
Improving Random Forest Algorithm
through Automatic Programming

Master’s Thesis in Computer Science

Que Tran

May 15, 2015
Halden, Norway

www.hiof.no

Abstract

Random Forest is a successful ensemble prediction technique that exploits the power of
many decision trees and judicious randomization to generate accurate predictive models.
Recently, it has become one of the main current directions in Machine learning research.
In this thesis, we aimed to investigate the possibility of improving the Random Forest
using automatic programming, specially the Automatic Design of Algorithms Through
Evolution (ADATE) system. To achieve the goal, we first studied the Random Forest
algorithm from the perspective of a member in the family of ensemble learning methods.
Based on this knowledge, we conducted two experiments using the ADATE system. In the
first experiment, we attempted to improve the combination of base classifiers. The second
experiment concentrated on improving the way in which base classifiers are generated.
Although we did not succeed in our first experiment, the second experiment brought us
good results. Experiments with 19 benchmark data sets showed that the best model we got
achieves up to 14.3% improvement in performance (in total) compared with the original
one.

Keywords: Random Forest, Ensemble Learning, ADATE, Automatic programming,
Machine Learning

i

Acknowledgments

At the outset I would like to express my sincere gratitude to my supervisor, Assoc. Prof.
Jan Roland Olsson, for his valuable suggestions, guidance, caring and encouraging sup-
port. Without him, my job would remain incomplete. I would like to thank Lars Vidar
Magnusson, who was willing to help and gave me his best suggestions.

I would also like to thank my parents. They were always supporting and encouraging
me with their best wishes.

Finally, I take this opportunity to thank all my friends, especially Hieu Huynh, who
always stood by me, cheered me up and took me through loneliness.

iii

Contents

Abstract i

Acknowledgments iii

List of Figures vii

List of Tables ix

Listings xi

1 Introduction 1

1.1 Motivation . 1

1.2 Research question and method . 2

1.3 Report Outline . 2

2 Decision Tree 5

2.1 Attribute Selection Measures . 6

2.2 Decision Tree Pruning . 8

3 Ensemble Learning 13

3.1 Ensemble diversity . 14

3.2 Combination methods . 17

3.3 Ensemble size . 22

4 Random Forest 27

4.1 Noteworthy concepts . 28

4.2 Related work . 29

5 Introduction to ADATE system 35

5.1 Artificial evolution . 35

5.2 Automatic programming . 36

5.3 Functional programming and ML . 37

5.4 ADATE . 39

6 ADATE Experiments 47

6.1 Design of experiments . 47

6.2 Implementation . 50

v

vi CONTENTS

7 Results 57
7.1 Experiment 1 - Classifiers combination experiment 57
7.2 Experiment 2 - Classifiers construction experiment 57

8 Conclusion and Future work 63
8.1 Conclusion . 63
8.2 Future work . 63

Bibliography 68

A Specification files 69
A.1 Experiment 1 - The combination of classifiers experiment 69
A.2 Experiment 2 - The construction of classifiers experiment 73

B Improved programs 103
B.1 Experiment 1 - The combination of classifiers experiment 103
B.2 Experiment 2 - The construction of classifiers experiment 104

List of Figures

2.1 A decision tree for the concept . 5

3.1 A sample Arbiter Tree . 21
3.2 Classification in the combiner strategy . 22
3.3 Sample Arbiter Tree . 24

4.1 Error Rates obtained during the tree selection processes on 10 datasets,
according to the number of trees in the subsets. The black curves represent
the error rates obtained with SFS, the gray curves the error rates with SBS,
and the dashed-line curves the error rates with SRS 32

4.2 Error rates (y-axis) according to ρ
s2

values (x-axis) for all the sub-forests of
50 trees, obtained during the selection process. The red line is the regression
line of the cloud . 34

5.1 Crossover operation applied to two parent program trees (top). Crossover
points (nodes shown in bold at top) are chosen at random. The subtrees
rooted at these crossover points are then exchanged to create children trees
(bottom) . 36

6.1 General flow chart of training algorithm for Random Forest 51
6.2 Process of classifying new instances in Random Forest 51

vii

List of Tables

4.1 Random forests performance for the original algorithm and weighted voting
algorithm . 30

4.2 Datasets description . 31
4.3 Datasets description . 34

5.1 Comparison between Functional Programming and Imperative programming 38

6.1 Data sets descriptions . 49

7.1 Comparison between the original program and the improved program num-
ber 1 generated by the ADATE system, tested with 10, 20 and 30-tree
random forests with 10-fold cross validation 59

7.2 Comparison between the original program and the improved program num-
ber 2 generated by the ADATE system, tested with 10, 20 and 30-tree
random forests with 10-fold cross validation 60

7.3 Comparison between the original program and the improved program num-
ber 3 generated by the ADATE system, tested with 10, 20 and 30-tree
random forests with 10-fold cross validation 61

7.4 Comparison between the original program and the improved program num-
ber 4 generated by the ADATE system, tested with 10, 20 and 30-tree
random forests with 10-fold cross validation 62

ix

Listings

3.1 DECORATE algorithm . 15
6.1 Initial program for Classifiers combination experiment 53
6.2 Initial program for Classifiers construction experiment 56
7.1 New f function in Classifiers construction experiment 58
A.1 Specification file for the Combination of Classifiers experiment 69
A.2 Specification file for the Construction of Classifiers experiment 73
B.1 Result for the Combination of Classifiers experiment - The optimized program103
B.2 Result for the Construction of Classifiers experiment - The improved pro-

gram number 1 . 104
B.3 Result for the Construction of Classifiers experiment - The improved pro-

gram number 2 . 105
B.4 Result for the Construction of Classifiers experiment - The improved pro-

gram number 3 . 106
B.5 Result for the Construction of Classifiers experiment - The improved pro-

gram number 4 . 108

xi

Chapter 1

Introduction

1.1 Motivation

Machine learning is the science of getting computers to adjust their actions so that they
can act more accurately through examples. The field of machine learning, according to
Michell [34], is concerned with the question of how to construct computer programs that
automatically improve with experience. In the past decade, Machine learning has become
so pervasive that people probably use it everyday without knowing. There have been
many algorithms proposed, from the simplest ones, e.g. ZeroR, Linear Regression, to the
much more complex algorithms, e.g. Deep Neural Networks or Support Vector Machine.
However, it was shown experimentally that a given model based on an algorithm may
outperform all others for a particular problem or for a specific data set, but it is abnormal
to find a single model achieving the best results on the overall problem domain [20]. As a
consequence, ensembles of models constitute one of the main current directions in Machine
learning research.

In the family of ensemble learning methods, Random Forest is regarded as one of the
most powerful one. It exploits the power of many decision trees, judicious randomization
to generate accurate predictive models. Moreover, it also provides insights into variables
importance, missing value imputations, etc. The random forest has remarkable few con-
trols to learn, and therefore, analysts can effortlessly obtain effective models with almost
no data preparation or modeling expertise. Besides, short training time and the ability to
run in parallel are two other huge advantages of the random forest.

Since being introduced in 2001 by Breiman [12], the random forest method has at-
tracted the attention of many researchers and practitioners. A number of ideas to improve
the algorithm have been proposed. In this thesis, we focus on two main purposes. First,
we aim at studying the random forest method. Instead of exploring the random forest as
an isolated algorithm, we will first investigate the whole picture of the ensemble learning
methods and then present the random forest algorithm as a member in that family. Al-
though random forest is able to handle both classification and regression problems, within
the scope of this thesis, we only focus on the classification ones. Improving the random
forest algorithm used for regression problems may be considered in our future work. Our
second purpose is to utilize the power of the Automatic Design of Algorithms Through
Evolution (ADATE) system to improve the random forest algorithm.

1

2 Chapter 1. Introduction

1.2 Research question and method

Research question

As stated above, our primary target in this study is to improve the random forest method
using the ADATE system. To achieve the goal, we need to carefully study the random
forest algorithm in the perspective that it is a member in the ensemble learning methods
family, thus having a general view and understanding the possibility of improving it.
Moreover, using the ADATE system to improve an algorithm, especially a state-of-the-
art one like random forest, is usually a time-consuming process. Typically, evolving such
programs requires hundreds of millions of program evaluations. The need of choosing a
small part of the algorithm, which can significantly improve the whole performance if it
is improved, is therefore clear. Basically, at the end of this thesis, we need to answer the
following research questions:

RQ To what extent the Random Forest algorithm can be improved using the Automatic
Design of Algorithms Through Evolution (ADATE) system?
Secondary relevant research questions are:

RQ 1.1 How can we implement the Random Forest algorithm correctly in Standard
ML (SML)?

RQ 1.2 Which part of Random Forest is possible to be improved by the ADATE
system?

RQ 1.3 Which extra-information do we need to prepare in advance to help the
ADATE system to synthesize a solution effectively?

Method

To improve the Random Forest using the ADATE system, we need to follow the following
steps:

• Implement the Random Forest algorithm in Standard ML - As stated before, within
the scope of this thesis, we will concentrated on improving classification Random
Forest. In this algorithm, we use C4.5 as the base algorithm to develop decision tree
classifiers. More information about C4.5 will be presented in Chapter 2.

• Select the parts which will be improved - Choosing a part of an algorithm that is most
likely to be improved using the ADATE system or choosing the extra-information
that should be prepared beforehand is a trial-and-error task. We need, first, to get
a deep understanding of the algorithm, and then based on that knowledge, conduct
experiments with different possible solutions to find out the best ones.

• Write specification files - Writing a specification file mainly involves the tasks of
converting the parts, written in Standard ML, that will be evolved by the ADATE
system into ADATE ML, choosing the suitable data sets and defining some necessary
functions, such as fitness function and helping function.

1.3 Report Outline

The rest of the report is organized as follows.

1.3. Report Outline 3

• Chapter 2 introduces the Decision Tree, a predictive model from which a random
forest model is constructed. In this chapter, we describe a basic decision tree algo-
rithm as well as some attribute selection measures and pruning tree methods that
are commonly used.

• In Chapter 3, we give an overview of Ensemble learning methods and introduce
some strategies to construct a good ensemble, including making an ensemble diverse,
combining classifiers and selecting ensemble size.

• Random Forest algorithm is described in Chapter 4. Besides, in this chapter, we
also present some state-of-the-art works focusing on improving Random Forest in
various manners.

• Chapter 5 is started by presenting the automatic programming, the basic of func-
tional programming and ML language. In this chapter, we also give a brief intro-
duction to ADATE system.

• In Chapter 6 we describe our experiments by showing how the experiments were
designed and implemented.

• Chapter 7 shows the results of our experiments. We also explain in detail the dif-
ferences between each improved program generated by the ADATE system and the
original program.

• Finally, in Chapter 8, we conclude our work and draw the directions for future work.

Chapter 2

Decision Tree

A decision tree is a predictive model which can be used to approximate discrete-valued
target functions. Decision tree are usually represented graphically as hierarchical struc-
ture. The topmost node, which does not have any incoming edge, is called root node. A
node with outgoing edges are called internal node. Each internal node denotes a test on
an attribute. Each edge represents an outcome of the test. All other nodes are leaf nodes.
Each leaf holds a class label. When classifying a new instance, the instance is navigated
from the root node down to the leaf, according to the outcome of the tests along the path.
The class label in the leaf node indicates the class to which the instance should belong. A
typical decision tree is shown in Figure 2.1. It represents the concept buys˙computer, that
is, it predicts whether a customer is likely to purchase a computer based on the speed of
the CPU, screen size and price.

Figure 2.1: A decision tree for the concept buys computer

Denote D as a data partition, attribute list is a list of candidate attributes describing
the data set and Attribute selection method is a heuristic method for selecting the splitting
criterion that ”best” separates a given data partition, D. A basic decision tree algorithm,
called buildTree(D, attribute list) is summarized as follows.

• The tree first starts as a single node N

• If the instances in D are all of the same class, N becomes a leaf and labeled with
that class.

5

6 Chapter 2. Decision Tree

• Otherwise, Attribute selection method is called to decide the splitting criterion. The
splitting criterion indicates the splitting attribute and may also indicate a split point.
If the splitting attribute is nominal, it will be removed from the attribute list.

• The node N is labeled with the splitting criterion, which serves as a test at the
node. A branch is grown from node N for each of the outcomes of the splitting
criterion. The training instances in D are partitioned accordingly into, for example,
D1, D2, ...Dm.

• Let Di be the set of instances in D satisfying outcome i. If Di is empty, N is
attached a leaf labeled with the majority class in D. Otherwise, it is attached
the node returned by buildTree(Di, attribute list). The recursive partitioning stops
when any one of the following terminating conditions is reached.

– All instances in the training set belong to a single class.

– There are no remaining attributes which can be used for further partition.

– There are no instances for a given branch.

Besides three stopping criteria presented above, in some algorithms, there are some
other conditions, such as the maximum tree depth has been reached, the number
of cases in the terminal node is less than the minimum number of cases for parent
nodes or the gained information at the best splitting criterion is not greater than a
certain threshold.

• The resulting decision tree is returned

Decision tree learning is one of the most popular methods and has been successfully
applied in many fields, such as finance, marketing, engineering and medicine. The reason
for its popularity, according to many researchers, is that it is simple and transparent.
The construction of a decision tree is fast and does not require any domain knowledge or
parameter setting. Its representation in tree form is intuitive and easy to interpret for
humans. However, successful use may depend on the data set at hand.

Many decision tree algorithms have been developed, including ID3 [42], C4.5(a suc-
cessor of ID3) [41] and CART (Classification and Regression Trees) [10]. Most of them
adopt a greedy approach in which decision trees are constructed in a top-down recursive
divide-and-conquer manner. Although those algorithms differ in many aspects, the main
differences are their attribute selection measures and pruning tree methods. The next
sections will present some attribute selection measures and pruning tree methods that are
commonly used.

2.1 Attribute Selection Measures

2.1.1 Information gain

The ID3 algorithm [42] uses information gain as its attribute selection measure, which is
a measure for selecting the splitting criterion that ”best” separates a given data partition.
The idea behind the method is to find which attribute would cause the biggest decrease
in entropy if being chosen as a split point. The information gain is defined as the entropy
of the whole set minus the entropy when a particular attribute is chosen.

2.1. Attribute Selection Measures 7

The entropy of a data set is given by

Entropy(D) = −
m∑
i=1

pilog2(pi) (2.1)

where pi is the probability that an instance in set D belongs to class Ci. It is calculated
by |Ci|/|D|.

Suppose the attribute A is now considered to be the split point and A has v distinct
values {a1, a2, ..., av}. Attribute A can be used to split D into v subsets {D1, D2, ...Dv}
where Di consists of instances in D that have outcome aj . The new entropy is defined by
the following equation.

EntropyA(D) =

v∑
j=1

|Dj |
|D|
× Entropy(Dj) (2.2)

The information gain when using attribute A as a split point is as follows.

Gain(A) = Entropy(D)− EntropyA(D) (2.3)

Gain(A) presents how much would be gained by branching on A. Therefore, the at-
tribute A with the highest Gain(A) should be chosen to use.

2.1.2 Gain ratio

The information gain measure presented in section 2.1.1 is bias toward attributes having
a large number of values, thus leading to a bias toward tests with many outcomes. C4.5
[41], a successor of ID3, uses an extension to information gain called Gain ratio, which
attempts to overcome this shortcoming. The method normalize information gain by using
a split information factor, defined as follows.

SplitInfoA(D) = −
v∑
j=1

|Dj |
|D|
× log2(

|Dj |
|D|

) (2.4)

Gain ratio is then given by the following equation.

GainRatio(A) =
Gain(A)

SplitInfo(A)
(2.5)

The attribute with the highest gain ratio is selected as the splitting point.

2.1.3 Gini index

The CART algorithm [10] uses the gini index as its attribute selection measure. The Gini
index measures the impurity of set D. Therefore, it is also called Gini impurity. The Gini
index only consider a binary split for each attribute. Gini index point of D is defined as
follows.

Gini(D) = 1−
m∑
i=1

pi
2 (2.6)

8 Chapter 2. Decision Tree

(The notation is the same as in the previous methods)
Suppose the attribute A is now considered to be the split point and A has 2 distinct

values a1, a2. Attribute A can then be used to split D into D1 and D2 where Di consists
of instances in D that have outcome aj . The gini index of D given that partitioning is
given by the following equation.

GiniA(D) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2) (2.7)

The reduction in impurity is defined as:

∆Gini(A) = Gini(D)−GiniA(D). (2.8)

The attribute with the highest reduction in impurity is selected for the next classifica-
tion step.

2.1.4 ReliefF

Unlike the algorithms presented above, ReliefF [26] is not impurity based. It selects
splitting points according to how well their values distinguish between similar instances.
A good attribute is the one that can separate similar instances with different classes and
leave similar instances with the same classes together.

Let D be the training set with n instances of p attributes. Each attribute is scaled to
the interval [0, 1]. Let W be a p-long weight vector of zero. The algorithm will be repeated
m times, and at each iteration, it chooses a random instance X. The closest same-class
instance is called near-hit, and the closest different-class instance is called near-miss. The
weight vector W is updated as follows.

Wi = Wi−1 − (xi − nearHiti)2 + (xi − nearMissi)
2 (2.9)

After m iterations, each element of the weight vector is divided by m. This vector is
called relevance vector. Attributes are selected if their relevance is greater than a specified
threshold.

2.2 Decision Tree Pruning

One challenge arising in a decision tree algorithm is to decide an optimal size of a tree.
There is some stopping criteria proposed to control the size of a tree. However, employing
tight stopping criteria tends to create a small tree which may not be able to capture
important structural information in the training data. On the other hand, loose stopping
criteria would lead to a large tree with a high risk of overfitting the training data. To tackle
this problem, many pruning methods are presented. Pruning is a technique that reduces
the size of decision trees by removing sections of the tree that do not contribute much
in classifying instances. Researchers suggest using loose stopping criterion and allowing
the decision tree to overfit the training set, then letting pruning methods to cut back the
overfitted tree.

There are various techniques for pruning decision trees since it is one of the most
extensively researched areas in machine learning. The following subsections will discuss
the most popular pruning methods.

2.2. Decision Tree Pruning 9

2.2.1 Reduced-Error Pruning

Reduced-Error Pruning, which as suggested by Quinlan [40], is one of the simplest strategy
for simplifying trees. Starting with a complete tree, the algorithm tries to replace each
node with the most frequent class ending at that node with respect to a test set. From
all the nodes, the algorithm chooses the one at which the replacement makes the largest
reduction in error rate to prune. The process is continued until there is no further pruning
would increase or maintain the current accuracy.

This pruning method can end with the smallest accurate sub-tree with respect to a
given test set.

2.2.2 Critical value pruning

Critical value pruning method was introduced by Mingers [33]. This is a bottom-up
technique and similar to the reduced-error pruning method. However, instead of using
the estimated error on test data to judge the quality of a sub-tree, this method relies on
estimating the importance of a node from calculations done in the tree creation step.

As mentioned earlier in the Introduction, a decision tree algorithm recursively use
a selection criterion to split the training data into smaller and purer subsets. At each
node, the splitting point is chosen in the manner that maximizes the value of the splitting
criterion. This value is also employed in the critical value pruning method to make pruning
decisions. The value of the splitting criterion at a node is compared to a fixed threshold
to decide if the node needs to be pruned. If the value is smaller than the threshold, the
node will be pruned and replaced by a leaf. However, there is one more rule, which is if
the sub-tree contains at least one node whose value is greater than the threshold, it will
be kept. In other words, a sub-tree is only considered for pruning if all its successors are
leaf nodes.

2.2.3 Cost-Complexity Pruning

Cost-complexity pruning was introduced in the classic CART system [10] for inducing
decision trees. The method consists of two phases. In the first phase, a sequence of
increasingly smaller pruned trees T0, T1, ..., Tk is built, where T0 and Tk are the original
tree and the root tree respectively. Given a tree Ti, the successor tree Ti+1 is obtained
by replacing one or more of the sub-trees in Ti with suitable leaves. The pruned subtrees
are those that lead to the smallest increase in error rate per pruned leaf. The increase in
error is measured by a quantity α that is defined to be the average increase in error per
leaf of the subtree.

α =
ε(pruned(T, t), S)− ε(T, S)

|leaves(T)|−|leaves(pruned(T, t))|
(2.10)

where ε(T, S) is the error rate of the tree T over the sample S, |leaves(T)| is the
number of leaves in T and pruned(T, t) denotes the tree obtained by replacing the node t
in T with a suitable leaf.

After building a sequence of trees, in the next phase, based on the size of the given
data set, CART either uses a hold-out set or cross-validation to estimate the error rate of
each pruned tree. The best pruned tree is then selected.

10 Chapter 2. Decision Tree

2.2.4 Minimum-Error Pruning

The method was developed by Niblett and Bratko [35] with the idea behind is to compare
the error rate estimation, at each node, with and without pruning.

If an internal node is pruned, it becomes a leaf, and its error rate is calculated by:

ε′ = 1− max
ci∈dom(y)

|σy=ciSt|+l.papr(y = ci)

|St|+l
(2.11)

where St denotes the instances that have reached a leaf t, papr(y = ci) is the a-priori
probability of y getting the value ci, and l is the weight given to the a-priori probability.

The expected error rate if the node is not pruned is calculated using the error rates
for each branch, combined by weighting according to the proportion of observations along
each branch. The procedure is performed recursively because the error rate for a branch
cannot be calculated until we know if the branch itself is to be pruned. Finally, the error
rate estimation for a certain internal node before and after pruning is compared. If pruning
the node leads to a lower error rate, then the sub-tree is pruned; otherwise, it is kept.

The advantage of this method is that it minimizes the total expected error and does
not require a separate test set. However, there are some drawbacks. First, it has an
assumption of equally likely classes, which is seldom true in practice. Second, in this
method, the pruning is strongly affected by the number of classes, thus leading to unstable
results.

2.2.5 Pessimistic Error Pruning

This method was proposed by Quinlan [40] which aims to avoid the need of a test set
or cross validation. The motivation for the method is that the mis-classification rates
produced by a tree on its training data are overly optimistic. Therefore, Quinlan sug-
gested using a more realistic measure, known as the continuity correction for the binomial
distribution.

Let N(t) denotes the number of training instances at node t, e(t) denotes the number
of instances mis-classified at node t. Then, an estimate of the mis-classification rate is:

r(t) =
e(t)

N(t)
. (2.12)

and the rate with the continuity correction is:

r′(t) =
e(t) + 1/2

N(t)
. (2.13)

For a sub-tree Tt the mis-classification rate will be

r(Tt) =

∑
e(i)∑
N(i)

, (2.14)

where i covers the leaves of the sub-tree. Thus the corrected mis-classification rate will be
calculated by:

r′(Tt) =

∑
(e(t) + 1/2)∑

N(t)
=

∑
e(i) +NT /2∑

N(i)
, (2.15)

where NT is the number of leaves.

2.2. Decision Tree Pruning 11

However, this correction still produces an optimistic error rate. Hence, Quinlan sug-
gested only keeping the sub-tree if its corrected number of mis-classifications is lower than
that for the node by at least one standard error. The standard error for the number of
mis-classification is defined as:

SE(n′(Tt)) =

√
n′(Tt)× (N(t)− n′(Tt))

N(t)
(2.16)

where n′(Tt) =
∑
e(i) +NT /2.

Chapter 3

Ensemble Learning

Ensemble learning is a family of methods which generate multiple classifiers from the
original data set and then try to combine them to constitute a new classifier which can
obtain better performance than any of its constituents. Constructing good ensembles has
become one of the most active areas of research in supervised learning because both em-
pirical studies and specific machine learning applications verify that a given classification
method outperforms all others for a particular problem or for a specific subset of the input
data, but it is abnormal to find a single method achieving the best results on the over-
all problem domain [20]. Therefore, combining multiple learners to exploit the different
behavior of the base classifiers to improve the accuracy has become a concern of many
researchers and practitioners. There are hopes that if a single classifier fails, a committee
of many classifiers can recover the error.

A typical ensemble framework usually contains the following components:

• Training set generator: The generator is responsible for creating training sets for
all component classifiers of an ensemble. It is common that component classifiers
are built from various training sets to make them act differently. However, in some
algorithms, all classifiers are trained from the same data set and, in this case, making
classifiers diverse is then the responsibility of inducers. The training set generator,
in this situation, just needs to return the original data set for all classifiers.

• Inducers: The inducer is an algorithm that gets a training set and build a clas-
sifier that represents the relationship between the input attributes and the target
attribute. All classifiers can be constituted from the same inducer or from many
different inducers.

• Combiner: The role of a combiner is to combine the outputs from component
classifiers to give a final prediction. There are various combiners, from simple ones
to complicated ones. For example, one very simple way to combine the results of
a classification problem is to use majority voting. For regression problems, rather
than taking the majority vote, it is common to take the mean of the outputs.

Two families of the ensemble methods are usually distinguished based on the classifier
dependency. They are dependent methods and independent methods.

In dependent approaches, the outcomes of a certain classifier affect the creation of the
next classifier. In some algorithms, the classifiers constructed in the previous iterations are
employed to manipulate the training set for the next iteration. These approaches usually

13

14 Chapter 3. Ensemble Learning

let the classifiers learn only from instances that are mis-classified by previous classifiers
and ignore all other instances. Such method is called Model-guided Instance Selection
[45]. One typical example of this method is AdaBoost algorithm formulated by Yoav
Freund and Robert Schapire [22]. Another approach in this family of ensemble methods is
Incremental Batch Learning. The approach uses the current training set together with the
classification of the former classifier for building the next classifier. At the last iteration,
the final classifier is constructed.

Contrary to dependent methods, in independent methods, each classifier is built inde-
pendently. Their outputs are then combined in some fashion. Diversity of classifiers are
gained by manipulating the training set or the classifiers. Some of the most well-known
independent methods are Bagging [11], Random Forest [12], and Wagging algorithm [4].

The following sections will introduce some strategies to construct a good ensemble,
including making an ensemble diverse, combining classifiers and selecting ensemble size.

3.1 Ensemble diversity

According to Krogh and Vedelsby (1995) [27], diversity of classifiers in an ensemble the-
oretically plays an important role in obtaining a good performance of the ensemble. Re-
searchers have been introduced many approaches to create classifiers which are as different
as possible while still have high accuracy. In the book named Data mining with Decision
Tree [45], Lior Rokach and Oded Mainmon proposed the following taxonomy of those
approaches.

• Manipulating the Inducer - In this method, the ways in which the inducer are used
to generate classifiers are manipulated, thus creating different classifiers.

• Manipulating the Training Sample - The training set for each ensemble member is
manipulated. In other words, each classifier is trained with a different training set.

• Changing the target attribute representation - Each classifier in an ensemble is as-
signed a task and solves a different target concept.

• Partitioning the search space - In this method, many search subspaces are created
and each classifier is trained on one of those subspaces.

• Hybridization - An ensemble consists of various base classifiers.

Our report only presents the first two methods mentioned above because they are not
only related to our main focus, which is Random Forest algorithm, but also are the most
well-known methods that are frequently used in many ensembles.

3.1.1 Manipulating the Training Samples

In this method, each ensemble member is trained on a different subset of the original
training set. According to [45], classifiers, such as decision tree and neural network, whose
variance-error factor is relatively large may get a huge change even though there are small
changes in the training set. Therefore, this method is suitable for such kinds of classifiers.

3.1. Ensemble diversity 15

Resampling

In this approach, a new training set is created by taking instances from the original training
set. One sample of resampling is bootstrap sampling method. Bootstrap sample is a new
sample taken from an original data set with replacement. It is the same size as the original
one. Hence, in the bootstrap sample, some data may appear several times and others not
at all. Bootstrap sampling is used in several algorithms, such as Bagging and Random
Forest. Instead of taking instances with replacement, some algorithms like AdaBoost and
Wagging assign a weight to each instances in the training set. Classifiers then take those
weights into account to create different ensemble members. The distribution of training
instances in the new set can be random as in Bootstrap or approximately the same as that
in the original set. [16] has shown that proportional distribution as used in combiner tree
can achieve higher accuracy than random distribution.

DECORATE algorithm

The DECORATE algorithm (Listing 3.1) was proposed by Melville and Mooney (2003)
[31]. The method was designed to use additional artificially generated training data to
generate diverse ensembles. An ensemble is generated iteratively, one new classifier gen-
erated in each iteration is added into the current ensemble. At first step, an ensemble
member is built using the base classifier on the original training set. In each iteration,
a number of artificial training instances are generated based on a simple model of data
distribution and then added into the training set. Labels for those artificial training in-
stances are chosen so as to differ maximally from the current ensemble’s predictions. The
successive ensemble member is built on the new training set. Experiments have shown
that this technique can achieve higher accuracy than boosting on small training sets and
comparable performance on larger training sets.

1

2 Given :
3 T s e t o f t r a i n i n g examples
4 U s e t o f un labe l ed t r a i n i n g examples
5 BaseLearn base l e a rn i ng a lgor i thm
6 k number o f s e l e c t i v e sampling i t e r a t i o n s
7 m s i z e o f each sample
8

9 1 . Repeat k t imes
10 2 . Generate a committee o f c l a s s i f i e r s ,
11 C∗ = EnsembleMethod(BaseLearn, T)
12 3 . ∀xj ∈ U , compute Utility(C∗, xj) , based on the cur rent committee
13 4 . S e l e c t a subset S o f m examples that maximizes u t i l i t y
14 5 . Label examples in S
15 6 . Remove examples in S from U and add to T
16 7 . Return EnsembleMethod(BaseLearn, T)

Listing 3.1: DECORATE algorithm

Partitioning

Handling massive data raises a challenge in loading the entire data set into a memory
of a single computer. Chawla et al. (2004) [17] claimed that distributed data mining
can address, to a large extent, the scalability and efficiency issues presented by massive

16 Chapter 3. Ensemble Learning

training sets. The data sets can be randomly partitioned into disjoint partitions with
a size that can be efficiently managed on a group of processors. Each classifier is built
on a disjoint partition and then can be aggregated. This is not only resolve the issue of
memory but also leads to creating a diverse and accurate ensemble. In [17], Chawla et al.
also proposed a framework for building thousand of classifiers that are trained from small
subsets of data in a distributed environment. Empirical experiments have shown that the
framework is fast, accurate and scalable. The performance of this approach is equivalent
to the performance obtained by bagging.

3.1.2 Manipulating the Classifiers

To gain classifiers diversity, a simple and natural method is to manipulate the original
classifier. There are several ways to do this.

Manipulation of the classifier’s parameters

The original classifier can be modified by altering its parameters. Some changes in pa-
rameters can greatly affect the performance of the classifier. For instance, in decision
tree classifier C4.5, the minimal number of instances per leaf, the confidence factor used
for pruning and whether counts at leaves are smoothed based on Laplace are some of
parameters that could be controlled to gain diversity.

In neural network classifier, networks can be made to be different by changing number
of nodes, architecture, training algorithm or activation function.

Starting point in hypothesis space

Another method to gain diversity is to start the search in the hypothesis space in different
points. For example the simplest way to manipulate the back-propagation inducer is
to assign different initial weights to the network [38]. Empirical studies show that the
number of cycles in which networks take to converge upon a solution, and in whether they
converged at all can differentiate the results.

Traversing hypothesis space

Classifiers diversity is gained by altering the way in which the classifiers traverse the
hypothesis space. One method is to inject randomness into the classifiers. For example,
Ali and Pazzani [2] proposed that instead of selecting the best literal at each stage, the
literal is selected randomly such that its probability of being selected is proportional to its
measured value. There are also some other ways to inject randomness, such as randomly
choosing a subset of attributes and then finding out the best among them in Random Forest
algorithm [12], or randomly select an attribute from the set of the best 20 attributes in
[20].

Another method to make an ensemble diverse was presented by Liu and Yao [28],
namely negative correlation learning. In negative correlation learning, all the individ-
ual networks in the ensemble are trained simultaneously and interactively through the
correlation penalty terms in their error functions. Rather than producing unbiased in-
dividual networks whose errors are uncorrelated, negative correlation learning can create
negatively correlated networks to encourage specialization and cooperation among the
individual networks [28]. The central idea behind the method is to encourage different

3.2. Combination methods 17

individual networks in an ensemble to represent different subspaces of the problem so that
the ensemble can handle the whole problem better.

3.2 Combination methods

The following sections will focus on combination methods that are used to combine base
classifiers in ensemble learning. There are two main methods: weighting methods and
meta-learning methods. While weighting methods are usually used to combine classifiers
built from a single learning algorithm, meta-learning is a good choice for combining clas-
sifiers from various learning algorithms.

3.2.1 Weighting methods

To combine classifiers with weighting methods, each classifier is assigned with a weight
proportional to its strength. The weights can be static or dynamically change based on the
instance to be classified. Some of the most well-known weighting methods are Majority
voting, Performance weighting, Demster-Shafer method, Vogging, and mixture of experts.

Majority voting

In this method, an unlabeled instance is classified by all the classifiers. Each classifier
votes for a class that the instance should belong to. The class with the most frequent
vote will be assigned to the new instance. Therefore, this method sometimes is called the
plurality vote.

Mathematically, the algorithm can be written as:

class(x) = argmaxci∈dom(y)

(∑
k

g(yk(x), ci)

)
(3.1)

where yk(x) is the classification of the k’th classifier and g(y, c) is an indicator function
defined as:

g(y, c) = {1 y = c
0 y 6= c.

(3.2)

Performance weighting

Performance weighting method assigns each classifier a weight which is proportional to its
accuracy performance on a validation set. [37]. The weight is defined as:

αi =
1− Ei∑T

j=1(1− Ei)
(3.3)

where Ei is a factor based on the performance of classifier ith on a validation set.

18 Chapter 3. Ensemble Learning

Demster-Shafer method

Shilen et al. [46] suggested a method for combining base classifiers which borrowed the
idea from the Dempster-Shafer theory of evidence [13]. The method chooses the class that
maximizes the value of the belief function:

Bel(ci, x) =
1

A
.
bpa(ci, x)

1− bpa(ci, x)
(3.4)

where bpa(ci, x) is defined as follows.

bpa(ci, x) = 1−
∏
k

(1− ˆPMk
(y = ci|x)) (3.5)

where ˆPMk
(y = ci|x) is the probability assignment defined for a certain class ci given the

instance x. And

A =
∑

∀ci∈dom(y)

bpa(ci, x)

1− bpa(ci, x)
+ 1. (3.6)

Vogging

Derbeko et al. [19] proposed an approach for aggregating an ensemble of bootstrapped
classifiers. The new technique is called Variance Optimized Bagging or Vogging. The
central idea behind the approach is to find a linear combination of base classifiers so that
the weights are optimized to reduce variance while preserve a prescribed accuracy.

This technique was inspired by a theory from Mathematical Fiance called Markowitz
Mean-Variance Portfolio Optimization. Suppose there are m assets S1, S2, ... Sm, denote
ri as a predicted expected monetary return for Si, σi as a predicted standard deviation of
the return of Si and Q as the m × m covariance matrix. A portfolio is a linear combination
of assets and it is expected to return

∑m
i wiri where wi ∈ (w1, w2, ...wm with

∑m
i wi = 1.

The variance of a portfolio is used to measured its risk,

σ2(w) =
∑
i,j

wiwjQij = wtQw (3.7)

The output of the Markowitz algorithm is a efficient frontier. It is a set of portfolios with
the highest expected return among those with the same or lesser risk, and the least risk
among those with the same or greater return. Investors who want to find an ”optimal”
portfolio should choose a point on the efficient frontier curve. However, which exact
portfolio will be chosen depends on personal utility functions of investors.

Applying the Markowitz algorithm to Machine learning, Derbeko et al. proposed the
Vogging method as follows. [19]

Input

1. T (number of bagged classifiers)

2. k (number of efficient frontier points)

3. S = (x1, y1), ..., (xn, yn) (training set)

3.2. Combination methods 19

4. H (base classifier hypothesis class)

Training

1. Generate T bootstrap samples, B1, ... BT from S

2. Train T classifiers hi, ..., hT such that hj ∈ H is trained over Bj

3. Let Āj = 1
T−1

∑
i 6=j Aj(Bi) be the average empirical accuracy over all the other

bootstrap samples. Evaluate Āj , for all j = 1, 2, ... T and Q.

4. Choose k uniformly spread points a1, ...ak in [minjĀj ,maxjĀj]

5. The following quadratic program (QP) should be solved with linear constraints:

minimize(overw) :
1

2
wtQw (3.8)

subjectto : (Ā1, ...ĀT)t, w ≥ a (3.9)∑
j

wj = 1, w ≥ 0 (3.10)

Solve k instances of QP with the accuracy constraints a1, ...ak. For i = 1, ...k let wi
and (a

′
i, σi) be the result weight vector and mean-variance pair corresponding to ai

6. Let p0 be the proportion of the larger class in S

Output ”Vogging weight vector” w∗i with i∗ = argmaxi
a
′
i−p0
σi

Mixture of experts

Mixture of expert (ME) is one of the most well-known combination methods. The ME
method is proposed based on Divide-and-Conquer principle [25], in which the problem
space is partitioned stochastically into a number of subspaces through special employed
error function, experts become specialized on each subspace. A gating network is trained
together with the experts, and is used to assign weights to the experts. Unlike other
combination methods, instead of assigning a set of fixed combinational weights to the
expert, the gating network compute these weight dynamically from the inputs, according
to local efficiency of each expert.

Various ME strategies were presented to divide the problem spaces between the experts
recently. Those implementations were classified into two groups based on the partitioning
strategies used and both how and when the gating network is involved in the partitioning
and combining procedures [30]. The first group, namely the Mixture of Implicitly Localised
Experts (MILE), consists of the conventional ME and the extensions of this method that
stochastically partition the problem space into a number of subspaces using a special
error function. In the second group, the problem space is first partitioned by a clustering
method and each expert is then assigned to one of these subspaces. This group is called
Mixture of explicitly localised experts (MELE).

3.2.2 Meta-learning methods

Meta-learning is a method which learns from new training data created from the classifica-
tions of the base classifiers and some characteristics of them. Some of the most well-known
meta-learning methods are Stacking, Arbiter Trees, and Combiner Trees.

20 Chapter 3. Ensemble Learning

Stacking

Stacking is a technique for achieving the highest generalization accuracy [49]. The central
idea behind Stacking is to build a meta-dataset from the original dataset, then learn
from it to form a final meta-classifier. The new meta-dataset is built using the predicted
classifications of the base classifiers as input attributes. The target attribute remains as
in the original dataset. In order to build the meta-dataset, the original dataset is usually
divided into two subsets. The first one used to build base classifiers, and the second one
is fed into those classifiers to form the meta-dataset.

The choice of input attributes and the learning algorithm at the meta-level are two
most essential problems in Stacking. Much research has been proposed to address those
issues. One of them is from Ting and Witten (1999) [47]. They suggested using Stacking
with probability distributions and multi-response linear regression. It means instead of
using only classifications from base classifiers, they add the probability distributions (PDs)
over the set of class values. The reason for the extension, according to the authors, is
that it would allows the meta-level classifier not to use only the predictions, but also
the confidence of the base classifiers. Besides, multi-response linear regression (MLR)
is recommended for meta-level learning. Suppose there are m class values, m regression
problems are formulated: for each class cj , a linear equation LRj is constructed to predict
a binary variable, which has value one if the class value is cj and zero otherwise. Given a
new example x to classify, LRj(x) is calculated for all j, and the class k is predicted with
maximum LRk(x) [47].

Another solution for the two issues in Stacking was recommended by Merz (1999) [32],
called SCANN. The main idea behind the method is based on the knowledge that the more
diverse base classifiers are, the better performance they yield. The correlations between
the predictions of base classifiers are detected by SCANN using correspondence analysis.
Then, meta-dataset is transformed to remove these correlations. In addition, SCANN
employs the nearest neighbor method as its learning algorithm for meta-level learning
step.

Arbiter Trees

The arbiter tree which is built in a bottom-up fashion was proposed by Chan and Stolfo
(1993) [16]. In this method, the original data is partitioned randomly into many disjoint
subsets from which classifiers are learned. An arbiter is built from the output of a pair of
learned classifiers and recursively, an arbiter is learned from the output of two arbiters. An
arbiter tree is generated with the initially learned base classifiers at the leaves. Therefore,
for k subsets, there are k classifiers and log2(k) levels generated. A sample arbiter tree
built from 4 base classifiers is shown in Figure 3.1 [16].

In detail, for each pair of classifiers, firstly, a validation set is formed by combining the
data subsets on which the classifiers are trained. The validation set is then classified by the
two classifiers. A selection rule compares the outputs from the two classifiers and selects
instances from the validation set to form the training set for the arbiter. Same learning
algorithm is used to build the arbiter. The process of forming the union of data subsets,
classifying it using a pair of arbiter trees, comparing the predictions, forming a training
set, and training the arbiter is recursively performed until the root arbiter is formed. The
purpose of the selection rule is to choose examples that are confusing; i.e., the majority of
classifiers do not agree [15]. There are three version of selection rules:

3.2. Combination methods 21

Figure 3.1: A sample Arbiter Tree

1. Return instances that are differently classified by classifiers, i.e. T = Td = {x ∈
E|AT1(x) 6= AT2(x)}, in which ATi(x) denotes the prediction of training example x
by arbiter subtree ATi

2. Return instances in Td, but also instances that incorrectly classified, i.e. Ti = {x ∈
E|(AT1(x) = AT2(x)

∧
class(x) 6= ATi(x))}

3. Return a set of three training sets: Td, Ti and Tc, where Tc = {x ∈ E|(AT1(x) =
AT2(x)

∧
class(x) = ATi(x))} and class(x) denotes the given classification of exam-

ple x.

When an instance is classified by the arbiter tree, predictions flow from the leaves to
the root. First, for each pair of classifiers, the predictions of the two classifiers and the
parent arbiters prediction decide a final classification outcome based on an arbitration
rule. This process is applied at each level until a final prediction is produced at the root of
the tree. There are also two versions of arbitration rules. The task of determining which
arbitration rule is utilized depends on the version of selection rule used for generating the
training data at that level.

Combiner

The Combiner strategy is a meta-learning technique proposed by Chan and Stolfo [14].
The purpose of this method is to coalesce the predictions from the base classifiers by learn-
ing the relationship between these predictions and correct predictions. In this method, the
training set for the combiner is formed from the outputs of base classifiers with the guid-
ance of a composition rule. From those training examples, the combiner is built. When
classifying a new instance, the base classifiers first generate their predictions. With those
predictions, the instance is transformed to a new one by applying the same composition
rule. The classification of the new instance using the combiner is then labeled for the
investigated instance. Figure 3.2 [14] demonstrates a sample classification in the combiner
strategy with 3 base classifiers.

There are three schemes for the composition rule:

1. Return meta-level training instance with the expected classification and the pre-
dictions of base classifiers, i.e., T = {class(x), C1(x), C2(x), ...Ck(x)|x ∈ E}, where
Ci(x) denotes the prediction of classifier Ci, class(x) denotes the correct classifica-
tion of example x as specified in the training set, E. This scheme is called meta-class.

22 Chapter 3. Ensemble Learning

Figure 3.2: Classification in the combiner strategy

2. Return meta-level training instances similar to those in the meta-class scheme, plus
the original attribute vectors of the training set of base classifiers. That means,
T = {class(x), C1(x), C2(x), ... Ck(x), attrvec(x) | x ∈ E}. This scheme is called
meta-class-attribute.

3. Return meta-level training instances similar to those in the meta-class scheme. How-
ever, each prediction Ci is replaced bym binary predictions Ci1(x), Ci2(x), ..., Cim(x),
where m is the number of classes. A binary classifier Cij is trained on instances
which are labeled with class j and qj. In other words, this means, T = {class(x),
C11(x), C12(x), ..., C1m(x), C21(x), C22(x), ..., C2m(x), ...Ck1(x), Ck2(x), ..., Ckm(x)|x ∈
E}.

3.3 Ensemble size

Besides learning and combination methods, ensemble size, which is related to how many
component classifiers should be used, also plays an important role in generating a good
ensemble. According to [45], there are several aspects that may affect the size of an
ensemble:

• Accuracy. Accuracy is usually known as the first priority factor that decides en-
semble size. In most cases, ensembles containing ten classifiers are sufficient for
reducing the error rate [24]. Regrading to the selection of decision trees in random
forests, Bernard et al. [6] empirically showed that the error rate, in most datasets,
drops significantly when the number of trees is around 10-15. When the number of
trees grows a bit higher, the error rate reduces slightly. However, when the ensemble
size exceeds a specific number, the error rate increases. Therefore, the choice of
ensemble size is affected by the desired accuracy.

• Computational cost. Increasing the number of classifiers usually comes with the
increase in computational cost and incomprehensibility. Hence, there often is a limit
size for an ensemble that is set by users.

3.3. Ensemble size 23

• The nature of the classification problem. In some methods, the characteristics
of the classification problem have an effect on ensemble size. For example, in the
Error-Correcting Output Coding algorithm (ECOC) suggested by Dietterich and
Bakiri [21], the ensemble size is determined by the number of classes.

• Number of processor available. In some independent methods, such as Random
Forest and Bagging or Wagging, classifiers can be trained parallel. Thus, the number
of processors available can be put as an upper bound on the number of classifiers.

As mentioned above, accuracy is usually regarded as the most crucial factor that affects
the decision of ensemble size. Many methods have been presented with the purpose of
determining the ensemble size so that the performance of the ensemble is maximized.
Rokach and Maimon [45] classified those methods into three types as follows.

3.3.1 Pre-Selection of the Ensemble size

In this method, the number of classifiers is predefined by users. For example, Random
Forest algorithm allows users to set the number of decision trees used to build the forest.
In other cases, such as ECOC algorithm, the ensemble size is set based on the nature of
the classification problem. Pre-selection is known as the simplest method to determine
the ensemble size.

3.3.2 Selection of the Ensemble size while training

The central idea behind the selection of the ensemble size while training method is that
whenever there is a new classifier, the algorithm needs to consider the contribution of
the new classifier to the ensemble. If the performance of the ensemble does not increase
significantly, the process of extending the ensemble stops, and the ensemble is returned.

Banfield et al. [3] proposed an algorithm to decide when a sufficient number of clas-
sification trees have been created for an ensemble. First, the out-of-bag error graph is
smoothed with a sliding window in order to reduce the variance. They choose a window
size of 5. The algorithm then takes windows of size 20 on the smoothed data points and
determines the maximum accuracy within that window. The process is repeated until
the maximum accuracy within the current window no longer increases. At this point, the
algorithm stops and returns the ensemble with the maximum raw accuracy from within
that window. Figure 3.3 [3] describes the algorithm in detail.

3.3.3 Post Selection of the Ensemble size

Sharing the same perspective with pruning techniques in decision tree, post selection of
the ensemble size methods allow the ensemble grow freely and then prune the ensemble to
reduce its size and make it more effective. Margineantu and Dietterich [29] experimentally
indicated that pruned ensembles may obtain a similar accuracy performance as the orig-
inal ensemble. Followings are two types of post selection method: pre-combing pruning
methods and post-combining pruning methods.

24 Chapter 3. Ensemble Learning

Figure 3.3: Sample Arbiter Tree

Pre-combining Pruning

Pre-combing pruning is a method in which classifiers are chosen to be added into the
ensemble before performing the combination step. The algorithm uses greedy forward-
search methods to choose classifiers. According to Prodromidis et al. [39] , instead of
relying just on one criterion to choose the ”best” base classifiers, the pruning algorithms
can employ several metrics. They suggested two methods for pre-combining pruning, which
are Diversity-based pruning algorithm and Coverage/Specialty-based pruning algorithm.

In the Diversity-Based pruning algorithm, the diversity matrix d is computed, where
each cell dij contains the ratio of the instances of the validation set for which classifiers Ci
and Cj give different predictions. The algorithm works iteratively and in each loop, the
classifier that is most diverse to the classifiers chosen so far is added into the selected set,
starting with the most accurate base classifier. The loop is terminated when the N most
diverse classifiers are chosen, where N is a parameter depending on some factors such as
minimum system throughput, memory constraints or diversity thresholds.

The Coverage/Specialty-Based algorithm also works iteratively. It combines the cov-
erage metric and one of the instances of the specialty metric. First, the algorithm chooses
the most accurate classifier respect to the specialty metric for a particular target class
on the validation set. After that, in each loop, classifiers with the best performance on
the examples that the previously chosen classifiers failed to cover are selected and added
into the selected set. The iteration ends when there is no more example to cover. The
algorithm repeats the selection process for a different target class.

Post-combining Pruning

Assuming that classifiers are combined using a meta-combination method, contrary to
the Pre-combining pruning, Post-combing pruning is considered as a backwards selection

3.3. Ensemble size 25

method because it prunes a meta-classifier after it is constructed basing on their contri-
bution to the collective. The algorithm starts with all available classifiers or with the
classifiers selected by pre-combining pruning, the it iteratively tries to remove classifiers
without degrading predictive performance. Following we list some among many proposed
methods in this pruning family.

The Cost complexity post-training pruning algorithm was presented by Prodromidis et
al. [39]. This algorithm consists of three phases. n the initialization phase, by applying a
decision tree algorithm to the data set composed by the the meta-classifier’s training set
and the meta-classifier’s predictions on the same set, the algorithm computes a decision
tree model of the meta-classifier. The decision tree reveals the irrelevant classifiers that
do not participate in the splitting criteria. Those classifiers are then pruned. In the
next phase, the number of selected base classifiers continues to be reduced, according
to the restrictions imposed by the available system resources or the runtime constraints.
The algorithm utilizes minimal cost complexity pruning method to prune the decision
tree, which leads to the reduction in size of the ensemble. Finally, in the last phase, the
remaining base classifiers construct a new final ensemble meta-classifier.

The GASEN algorithm was developed by Zhou et al.[51] in order to build selective
ensemble for neural networks. The purpose of this algorithm is to show that the appro-
priate neural networks for composing an ensemble can be effectively selected from a set of
available neural networks. GASEN first trains a number of neural networks and then as-
signs a random weight to each of the networks. Next, it uses a genetic algorithm to evolve
those weights so that they can characterize to some extent the fitness of the component
learners in joining the ensemble. Finally, classifiers whose weights are higher than a pre-
defined threshold are chosen to constitute the ensemble. Zhou et al. empirically showed
that GASEN can generate neural network ensembles with smaller sizes but stronger gen-
eralization ability comparing to some popular ensemble methods such as Bagging and
Boosting.

GASEN-b, which is a revised version of the GASEN algorithm, was proposed by Zhou
and Tang [50]. GASEN-b is an extended version focusing on cases in which decision trees
are used as component learners. Their experiments showed that an ensemble built by
GASEN-b algorithm, which selects some of trained C4.5 decision trees to constitute an
ensemble, may be not only smaller in the size but also stronger in the generalization than
ensembles generated by non-selective algorithms [50]. Compared to the earlier version,
GASEN-b is modified in the manner of classifiers representation. Instead of assigning a
weight to each component learners, then selecting the learners according to the evolved
weights, the new algorithm employs a bit string to indicate whether each classifiers is
presented in the final ensemble. Then, the bit string is evolved to select final component
learners. The use of bit representation can get rid of the need of manually setting the
threshold for evolved weights. Moreover, because evolving shorter strings is much faster
than longer ones, GASEN-b may be faster compared to the GASEN algorithm.

Prodromidis et al. [39] also suggest a method called Correlation metric and pruning.
In this method, at first, the base classifier with the least correlation to the initial meta-
classifier is removed. The algorithm then builds a new meta-classifier with the remaining
classifiers, and continues to identify and removes the next least correlated base classifier.
The process is repeated until enough base classifiers are pruned.

Chapter 4

Random Forest

Random forest is one of the most well-known ensemble algorithms that uses decision tree
as base classifier. The construction a random forest conforms to the general process of
building an ensemble, which consists of three main following phases.

1. Gaining ensemble diversity - Random forest algorithm gains ensemble diversity
by manipulating training sets. A list of learning sets is created using the bootstrap
sampling method.

2. Constructing base classifiers - Random forest employs the same inducer, which
is random tree, on different training sets generated in the previous step to build
base classifiers. In detail, at each node, a small group of input attributes is selected
randomly. The size of the group can be predefined by users, but usually it is chosen
as the greatest integer that is not greater than log2M +1, where M is the number of
input attributes. Next, the best attribute or the best split point would be selected
to split on. All those trees are not pruned.

3. Combining base classifiers - The Majority voting method is utilized in the Ran-
dom forest algorithm.

Breiman (2001) [12], the ”father” of Random Forest, defined it as follows.

A random forest is a classifier consisting of a collection of tree-structured clas-
sifiers {h(x,Θk), k = 1, ...} where the {Θk} are independent identically dis-
tributed random vectors and each tree casts a unit vote for the most popular
class at input x.

In other words, building a random forest comprises the task of generating random
vectors to grow an ensemble of trees and letting those trees vote for the most popular
class.

The error rate of a forest depends on the strength of individual decision tree classifiers
and the correlation among trees [12]. Increasing the strength of the individual trees in-
creases the accuracy of the forest while increasing the correlation increases the error rate.
We can notice that if one or a few input variables are very strong predictors, theses fea-
tures will be selected in many trees, which causes them to become correlated. Therefore,
to avoid correlation among trees, random forest uses a modified tree learning algorithm
which randomly selects a subset of features instead of all features to find a best split

27

28 Chapter 4. Random Forest

at each node. This is the only thing that makes random forest differ from the Bagging
algorithm for trees.

The following are some noteworthy concepts related to a random forest.

4.1 Noteworthy concepts

4.1.1 The out-of-bag (oob) error estimate

In the forest building process, when bootstrap sample set is drawn by sampling with
replacement for each tree, about one-third of the cases are left out and not used in the
construction of that tree. This set of cases is called Out-of-bag data. Each tree has its
own OOB data set which is used for calculating the error rate for an individual tree. To
get the oob error rate of a whole random forest, put each case left out in the construction
of the kth tree down the kth tree to get a classification. Take j to be the class that gets
most of the votes every time case n is oob. The proportion of times that j is not equal to
the true class of n averaged over all cases is the oob error estimate.

4.1.2 Variable importance

Random forests can be used to rank the importance of variables (features) in a regression
or classification problem. The following steps were described in [12].

• In every tree grown in the forest, put down the oob cases and count the number of
votes cast for the correct class

• To measure the importance of variable m, randomly permute the values of variable
m in the oob cases and put theses cases down the tree.

• Subtract the number of votes for the correct class in the perturbed data from the
number of votes for the correct class in the original data. The average of this number
over all trees in the forest is the raw importance score of variable m.

Variable which produce large values for this score are ranked as more important than
variables which produce small values.

4.1.3 Proximity matrix

Let N be the number of cases in the training set. A proximity matrix is an NxN matrix,
which gives an intrinsic measure of similarities between cases. At each tree, put all cases
(both training and oob) down the tree. If case i and case j both land in the same terminal
node, increase the proximity between i and j by one. At the end of the run, the proximities
are divided by the number of trees in the run. The proximity between a case and itself is
set equal to one.

Each cell in the proximity matrix shows the proportion of trees over which each pair
of observations falls in the same terminal node. The higher the proportion is, the more
alike those observations are, and the more proximate they have.

Proximity matrix can be used to replace missing values for training and test set. It
can also be employed to detect outliers. The following sections will illustrate how missing
values are replaced and outliers are detected using the proximity matrix.

4.2. Related work 29

Missing value replacement

There are two ways which can be used to replace missing values in random forest. The
first way is fast, simple and easy to implement. To be specific, if the m’th variable of case
n is missing and it is numeric, it is replaced with the median of all values of this variable
in the same class, say j, with case n. On the other hand, if the mth variable is categorical,
it is replaced with the most frequent non-missing value in class j.

A more advanced algorithm capitalizes on the proximity matrix. This algorithm is
computationally more expensive but more powerful. It starts by imputing missing values
using the first algorithm, then it builds a random forest with the completed data. The
proximity matrix from the random forests is used to update the imputations of the missing
values. For numerical variable, the imputed value is the weighted average of the non-
missing cases, where the weights are the proximities. For categorical variable, the imputed
value is the category with the largest proximity. So, by following this algorithm, cases more
similar to the case with the missing data are given greater weight.

Outliers

Outliers are cases that are removed from the main body of the data [12]. The proximity
matrix can be used to detect outliers. In other words, an outlier in class j is a case whose
proximities to all other cases in class j are generally small.

4.2 Related work

There have been many research works in the area of random forest aiming at improving
accuracy, or performance, or both. According to the idea that to have a good ensemble,
base classifiers need to be diverse and accurate, whereas random selection of attributes
makes individual trees weak, Praveen Boinee et al. (2008) [9] proposed Meta Random
Forest. The central idea behind the algorithm is to use random forest themselves as
base classifiers for making ensembles [9]. Meta random forests are generated by both
bagging and boosting approaches. The performances of those two new models were tested
and compared with the original random forest algorithm. Among the three approaches,
bagged random forest gives the best results.

In the original random forest, after a subset of attributes is randomly selected, one of
the attributes in the subset is chosen to be a split point based on its Gini index score.
However, according to Robnik and Sikonja [44], Gini index can not detect strong condi-
tional dependencies among attributes. The reason for the deficiency of Gini index is that
it measures the impurity of the class value distribution before and after the split on the
evaluated attribute. In this way it assumes the conditional (upon the class) independence
of attributes, evaluates each attribute separately and does not take the context of other
attributes into account. Their solution was to use five different attribute measures: Gini
index, Gain ratio, ReliefF, MDL and DKM. One-fifth of trees in the forest were built
using one of those attribute measures. Among those measures, ReliefF is not impurity
based. With this new method, they obtained better results on some data sets. However,
the differences were not significant.

Robnik and Sikonja [44] also proposed another improvement for random forest, which
focuses on the manner that base classifiers are combined. They noticed that not all trees
are equally responsible for incorrect classification of individual instances. This simple

30 Chapter 4. Random Forest

observation led to the idea that it would be useful to use only some selected trees in
classification. Therefore, instead of counting the number of votes and using the class
with major votes to be the output class, Robnik and Sikonja suggested using weighted
voting. For each instance that needs to be classified, they first find some of its most similar
instances. The similarity is measured by proximity. They select t most similar training
instances and classify them with each tree where they are in the out-of-bag set. For each
tree in the forest they measure margin using the formula defined in [12] on these similar
out-of-bag instances, that is:

mg(X,Y) = avkI(hk(X) = Y)−maxj 6=Y avkI(hk(X) = j) (4.1)

where I(.) is the indicator function.
The trees with negative average margin are left out of classification. For final classifi-

cation they use weighted voting of the remaining trees where weights are average margins
on the similar instances when they are in the out-of-bag set.

Table 4.1 shows the performance of the original random forest on 17 data sets in
comparison to the performance of the random forest with weighted voting.

Data set Original Random Forest
Weighted voting
Random Forest

breast-cancer 0.966 0.967

bupa 0.734 0.739

diabetes 0.762 0.770

ecoli 0.869 0.869

german-numeric 0.750 0.760

glass 0.763 0.795

ionosphere 0.937 0.940

letter 0.957 0.958

parity2 0.820 0.875

parity3 0.075 0.625

sat 0.910 0.910

segmentation 0.982 0.982

sonar 0.817 0.865

vehicle 0.750 0.755

vote 0.957 0.957

vowel 0.979 0.979

zip 0.934 0.934

Table 4.1: Random forests performance for the original algorithm and weighted voting algorithm

In a ”classical” random forest induction process, decision trees are independently added
into the forest, which can not guarantee that all those trees will work well together. There
may be some trees which make the performance of the ensemble decrease. If those ”bad”
trees exist, removing them from the forest may lead to a better performance. Based on that
idea, Simon Bernard et al. (2009) [6] carried out experiments to find out if it is possible to
enhance the accuracy of a random forest by focusing on some particular subsets of trees.

4.2. Related work 31

Their work was to generate many subsets of trees with all possible sizes and then com-
pare the performances of those subsets to the original one. Two simple classifier selection
techniques were used to build subsets, they are SFS (Sequential Forward Selection) and
SBS (Sequential Backward Selection). Those techniques are sub-optimal because the se-
quential process makes each iteration depend on the previous one, and finally not all the
possible solutions are explored. However, because the main goal of their paper was not
to find the optimal subset of individual classifiers among a large ensemble of trees, but
rather to study the extent to which it is possible to improve the performance of a RF
using a subset of trees, the optimality of the selection methods is not a priority. Those
two techniques were still a good choice because of their simplicity and fast performance.
At each iteration of the SFS process, each remaining classifier is added to the current
subset and the one that optimizes the performance of the ensemble is retained. In the
same manner, in the SBS process, each classifier of the current subset is removed, and the
one for which the remaining ensemble exhibits the best accuracy is definitely discarded.

Table 4.2 shows 10 datasets which were used in Bernard et al.’s experiments. They
split each dataset randomly into two parts. The two thirds of the samples was used for
training and the last third for testing. Denote T = (TT , TS) where TT and TS respectively
stood for the training and testing set.

First, a random forest was grown from TT , with a number L of trees fixed to 300. The
value of the hyperparameter K, which denotes the number of features randomly selected
at each node of the trees, was fixed to

√
M , where M is the dimension of the feature space.

Then, each method (SFS and SBS) was applied to generate L subsets consisting of 1
to L trees. Besides SFS and SBS, Bernard also used one more random selection method,
i.e. SRS (for Sequential Random Selection). The method randomly selects trees from the
original set and add them to the final subset. So, in total, there were L × 3 error rates.

Dataset Size Features Classes

Gamma 19020 10 2

Letter 20000 16 26

Pendigits 10992 16 10

Segment 2320 19 7

Spambase 4610 57 2

Vehicle 946 18 4

Waveform 5000 40 3

Ringnorm 7400 20 2

Twonnorm 7400 20 2

Mnist 60000 84 10

Table 4.2: Datasets description

Figure 4.1 shows the results of L × 3 subsets generated by SFS, SBS and SRS methods.
As we can see, although SBS and SFS are two sub-optimal methods, in each dataset, there
always is a subset which outperforms the full set. Thus, the selection of subsets of trees
is the promising field that can bring much better results if we can find the optimal subset
of trees. Another observation is that every best subset in all datasets consists of less than

32 Chapter 4. Random Forest

100 trees. This corresponds to less than 1
3 of the total number of trees in the initial forest.

Those results highlight that when a random forest is grown with a ”classical” random
forest algorithm such as Forest-RI, all the trees do not improve the performance, and
some of them even make the ensemble do more prediction mistakes.

Figure 4.1: Error Rates obtained during the tree selection processes on 10 datasets, according to
the number of trees in the subsets. The black curves represent the error rates obtained with SFS,
the gray curves the error rates with SBS, and the dashed-line curves the error rates with SRS.

Following the previous research, Bernard et al. wanted to to identify some particular
properties that are shared by these sub-forests and which properties have an effect on the
error rate [7].

The Strength and Correlation are two features introduced by Breiman [12] as the
key features that affect the performance of a random forest. Increasing the strength of

4.2. Related work 33

the individual trees increases the accuracy of the forest while increasing the correlation
among trees increases the error rate. However, this result based on the assumption of a
large number of trees grown in the random forest. In [6], the subsets which give the lowest
error rates on employed datasets contain less than 1

3 of the total number of trees in the
initial forest. This means the assumption of a large number of trees in the random forest
are not satisfied any more. For that reason, Bernard et al. conducted an experiment to
confirm Breiman’s theory with different sizes of random forest.

In particular, Bernard et al. (2011) [7] studied the relation between the ratio ρ
s2

and
the error. They generated a pool of forests and measured for all of them the strength,
the correlation and the error rate. Because their goal was to generate a large pool of sub-
forests in terms of error rates, they used Genetic Algorithms (GA) for decision selection
in random forest.

Table 4.3 describes 20 datasets used in the experiments. Similar to the previous re-
search, each dataset was randomly split into 2 parts: training set and testing set, con-
taining respectively two thirds and one third of the original dataset. A random forest
was grown from TT , with the number of tree fixed to 500. All other parameters remained
the same as in the previous research. A classifier selection process using a GA was then
applied to this forest. The size of sub-forests generated during this process was fixed, so
that all of them could be fairly compared with each other, as the number of trees could
affect the calculation of strength and correlation. The selection procedure through GA
was conducted for the following sizes of sub-forests: 50, 100, 150 and 200. Concerning the
GA parameters, they were fixed to the following classical values: number of generations
fixed to 300, population size to 50, mutation probability to 0.01, crossover probability to
0.60 and selection proportion to 0.80. So, for each size of sub-forest (50, 100, 150, 200)
and for each dataset, there were 15000 sub-forests.

Figure 4.2 illustrates the results of the experiments with 50-tree size forests. In the figure,
the relation between error rate and the ratio ρ

s2
are shown. Each point is a sub-forest

represented by its error rate and its value of ρ
s2

. Besides, a regression line was drawn on
each diagram to give a better observation. The tendencies observed on the figure can be
extended to all the sub-forest sizes tested in these experiments.

We can see clearly that when the values of ρ
s2

decrease, error rates decrease also. This
observation is consistent with Breiman’s theory.

34 Chapter 4. Random Forest

Dataset Size Features Classes

Diabetes 768 8 2

Gamma 19020 10 2

Isolet 7797 616 26

Letter 20000 16 26

Madelon 2600 500 2

Pendigits 10992 16 10

Mfeat-factor 2000 216 10

Mfeat-fourier 2000 76 10

Mfeat-karhnen 2000 76 10

Mfeat-zernike 2000 47 10

Page-blocks 5473 10 5

Segment 2320 19 7

Musk 6797 166 2

Spambase 4610 57 2

OptDigits 5620 64 10

Vehicle 946 18 4

Waveform 5000 40 3

Digits 38142 330 10

DigReject 14733 330 2

Mnist 60000 84 10

Table 4.3: Datasets description

Figure 4.2: Error rates (y-axis) according to ρ
s2 values (x-axis) for all the sub-forests of 50 trees,

obtained during the selection process. The red line is the regression line of the cloud

Chapter 5

Introduction to ADATE system

5.1 Artificial evolution

Artificial evolution is a research field inspired by Darwinian evolution. The main idea of
artificial evolution is to keep a set of potential solutions of a problem and try to generate
better solutions based on the old ones using some genetic operators e.g. recombination
and mutation. The potential solutions are called individuals and a set of individuals are
called population. Individuals in population are affected by ”natural selection”. Only
those individuals that are good regarding to some predefined fitness measure can be kept
in the population and can reproduce. The population size, in most cases, is fixed.

There are several classes of artificial evolution. The two most common ones are Genetic
algorithm [23] and Genetic programming.

5.1.1 Genetic Algorithm

Genetic Algorithm is a learning method in which a solution for a problem is presented as a
chromosome using a string whose elements are chosen from some alphabets. In the purpose
of deciding whether a string is good or not, a fitness function is defined. It takes a string
as an argument and returns a value indicating how well the string satisfied the problem
criteria. Over each generation, those strings that are relatively fit compared to the other
members in the population are selected to recombine. The common way to do it is just to
pick a fraction f of the best strings and ignore the rest. That method is called Truncation
selection. However, allowing some possibility of weak string is also good to produce some
exploration. Another better method, called Fitness proportional selection is employed.
The center idea of this method is to select strings with probability being proportional to
theirs fitness. After parents strings are chosen, a new string can be generated by taking
a part of the first parent and a part of the second. It is called crossover. There are three
kinds of crossover, which are single point crossover, multi-point crossover and uniform
crossover. After being generated, offspring also are mutated to maintain genetic diversity
from one generation of a population.

5.1.2 Genetic Programming

The general algorithm of Genetic programming is similar to Genetic Algorithm. However,
instead of being represented as a string, a solution in Genetic programming is a computer
program, usually in some functional language. Like Genetic algorithm, a population of

35

36 Chapter 5. Introduction to ADATE system

Figure 5.1: Crossover operation applied to two parent program trees (top). Crossover points (nodes
shown in bold at top) are chosen at random. The subtrees rooted at these crossover points are
then exchanged to create children trees (bottom)

individual (in this case, program tree) is also maintained. Over each iteration, the algo-
rithm produces a new generation of individuals using selection, crossover and mutation.
Crossover operation is performed by exchanging a subtree in the syntax tree of one parent
program with the other parent program. Figure 5.1 taken from [34] illustrates a crossover
operation. To calculate the fitness values, an individual, or a program, is executed on a
set of training data.

5.2 Automatic programming

Computer programming is the process of of writing or editing source code. Automatic
programming is a type of computer programming in which human programmers ”write
code that writes code”. In other words, when computer programming is done by a machine,
the process is called automatic programming. Human programmers only need to write a
specification, then, the mechanism will generate computer code based on that specification.
Automatic programming is somehow like a high-level programming language, but actually
it is not. In many cases, the task of giving a solution for a problem requires much more
effort than describing that problem or criticizing a solution. According to Biermann, [8],
there are two reasons why researchers are interested in studying automatic programming.
First, having a powerful automatic programming system which could correctly generate a
program from casual and imprecise specifications for a desired target program. Second, it
is widely believed that automatic programming is a necessary component of any intelligent
system. Thus, it becomes a topic for fundamental research.

Rich and Waters [43] gave a ”cocktail party” description of automatic programming:

There will be no more programming. The end user, who only needs to know

5.3. Functional programming and ML 37

about the application domain, will write a brief requirement for what is wanted.
The automatic programming system, which only needs to know about program-
ming, will produce an efficient program satisfying the requirement.
Automatic programming systems will have three key features: They will be
end-user oriented, communicating directly with end users; they will be general
purpose, working as well in one domain as in another; and they will be fully
automatic, requiring no human assistance.

There will be a new era of computer science if automatic programming can achieve
perfection. However, today, almost all automatic programming systems need such a long
time to evolve good solutions. With the rapid development of CPU processors and parallel
processing, automatic programming, hopefully, will be a promising area in the near future.

5.3 Functional programming and ML

5.3.1 Functional programming

Functional programming is a programming paradigm, a style of building the structure and
elements of computer programs, that treats computation as the evaluation of mathemati-
cal functions and avoids changing state and mutable data. It is a declarative programming
paradigm, which means programming is done with expressions [1]. One of the key moti-
vations for the development of functional programming is to generate correct programs.
Functional languages forbid themselves facilities which most programmers in imperative
programming languages regard as standard. There is no global variables of a traditional
language or the instances of objects in an object oriented language. When a value is
assigned, it will not change during the execution of the program. Reassignment is not
allowed. Therefore, the output of a function only depends on arguments passed to that
function. If a function is called with the same arguments for many times, it always pro-
duces the same output, thus eliminating side effects. On the other hand, in imperative
programming, the same expression can result in different values at different times depend-
ing on the state of the executing program. The side effects may occur and change the
values of program state. This is one of the most significant differences between the func-
tional programming and the imperative programming. The table 5.1 below summarizes
some other differences between those two programming paradigms [18].

5.3.2 ML

ML is a general-purpose functional programming language developed by Robin Milner
and others in the early 1970s at the University of Edinburgh, whose syntax is inspired by
ISWIM. The following are some important features of ML.

Higher-Order functions

Higher-order functions are functions that take functions as arguments. Higher-order func-
tions are supported in ML with great generality. Other languages such as C or Pascal
support functions as arguments only in limited ways.

38 Chapter 5. Introduction to ADATE system

Imperative Programming &
Traditional Software Engineer-
ing

Functional Programming &
Formal Methods

The De-
velop-
ment
Cycle

Using informal language a specifica-
tion may be open to interpretation.
Using appropriate testing strategies
we can improve confidence - but
not in any measurable way. Mis-
takes/bugs are common and difficult
to spot and correct.

Using logic we can state the spec-
ification exactly. Using mathemat-
ics we may be able to prove useful
properties of our programs. Mis-
takes/bugs are not common and not
difficult to spot and correct.

The De-
velop-
ment
Language

Using structured programming or
object oriented techniques we can
reuse code. Using structured pro-
gramming or object orientation we
can partition the problem into more
manageable chunks.

Using structured programming or
object oriented techniques we can
reuse code. We can partition the
problem into easy to use chunks -
plus there are often ”higher-level”
abstractions which can be made ML
which would be difficult or impossi-
ble in a traditional language.

The Run-
time Sys-
tem

The compiler can produce fast com-
pact code taking a fixed amount of
memory. Parallel processing is not
possible (in general). Fancy GUI’s
may be added.

The memory requirements are large
and unpredicatable. Parallel pro-
cessing is possible. Fancy GUI’s
may be added, with difficulty.

Table 5.1: Comparison between Functional Programming and Imperative programming

Polymorphism

Polymorphism is the ability of a function to take arguments of various type. It allows ML
programmers to write generic functions. For example, function length which returns the
length of a list is defined

length : ′a list − > int (5.1)

The functions works no matter which type the arguments are. The type ′a can stand for
any ML type.

Abstract data types

ML supports abstract data types [48] through:

• An elegant type system.

• The ability to construct new types.

• Constructs that restrict access to objects of a given type so all access is through a
fixed set of operations defined for that type.

5.4. ADATE 39

These abstract data types, called structures, offer the power of classes used in object-
oriented programming languages like C++ or Java.

Recursion

A recursive function is a function which call itself either directly or indirectly. The recursive
function can be used to replace loops in traditional languages. It is strongly encouraged
to be used in ML. Recursive functions tend to be much shorter and clearer.For example,
a factorial function could be defined as

fun factorial 0 = 1

| factorial n = n ∗ n factorial(n− 1);
(5.2)

Rule-based programming

In ML, actions are based on if-then-else rules. The core idea is to construct patterns for
cases, and a value is compared with several patterns in turn. The first matching pattern
causes an associated action to be compiled.

Strong typing

ML is a strongly typed language. That means types of all values can be determined at
compile time. ML tries to figure out the unique type that each value may have. Program-
mers only are asked to declare a variable in case it is impossible for ML to deduce its type.
Strong typing is valuable for debugging, because it allows many errors to be caught by
the compiler rather than resulting in mysterious errors when the program is executed.

5.4 ADATE

ADATE (Automatic Design of Algorithms Through Evolutions) [36] is a system for gen-
eral automatic programming, in a purely functional subset of the programming language
Standard ML. It can be used to build a solution for a problem from scratch or improve an
existing solution.

The principle of how ADATE works follows the basic idea of Genetic programming.
ADATE builds and maintains a population of programs (or called individuals) during a
run. The individuals are represented as expression trees. At the beginning, there is only
a single individual. Then, the population expands as the evolution progresses. ADATE
constructs new individuals by applying a number of atomic program transformations,
called compound program transformation, on existing individuals in the kingdom during
reproduction. The compound program transformations are composed using a number of
different predefined heuristics. After being generated by a compound program transforma-
tion, a new individual is considered whether it should be added into the kingdom or not.
The ADATE system decides adding one new individual into the kingdom not only based
on its fitness value but also its size. Utilizing Occam’s Razor principle, ADATE prefers
small size programs. A large program will be inserted into the population only when all
other smaller size programs in the population are worse than it. And after each insertion

40 Chapter 5. Introduction to ADATE system

of a new individual, larger programs which have poorer performance will be removed. As
listed in [36], there are five basic forms of transformations.

1. R (Replacement) - A part of an existing individual is replaced by a new expression.
Replacement and its special use, REQ are two transformations that can change the
semantics of a program. Among 5 transformation, it is also applied most frequently.
Following is an example of R. The codes are taken from a log file when running
ADATE system on Wine dataset.
Preceding individual:

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 case r e a lL e s s (X6real , X9real) o f
6 f a l s e => (
7 case
8 r e a lL e s s (
9 X3real ,

10 realAdd (realAdd (X12real , X0real) , X2real)
11) o f
12 t rue => c l a s s 1
13 | f a l s e => c l a s s 2
14 | f a l s e => (r a i s e NA 4D9)
15)
16 | t rue => (r a i s e D E67800)
17

Succeeding individual:

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 case r e a lL e s s (X6real , X9real) o f
6 f a l s e => (
7 case
8 r e a lL e s s (
9 X3real ,

10 realAdd (realAdd (X12real , X0real) , X2real)
11) o f
12 t rue => c l a s s 1
13 | f a l s e => c l a s s 2
14 | f a l s e => (r a i s e NA 4D9)
15)
16 | t rue =>
17 case r e a lL e s s (X1real , X6real) o f f a l s e => c l a s s 3 | t rue => c l a s s 2
18

It is easy to see that the exception raise D E67800 in the former individual is re-
placed by a newly synthesized expression case realLess(X1real, X6real) of false =>
class3 | true => class2 in the latter individual.

2. REQ (Replacement preserving Equality) - This is an R transformation that does not
making the individuals evaluation value worse. REQ transformations are created by

5.4. ADATE 41

generating many R transformations and then selecting those transformation having
an equal or better evaluation value.

3. ABSTR (Abstraction) - ABSTR transformations are created by factoring out a
piece of code into a function definition and replacing the original code with a function
call. Auxiliary functions can be invented using this transformation. Here is an
example of ABST.

Preceding individual:

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 case r e a lL e s s (X3real , X0real) o f
6 f a l s e => (
7 case r e a lL e s s (X6real , X9real) o f
8 f a l s e => c l a s s 2
9 | t rue => c l a s s 3

10)
11 | t rue =>
12 case r e a lL e s s (X7real , X12real) o f
13 f a l s e => (r a i s e D 1A58FA)
14 | t rue => c l a s s 1
15

Succeeding individual:

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 l e t
6 fun g296387 V296388 =
7 case r e a lL e s s (X6real , V296388) o f
8 f a l s e => c l a s s 2
9 | t rue => c l a s s 3

10 in
11 case r e a lL e s s (X3real , X0real) o f
12 f a l s e => g296387 (X9real)
13 | t rue =>
14 case r e a lL e s s (X7real , X12real) o f
15 f a l s e => g296387 (X1real)
16 | t rue => c l a s s 1
17 end
18

In the new program, function fun g296387 V 296388 is created. An expression in
the preceding function false => (case realLess(X6real,X9real)of false =>
class2 | true => class3) is replaced by a function call g296387(X9real)

4. CASE-DIST (Case Distribution) - This transformation takes a case expression
inside a function call and moves the function call into each of the case code blocks
and vice versa. Preceding individual:

42 Chapter 5. Introduction to ADATE system

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 l e t
6 fun g296387 V296388 =
7 case r e a lL e s s (X6real , V296388) o f
8 f a l s e => c l a s s 2
9 | t rue => c l a s s 3

10 in
11 case r e a lL e s s (X7real , X12real) o f
12 f a l s e => (
13 case r e a lL e s s (X3real , X0real) o f
14 f a l s e => g296387 (X9real)
15 | t rue => g296387 (X1real)
16)
17 | t rue =>
18 case r e a lL e s s (X3real , X0real) o f
19 f a l s e => g296387 (X9real)
20 | t rue => c l a s s 1
21 end
22

Succeeding individual:

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 l e t
6 fun g296387 V296388 =
7 case r e a lL e s s (X6real , V296388) o f
8 f a l s e => c l a s s 2
9 | t rue => c l a s s 3

10 in
11 case r e a lL e s s (X7real , X12real) o f
12 f a l s e =>
13 g296387 (
14 case r e a lL e s s (X3real , X0real) o f
15 f a l s e => X9real
16 | t rue => X1real
17)
18 | t rue =>
19 case r e a lL e s s (X3real , X0real) o f
20 f a l s e => g296387 (X9real)
21 | t rue => c l a s s 1
22 end
23

The expression in the preceding function

1 case r e a lL e s s (X3real , X0real) o f
2 f a l s e => g296387 (X9real)
3 | t rue => g296387 (X1real)
4

is replaced by

5.4. ADATE 43

1 g296387 (
2 case r e a lL e s s (X3real , X0real) o f
3 f a l s e => X9real
4 | t rue => X1real
5)
6

All those two expression are have the same meaning, that is

1 X3real < X0real
2 : . . . X6real < X1real : c l a s s 3
3 : . . . X6real >= X1real : c l a s s 2
4 X3real >= X0real
5 : . . . X6real < X9real : c l a s s 3
6 : . . . X6real >= X9real : c l a s s 2
7

5. EMB (Embedding) - This transformation changes the argument type of functions
or adds arguments to functions. Below is an example of embedding, in which a new
argument is added to a parent program to generate a child program.

Preceding individual:

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 l e t
6 fun g3FF855 V3FF856 =
7 case r e a lL e s s (V3FF856 , X5real) o f
8 f a l s e => c l a s s 3
9 | t rue => c l a s s 2

10 in
11 case r e a lL e s s (X6real , X9real) o f
12 f a l s e => (
13 case r e a lL e s s (X3real , X0real) o f
14 f a l s e => c l a s s 2
15 | t rue =>
16 case r e a lL e s s (X7real , X12real) o f
17 f a l s e => (
18 case
19 case g3FF855 (X2real) o f
20 c l a s s 1 => (r a i s e NA 41A5C2)
21 | c l a s s 2 => c l a s s 1
22 | c l a s s 3 => g3FF855 (X0real) o f
23 c l a s s 1 => c l a s s 2
24 | c l a s s 2 => c l a s s 1
25 | c l a s s 3 => c l a s s 2
26)
27 | t rue => c l a s s 1
28)
29 | t rue => g3FF855 (X3real)
30 end
31

Succeeding individual:

44 Chapter 5. Introduction to ADATE system

1 fun f
2 (X0real , X1real , X2real , X3real , X4real , X5real
3 X6real , X7real , X8real , X9real , X10real , X11real , X12real
4) =
5 l e t
6 fun g45BC9B(V45BC9C, V45BC9D) =
7 case r e a lL e s s (V45BC9D, V45BC9C) o f
8 f a l s e => c l a s s 3
9 | t rue => c l a s s 2

10 in
11 case r e a lL e s s (X6real , X9real) o f
12 f a l s e => (
13 case r e a lL e s s (X3real , X0real) o f
14 f a l s e => c l a s s 2
15 | t rue =>
16 case r e a lL e s s (X7real , X12real) o f
17 f a l s e => (
18 case
19 case g45BC9B(X5real , X2real) o f
20 c l a s s 1 => (r a i s e NA 41A5C2)
21 | c l a s s 2 => c l a s s 1
22 | c l a s s 3 => g45BC9B(X5real , X0real) o f
23 c l a s s 1 => c l a s s 2
24 | c l a s s 2 => c l a s s 1
25 | c l a s s 3 => c l a s s 2
26)
27 | t rue => c l a s s 1
28)
29 | t rue => g45BC9B(X5real , X3real)
30 end
31

In the parent program, function fun g3FF855 V 3FF856 is modified adding one
argument. That function becomes fun g45BC9B(V 45BC9C, V 45BC9D)

In a nutshell, a procedure of how ADATE works is briefly described as follows.

1. Initiate the population with a single program given as the start program. For each
program in the population, ADATE assigns a number, called cost limit CP .

2. Select a program P from the population with the smallest cost limit.

3. Apply CP compound transformations to P . So, there will be CP new programs
created.

4. Check each new program with the evaluation functions to decide whether it should
be discarded or added into the population.

5. Double CP , and repeat from step 2 until the process is terminated by users.

From a user’s perspective, to evolve a solution for a problem, ADATE requires a
specification file. The specification file contains data type, auxiliary functions, input data,
expected output data, initial program and evaluation function.

Auxiliary functions are the functions that we believe ADATE will need to generate a
good solution. In some cases, being given useful auxiliary functions, ADATE can evolve
smaller and less complex program than it would have done if those functions were not

5.4. ADATE 45

available. However, the number of auxiliary functions makes the size of the search space
grow fast [5]. Therefore, there should only be necessary auxiliary functions given to
ADATE.

Evaluation function is a fitness function used to grade and select solutions, called
individuals to keep in a kingdom. By default, it is implemented as follows.

1 fun output eva l f un (I : int , , Y) =
2 i f Vector . sub (Al l outputs , I) <> Y then
3 { numCorrect = 0 , numWrong = 1 , grade = () }
4 e l s e
5 { numCorrect = 1 , numWrong = 0 , grade = () }
6

The above function simply compares the output of the generated program, or called
individual, with the given output which is also declared in the specification file to evaluate
that individual.

Finally, the specification file also contains an initial function from which evolution will
start. It usually is left empty if users want ADATE to evolve from beginning.

Chapter 6

ADATE Experiments

6.1 Design of experiments

As presented in Chapter 4, the construction a random forest consists of three main phases,
including Gaining ensemble diversity, Constructing base classifiers, and Combining base
classifiers. In order to improve the Random forest algorithm, an obvious and promising
approach is to employ the ADATE system on each step in the construction process to
get their ”evolved versions”. We, in this study, attempt to improve two out of the above
steps, which are Combining base classifiers and Constructing base classifiers. There are
several reasons for this choice.

Firstly, using ADATE system to improve an algorithm, especially a state-of-the-art one,
is usually time-consuming. Typically, evolving such programs requires hundreds of millions
of program evaluations. The reason lies in the huge number of possible combinations
of transformations, especially when the solutions become large. For example, a parent
program has n expressions and ADATE wants to apply an R transformation on it. There
also are m new expressions that can be used to replace r in n expressions existing in the
parent program. Hence, we will have

(
n
r

)
×mr possibilities. This number will grow rapidly

when the program is large, or in other words, n is large. Therefore, we want to start with
a small size, fast-running but potential part. As stated before, in the combination step,
random forest just simply applies majority voting method which is simple and does not
require much time to perform. Hence, our first experiment concentrates on evolving the
combination method.

On the other hand, constructing base classifiers is the most important part in random
forest algorithm. The injection of randomness into the base classifiers is said to be the
”soul” of the algorithm, since it differentiates random forest from tree-based Bagging
algorithm with a better performance in most cases. Some changes in the manner of
building base classifiers can greatly affect the performance of an ensemble. Therefore,
improving the way in which base classifiers are generated becomes our concern in the
second experiment.

In the following we will describe the designs of the two experiments in detail.

Experiment 1 - The combination of classifiers experiment

We try to improve the Majority voting algorithm using Stacking method (for more details
on Stacking method, please refer to section 3.2.2). The choice of input attributes and the

47

48 Chapter 6. ADATE Experiments

learning algorithm at the meta-level are two most essential problems in Stacking. In this
first experiment, we used classifications from base classifiers, i.e. decision random tree,
together with the out-of-bag (OOB) error rates of all trees as input attributes. Initially,
the learning algorithm at the meta-level shares the same behavior as Majority voting
method which simply assigns the class with the most frequent vote to a new instance. The
ADATE system is then required to synthesize a new meta-classifier from the initialized
program. The reason we add the OOB error rates into input attributes instead of using
only classifications from base classifiers is that we want to provide ADATE with more
information which hopefully become useful for ADATE to generate good solutions.

The data set we choose to feed ADATE in this experiment is EEG Eye State Data
Set which is taken from the UCI Machine Learning Repository. The data set contains
14980 instances. According to the description, all instances in this data set are from one
continuous EEG measurement with the Emotiv EEG Neuroheadset. The duration of the
measurement was 117 seconds. The eye state was detected via a camera during the EEG
measurement and added later manually to the file after analysing the video frames. ’1’
indicates the eye-closed and ’0’ the eye-open state. This means there is 2 classes in the
data set. The data set consists of 14 EEG values, i.e. 14 attributes, and a value indicating
the eye state. All attributes are numeric.

We use nine tenths of the data set, i.e. 13482 instances, to build N base classifiers (the
choice of N will be explained later). The remaining 1498 instances are classified by N
learners. Those predictions together with the OOB error rates of N form input attributes
for the ADATE system. The target attributes of those instances are used as training
outputs for ADATE. In order to have more training input for ADATE as well as avoid
overfitting over a small set, we apply a method similar to 10-fold cross-validation method.
The original data set is randomly partitioned into 10 equal size subsets. In each iteration,
9 subsets are used to build trees, and the remaining one is employed to generate inputs
for the ADATE system. Therefore, finally, there are 14980 sample inputs generated. Two
thirds of them are use for training and another one thirds are for testing.

Another attempt to avoid overfitting is to make the sample inputs for ADATE more
diverse. For a given ”fold”, we generate 1000 trees. For a given input to ADATE, we
randomly select N of these trees where N is chosen at random between 1 and 100. Thus,
each input list will contain the OOB values for different trees and have a random length
between 1 and 100.

Experiment 2 - The construction of classifiers experiment

The experiment aims to improve the way in which base classifiers are generated. This
process contains three main parts:

• Select randomly blog2M + 1c, where M is the number of input attributes.

• Calculate information gain at each split point. The information gain is defined as
the entropy of the whole set minus the entropy when a particular attribute is chosen.

• Return the attribute with the highest information gain for the next classification
step.

First, a f function is developed to handle all three above steps. It will then be improved
by the ADATE system. However, we suggest making a small change compared to the

6.1. Design of experiments 49

original algorithm to speed up the process of building a random tree. The need of speeding
up the process is motivated by the fact that the biggest issue when using the ADATE
system to synthesize desirable programs is that ADATE needs a lot of time to evolve
solutions for a problem. In this experiment, there are two reasons why the evolution
would take much longer time than the first experiment.

• First, the size of the function that will be improved by ADATE is much bigger
than the previous one. As stated before, it needs to be able to handle three tasks,
including choosing a subset of attributes, calculating entropy and selecting best split
points.

• Instead of building all random forests in advance, in this experiment, all trees are
constructed during the process of evolving.

To speed up the process, we try to fasten the construction of a random tree, especially
when handling continuous attributes. One simplified way is that instead of considering
absolutely all possible values of a numerical attribute as split points, we only consider
randomly 50 - 100 values and choose the best one.

In this experiment, we use 19 benchmark data sets taken from UCI Directory to create
sample inputs and outputs for ADATE. Figure 6.1 shows the descriptions of those data
sets.

Number of
Instances

Number of
Attributes

Number of
Classes

Attribute
Characteristics

Nursery 12960 8 5 Nominal

Marketing 6876 13 9 Nominal

Tic-Tac-Toe 958 9 2 Nominal

Kr-vs-k 28056 6 18 Nominal

Contraceptive 1473 9 3 Nominal

Vehicle 846 18 4 Numerical

Wine-Quality-Red 1599 11 11 Numerical

Banana 5300 2 2 Numerical

Soybean 683 35 19 Nominal

Chess 3196 36 2 Nominal

Splice 3190 60 3 Nominal

Penbased 10992 16 10 Numerical

Phoneme 5404 5 2 Numerical

Abalone 4177 8 29 Mixed

Page-blocks 5472 10 5 Numerical

wine-quality-white 4898 11 11 Numerical

CTG 2126 21 11 Numerical

Satimage 6435 36 7 Numerical

jsbachChoralsHarmony 5665 14 102 Nominal

Table 6.1: Data sets descriptions

We used the first 8 data sets in Table 6.1, which are Nursery, Marketing, Tic-Tac-
Toe, Kr-vs-k, Contraceptive, Vehicle and Wine-Quality-Red, to make training inputs for
ADATE and the remaining 11 data sets are utilized for validation. Besides, like the

50 Chapter 6. ADATE Experiments

previous experiment, in order to have more training input for ADATE as well as avoid
overfitting, we apply 5-fold cross-validation on each data set. Therefore, we have 40 data
sets for training and 55 data sets for testing.

6.2 Implementation

To take advantage of the ADATE system to improve some parts of an algorithm, firstly
the algorithm has to be implemented in Standard ML language. Moreover, the function
expected to be modified by ADATE has to conform to ADATE-ML rules which is a subset
of Standard ML. Another requirement for using ADATE is to write a specification that the
system can employ to synthesize desirable programs. In the following subsection we will
present the implementation of the Random Forest algorithm as well as carefully describe
our specification files.

Implementation of the Random Forest algorithm

The implementation of the Random Forest algorithm is divided into two main modules.
The first one is responsible for training a random forest, and the second one is used to
classify new instances. Figure 6.1 describes the general flow chart of the training algorithm.
The algorithm receives a data set as input and returns a list of decision trees. A number of
decision trees in a forest is decided by users and passed into the algorithm as a parameter.
Implementation of process boxes in Figure 6.1 are as follows.

• Data reader - implemented in function readData and readClass, which can read a
data set contained in CSV files. The data is then converted it into data type data

which is defined recursively as follows.

1 datatype data =
2 dataNi l | dataCons o f t r a i n i n g i n s t a n c e ∗ data

• Training sets Generator - implemented in function createListListRand. The gen-
erator receives a data set given by the Reader and generates a set of training sets
using bootstrap sampling method.

• Trees Builder - implemented in function buildTree. Given a training set, this
builder is responsible for constructing a decision tree, which is represented in the
following structure.

1 datatype t r e e =
2 l e a f o f c l a s s v a l u e | dn o f s p l i t p o i n t ∗ t r e e l i s t and t r e e l i s t =
3 t r e e L i s tN i l | t r e eL i s tCons o f t r e e ∗ t r e e l i s t

To build a random tree, the builder requires some parameters, such as training
set, list of nominal attributes, number of values of each nominal attributes, number
of classes, to build a decision tree. There are three main modules in the builder,
including:

6.2. Implementation 51

Figure 6.1: General flow chart of training algorithm for Random Forest

Figure 6.2: Process of classifying new instances in Random Forest

52 Chapter 6. ADATE Experiments

– Checking stop criteria - checks if the process of building a tree should stop.

– Finding the best split point - randomly chooses a set of attributes, calculates
entropy values for each possible split point, and then returns the best split
point.

– Splitting data - splits the data according to a given split point.

Figure 6.2 represents the process of classifying new instances in Random forest. Firstly,
a Reader reads a test set contained in CSV files. The data is then converted it into a list
of instances which is defined recursively as:

1 datatype a t t r i b u t e v a l u e =
2 nominal o f i n t | cont inuous o f r e a l
3

4 datatype in s t ance =
5 i n s t an c eN i l | instanceCons o f a t t r i b u t e v a l u e ∗ i n s t ance

The new instances are classified by the list of decision trees generated in the training
step. Then, those classifications are passed to the Combiner module, in which the classes
with the most frequent votes will be assigned to the new instances.

Writing specification files

Within this section we will carefully describe our specification files used in the two exper-
iments as well as our experiences in writing those files. For each experiment, we will focus
on the f function, which will be modified by the ADATE system, and explain how it is
started.

For more detail about the specification files, please refer to Appendix A.

Experiment 1 - The combination of classifiers experiment

The starting state of the f function for this experiment is relatively simple. Listing 6.1
shows the full code of the initial program . It was developed so that it will assign the
class with the most frequent vote to a new instance. The f function receives a tupleList

as an input and returns a class_value. A tupleList is a list of tuple which contains
a classification of a decision tree on a given instance and its OOB error rate. Data types
for tupleList, tuple and class_value are defined as follow.

1 datatype c l a s s v a l u e = c l a s s o f i n t
2 datatype tup l e = tup l e o f c l a s s v a l u e ∗ r e a l
3 datatype t up l eL i s t = tup l eL i s tN i l | tup leL i s tCons o f tup l e ∗ t up l eL i s t

Sample Input and Output for ADATE are read from CSV files. The output files
contains correct class values for all test instances. The inputs consist of a number of
tupleLists with different sizes. In other words, each test instance is classified by different
trees and different number of trees. The reason for that, as mentioned before, is to make
the sample inputs diverse in order to avoid overfitting. Another notice in the input data
is that OOB error rates are normalized to range [−0.5, 0.5] because the f function can
handle real numbers better than integers, especially real numbers from −0.5 to 0.5.

6.2. Implementation 53

1 fun f (TupleList : t up l eL i s t
2) : c l a s s v a l u e =
3 l e t
4 fun updateVoting (
5 (Cl , LstCount) : c l a s s v a l u e ∗ c l a s s c o u n t l i s t
6) : c l a s s c o u n t l i s t =
7 case LstCount o f
8 c l a s sCountL i s tN i l =>
9 c lassCountListCons (

10 c lassCount (Cl , 1 . 0) ,
11 c l a s sCountL i s tN i l
12)
13 | c lassCountListCons (CC as c lassCount (C, Num) , Ta i l) =>
14 case c las sEq (C, Cl) o f
15 t rue => c lassCountListCons (
16 c lassCount (Cl , Num + 1.0) ,
17 Tai l
18)
19 | f a l s e => c lassCountListCons (
20 c lassCount (C, Num) ,
21 updateVoting (Cl , Ta i l))
22 in
23 l e t
24 fun vot ingHe lper (
25 (TupleLst , LstCount) : t up l eL i s t ∗ c l a s s c o u n t l i s t)
26 : c l a s s c o u n t l i s t =
27 case TupleLst o f
28 t up l eL i s tN i l => LstCount
29 | tup leL i s tCons (Tu as tup l e (H, L) , T) =>
30 vot ingHe lper (T, updateVoting (H, LstCount))
31 in
32 l e t
33 fun findMaxClass (
34 (LstCount , MaxCount , MaxClass) :
35 c l a s s c o u n t l i s t ∗ r e a l ∗ c l a s s v a l u e
36) : c l a s s v a l u e =
37 case LstCount o f
38 c l a s sCountL i s tN i l => MaxClass
39 | c lassCountListCons (C1C as c lassCount (Cl , Count) , Ta i l) =>
40 case r e a lL e s s (MaxCount , Count) o f
41 t rue => (
42 case c las sEq (Cl , c l a s s (˜1)) o f
43 t rue => f indMaxClass (Tai l , MaxCount , MaxClass)
44 | f a l s e => f indMaxClass (Tai l , Count , Cl)
45)
46 | f a l s e => f indMaxClass (Tai l , MaxCount , MaxClass)
47 in
48 f indMaxClass (
49 vot ingHe lper (TupleList , c l a s sCountL i s tN i l) , ˜1 . 0 , c l a s s (˜1)
50)
51 end
52 end
53 end

Listing 6.1: Initial program for Classifiers combination experiment

54 Chapter 6. ADATE Experiments

Experiment 2 - The construction of classifiers experiment

The f function in this experiment is initialized so that it is responsible for the following
tasks:

• Calculate evaluation values (new entropies).

• Select a random subset of attributes.

• Select the element with min evaluation value from the remaining list and return its
index.

A random subset of attributes are selected in the following manner.
Assume that there are N attributes A1, A2, ..., AN . Before calling f, that is in the

code for main, we first number all attributes using N equally spaced order numbers from
−0.5 to 0.5, which are already permuted. Given a threshold T , the f function will select
a number of random attributes by taking all attributes for which the order number is less
than T . The value of T is calculate by:

T = −0.5 +
K − 0.5

N − 1.0
(6.1)

where K is a number of attributes out of N are to be randomly selected.
For example, assume that there are 5 attributes [A1, A2, A3, A4, A5]. We permute a

list of 5 equally spaced order numbers from −0.5 to 0.5 and get [0.5,−0.25, 0.0,−0.5, 0.25].
After numbering, we get [(A1, 0.5), (A2,−0.25), (A3, 0.0), (A4,−0.5), (A5, 0.25)].

If we want to choose randomly 3 attributes, by applying the above equation, we can
calculate the threshold T .

T = −0.5 +
3.0− 0.5

5.0− 1.0
= 0.125 (6.2)

That means A2, A3, A4 will be selected.
Before explaining in detail our initial program, we will firstly describe the data types

used in the f function.

1 datatype rL i s t =
2 rN i l | rCons o f r e a l ∗ r L i s t
3

4 datatype s p l i t L i s t =
5 s p l i t N i l | sp l i tCons o f (r L i s t ∗ r e a l ∗ r e a l) ∗ s p l i t L i s t
6

7 datatype domainList =
8 domainNil | domainCons o f (i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l) ∗ domainList
9

10 datatype e v a lL i s t =
11 eva lN i l | evalCons o f (i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l ∗ r e a l) ∗

e v a l L i s t

Data type rlist is a list of real numbers which represents class distribution over a given
data set. Given a data set and a split point, splitList is defined as a list of subsets which
is divided from the data set according to the split point. Each subsets is represented by a
combination of a rlist, a number of instances in the subset, and a real random number.

6.2. Implementation 55

The random real number plays no role in the f function. The reason we add this filed into
the data type is that we want to provide ADATE with more information which hopefully
become useful for ADATE to generate good solutions. A damainList contains a number
of possible split points. Each split point is described by an identification number, a split
list created by applying the split point, a number of instances in the current data set,
an order number which is generated as mentioned above. Split points from a numerical
attributes share the same order number. Data type evalList is similar to domainList

except that its elements has a extra field indicating the entropy value.
Listing 6.2 introduces the full code of the initial program f which receives a domainList

and returns a index of the selected split point. As presented in the code, we first calculate
all the entropy values for all possible split points in evals function. Then, a filter is applied
to select a number of random attributes. Finally, min function will select the element with
min evaluation value from the remaining list and return its index. This process seems
to be inefficient because obviously we can randomly select a number of attributes before
calculating entropy values. However, the target we aim to is to implement the initial
function in the manner that the ADATE system can easily modify and improve. During
the process of improving, ADATE may need more information than those needed in the
initial program. This is the reason why we usually added more information than needed.
Again, writing a specification is an art. Deciding which parts of the algorithm that can
be improved or which information we should prepare in advance requires experiences as
well as a bit of trial and error experimentation.

56 Chapter 6. ADATE Experiments

1 fun f ((T, Ds) : r e a l ∗ domainList) : i n t =
2 l e t
3 fun eva l s (Ds ’ : domainList) : e v a l L i s t =
4 l e t
5 fun eva l (
6 (I , Sp l i t s , Sum, OrderNumber) : i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l
7) : r e a l =
8 l e t
9 fun newEntropy ((Cards , CardSum , CardRand) :

10 r L i s t ∗ r e a l ∗ r e a l) : r e a l =
11 case Cards o f
12 rN i l => 0 .0
13 | rCons (Card1 , Cards1) =>
14 case Card1 / CardSum of P1 =>
15 newEntropy (Cards1 , CardSum , CardRand) P1 ∗ ln P1
16 in
17 case S p l i t s o f
18 s p l i t N i l => 0 .0
19 | sp l i tCons (Sp l i t 1 as (Cards ’ , CardSum ’ , CardRand ’) , S p l i t s 1) =>
20 CardSum ’ / Sum ∗ newEntropy Sp l i t 1
21 +
22 eva l (I , Sp l i t s 1 , Sum, OrderNumber)
23 end
24 in
25 case Ds ’ o f
26 domainNil => eva lN i l
27 | domainCons (D1 ’ as (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1) , Ds1) =>
28 evalCons ((I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1 , eva l D1 ’) , e va l s Ds1)
29 end
30

31 in
32 l e t
33

34 fun f i l t e r (Es2 : e v a lL i s t) : e v a l L i s t =
35 case Es2 o f
36 eva lN i l => eva lN i l
37 | evalCons (E3 as (I3 , Sp l i t s 3 , Sum3 , OrderNumber3 , Eval3) , Es3) =>
38 case r e a lL e s s (OrderNumber3 , T) o f
39 t rue => evalCons (E3 , f i l t e r Es3)
40 | f a l s e => f i l t e r Es3
41

42 in
43 l e t
44

45 fun min (Es : e v a lL i s t) : i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l ∗ r e a l =
46 case Es o f
47 eva lN i l => r a i s e NA1
48 | evalCons (E4 as (I4 , Sp l i t s 4 , Sum4 , OrderNumber4 , Eval4) , Es4) =>
49 case Es4 o f
50 eva lN i l => E4
51 | evalCons (E5 as (I5 , Sp l i t s 5 , Sum5 , OrderNumber5 , Eval5) , Es5) =>
52 case min Es4 o f E6 as (I6 , Sp l i t s 6 , Sum6 , OrderNumber6 , Eval6) =>
53 case r e a lL e s s (Eval4 , Eval6) o f
54 t rue => E4
55 | f a l s e => E6
56

57 in
58

59 case min (f i l t e r (e va l s Ds)) o f
60 E7 as (I7 , Sp l i t s 7 , Sum7 , OrderNumber7 , Eval7) => I7
61

62 end
63 end
64 end

Listing 6.2: Initial program for Classifiers construction experiment

Chapter 7

Results

7.1 Experiment 1 - Classifiers combination experiment

In this first experiment we did not succeed in finding an ”improved version” which is
significantly better than the original Majority Voting algorithm. However, the ADATE
system simplified our initial program to the one that is less than half the size. The new
program is listed in Listing 7.1.

Actually the new f function does the exactly the same algorithm as the original one,
which finds the most common class. However, it is specified for data sets with 2 classes.
That explains why it is neater than the old one. Although the new function does not make
a ”real improvement”, it is still good news because it shows that the ADATE system can
find an ”optimized” and interpretable solution for a problem.

7.2 Experiment 2 - Classifiers construction experiment

During about 4 weeks running the experiment, we got 4 programs that give better per-
formances on the 19 data sets described in Table 6.1 than the original algorithm. We
have run experiments with 3 ensemble sizes (10, 20, 30 trees) and 10-fold cross validation
for each data set. In the following we will explain in detail the differences between each
program and the original program, as well as present the their performances tested on the
19 data sets. For full codes of those programs, please refer to Appendix B.

Improved program number 1

The first improved program makes just a small change to the original program. It changes
the way the entropy of a data set is calculated. The ”new entropy” (actually the ”new
entropy” now no longer refers to the entropy concept in Information theory) is now given
by:

NewEntropy(D) = −
m∑
i=1

piln(pi) + T (7.1)

where m denotes the number of classes, pi is the probability that an instance in set D
belongs to class Ci and calculated by |Ci|/|D|, T is the threshold that the f function uses
to select a number of random attributes. The formula of T has been given in Equation
6.1.

57

58 Chapter 7. Results

1 fun f TupleList =
2 l e t
3 fun updateVoting (Cl as c l a s s (I1) , LstCount) =
4 case LstCount o f
5 c l a s sCountL i s tN i l =
6 c lassCountListCons (
7 c lassCount (Cl , 1 . 0) ,
8 c l a s sCountL i s tN i l
9)

10 | c lassCountListCons (
11 CC as c lassCount (C as c l a s s (CI) , Num) ,
12 Tai l
13) =
14 case c las sEq (C, Cl) o f
15 f a l s e = Tai l
16 | t rue = classCountListCons (CC, LstCount)
17 in
18 l e t
19 fun vot ingHe lper TupleLst =
20 case TupleLst o f
21 t up l eL i s tN i l = c l a s sCountL i s tN i l
22 | tup leL i s tCons (Tu as tup l e (H as c l a s s (HI) , L) , T) =
23 updateVoting (H, vot ingHe lper (T))
24 in
25 case vot ingHe lper (TupleList) o f
26 c l a s sCountL i s tN i l = (
27 case TupleList o f
28 t up l eL i s tN i l = (r a i s e NA C175D)
29 | tup leL i s tCons (
30 VC175E as tup l e (VC175F as c l a s s (VC1760) , VC1761) ,
31 VC1762
32) =
33 VC175F
34)
35 | c lassCountListCons (
36 VC1763 as c lassCount (VC1764 as c l a s s (VC1765) , VC1766) ,
37 VC1767
38) =
39 VC1764
40 end
41 end

Listing 7.1: New f function in Classifiers construction experiment

7.2. Experiment 2 - Classifiers construction experiment 59

Thanks to the small change, the first improved version achieves slightly better per-
formance when being tested with the 10-tree size random forest. It improves by 1.8% in
total on 19 data sets. However, when the ensemble is constructed by 20 or 30 tress, the
differences between the two program are not remarkable. Table 7.1 shows the performance
comparison between the original program and the program number 1. Label ori-10tr, ori-
20tr and ori-30tr stand for the performances of the original random forest algorithm built
from 10, 20 and 30 trees respectively. Similarly, the performances of the first improved
program are denoted as f1,10tr, f1,20tr and f1,30tr.

Datasets ori-10tr f1,10tr ori-20tr f1-20tr ori-30tr f1-30tr

Nursery 98.00 98.00 98.23 98.27 98.27 98.32

Market 29.1 28.93 29.78 29.65 30.00 30.15

Tic-Tac-Toe 91.01 91.43 94.53 94.49 96.06 96.03

Kr-vs-k 53.74 54.11 55.29 55.31 55.89 55.89

Contraceptive 47.07 46.73 48.03 47.91 48.21 48.62

Soy bean 90.2 90.15 91.86 91.81 92.45 92.11

Chess 98.77 98.85 98.9 98.95 98.89 98.90

Splice 88.17 87.86 91.54 91.46 93.04 93.42

Vehicle 73.68 74.19 73.75 74.43 74.03 74.98

Banana 88.4 88.51 88.65 88.42 88.64 88.53

Penbased 98.57 98.54 98.88 98.89 98.99 98.96

Phoneme 89.16 89.35 90.09 89.90 90.34 90.31

Page block 97.17 97.2 97.36 97.27 97.34 97.42

Wine-red 64.51 64.89 66.49 66.47 67.29 66.64

Wine-white 64.17 64.42 65.74 65.85 66.71 66.02

Abalone 22.42 22.87 23.18 23.06 24.01 23.78

CTG 85.32 85.37 86.06 86.28 86.83 86.70

Satimage 90.18 89.96 90.71 90.91 91.13 91.24

jsbach chorals harmony 71.49 71.57 71.77 71.80 71.99 71.97

SUM 1441.13 1442.93 1460.84 1461.13 1470.11 1470.00

Table 7.1: Comparison between the original program and the improved program number 1 gen-
erated by the ADATE system, tested with 10, 20 and 30-tree random forests with 10-fold cross
validation

Improved program number 2

In this improved program, there are two differences from the original program. Firstly,
instead of considering a number of random attributes to select the best split point, the new
program investigates all available attributes. Secondly, it changes the formula of entropy.
The random number CardRand, which is the extra information we prepared in advance,
is employed in the new formula. The formula is as follows.

NewEntropy(D) = −
m∑
i=1

piln(pi) + CardRand (7.2)

As we can see, although the new algorithm no longer randomly selects a subset of at-
tributes, randomness is still injected into the algorithm, just in a different way. The

60 Chapter 7. Results

new function makes 4.8-7.8% improvement in performance in comparison with the initial
program. The improvement is significant in several data sets like Kr-vs-k and Splice.

Data sets ori-10tr f2-10tr ori-20tr f2-20tr ori-30tr f2-30tr

Nursery 98.00 98.08 98.23 98.41 98.27 98.49

Market 29.1 28.97 29.78 29.78 30.00 30.10

Tic-Tac-Toe 91.01 91.15 94.53 94.46 96.06 96.13

Kr-vs-k 53.74 55.25 55.29 57.46 55.89 58.46

Contraceptive 47.07 46.44 48.03 47.94 48.21 47.51

Soy bean 90.2 91.27 91.86 91.76 92.45 91.86

Chess 98.77 99.03 98.9 99.21 98.89 99.29

Splice 88.17 93.27 91.54 94.63 93.04 95.37

Vehicle 73.68 73.99 73.75 74.66 74.03 74.23

Banana 88.4 88.29 88.65 88.6 88.64 88.87

Penbased 98.57 98.87 98.88 99.12 98.99 99.14

Phoneme 89.16 89.27 90.09 90.39 90.34 90.65

Page block 97.17 97.06 97.36 97.31 97.34 97.28

Wine-red 64.51 64.78 66.49 66.62 67.29 67.37

Wine-white 64.17 63.87 65.74 65.95 66.71 66.62

Abalone 22.42 22.79 23.18 23.53 24.01 24.11

CTG 85.32 85.13 86.06 86.33 86.83 86.42

Satimage 90.18 89.76 90.71 90.81 91.13 91.06

jsbach chorals harmony 71.49 71.21 71.77 71.68 71.99 71.97

SUM 1441.13 1448.48 1460.84 1468.65 1470.11 1474.94

Table 7.2: Comparison between the original program and the improved program number 2 gen-
erated by the ADATE system, tested with 10, 20 and 30-tree random forests with 10-fold cross
validation

Improved program number 3

The program has shown clear improvements over the original random forests on most of
the data sets (16/19 data sets). The program increases the performances of the classifiers
by 7.6-14.3% in total (Table 7.3).

Similar to the previous program, in this improved program, all attributes are taken
into consideration to select the best split point. The measurement used to choose the best
split is also modified and given by the following formula.

NewEntropy(D) = −
m∑
i=1

p2i + tanh(tanh(−0.472542806823)) ∗ CardRand (7.3)

Suppose the attribute A is now considered to be the split point and A has v distinct values
{a1, a2, ..., av}. Attribute A can be used to split D into v subsets {D1, D2, ...Dv} where
Di consists of instances in D that have outcome aj . The ”new entropy” is measured by
the formula below.

EntropyA(D) = tanh(tanh(
v∑
j=1

|Dj |
|D|
× Entropy(Dj) + 0.419265635596)) (7.4)

7.2. Experiment 2 - Classifiers construction experiment 61

Improved program number 4

The improved program number 4 is another good program we have got so far. It makes
totally 8.12%-11.95% improvement in performance in comparison with the initial program.
The new program is exactly similar to program number 3, except for the constant number
used in Equation 7.3. The formula is as follows.

NewEntropy(D) = −
m∑
i=1

p2i + tanh(tanh(−0.470030306823)) ∗ CardRand (7.5)

Results of the program is listed in Table 7.4.

Data set ori-10tr f3-10tr ori-20tr f3-20tr ori-30tr f3-30tr

Nursery 98.00 98.03 98.23 98.47 98.27 98.44

Market 29.10 29.10 29.78 29.73 30.00 30.34

Tic-Tac-Toe 91.01 92.72 94.53 95.26 96.06 96.17

Kr-vs-k 53.74 56.01 55.29 59.09 55.89 60.46

Contraceptive 47.07 47.14 48.03 47.32 48.21 48.39

Soy bean 90.20 91.32 91.86 91.47 92.45 91.96

Chess 98.77 99.16 98.90 99.24 98.89 99.34

Splice 88.17 94.33 91.54 95.15 93.04 95.31

Vehicle 73.68 74.23 73.75 74.62 74.03 74.51

Banana 88.40 88.53 88.65 88.79 88.64 88.71

Penbased 98.57 98.78 98.88 99.02 98.99 99.11

Phoneme 89.16 89.32 90.09 90.41 90.34 90.51

Page block 97.17 97.12 97.36 97.22 97.34 97.34

Wine-red 64.51 65.37 66.49 66.05 67.29 66.93

Wine-white 64.17 64.74 65.74 66.09 66.71 66.25

Abalone 22.42 23.08 23.18 23.90 24.01 24.37

CTG 85.32 84.82 86.06 86.11 86.83 86.31

Satimage 90.18 90.13 90.71 91.00 91.13 90.99

jsbach chorals harmony 71.49 71.51 71.77 71.91 71.99 72.30

SUM 1441.13 1455.47 1460.84 1470.86 1470.11 1477.75

Table 7.3: Comparison between the original program and the improved program number 3 gen-
erated by the ADATE system, tested with 10, 20 and 30-tree random forests with 10-fold cross
validation

62 Chapter 7. Results

Dataset ori-10tr f4,10tr ori-20tr f4-20tr ori-30tr f4-30tr

Nursery 98.00 98.05 98.23 98.46 98.27 98.52

Market 29.10 28.85 29.78 29.89 30.00 30.30

Tic-Tac-Toe 91.01 92.54 94.53 95.30 96.06 96.31

Kr-vs-k 53.74 56.17 55.29 59.09 55.89 60.09

Contraceptive 47.07 47.57 48.03 47.17 48.21 48.10

Soy bean 90.20 91.27 91.86 91.23 92.45 92.21

Chess 98.77 99.25 98.90 99.33 98.89 99.32

Splice 88.17 94.16 91.54 95.17 93.04 95.36

Vehicle 73.68 73.83 73.75 75.26 74.03 74.51

Banana 88.40 88.42 88.65 88.62 88.64 88.84

Penbased 98.57 98.83 98.88 99.07 98.99 99.11

Phoneme 89.16 89.59 90.09 90.52 90.34 90.47

Page block 97.17 97.07 97.36 97.22 97.34 97.34

Wine-red 64.51 64.45 66.49 66.26 67.29 66.97

Wine-white 64.17 63.65 65.74 65.54 66.71 66.77

Abalone 22.42 22.97 23.18 24.45 24.01 24.60

CTG 85.32 85.18 86.06 86.31 86.83 86.37

Satimage 90.18 89.74 90.71 90.65 91.13 90.85

jsbach chorals harmony 71.49 71.49 71.77 71.87 71.99 72.21

SUM 1441.13 1453.08 1460.84 1471.39 1470.11 1478.23

Table 7.4: Comparison between the original program and the improved program number 4 gen-
erated by the ADATE system, tested with 10, 20 and 30-tree random forests with 10-fold cross
validation

Chapter 8

Conclusion and Future work

8.1 Conclusion

In this thesis we aims at two main purposes: introducing the Random Forest algorithm,
and conducting ADATE experiments to improve it.

The first purpose is fulfilled in Chapter 2, 3 and 4. In those chapters, we first introduced
the Decision Tree predictor. It is a predictive model from which a random forest model is
constructed. Besides, the Ensemble learning, which is the general model of the Random
Forest, was also investigated. Based on the understanding of Decision Tree and Ensemble
learning methods, the Random Forest algorithm is presented. This background knowledge
is extremely useful for us to conduct ADATE experiments, especially in the task of deciding
which part of the random forest algorithm we could improve.

In this thesis, we conducted two experiments. In the first experiment, we attempted
to improve the Majority voting algorithm using Stacking method. Input attributes for
the ADATE system are the classifications from base classifiers and the OOB error rate of
all trees. In this experiment, we did not succeed in finding an ”improved version” which
is significantly better than the original one. However, the ADATE system simplified our
starting program to the one that is less than half size and specified for data sets with
2-value target attribute.

The second experiment concentrated on improving the way in which base classifiers,
i.e. random trees, are generated. We have got 4 programs that give better performances
than the original algorithm. The best program increases the performances of the classifiers
on 19 data sets by 7.6-14.3% in total. All the improved versions change the way that the
entropy of a data set is calculated. Most of the generated programs consider all available
attributes to select the best split points, instead of only investigating a number of random
attributes. However, randomness is still injected into the algorithm by using a random
variable in the formula of the ”new entropy”.

8.2 Future work

For future experiments, we suggest these following directions.

• Adding more extra-information in the first experiment - In the first experiment we
were not able to find a new algorithm that is remarkably better than the Major
Voting. We believe the reason for our failure lies in the fact that we did not provide

63

64 Chapter 8. Conclusion and Future work

the ADATE system with enough necessary information so that it can generate an
effective program. The extra-information can be the sizes the base classifiers, the
entropy values at each nodes, or even the whole structures of all trees. Without
extra-information, it is extremely hard to generate outstanding solutions. Let take
the improved algorithm proposed by Robnik and Sikonja [44] for example. In their
work, for each instance that needs to be classified, they first find some of its most
similar training instances and then classify them with each tree where they are in
the out-of-bag set. The trees that do not show good performances are left out of
classification. In the algorithm, besides the classifications from base classifiers, there
are some other information required, such as the original training set, the training
set of each base classifier. However, adding too much information may take the
ADATE system much longer time to reach a good solution. The task of choosing
which information is necessary for the system is one of our development directions
in the future.

• Improving the Gaining ensemble diversity process - Within the scope of this thesis,
we have focused on improving two out of tree main steps in the Random Forest
construction process, which are Combining base classifiers and Constructing base
classifiers. Improving the remaining step is also a promising direction for our future
work. We can employ the ADATE system to manipulate the training set in order to
generate many different training sets for classifiers, thus gaining ensemble diversity.
Another possibility is to use many ”improved programs” generated by ADATE in
our second experiment simultaneously as base classifiers. Predictions from those
classifiers then will be combined to form the final prediction.

• Improving the Random Forest algorithm used for regression problems - As stated
before in the Introduction, although Random forest can be implemented for solving
both classification and regression problesm, in this study, we have only concentrated
on improving classification Random Forest. Improving the Random Forest algorithm
used for regression problems can be one of our future work.

Bibliography

[1] Functional Programming, 2014.

[2] Kamal M Ali and Michael J Pazzani. Error reduction through learning multiple
descriptions. Machine Learning, 24(3):173–202, 1996.

[3] Robert E Banfield, Lawrence O Hall, Kevin W Bowyer, and W Philip Kegelmeyer.
A comparison of decision tree ensemble creation techniques. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 29(1):173–180, 2007.

[4] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine learning, 36(1-2):105–139, 1999.

[5] Henrik Berg. Evolutionary Machine Learning: Neutrality, Diversity and Application.
Unipub AS., 2009.

[6] Simon Bernard, Laurent Heutte, and Sébastien Adam. On the selection of decision
trees in random forests. In Neural Networks, 2009. IJCNN 2009. International Joint
Conference on, pages 302–307. IEEE, 2009.

[7] Simon Bernard, Laurent Heutte, and Sbastien Adam. A study of strength and correla-
tion in random forests. In De-Shuang Huang, T. Martin McGinnity, Laurent Heutte,
and Xiao-Ping Zhang, editors, ICIC (3), volume 93 of Communications in Computer
and Information Science, pages 186–191. Springer, 2010.

[8] A.W Biermann. Automatic programming. In Encyclopedia of artificial intelligence
(Wiley), pages 18–35, 1992.

[9] Praveen Boinee, Alessandro De Angelis, and Gian Luca Foresti. Meta random forests.
2(6):1039 – 1048, 2008.

[10] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA, 1984. new edition [?]?

[11] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, August 1996.

[12] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.

[13] Bruce G. Buchanan and Edward H. Shortliffe. Rule Based Expert Systems: The
Mycin Experiments of the Stanford Heuristic Programming Project (The Addison-
Wesley Series in Artificial Intelligence). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1984.

65

66 BIBLIOGRAPHY

[14] Philip K Chan and Salvatore J Stolfo. Experiments on multistrategy learning by
meta-learning. In Proceedings of the second international conference on information
and knowledge management, pages 314–323. ACM, 1993.

[15] Philip K Chan and Salvatore J Stolfo. Learning arbiter and combiner trees from
partitioned data for scaling machine learning. In KDD, volume 95, pages 39–44,
1995.

[16] Phillip K Chan, Salvatore J Stolfo, et al. Toward parallel and distributed learning
by meta-learning. In AAAI workshop in Knowledge Discovery in Databases, pages
227–240, 1993.

[17] Nitesh V Chawla, Lawrence O Hall, Kevin W Bowyer, and W Philip Kegelmeyer.
Learning ensembles from bites: A scalable and accurate approach. The Journal of
Machine Learning Research, 5:421–451, 2004.

[18] Andrew Cumming. A Gentle Introduction to ML, 1995.

[19] Philip Derbeko, Ran El-Yaniv, and Ron Meir. Variance optimized bagging. In In
ECML 2002, pages 60–71. Springer-Verlag, 2002.

[20] Thomas G Dietterich. Ensemble methods in machine learning. In Multiple classifier
systems, pages 1–15. Springer, 2000.

[21] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. arXiv preprint cs/9501101, 1995.

[22] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[23] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley Longman Publishing Co., 1989.

[24] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions
on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

[25] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adap-
tive mixtures of local experts. Neural computation, 3(1):79–87, 1991.

[26] Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In
Proceedings of the Ninth International Workshop on Machine Learning, ML92, pages
249–256, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[27] Anders Krogh, Jesper Vedelsby, et al. Neural network ensembles, cross validation, and
active learning. Advances in neural information processing systems, pages 231–238,
1995.

[28] Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural Networks,
12(10):1399–1404, 1999.

[29] Dragos D Margineantu and Thomas G Dietterich. Pruning adaptive boosting. In
ICML, volume 97, pages 211–218. Citeseer, 1997.

BIBLIOGRAPHY 67

[30] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey.
Artificial Intelligence Review, 42(2):275–293, 2014.

[31] Prem Melville and Raymond J Mooney. Constructing diverse classifier ensembles
using artificial training examples. In IJCAI, volume 3, pages 505–510. Citeseer, 2003.

[32] ChristopherJ. Merz. Using correspondence analysis to combine classifiers. Machine
Learning, 36(1-2):33–58, 1999.

[33] John Mingers. Expert systems-rule induction with statistical data. Journal of the
operational research society, pages 39–47, 1987.

[34] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition, 1997.

[35] Tim Niblett and Ivan Bratko. Learning decision rules in noisy domains. In Proceed-
ings of Expert Systems’ 86, The 6Th Annual Technical Conference on Research and
development in expert systems III, pages 25–34. Cambridge University Press, 1987.

[36] Roland Olsson. Inductive functional programming using incremental program trans-
formation. Artif. Intell., 74(1):55–81, March 1995.

[37] David W. Opitz and Jude W. Shavlik. Generating accurate and diverse members of
a neural-network ensemble. In Advances in Neural Information Processing Systems,
pages 535–541. MIT Press, 1996.

[38] Jordan B Pollack. Backpropagation is sensitive to initial conditions. Complex Systems,
4:269–280, 1990.

[39] Andreas L Prodromidis, Salvatore J Stolfo, and Philip K Chan. Effective and efficient
pruning of meta-classifiers in a distributed data mining system. Knowledge Discovery
and Data Mining Journal. submitted for publication, 1999.

[40] J. Ross Quinlan. Simplifying decision trees. International journal of man-machine
studies, 27(3):221–234, 1987.

[41] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1993.

[42] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[43] C.H. Rich and R.C. Waters. Automatic programming: Myths and prospects. Com-
puter, 21:40–51, 1988.

[44] Marko Robnik-Sikonja. Improving random forests. In Machine Learning: ECML
2004, 15th European Conference on Machine Learning, Pisa, Italy, September 20-24,
2004, Proceedings, pages 359–370, 2004.

[45] Lior Rokach. Data mining with decision trees: theory and applications. World scien-
tific, 2007.

[46] S. Shlien. Multiple binary decision tree classifiers. Pattern Recogn., 23(7):757–763,
July 1990.

68 BIBLIOGRAPHY

[47] Kai Ming Ting and Ian H. Witten. Issues in stacked generalization. Journal of
Artificial Intelligence Research, 10:271–289, 1999.

[48] Jeffrey D. Ullman. Elements of ML programming - ML 97 edition. Prentice Hall,
1998.

[49] David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[50] Zhi-Hua Zhou and Wei Tang. Selective ensemble of decision trees. In Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing, pages 476–483. Springer, 2003.

[51] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could
be better than all. Artificial intelligence, 137(1):239–263, 2002.

Appendix A

Specification files

A.1 Experiment 1 - The combination of classifiers experi-
ment

1 datatype c l a s s v a l u e = c l a s s o f i n t
2 datatype c l a s s v a l u e l i s t = c l a s sVa l u eL i s tN i l |
3 c la s sVa lueL i s tCons o f c l a s s v a l u e ∗

c l a s s v a l u e l i s t
4 datatype c l a s s c oun t = classCount o f c l a s s v a l u e ∗ r e a l
5 datatype c l a s s c o u n t l i s t = c l a s sCountL i s tN i l |
6 c lassCountListCons o f c l a s s c oun t ∗

c l a s s c o u n t l i s t
7 datatype tup l e = tup l e o f c l a s s v a l u e ∗ r e a l
8 datatype t up l eL i s t = tup l eL i s tN i l | tup leL i s tCons o f tup l e ∗ t up l eL i s t
9

10 fun r cons tLe s s ((X, C) : r e a l ∗ r cons t) : bool =
11 case C o f r cons t (Compl , StepSize , Current) => r e a lL e s s (X, Current)
12

13 fun c las sEq ((X as c l a s s XI , Y as c l a s s YI) : c l a s s v a l u e ∗ c l a s s v a l u e)
: bool =

14 XI = YI
15

16

17 fun f (TupleList : t up l eL i s t
18) : c l a s s v a l u e =
19 l e t
20 fun updateVoting ((Cl , LstCount) :
21 c l a s s v a l u e ∗ c l a s s c o u n t l i s t
22) : c l a s s c o u n t l i s t =
23 case LstCount o f
24 c l a s sCountL i s tN i l =>
25 c lassCountListCons (c lassCount (Cl , 1 . 0) , c l a s sCountL i s tN i l)
26 | c lassCountListCons (CC as c lassCount (C, Num) , Ta i l) =>
27 case c las sEq (C, Cl) o f
28 t rue => c lassCountListCons (c lassCount (Cl , Num + 1.0) , Ta i l)
29 | f a l s e => c lassCountListCons (c lassCount (C, Num) , updateVoting (Cl

, Ta i l))
30 in
31 l e t
32 fun vot ingHe lper ((TupleLst , LstCount) : t up l eL i s t ∗ c l a s s c o u n t l i s t
33) : c l a s s c o u n t l i s t =
34 case TupleLst o f

69

70 Chapter A. Specification files

35 t up l eL i s tN i l => LstCount
36 | tup leL i s tCons (Tu as tup l e (H, L) , T) =>
37 vot ingHe lper (T, updateVoting (H, LstCount))
38 in
39 l e t
40 fun findMaxClass ((LstCount , MaxCount , MaxClass) :
41 c l a s s c o u n t l i s t ∗ r e a l ∗ c l a s s v a l u e
42) : c l a s s v a l u e =
43 case LstCount o f
44 c l a s sCountL i s tN i l => MaxClass
45 | c lassCountListCons (C1C as c lassCount (Cl , Count) , Ta i l) =>
46 case r e a lL e s s (MaxCount , Count) o f
47 t rue => (
48 case c las sEq (Cl , c l a s s (˜1)) o f
49 t rue => f indMaxClass (Tai l , MaxCount , MaxClass)
50 | f a l s e => f indMaxClass (Tai l , Count , Cl)
51)
52 | f a l s e => f indMaxClass (Tai l , MaxCount , MaxClass)
53 in
54 f indMaxClass (vot ingHe lper (TupleList , c l a s sCountL i s tN i l) , ˜1 . 0 , c l a s s (

˜1))
55 end
56 end
57 end
58

59

60

61 %%
62

63 type main domain = tup l eL i s t
64 type main range = c l a s s v a l u e
65

66 datatype oeArg =
67 exactlyOne o f (Int . i n t ∗ main domain ∗ main range)
68 | allAtOnce o f
69 dec ∗
70 (Int . i n t ∗ main domain ∗ main range) L i s t . l i s t Option . opt ion ∗
71 (Int . i n t ∗ main domain ∗ main range) L i s t . l i s t
72

73 fun main (TupleList : t up l eL i s t) : c l a s s v a l u e = f (TupleList)
74

75

76 fun ge tF i r s tCharL i s t (C l i : char l i s t) =
77 case C l i o f
78 n i l => n i l
79 | H: :T => i f H = #” , ” o r e l s e H = #” ” then n i l e l s e H : : g e tF i r s tCharL i s t

(T)
80

81 fun parseLine (Line : char l i s t) : r e a l l i s t =
82 case Line o f
83 n i l => n i l
84 | #” , ” : : Ta i l => parseL ine (Ta i l)
85 | #” ” : : Ta i l => parseL ine (Ta i l)
86 | =>
87 l e t
88 va l NumStr = implode (ge tF i r s tCharL i s t Line)
89 va l Num = valOf (Real . f romStr ing (NumStr))
90 in

A.1. Experiment 1 - The combination of classifiers experiment 71

91 Num : : parseL ine (L i s t . drop (Line , s i z e (NumStr)))
92 end
93

94 except ion readData ERRORINPUT
95 fun readData (FileName , NLines) =
96 l e t
97 fun readLines (Fh , NLines) =
98 case (TextIO . endOfStream Fh , NLines = 0) o f
99 (, t rue) => (TextIO . c l o s e I n Fh ; [])

100 | (f a l s e , f a l s e) =>
101 (parseLine (explode (valOf (TextIO . inputLine Fh))))
102 : : r eadLines (Fh , NLines 1)
103 | (true , f a l s e) => r a i s e readData ERRORINPUT
104 in
105 readLines (TextIO . openIn FileName , NLines)
106 end
107

108 except ion readClass ERRORINPUT
109 fun readClass (FileName , NLines) =
110 l e t
111 fun readLines (Fh , NLines) =
112 case (TextIO . endOfStream Fh , NLines = 0) o f
113 (, t rue) => (TextIO . c l o s e I n Fh ; [])
114 | (f a l s e , f a l s e) =>
115 valOf (Real . f romStr ing (implode (
116 ge tF i r s tCharL i s t (explode (valOf (TextIO . inputLine Fh))))))
117 : : r eadLines (Fh , NLines 1)
118 | (true , f a l s e) => r a i s e readClass ERRORINPUT
119 in
120 readLines (TextIO . openIn FileName , NLines)
121 end
122

123 fun createOutPutADATEHelper (Lst) =
124 case Lst o f
125 n i l => n i l
126 | H: :T => c l a s s (round H) : : createOutPutADATEHelper (T)
127

128 fun readOutPutADATE(Filename , Num) = case readClass (Filename , Num) o f
129 Lst => createOutPutADATEHelper (Lst) ;
130

131 fun readInputOneLine (Lst) = case Lst o f
132 n i l => t up l eL i s tN i l
133 | C : :O: :T => tup leL i s tCons (tup l e (c l a s s (round C) , O) , readInputOneLine (

T))
134

135 fun readInputAl l (LstOfLst) = case LstOfLst o f
136 n i l => n i l
137 | H: :T => readInputOneLine (H) : : r eadInputAl l (T)
138

139

140

141 va l Inputs = readInputAl l (readData (” InputTrain . csv ” , 7812)) ;
142

143

144 va l Outputs = readOutPutADATE(”OutputTrain . csv ” , 7812) ;
145

146

147 va l Tes t input s = readInputAl l (readData (” InputVal id . csv ” , 3348)) ;

72 Chapter A. Specification files

148

149

150 va l Va l ida t i on output s = readOutPutADATE(”OutputValid . csv ” , 3348) ;
151

152 va l A l l ou tput s = Vector . f romList (Outputs @ Va l ida t i on output s)
153

154 va l Funs to use = [
155 ” f a l s e ” , ” t rue ” ,
156 ” r e a lL e s s ” , ” realAdd” , ” r ea lSub t r a c t ” , ” r ea lMu l t i p l y ” ,
157 ” r ea lD iv id e ” , ” tanh” ,
158 ” tor ” , ” r cons tLe s s ” ,
159

160 ” c l a s s ” , ” c l a s sVa l u eL i s tN i l ” , ” c la s sVa lueL i s tCons ” ,
161 ” c lassCount ” , ” c l a s sCountL i s tN i l ” , ” c lassCountListCons ” ,
162 ” tup l e ” , ” t up l eL i s tN i l ” , ” tup leL i s tCons ” ,
163

164 ” c las sEq ”
165]
166

167 va l Abst rac t types = []
168 va l Re j e c t f un s = []
169 fun r e s t o r e t r an s f o rm D = D
170 fun compi l e t rans fo rm D = D
171 va l pr int synted program = Print . p r in t dec ’
172

173 va l AllAtOnce = f a l s e
174

175

176 except ion MaxSyntComplExn
177 va l MaxSyntCompl = (
178 case getCommandOption ” maxSyntacticComplexity ” o f
179 NONE => 500 .0
180 | SOME S => case Real . f romStr ing S o f SOME N => N
181) handle Ex => r a i s e MaxSyntComplExn
182

183

184

185 va l OnlyCountCalls = f a l s e
186 va l TimeLimit : Int . i n t = 65536
187 va l max t ime l imit = fn () => Word64 . fromInt TimeLimit : Word64 . word
188 va l max t e s t t ime l im i t = fn () => Word64 . fromInt TimeLimit : Word64 . word
189 va l t ime l im i t b a s e = fn () => r e a l TimeLimit
190

191 fun max syntact i c complex i ty () = MaxSyntCompl
192 fun min syntac t i c comp lex i ty () = 0 .0
193 va l Us e t e s t da t a f o r max syn ta c t i c c omp l ex i t y = f a l s e
194

195 va l main range eq = op=
196 va l F i l e name extens i on = ””
197 va l Reso lut ion = NONE
198 va l StochasticMode = f a l s e
199

200 va l Number o f output at t r ibute s : Int64 . i n t = 4
201

202

203

204 s t r u c tu r e Grade : GRADE =
205 s t r u c t

A.2. Experiment 2 - The construction of classifiers experiment 73

206

207 type grade = uni t
208 va l ze ro = ()
209 va l op+ = fn (,) => ()
210 va l comparisons = [fn => EQUAL]
211 va l s i gn i f i c an tCompar i s on s = [fn => EQUAL]
212 va l t oS t r i ng = fn => ””
213 va l f romStr ing = fn => SOME()
214

215 va l pack = fn => ””
216 va l unpack = fn =>()
217

218 va l po s t p r o c e s s = fn => ()
219

220 va l toRealOpt = NONE
221

222 end
223

224

225 fun output eva l f un (exactlyOne (I : Int . int , , Y))
226 : { numCorrect : Int . int , numWrong : Int . int , grade : Grade . grade } L i s t .

l i s t = [
227 i f Vector . sub (Al l outputs , I) <> Y then
228 { numCorrect = 0 , numWrong = 1 , grade = () }
229 e l s e
230 { numCorrect = 1 , numWrong = 0 , grade = () }
231]

Listing A.1: Specification file for the Combination of Classifiers experiment

A.2 Experiment 2 - The construction of classifiers experi-
ment

1

2 datatype rL i s t =
3 rN i l | rCons o f r e a l ∗ r L i s t
4

5 datatype s p l i t L i s t =
6 s p l i t N i l | sp l i tCons o f (r L i s t ∗ r e a l ∗ r e a l) ∗ s p l i t L i s t
7

8 datatype domainList =
9 domainNil | domainCons o f (i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l) ∗ domainList

10

11 datatype e v a lL i s t =
12 eva lN i l | evalCons o f (i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l ∗ r e a l) ∗

e v a l L i s t
13

14 fun r cons tLe s s ((X, C) : r e a l ∗ r cons t) : bool =
15 case C o f r cons t (Compl , StepSize , Current) => r e a lL e s s (X, Current)
16

17 fun f ((T, Ds) : r e a l ∗ domainList) : i n t =
18 l e t
19 fun eva l s (Ds ’ : domainList) : e v a l L i s t =
20 l e t
21 fun eva l (
22 (I , Sp l i t s , Sum, OrderNumber) : i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l
23) : r e a l =
24 l e t

74 Chapter A. Specification files

25 fun newEntropy ((Cards , CardSum , CardRand) : r L i s t ∗ r e a l ∗ r e a l)
: r e a l =

26 case Cards o f
27 rN i l => 0 .0
28 | rCons (Card1 , Cards1) =>
29 case Card1 / CardSum of P1 =>
30 newEntropy (Cards1 , CardSum , CardRand) P1 ∗ ln P1
31 in
32 case S p l i t s o f
33 s p l i t N i l => 0 .0
34 | sp l i tCons (Sp l i t 1 as (Cards ’ , CardSum ’ , CardRand ’) , S p l i t s 1) =>
35 CardSum ’ / Sum ∗ newEntropy Sp l i t 1
36 +
37 eva l (I , Sp l i t s 1 , Sum, OrderNumber)
38 end
39 in
40 case Ds ’ o f
41 domainNil => eva lN i l
42 | domainCons (D1 ’ as (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1) , Ds1) =>
43 evalCons ((I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1 , eva l D1 ’) , e va l s Ds1

)
44 end
45

46 in
47 l e t
48

49 fun f i l t e r (Es2 : e v a lL i s t) : e v a l L i s t =
50 case Es2 o f
51 eva lN i l => eva lN i l
52 | evalCons (E3 as (I3 , Sp l i t s 3 , Sum3 , OrderNumber3 , Eval3) , Es3) =>
53 case r e a lL e s s (OrderNumber3 , T) o f
54 t rue => evalCons (E3 , f i l t e r Es3)
55 | f a l s e => f i l t e r Es3
56

57 in
58 l e t
59

60 fun min (Es : e v a lL i s t) : i n t ∗ s p l i t L i s t ∗ r e a l ∗ r e a l ∗ r e a l =
61 case Es o f
62 eva lN i l => r a i s e NA1
63 | evalCons (E4 as (I4 , Sp l i t s 4 , Sum4 , OrderNumber4 , Eval4) , Es4) =>
64 case Es4 o f
65 eva lN i l => E4
66 | evalCons (E5 as (I5 , Sp l i t s 5 , Sum5 , OrderNumber5 , Eval5) , Es5) =>
67 case min Es4 o f E6 as (I6 , Sp l i t s 6 , Sum6 , OrderNumber6 , Eval6) =>
68 case r e a lL e s s (Eval4 , Eval6) o f
69 t rue => E4
70 | f a l s e => E6
71

72 in
73

74 case min (f i l t e r (e va l s Ds)) o f
75 E7 as (I7 , Sp l i t s 7 , Sum7 , OrderNumber7 , Eval7) => I7
76

77 end
78 end
79 end
80

A.2. Experiment 2 - The construction of classifiers experiment 75

81

82

83 %%
84

85 type i n t = Int . i n t
86 type word = Word . word
87

88

89 datatype a t t r i b u t e v a l u e =
90 nominal o f i n t | cont inuous o f r e a l
91

92 datatype in s t ance =
93 i n s t an c eN i l | instanceCons o f a t t r i b u t e v a l u e ∗ i n s t ance
94

95 datatype c l a s s v a l u e =
96 c l a s s o f i n t
97

98 datatype t r a i n i n g i n s t a n c e =
99 t r a i n i n g I n s t an c e o f (i n s t anc e ∗ c l a s s v a l u e)

100

101 datatype data =
102 dataNi l | dataCons o f t r a i n i n g i n s t a n c e ∗ data
103

104 datatype d a t a s p l i t =
105 da t aSp l i tN i l | dataSpl i tCons o f data ∗ d a t a s p l i t
106

107 datatype s p l i t p o i n t =
108 nomina lSp l i t o f i n t ∗ i n t | con t i nuousSp l i t o f i n t ∗ r e a l
109

110 datatype s p l i t p o i n t l i s t =
111 s p l i t P o i n t L i s tN i l | sp l i tPo in tL i s tCons o f s p l i t p o i n t ∗ s p l i t p o i n t l i s t
112

113 datatype t r e e =
114 l e a f o f c l a s s v a l u e | dn o f s p l i t p o i n t ∗ t r e e l i s t and t r e e l i s t =
115 t r e e L i s tN i l | t r e eL i s tCons o f t r e e ∗ t r e e l i s t
116

117 fun a t t r i bu t e va l u e ha sh X =
118 case X o f
119 nominal I => Word64 . fromInt I
120 | cont inuous Y => realHash Y
121

122 fun in s tance hash X =
123 case X o f
124 i n s t an c eN i l => 0wx8273639293635
125 | instanceCons (X1 , Xs1) =>
126 l i s t h a s h (fn X => X, [a t t r i bu t e va l u e ha sh X1 , in s tance hash Xs1])
127

128 fun c l a s s v a l u e ha s h (c l a s s I) = Word64 . fromInt I
129

130 fun t r a i n i n g i n s t an c e ha s h (t r a i n i n g I n s t an c e (I , V)) =
131 l i s t h a s h (fn X => X, [in s tance hash I , c l a s s v a l u e ha s h V])
132

133 fun data hash X =
134 case X o f
135 dataNi l => 0wx8374564297
136 | dataCons (X1 , Xs1) =>
137 l i s t h a s h (fn X => X, [t r a i n i n g i n s t an c e ha s h X1 , data hash Xs1])
138

76 Chapter A. Specification files

139 fun da t a s p l i t h a s h X =
140 case X o f
141 da t aSp l i tN i l => 0wx937618762
142 | dataSpl i tCons (X1 , Xs1) =>
143 l i s t h a s h (fn X => X, [data hash X1 , d a t a s p l i t h a s h Xs1])
144

145 fun s p l i t p o i n t h a s h X =
146 case X o f
147 nomina lSp l i t (I1 , I2) =>
148 l i s t h a s h (fn X => X, [Word64 . fromInt I1 , Word64 . fromInt I2])
149 | con t i nuousSp l i t (I1 , X1) =>
150 l i s t h a s h (fn X => X, [Word64 . fromInt I1 , realHash X1])
151

152 fun s p l i t p o i n t l i s t h a s h Xs =
153 case Xs o f
154 s p l i t P o i n t L i s tN i l => 0wx728629528
155 | sp l i tPo in tL i s tCons (X1 , Xs1) =>
156 l i s t h a s h (fn X => X, [s p l i t p o i n t h a s h X1 , s p l i t p o i n t l i s t h a s h Xs1

])
157

158

159

160 fun t r e e ha sh Xs =
161 case Xs o f
162 l e a f C => c l a s s v a l u e ha s h C
163 | dn(Sp , Ys) =>
164 l i s t h a s h (fn X => X, [s p l i t p o i n t h a s h Sp , t r e e l i s t h a s h Ys])
165

166 and t r e e l i s t h a s h Xs =
167 case Xs o f
168 t r e e L i s tN i l => 0wx618382769
169 | t r e eL i s tCons (X1 , Xs1) =>
170 l i s t h a s h (fn X => X, [t r e e ha sh X1 , t r e e l i s t h a s h Xs1])
171

172

173

174 type main domain =
175 i n t ∗ r e a l l i s t l i s t ∗ r e a l l i s t ∗ i n t ∗ i n t l i s t ∗ i n t ∗ r e a l ∗

s t r i n g l i s t
176 type main range = t r e e l i s t
177

178

179

180 fun main range hash (Xs : t r e e l i s t) : Word64 . word =
181 l i s t h a s h (t ree hash , Xs)
182

183

184

185 datatype oeArg =
186 exactlyOne o f (Int . i n t ∗ main domain ∗ main range)
187 | allAtOnce o f
188 dec ∗
189 (Int . i n t ∗ main domain ∗ main range) L i s t . l i s t Option . opt ion ∗
190 (Int . i n t ∗ main domain ∗ main range) L i s t . l i s t
191

192 fun createOrders (
193 (AttNums , Cur , Step) : r e a l ∗ r e a l ∗ r e a l
194) : r e a l l i s t = case rea lEqua l (AttNums , 0 . 0) o f

A.2. Experiment 2 - The construction of classifiers experiment 77

195 t rue => n i l
196 | f a l s e => Cur : : c r eateOrder s (AttNums 1 . 0 , Cur + Step , Step)
197

198 (∗ END: c r e a t e random nums ∗)
199

200 (∗ START: random permuate ∗)
201 fun isMemberList (Lst : i n t l i s t , E : i n t) = case Lst o f
202 n i l => f a l s e
203 | H: :T => (
204 case (H = E) o f
205 t rue => t rue
206 | f a l s e => isMemberList (T, E)
207)
208

209 fun generateRandomNums (
210 (N, Max, R, L) : i n t ∗ i n t ∗ Random . rand ∗ i n t l i s t
211) : i n t l i s t =
212 case (N = 0) o f
213 t rue => L
214 | f a l s e => (
215 case (Random . randRange (0 , Max) R) o f R1 => (
216 case isMemberList (L , R1) o f
217 t rue => generateRandomNums (N, Max, R, L)
218 | f a l s e => generateRandomNums (N 1 , Max, R, R1 : : L)
219)
220)
221

222 fun mapIndex2Value (
223 (A1 , L) : ’ a array ∗ i n t l i s t
224) : ’ a l i s t = case L o f
225 n i l => n i l
226 | H : : T => Array . sub (A1 , H) : : mapIndex2Value (A1 , T)
227

228 fun randomPerm (
229 (A, R) : ’ a array ∗ Random . rand
230) : ’ a l i s t =
231 case generateRandomNums (
232 Array . l ength (A) ,
233 Array . l ength (A) 1 ,
234 R,
235 n i l
236) o f L => mapIndex2Value (A, L)
237

238 (∗ END: random permutate ∗)
239

240 (∗ START: Quick s o r t ∗)
241

242 except ion swap OUTOFINDEX
243 fun swap (AttVals , I , J) =
244 case I > Array . l ength AttVals o r e l s e J > Array . l ength AttVals o f
245 t rue => r a i s e swap OUTOFINDEX
246 | f a l s e =>
247 l e t
248 va l AttTemp = Array . sub (AttVals , J)
249 in
250 Array . update (AttVals , J , Array . sub (AttVals , I)) ;
251 Array . update (AttVals , I , AttTemp)
252 end

78 Chapter A. Specification files

253

254 fun p a r t i t i o n (Arr : (r e a l ∗ c l a s s v a l u e) array , Left , Right , Pivot) =
255 case Int . compare (Left , Right) o f
256 GREATER => Right
257 | EQUAL=> (
258 case Array . sub (Arr , Right) o f
259 (K,) => (
260 case K > Pivot o f
261 t rue => Right 1
262 | f a l s e => Right
263)
264)
265 | LESS =>
266 case Array . sub (Arr , Le f t) o f
267 (K,) => (
268 case K < Pivot o f
269 t rue => pa r t i t i o n (Arr , Le f t + 1 , Right , Pivot)
270 | f a l s e => (
271 case Array . sub (Arr , Right) o f
272 (K,) => (
273 case K > Pivot o f
274 t rue => pa r t i t i o n (Arr , Left , Right 1 , Pivot)
275 | f a l s e => (swap (Arr , Left , Right) ;
276 pa r t i t i o n (Arr , Le f t + 1 , Right 1 , Pivot))
277)
278))
279

280

281 fun qu ickSort (Arr : (r e a l ∗ c l a s s v a l u e) array , Left , Right) =
282 case Le f t < Right o f
283 t rue => (
284 l e t
285 va l Middle = Real . c e i l (Real . f romInt (Le f t + Right) / 2 . 0) 1
286 va l (Pivot ,) = Array . sub (Arr , Middle)
287 va l PivotIndex = pa r t i t i o n (Arr , Left , Right , Pivot)
288 va l = quickSort (Arr , Left , PivotIndex)
289 va l = quickSort (Arr , PivotIndex + 1 , Right)
290 in
291 Arr
292 end
293)
294 | f a l s e => Arr
295

296 fun qu i ckSo r tL i s t (
297 Lst : (r e a l ∗ c l a s s v a l u e) l i s t l i s t
298) : (r e a l ∗ c l a s s v a l u e) array l i s t =
299 case Lst o f
300 n i l => n i l
301 | H : : T => quickSort ((Array . f romList H) , 0 , l ength H 1) : :

qu i ckSo r tL i s t (T)
302

303 (∗ END: Quick s o r t ∗)
304

305 (∗ START: c r e a t e d i s t r i b u t i o n from data : r e a l array array array
306 Ex : va l a = i n i tD i s t r i b u t i o n ([2 , 3 , 4 , 3] , Array . array (4 , Array . array (0 ,

Array . array (0 , 0 . 0))) , 0 , 3) ;
307 va l d i s t = c r ea t eD i s t (data1 , a) ;
308 ∗)

A.2. Experiment 2 - The construction of classifiers experiment 79

309 fun i n i tD i s t r i b u t i o n (
310 (NumAttr , A , Index , NumClass) : i n t l i s t ∗ r e a l array array array

∗ i n t ∗ i n t
311) : r e a l array array array =
312 l e t
313 fun i n i tA r r s (
314 (N, L , NumClass) : i n t ∗ r e a l array l i s t ∗ i n t
315) : r e a l array array =
316 case N o f
317 0 => Array . f romList (L)
318 | K => i n i tA r r s (K 1 , Array . array (NumClass , 0 . 0) : : L ,

NumClass)
319 in
320 case NumAttr o f
321 n i l => A
322 | H : : T => (
323 Array . update (A, Index , i n i tA r r s (H, n i l , NumClass)) ;
324 i n i tD i s t r i b u t i o n (T, A, Index + 1 , NumClass)
325)
326 end
327

328 (∗ c l a s s , a t t r , va lue are counted from 0
329 ∗)
330 fun updateDist (
331 (Arr , Attr , Value , Class as (c l a s s K)
332) : (r e a l array array array ∗ i n t ∗ i n t ∗ c l a s s v a l u e)
333) : un i t =
334 case Array . sub (Array . sub (Array . sub (Arr , Attr) , Value) , K) o f
335 X => Array . update (Array . sub (Array . sub (Arr , Attr) , Value) , K

, X + 1 .0)
336

337 except ion cont inuous updateDi s t Ins ;
338 fun updateDist Ins (
339 (Instance , Class , Dist , Index , LstCont) :
340 i n s t ance ∗ c l a s s v a l u e ∗ r e a l array array array ∗ i n t ∗ (r e a l ∗

c l a s s v a l u e) l i s t l i s t
341) : r e a l array array array ∗ (r e a l ∗ c l a s s v a l u e) l i s t l i s t =
342 case Ins tance o f
343 i n s t an c eN i l => (Dist , LstCont)
344 | instanceCons (nominal Value , Ins) => (
345 updateDist (Dist , Index , Value , Class) ;
346 updateDist Ins (Ins , Class , Dist , Index + 1 , LstCont)
347)
348 | instanceCons (cont inuous Value , Ins) => (
349 case LstCont o f H : : T => (
350 case updateDist Ins (Ins , Class , Dist , Index , T) o f
351 (A1 , A2) => (A1 , ((Value , Class) : : H) : : A2)
352)
353)
354

355 fun c r e a t eD i s t (
356 (Data , Dist , LstCont) : data ∗ r e a l array array array ∗ (r e a l ∗

c l a s s v a l u e) l i s t l i s t
357) : r e a l array array array ∗ (r e a l ∗ c l a s s v a l u e) l i s t l i s t =
358 case Data o f
359 dataNi l => (Dist , LstCont)
360 | dataCons (T as t r a i n i n g I n s t an c e (Instance , Class) , D) => (
361 case updateDist Ins (Instance , Class , Dist , 0 , LstCont) o f

80 Chapter A. Specification files

362 (A1 , A2) => c r e a t eD i s t (D, A1 , A2)
363)
364

365

366 (∗ END: c r e a t e d i s t r i b u t i o n from data : data > r e a l array array array ∗)
367

368 (∗ START: from d i s t r i b u t i o n to domainList :
369 r e a l array array array > domainList
370 ∗)
371

372 fun arrToTuple (
373 (A, R) : r e a l array ∗ Random . rand
374) : r L i s t ∗ r e a l ∗ r e a l =
375 l e t
376 fun r e a lA r r 2 rL i s t ((A, Index , L) : r e a l array ∗ i n t ∗ i n t) : r L i s t =
377 case (Index = L) o f
378 t rue => rN i l
379 | f a l s e => (
380 case rea lEqua l (Array . sub (A, Index) , 0 . 0) o f
381 t rue => r e a lA r r 2 rL i s t (A, Index + 1 , L)
382 | f a l s e => rCons (Array . sub (A, Index) , r e a lA r r 2 rL i s t (A, Index +

1 , L))
383)
384 in
385 l e t
386 fun sumArr (
387 (A, Index , Len , Sum) : r e a l array ∗ i n t ∗ i n t ∗ r e a l
388) : r e a l =
389 case (Index = Len) o f
390 t rue => Sum
391 | f a l s e => realAdd (Array . sub (A, Index) , sumArr (A, Index + 1 ,

Len , Sum))
392 in (
393 r e a lA r r 2 rL i s t (A, 0 , Array . l ength (A)) ,
394 sumArr (A , 0 , Array . l ength (A) , 0 . 0) ,
395 Random . randReal R 0 .5
396)
397 end
398 end
399

400 fun a r r s 2 s p l i t L i s t (
401 (A, Index , Len , R, Sum) : r e a l array array ∗ i n t ∗ i n t ∗ Random .

rand ∗ r e a l
402) : s p l i t L i s t ∗ r e a l =
403 case (Index = Len) o f
404 t rue => (s p l i tN i l , Sum)
405 | f a l s e => (
406 case arrToTuple (Array . sub (A, Index) , R) o f
407 R0 as (R1 , R2 , R3) => (
408 case rea lEqua l (R2 , 0 . 0) o f
409 t rue => a r r s 2 s p l i t L i s t (A, Index + 1 , Len , R , Sum + R2)
410 | f a l s e =>
411 case a r r s 2 s p l i t L i s t (A, Index + 1 , Len , R , Sum + R2) o f
412 R4 as (R5 , R6) => (sp l i tCons (R0 , R5) , R6)
413)
414)
415

416 (∗

A.2. Experiment 2 - The construction of classifiers experiment 81

417 Params :
418 A : d i s t r i b u t i o n o f nominal a t t r i b u t e s
419 Index : s t a r t from 0
420 Len : l en o f A
421 R: Random seed
422 OList : L i s t o f order numbers used to randomly s e l e c t a t t r i b u t e s
423 Return :
424 domainList from Data
425 remaining OList used to a s s i gn order numbers to cont inuous a t t r i b u t e s
426 ∗)
427 fun d i s t2domainLi s t (
428 (A , Index , Len , R, OList
429) : r e a l array array array ∗ i n t ∗ i n t ∗ Random . rand ∗ r e a l l i s t
430) : domainList ∗ r e a l l i s t =
431 case (Index = Len) o f
432 t rue => (domainNil , OList)
433 | f a l s e => (
434 case a r r s 2 s p l i t L i s t (
435 Array . sub (A, Index) ,
436 0 ,
437 Array . l ength (Array . sub (A, Index)) ,
438 R,
439 0 .0) o f
440 (R1 , R2) => (
441 case OList o f H : : T => (
442 l e t
443 va l D = dis t2domainLi s t (A, Index + 1 , Len , R, T)
444 in
445 (domainCons ((Int64 . fromInt Index , R1 , R2 , H) , #1 D) , #2 D)
446 end
447)
448)
449)
450

451 (∗ END: from d i s t r i b u t i o n to domainList
452

453 va l o rL i s t = randomPerm(Array . f romList (c reateOrder s (4 , ˜0 . 5 , 1 . 0 / 3 . 0))
) ;

454 va l d = dis t2domainLi s t (d i s t , 0 , Array . l ength (d i s t) , Random . rand (1 , 1) ,
o rL i s t) ;

455

456 ∗)
457

458 (∗ START: c r e a t e d i s t r i b u t i o n f o r cont inuous a t t r i b u t e ∗)
459

460 fun distForOneSortedArr (
461 (A, Res , Index , Len) : (r e a l ∗ c l a s s v a l u e) array ∗ r e a l array ∗

i n t ∗ i n t
462) : r e a l array =
463 case (Index = Len) o f
464 t rue => Res
465 | f a l s e => (
466 case Array . sub (A, Index) o f
467 (V, Cl as c l a s s C) => (
468 case Array . sub (Res , C) o f
469 Count => (
470 Array . update (Res , C, Count + 1 .0) ;
471 distForOneSortedArr (A, Res , Index + 1 , Len)

82 Chapter A. Specification files

472)
473)
474)
475

476 (∗ can not be an empty array ∗)
477 fun f i r s tSp l i tOneContAtt r (
478 (A, Index , Len) : (r e a l ∗ c l a s s v a l u e) array ∗ i n t ∗ i n t
479) : i n t =
480 case (Index = Len 1) o f
481 t rue => Index
482 | f a l s e => (
483 case rea lEqua l (#1 (Array . sub (A, Index)) , #1 (Array . sub (A, Index

+ 1))) o f
484 t rue => f i r s tSp l i tOneContAtt r (A, Index + 1 , Len)
485 | f a l s e => Index
486)
487

488 fun updateCont (
489 (E as (V, C as c l a s s Cl) , Dist) : (r e a l ∗ c l a s s v a l u e) ∗ r e a l

array array
490) : un i t =
491 l e t
492 va l N0 = Array . sub (Array . sub (Dist , 0) , Cl)
493 va l N1 = Array . sub (Array . sub (Dist , 1) , Cl)
494 in
495 (Array . update (Array . sub (Dist , 0) , Cl , N0 + 1 .0) ;
496 Array . update (Array . sub (Dist , 1) , Cl , N1 1 .0)
497)
498 end
499

500

501 fun in i tArrArr (
502 (Num1, Num2) : i n t ∗ i n t
503) : r e a l array array =
504 l e t
505 va l A = Array . array (Num1, Array . array (0 , 0 . 0)) ;
506 fun updateArr (Num) =
507 case (Num = 0) o f
508 t rue => A
509 | f a l s e => (
510 Array . update (A, Num 1 , Array . array (Num2, 0 .0)) ;
511 updateArr (Num 1)
512)
513 in
514 updateArr (Num1)
515 end
516

517 fun copyArrArr (
518 (A1 , A2 , Index) : ’ a array array ∗ ’ a array array ∗ i n t
519) : i n t =
520 case (Index = Array . l ength (A1)) o f
521 t rue => 0
522 | f a l s e => (
523 Array . copy{ di = 0 , dst = Array . sub (A2 , Index) , s r c = Array . sub (

A1 , Index) } ;
524 copyArrArr (A1 , A2 , Index + 1)
525)
526

A.2. Experiment 2 - The construction of classifiers experiment 83

527 fun in itDistOneContAttrHelper (
528 (A, Index , Len , Dist , Lst , NumClass , ValueLst) :
529 (r e a l ∗ c l a s s v a l u e) array ∗ i n t ∗ i n t ∗
530 r e a l array array ∗ r e a l array array l i s t ∗ i n t ∗ r e a l l i s t
531) : r e a l array array l i s t ∗ r e a l l i s t =
532 l e t
533 va l D3 ’ = in i tArrArr (2 , NumClass)
534 in
535 case (Index >= Len 2) o f
536 t rue => (Lst , ValueLst)
537 | f a l s e => (
538 updateCont (Array . sub (A, Index + 1) , Dist) ;
539 copyArrArr (Dist , D3 ’ , 0) ;
540 case rea lEqua l (#1 (Array . sub (A, Index + 1)) , #1 (Array . sub (A,

Index + 2))) o f
541 t rue => in i tDistOneContAttrHelper (A, Index + 1 , Len , Dist , Lst ,

NumClass , ValueLst)
542 | f a l s e =>
543 in i tDistOneContAttrHelper (
544 A, Index + 1 , Len ,
545 Dist ,
546 Lst @ [D3 ’] , NumClass , ValueLst @ [((#1 (Array . sub (A, Index + 1

))) + (#1 (Array . sub (A, Index + 2)))) / 2 . 0])
547)
548 end
549

550 fun initDistOneContAttr (
551 (A, NumClass) :
552 (r e a l ∗ c l a s s v a l u e) array ∗ i n t
553) : r e a l array array l i s t ∗ r e a l l i s t =
554 l e t
555 va l Len = Array . l ength (A)
556 va l F i r s t S p l i t = f i r s tSp l i tOneContAtt r (A, 0 , Len)
557 va l F i r s t Sp l i tVa l u e = #1(Array . sub (A, F i r s t S p l i t))
558 va l R1 = distForOneSortedArr (A, Array . array (NumClass , 0 . 0) , 0 ,

F i r s t S p l i t + 1)
559 va l R2 = distForOneSortedArr (A, Array . array (NumClass , 0 . 0) ,

F i r s t S p l i t + 1 , Len)
560 va l R = Array . array (2 , Array . array (0 , 0 . 0))
561 va l D2 ’ = in i tArrArr (2 , NumClass)
562 in
563 Array . update (R, 0 , R1) ;
564 Array . update (R, 1 , R2) ;
565 copyArrArr (R, D2 ’ , 0) ;
566 l e t
567 va l D = initDistOneContAttrHelper (A, F i r s t Sp l i t , Len , R, [D2 ’] ,

NumClass , n i l)
568 va l D1 ’ = #1 D
569 va l D2 ’ = #2 D
570 in
571 case (F i r s t S p l i t = Array . l ength (A) 1) o f
572 t rue => (D1 ’ , F i r s t Sp l i tVa l u e : : D2 ’)
573 | f a l s e => (
574 D1’ ,
575 ((#1(Array . sub (A, F i r s t S p l i t)) + #1(Array . sub (A, F i r s t S p l i t + 1

))) / 2 .0) : :
576 D2’
577)

84 Chapter A. Specification files

578 end
579 end
580

581 (∗ Al l s p l i t s use the same random point . DomainOld i s added
582 to t a i l o f the new one
583 ∗)
584 fun d i s t2domainLis t2 (
585 (A , Index , Len , R, Order , DomainOld , ContLstOld , Step , ContNum, A2
586) : r e a l array array array ∗ i n t ∗ i n t ∗ Random . rand ∗ r e a l ∗

domainList ∗ (i n t ∗ r e a l) l i s t ∗ i n t ∗ i n t ∗ r e a l array
587) : domainList ∗ (i n t ∗ r e a l) l i s t =
588 case (Index >= Len) o f
589 t rue => (DomainOld , ContLstOld)
590 | f a l s e => (
591 case a r r s 2 s p l i t L i s t (
592 Array . sub (A, Index) ,
593 0 ,
594 Array . l ength (Array . sub (A, Index)) ,
595 R,
596 0 .0) o f
597 (R1 , R2) =>
598 l e t
599 va l D = dis t2domainLis t2 (A, Index + 1 , Len , R, Order , DomainOld ,

ContLstOld , Step , ContNum, A2) ;
600 va l DomainLst = #1 D;
601 va l ContLst = #2 D
602 in
603 (domainCons ((Int64 . fromInt (Index + Step) , R1 , R2 , Order) ,

DomainLst) , (ContNum, Array . sub (A2 , Index)) : : ContLst)
604 end
605)
606

607 fun subsetArr (
608 (A1 , A2 , Step , Index , Len) : ’ a array ∗ ’ a array ∗ i n t ∗ i n t ∗ i n t
609) : ’ a array =
610 case (Index < Len) o f
611 t rue => (
612 Array . update (A2 , Index , Array . sub (A1 , (Index + 1) ∗ Step 1)) ;
613 subsetArr (A1 , A2 , Step , Index + 1 , Len)
614)
615 | f a l s e => A2
616

617 fun addDistContToDomain (
618 (LstCont , CurDomain , CurMapLst , NumClass , R, OList , Step , ContNumLst

) :
619 (r e a l ∗ c l a s s v a l u e) array l i s t ∗ domainList ∗ (i n t ∗ r e a l) l i s t ∗

i n t ∗ Random . rand ∗ r e a l l i s t ∗ i n t ∗ i n t l i s t
620) : domainList ∗ (i n t ∗ r e a l) l i s t =
621 case LstCont o f
622 n i l => (CurDomain , CurMapLst)
623 | H : : T => (
624 case OList o f HO : : TO => (
625 case ContNumLst o f HC : : TC =>
626 l e t
627 va l A = initDistOneContAttr (H, NumClass) ;
628 va l A1 = Array . f romList (#1 A) ;
629 va l A2 = Array . f romList (#2 A) ;
630 va l Len = Array . l ength (A2) ;

A.2. Experiment 2 - The construction of classifiers experiment 85

631 va l next Int = Random . randRange (51 ,101) ;
632 va l RandNum = nextInt R;
633 in (
634 case (RandNum >= Len) o f
635 t rue =>
636 l e t
637 va l Re = addDistContToDomain (T, CurDomain , CurMapLst , NumClass , R,

TO, Array . l ength (A1) + Step , TC) ;
638 va l DomainOld = #1 Re ;
639 va l MappingOld = #2 Re ;
640 in
641 di s t2domainLi s t2 (A1 , 0 , Len , R, HO, DomainOld , MappingOld , Step , HC,

A2)
642 end
643 | f a l s e =>
644 l e t
645 va l Step1 = f l o o r (Real . f romInt (Len) / Real . f romInt (RandNum))
646 va l A1 ’ = subsetArr (A1 , Array . array (RandNum 1 , Array . array (0 , Array .

array (0 , 0 . 0))) , Step1 , 0 , RandNum 1)
647 va l A2 ’ = subsetArr (A2 , Array . array (RandNum 1 , 0 . 0) , Step1 , 0 ,

RandNum 1)
648 va l Re = addDistContToDomain (T, CurDomain , CurMapLst , NumClass , R,

TO, RandNum 1 + Step , TC)
649 va l DomainOld = #1 Re ;
650 va l MappingOld = #2 Re ;
651 in
652 di s t2domainLi s t2 (A1 ’ , 0 , RandNum 1 , R, HO, DomainOld , MappingOld ,

Step , HC, A2 ’)
653 (∗ di s t2domainLi s t2 (A1 , 0 , Len , R, HO, DomainOld , MappingOld , Step ,

HC, A2) ∗)
654 end
655)
656 end
657)
658)
659

660 fun makeListOfDataNil (Num : i n t) : data l i s t = case Num of
661 0 => []
662 | N => dataNi l : : makeListOfDataNil (Num 1)
663

664 except ion outOfBound getValueAtrAtIndex ;
665 fun getValueAttrAtIndex (in s tanceN i l , Index) = r a i s e

outOfBound getValueAtrAtIndex
666 | getValueAttrAtIndex (instanceCons (AttValue , Ins) , 0) = AttValue
667 | getValueAttrAtIndex (instanceCons (AttValue , Ins) , N) =

getValueAttrAtIndex (Ins , N 1)
668

669

670 fun removeAttrFromInstance (
671 (Instance , K) : i n s t ance ∗ i n t
672) : i n s t ance =
673 case K o f
674 0 => (
675 case Ins tance o f instanceCons (A, I) => I
676)
677 | L => (
678 case Ins tance o f instanceCons (A, I) =>
679 instanceCons (A, removeAttrFromInstance (I , K 1))

86 Chapter A. Specification files

680)
681

682 fun updateListSubSets (t r a i n i n g I n s t an c e (Instance , Cl) , H : : T, Value) =
683 case Value o f
684 0 => (dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , H)) : :T
685 | N => H: : updateListSubSets (t r a i n i n g I n s t an c e (Instance , Cl) , T, Value 1

)
686

687 fun updateListSubSetsCont (
688 t r a i n i n g I n s t an c e (Instance , Cl) , H : : T, Value : r ea l , Va lueSp l i t : r e a l
689) =
690 case (Value < ValueSp l i t) o f
691 t rue => (dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , H)) : :T
692 | f a l s e => (
693 case T o f
694 Data2 : : n i l => H : : [(dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , Data2))]
695)
696

697 except ion i n s t a n c eN i l s p l i tDa t a
698 except ion typeMismatch spl i tData
699 fun sp l i tData (Data , Sp , Lst) =
700 case Data o f
701 dataNi l => (
702 case Sp o f
703 nomina lSp l i t (Index , Value) => makeListOfDataNil (L i s t . nth (Lst , Index))
704 | con t i nuousSp l i t (Index , Value) => [dataNil , dataNi l]
705)
706 | dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , DataTail) => (
707 case Ins tance o f
708 i n s t an c eN i l => r a i s e i n s t an c eN i l s p l i tDa t a
709 | instanceCons (Att , Ins) => (
710 case Sp o f
711 nomina lSp l i t (Index , Value) => (
712 case getValueAttrAtIndex (Instance , Index) o f
713 nominal K =>
714 updateListSubSets (
715 t r a i n i n g I n s t an c e (removeAttrFromInstance (Instance , Index) , Cl) ,
716 sp l i tData (DataTail , Sp , Lst) ,
717 K)
718 | cont inuous K => r a i s e typeMismatch spl i tData
719)
720 | con t i nuousSp l i t (Index , Value) => (
721 case getValueAttrAtIndex (Instance , Index) o f
722 cont inuous K =>
723 updateListSubSetsCont (
724 t r a i n i n g I n s t an c e (Instance , Cl) ,
725 sp l i tData (DataTail , Sp , Lst) ,
726 K, Value)
727 | nominal K => r a i s e typeMismatch spl i tData
728)
729)
730)
731

732 (∗ END: Sp l i t data ∗)
733

734

735 (∗ START: bu i ld t r e e ∗)
736

A.2. Experiment 2 - The construction of classifiers experiment 87

737 except ion noEleInList removeEleFromList
738 fun removeEleFromList (Index , Lst) = case Index o f
739 0 => t l (Lst)
740 | I => hd(Lst) : : removeEleFromList (Index 1 , t l (Lst))
741

742 fun updateLis tAttr (Sp , Lst) = case Sp o f
743 nomina lSp l i t (Index , Value) => removeEleFromList (Index , Lst)
744 | con t i nuousSp l i t (Index , Value) => Lst
745

746 fun calT ((K, N) : r e a l ∗ r e a l) : r e a l =
747 case r e a lL e s s (K, N) o f
748 t rue => ˜0 .5 + (K 0 .5) / (N 1 .0)
749 | f a l s e => 1 .0
750

751 fun createNumNilList (Num : r e a l) : (r e a l ∗ c l a s s v a l u e) l i s t l i s t =
752 case rea lEqua l (Num, 0 .0) o f
753 t rue => []
754 | f a l s e => [] : : createNumNilList (Num 1.0)
755

756

757

758 fun divideTypeAtt (Data : data) : (i n t ∗ r e a l) l i s t ∗ i n t l i s t =
759 case Data o f
760 dataNi l => (n i l , n i l)
761 | dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , DataTail) =>
762 l e t
763 fun divideTypeAttHelper (
764 (Ins , Index) : i n s t ance ∗ i n t
765) : (i n t ∗ r e a l) l i s t ∗ i n t l i s t =
766 case Ins o f
767 i n s t an c eN i l => (n i l , n i l)
768 | instanceCons (A as nominal N, In sTa i l) =>
769 l e t
770 va l D = divideTypeAttHelper (InsTa i l , Index + 1)
771 va l NList = #1 D
772 va l CDist = #2 D
773 in
774 ((Index , 0 . 0) : : NList , CDist)
775 end
776 | instanceCons (A as cont inuous N, In sTa i l) =>
777 l e t
778 va l D = divideTypeAttHelper (InsTa i l , Index + 1)
779 va l NList = #1 D
780 va l CDist = #2 D
781 in
782 (NList , Index : : CDist)
783 end
784 in
785 divideTypeAttHelper (Instance , 0)
786 end
787

788

789 fun f i n dBe s t Sp l i t (
790 (Data , LstAttrDesc , NumClass , NumAttr , K, R) : data ∗ i n t l i s t ∗

i n t ∗ r e a l ∗ r e a l ∗ Random . rand
791) : s p l i t p o i n t =
792 l e t
793 va l LstTypes = divideTypeAtt (Data) ;

88 Chapter A. Specification files

794 va l NList = #1 LstTypes ;
795 va l CDist = #2 LstTypes ;
796 va l I n i t = i n i tD i s t r i b u t i o n (LstAttrDesc , Array . array (L i s t . l ength (

LstAttrDesc) , Array . array (0 , Array . array (0 , 0 . 0))) , 0 , NumClass) ;
797 va l NumContAttr = NumAttr Real . f romInt (L i s t . l ength (LstAttrDesc)) ;
798 va l In i tContLst = createNumNilList (NumContAttr) ;
799 va l Dist = c r ea t eD i s t (Data , In i t , In i tContLst) ; (∗ TO DO ∗)
800 va l DistNom = #1 Dist ;
801 va l DistCont = #2 Dist ; (∗ (r ea l , c l a s s) l i s t l i s t ∗)
802 va l OrList = randomPerm(Array . f romList (c reateOrder s (NumAttr , ˜0 . 5 ,

1 . 0 / (NumAttr 1 . 0))) , R) ;
803 va l D = dis t2domainLi s t (DistNom , 0 , Array . l ength (DistNom) , R,

OrList) ;
804 va l DNom = #1 D; (∗ Domain from Nominal d i s t ∗)
805 va l OrListCont = #2 D; (∗ remaining O r l i s t that has not been used ∗)
806 va l Al l = addDistContToDomain (qu i ckSo r tL i s t (DistCont) , DNom, n i l ,

NumClass , R, OrListCont , Array . l ength (DistNom) , CDist)
807 va l DomainAll = #1 Al l ;
808 va l MappingLst = Array . f romList (NList @ (#2 Al l)) ;
809 in
810 case Int64 . t o In t (f (calT (K, NumAttr) , DomainAll)) o f Index => (
811 case Array . sub (MappingLst , Index) o f R as (I , V) => (
812 case (Index < L i s t . l ength (LstAttrDesc)) o f
813 t rue => nomina lSp l i t (I , 0)
814 | f a l s e => con t i nuousSp l i t (I , V)
815)
816)
817 end
818

819 fun f indMajorClassHe lper (dataNil , Lst) = Lst
820 | f indMajorClassHe lper (dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , Data) , Lst

) =
821 l e t
822 fun updateL i s tC las s (n i l , C) = [(C, 1)]
823 | updateL i s tC las s ((IndexClass , Count) : : T, C) =
824 case (IndexClass = C) o f
825 t rue => (IndexClass , Count + 1) : : T
826 | f a l s e => (IndexClass , Count) : : updateL i s tC las s (T, C)
827 in f indMajorClassHe lper (Data , updateL i s tC las s (Lst , Cl))
828 end
829

830

831 fun f indMajorClass (Data) =
832 l e t
833 fun findMaxClass (n i l , MaxCount , MaxClass) = MaxClass
834 | f indMaxClass ((Cl , Count) : : T, MaxCount , MaxClass) =
835 case (Count > MaxCount) o f
836 t rue => f indMaxClass (T, Count , Cl)
837 | f a l s e => f indMaxClass (T, MaxCount , MaxClass)
838 in f indMaxClass (f indMajorClassHe lper (Data , n i l) , ˜1 , c l a s s ˜1)
839 end
840

841 fun checkSameClass (dataNil , CurClass) = true
842 | checkSameClass (dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , Data) ,

CurClass) =
843 case (Cl = CurClass) o f
844 t rue => checkSameClass (Data , CurClass)
845 | f a l s e => f a l s e

A.2. Experiment 2 - The construction of classifiers experiment 89

846

847 fun isLoop (LstData : data l i s t) : bool =
848 case LstData o f
849 n i l => f a l s e
850 | H : : T => (
851 case H o f
852 dataNi l => t rue
853 | => i sLoop (T)
854)
855

856 fun makeNumRand(Num) = Real . f romInt (f l o o r (log2 (Num) + 1 . 0)) ;
857

858 fun bui ldTree (Data0 , LstAttrDesc , NumClass , NumAttr , K, R, AllNom) =
859 case Data0 o f
860 dataNi l => l e a f (c l a s s ˜1)
861 | Data2 as dataCons (t r a i n i n g I n s t an c e (Instance , Cl) , Data) => (
862 i f (LstAttrDesc = n i l) andalso AllNom
863 then
864 l e a f (f indMajorClass (Data))
865 e l s e
866 l e t
867 fun bu i ldTreeL i s t (Lst , LstAttrDesc , NumClass , NumAttr , K, R) =
868 case Lst o f
869 n i l => t r e e L i s tN i l
870 | (H : : T) =>
871 t r e eL i s tCons (
872 bui ldTree (H, LstAttrDesc , NumClass , NumAttr , K, R, AllNom) ,
873 bu i ldTreeL i s t (T, LstAttrDesc , NumClass , NumAttr , K, R))
874 in
875 case checkSameClass (Data2 , Cl) o f
876 t rue => l e a f Cl
877 | f a l s e => (
878 case f i n dBe s t Sp l i t (Data2 , LstAttrDesc , NumClass , NumAttr , K, R) o f
879 nomina lSp l i t (˜1 ,) => l e a f (c l a s s ˜1)
880 | con t i nuousSp l i t (˜1 ,) =>
881 l e a f (f indMajorClass (dataCons (t r a i n i n g I n s t an c e (Instance , Cl) ,

Data)))
882 (∗ l e a f (c l a s s ˜1) ∗)
883 | Sp as nomina lSp l i t (,) => dn(
884 Sp ,
885 bu i ldTreeL i s t (
886 sp l i tData (Data2 , Sp , LstAttrDesc) ,
887 updateLis tAttr (Sp , LstAttrDesc) ,
888 NumClass , NumAttr 1 . 0 , K, R
889)
890)
891 | Sp as con t i nuousSp l i t (,) =>
892 l e t
893 va l LstData = sp l i tData (Data2 , Sp , LstAttrDesc)
894 in
895 case isLoop (LstData) o f
896 t rue => l e a f (c l a s s ˜1)
897 | f a l s e => dn(
898 Sp ,
899 bu i ldTreeL i s t (
900 LstData ,
901 updateLis tAttr (Sp , LstAttrDesc) ,
902 NumClass , NumAttr , K, R

90 Chapter A. Specification files

903)
904)
905 end
906)
907 end
908)
909

910 (∗ END: bu i ld t r e e ∗)
911

912 (∗ START: read i n s t an c e s ∗)
913

914 (∗ fun readIns tance (Lst : r e a l l i s t) : i n s t ance =
915 case Lst o f
916 n i l => i n s t an c eN i l
917 | H : : T => instanceCons (nominal (round H) , r eadIns tance (T))
918

919 fun readIns tance (Lst) =
920 case Lst o f
921 n i l => i n s t an c eN i l
922 | H : : T => instanceCons (cont inuous H, readIns tance (T)) ∗)
923

924 fun readIns tance (Lst , LstHelper) =
925 case Lst o f
926 n i l => i n s t an c eN i l
927 | H : : T => (
928 case LstHelper o f
929 ”Nom” : : Ta i l => instanceCons (nominal (round H) , r eadIns tance (T,

Ta i l))
930 | ”Num” : : Ta i l => instanceCons (cont inuous H, readIns tance (T, Ta i l))
931)
932

933 fun r e ad t r a i n i ng In s t an c e (Lst , Cl , LstHelper) =
934 t r a i n i n g I n s t an c e (r eadIns tance (Lst , LstHelper) , c l a s s Cl) ;
935

936 fun readDataToStructure (LstData , LstClass , LstHelper) = case LstData o f
937 n i l => dataNi l
938 | H : : T => (
939 case LstClass o f
940 HCl : : TCl => dataCons (r e ad t r a i n i ng In s t an c e (H, HCl , LstHelper) ,

readDataToStructure (T, TCl , LstHelper))
941)
942

943 except ion lengthNotMatch readDataLstToStructure
944 fun readDataLstToStructure (LstLstData , LstLstClass , LstHelper) =
945 case (l ength (LstLstData) = length (LstLstClas s)) o f
946 f a l s e => r a i s e lengthNotMatch readDataLstToStructure
947 | t rue => (
948 case LstLstClas s o f
949 n i l => n i l
950 | HCl : : TCl => (
951 case LstLstData o f
952 H: :T =>
953 readDataToStructure (H, (L i s t .map round HCl) , LstHelper) : :

readDataLstToStructure (T, TCl , LstHelper)
954)
955)
956

957 fun r eadL i s t In s t anc e (Lst , LstHelper) = case Lst o f

A.2. Experiment 2 - The construction of classifiers experiment 91

958 n i l => n i l
959 | H: :T => r eadIns tance (H, LstHelper) : : r e adL i s t In s t anc e (T, LstHelper)
960

961 (∗ END: read i n s t an c e s ∗)
962

963

964 (∗ START: Build Forest ∗)
965

966 fun createListRand (Num, Count , Lst , R) = case Count o f
967 0 => Lst
968 | K => (
969 case Random . randRange (0 , Num 1) o f
970 NextInt => createListRand (Num, K 1 , (NextInt R) : : Lst , R)
971)
972

973 fun c rea teL i s tL i s tRand (NumList , Num) = case NumList o f
974 0 => n i l
975 | K => createListRand (Num, Num, n i l , Random . rand (1 , NumList))
976 : : c r ea t eL i s tL i s tRand (NumList 1 , Num)
977

978 fun createOneRandData (LstData , LstRand) =
979 case Array . f romList (LstData) o f
980 ArrData =>
981 l e t
982 fun createOneRandDataHelper (LstRand) =
983 case LstRand o f
984 n i l => n i l
985 | H : : T => Array . sub (ArrData , H) : : createOneRandDataHelper (T)
986 in createOneRandDataHelper (LstRand)
987 end
988

989 fun createRandSets (LstData , LstLstRand) =
990 case LstLstRand o f
991 n i l => n i l
992 | H : : T => createOneRandData (LstData , H) : : createRandSets (LstData , T)
993

994 fun bu i ldFore s tHe lpe r (Sets , LstAttrDesc , NumClass , NumAttr , R, AllNom) =
995 case Sets o f
996 n i l => n i l
997 | H : : T =>
998 bui ldTree (H, LstAttrDesc , NumClass , NumAttr , makeNumRand (NumAttr) , R

, AllNom)
999 : : bu i ldFore s tHe lpe r (T, LstAttrDesc , NumClass , NumAttr , R, AllNom)

1000

1001 except ion noTree c r ea t eTra in ingSe t s
1002

1003 fun bu i ldFore s t (Train data , T r a i n c l a s s : r e a l l i s t , NumTrees , LstAttrDesc ,
NumClass , NumAttr , R, LstHelper) =

1004 case c r ea teL i s tL i s tRand (NumTrees , l ength (T r a i n c l a s s)) o f
1005 n i l => r a i s e noTree c r ea t eTra in ingSe t s
1006 | l stLstRand =>
1007 l e t
1008 va l AllNom = (L i s t . l ength (LstAttrDesc) = round NumAttr)
1009 in
1010 bu i ldFore s tHe lpe r (
1011 readDataLstToStructure (createRandSets (Train data , lstLstRand) ,
1012 createRandSets (Tra in c l a s s , l stLstRand) , LstHelper) ,
1013 LstAttrDesc , NumClass , NumAttr , R, AllNom)

92 Chapter A. Specification files

1014 end
1015

1016 (∗ END: Build Forest ∗)
1017

1018

1019 (∗ START: TEST ∗)
1020 except ion outOfBound getTreeAtIndex ;
1021 fun getTreeAtIndex (t r e eL i s tN i l , Index) = r a i s e outOfBound getTreeAtIndex
1022 | getTreeAtIndex (t r eeL i s tCons (Tree , TreeL i s t) , 0) = Tree
1023 | getTreeAtIndex (t r eeL i s tCons (Tree , TreeL i s t) , N) = getTreeAtIndex (

TreeList , N 1)
1024

1025 except ion disagreeDataTypeAttrAndSpl itPoint
1026 fun s ing l eCaseTes t (Ins , l e a f L) = L
1027 | s ing l eCaseTes t (Ins , dn (nomina lSp l i t (AttrIndex , Unknown) , TreeL i s t)) =
1028 l e t
1029 va l AttrValue =
1030 case getValueAttrAtIndex (Ins , AttrIndex) o f
1031 nominal V => V
1032 | cont inuous V => r a i s e disagreeDataTypeAttrAndSpl itPoint
1033 in s ing l eCaseTes t (removeAttrFromInstance (Ins , AttrIndex) ,

getTreeAtIndex (TreeList , AttrValue))
1034 end
1035 | s ing l eCaseTes t (Ins , dn (con t i nuousSp l i t (AttrIndex , Value) , TreeL i s t))

=
1036 l e t
1037 va l AttrValue =
1038 case getValueAttrAtIndex (Ins , AttrIndex) o f
1039 nominal V => r a i s e disagreeDataTypeAttrAndSpl itPoint
1040 | cont inuous V => V
1041 in (
1042 case (AttrValue < Value) o f
1043 t rue => s ing l eCaseTes t (Ins , getTreeAtIndex (TreeList , 0))
1044 | f a l s e => s ing l eCaseTes t (Ins , getTreeAtIndex (TreeList , 1))
1045)
1046 end
1047

1048 except ion s i zeNotMatch fore s tTes tHe lper ;
1049 fun t reeTes tHe lper (l s tTe s t I n s t , l s tC l a s s , Tree) =
1050 case l s tT e s t I n s t o f
1051 n i l => 0
1052 | h : : t => (case l s tC l a s s o f
1053 n i l => r a i s e s i z eNotMatch fore s tTes tHe lper
1054 | hCl : : tCl => (case (s ing l eCaseTes t (h , Tree) = c l a s s hCl) o f
1055 t rue => 1+treeTes tHe lper (t , tCl , Tree)
1056 | f a l s e => t r eeTes tHe lper (t , tCl , Tree)
1057)
1058) ;
1059

1060 fun t r e eTes t (l s tTe s t I n s t , l s tC l a s s , t r e e) =
1061 Real . f romInt (t r eeTes tHe lper (l s tTe s t I n s t , l s tC l a s s , t r e e)) /Real . f romInt (

l ength (l s tC l a s s)) ∗100 . 00 ;
1062 (∗ END: TEST ∗)
1063

1064 (∗ START: Forest t e s t ∗)
1065

1066 fun f o r e s tS ing l eCaseTes tHe lpe r (Ins , LstTree) =
1067 case LstTree o f

A.2. Experiment 2 - The construction of classifiers experiment 93

1068 n i l => n i l
1069 | H : : T => s ing l eCaseTes t (Ins , H) : : f o r e s tS ing l eCas eTe s tHe lpe r (Ins , T)
1070

1071 fun updateVoting (Cl : c l a s s v a l u e , LstCount) =
1072 case LstCount o f
1073 n i l => [(Cl , 1)]
1074 | (C, Num) : : T => (
1075 case (C = Cl) o f
1076 t rue => (Cl , Num + 1) : : T
1077 | f a l s e => (C, Num) : : updateVoting (Cl , T)
1078)
1079

1080 fun vot ingHe lper (LstVote , LstCount) =
1081 case LstVote o f
1082 n i l => LstCount
1083 | H : : T => vot ingHe lper (T, updateVoting (H, LstCount))
1084

1085 fun vot ing (LstVote) =
1086 l e t
1087 fun findMaxClass (n i l , MaxCount , MaxClass) = MaxClass
1088 | f indMaxClass ((Cl , Count) : : T, MaxCount , MaxClass) =
1089 case (Count > MaxCount) o f
1090 t rue => (
1091 case (Cl = c l a s s ˜1) o f
1092 t rue => f indMaxClass (T, MaxCount , MaxClass)
1093 | f a l s e => f indMaxClass (T, Count , Cl)
1094)
1095 | f a l s e => f indMaxClass (T, MaxCount , MaxClass)
1096 in f indMaxClass (vot ingHe lper (LstVote , n i l) , ˜1 , c l a s s ˜1)
1097 end
1098

1099 fun f o r e s tS i ng l eCa s eTe s t (Ins , Forest) = vot ing (f o r e s tS ing l eCaseTes tHe lpe r (
Ins , Forest))

1100

1101 except ion s i zeNotMatch fore s tTes tHe lper
1102

1103 fun f o r e s tTe s tHe lp e r (LstTest Inst , LstClass , Forest) =
1104 case Ls tTes t Ins t o f
1105 n i l => 0
1106 | H : : T => (
1107 case LstClass o f
1108 n i l => r a i s e s i z eNotMatch fore s tTes tHe lper
1109 | HCl : : TCl => (
1110 case (f o r e s tS i ng l eCa s eTe s t (H, Forest) = c l a s s HCl) o f
1111 t rue => 1 + fo r e s tTe s tHe lp e r (T, TCl , Forest)
1112 | f a l s e => f o r e s tTe s tHe lp e r (T, TCl , Forest)
1113)
1114)
1115

1116 fun f o r e s tTe s t (LstTest Inst , LstClass , Forest) =
1117 Real . f romInt (f o r e s tTe s tHe lp e r (LstTest Inst , LstClass , Forest)) /Real .

f romInt (l ength (LstClass)) ∗100.00
1118

1119 (∗ END: Forest t e s t ∗)
1120

1121 (∗ START: read from f i l e s ∗)
1122

1123 fun ge tF i r s tCharL i s t (C l i : char l i s t) =

94 Chapter A. Specification files

1124 case C l i o f
1125 n i l => n i l
1126 | H: :T => i f H = #” , ” o r e l s e H = #” ” then n i l e l s e H : : g e tF i r s tCharL i s t

(T)
1127

1128 fun parseLine (Line : char l i s t) : r e a l l i s t =
1129 case Line o f
1130 n i l => n i l
1131 | #” , ” : : Ta i l => parseL ine (Ta i l)
1132 | #” ” : : Ta i l => parseL ine (Ta i l)
1133 | =>
1134 l e t
1135 va l NumStr = implode (ge tF i r s tCharL i s t Line)
1136 va l Num = valOf (Real . f romStr ing (NumStr))
1137 in
1138 Num : : parseL ine (L i s t . drop (Line , s i z e (NumStr)))
1139 end
1140

1141 except ion readData ERRORINPUT
1142 fun readData (FileName , NLines) : r e a l l i s t l i s t =
1143 l e t
1144 fun readLines (Fh , NLines) =
1145 case (TextIO . endOfStream Fh , NLines = 0) o f
1146 (, t rue) => (TextIO . c l o s e I n Fh ; [])
1147 | (f a l s e , f a l s e) =>
1148 (parseLine (explode (valOf (TextIO . inputLine Fh)))) : : r eadLines

(Fh , NLines 1)
1149 | (true , f a l s e) => r a i s e readData ERRORINPUT
1150 in
1151 readLines (TextIO . openIn FileName , NLines)
1152 end
1153

1154 except ion readClass ERRORINPUT
1155 fun readClass (FileName , NLines) : r e a l l i s t =
1156 l e t
1157 fun readLines (Fh , NLines) =
1158 case (TextIO . endOfStream Fh , NLines = 0) o f
1159 (, t rue) => (TextIO . c l o s e I n Fh ; [])
1160 | (f a l s e , f a l s e) =>
1161 valOf (Real . f romStr ing (implode (ge tF i r s tCharL i s t (explode (valOf (

TextIO . inputLine Fh))))))
1162 : : r eadLines (Fh , NLines 1)
1163 | (true , f a l s e) => r a i s e readClass ERRORINPUT
1164 in
1165 readLines (TextIO . openIn FileName , NLines)
1166 end
1167

1168 (∗ Star t : Run n f o l d s ∗)
1169 fun checkContain (l s : i n t l i s t , va lue : i n t) : bool =
1170 case l s o f
1171 n i l => f a l s e
1172 | h : : t l => i f h = value then true e l s e checkContain (t l , va lue)
1173

1174 fun rdomList (range : int , num: int , seed : Random . rand , r e s L i s t) : i n t
l i s t =

1175 case num = 0 o f
1176 t rue => r e s L i s t
1177 | f a l s e => (

A.2. Experiment 2 - The construction of classifiers experiment 95

1178 case Random . randRange (0 , range) seed o f rdomVal =>
1179 case checkContain (r e sL i s t , rdomVal) o f
1180 t rue => rdomList (range , num, seed , r e s L i s t)
1181 | f a l s e => rdomList (range , num 1 , seed , rdomVal : : r e s L i s t)
1182)
1183

1184 fun t r a i nVa l i d Sp l i t (X : r e a l l i s t l i s t , y : r e a l l i s t , va l idRowsList :
i n t l i s t , i t e r : int , X tra in : r e a l l i s t l i s t ,

1185 y t r a i n : r e a l l i s t , X val id : r e a l l i s t l i s t , y v a l i d : r e a l l i s t) : r e a l
l i s t l i s t ∗ r e a l l i s t ∗ r e a l l i s t l i s t ∗ r e a l l i s t =

1186 case y o f
1187 n i l => (X train , y t ra in , X val id , y va l i d)
1188 | h : : t => (
1189 case checkContain (val idRowsList , i t e r) o f
1190 t rue => t r a i nVa l i d Sp l i t (t l X, t l y , val idRowsList , i t e r + 1 , X train ,

y t ra in , (hd X) : : X val id , (hd y) : : y v a l i d)
1191 | f a l s e => t r a i nVa l i d Sp l i t (t l X, t l y , val idRowsList , i t e r + 1 , (hd X)

: : X train , (hd y) : : y t ra in , X val id , y va l i d)
1192)
1193

1194 fun nCVSplit (X : r e a l l i s t l i s t , y : r e a l l i s t , t e s t r a t i o : r ea l , numCV :
i n t) : r e a l l i s t l i s t l i s t ∗ r e a l l i s t l i s t

1195 ∗ r e a l l i s t l i s t l i s t ∗ r e a l l i s t l i s t =
1196 l e t
1197 va l numData = L i s t . l ength y
1198 va l numValid : i n t = Real . f l o o r (t e s t r a t i o ∗ Real . f romInt numData)
1199 va l numTrain : i n t = numData numValid
1200 va l seed = Random . rand (2 , 2015)
1201 fun oneCV (i t e r : int , X t r a i n l i s t , y t r a i n l i s t , X v a l i d l i s t ,

y v a l i d l i s t) =
1202 case i t e r = numCV + 1 o f
1203 t rue => (X t r a i n l i s t , y t r a i n l i s t , X v a l i d l i s t , y v a l i d l i s t)
1204 | f a l s e => (
1205 l e t
1206 va l va l idRowsList = rdomList (numData 1 , numValid , seed , [])
1207 va l (X train , y t ra in , X val id , y va l i d) = t r a i nVa l i d Sp l i t (X, y ,

val idRowsList , 0 , [] , [] , [] , [])
1208 in
1209 oneCV(i t e r + 1 , X tra in : : X t r a i n l i s t , y t r a i n : : y t r a i n l i s t , X val id

: : X v a l i d l i s t , y v a l i d : : y v a l i d l i s t)
1210 end
1211)
1212 in
1213 oneCV (1 , [] , [] , [] , [])
1214 end
1215

1216 fun c r e a t e n f o l d (DT, Ratio , Folds , Train , Test) = case DT of
1217 n i l => (Train , Test)
1218 | H as (D, C, N, NL, NC, NA, HL) : : T => (
1219 l e t
1220 va l Data = readData (D, N)
1221 va l Class = readClass (C, N)
1222 va l (LstDataTrain , LstClassTrain , LstDataTest , LstClassTest) =

nCVSplit (Data , Class , Ratio , Folds)
1223 in
1224 l e t
1225 fun c r e a t e n f o l d h e l p e r 1 (LstData , LstClass , Lst) =
1226 case LstData o f

96 Chapter A. Specification files

1227 n i l => Lst
1228 | HD : : TD => (
1229 case LstClass o f (HC : : TC) =>
1230 c r e a t e n f o l d h e l p e r 1 (TD, TC, Lst@ [(HD, HC, N, NL, NC, NA, HL)])
1231)
1232 in
1233 l e t
1234 fun c r e a t e n f o l d h e l p e r 2 (LstData , LstClass , Lst) =
1235 case LstData o f
1236 n i l => Lst
1237 | HD : : TD => (
1238 case LstClass o f (HC : : TC) =>
1239 c r e a t e n f o l d h e l p e r 2 (TD, TC, Lst@ [(HD, HC, N, HL)])
1240)
1241 in
1242 l e t
1243 va l Tr1 = c r e a t e n f o l d h e l p e r 1 (LstDataTrain , LstClassTrain , n i l) @

Train
1244 va l Te1 = c r e a t e n f o l d h e l p e r 2 (LstDataTest , LstClassTest , n i l) @

Test
1245 in
1246 c r e a t e n f o l d (T, Ratio , Folds , Tr1 , Te1)
1247 end
1248 end
1249 end
1250 end
1251)
1252

1253 (∗ END: Run n f o l d s ∗)
1254

1255 fun main (
1256 (NumTrees , TrainData , TrainClass , NumData , LstAttrDesc , NumClass ,

NumAttr , LstHelper)
1257) : t r e e l i s t =
1258 bu i ldFore s t (
1259 TrainData , TrainClass , NumTrees , LstAttrDesc , NumClass ,
1260 NumAttr , Random . rand (1 , 1) , LstHelper
1261)
1262

1263 va l Datasets1 = [
1264

1265 (∗ 0 ∗)
1266 (”/ l o c a l /RF/nursery X 12960 . csv ” ,
1267 ”/ l o c a l /RF/ nursery y 12960 . csv ” ,
1268 12960 , [3 , 5 , 4 , 4 , 3 , 2 , 3 , 3] , 5 , 8 . 0 ,
1269 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom”]
1270) ,
1271

1272 (∗ 1 ∗)
1273 (”/ l o c a l /RF/marketing X 6876 . csv ” ,
1274 ”/ l o c a l /RF/market ing y 6876 . csv ” ,
1275 6876 , [2 , 5 , 7 , 6 , 9 , 5 , 3 , 9 , 10 , 3 , 5 , 8 , 3] , 9 , 13 . 0 ,
1276 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom

” , ”Nom” , ”Nom”]
1277) ,
1278

1279 (∗ 2 ∗)
1280 (”/ l o c a l /RF/ t i c tac toe X 958 . csv ” ,

A.2. Experiment 2 - The construction of classifiers experiment 97

1281 ”/ l o c a l /RF/ t i c tac toe y 958 . csv ” ,
1282 958 , [3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3] , 2 , 9 . 0 ,
1283 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom”]
1284) ,
1285

1286 (∗ 4 ∗)
1287 (”/ l o c a l /RF/kr vs k X 28056 . csv ” ,
1288 ”/ l o c a l /RF/kr vs k y 28056 . csv ” ,
1289 28056 , [8 , 8 , 8 , 8 , 8 , 8] , 18 , 6 . 0 ,
1290 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom”]
1291) ,
1292

1293 (∗ 5 ∗)
1294 (”/ l o c a l /RF/ contracept ive X 1473 . csv ” ,
1295 ”/ l o c a l /RF/ con t ra c ep t i v e y 1473 . csv ” ,
1296 1473 , [3 4 , 4 , 4 , 1 7 , 2 , 2 , 4 , 4 , 2] , 3 , 9 . 0 ,
1297 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom”]
1298) ,
1299

1300

1301 (∗ 7 ∗)
1302 (”/ l o c a l /RF/ veh i c l e X 846 . csv ” ,
1303 ”/ l o c a l /RF/ v eh i c l e y 8 46 . csv ” ,
1304 846 , [] , 4 , 18 . 0 ,
1305 [”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num

” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num”]
1306) ,
1307

1308 (∗ 19 ∗)
1309 (”/ l o c a l /RF/winequal i ty red X 1599 . csv ” ,
1310 ”/ l o c a l /RF/winequal i ty red y 1599 . csv ” ,
1311 1599 , [] , 11 , 11 . 0 ,
1312 [”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num”]
1313)
1314

1315]
1316

1317

1318 va l Datasets2 = [
1319

1320 (∗ 8 ∗)
1321 (”/ l o c a l /RF/banana X 5300 . csv ” ,
1322 ”/ l o c a l /RF/banana y 5300 . csv ” ,
1323 5300 , [] , 2 , 2 . 0 ,
1324 [”Num” , ”Num”]
1325) ,
1326

1327 (∗ 10 ∗)
1328 (”/ l o c a l /RF/ soybean X 683 . csv ” ,
1329 ”/ l o c a l /RF/ soybean y 683 . csv ” ,
1330 683 , [7 , 2 , 3 , 3 , 2 , 4 , 4 , 3 , 3 , 3 , 2 , 2 , 3 , 3 , 3 , 2 , 2 , 3 , 2 , 2 , 4 , 4 , 2 ,

3 , 2 , 3 , 2 , 4 , 5 , 2 , 2 , 2 , 2 , 2 , 3] , 19 , 35 . 0 ,
1331 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom

” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” ,
”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”

Nom” , ”Nom” , ”Nom” , ”Nom”]
1332) ,
1333

98 Chapter A. Specification files

1334 (∗ 11 ∗)
1335 (”/ l o c a l /RF/ chess X 3196 . csv ” ,
1336 ”/ l o c a l /RF/ che s s y 3196 . csv ” ,
1337 3196 , [2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 ,

2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 ,2 , 2 , 2] , 2 , 36 . 0 ,
1338 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom

” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” ,
”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”

Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom”]
1339) ,
1340

1341 (∗ 12 ∗)
1342 (”/ l o c a l /RF/ sp l i c e X 3190 . csv ” ,
1343 ”/ l o c a l /RF/ sp l i c e y 3 1 9 0 . csv ” ,
1344 3190 ,

[5 , 5 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 6 , 6 , 5] ,
3 , 60 . 0 ,

1345 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”
Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”
Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”
Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”
Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”
Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom”]

1346) ,
1347

1348 (∗ 13 ∗)
1349 (”/ l o c a l /RF/penbased X 10992 . csv ” ,
1350 ”/ l o c a l /RF/penbased y 10992 . csv ” ,
1351 10992 , [] , 10 , 16 . 0 ,
1352 [”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num

” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num”]
1353) ,
1354

1355 (∗ 15 ∗)
1356 (”/ l o c a l /RF/phoneme X 5404 . csv ” ,
1357 ”/ l o c a l /RF/phoneme y 5404 . csv ” ,
1358 5404 , [] , 2 , 5 . 0 ,
1359 [”Num” , ”Num” , ”Num” , ”Num” , ”Num”]
1360) ,
1361

1362 (∗ 17 ∗)
1363 (”/ l o c a l /RF/abalone X 4177 . csv ” ,
1364 ”/ l o c a l /RF/ aba lone y 4177 . csv ” ,
1365 4177 , [3] , 29 , 8 . 0 ,
1366 [”Nom” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num”]
1367) ,
1368

1369 (∗ 18 ∗)
1370 (”/ l o c a l /RF/page blocks X 5472 . csv ” ,
1371 ”/ l o c a l /RF/page b lock s y 5472 . csv ” ,
1372 5472 , [] , 5 , 10 . 0 ,
1373 [”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num”]
1374) ,
1375

1376

1377 (∗ 20 ∗)
1378 (”/ l o c a l /RF/winequal i ty white X 4898 . csv ” ,
1379 ”/ l o c a l /RF/winequal i ty white y 4898 . csv ” ,

A.2. Experiment 2 - The construction of classifiers experiment 99

1380 4898 , [] , 11 , 11 . 0 ,
1381 [”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num

”]
1382) ,
1383

1384 (∗ 21 ∗)
1385 (”/ l o c a l /RF/CTG X 2126 . csv ” ,
1386 ”/ l o c a l /RF/CTG y 2126 . csv ” ,
1387 2126 , [] , 11 , 21 . 0 ,
1388 [”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num

” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num”]
1389) ,
1390

1391 (∗ 22 ∗)
1392 (”/ l o c a l /RF/ satimage X 6435 . csv ” ,
1393 ”/ l o c a l /RF/ sat image y 6435 . csv ” ,
1394 6435 , [] , 7 , 36 . 0 ,
1395 [”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num

” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num”
, ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”Num” , ”
Num” , ”Num”]

1396) ,
1397

1398 (∗ 24 ∗)
1399 (”/ l o c a l /RF/ jsbach chora l s harmony X 5665 . csv ” ,
1400 ”/ l o c a l /RF/ j sbach chora l s harmony y 5665 . csv ” ,
1401 5665 , [2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 16 , 5] , 102 , 14 . 0 ,
1402 [”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”Nom” , ”

Nom” , ”Nom”]
1403)
1404

1405]
1406

1407

1408 va l Seed1 = 719561528
1409 va l Seed2 = 937436219
1410

1411 va l RandState = Random . rand (Seed1 , Seed2)
1412 va l randInt = fn () => Random . randInt (RandState)
1413 va l randNat = fn () => Random . randNat (RandState)
1414 va l randReal = fn () => Random . randReal (RandState)
1415 va l randRange = fn (Low , High) => Random . randRange (Low , High) (RandState)
1416

1417

1418 fun addNumTrees (TrainData , TrainClass , NumData , LstAttrDesc , NumClass ,
NumAttr , LstHelper) =

1419 (randRange (10 , 30) , TrainData , TrainClass , NumData , LstAttrDesc ,
NumClass , NumAttr , LstHelper)

1420

1421

1422 va l (Inputs ’ , Outputs) = c r e a t e n f o l d (Datasets1 , 0 . 3 , 5 , n i l , n i l)
1423 va l Inputs ’ = rev Inputs ’
1424 va l Outputs = rev Outputs
1425

1426 va l Inputs = map(addNumTrees , Inputs ’)
1427

1428 va l (Test inputs ’ , Va l ida t i on output s) = c r e a t e n f o l d (Datasets2 , 0 . 3 ,
5 , n i l , n i l)

100 Chapter A. Specification files

1429 va l Test inputs ’ = rev Test inputs ’
1430 va l Va l ida t i on output s = rev Va l ida t i on output s
1431

1432 va l Tes t input s = map(addNumTrees , Test inputs ’)
1433

1434 va l A l l ou tput s = Outputs @ Va l ida t i on output s
1435

1436 va l Funs to use = [
1437 ” rN i l ” , ”rCons” ,
1438 ” s p l i t N i l ” , ” sp l i tCons ” ,
1439 ”domainNil ” , ”domainCons” ,
1440 ” eva lN i l ” , ” evalCons ” ,
1441 ” f a l s e ” , ” t rue ” ,
1442 ” r e a lL e s s ” , ” realAdd” , ” r ea lSub t r a c t ” , ” r ea lMu l t i p l y ” ,
1443 ” r ea lD iv id e ” , ” tanh” ,
1444 ” tor ” , ” r cons tLe s s ” ,
1445 ” ln ”
1446

1447]
1448

1449

1450 va l Abst rac t types = []
1451 va l Re j e c t f un s = []
1452 fun r e s t o r e t r an s f o rm D = D
1453 fun compi l e t rans fo rm D = D
1454 va l pr int synted program = Print . p r in t dec ’
1455

1456 va l AllAtOnce = f a l s e
1457

1458

1459 except ion MaxSyntComplExn
1460 va l MaxSyntCompl = (
1461 case getCommandOption ” maxSyntacticComplexity ” o f
1462 NONE => 500 .0
1463 | SOME S => case Real . f romStr ing S o f SOME N => N
1464) handle Ex => r a i s e MaxSyntComplExn
1465

1466

1467

1468 va l OnlyCountCalls = f a l s e
1469 va l TimeLimit : Int . i n t = 500000000
1470 va l max t ime l imit = fn () => Word64 . fromInt TimeLimit : Word64 . word
1471 va l max t e s t t ime l im i t = fn () => 0w1000000000 : Word64 . word
1472 va l t ime l im i t b a s e = fn () => r e a l TimeLimit
1473

1474 fun max syntact i c complex i ty () = MaxSyntCompl
1475 fun min syntac t i c comp lex i ty () = 0 .0
1476 va l Us e t e s t da t a f o r max syn ta c t i c c omp l ex i t y = f a l s e
1477

1478 va l main range eq = op=
1479 va l F i l e name extens i on = ””
1480 va l Reso lut ion = NONE
1481 va l StochasticMode = f a l s e
1482

1483 va l Number o f output at t r ibute s : Int64 . i n t = 4
1484

1485 fun to (G : r e a l) : LargeInt . i n t =
1486 Real . toLargeInt IEEEReal .TO NEAREST(G ∗ 1 .0 e14)

A.2. Experiment 2 - The construction of classifiers experiment 101

1487

1488 s t r u c tu r e Grade : GRADE =
1489 s t r u c t
1490 type grade = LargeInt . i n t
1491 va l NONE = LargeInt . maxInt (∗ To check that LargeInt has i n f i n i t e p r e c i s i o n

. ∗)
1492 va l ze ro = LargeInt . fromInt 0
1493 va l op+ = LargeInt .+
1494 va l comparisons = [LargeInt . compare]
1495 fun toS t r i ng (G : grade) : s t r i n g =
1496 Real . t oS t r i ng (Real . f romLargeInt G / 1 .0E14)
1497 va l N = LargeInt . fromInt 1000000 ∗ LargeInt . fromInt 1000000
1498 va l s i gn i f i c an tCompar i s on s = [fn (E1 , E2)
1499 => LargeInt . compare (E1 div N, E2 div N)]
1500 fun toS t r i ng (G : grade) : s t r i n g =
1501 Real . t oS t r i ng (Real . f romLargeInt G / 1 .0E14)
1502 va l pack = LargeInt . t oS t r i ng
1503 fun unpack (S : s t r i n g) : grade =
1504 case LargeInt . f romStr ing S o f SOME G => G
1505

1506 va l po s t p r o c e s s = fn X => X
1507 va l toRealOpt = NONE
1508 end
1509

1510

1511 fun output eva l f un (exactlyOne (I : Int . int , , l s tT r e e s : main range))
1512 : { numCorrect : Int . int , numWrong : Int . int , grade : Grade . grade }

L i s t . l i s t = [
1513 l e t
1514 va l (TestData , TestClass , NumData , LstHelper) = L i s t . nth (Al l outputs , I)
1515 va l e r r o r = 100 .0 f o r e s tTe s t ((r e adL i s t In s t anc e (TestData , LstHelper)) , (

L i s t .map round TestClass) , l s tT r e e s) ;
1516 in
1517 i f Real .==(er ror , 0 . 0) then
1518 { numCorrect = 1 , numWrong = 0 , grade = to e r r o r }
1519 e l s e i f e r r o r > 1 .0E30 o r e l s e not (Real . isNormal e r r o r) then
1520 { numCorrect = 0 , numWrong = 1 , grade = to 1 .0E30}
1521 e l s e
1522 { numCorrect = 1 , numWrong = 0 , grade = to e r r o r }
1523 end
1524]
1525

1526

1527 type i n t = Int64 . i n t
1528 type word = Word64 . word

Listing A.2: Specification file for the Construction of Classifiers experiment

Appendix B

Improved programs

B.1 Experiment 1 - The combination of classifiers experi-
ment

Optimized program

1 fun f TupleList =
2 l e t
3 fun updateVoting (Cl as c l a s s (I1) , LstCount) =
4 case LstCount o f
5 c l a s sCountL i s tN i l =
6 c lassCountListCons (
7 c lassCount (Cl , 1 . 0) ,
8 c l a s sCountL i s tN i l
9)

10 | c lassCountListCons (
11 CC as c lassCount (C as c l a s s (CI) , Num) ,
12 Tai l
13) =
14 case c las sEq (C, Cl) o f
15 f a l s e = Tai l
16 | t rue = classCountListCons (CC, LstCount)
17 in
18 l e t
19 fun vot ingHe lper TupleLst =
20 case TupleLst o f
21 t up l eL i s tN i l = c l a s sCountL i s tN i l
22 | tup leL i s tCons (Tu as tup l e (H as c l a s s (HI) , L) , T) =
23 updateVoting (H, vot ingHe lper (T))
24 in
25 case vot ingHe lper (TupleList) o f
26 c l a s sCountL i s tN i l = (
27 case TupleList o f
28 t up l eL i s tN i l = (r a i s e NA C175D)
29 | tup leL i s tCons (
30 VC175E as tup l e (VC175F as c l a s s (VC1760) , VC1761) ,
31 VC1762
32) =
33 VC175F
34)
35 | c lassCountListCons (
36 VC1763 as c lassCount (VC1764 as c l a s s (VC1765) , VC1766) ,

103

104 Chapter B. Improved programs

37 VC1767
38) =
39 VC1764
40 end
41 end

Listing B.1: Result for the Combination of Classifiers experiment - The optimized program

B.2 Experiment 2 - The construction of classifiers experi-
ment

Improved program number 1

1 fun f (T, Ds) =
2 l e t
3 fun eva l s Ds ’ =
4 l e t
5 fun eva l (I , Sp l i t s , Sum, OrderNumber) =
6 l e t
7 fun newEntropy (Cards , CardSum , CardRand) =
8 case Cards o f
9 rN i l => T

10 | rCons (Card1 , Cards1) =>
11 r e a l Sub t r a c t (
12 newEntropy (Cards1 , CardSum , CardRand) ,
13 r e a lMu l t i p l y (
14 r e a lD iv i d e (Card1 , CardSum) ,
15 ln (r e a lD iv i d e (Card1 , CardSum))
16)
17)
18 in
19 case S p l i t s o f
20 s p l i t N i l => 0 .0
21 | sp l i tCons (
22 Sp l i t 1 as (Cards ’ , CardSum ’ , CardRand ’) ,
23 Sp l i t s 1
24) =>
25 realAdd (
26 r e a lMu l t i p l y (
27 r e a lD iv i d e (CardSum ’ , Sum) ,
28 newEntropy (Sp l i t 1)
29) ,
30 eva l (I , Sp l i t s 1 , Sum, OrderNumber)
31)
32 end
33 in
34 case Ds ’ o f
35 domainNil => eva lN i l
36 | domainCons (
37 D1’ as (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1) ,
38 Ds1
39) =>
40 evalCons (
41 (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1 , eva l (D1 ’)) ,
42 eva l s (Ds1)
43)
44 end
45 in

B.2. Experiment 2 - The construction of classifiers experiment 105

46 l e t
47 fun f i l t e r Es2 =
48 case Es2 o f
49 eva lN i l => eva lN i l
50 | evalCons (
51 E3 as (I3 , Sp l i t s 3 , Sum3 , OrderNumber3 , Eval3) ,
52 Es3
53) =>
54 case r e a lL e s s (OrderNumber3 , T) o f
55 f a l s e => f i l t e r (Es3)
56 | t rue => evalCons (E3 , f i l t e r (Es3))
57 in
58 l e t
59 fun min Es =
60 case Es o f
61 eva lN i l => (r a i s e NA1)
62 | evalCons (
63 E4 as (I4 , Sp l i t s 4 , Sum4 , OrderNumber4 , Eval4) ,
64 Es4
65) =>
66 case Es4 o f
67 eva lN i l => E4
68 | evalCons (
69 E5 as (I5 , Sp l i t s 5 , Sum5 , OrderNumber5 , Eval5) ,
70 Es5
71) =>
72 case min (Es4) o f
73 E6 as (I6 , Sp l i t s 6 , Sum6 , OrderNumber6 , Eval6) =>
74 case r e a lL e s s (Eval4 , Eval6) o f f a l s e => E6 | t rue => E4
75 in
76 case min (f i l t e r (e va l s (Ds))) o f
77 E7 as (I7 , Sp l i t s 7 , Sum7 , OrderNumber7 , Eval7) => I7
78 end
79 end
80 end

Listing B.2: Result for the Construction of Classifiers experiment - The improved program number
1

Improved program number 2

1 fun f (T, Ds) =
2 l e t
3 fun eva l s Ds ’ =
4 l e t
5 fun eva l (I , Sp l i t s , Sum, OrderNumber) =
6 l e t
7 fun newEntropy (Cards , CardSum , CardRand) =
8 case Cards o f
9 rN i l => CardRand

10 | rCons (Card1 , Cards1) =>
11 r e a l Sub t r a c t (
12 newEntropy (Cards1 , CardSum , CardRand) ,
13 r e a lMu l t i p l y (
14 r e a lD iv i d e (Card1 , CardSum) ,
15 ln (r e a lD iv i d e (Card1 , CardSum))
16)
17)
18 in

106 Chapter B. Improved programs

19 case S p l i t s o f
20 s p l i t N i l => 0 .0
21 | sp l i tCons (
22 Sp l i t 1 as (Cards ’ , CardSum ’ , CardRand ’) ,
23 Sp l i t s 1
24) =>
25 realAdd (
26 r e a lMu l t i p l y (
27 r e a lD iv i d e (CardSum ’ , Sum) ,
28 newEntropy (Sp l i t 1)
29) ,
30 eva l (I , Sp l i t s 1 , Sum, OrderNumber)
31)
32 end
33 in
34 case Ds ’ o f
35 domainNil => eva lN i l
36 | domainCons (
37 D1’ as (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1) ,
38 Ds1
39) =>
40 evalCons (
41 (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1 , eva l (D1 ’)) ,
42 eva l s (Ds1)
43)
44 end
45 in
46 l e t
47 fun min Es =
48 case Es o f
49 eva lN i l => (r a i s e NA1)
50 | evalCons (
51 E4 as (I4 , Sp l i t s 4 , Sum4 , OrderNumber4 , Eval4) ,
52 Es4
53) =>
54 case Es4 o f
55 eva lN i l => E4
56 | evalCons (
57 E5 as (I5 , Sp l i t s 5 , Sum5 , OrderNumber5 , Eval5) ,
58 Es5
59) =>
60 case min (Es4) o f
61 E6 as (I6 , Sp l i t s 6 , Sum6 , OrderNumber6 , Eval6) =>
62 case r e a lL e s s (Eval4 , Eval6) o f f a l s e => E6 | t rue => E4
63 in
64 case min (eva l s (Ds)) o f
65 E7 as (I7 , Sp l i t s 7 , Sum7 , OrderNumber7 , Eval7) => I7
66 end
67 end

Listing B.3: Result for the Construction of Classifiers experiment - The improved program number
2

Improved program number 3

1 fun f (T, Ds) =
2 l e t
3 fun eva l s Ds ’ =
4 l e t

B.2. Experiment 2 - The construction of classifiers experiment 107

5 fun eva l (I , Sp l i t s , Sum, OrderNumber) =
6 l e t
7 fun newEntropy (Cards , CardSum , CardRand) =
8 case Cards o f
9 rN i l =>

10 r e a lMu l t i p l y (
11 tanh (
12 tanh (
13 to r (r cons t (0 , 0 . 25 , ˜0.472542806823))
14)
15) ,
16 CardRand
17)
18 | rCons (Card1 , Cards1) =>
19 r e a l Sub t r a c t (
20 newEntropy (Cards1 , CardSum , CardRand) ,
21 r e a lMu l t i p l y (
22 r e a lD iv i d e (Card1 , CardSum) ,
23 r e a lD iv i d e (Card1 , CardSum)
24)
25)
26 in
27 case S p l i t s o f
28 s p l i t N i l => to r (r cons t (0 , 0 . 25 , ˜0.419265635596))
29 | sp l i tCons (
30 Sp l i t 1 as (Cards ’ , CardSum ’ , CardRand ’) ,
31 Sp l i t s 1
32) =>
33 realAdd (
34 r e a lMu l t i p l y (
35 r e a lD iv i d e (CardSum ’ , Sum) ,
36 newEntropy (Sp l i t 1)
37) ,
38 eva l (I , Sp l i t s 1 , Sum, OrderNumber)
39)
40 end
41 in
42 case Ds ’ o f
43 domainNil => eva lN i l
44 | domainCons (
45 D1’ as (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1) ,
46 Ds1
47) =>
48 evalCons (
49 (
50 I1 ,
51 Sp l i t s 1 ’ ,
52 Sum1 ,
53 OrderNumber1 ,
54 tanh (tanh (eva l (D1 ’)))
55) ,
56 eva l s (Ds1)
57)
58 end
59 in
60 l e t
61 fun min Es =
62 case Es o f

108 Chapter B. Improved programs

63 eva lN i l => (r a i s e NA1)
64 | evalCons (
65 E4 as (I4 , Sp l i t s 4 , Sum4 , OrderNumber4 , Eval4) ,
66 Es4
67) =>
68 case Es4 o f
69 eva lN i l => E4
70 | evalCons (
71 E5 as (I5 , Sp l i t s 5 , Sum5 , OrderNumber5 , Eval5) ,
72 Es5
73) =>
74 case min (Es4) o f
75 E6 as (I6 , Sp l i t s 6 , Sum6 , OrderNumber6 , Eval6) =>
76 case r e a lL e s s (Eval4 , Eval6) o f f a l s e => E6 | t rue => E4
77 in
78 case min (eva l s (Ds)) o f
79 E7 as (I7 , Sp l i t s 7 , Sum7 , OrderNumber7 , Eval7) => I7
80 end
81 end

Listing B.4: Result for the Construction of Classifiers experiment - The improved program number
3

Improved program number 4

1 fun f (T, Ds) =
2 l e t
3 fun eva l s Ds ’ =
4 l e t
5 fun eva l (I , Sp l i t s , Sum, OrderNumber) =
6 l e t
7 fun newEntropy (Cards , CardSum , CardRand) =
8 case Cards o f
9 rN i l =>

10 r e a lMu l t i p l y (
11 tanh (
12 tanh (
13 to r (
14 r cons t (2 , 0 .25250625 , ˜0.470030306823)
15)
16)
17) ,
18 CardRand
19)
20 | rCons (Card1 , Cards1) =>
21 r e a l Sub t r a c t (
22 newEntropy (Cards1 , CardSum , CardRand) ,
23 r e a lMu l t i p l y (
24 r e a lD iv i d e (Card1 , CardSum) ,
25 r e a lD iv i d e (Card1 , CardSum)
26)
27)
28 in
29 case S p l i t s o f
30 s p l i t N i l => to r (r cons t (0 , 0 . 25 , ˜0.419265635596))
31 | sp l i tCons (
32 Sp l i t 1 as (Cards ’ , CardSum ’ , CardRand ’) ,
33 Sp l i t s 1
34) =>

B.2. Experiment 2 - The construction of classifiers experiment 109

35 realAdd (
36 r e a lMu l t i p l y (
37 r e a lD iv i d e (CardSum ’ , Sum) ,
38 newEntropy (Sp l i t 1)
39) ,
40 eva l (I , Sp l i t s 1 , Sum, OrderNumber)
41)
42 end
43 in
44 case Ds ’ o f
45 domainNil => eva lN i l
46 | domainCons (
47 D1’ as (I1 , Sp l i t s 1 ’ , Sum1 , OrderNumber1) ,
48 Ds1
49) =>
50 evalCons (
51 (
52 I1 ,
53 Sp l i t s 1 ’ ,
54 Sum1 ,
55 OrderNumber1 ,
56 tanh (tanh (eva l (D1 ’)))
57) ,
58 eva l s (Ds1)
59)
60 end
61 in
62 l e t
63 fun min Es =
64 case Es o f
65 eva lN i l => (r a i s e (r a i s e (r a i s e (r a i s e (r a i s e NA1)))))
66 | evalCons (
67 E4 as (I4 , Sp l i t s 4 , Sum4 , OrderNumber4 , Eval4) ,
68 Es4
69) =>
70 case Es4 o f
71 eva lN i l => E4
72 | evalCons (
73 E5 as (I5 , Sp l i t s 5 , Sum5 , OrderNumber5 , Eval5) ,
74 Es5
75) =>
76 case min (Es4) o f
77 E6 as (I6 , Sp l i t s 6 , Sum6 , OrderNumber6 , Eval6) =>
78 case r e a lL e s s (Eval4 , Eval6) o f f a l s e => E6 | t rue => E4
79 in
80 case min (eva l s (Ds)) o f
81 E7 as (I7 , Sp l i t s 7 , Sum7 , OrderNumber7 , Eval7) => I7
82 end
83 end
84 end

Listing B.5: Result for the Construction of Classifiers experiment - The improved program number
4

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Research question and method
	Report Outline

	Decision Tree
	Attribute Selection Measures
	Decision Tree Pruning

	Ensemble Learning
	Ensemble diversity
	Combination methods
	Ensemble size

	Random Forest
	Noteworthy concepts
	Related work

	Introduction to ADATE system
	Artificial evolution
	Automatic programming
	Functional programming and ML
	ADATE

	ADATE Experiments
	Design of experiments
	Implementation

	Results
	Experiment 1 - Classifiers combination experiment
	Experiment 2 - Classifiers construction experiment

	Conclusion and Future work
	Conclusion
	Future work

	Bibliography
	Specification files
	Experiment 1 - The combination of classifiers experiment
	Experiment 2 - The construction of classifiers experiment

	Improved programs
	Experiment 1 - The combination of classifiers experiment
	Experiment 2 - The construction of classifiers experiment

