

The results of Experiment 1-2 on the Seoul Bike Sharing dataset are tabulated in Table B.4.
We can see that first tree obtained an MAE of roughly 208, and was gradually improved
with the following trees until the final MAE of roughly 171, was reached with the Tree 5.
We can, however, see that the improvement in prediction performance decreased with each
added tree.

In regards to the learning rate values, all of the values were quite high, ranging between
0.62 and 0.97. However, besides Tree 5, all trees had values higher than 0.78. The values
appeared to be gradually decreasing from the higher value with later added trees.
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Tree MAE  Selected learning rate

Tree 1 208.34 0.9690
Tree 2 186.14 0.8542
Tree 3 179.42 0.7885
Tree 4 174.29 0.8043
Tree 5 171.55 0.6278

Table B.4: The flexible ensemble structure obtained with the Incremental optimization
approach for the Seoul Bike Sharing dataset. The MAE score and selected learning rate
value for each tree, optimized through 200 iterations of Bayesian Optimization, are included.

B.5 Car Evaluation

The results of Experiment 1-2 on the Car Evaluation dataset are tabulated in Table B.5.
We can see that the first two trees obtained an Error of roughly 0.0440, and was gradually
improved with the following trees until the final Error of roughly 0.0191 was reached with
Tree 5. We can, however, see that the improvement in prediction performance decreased
with each added tree

Regarding the learning rate values, these were all quite high, ranging between 0.82 and
1.0. This is further exemplified by the fact that Tree 4 and 5 were the only ones with values
less than 0.98. Overall, the values somewhat appeared to be decreasing for each added tree.

Tree Error Selected learning rate
Tree 1 - 0.9943
Tree 2 0.043974 0.9949
Tree 3 0.033272 0.9886
Tree 4 0.026040 0.8403
Tree 5 0.019101 0.8215

Table B.5: The flexible ensemble structure obtained with the Incremental optimization
approach for the Car Evaluation dataset. Each tree was optimized through 200 iterations
of Bayesian Optimization, except Tree 1 and 2, which were optimized together through 400
iterations. The Error and selected learning rate values are included for each optimized
tree, except for Tree 1, where the Error score was inaccessible.

B.6 Statlog Satellite

The results of Experiment 1-2 on the Statlog Satellite dataset are tabulated in Table B.6.
We can see that the first two trees obtained an Error of roughly 0.1155, and was gradually

improved with the following trees until the final Error of roughly 0.1024 was reached with
Tree 5.

Regarding the learning rate values, these were all relatively high, ranging between 0.74
and 1.0. However, only tree 1 and 3 had values less than 0.96.
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Tree Error Selected learning rate
Tree 1 - 0.7413
Tree 2 0.115462 0.9986
Tree 3 0.110800 0.8689
Tree 4 0.105905 0.9856
Tree 5 0.102408 0.9616

Table B.6: The flexible ensemble structure obtained with the Incremental optimization
approach for the Statlog Satellite dataset. Each tree was optimized through 200 iterations
of Bayesian Optimization, except Tree 1 and 2, which were optimized together through 400
iterations. The Error and selected learning rate values are included for each optimized
tree, except for Tree 1, where the Error score was inaccessible.

B.7 Winequality-red

The results of Experiment 1-2 on the Winequality-red dataset are tabulated in Table B.7.
We can see that the first two trees obtained an Error of roughly 0.3771, and was gradually
improved with the following trees until the final Error of roughly 0.3562 was reached with
Tree 5.

Regarding the learning rate values, these ranged between 0.58 and 0.98, and somewhat
appeared to be rising with later added trees.

Tree Error Selected learning rate
Tree 1 - 0.5842
Tree 2 0.377115 0.7139
Tree 3 0.369919 0.9412
Tree 4 0.360537 0.8153
Tree 5 0.356157 0.9709

Table B.7: The flexible ensemble structure obtained with the Incremental optimization
approach for the Winequality-red dataset. Each tree was optimized through 200 iterations
of Bayesian Optimization, except Tree 1 and 2, which were optimized together through 400
iterations. The Error and selected learning rate values are included for each optimized
tree, except for Tree 1, where the Error score was inaccessible.
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Experiment 3 Per-Dataset Results

C.1 Concrete

This section contains the results of Experiment 2-1 on the Concrete dataset. The results
are divided into two hyperparameter scenarios; Scenario 1: learning rate optimized in
isolation; and Scenario 2: learning rate and max_depth optimized together.

In both Scenarios, the average, best and worst prediction performance were better for
the flexible ensemble structures, with large differences in the cases of average and worst, and
only slight in the best case. The reason for the large differences in the average and worst
cases can be explained from the histograms. The histograms of the flexible structures were
more concentrated in a range of better performance, compared to the traditional structures
where a larger portion of values were of worse prediction performance. Overall, it was clear
that it was easier to obtain better prediction performance with flexible structures for both
hyperparameter scenarios on the dataset of Concrete.

C.1.1 Scenario 1

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 1 are tabulated in Table C.1, and the prediction
performance histograms of each structure are contained in Figure C.1.

The prediction performance of the flexible structures were better in all cases of the
average, best and worst values. The differences were especially significant in the average
and worst cases, while it was only slight in the best case.

The histograms were somewhat similar, but the values of the flexible structures seemed
to be more concentrated in the 4 to 6 MAE value range. In the traditional structure
histograms, many values were similarly located within this range, but there was also a
significant portion of worse values. This is in turn the reason for the better values of the
flexible structures in the average and worst cases.

Overall, it was quite clear that it was easier to obtain better prediction performance
with with the flexible ensemble structures for Scenario 1 on Concrete, despite the higher
search complexity.
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Concrete Scenario 1
Approach  Average Best Worst
Traditional 8.3171 4.0149 35.1962
Flexible 4.8377 3.9042 13.8173
Difference 3.4797 0.1107 21.3789

Table C.1: The average, best and worst cross validation score (MAE) from Scenario 1 of
Experiment 2-1 on the Concrete dataset. The value differences between the traditional and
Flexible structure optimization approaches are also included. Positive differences indicate
that Flexible was better, while the opposite for negative differences.
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Figure C.1: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on
the Concrete dataset. Figure (a) represents the cross validation scores obtained with the
Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

C.1.2 Scenario 2

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 2 are tabulated in Table C.2, and the prediction
performance histograms of each structure are contained in Figure C.2.

The prediction performance of the flexible structures were better in all cases of the
average, best and worst values. The differences were especially significant in the average
and worst cases, while it was only slight in the best case.

The histograms were relatively similar, but the values of the flexible structures seemed
to be more concentrated in the 4 to 7 MAE value range. In the traditional structure
histograms, many values were similarly located within this range, but there was also a
significant portion of worse values. This is in turn the reason for the better values of the
flexible structures in the average and worst cases.
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Overall, it was quite clear that it was easier to obtain better prediction performance
with with the flexible ensemble structures for Scenario 2 on Concrete, despite the higher
search complexity.

Concrete Scenario 2
Approach ~ Average  Best Worst
Traditional  9.2206 3.8162 35.2361
Flexible 5.4038  3.8034 16.1442
Difference 3.8168 0.0128 19.0919

Table C.2: The average, best and worst cross validation score (MAE) from Scenario 2 of
the "General Insight" investigation on the Concrete dataset. The value differences between
the traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.
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Figure C.2: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on
the Concrete dataset. Figure (a) represents the cross validation scores obtained with the
Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

C.2 Energy Prediction

This section contains the results of Experiment 2-1 on the Energy Prediction dataset. The
results are divided into two hyperparameter scenarios; Scenario 1: learning rate optimized
in isolation; and Scenario 2: learning rate and max_depth optimized together.

In both Scenarios, the average and worst prediction performance were better for the
flexible ensemble structures, while the best prediction performance was only better for the
flexible structures in Scenario 2. The differences were typically larger in the cases of average
and worst, and smaller in the best value case. The reason for the large differences in the
average and worst cases can be explained from the histograms. The histograms of the
flexible structures were more concentrated in a range of better performance, compared to the
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traditional structures where a larger portion of values were of worse prediction performance.
Overall, it was clear that it was easier to obtain better prediction performance with flexible
structures for Scenario 2, while they were competitive with traditional structures for Scenario
1, on the dataset of Energy Prediction.

C.2.1 Scenario 1

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 1 are tabulated in Table C.3, and the prediction
performance histograms of each structure are contained in Figure C.3.

The prediction performance of the flexible structures were better in the cases of the
average and worst values, but worse in the best values case. The differences were especially
significant in the worst cases, while smaller in the average and best case.

The histograms were relatively similar, but the values of the flexible structures seemed
to be considerably more concentrated in the 42 to 48 MAE range. In the traditional
structure histograms, most values were similarly located within this range, but there was
also a significant portion of worse values. This explains the better values of the flexible
structures in the average and worst cases.

Overall, it seemed like the flexible ensemble structures made search difficulty in Scenario
1 easier by making it harder to obtain worse values, while being somewhat competitive in
best obtained prediction performance.

Energy Prediction Scenario 1
Approach  Average Best Worst
Traditional 48.7335 41.8257 97.1359
Flexible 45.9559 42.2148 51.8404
Difference 2.7776  -0.3891 45.2955

Table C.3: The average, best and worst cross validation score from Scenario 1 of the "General
Insight" investigation on the Energy Prediction dataset. The value differences between
the traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.

C.2.2 Scenario 2

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 2 are tabulated in Table C.4, and the prediction
performance histograms of each structure are contained in Figure C.4.

The prediction performance of the flexible structures were better in all cases of the
average, best and worst values. The differences were especially significant in the average
and worst cases, while smaller in the best case.

The histograms were quite different for this scenario. The values of the flexible structures
were concentrated in the 33 to 42 MAE range. In the traditional structure histograms,
while many values were located within this range, there was also a large amount of worse
values. This explains the better values of the flexible structures in the average and worst
cases.
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Figure C.3: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on the
Energy Prediction dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

Overall, it was quite clear that it was easier to obtain better prediction performance
with with the flexible ensemble structures for Scenario 2 on Energy Prediction, despite the
higher search complexity.

Energy Prediction Scenario 2
Approach ~ Average  Best Worst
Traditional 45,133 33,8593 96,7704
Flexible 37,1433 33,3772 61,1627
Difference 7.9897  0.4821 35.6077

Table C.4: The average, best and worst cross validation score from Scenario 2 of the "General
Insight" investigation on the Energy Prediction dataset. The value differences between
the traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.

C.3 Housing

This section contains the results of Experiment 2-1 on the Housing dataset. The results
are divided into two hyperparameter scenarios; Scenario 1: learning rate optimized in
isolation; and Scenario 2: learning rate and max_depth optimized together.

In both Scenarios, the average, best and worst prediction performance were better for
the flexible ensemble structures, with large differences in the cases of average and worst, and
only slight in the best case. The reason for the large differences in the average and worst
cases can be explained from the histograms. The histograms of the flexible structures were
more concentrated in a range of better performance, compared to the traditional structures
where a larger portion of values were of worse prediction performance. Overall, it was clear
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Figure C.4: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on the
Energy Prediction dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

that it was easier to obtain better prediction performance with flexible structures for both
hyperparameter scenarios on the dataset of Housing.

C.3.1 Scenario 1

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 1 are tabulated in Table C.5, and the prediction
performance histograms of each structure are contained in Figure C.5.

The prediction performance of the flexible structures were better in all cases of the
average, best and worst values. The differences were especially significant in the average
and worst cases, while much smaller in the best case.

The histograms were relatively similar, but the values of the flexible structures seemed
to be considerably more concentrated in the 2 to 4 MAE range. In the traditional structure
histograms, many values were similarly located within this range, but there was also a
significant portion of worse values. This explains the better values of the flexible structures
in the average and worst cases.

Overall, it was quite clear that it was easier to obtain better prediction performance
with with the flexible ensemble structures for Scenario 1 on Housing, despite the higher
search complexity.
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Housing Scenario 1
Approach  Average Best Worst
Traditional 5.1684 2.4964 22.0247
Flexible 2.9258  2.4475 11.998
Difference 2.2426  0.0489 10.0267

Table C.5: The average, best and worst cross validation score from Scenario 1 of the
"General Insight" investigation on the Housing dataset. The value differences between
the traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.
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Figure C.5: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on
the Housing dataset. Figure (a) represents the cross validation scores obtained with the
Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

C.3.2 Scenario 2

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 2 are tabulated in Table C.6, and the prediction
performance histograms of each structure are contained in Figure C.6.

The prediction performance of the flexible structures were better in all cases of the
average, best and worst values. The differences were especially significant in the average
and worst cases, while much smaller in the best case.

The histograms were relatively similar, but the values of the flexible structures seemed
to be more concentrated in the 2 to 4 MAE range. In the traditional structure histograms,
many values were similarly located within this range, but there was also a significant portion
of worse values. This explains the better values of the flexible structures in the average and
worst cases.
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Overall, it was quite clear that it was easier to obtain better prediction performance
with with the flexible ensemble structures for Scenario 2 on Housing, despite the higher
search complexity.

Housing Scenario 2
Approach ~ Average  Best Worst
Traditional ~ 5.434  2.4937 21.9435
Flexible 2.9825 24198 12.7407
Difference 2.4515 0.0739  9.2028

Table C.6: The average, best and worst cross validation score from Scenario 2 of the
"General Insight" investigation on the Housing dataset. The value differences between
the traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.
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Figure C.6: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on
the Housing dataset. Figure (a) represents the cross validation scores obtained with the
Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

C.4 Seoul Bike Sharing

This section contains the results of Experiment 2-1 on the Seoul Bike Sharing dataset. The
results are divided into two hyperparameter scenarios; Scenario 1: learning rate optimized
in isolation; and Scenario 2: learning rate and max_depth optimized together.

In both Scenarios, the average and worst prediction performance were better for the
flexible ensemble structures, while the best prediction performance was only better for the
flexible structures in Scenario 1. The differences were typically larger in the cases of average
and worst. This can be explained from the histograms. The histograms of the flexible
structures were more concentrated in a range of better performance, compared to the
traditional structures where a larger portion of values were of worse prediction performance.
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Overall, it was clear that it was easier to obtain better prediction performance with flexible
structures for Scenario 1, while it was a bit more mixed in Scenario 2, on the dataset of
Seoul Bike Sharing.

C.4.1 Scenario 1

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 1 are tabulated in Table C.7, and the prediction
performance histograms of each structure are contained in Figure C.7.

The prediction performance of the flexible structures were better in all cases of the
average, best and worst values. The differences were especially significant in the average
and worst cases, while much smaller in the best case.

The histograms were relatively similar, but the values of the flexible structures seemed
to be considerably more concentrated in the 150 to 200 MAE range. In the traditional
structure histograms, many values were similarly located within this range, but there was
also a large amount of worse values. This explains the better values of the flexible structures
in the average and worst cases.

Overall, it was quite clear that it was easier to obtain better prediction performance
with with the flexible ensemble structures for Scenario 1 on Seoul Bike Sharing, despite the
higher search complexity.

Seoul Bike Sharing Scenario 1
Approach  Average Best  Worst
Traditional — 240.85 162.15 704.05
Flexible 174.25 161.36 361.69
Difference 66.6 0.79  342.36

Table C.7: The average, best and worst cross validation score from Scenario 1 of the "General
Insight" investigation on the Seoul Bike Sharing dataset. The value differences between
the traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.

C.4.2 Scenario 2

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 2 are tabulated in Table C.8, and the prediction
performance histograms of each structure are contained in Figure C.8.

The prediction performance of the flexible structures were better in the cases of the
average and worst values, but worse in the best values case. The differences were quite
significant in all cases.

The histograms were relatively similar, but the values of the flexible structures seemed
to be considerably more concentrated in the 250 to 300 MAE range. In the traditional
structure histograms, many values were similarly located within this range, but there was
also a large amount of worse values. This explains the better values of the flexible structures
in the average and worst cases.
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Figure C.7: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on the
Seoul Bike Sharing dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

Overall, it seemed like the flexible ensemble structures made search difficulty in Scenario
2 easier by making it harder to obtain worse values, while not quite managing to compete
with traditional structure in terms of best prediction performance.

Seoul Bike Sharing Scenario 2
Approach  Average Best = Worst
Traditional — 248.17 150.28 702.2
Flexible 216.19  169.98 456.73
Difference 31.98 -19.70  245.47

Table C.8: The average, best and worst cross validation score from Scenario 2 of the "General
Insight" investigation on the Seoul Bike Sharing dataset. The value differences between
the traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.

C.5 Car Evaluation

This section contains the results of Experiment 2-1 on the Car Evaluation dataset. The
results are divided into two hyperparameter scenarios; Scenario 1: learning rate optimized
in isolation; and Scenario 2: learning rate and max depth optimized together.

In both scenarios, the average and worst prediction performance were better for the
flexible ensemble structures, while the best prediction performance was significantly worse.
The histograms of Scenario 1 were quite similar, while they were relatively different in
Scenario 2. Overall, while the flexible structures were better on average for both scenarios,
it seemed more difficult to find as good prediction performance as traditional structures in
the best value case.
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Figure C.8: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on the
Seoul Bike Sharing dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (MAE), and the vertical axis indicate the number of times these values
occurred.

C.5.1 Scenario 1

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 1 are tabulated in Table C.9, and the prediction
performance histograms of each structure are contained in Figure C.9.

The prediction performance of the flexible structures were better in the cases of the
average and worst values, but worse in the best values case. The differences were quite
small in all cases.

The histograms were quite similar. Both had values ranging between 92% and 98%
Accuracy. The great similarity between the histograms could explain why the differences
are only slight.

Overall, it was a bit unclear which structure type was better for Scenario 1 on Car
Evaluation.

Car Evaluation Scenario 1
Approach  Average  Best Worst
Traditional  95.70%  98.26% 92.10%
Flexible 95.86% 97.85% 92.82%
Difference 0.16% -0.41% 0.72%

Table C.9: The average, best and worst cross validation score from Scenario 1 of the "General
Insight" investigation on the Car Evaluation dataset. The value differences between the
traditional and Flexible structure optimization approaches are also included. Positive
differences indicate that Flexible was better, while the opposite for negative differences.
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Figure C.9: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on the
Car Evaluation dataset. Figure (a) represents the cross validation scores obtained with the
Traditional ensemble structure optimization approach, while Figure (b) represents the ones
obtained with the Flexible approach. The horizontal axis of the histograms indicate the
score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.

C.5.2 Scenario 2

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 2 are tabulated in Table C.10, and the prediction
performance histograms of each structure are contained in Figure C.10.

The prediction performance of the flexible structures were better in the cases of the
average and worst values, but worse in the best values case. The difference was quite
significant in the average and best cases, and much smaller in the worst case.

The histograms were relatively different for this scenario. The values of the flexible
structures were concentrated in the 90% to 97% Accuracy range. In the traditional structure
histograms, while many values were located within this range, there was also a large amount
of worse values. This explains the significantly better values of the flexible structures in
the average case.

Overall, it was a bit unclear which structure type was better for Scenario 1 on Car
Evaluation. The flexible structures were better on average, but could not reach reach the
best prediction performance of the traditional structures.
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Car Evaluation Scenario 2
Approach  Average  Best Worst
Traditional 87.41%  99.50% 70.02%
Flexible 91.00% 97.16% 70.22%
Difference 3.59%  -2.34%  0.20%

Table C.10: The average, best and worst cross validation score (Accuracy) from Scenario 2
of the "General Insight" investigation on the Car Evaluation dataset. The value differences
between the traditional and Flexible structure optimization approaches are also included.
Positive differences indicate that Flexible was better, while the opposite for negative
differences.
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Figure C.10: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on
the Car Evaluation dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.

C.6 Statlog Satellite

This section contains the results of Experiment 2-1 on the Statlog Satellite dataset. The
results are divided into two hyperparameter scenarios; Scenario 1: learning rate optimized
in isolation; and Scenario 2: learning rate and max__depth optimized together.

In both Scenarios, the average and best prediction performance of the flexible ensemble
structures were roughly equal to that of the traditional structures, while the worst value
case was significantly better. This can be explained from the histograms. These were very
similar i both scenarios, with only some worse values contained in the traditional structure
histograms. Overall it seemed like the flexible and traditional structure types were roughly
as effective for the Statlog Satellite dataset, with a slight benefit with flexible structures.
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C.6.1 Scenario 1

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 1 are tabulated in Table C.11, and the prediction
performance histograms of each structure are contained in Figure C.11.

The prediction performance of the flexible structure were better in the cases of best
and worst values, and ever so slightly worse in the average case. The differences were quite
small in all cases.

The histograms were relatively similar, but the values of the flexible structures seemed
to be a bit more concentrated in the 88% to 98.5% Accuracy range. In the traditional
structure histograms, many values were similarly located within this range, but there
was also a decent amount of worse values. This explains the better values of the flexible
structures in the worst case.

Overall, it seemed like it was easier to obtain better prediction performance with the
flexible structures for Scenario 1 on Statlog Satellite, despite the higher search complexity.

Statlog Satellite Scenario 1
Approach  Average  Best Worst
Traditional  89.03% 89.72% 86.81%
Flexible 88.96% 89.83% 87.63%
Difference  -0.07%  0.11%  0.82%

Table C.11: The average, best and worst cross validation score from Scenario 1 of the
"General Insight" investigation on the Statlog Satellite dataset. The value differences
between the traditional and Flexible structure optimization approaches are also included.
Positive differences indicate that Flexible was better, while the opposite for negative
differences.
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Figure C.11: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on
the Statlog Satellite dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.
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C.6.2 Scenario 2

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 2 are tabulated in Table C.12, and the prediction
performance histograms of each structure are contained in Figure C.12.

The prediction performance of the flexible structures were better in the cases of the
average and worst values, but worse in the best values case. The differences were quite
small in all cases.

The histograms were relatively similar, but the values of the flexible structures seemed
to be a bit more concentrated in the 88% to 90.5% Accuracy range. In the traditional
structure histogram, most values were similarilly located within this range, but there were
also a small amount of worse values. This explains the better values of the flexible structures
in the worst case.

Overall, it seemed like it was slightly easier to obtain better prediction performance
with the flexible structures for Scenario 2 on Statlog Satellite, despite the higher search
complexity.

Statlog Satellite Scenario 2
Approach  Average  Best Worst
Traditional  89.07%  90.34% 74.20%
Flexible 89.46% 90.40% 86.00%
Difference 0.39%  0.06% 11.80%

Table C.12: The average, best and worst cross validation score from Scenario 2 of the
"General Insight" investigation on the Statlog Satellite dataset. The value differences
between the traditional and Flexible structure optimization approaches are also included.
Positive differences indicate that Flexible was better, while the opposite for negative
differences.

C.7 Winequality-red

This section contains the results of Experiment 2-1 on the Winequality-red dataset. The
results are divided into two hyperparameter scenarios; Scenario 1: learning rate optimized
in isolation; and Scenario 2: learning rate and max_depth optimized together.

In Scenario 1, the best and worst value cases were better for the flexible structures, but
the average was not. In Scenario 2, the average and worst value cases were better, but not
the best value. The differences were for all value cases, except the worst case in Scenario 2,
quite small. This can be explained from the histograms. These were quite similar in both
scenarios, with the biggest difference being a slightly larger number of worse values for
the traditional structures, especially in Scenario 2. Overall it seemed like the flexible and
traditional structure types were about equally effective for the Winequality-red dataset,
with perhaps a slight benefit with flexible structures.



132 APPENDIX C. EXPERIMENT 3 PER-DATASET RESULTS

200 1
175 1 100 {
150 1
a0 |
125 1
100 1 &0
75 1 0
50
20 1
-
0 0l :
074 076 078 080 082 084 086 088 090 0.86 0.87
(a) Traditional (b) Flexible

Figure C.12: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on
the Statlog Satellite dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.

C.7.1 Scenario 1

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 1 are tabulated in Table C.13, and the prediction
performance histograms of each structure are contained in Figure C.13.

The prediction performance of the flexible structure were better in the cases of best
and worst values, and worse in the average case. However, the differences were quite small
in all cases.

The histograms were nearly identical, though a bit more even in distributions with the
flexible structures. This explains the very small differences in all value cases.

Overall, the two structure types seemed about equally efficient for obtaining prediction
performance in Scenario 1 on Winequality-red, with a slight benefit for with the flexible
structures.

Winequality-red Scenario 1
Approach  Average  Best Worst
Traditional  63.50% 65.04% 59.88%
Flexible 63.18% 65.47% 60.66%
Difference  -0.32%  0.43%  0.78%

Table C.13: The average, best and worst cross validation score from Scenario 1 of the
"General Insight" investigation on the Winequality-red dataset. The value differences
between the traditional and Flexible structure optimization approaches are also included.
Positive differences indicate that Flexible was better, while the opposite for negative
differences.
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Figure C.13: Histograms of cross validation scores from Scenario 1 of Experiment 2-1 on
the Winequality-red dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.

C.7.2 Scenario 2

The comparison between the average, best and worst prediction performance of traditional
and flexible ensemble structures of Scenario 2 are tabulated in Table C.14, and the prediction
performance histograms of each structure are contained in Figure C.14.

The prediction performance of the flexible structures were better in the cases of the
average and worst values, but worse in the best values case. The difference was relatively
small in the average and best cases, and a bit larger in the worst value case.

The histograms were relatively similar, but the values of the flexible structures seemed
to be a bit more concentrated in the 60% to 66% Accuracy range. In the traditional
structure histogram, most values were similarly located within this range, but there were
also a considerable amount of worse values. This explains the better values of the flexible
structures in the average and worst case.

Overall, it seemed like the flexible ensemble structures made search difficulty in Scenario
2 easier by making it harder to obtain worse values, while not quite managing to compete
with traditional structure in terms of best prediction performance.
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Winequality-red Scenario 2
Approach  Average  Best Worst
Traditional  62.80% 67.32% 54.25%
Flexible 63.41% 66.91% 56.69%
Difference 0.61%  -0.41%  2.44%

Table C.14: The average, best and worst cross validation score from Scenario 2 of the
"General Insight" investigation on the Winequality-red dataset. The value differences
between the traditional and Flexible structure optimization approaches are also included.
Positive differences indicate that Flexible was better, while the opposite for negative
differences.
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Figure C.14: Histograms of cross validation scores from Scenario 2 of Experiment 2-1 on
the Winequality-red dataset. Figure (a) represents the cross validation scores obtained with
the Traditional ensemble structure optimization approach, while Figure (b) represents the
ones obtained with the Flexible approach. The horizontal axis of the histograms indicate
the score values (Accuracy), and the vertical axis indicate the number of times these values
occurred.



Appendix D

Experiment 4 Per-Dataset Results

D.1 Concrete

The ten best and worst performing configurations of Experiment 2-2 on the Concrete dataset
are tabulated in Table D.1 and D.2, respectively.

The prediction performance of the ten best configurations ranged from 3.98 to 4.25 MAE.
Generally, the configurations were quite similar in learning rate values for the different
trees. For instance, the average of the first tree was 0.34, of which most configurations
had a relatively close value, derived from the relatively low standard deviation. The same
can be said for the other trees. The 10 best configurations were thus similar, but clearly
distinguishable.

The prediction performance of the ten worst configurations ranged from 21.88 to 14.95
MAE. Much like with the best configurations, the worst configurations were quite similar.
For instance, the average of the first tree was 0.11, of which all configurations had a
relatively close value, derived from the low standard deviation. The same can be said for
the other trees. The 10 worst configurations were thus similar, but clearly distinguishable.

Comparing the best and worst configurations on the Concrete dataset, it was apparent
that the learning rate values were very different between these cases. This can be
demonstrated with the learning rate averages, which were very low for the worst configurations,
compared to those of the best. These differences, as well as the similarities in characteristics
between the configurations in each prediction performance group, indicate that the area of
best performance in the learning rate search landscape can be predicted and exploited.
The fact that similar prediction performance was achieved with similar, but slightly different
configurations, also indicate that the area of best performance is quite lenient. Roughly the
avearage plus/minus the standard deviation for each tree.

135
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Prediction Performance learning rate
MAE Tree 1 Tree 2 Tree3 'Treed4 'Treeb
3.98 0.2973 0.7243 0.8922 0.6257 0.792
4.16 0.4753 0.3991 0.8599 0.7023 0.7353
4.17 0.4673 0.8628 0.8325 0.9877 0.0102
4.17 0.7087 0.8149 0.788  0.506 0.5611
4.19 0.0873 0.6842 0.8344 0.6221 0.9719
4.21 0.4005 0.6927 0.5399 0.9725 0.7636
4.22 0.257 0.3327 0.5648 0.868  0.7437
4.23 0.219 0.3616 0.9334 0.9681 0.8076
4.24 0.376  0.9865 0.9668 0.7969 0.8295
4.25 0.1908 0.7094 0.9099 0.7913 0.9102
Average: 0.3479 0.6568 0.8122 0.7841 0.7125

Standard Deviation: 0.1777 0.2221 0.1467 0.1678 0.2699

Table D.1: The 10 best flexible structure configurations for the Concrete dataset, based
on cross validation scores from Experiment 2-2. The average learning rate values and
standard deviations for each tree are included.

Prediction Performance learning rate
MAE Tree 1 Tree2 Tree3 Treed Tree b
21.88 0.1846 0.0437 0.0236 0.0956 0.1284
21.28 0.0459 0.0222 0.0784 0.2126 0.1298
19.41 0.0531 0.0055 0.20563 0.0513 0.259
17.8 0.0958 0.1695 0.2603 0.0848 0.0635
16.49 0.0658 0.2047 0.0356 0.0881 0.3252
15.98 0.2031 0.0026 0.0534 0.3403 0.1536
15.98 0.0577 0.0951 0.2947 0.0642 0.233
15.33 0.0173 0.228 0.115 0.3843 0.0229
14.97 0.3938 0.0936 0.1632 0.1045 0.047
14.95 0.0302 0.0936 0.172 0.4109 0.0781
Average: 0.1147 0.0959 0.1402 0.1837 0.1441

Standard Deviation: 0.1163 0.0815 0.0946 0.1422 0.0997

Table D.2: The 10 worst flexible structure configurations for the Concrete dataset, based
on cross validation scores from Experiment 2-2. The average learning rate values and
standard deviations for each tree are included.

D.2 Energy Prediction

The ten best and worst performing configurations of Experiment 2-2 on the Energy
Prediction dataset are tabulated in Table D.3 and D.4, respectively.

The prediction performance of the ten best configurations ranged from 41.09 to 41.57
MAE. Generally, the configurations were quite similar in learning rate values for the
different trees. For instance, the average of the first tree was 0.21, of which most
configurations had a relatively close value, derived from the low standard deviation. The
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same can be said for the other trees. The 10 best configurations were thus similar, but
clearly distinguishable.

The prediction performance of the ten worst configurations ranged from 81.23 to 50.76
MAE. Much like with the best configurations, the worst configurations were quite similar.
For instance, the average of the first tree was 0.10, of which all configurations had a
relatively close value, derived from the low standard deviation. The same can be said for
the other trees. The 10 worst configurations were thus similar, but clearly distinguishable.

Comparing the best and worst configurations on the Energy Prediction dataset, it was
apparent that the learning rate values were somewhat different between these cases. This
can be demonstrated with the learning rate averages, which were a bit lower for the worst
configurations, compared to those of the best. These differences, as well as the similarities
in characteristics between the configurations in each prediction performance group, indicate
that the area of best performance in the learning rate search landscape can be predicted
and exploited. The fact that similar prediction performance was achieved with similar, but
slightly different configurations, also indicate that the area of best performance is relatively
lenient. Roughly the average plus/minus the standard deviation for each tree.

Prediction Performance learning rate

MAE Tree 1 Tree2 Tree3d Treed Treed
41.0953 0.2322 0.2034 0.2327 0.4338 0.3156
41.1142 0.2258 0.2154 0.1205 0.2789 0.3608
41.3158 0.2366 0.4056 0.0584 0.1460 0.3104
41.3254 0.2313 0.1252 0.3408 0.2681 0.3502
41.4169 0.2119 0.2895 0.1917 0.2848 0.3750
41.4941 0.1214 0.3881 0.2843 0.4308 0.2215
41.5155 0.2789 0.1525 0.3251 0.3299 0.3975
41.5310 0.2364 0.4497 0.3166 0.0980 0.3214
41.5396 0.2431 0.2592 0.3282 0.1782 0.4124
41.5771 0.1332  0.1750 0.3969 0.3866 0.3133
Average: 0.2151 0.2664 0.2595 0.2835 0.3378

Standard Deviation: 0.0494 0.1136 0.1072 0.1163 0.0546

Table D.3: The 10 best flexible structure configurations for the Energy Prediction dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.
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Prediction Performance learning rate

MAE Tree 1 Tree 2 Tree3 'Treed4 'Treeb
81.2304 0.0854 0.0055 0.0086 0.0052 0.0563
56.3671 0.3352 0.0104 0.0282 0.0341 0.0739
56.0490 0.1851 0.0073 0.0647 0.0424 0.2165
55.2854 0.0005 0.2789 0.0839 0.1148 0.0442
53.2990 0.0161 0.0537 0.0675 0.2414 0.1973
53.0094 0.0976 0.1212 0.1642 0.0372 0.1739
52.8724 0.0810 0.2834 0.1922 0.0031 0.0111
52.1578 0.0675 0.2530 0.0100 0.0975 0.1661
51.7248 0.1699 0.0040 0.0947 0.3200 0.0039
50.7607 0.0440 0.0822 0.2604 0.1294 0.1256
Average: 0.1082 0.1100 0.0974 0.1025 0.1069

Standard Deviation: 0.0992 0.1182 0.0833 0.1051 0.0788

Table D.4: The 10 worst flexible structure configurations for the Energy Prediction dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.

D.3 Housing

The ten best and worst performing configurations of Experiment 2-2 on the Housing dataset
are tabulated in Table D.5 and D.6, respectively.

The prediction performance of the ten best configurations ranged from 1.93 to 2.04 MAE.
Generally, the configurations were relatively similar in learning rate values for the different
trees. For instance, the average of the first tree was 0.21, of which most configurations had
a relatively close value, derived from the low standard deviation. The same can be said
for the other trees, though Tree 4 seemed a bit more variable, having a standard deviation
above 0.3. The 10 best configurations were thus similar, but clearly distinguishable.

The prediction performance of the ten worst configurations ranged from 13 to 9.42 MAE.
Much like with the best configurations, the worst configurations were quite similar. For
instance, the average of the first tree was 0.11, of which all configurations had a relatively
close value, derived from the low standar deviation. The same can be said for the other
trees. The 10 worst configurations were thus similar, but clearly distinguishable.

Comparing the best and worst configurations on the Housing dataset, it was apparent
that the learning rate values were very different between these cases. This can be
demonstrated with the learning rate averages, which were very low for the worst configurations,
compared to those of the best. These differences, as well as the similarities in characteristics
between the configurations in each prediction performance group, indicate that the area of
best performance in the learning rate search landscape can be predicted and exploited.
The fact that similar prediction performance was achieved with similar, but slightly different
configurations, also indicate that the area of best performance is relatively lenient. Roughly
the average plus/minus the standard deviation for each tree.
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Prediction Performance

learning rate

MAE Tree 1 Tree 2 Tree3 Tree4d Treeb
1.9375 0.1252 0.8377 0.6303 0.0902 0.9413
1.9637 0.1348 0.8259 0.7035 0.6960 0.5602
1.9678 0.3407 0.1750 0.6587 0.0169 0.9190
1.9991 0.3966 0.4589 0.5189 0.9953 0.2886
2.0042 0.1416 0.7925 0.3292 0.7715 0.9820
2.0341 0.1112 0.1220 0.9747 0.9812 0.5494
2.0376 0.2837 0.5777 0.8343 0.9726 0.5331
2.0445 0.1790 0.8787 0.8990 0.5076 0.8405
2.0447 0.3133 0.8571 0.8111 0.5090 0.6214
2.0462 0.1150 0.4818 0.7448 0.9301 0.8465
Average: 0.2141 0.6007 0.7105 0.6470 0.7082
Standard Deviation: 0.1081 0.2852 0.1895 0.3625 0.2289
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Table D.5: The 10 best flexible structure configurations for the Housing dataset, based
on cross validation scores from Experiment 2-2. The average learning rate values and
standard deviations for each tree are included.

Prediction Performance

learning_rate

MAE Tree 1 Tree 2 Tree3d Treed Treeb
13.0099 0.0587 0.0732 0.0534 0.1907 0.0901
11.0470 0.1299 0.1015 0.0659 0.1032 0.2177
10.8734 0.1220 0.2302 0.1029 0.0467 0.1263
10.7568 0.0301 0.0275 0.3376 0.0403 0.1776
10.6067 0.0644 0.0755 0.2351 0.0206 0.2448
10.5536 0.0234 0.3362 0.0854 0.0495 0.1343
10.1349 0.1503 0.3404 0.0563 0.0372 0.0912
10.0187 0.1792 0.3331 0.0173 0.1338 0.0176
9.7780 0.2376 0.0632 0.2909 0.0840 0.0304
9.4237 0.1757 0.1981 0.0390 0.2425 0.0983

Average: 0.1171 0.1779 0.1284 0.0949 0.1228
Standard Deviation: 0.0712 0.1255 0.1150 0.0737 0.0740

Table D.6: The 10 worst flexible structure configurations for the Housing dataset, based
on cross validation scores from Experiment 2-2. The average learning rate values and
standard deviations for each tree are included.

D.4 Seoul Bike Sharing

The ten best and worst performing configurations of Experiment 2-2 on the Seoul Bike
Sharing dataset are tabulated in Table D.7 and D.8, respectively.

The prediction performance of the ten best configurations ranged from 158.61 to
161.98 MAE. Generally, the configurations were quite similar in learning rate values for the
different trees. For instance, the average of the first tree was 0.46, of which all configurations
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had a relatively close value, derived from the low standard deviation. The same can be said
for the other trees. The 10 best configurations were thus similar, but clearly distinguishable.

The prediction performance of the ten worst configurations ranged from 447 to 343.81
MAE. Much like with the best configurations, the worst configurations were quite similar.
For instance, the average of the first tree was 0.15, of which all configurations had a
relatively close value, derived from the low standard deviation. The same can be said for
the other trees. The 10 worst configurations were thus similar, but clearly distinguishable.

Comparing the best and worst configurations on the Seoul Bike Sharing dataset, it
was apparent that the learning rate values were very different between these cases. This
can be demonstrated with the learning rate averages, which were very low for the worst
configurations, compared to those of the best. These differences, as well as the similarities
in characteristics between the configurations in each prediction performance group, indicate
that the area of best performance in the learning rate search landscape can be predicted
and exploited. The fact that similar prediction performance was achieved with similar, but
slightly different configurations, also indicate that the area of best performance is relatively
lenient. Roughly the average plus/minus the standard deviation for each tree.

Prediction Performance learning rate

MAE Tree 1 Tree2 Tree3d Treed Treed
158.61 0.5273 0.3989 0.7306 0.9932 0.5576
159.15 0.3732 0.5087 0.8396 0.5465 0.9629
160.44 0.5252 0.4618 0.7617 0.8963 0.9926
160.58 0.5227 0.4553 0.7556 0.8777 0.786
160.66 0.2621 0.5754 0.7738 0.7255 0.8149
160.67 0.4232 0.6331 0.4553 0.6662 0.8628
161.29 0.5623 0.8453 0.7528 0.9199 0.638
161.66 0.4581 0.6855 0.5342 0.6603 0.8314
161.82 0.5379 0.7262 0.6016 0.8429 0.6669
161.98 0.4221 0.7587 0.7062 0.4919 0.61

Average: 0.4614 0.6049 0.6911 0.7620 0.7723

Standard Deviation: 0.0935 0.1486 0.1210 0.1689 0.1491

Table D.7: The 10 best flexible structure configurations for the Seoul Bike Sharing dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.
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Prediction Performance learning rate

MAE Tree 1 Tree 2 Tree 3 Tree4 Tree 5
447 0.0736 0.0609 0.0986 0.026 0.1961
397.23 0.0728 0.2722 0.0212 0.0891 0.1101
374.31 0.1434 0.279 0.1273 0.0382 0.0321
373.54 0.1286 0.0077 0.1887 0.0477 0.2521
368.36 0.0576 0.1124 0.2171 0.019 0.2351
364.22 0.1428 0.0212 0.0323 0.2146 0.2399
357.29 0.1555 0.0006 0.1026 0.0407 0.3491
354.18 0.3346 0.1026 0.0857 0.1311 0.0171
347.67 0.3534 0.2176 0.0131 0.0779 0.0133
343.81 0.0989 0.0354 0.255 0.0434 0.2783
Average: 0.1561 0.1110 0.1142 0.0728 0.1723

Standard Deviation: 0.1047 0.1079 0.0836 0.0602 0.1206

Table D.8: The 10 worst flexible structure configurations for the Seoul Bike Sharing dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.

D.5 Car Evaluation

The ten best and worst performing configurations of Experiment 2-2 on the Car Evaluation
dataset are tabulated in Table D.9 and D.10, respectively.

The prediction performance of the ten best configurations were exactly 97.97% Accuracy.
Generally, the configurations were quite similar in learning rate values for the different
trees. For instance, the average of the first tree was 0.84, of which most configurations
had a relatively close value, derived from the relatively low standard deviation. The same
can be said for the other trees. The 10 best configurations were thus similar, but clearly
distinguishable.

The prediction performance of the ten worst configurations ranged from 93.06% to
93.93% Accuracy. Much like with the best configurations, the worst configurations were
relatively similar. For instance, the average of the first tree was 0.08, of which most
configurations had a relatively close value, derived from the low standard deviation. The
same can be said for the other trees, though the last two trees seemed a bit more variable.
The 10 worst configurations were thus similar, but clearly distinguishable.

Comparing the best and worst configurations on the Car Evaluation dataset, the
learning rate values were quite different based on the first three trees, where the average
were considerably lower. These differences, as well as the similarities in characteristics
between the configurations in each prediction performance group, indicate that the area of
best performance in the learning rate search landscape can be predicted and exploited.
The fact that similar prediction performance was achieved with similar, but slightly different
configurations, also indicate that the area of best performance is relatively lenient. Roughly
the average plus/minus the standard deviation for each tree.
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Prediction Performance learning rate
Accuracy Tree 1 Tree 2 Tree3 'Treed4 'Treeb
97.97% 0.5821 0.4967 0.8327 0.5056 0.7843
97.97% 0.8484 0.9923 0.4427 0.7402 0.6889
97.97% 0.4487 0.8058 0.5471 0.6914 0.6060
97.97% 0.7356 0.7264 0.8819 0.9562 0.8213
97.97% 0.7109 0.6868 0.2093 0.8026 0.6677
97.97% 0.5947 0.6604 0.2807 0.4813 0.5160
97.97% 0.2037 0.5690 0.6839 0.6156 0.6069
97.97% 0.8636 0.7014 0.4379 0.7817 0.6151
97.97% 0.8638 0.6787 0.4234 0.7250 0.3839
97.97% 0.8891 0.4379 0.9270 0.5144 0.9304
Average: 0.8498 0.6755 0.5666 0.6814 0.6620

Standard Deviation 0.2212 0.1566 0.2530 0.1523 0.1564

Table D.9: The 10 best flexible structure configurations for the Car Evaluation dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.

Prediction Performance learning rate
Accuracy Tree 1 Tree2 'Tree3 'Treed4 'Treeb
93.06% 0.0088 0.1973 0.1069 0.8142 0.1515
93.06% 0.1869 0.2932 0.3401 0.0824 0.9740
93.06% 0.0105 0.2720 0.1631 0.6809 0.0275
93.06% 0.0312 0.0872 0.1452 0.9860 0.3675
93.35% 0.0017 0.1114 0.2371 0.2634 0.6137
93.64% 0.1430 0.3250 0.2750 0.9479 0.1705
93.64% 0.2714 0.3944 0.0855 0.1484 0.8479
93.93% 0.0371 0.0243 0.0644 0.0442 0.3602
93.93% 0.0166 0.2015 0.0240 0.4470 0.7809
93.93% 0.1048 0.3988 0.3580 0.8624 0.0027
Average: 0.0812 0.2305 0.1799 0.5276 0.4296

Standard Deviation: 0.0924 0.1286 0.1169 0.3736 0.3537

Table D.10: The 10 worst flexible structure configurations for the Car Evaluation dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.

D.6 Statlog Satellite

The ten best and worst performing configurations of Experiment 2-2 on the Statlog Satellite
dataset are tabulated in Table D.11 and D.12, respectively.

The prediction performance of the ten best configurations ranged from 89.40% to
89.15% Accuracy. Generally, the configurations were quite similar in learning rate values
for the different trees. For instance, the average of the first tree was 0.71, of which most
configurations had a relatively close value, derived from the relatively low standard deviation.
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The same can be said for the other trees. The 10 best configurations were thus similar, but
clearly distinguishable.

The prediction performance of the ten worst configurations ranged from 85.35% to 86.25%
Accuracy. Much like with the best configurations, the worst configurations were relatively
similar. For instance, the average of the first tree was 0.10, of which most configurations
had a relatively close value, derived from the relatively low standard deviation. The
same can be said for the other trees, though Tree 3 and 4 seemed more variable, having
standard deviations above 0.3. The 10 worst configurations were thus similar, but clearly
distinguishable.

Comparing the best and worst configurations on the Statlog Satellite dataset, the
learning rate values were quite different, based especially on Tree 1, 2 and 5, where
the average were considerably lower. These differences, as well as the similarities in
characteristics between the configurations in each prediction performance group, indicate
that the area of best performance in the learning rate search landscape can be somewhat
predicted and exploited. The fact that similar prediction performance was achieved with
similar, but slightly different configurations, also indicate that the area of best performance
is relatively lenient. Roughly the average plus/minus the standard deviation for each tree.

Prediction Performance learning rate
Accuracy Tree 1 Tree 2 Tree3 Treed4 Treeb
89.40% 0.6297 0.5606 0.6656 0.5940 0.6475
89.35% 0.7016 0.4004 0.9085 0.9940 0.7722
89.35% 0.4031 0.9614 0.9478 0.2738 0.9559
89.30% 0.6405 0.6806 0.7525 0.9099 0.5454
89.25% 0.5870 0.6280 0.6077 0.8530 0.6518
89.25% 0.5151 0.5618 0.7061 0.8788 0.9832
89.20% 0.3713 0.5709 0.9270 0.1636 0.9943
89.20% 0.3865 0.8413 0.8306 0.8341 0.8293
89.20% 0.3871 0.7425 0.9352 0.5672 0.8332
89.15% 0.4109 0.5955 0.7579 0.6806 0.9731
Average: 0.7143 0.6543 0.8039 0.6749 0.8186

Standard Deviation: 0.1267 0.1601 0.1232 0.2781 0.1615

Table D.11: The 10 best flexible structure configurations for the Statlog Satellite dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.
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Prediction Performance learning rate
Accuracy Tree 1 Tree 2 Tree3 'Treed4 'Treeb
85.35% 0.0115 0.0651 0.0104 0.0264 0.2144
85.60% 0.0728 0.2073 0.0154 0.6814 0.0881
86.00% 0.0142 0.0064 0.9426 0.0661 0.0413
86.00% 0.0330 0.0167 0.9585 0.2144 0.0387
86.00% 0.0285 0.1065 0.1782 0.7172 0.0055
86.15% 0.0379 0.0583 0.2143 0.9103 0.3787
86.20% 0.5267 0.0007 0.0277 0.0589 0.4390
86.25% 0.1076 0.1970 0.9836 0.0884 0.0966
86.25% 0.1660 0.0355 0.1593 0.7996 0.0345
86.25% 0.0124 0.8591 0.4488 0.0349 0.0802
Average: 0.1011 0.1553 0.3939 0.3598 0.1417

Standard Deviation: 0.1576 0.2581 0.4122 0.3676 0.1525

Table D.12: The 10 worst flexible structure configurations for the Statlog Satellite dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.

D.7 Winequality-red

The ten best and worst performing configurations of Experiment 2-2 on the Winequality-red
dataset are tabulated in Table D.13 and D.14, respectively.

The prediction performance of the ten best configurations were ranged from 68.75%
to 67.81% Accuracy. Generally, the configurations were relatively similar in learning rate
values for the different trees. For instance, the average of the first tree was 0.69, of which
most configurations had a relatively close value, derived from the low standard deviation.
The same can be said for the other trees, though Tree 2 seemed a bit more variable, having
a standard deviation above 0.3. The 10 best configurations were thus similar, but clearly
distinguishable.

The prediction performance of the ten worst configurations ranged from 54.38% to
55.63% Accuracy. Much like with the best configurations, the worst configurations were
relatively similar. For instance, the average of the first tree was 0.13, of which most
configurations had a relatively close value, derived from the low standard deviation. The
same can be said for the other trees, though Tree 2, 4 and 5 seemed more variable, having
standard deviations above 0.3. The 10 worst configurations were thus relatively similar,
but clearly distinguishable.

Comparing the best and worst configurations on the Winequality-red dataset, the
learning rate values were somewhat different based on the averages. These were generally
slightly lower for the worst configurations. This indicates that the area of best performance
in the learning rate landscape might be somewhat difficult to predict and exploit with this
dataset.
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Prediction Performance learning rate
Accuracy Tree 1 Tree 2 Tree 3 Tree4 Tree 5
68.75% 0.7345 0.2266 0.1696 0.5744 0.9483
68.44% 0.7188 0.9659 0.5016 0.2606 0.4672
68.44% 0.7257 0.9053 0.4448 0.8034 0.8930
68.13% 0.6122 0.7770 0.1698 0.6134 0.4078
68.13% 0.8391 0.4424 0.3853 0.7904 0.9422
68.13% 0.6381 0.0054 0.8078 0.2033 0.6488
68.13% 0.6277 0.8073 0.8595 0.2831 0.7305
67.81% 0.7586 0.8842 0.6014 0.8776 0.4579
67.81% 0.6511 0.8123 0.6908 0.2642 0.0782
67.81% 0.6376 0.7110 0.6877 0.8553 0.3538
Average: 0.6943 0.6537 0.5318 0.5526 0.5928

Standard Deviation: 0.0728 0.3212 0.2427 0.2757 0.2888

Table D.13: The 10 best flexible structure configurations for the Winequality-red dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.

Prediction Performance learning rate
Accuracy Tree 1 Tree 2 Tree3 Tree4 Tree 5
54.38% 0.0988 0.9985 0.1226 0.0432 0.3164
54.69% 0.0905 0.0395 0.6252 0.6906 0.5737
55.00% 0.1281 0.0177 0.8340 0.3300 0.6649
55.00% 0.1024 0.8798 0.3036 0.6985 0.1708
55.31% 0.1004 0.7277 0.1787 0.8585 0.0682
55.31% 0.0997 0.5753 0.3958 0.2960 0.2404
55.63% 0.1344 0.9880 0.2924 0.0097 0.1818
55.63% 0.3178 0.3007 0.3335 0.2010 0.9085
55.63% 0.1361 0.8955 0.2403 0.5106 0.9096
55.63% 0.1442 0.2210 0.0546 0.9118 0.3448
Average: 0.1352 0.5643 0.3381 0.4550 0.4379

Standard Deviation: 0.0670 0.3895 0.2349 0.3271 0.3073

Table D.14: The 10 worst flexible structure configurations for the Winequality-red dataset,
based on cross validation scores from Experiment 2-2. The average learning rate values
and standard deviations for each tree are included.






Appendix E

Experiment 5 Per-Dataset Results

E.1 Concrete

The results of Experiment 2-3 for the Concrete dataset are tabulated in Table E.1. The
best prediction performance obtained across all search processes was 3.8006 MAE, which
was obtained with 2000 search iterations and quniform as the value selection method.
Comparably, the best prediction performance with uniform was 3.8109 MAE, also obtained
through 2000 iterations. Quniform obtained better prediction performance in all processes
except the one with 1000 iterations. However, this this value, 3.8784, was worse that
obtained in the 500 iteration process, being 3.84. Regarding the configurations obtained
with uniform and quniform, these were quite similar in the 500 and 2000 iterations search
processes, and relatively different in the 1000 iteration process.

Due to the fact that quniform obtained the best prediction performance, and better in
two of the three search processes, it seemed like quniform was generally a more effective
value selection method for the Concrete dataset. However, as much as 2000 iterations was
still necessary to obtain the best prediction performance.

500 Iterations 1000 Iterations 2000 Iterations
Uniform Quniform | Uniform Quniform | Uniform Quniform

MAE 3.8946 3.8416 3.8281 3.8784 3.8109 3.8006
Tree 1 learning rate | 0.3227 0.32 0.3372 0.57 0.3210 0.35
Tree 2 learning rate | 0.5303 0.61 0.5833 0.66 0.5244 0.6
Tree 3 learning rate | 0.5281 0.56 0.4918 0.56 0.5120 0.52
Tree 4 learning rate | 0.7319 0.9 0.6342 0.89 0.7751 0.78
Tree 5 learning rate | 0.8567 0.84 0.9967 0.83 0.9491 0.94

Table E.1: The best MAE and flexible structure configuration, defined by learning rate,
for the uniform and quniform value selection methods, obtained through separate runs of
500, 1000 and 2000 iterations of Bayesian Optimization on the Concrete dataset.

E.2 Energy Prediction

The results of Experiment 2-3 for the Energy Predictin dataset are tabulated in Table
E.2. The best prediction performance obtained across all search processes was 41.7235
MAE, which was obtained with 2000 search iterations and quniform as the value selection
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method. Comparably, the best prediction performance with uniform was 41.7953 MAE,
also obtained through 2000 iterations. Quniform obtained better prediction performance
in all processes. Regarding the configurations obtained with uniform and quniform, these
were generally quite similar.

Overall, it seemed like quniform was a more effective value selection method for the
Energy Prediction dataset, but still needed as much as 2000 iterations to obtain the best

found prediction performance.

500 Iterations 1000 Iterations 2000 Iterations
Uniform Quniform | Uniform Quniform | Uniform Quniform

MAE 41.9186  41.8425 | 41.8411  41.8388 | 41.7953  41.7235
Tree 1 learning rate | 0.2117 0.29 0.3017 0.3 0.3022 0.21
Tree 2 learning rate | 0.2974 0.24 0.2108 0.3 0.2054 0.27
Tree 3 learning rate | 0.2509 0.34 0.3243 0.27 0.3134 0.31
Tree 4 learning rate | 0.2473 0.27 0.3469 0.18 0.2784 0.27
Tree 5 learning rate | 0.3007 0.24 0.2101 0.23 0.2532 0.29

Table E.2: The best MAE and flexible structure configuration, defined by learning rate,
for the uniform and quniform value selection methods, obtained through separate runs of
500, 1000 and 2000 iterations of Bayesian Optimization on the Energy Prediction dataset.

E.3 Housing

The results of Experiment 2-3 for the Housing dataset are tabulated in Table E.3. The
best prediction performance obtained across all search processes was 2.3175 MAE, which
was obtained with 2000 search iterations and quniform as the value selection method.
Comparably, the best prediction performance with uniform was 2.3210 MAE, also obtained
through 2000 iterations. Quniform obtained better prediction performance in all processes
except the one with 500 iterations. Regarding the configurations obtained with uniform and
quniform, these were generally quite similar in the 1000 and 2000 iteration search processes,
and relatively different in the 500 iteration process.

Due to the fact that quniform obtained the best prediction performance, and better in
two of the three search processes, it seemed like quniform was generally a more effective
value selection method for the Housing dataset. However, as much as 2000 iterations was
still necessary to obtain the best prediction performance.



E.4. SEOUL BIKE SHARING 149

500 Iterations 1000 Iterations 2000 Iterations
Uniform Quniform | Uniform Quniform | Uniform Quniform

MAE 2.3813 2.4047 2.3596 2.3397 2.3210 2.3175
Tree 1 learning rate | 0.3161 0.21 0.3253 0.2 0.1926 0.2
Tree 2 learning rate | 0.4407 0.58 0.4542 0.55 0.5252 0.48
Tree 3 learning rate | 0.5836 0.45 0.5256 0.56 0.5141 0.53
Tree 4 learning rate | 0.8792 0.96 0.9619 0.77 0.4792 0.44
Tree 5 learning rate | 0.8009 0.56 0.7894 0.85 0.9836 0.92

Table E.3: The best MAE and flexible structure configuration, defined by learning rate,
for the uniform and quniform value selection methods, obtained through separate runs of
500, 1000 and 2000 iterations of Bayesian Optimization on the Housing dataset.

E.4 Seoul Bike Sharing

The results of Experiment 2-3 for the Seoul Bike Sharing dataset are tabulated in Table
E.4. The best prediction performance obtained across all search processes was 159.64 MAE,
which was obtained with 2000 search iterations and quniform as the value selection method.
Comparably, the best prediction performance with uniform was 159.76 MAE, also obtained
through 2000 iterations. Quniform obtained better prediction performance in all processes
on this dataset. Regarding the configurations obtained with uniform and quniform, these
were generally quite similar.

Overall, it seemed like quniform was a more effective value selection method for the
Seoul Bike Sharing dataset, but still needed as much as 2000 iterations to obtain the best
found prediction performance.

500 Iterations 1000 Iterations 2000 Iterations
Uniform Quniform | Uniform Quniform | Uniform Quniform

MAE 161.09 160.42 160.44 160.23 159.76 159.64
Tree 1 learning rate | 0.5152 0.49 0.3617 0.5 0.5048 0.5
Tree 2 learning rate | 0.6162 0.63 0.6838 0.61 0.5888 0.61
Tree 3 learning rate | 0.6825 0.62 0.6303 0.63 0.6174 0.61
Tree 4 learning rate | 0.8011 0.87 0.6594 0.73 0.7708 0.6
Tree 5 learning rate | 0.8822 0.83 0.8798 0.82 0.8807 0.87

Table E.4: The best MAE and flexible structure configuration, defined by learning rate,
for the uniform and quniform value selection methods, obtained through separate runs of
500, 1000 and 2000 iterations of Bayesian Optimization on the Seoul Bike Sharing dataset.

E.5 Car Evaluation

The results of Experiment 2-3 for the Car Evaluation dataset are tabulated in Table E.5.
The best prediction performance obtained across all search processes was 0.015625 Error,
which was obtained with 2000 search iterations and uniform as the value selection method.
However this was only a slightly better value than the best obtained with quniform, being
0.015628 Error, which was obtained in both the 1000 and 2000 iteration processes. Quniform
obtained better prediction performance in all other processes beyond the 2000 iteration one,
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which had and arguably insignificant difference. Regarding the configurations obtained
with uniform and quniform, these were generally quite similar across all search processes.

Even though the best prediction performance was obtained with uniform, the difference
between this Error and the best obtained with quniform was arguably insignificant. The best
prediction performance with quniform was additionally obtained with 1000 less iterations.
Therefore, quniform was clearly competitive with uniform, and arguably better, as a value
selection method for the Car Evaluation dataset.

500 Iterations 1000 Iterations 2000 Iterations

Uniform Quniform | Uniform Quniform | Uniform Quniform

Error 0.018808  0.018230 | 0.016786 0.015628 | 0.015625 0.015628
Tree 1 learning rate | 0.8435 0.91 0.9065 0.91 0.8056 0.91
Tree 2 learning rate | 0.9377 0.98 0.9774 0.98 0.9078 0.96
Tree 3 learning rate | 0.8295 0.91 0.9819 1.0 0.9839 0.98
Tree 4 learning rate | 0.9166 0.87 0.9805 0.95 0.9846 0.95
Tree 5 learning rate | 0.8243 0.77 0.9459 0.84 0.9995 0.94

Table E.5: The best Error and flexible structure configuration, defined by learning rate,
for the uniform and quniform value selection methods, obtained through separate runs of
500, 1000 and 2000 iterations of Bayesian Optimization on the Car Evaluation dataset.

E.6 Statlog Satellite

The results of Experiment 2-3 for the Statlog Satellite datset are tabulated in Table E.6.
The best prediction performance obtained across all search processes was 0.099456 Error,
which was obtained with 500 search iterations and uniform as the value selection method.
Comparably, the best prediction performance with quniform was 0.099844, obtained trough
1000 iterations. Quniform obtained worse prediction performance in all processes. A
noteworthy observation was that prediction performance did not seem get better with
more search iterations, but seemed quite random. Regarding the configurations obtained
with uniform and quniform, these were generally quite similar in the 1000 iteration search
process, but relatively different in the 500 and 2000 iterations processes.

Generally it seemed like quniform was a less effective value selection method than
uniform for the Statlog Satellite dataset.

500 Iterations 1000 Iterations 2000 Iterations

Uniform Quniform | Uniform Quniform | Uniform Quniform

Error 0.099456  0.100777 | 0.099689 0.099844 | 0.099689  0.100466
Tree 1 learning rate | 0.3528 0.3 0.3815 0.38 0.3537 0.27
Tree 2 learning rate | 0.5744 0.8 0.7722 0.79 0.5342 0.78
Tree 3 learning rate | 0.9461 0.76 0.9589 0.94 0.8221 0.97
Tree 4 learning rate | 0.8592 0.83 0.9228 1.0 0.9077 0.89
Tree 5 learning rate | 0.8051 0.92 0.8782 1.0 0.7003 0.83

Table E.6: The best Error and flexible structure configuration, defined by learning rate,
for the uniform and quniform value selection methods, obtained through separate runs of
500, 1000 and 2000 iterations of Bayesian Optimization on the Statlog Satellite dataset.
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E.7 Winequality-red

The results of Experiment 2-3 for the Winequality-red dataset are tabulated in Table E.7.
The best prediction performance obtained across all search processes was 0.343045 Error,
which was obtained with 2000 search iterations and quniform as the value selection method.
Comparably, the best prediction performance with uniform was 0.343666, also obtained
through 2000 iterations. Quniform obtained better prediction performance in all processes
except the one with 1000 iterations. regarding the configurations obtained with uniform
and quniform, these were generally quite similar in the 1000 and 2000 iteration search
processes, and quite different in the 500 iteration process.

Due to the fact that quniform obtained the best prediction performance, and better in
two of the three search processes, it seemed like quniform was generally a more effective
value selection method for the Winequality-red dataset. However, as much as 2000 iterations
was still necessary to obtain the best prediction performance.

500 Iterations 1000 Iterations 2000 Tterations

Uniform Quniform | Uniform Quniform | Uniform Quniform

Error 0.346778  0.343972 | 0.344907 0.347097 | 0.343666 0.343045
Tree 1 learning rate | 0.3624 0.52 0.4231 0.42 0.4633 0.46
Tree 2 learning rate | 0.8996 0.34 0.8410 0.73 0.5977 0.57
Tree 3 learning rate | 0.8225 0.76 0.9832 0.98 0.9209 0.88
Tree 4 learning rate | 0.7145 0.96 0.9369 0.9 0.9997 0.96
Tree 5 learning rate | 0.7881 1.0 0.9553 0.56 0.9373 1.0

Table E.7: The best Error and flexible structure configuration, defined by learning rate,
for the uniform and quniform value selection methods, obtained through separate runs of
500, 1000 and 2000 iterations of Bayesian Optimization on the Winequality-red dataset.












