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ABSTRACT A bi-directional power exchange between the plug-in electric vehicle (PEV) and the AC
electrical grid is necessary to perform the Vehicle to Grid (V2G) andGrid to Vehicle (G2V) operations.While
performing these operations, different power converters and controllers play an important role as mediators
between the PEV and electric grid. Various works have demonstrated the utilization of controllers for PEV’s
battery power management. However, the existing conventional controllers have technical shortcomings
about vulnerability to controller gain, accurate mathematical modelling, poor adaptability, sluggish response
to a sudden outburst and lengthy interval execution processing. Therefore, this paper develops an adaptive
neuro-fuzzy inference system (ANFIS) control strategy based bidirectional power management scheme to
ensure the optimal electrical power flow exchange between the AC electrical grid and battery storage system
in PEVs. This paper aims to reduce the stress on the grid power side and utilize the unused power properly.
The performance of the ANFIS model is varied using two PEVs based on real-life power consumptions
by different loads at home based on five operational modes. Besides, a comparative analysis between the
ANFIS controller and the PI controller is carried out to demonstrate the effectiveness of the proposed control
scheme. The results illustrate that the proposed ANFIS controller delivers a smoother power injection from
the PEV to the AC power grid with the least harmonics as well as achieves a smoother battery profile and
less distortion when power is absorbed by PEV battery.

INDEX TERMS ANFIS controller, plug-in electric vehicle, bidirectional power, state of charge,
PI controller.

I. INTRODUCTION
The rising demand for global energy has significantly
increased the use of fossil fuels, but they have serious
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negative impacts on the environment and human health [1].
Thus, to reduce the dependency on traditional energy sources
as well as fulfil the energy requirement and manage the
global temperature rise, there is a high interest to use not
only renewable energy resources but also plug-in electric
vehicles (PEVs) [2]–[4]. Because most renewable energy

166762 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6558-2780
https://orcid.org/0000-0002-0162-3360
https://orcid.org/0000-0001-9060-4454
https://orcid.org/0000-0002-6874-9371
https://orcid.org/0000-0002-7744-6102
https://orcid.org/0000-0002-4556-2774
https://orcid.org/0000-0001-5153-0675


Md. A. Islam et al.: Modeling and Performance Evaluation of ANFIS Controller-Based Bidirectional Power Management Scheme

resources are intermittent, an energy storage device is usually
considered during the system development; nevertheless,
the expense of energy storage devices is not always
justified [5], [6]. In such a situation, existing energy storage
devices, such as PEVs, can play a critical role in terms
of cost reduction and storage. PEVs are a new form of
electrical load that can be used as a medium of transport
and as a medium of energy storage [4]. While each PEV
is considered a standalone device, its contribution to the
power system is insignificant while performing as an energy
storage device. Another driving force of increasing the PEV
in the transport and regular use sector is the integration of
solar PV in the PEV as a driving source of energy. Particle
Swarm Optimization (PSO) based controlled strategy for
Photovoltaic System in the purpose of autonomy operation of
PEV is also getting popular, but due to intermittency of solar
sometimes PEV has to perform G2V operation for charging
purpose as well [7]. Multiple recharge-based mathematical
modelling, including the traction motor concept of PEV,
is getting popular to promote the use of PEV [8]. However, its
fast growth in quantity is interfering with the power system
stability. Thus, researchers are doing their best to utilize
the PEVs collectively in an optimal way to the wellbeing
of the power system by operating them in different modes
of operation [9]. Two modes of operations are available to
connect the PEVs with the power grid. The Grid to Vehicle
(G2V) mode is utilized to charge the PEV’s battery for
mobility purposes and to utilize the unused power during the
off-peak hour. Again, the Vehicle to Grid (V2G) mode of
operation is utilized to inject power back from PEV to the grid
utility system when additional power is required during the
peak hour, thus making the power system more reliable [10].

Different types of converters work as mediators for
any bi-directional power exchange between PEV and AC
power grid. These mediators are also bi-directional power
flow converter types. For proper management of different
mediators, different controllers are employed according
to their performances [11]. Power electronic converters
ensure the power exchange between the PEV and power
grid, monitor the state of charge (SOC) and regulate
the charging/discharging of battery that can enhance the
battery life span [12]. Some practical studies combined
the DC/DC converter and PI controller for better power
management between the AC power grid and PEV [13].
Though the controller’s contribution to power system stability
is indisputable, its improvement is growing over time. The
conventional controller such as Static VAR Compensator
(SVC) with cascaded Fractional Order Proportional Integral
Derivative controller (FOPID) improves the stability of the
power system [14]. PI controller is utilized to recharge the
hybrid energy storage system (HESS) to store energy [15].
One study showed that the PI controller applied on the V2G
and G2V operation flattened the load power curve without
considering the starting overshoot and distortion in PEV’s
battery power characteristics curve [16]. These overshoot and
distortion would reduce the battery’s overall performance

and life span over time. As PI is a traditional controller,
its efficiency can be improved by speeding up its working
capability while hybridizing it with artificial intelligence (AI)
based controller [17]. Though the PI controller is hybridized
by combining with neural networks, still reliability of the
controller is a concern to be addressed. Another study showed
that fuzzy-based PI controllers could better utilize energy
resources by two-way power exchange, fast responses with
less steady-state error, and enhanced dynamic flexibility [17].
However, the adaptability fuzzy-based PI controller is an
issue to be investigated. These days, the application of PI
controller with regard to sophisticated power management
is losing its popularity due to its technical limitations like
sluggish or no reaction to sudden outburst, concurrence
to transient overshoot, vulnerability to controller gain,
poor adaptability, large time-delayed processing, precise
mathematical modeling, etc. [18]. Controllers like fuzzy
and neuro-fuzzy have overcome most of the PI controller’s
shortcomings. Different mathematical models have been
developed to design fuzzy [19] and adaptive neuro-fuzzy
controllers (ANFIS) [20].

Fuzzy logic and ANFIS based controllers are viable when
a precise mathematical calculation is impossible and load
changes are not linear [21]. Fuzzy controllers are even
more advantageous where easy tuning is needed with human
knowledge or without proper human knowledge. The devel-
opment of fuzzy logic controller (FLC) is straightforward
and cost-effective compared to a traditional PI controller.
Moreover, FLC is more robust under a broader range of
operations [22]. FLC can be a better choice than a traditional
PI controller, where a fast response system is required,
but high reliability is still an issue [23]. FLC-based direct
torque methodology of a double motor-based PEV has been
well explained [24]. A combined direction-based genetic
algorithm (GA) and fuzzy inference-based mechanism are
utilized on a remotely-operated vehicle (ROV) [25]. With
all the advantages of FLC, it is possible to incorporate the
combined effect of fuzzy set theory along with artificial
neural networks (ANN) to develop an ANFIS method. The
ANN integrated FLC makes ANFIS a robust and effective
technique. At the same time, the adaptive capability of
ANFIS is increased by a trial-and-error process where
expert knowledge is not mandatory. In a fuzzy system,
rules are generated with human knowledge and manually,
where ANFIS generates sufficient rules with the reference
of input and output data considering the benefits of ANN.
Sometimes, it is not possible to consider all criteria as there
are several criteria of weights and position in input choice
and assessment procedure. However, ANFIS chooses the
finest combination between these criteria to get the maximum
output with a minimum error during training operation [26].

ANFIS is utilized as a modern controller by researchers
because of its enormous advantages, and it has demonstrated
its ingenious performance in different sectors over traditional
controllers. ANFIS controller outperforms the traditional
controller with respect to time efficiency and optimization
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of membership functions (MFs) [27]. The use of ANFIS is
broader in modern control systems. However, no suitable
study shows the advantage of utilizing an ANFIS controller
over a traditional controller. ANFIS makes the system easier
in terms of parameter choice and MF optimization and is
time-efficient as ANFIS utilizes training data rather than
human expert knowledge. Literature shows that ANFIS
controllers have been employed to control systems with
battery-integrated renewable energy resources better. One
study showed that effective battery power management is
possible with an ANFIS controller in a hybrid standalone
system [28]. Some researchers worked on battery power
control of photovoltaic generators with the ANFIS con-
troller [29]. Another work is done on electric power swap
between PEV and electrical grid by usingANFIS controller in
smart grid [30]. To integrate the PEV with the electrical grid,
some researchers emphasized a controller based on AI-based
ANFIS [31].

This study aims to model an ANFIS controller and
demonstrate the advantages of using this controller over the
conventional PI controller. In terms of battery characteristics,
this study also illustrates the superiority of the ANFIS
controller over the conventional controller. To illustrate the
advantages of ANFIS controller over the PI controller, the
same power exchange scheme is executed by replacing the
two PI controllers with two ANFIS (ANFIS1 and ANFIS2)
controllers. With the use of a PI controller, starting surge
and a continuous distortion were observed in the battery
power and current curves. This distortion continues until
battery operation continues, like charging and discharging
operations. This starting surge and distortion do not hamper
the bi-directional power exchange operation but have a
potential threat to battery life span and the system stability
over a long period.

In this study, one standard home with two PEVs is
considered. A bi-directional power exchange technique
reduces the stress on the grid power side and utilizes the
unused power properly, with the utilization of G2V and
V2G operations. Two ANFIS controllers are developed for
the robust operation of battery charging and discharging of
PEV with a proposed five steps flexible control strategy. The
ANFIS controller is chosen to enable the power exchange
between the PEV and the AC power grid. A five operational
modes flexible control strategy is developed to regulate
this power exchange, thus reducing the grid stress. The
proposed five steps flexible control strategy ensures the
connection time and charging/discharging duration of each
PEV while they are available at home. This control logic
aims to determine the connection status of the vehicles in
the system when they are available at home and find out
the preferred vehicle among them. After that, the SOC value
of each connected vehicle is determined and then set their
charging/discharging duration for better results. To sum up,
the whole study aims to do the following:
• To develop a model which will perform V2G and G2V
operations (between the AC power grid and PEVs).

FIGURE 1. Grid-connected smart home with a power converter and smart
appliances and PEVs.

• To develop two ANFIS controllers to enable the power
exchange between the PEVs and AC power grid.

• To develop a flexible control logic/strategy to perform
the V2G and G2V operations efficiently and smoothly.

• Finally, to show the advantages of using ANFIS
controller over PI controller.

The study is organized into six sections. The second part
describes the considered system and the descriptions of
different power converters, sensing circuits, and modelling
of PEV’s battery. Part 3 shows the details of the proposed
five operating modes of the flexible control strategy. Part
4 shows an elaborated description of modelling of two
different ANFIS controllers where ANFIS1 is utilized for
battery current control and ANFIS2 is utilized for DC bus
voltage control. Part 5 shows the simulation and results, and
a conclusion is drawn in part 6.

II. SYSTEM MODELLING, WORKING PRINCIPLE, AND
EXECUTION PROCESS
A. OVERVIEW OF THE SYSTEM
The paper mainly focuses on modelling different power con-
verters to implement V2G and G2V operation successfully
and shows how a modern controller like ANFIS can perform
better power management operation than a conventional PI
converter. Fig. 1 shows the grid integrated smart home, which
includes AC/DC appliances and bi-directional AC/DC power
converters.

The battery used in PEV is considered a lithium-ion
(Li-ion) battery pack because of its several benefits like
long battery life, more usable capacity, constant power,
temperature tolerance, and fast-changing safety features [32].
An R-L filter is used on the grid side, ensuring quality
power when power is received by the grid or infused from
the grid. This R-L filter also helps minimize the harmonics
generated by the inverter and ensures a 3-8 quasi voltage of
sinusoidal form. Otherwise, harmonics may distort the grid
power quality. A bidirectional AC/DC converter is utilized
to exchange power between the AC grid and the DC power
link. It works as a rectifier when power flows from the AC
grid to the DC power link and as an inverter when power
is injected from the DC power link to the AC grid. One
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FIGURE 2. Demonstration of different power converters and controllers for power exchange between PEV and grid.

DC/DC switched-mode power supply (SMPS) converter is
utilized between the PEV’s battery and AC/DC converter.
This DC/DC SMPS converter ensures a sufficient voltage
level for both the DC bus and battery. The voltage coming
from the DC/DC converter ensures a reference DC bus
voltage so that the power can be easily injected into the AC
grid.

The charging and discharging of the battery are determined
by negative and positive battery current, respectively. This
charging and discharging battery current may contain ripples
that are eliminated by the L filter. Fig. 2 presents an
overview of the proposed system, including power converters,
controllers, DC link bus voltage, filter, sensing devices, PEV
battery, and AC power grid.

B. POWER CONVERTERS AND SENSING DEVICE
Power control between the PEV and electric grid is achieved
with the help of different power converters and controllers
along with a control algorithm. The converters and their
associated controllers are divided into three parts. Part-
A shows the bi-directional AC/DC converter along with
its associated controller, Part-B shows the DC bus voltage
controller, and Part-C shows the DC/DC SMPS and its
associated controller.

1) PART-A: BI-DIRECTIONAL AC/DC CONVERTER
To perform the operation of V2G and G2V, there should
be bi-directional connectivity between the DC distribution
system and AC grid, and in this study, this connectivity is
investigated. In Fig. 3, a fully controlled bi-directional 3-8
AC/DC converter is utilized, and this converter can exchange
the power flow at a unity power factor. To connect the AC
power grid and the converter, an L filter is utilized. The
voltage sources of the AC power grid are denoted as ea, eb,ec
and current sources are denoted as ia, ib,ic. The inductance
filter is denoted as L, and the resistance of the series R − L
circuit is denoted as R. The capacitor of the DC-side voltage

FIGURE 3. 3-8 bi-directional AC-DC/DC-AC converter.

is denoted as C . The voltage and current of the DC-side are
denoted as udc and idc, respectively. The load of theDC-side is
denoted as RL and eL . The system can be explained as stated
in equation (1) by considering the line-loop equation of the
circuit [33]. eaeb
ec

 =
R 0 0
0 R 0
0 0 R

 iaib
ic

+
 L 0 0
0 L 0
0 0 L

 p
 iaib
ic


+

 vravrb
vrc

 (1)

To control the output voltage of the rectifier, a vector
decoupling sine pulse width modulation (SPWM) control
technique is utilized. Fig. 4 shows the rectifier circuit of
the three-phase SPWM. Switches of SPWM are denoted
as Sa, Sb,Sc. The switches are utilized to set up the linear
relationship between the rectifier inputs (vra, vrb,vrc) and dc
bus voltage (vdc−bus). This linear relationship is expressed as
mathematically in equation (2) [7].

vra =
Sa.vdc−bus

2
, vrb =

Sb.vdc−bus
2

, vrc =
Sc.vdc−bus

2
(2)
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FIGURE 4. Part-A: A bi-directional vector decoupling SPWM rectifier.

After using Park’s transformation, the system equation
is converted into rotating d-q references and expressed
mathematically in equation (3) [7].[

eq
0

]
=

[
R+ Lp wL
−wL R+ Lp

] [
iq
id

]
+

[
vrq
vrd

]
(3)

where vrq =
Sq.vdc−bus

2 , vrd =
Sd .vdc−bus

2
The governing equation of DC output of rectifier referred

to DC voltage side is given by the equation (4) [34].

C
dvdc−bus

dt
=

3.Sq.iq
2
−
vdc−bus
RL

(4)

The finalizedmathematical model of the prescribed system
can be expressed by equation (5) [34].
diq
dt
did
dt
dvdc−bus

dt

 =

−R
L
w
3Sq
2C

w
−R
L
0

−Sq
L
−Sd
L
−1
CRL


 iq

id
vdc−bus



+


1
L

0 0

0 0 0
0 0 0


 eq0

0

 (5)

An algorithm controls the continuous current flow during
the operation of V2G and G2V. Not only the current
but also the optimal real power (Pref−PEV1,2) exchange is
controlled by the algorithm. To ensure the power factor
at unity, the reactive power Qref−PEV1,2 is set to zero
intentionally. The power balance equation can be written by
considering the losses of the system as follows [34]:

3
2
vrqiq = vdc−busC

d
dt
vdc−bus +

v2dc
RL

(6)

PI controllers are utilized to control DC signals and
remove steady-state errors because the d-q transformation

FIGURE 5. Part-B: (a) DC bus voltage controller and (b) internal
configuration of ANFIS2 controller in Simulink block.

technique is utilized. These PI controllers are tuned for
this purpose. vcontrq and vcontrd voltages are considered as the
modulating signals for the SPWM technique. In the d-q frame
of references, the grid active and reactive power is calculated
as follows [35]:

P (t) =
3
2
(vrqiq − vrd id ) (7)

Q (t) =
3
2
(vrqid − vrd iq) (8)

where vrq =
Sqvdc−bus

2 , and vrd =
Sd vdc−bus

2 .

2) PART-B: DC BUS VOLTAGE CONTROL
This part shown in Fig. 5 (a) demonstrates the control of
DC bus voltage along with the ANFIS2 controller where the
nominal value of the DC bus voltage is chosen as 400V,
and the internal configuration of the ANFIS2 controller is
shown Fig. 5 (b). This reference value of DC bus voltage
is maintained at any mode of operation like V2G and G2V.
The ANFIS2 controller ensures this voltage level during the
operation of any direction of power exchange. DC power
exchanged (Pbatt−ref ) by the battery is calculated from DC
bus voltage (PDC−bus−ref ) and demand power (PDemand−ref )
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FIGURE 6. Part-C: (a) A bi-directional DC/DC SMPS and (b) internal
configuration of ANFIS1 controller in Simulink block.

that can be expressed as follows [16]:

Pbatt−ref = PDC−bus−ref − PDemand−ref (9)

3) PART-C: DC/DC SMPS CONVERTER
A fully controlled bi-directional DC-DC switched-mode
power supply (SMPS) converter along with ANFIS1 con-
troller is utilized and demonstrated in Fig. 6 (a), and the
internal configuration of the ANFIS1 controller is shown
in Fig. 6 (b). This converter applies the configuration of
switching frequency and sampling rate of 8 kHz and 0.3ms,
respectively. This configuration provides the converter with a
faster response of detecting any variation of load on either
side. This converter also ensures the low total harmonics
distortion (THD) and power factor at unity. A capacitor of
1200µF is utilized on the inverter side. This converter also
works in current-controlled mode and controls the battery
current to have a reference battery current value, Ibattery−ref .
Finally, this reference battery current is controlled by the
ANFIS1 controller and expressed as follows:

Um−battery = Ubattery − controller o/p

∗
(
Ibattery−ref − Ibattery

)
(10)

where Um−battery is the modulated voltage of DC/DC
SMPS (V),Ubattery is battery terminal voltage (V), and Ibattery
is the battery current.

FIGURE 7. Sensing circuit for both voltage and current detection and
measurement.

This converter also ensures two major operations such as
i) nominal voltage level for battery charging and ii) nominal
voltage level for inverter input at unity power factor. The
following equation regulated the control of this DC/DC
SMPS and expressed as follows:

mbat,reference =
Um−battery
vdc−bus

(11)

where mbat,reference is the duty ratio of the controller.

4) SENSING CIRCUIT
This study utilizes a classical sensing circuit model to
simultaneously sense the voltage and current, as shown in
Fig. 7. The Simulink configuration of the sensing circuit,
which is utilized in the grid side, is shown in Fig. 2, senses
the voltage and current from the AC power grid and finally
converts to a PWM signal with the help of the controller.
The sensors connected with the battery input side only sense
the battery input voltage and current, and accordingly, give
feedback to the controller circuit. The modulation index
regulates the output voltage of the converter. The converter
voltage is calculated as follows:

Vcc =
mvdc−bus
√
2

(12)

C. BATTERY MODELLING
In this study, the battery part of PEV is considered,
which serves the energy storage purpose and also helps in
performing V2G and G2V operations. A classical empirical
model of the Li-ion battery of PEV is considered. The Li-ion
battery model can be explained as a combination of a voltage
source and its corresponding resistance, which has been
shown in Fig. 8.

For the purpose of G2V and V2G operations, battery
function is characterized as charging and discharging mode.

The charging equation is expressed as follows [37]:

Ubatt−charge = U0 − R · ik − K ·
Q

ik · T − 0.1 · Q
· i∗

−K ·
Q

Q− i · t
· ik · T + A · e−B·ik ·T ,→ i∗

< 0 (13)
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FIGURE 8. A simplified model circuit of a lithium-ion battery [36].

The discharging equation is expressed as follows [37]:

Ubatt−discharge = U0 − R · ik − K ·
Q

Q− ik · t
· (ik

·T + i∗)+ A · e−B·ik ·T ,→ i∗ > 0 (14)

To get the optimal performance of the Li-ion battery, the
state of charge (SOC) is a very important parameter in terms
of the battery management system (BMS). In this study, the
battery SOC level is well maintained within a fixed range to
ensure longer battery life. The SOC level is maintainedwithin
20% to 80% for avoiding deep discharging and overcharging.
To determine the SOC value of battery Ah method is utilized
and expressed as follows [38]:

SOC (k) = SOC (0)−
T
Cn

∫ k

0
(η.i (t)− Sd )dt (15)

where SOC (0) denotes the primary value of SOC , T denotes
sampling time, the nominal storage volume is denoted by Cn,
η denotes coulombic efficiency, the load current is denoted
by i (t), and the self-discharging rate is denoted by Sd .

The instantaneous value of the state of charge (SOC) of the
battery can be obtained with the following equation [39]:

1(SOC) = −
ik · t
Qbatt

(16)

The number of series battery cells is calculated as
follows [16]:

Mseries =
Vdc−bus
Vreference

(17)

Parallel battery cell is calculated using the following
equation [16]:

Mparallel =
Vbattery

(V ref .cel.bat − ηE−W ·Wref .cel.bat ) ∗Mseries

(18)

where ηE−W=α·1,4, ηE−W denotes the change in energy with
respect to weight, and the PEV inclination slope is defined
as α.

The state of health (SOH ) of the battery cell is calculated
as follows [40]:

SOH = min


(
Rmax − Rt
Rmax − R0

)
∗100%(

Ct − Cmin
C0 − Cmin

)
∗100%

(19)

where Rmax is the highest admissible resistance, Rt is the
current value of resistance,R0 is the initial value of resistance,
C0 is the starting volume of capacity, Ct is the current volume
of capacity, Cmin is the minimum tolerable capacity.

III. FIVE STEPS PROPOSED CONTROL STRATEGY FOR
PEV POWER MANAGEMENT
A five operational control strategy is considered to ensure
optimal power exchange between the power grid and PEV,
as depicted in Fig. 9. This control algorithm is applicable
for residential houses having two PEVs only. This control
strategy identifies the connection status of each PEV and
determines the priority vehicle from their connection status.
The priority vehicle is determined by analyzing its SOC
status. For example, a PEV is available to inject power into
the grid, but at the same time, the AC grid also has a surplus
of power, so in this circumstance, the priority vehicle will
be waiting until the AC grid needs additional power from
the PEV. This control algorithm also avoids deep discharging
and overcharging of each priority PEV, increasing the battery
life to prevent health deterioration. The total power can be
calculated by considering the total power of the appliances
(Pappliances) and the total number of PEVs’ power (Ptotal−pev)
utilized at home. So, the total power (Ptotal) is calculated as
follows:

Ptotal = Pappliances + Ptotal−pev (20)

The reference average power (Pavg.) over 24 hours can be
calculated as follows:

Pavg. =
Ptotal
Ttotal

(21)

The amount of power (Pdiff .) that should be injected or
absorbed into the AC grid by the PEV can be calculated as
follows:

Pdiff . = Pappliances − Pavg. (22)

In every instance of time, the total number of PEV,
their connection status/time, the priority vehicle, and the
polarity of Pdiff . are determined. Some important points
were considered during the execution of the control logic
algorithm:
• First case: If the determined Pdiff . by equation (22)
is negative, then there is a power surplus in the AC
power grid and this power should be absorbed by the
connected PEV. In this instance, if the SOC value of the
connected PEV is greater than or equal to the SOCmax ,
there will be no power exchange between the PEV
and AC power grid. Else, if the SOC value of the
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FIGURE 9. Five operations-based control strategies for power exchange between PEV and AC power grid.

connected PEV is less than the SOCmax or equal to the
SOCmin then PEV will start charging until it is fully
charged.

• Second case: If the determined Pdiff . by equation (22)
is positive, then there is a power deficiency in the AC
power grid and this shortage of power should be supplied

by the connected PEV. And this is only possible if the
SOC value of the connected PEV is greater than the
SOCmin or equal to SOCmax , unless there will be no
power exchange between the PEV and AC power grid
if the SOC value of the connected PEV is less than or
equal to the SOCmin.
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Fig. 9 demonstrates that the control strategy initially takes
input of connection status of each PEV (CSpevn), SOC status
of each PEV (SOCpevn), connection time of each PEV (Tcn),
total power of home appliances (Pappliances), and average
reference power of total load (Pavg.). Five operational cases
operate the whole control strategy and they have different
interactive modes.

A. DIFFERENT INTERACTIVE OPERATIONS OF PEVS
1) OPERATION 1
This mode of operation is enabled when no PEV is connected
or the system detects zero PEV. If no PEV is detected, then no
power exchange is possible between the PEV and AC power
grid. So, the total power exchange is, ‘Ppevt = 0’.

2) OPERATION 2
This operational mode is utilized if any of the connected PEV
has to wait for discharge. This mode works for two different
cases (2.1 and 2.2). In both cases, the Pdiff . is negative, so any
vehicle that connects with the system cannot discharge the
power to the system as system has surplus of power, and at the
same time the connected PEV is also either fully or partially
charged.

Operation case 2.1 is selected by the connected PEV when
Pdiff . is less than zero or has a negative value, and the
SOC value of the connected PEV is greater than or equal to
SOCmax .
Operation case 2.2 is selected when Pdiff . is negative and

the SOC value of the connected priority or secondary PEV is
greater than SOCmin or equal to SOCmax , respectively.

So, for both cases, the total power exchange between the
PEV and AC power grid is zero (Ppevt = 0).

3) OPERATION 3
This operational mode is executedwhen a PEV needs to inject
power into the AC grid system. In this mode, Pdiff . has a
positive value, implying that the AC grid needs additional
power to drive the extra load during the peak hour. Two cases
(3.1 and 3.2) are executed for this operational mode.

Case 3.1 is detected by a connected PEV whose SOC
value is greater than SOCmin. At the same time, case 3.2
determines which PEV is the priority vehicle along with
their SOC level. The detected SOC value of the connected
priority or secondary PEV is greater than SOCmin. For both
cases, the selected PEV is ready to inject power into the AC
grid. It keeps executing this operational mode until it is fully
discharged or gets instruction from another operational mode
in the next instance of time. So, in this operational mode, total
power exchange is calculated to be ‘Ppevt = Ppev1 + Ppev2’.

4) OPERATION 4
The charging process is executed by the operational mode 4.
This operational mode is also segregated into two different
cases (4.1 and 4.2). For both cases, the Pdiff . is negative and

any PEV with SOCmin is connected with the system that can
take power from the AC grid.

For case 4.1, if the only one connected PEV has a SOC
value less than SOCmax , then it can start charging until the
current operation is executed or get the next operational
instruction.

Case 4.2 is executed when two PEVs are connected, and
a priority vehicle is selected from the connected PEVs.
If any of the connected priority or secondary vehicles have
a SOC value equal to SOCmin or less than SOCmax , then the
connected PEV will start charging.

The total power exchange between the PEV and AC power
grid for this operational mode will be ‘Ppevt = Ppev1+Ppev2’.

5) OPERATION 5
This operational mode works as opposite of operational mode
2. This operational mode provides the connected or priority
vehicle to keep waiting until it gets the opportunity to start
charging or get fully charged. Like other operational modes,
this operational mode is also the combination of two different
cases (5.1&5.2). For this operational mode, the calculated
Pdiff . is positive.

Case 5.1 is a standalone case where the connected PEV
has a SOC value greater than or equal to SOCmin but still,
it cannot start charging as the Pdiff . is positive.

Case 5.2 is executed when two PEVs are connected
simultaneously with the system. From the connected PEVs,
the priority or secondary vehicle is determined where either
of the connected PEV has a SOC value equal to SOCmin.

Thus, in this operational mode, the power exchange
between the PEV and AC grid is zero (Ppevt = 0).

IV. ANFIS CONTROLLER DESIGN
This study uses a non-linear biogeography-based opti-
mization algorithm to produce the optimum data sets for
the ANFIS controller. Fitness criteria are typically used
in intelligent searching processes to evaluate the many
individuals confronted while the course is executing.

A. BIOGEOGRAPHY-BASED OPTIMIZATION (BBO)
PROCEDURE
The BBO, being an occupant-based calculation, looks
through a technique that requires a number (NP) of competi-
tor arrangements (Xnd ) called natural surroundings to shape a
generation (Pn), wherein every living space would contain
certain arrangement highlights (SIV nd ). The algorithm is
based on the following steps:

1) STEP-1: INITIALIZATION
The free choice factors in BBO strategy ordinarily, called
SIV s, are control boundaries needed to be optimized while
limiting or expanding a fitness index. A real-valued vector
of SIV s defines a habitat or island. The problem dimension
decides the number of SIV s in a habitat. For the optimization
problem, each habitat in the population is a potential solution.
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The largest amount of species Smax , the highest emigra-
tion E , immigration rates I , the elitism parameter p, and the
highest mutation rate mmax are among the BBO parameters
used. The number of generations’n, the problem size d ,
the length of each control element SIV , and the population
numbers NP are all defined.

For each control variable SIV , the first inhabitants are
randomly created inside the search space based on the
relationship.

xnk,i = xni,min + random
(
xni,max − x

n
i,min

)
k = 1,NPi = 1, d

(23)

2) STEP-2: EVALUATION OF FITNESS
The appropriateness indices are calculated by evaluating
the objective function once the initial solutions have been
formed. The fitness criteria are computed using the following
equation after the composite non-linear system model is
generated after incorporating a P-Q decoupled control-based
energy storage system.

J = min
{∫ tsim

t=0
t [α1 |dω| + α2 |dVs| + α3 |dVdcs|] dt

}
(24)

The HSI is mapped with several essential elements such as
the population count S, emigration rate µ, and immigration
rate λ using the following relation.

λi = I
(
1− ni
m

)
and µi = E

(ni
m

)
(25)

The best solution is regarded as the habitat with the highest
fitness value, and the optimum outcome is updated for each
generation by storing it in an additional factor.

3) STEP-3: ELITISM OPERATION
In terms of HSI values, rank the population in the order
of appearance. A predetermined p number of superior
habitats are transmitted down to the following generation
unchanged.

4) STEP-4: MIGRATION PROCESS
The non-elite response members are then stochastically
moved to better locations. The technique for choosing any
SIV for relocation is outlined below:

a. The lower immigration rate λlower and the upper emi-
gration rate µupper are chosen for a certain population
set.

b. The real immigration λ and emigration rates µ for each
island are calculated.

c. Following that, habitat and SIV based on that rates are
chosen.

In BBO, the migratory method makes a population group
distinct from the initial collection of habitats.

5) STEP-5: MUTATION PROCESS
The relation is used to update the number of species
likelihood for each island.

dPS
dt
=


− (λi + µi)PS + µi+1PS+1 S = 0
− (λi + µi)PS + µi+1PS+1
+λi−1PS−1 1 ≤ S ≤ Smax − 1

− (λi + µi)PS + λi−1PS−1 S = Smax
(26)

Then, depending on their probability, each of the non-
elite habitats goes through a mutation process. Habitats with
mutation rates greater than a randomly generated number are
chosen for mutation, as estimated from equation (27). The
current habitat set is replaced with a randomly created island
set, giving population diversity. Each new island set’s fitness
index is calculated.

mt = mmax ∗
(
1− Pi
Pmax

)
(27)

Here, Pmax is the greatest species count probability, while
mmax is a user-defined value.

6) STEP-6: STOPPING CRITERIA
When the following conditions are met, the iterative process
comes to an end.

a. The total number of generations has been reached.
b. The number of generations in which a solution remains

unchanged exceeds a specified threshold.
c. A suitable solution is found.

The different steps that make up the BBO algorithm’s
optimization technique are depicted in Fig 10.

B. ANFIS CONTROLLER MODELING
A fuzzy toolbox in MATLAB is used to design ANFIS.
It has features including fuzzy inference system (FIS),MF for
input and MF for output, rules viewer, and output surface.
The user defines the number of MFs and their range, and
they are changeable. ANFIS uses Sugeno, which gives the
flexibility in changing the MFs and their range. Training
of different frameworks is done by reverse approach or
combined reverse approach and minimum square approach
technique. Total deviation and square of real and expected
output help to calculate different frameworks and this process
is known as the optimization technique. The main privileges
of using ANFIS are time effectiveness and the least effortless.
ANFIS does not need human expert knowledge; hence it
consumes the least time and is more straightforward in
parameter selection and MFs optimization, thus contributing
to sustainability.

The ANFIS framework works in two commonly particular
stages: the neural-network stage, where the framework
orders information and discovers designs. The other stage
fosters a fuzzy master framework through versatile tuning
of participation capacities. A fuzzy inference system (FIS)
file is generated by utilizing data pairs of input and output.
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FIGURE 10. Flow chart of a BBO-based optimal control design.

At the same time, tuning of membership functions is carried
out with the help of either the least-squares method or
a backpropagation algorithm or a combination of both.
For the ANFIS, the input parameters are known as linear
parameters and the output parameters are known as non-linear
parameters. Two fuzzy input based if-then rules form the
knowledge foundation for this system and are given by the
following equation:

if e is Ai and 1e is Bi then fi = pie+ qi1e+ ri
where i = 1, 2 (28)

Ai and Bi denote the linguistic variables while the output
function is fi and the linear parameters of ith rules are pi, qi
and ri.

The ANFIS architecture shown in Fig. 11 constitutes of
five layers; the output of every layer is denoted by Ll,i,
where l represents the layer number and i represents the
neuron number. The detailed explanation of each layer is as
follows:

1) LAYER 1
This layer is utilized to fuzzify non-linear input with the
help of linguistic variables like small, medium, large etc. The
output of this layer is determined with the use of membership
functions stated in these linguistic parameters. In this layer,
the parameters are known as non-linear parameters and
the node i stated as an adaptive node. The mathematical
expression of each node is as follows:

L1,i = µAi (e), where i = 1, 2 . . . . . . .j

L1,i = µBi (1e), where i = 1, 2 . . . . . . .j (29)

where e and1e denote the deviation and change in deviation,
respectively and are used as inputs for node i. µAi (e) and
µBi (1e) address the membership functions that build up how
much the given data sources e and1e fulfils the quantifier Ai
and Bi. For each node, the membership functions are allotted
by Gaussian membership function, which is expressed as
follows:

µAi (x) = exp

[
−1
2

(
x − cij
σij

)2
]

(30)

where cij denotes the mean and σij denotes the variance of
the jth function. The mean and variance are known as non-
linear parameters, and they are adapted during the learning
procedure of ANFIS.

2) LAYER 2
Firing strength for each standard evaluating how much
information has a place with that standard is figured in this
layer. This node is denoted as P, and this layer’s output is
determined from the multiplication of all incoming signals.
The node function for this layer is expressed mathematically
as follows:

L2,i = µAi (e) ∗ µBi (1e), where i = 1, 2 (31)

3) LAYER 3
Normalization operation is performed by the nodes which
are presented in this layer. These nodes are known as fixed
nodes and represented as a circle labelled N . The output of
this layer node is calculated by taking the ratio of ith rule’s
firing strength to the sum of all rule’s firing strengths. The
node function of this layer is presented as follows:

L3,1 = w̄1 =
w1

w1 + w2

L3,2 = w̄2 =
w2

w1 + w2
(32)

4) LAYER 4
The node in this layer is recognized as an adaptive node. The
function of this node is expressed as follows:

L4,1 = w̄1f1 = w̄1(p1e+ q11e+ r1)

L4,2 = w̄2f2 = w̄2(p2e+ q21e+ r2) (33)
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FIGURE 11. Typical equivalent ANFIS architecture.

where w̄i presents the normalized firing strength. The linear
parameters (pi, qi and ri) presented in equation (33) are
adjusted by the training process of ANFIS.

5) LAYER 5
The summation of all approaching signals is taken as the
general yield of the fifth layer. This layer is named as output
layer, which holds a single node and is represented as a circle
node with node function as given below:

L5,i =

∑2
i=1 wifi∑2
i=1 wi

(34)

To update the different parameters of Layer-2
(non-linear) and Layer-4 (linear) hybrid algorithm is utilized.
The steepest descent method and least-square method are
associated as hybrid algorithms of ANFIS parameters.
Forward propagation and backward propagation are mainly
two propagation processes followed by this hybrid algorithm.
Using the forward propagation method, the output nodes
are forwarded up to Layer-4. The least-square method helps
synthesize the linear parameters. By utilizing the backprop-
agation method, the error data is propagated backwards.
The gradient descent method helps synthesize the non-linear
parameters. Compared to the conventional backpropagation
algorithm, the convergence speed of the hybrid algorithm is
faster because, during the training process, the search space
dimensions are minimized effectively.

In this study, two ANFIS controllers are designed to
carry out simulations as well as analyze the results.
ANFIS1 is designed to control the PEV’s battery current,
while ANFIS2 is designed to control the bus voltage to a
nominal DC value for the battery input. These two controllers
ultimately control the battery power. Both controllers utilize
two input variables for better preciseness, such as deviation
(e) and change in deviation (1e). The output is also regulated
to achieve better results. The deviation is measured from the
difference between practical and standard/reference values;

change in deviation is measured from the ratio between the
difference values and standard values.

The data set for ANFIS1 is produced by equations (35)
and equation (36). For data set production, equation (35) and
equation (36) are provided as input variable 1 (e) and input
variable 2 (1e) of MF, respectively, in the fuzzy toolbox.
In this way, the primary FIS file for ANFIS1 is generated for
training purposes. Equation (35) calculates the deviation of
battery current and is as follows:

Um−battery = Ubattery − controller o/p

∗
(
Ibattery−ref − Ibattery

)
(35)

where Um−battery is the battery voltage level after the modu-
lation, Ubattery is the voltage level of battery which is taken
from battery ratings and the value is 400V, controllero/p
stands for Controller output, Ibattery−ref denotes the battery
reference current, which is taken from battery ratings, and
Ibattery represents the practical battery current without an
ANFIS controller.

Equation (36) calculates the change in deviation of battery
current and is as follows:

Changein battery current deviation =

(
Ibattery−ref −Ibattery

)(
Ibattery−ref

)
(36)

The data set for ANFIS2 is produced by equations (37)
and equation (38). For data set production, equation (37) and
equation (38) are provided as input variable 1 (e) and input
variable 2 (1e) of MF, respectively, in the fuzzy toolbox.
In this way, the primary FIS file for ANFIS2 is generated for
training purposes. Equation (37) calculates the deviation of
DC bus voltage and is as follows:

Deviation in DC busvoltage = vdc−ref − vdc−bus (37)

where vdc−ref is the reference DC bus voltage level, which is
400V and vdc is the practical (actual) DC bus voltage level
which is considered before utilizing ANFIS controller.
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FIGURE 12. Flow chart of ANFIS data training execution process.

Equation (38) calculates the change in deviation of DC bus
voltage and is as follows:

Change in deviation in DCbus voltage

=
Deviation in DC bus voltage

(vdc−ref)
(38)

C. IMPLEMENTATION OF ANFIS CONTROLLER SCHEME
In this study, a duplicate model of bi-directional power
flow between AC power grid and PEVs battery system
is modelled using PI controllers by replacing the ANFIS
controllers. ANFIS is trained with two inputs, such as
deviation (e) and change in deviation (1e) and single output
such as error correction data is produced. The ANFIS
network requires training data, which is generated via
the BBO algorithm. The procedure begins with creating
BBO parameters and the production of random operating
conditions, as shown in Fig 12. This input vector is saved in
an array on the outside. The approach then uses migration,
mutation, and elitism operations to find the best-decoupled
controller parameters. The training input-output data pair is
generated after executing a cycle of 100 epochs. The adaptive
neuro-fuzzy network is then trained and tested as the next

phase in the algorithms. The data set is uploaded into the
ANFIS platform, and the training process is completed using
a hybrid learning algorithm with 500 epochs. The system is
preserved for use in simulations that need online controller
output computation. The BBO guides the search process with
a non-linear fitness function by utilizing equation (24). The
set of controller output that achieves the lowest objective
value for a given set of beginning conditions are the optimum
parameters as we consider error correction for this study.
The number of habitats and iterations were set at 50 and
80, respectively. Table 1 lists the BBO technique’s additional
parameters.

The least-squares procedure helps to find the conforming
framework. Any inaccurate number that is greater than the
specified standard must be renewed.

The ANFIS toolbox in MATLAB allows a user to upload
data, train data, save a newFIS file, and open the final FIS file.
To start with ANFIS toolbox, the first action is gathering the
training data set. The data bundle is used as an input value for
the ANFIS toolbox, and the data bundle should be structured
as in matrix format. The matrix’s end column is considered
the output column, and other than the output column, all
columns are considered as input columns. The matrix may
have multiple columns as required by the system.

ANFIS training process starts with the creation of a pri-
mary membership function. The final membership functions
are created at the end of the training process. To increase
the data precision, the training data bundle is compared with
consisting of the data bundle.

Again, 80 input-output data samples were taken for the
learning phase, while the remaining 20 were used to test the
network. The considered input characteristics are deviation
and change in deviation, and output characteristic is regulated
by ALC (Adapted Learner Content).

The process of the ANFIS system is introduced with all
built-in values like 7∗7 membership functions. There are
180 statements/rules for the fuzzy system, and each of them
is generated by ANFIS algorithm and is linear by default.
To compensate for the inaccuracy and establish the linkage
between the input and output, the whole training data bundles
are gone through the ANFIS network. The following is used
to observe the training inaccuracy.

Root Means Square Error (RMSE) =

√√√√ 1
M

M∑
k=1

(
yn − ŷn

)2
(39)

Mean Average Error (MAE) is used and defined as Mean

Average Error (MAE) =
1
M

M∑
k=1

|yn − ŷn| (40)

where M is the total forecasting number, ŷk is forecasted
string, and yk is the reference string.

Overfitting is a common problem in ANFIS model
building, which occurs when the data set is over-trained
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TABLE 1. The BBO algorithm parameters.

by ANFIS. To avoid the overfitting problem, the model is
tested by setting a training epoch. The optimization for this
study is achieved with the help of selecting optimized MFs,
and optimized MFs are achieved by the training process
of ANFIS. The sustainability of this study is achieved
by establishing a relationship between non-linear input
variable 1 and non-linear input variable 2, and the ANFIS
training algorithm establishes this relationship.

V. RESULTS AND DISCUSSIONS
To justify the effectiveness of an ANFIS controller, simula-
tion of a PEV’s battery charging and discharging with control
strategy was accomplished using MATLAB/Simulink and
compared with a traditional PI controller.

In this paper, two PEVs are considered: PEV1 is for one
person, and PEV2 is for another person from a single-family.
The charging/discharging takes place at home parking only.
The daily load profile considered in this study is based on
real-life power consumptions by different loads at home, and
PEV charging/discharging is managed technically to improve
the load curve. The battery size of PEV1 is 14 kWh and PEV2
is 11 kWh. For both batteries, the maximum and minimum
SOC levels are considered respectively 0.8 and 0.2. Each PEV
can inject a maximum of 1.5 kW into the system, and the
maximum power that the PEV can take from the system is
−1.5 kW.

To justify the whole mechanism, a full-day simulation was
conducted. The 24 hours were divided into small fractions
of 15 minutes each to get 96 time periods/intervals over
24 hours. So, during any time interval, to perform V2G or
G2V operation depends on some parameters like SOC level
of the battery, system power demand (peak or off-peak hour),
connection time of each PEV and availability of each PEV
at home parking. Charging/discharging of each PEV will
initiate at the beginning of every time interval and stop at the
end of the same time interval.

In this study, PEV’s battery is utilized, so the battery is
not always available at home. Though two PEVs are used,
so the number of batteries is also two. Two modes of power
operations are utilized, and these operations help to get
optimum use of the battery. These two operating modes are
V2G and G2V. Though PEVs are also used for transportation
purposes, they are always not available at home, but they are

always connected with the system when they are available at
home.

A. DIFFERENT INTERACTIVE CASES OF PEV1
Different interactive cases of PEV1 with an AC power grid
can be demonstrated from its SOC characteristics curve,
as shown in Fig. 13 (a). During the following periods [0,
4 h], [12:30, 14:30 h], [20, 21 h] and [22, 24 h] the PEV1
performs the G2V operation. During these periods, PEV1
charges and tries to achieve its SOC at maximum level (0.8).
V2G operation is performed during the periods [6, 7:30 h],
[18, 18:40 h] and [21, 22 h] and, at the end of any period,
PEV1 may achieve its SOC at the minimum level (0.2). In the
periods [4, 6h] and [18:40, 20h], the curve is flattened and
parallel to the x-axis, which means PEV1 is still connected to
the grid, but it is not performing any operation (inactive). The
reason behind the PEV’s inactiveness is that before the time
interval [4, 6h], the SOC value of PEV1 has already reached
its maximum level, and the system also does not require any
extra power from the battery.

Again, before reaching the period [18:40, 20h], the SOC
value of PEV1 is already reached its minimum level, though,
during this period, the system requires additional power from
the battery, but PEV1 cannot provide because of its lowest
SOC value. During the time intervals [7:30, 12:30h], and
[14:30, 18h], PEV1 is used for transportation purposes that
is why it is not available at home.

B. DIFFERENT INTERACTIVE CASES OF PEV2
Different interactive cases of PEV2 with AC power grid can
be illustrated from its SOC characteristics curve, as presented
in Fig. 13 (b).

G2V operation is performed by PEV2 during the
time intervals [0, 5:30h], [8:30, 10:30h], [12:30, 14:30h],
[20, 21h], and [22, 24h]. PEV2 tries to achieve its higher SOC
value during the above-mentioned time intervals.

Discharging time interval is [6, 8:30h], and PEV2 gets its
lower SOC value during this period. During this time interval,
PEV2 performs the V2G operation.

During the following time intervals [5:30, 6h], [10:30,
11h], [17, 20h], and [21:30, 22h] PEV2 does not do any
operation but still it is connected to the system. During these
time intervals, it presents a flattened curve and parallel to the
x-axis.

In the following periods [11, 12:30h], [14:30, 17h], and
[21, 21:30h], PEV2 is used for transportation purposes; that
is why it is not available at home.

C. EXPLANATION OF DIFFERENT CHARACTERISTICS
CURVES OF PEVS’ BATTERY
In this study, the simulation is carried out basically to
show the performance of PI and ANFIS controllers in
terms of battery characteristics curves. The analyses of
Fig. 14, 15, and 16 represent a clear difference in the battery
characteristics curves by using PI and ANFIS controllers.
To differentiate between the PI and ANFIS controller,
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FIGURE 13. SOC wave shape of (a) PEV1 with PI and ANFIS controller and (b) PEV2 with PI and ANFIS controller.

FIGURE 14. Charging profile of (a) PEV1 with PI controller and (b) charging profile of PEV1 with ANFIS controller.

different characteristics curves of PEVs battery have been
explained as follows:

1) CHARGING/POWER PROFILE CURVES
The charging profile of PEV1 is depicted in Fig. 14 (a) (with
PI controller) and Fig. 14 (b) (with ANFIS controller), while
for PEV2, it is displayed in Fig. 15(a) (with PI controller)
and Fig. 15 (b) (with ANFIS controller). Here, the charging
profiles are considered to explain the different operating
modes and their availability at home. In Figs. 14 and 15,
the -ve power defines the G2V operation (charging), +ve
power defines V2G operation (discharging), 0 (zero) power
defines the PEV is still available at home but not exchanging
any power, and its unavailability at home is marked in the
respective figures.

The rising and falling trend are smoother in Fig. 14 (b) than
Fig. 14 (a). From the time interval 6 to 7:30h, the rising trend

in Fig. 14 (b) is smoother than the rising trend in Fig. 14 (a).
Moreover, the falling trend in Fig. 14 (b) during the time
interval 22 to 24h is much smoother than it is shown in
Fig. 14 (a). The same analysis also can be carried out for
PEV2 by comparing the charging profile in Fig. 15 (a) and
Fig. 15 (b).

2) CURRENT PROFILE CURVES
Suppose the battery current curve is considered (Fig. 16 (a)
and Fig. 16 (b)) for the comparative analysis. In that case,
it is even clearer to justify the benefits of using the ANFIS
controller over the PI controller. For PEV1, in Fig. 16 (a),
the blue line represents the current curve of the PI controller,
and the red line represents the current curve of the ANFIS
controller. In Fig. 16 (a) it can be seen that in the case
of the PI controller, there is a sudden and large spike at
the start, which is removed by using the ANFIS controller
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FIGURE 15. Charging profile of (a) PEV2 with PI controller and (b) charging profile of PEV2 with ANFIS controller.

FIGURE 16. Current wave shape of (a) PEV1 with PI and ANFIS controller and (b) PEV2 with PI and ANFIS controller.

TABLE 2. Research summary.

because the current curve has a smoother increasewithout any
unexpected spikes when using the ANFIS controller. At the
beginning of time 12hr and 18hr, the same improvement
is observed using the ANFIS controller. Again, during the
falling time interval [22, 24h], there are many ripples in the

PI controller, which are also eliminated by using the ANFIS
controller.

From Fig. 16 (a), it can be stated that the unexpected spikes
and all the ripples from the PI controller have been removed
by utilizing the ANFIS controller.
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The same analysis also can be carried out for PEV2 by
comparing the current profile in Fig. 16 (b). The reason for
getting a smoother curve using the ANFIS controller is that
the ANFIS controller can store previous data; by trial & error
method, it learns from the system and finally provides a better
result for the next step.

D. RESEARCH SUMMARY
A research summary can be carried out for a better
understanding of the objective of this study. To have the
research summary the Fig. from 13 to 16 can be utilized,
but Fig. 13 (a) & (b) are utilized to illustrate the different
interactive cases of PEV and Fig. 14 (a) & (b) and 15 (a) &
(b) are utilized to demonstrate the charging and discharging
condition of both PEVs. Fig. 16 (a) & (b) show the battery
current characteristics curve of PI and ANFIS controller
along with the current distortions. So, to demonstrate the
research summary, here the Fig. 16 (a) & (b) are considered,
and the summary is shown in a tabular form in Table 2.

VI. CONCLUSION
This study proposes an ANFIS controller to achieve
coordinated power exchange between battery storage and
the AC electrical grid through different mediators and
controllers. A bi-directional power flow between the PEV
and AC power grid is accomplished with the help of
two ANFIS controllers and a proposed control strategy.
The same scheme was carried out with PI controllers by
replacing the two ANFIS controllers. Several technical issues
were found in the second case while using PI controllers
for the power management of PEVs’ batteries. This was
illustrated by the different characteristic curves of PEV’s
battery.

Two different ANFIS controllers were utilized to control
the battery current and DC bus voltage, respectively, thus
controlling the battery power. In the second case, because of
using PI controller, there were very high starting surges and
continuous distortion all over the active period of the battery
and shown by different battery characteristics curves. The
execution of the ANFIS controllers has overcome all these
technical issues.

Another reason for choosing the ANFIS controller is that
it utilizes an optimization technique, which saves time by
making the system faster and contributing to sustainability.

Different simulation results have been performed to
justify the contribution of the ANFIS controller over the PI
controller. The proposed five operational modes of control
strategy helped to manage the battery power management
efficiency. Finally, both the proposed ANFIS controller and
control algorithm provided a better power exchange and
battery power management system.

In this study, no battery optimization technique was
considered; using the optimization technique could provide
better results in terms of battery power management. This
will be done in a future research paper. Another limitation
of this study is PEV’s number, which can be improved by

TABLE 3. Battery characteristics, Li-ion (3.3V, 2.3 A h).

changing the control algorithm. Still, the lack of financial
analysis of ANFIS controller over PI controller may create
confusion among the consumers, and it can be considered as
future work. Finally, the control algorithm used in this study
shown in Fig. 9 is based on a relay control loop that can be
carried out using a fuzzy controller. This could be another
future development of this study.

APPENDIX
See Table 3.
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