/1) Hogskolen i @stfold

Autonomous Learning of Core Skills

Off-line learning of a model-free reinforcement
learning agent with sparse reward and goal state

Master's Thesis

Martin Forsberg Lie

Department of Computer Sciences
@stfold University College
Halden
January 16, 2022

AUTONOMOUS LEARNING OF CORE
SKILLS

OFF-LINE LEARNING OF A MODEL-FREE
REINFORCEMENT LEARNING AGENT WITH SPARSE
REWARD AND GOAL STATE

Master’s Thesis

Martin Forsberg Lie

Department of Computer Sciences
Ostfold University College
Halden
January 16, 2022

Preface

I got my first degree in computer sciences more than 20 years ago, and have been working
nearly three decades within the information technology industry, mostly on the business
level in the domain of industrial IT. During this time there have been tremendous discoveries
within machine learning, and neural networks in particular. I have often got the question
on how to optimize some process, and how we can improve the outcome. Entering the field
of Al opens up an ocean of possibilities and methods.

As a child, T had a box full of electrical wires that I played with, and I remember
advancing to play-sets of different kinds and custom made electronics. I could wait outside
the radio shop for its opening and scan all the hardware, tools and supplies on the shelves,
picking a few missing components to play with back home. Sparking a blinking light bulb
or controlling the speed of a motor was mesmerizing. Later, I entered the computing
area with a Commodore 64!, mostly for programming Basic. When my father bought an
IBM XT? in 1985, a new world opened up for building applications and connecting my
knowledge to actual business use.

One day I asked my father, after seeing a crime investigation drama on television, how
they could identify fingerprints from a database that fast? Of course, it was fictitious, and
doing it in reality is hard, if not close to impossible. —Isn’t this something you should
solve? The flame inside me was lit — and finding digital solutions to problems has followed
me since. With the tools and methods available today, a fingerprint-identification system
can easily be set up using convolutional neural networks and digitized imagery [97].

With the computing power available at everyone’s fingertips, technological use and
advance become a matter for society. As we train our algorithms more than explicitly
programming them, there are fewer barriers to scaling business ideas or making disruptive
concepts. Conversational interfaces have changed how we communicate with businesses,
and self-driving cars are at the beginning of their journey towards safer transportation.
Our ideas and how we form them is not limited by technology, only by our visions. More
devices and businesses are connected to the internet, we have entered a world where the
evil compete with the good on a common, global platform.

This thesis is the result of a long-wanted journey into the world of artificial intelligence
and discusses some of the methods and tools to use for building a robot trained on existing
data. The robot is not physical but lives inside the computer for making robotized decisions.
The robot is not wired, and survive only on the mercy of humans.

Fukuda [22] defines basic, animal intelligence as the ability to adapt to dynamic
environments. Our Al robot starts from scratch, senses the world to create its knowledge
map, self-learns which decisions lead to positive results, and acts accordingly. This loop

"https://en.wikipedia.org/wiki/Commodore_ 64
https://en.wikipedia.org/wiki/TBM_ Personal _Computer XT

of fundamental functions is shared amongst all living creatures and has been sought for
replication by mankind for long.

The thesis is a journey where I invite the reader to join the history, and therefore I
consistently use plurals to indicate that we are travelling together.

Martin Forsberg Lie
Engelsviken, January 16, 2022

Abstract

This thesis presents a concept and framework for training PPO, SAC and
DDPG reinforcement learning agents on historical data logs, exemplified using
an industrial spray drier use case. The work consists of four parts: discussing
the theoretical foundation of reinforcement learning, describing architecture
and realisation of an agent for testing the hypothesis, evaluation of the agent
performance in a synthetic simulation setup for an industrial spray drier, and
testing in a real-world scenario. A generative model using LSTM autoencoders
is trained on historical process data and used as a dynamic simulator for training
the agents by careful manipulation of the network state. The results show
that it is possible to train a reinforcement learning agent to act towards a
new goal set based on the dynamics found in the data set, both in uni- and
multivariate action spaces. The historical data logs must exhibit a wide range
of dynamics for proper training, which makes the method suitable for unstable-
and stochastic processes. This opens up many applications within the domain
of process control and optimization, beyond steady-state control.

Keywords: Reinforcement Learning, Actor Critic, Autoencoder, Recurrent
Neural Networks, Learning for Control

iii

Acknowledgments

At the start of my master’s programme, the Covid-19 pandemic consequently shut down all
physical presence at campus and forced us to find digital solutions for meeting, socializing
and project work. Thanks to technology, we have found ways to continue life, and the
pandemic is still raging when I hand in this thesis.

In these situations, we find comfort in family and friends, and my biggest supporters
have been my wife and children during this period, who have patiently let me devote our
free time to this work.

I would also like to thank Dr. Steinar Seelid who encouraged me to embark on this
programme, my supervisor Dr. Roland Olsson, and Msc. Dag Skjeltorp at my employer
Borregaard for discussing ideas and concepts.

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

1

2

List of Code

Introduction

1.1 Background and motivation L L oL

1.2 Applications e
1.2.1 Research questions
1.2.2 Method
1.2.3 Hypothesis formulation and testing
1.2.4 Experiment modelling,
1.2.5 Architecture

1.3 Contribution

1.4 Report Outline

Literature

2.1 Foundations L L
2.1.1 Markov processes
2.1.2 Temporal differences L
2.1.3 Delayed reinforcement learningo
2.1.4 Q-learning L.

2.2 Rediscovery e
2.2.1 Deep Q-learning
2.2.2 Valuenetworks
2.2.3 Memory networks

2.3 Physical controlo
2.3.1 Simulated environment L.
2.3.2 Transfer to the physical environment

2.4 Bioprocess modelling Lo o
2.4.1 Process optimization on economic factors

2.5 Model predictive control Lo oL

2.6 Agent training strategieso

vii

iii

xi

XV

xvii

2.6.1 Representation learning L oL 26
2.6.2 Partial observability and physical consistency 29
2.6.3 Pre-training and imitation learning 30
2.6.4 Latent space training L L L L. 32
2.6.5 Regularizationo oo 33
2.6.6 Experiencereplay oo 33
2.6.7 Inverse reinforcement learning L L. 34
2.6.8 Soft Actor Critic 36

3 Use Case 37
3.1 Introduction to spray dryingo oo 37
3.2 Controlling the process 38
3.3 Modeling the process 39
3.3.1 System boundary 40
3.3.2 Level 0 Heat and mass balance model 41
3.3.3 Level 1 Droplet size and evaporation dynamics 43
3.34 Historical logs 45

3.4 Autonomous Modelling 46
4 Autonomous Learning of Core Skills 47
4.1 Introduction e e e e 47
4.2 Generating syntheticdata L o oo oL 49
4.2.1 Connecting to the Environment 50
4.2.2 Predictive baseline Lo oo 50
4.2.3 Processnoise 51
4.2.4 Randomized input 52
4.2.5 Sinusoidal inputo Lo 54
4.2.6 Randomized step-wise input oL 54
4.2.7 Data augmentationo 55

4.3 Design of generative model 55
4.3.1 Training and evaluating the Generative Process Dynamics Model . . 56
4.3.2 Querying the Environment 65
4.3.3 Process model as RL environment 65
4.3.4 Training a multivariate generative model 66

5 Autonomous Control 75
5.1 Design of the Reinforcement Learning agent 75
5.1.1 Soft Actor-Critic (SAC) 75
5.1.2 Proximal Policy Optimization (PPO). 7
5.1.3 Deep Deterministic Policy Gradient (DDPG) 7

5.2 Imitial conditions 78
5.3 Reward functions and terminal conditions 79
5.3.1 Direct response reward, univariate scenario 80
5.3.2 Sparse reward and learning from failure 84
5.3.3 Trained reward model, multivariate scenario. 88
5.3.4 Trained reward model with an inverse mean squared error as reward 95
5.3.5 Training towards the process model using the reward model 96

5.4 Covering unmodeled dynamics oL 97

5.4.1 Retraining the generative model 98

5.4.2 Retraining the reward model 99
5.4.3 Retraining the agents 100

5.5 Estimating uncertainty Lo oo 102
5.5.1 Monte Carlo simulation 103
5.5.2 Variational inference L. 103
5.5.3 Conformal prediction. 104
5.5.4 Value-based uncertainty L L oL 105

5.6 Varying conditions Lo L L 107
6 Evaluation 109
6.1 Method e 109
6.2 Research questions e 109
6.2.1 Limitations e 111
6.2.2 Advantages 111

6.3 Building experienceo L Lo 112
7 Applied Use 113
7.1 Introduction 113
7.2 Architecture 114
7.2.1 HistorianDatastore design 114

7.3 Systemdesign 115
7.3.1 System boundary o 115

7.3.2 Dataexplorationo 116
7.3.3 Generative model training L Lo 116
7.3.4 Zero-vector bias estimation 121

7.3.5 Evaluating forecasting capability 122

7.4 Training RL agents oo 124
7.4.1 Soft Actor-Criticagent L. 124
7.4.2 Proximal Policy Optimization agent 125
7.4.3 Simulating with real-time data00 125

7.5 Evaluating simulation runs Lo L 129
8 Discussion 131
8.1 Introduction. e 131
8.2 Contribution L 132
8.3 Agent selection 133
8.4 Reward engineering L Lo Lo 136
8.5 Autoencoder and recurrencyol 138
8.6 Network design L 140
8.7 USECASES . . . v v v v i e 142
8.8 Fromtier inresearch Lo 143
8.9 Further work L 144
8.10 Limitations and threats to validity 145
9 Conclusion 147

Bibliography 149

A Matlab Code
A.1 Spray drier ODE function
A2 Datastores
A.2.1 RolloutDatastore.m,
A.2.2 HistorianDatastorem
A23 get_datam L
A.3 Generative Modelo
A.3.1 GenerativeModelm
A.3.2 RewardModelm
A4 Rollout functions e
A4.1 spray_rollout_pidm
A.4.2 spray_rollou pid_stablem L.
A5 RL Environments
A.5.1 SyntheticEnvironment.m
A.5.2 ProcessEnvironment.mo
A.6 Reward functions
A.6.1 direct_response reward.m
A.6.2 sparse_reward.am
A.6.3 learnt reward.m
A.7 Agent neural networks
A7.1 agent_sac_vl _norm.m
A7.2 agent_ppo_vl _norm.m
A73 agent_ddpg vl norm.m
A.8 RL Simulation function
A.9 Cascade demonstration environment

B Bayesian optimization run
C Demonstration of cascade implementation

D Demonstration of RNN implementation

159
159
160
161
163
167
167
168
171
172
172
173
174
175
177
180
180
180
181
181
182
183
184
185
186

189

191

199

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

Agent and environment interaction 2
A simple neural network architecture 10
Screenshots from five Atari 2600 Games 15
AlphaGo game play L 16
Game play from Dota 2 oo 18
Illustration of a walking gait learned in the real world 20
Neural network architecture for (a) value network and (b) policy network . 21
Actor-Critic RL design architecture 23
A non-exhaustive, but useful taxonomy of algorithms in modern reinforcement

learning 26
Multivariate time series Lo 28
Different kernel sizes (blue box) within each layer 29
Stacking images leaves trails of history for physical model identification . . 30
Greedy layer-wise pre-trainingo 31
Vision V, memory M and controller C networks forms the World Model . . 32
Reactivation patterns during sleep after hippocampal reactivation 34
A typical spray drier setup 37
System boundary for the model 40
System response with a constant feed rate Q =8 42
System response when ramping up feed rate Q from 5to 8 43
Droplet size when ramping up feed rate Q from5to8 44
Droplet size when ramping up feed rate Q from5to8 45
Concept for Autonomous Learning of Core Skills 47
Architecture of the RolloutDatastore class 49
System boundary for a multivariate model oL 49
Generating sequences Sy, from a rollout 50
System response using a propotional regulator 52
System response using a propotional regulator and added system noise, £1%

of cusing K, =0.1. 53
System response using a random input if @) feeq in the range 3-20 53
System response using a sinusoidal input of Qfeeq. 54
Generative model LSTM-AE neural network architecture. h is estimated by

Bayesian optimization. Lo L L 56

xi

4.10

4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

5.1
5.2
5.3

5.4
9.5

5.6
5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17

5.18

5.19

5.20

Matlab Experiment Manager for Bayesian optimization of generative model

hyperparameters 58
Bayesian hyperparameter optimization sequence results from Matlab Experiment

Managero e e 59
PCA of Bayesian hyperparameter optimization sequence results 60
Correlation of hyperparameters twoards validation RMSE 60

Results of querying the generative model for next steps of random test runs 62
Results of querying the generative model for next steps of random test runs 64

Querying the generative modelo 65
Step-wise learning rate decay 67
Results of querying the generative model, multivariate scneario 67
Multivariate query of the generative model vs. process model 69
Comparison of generative model and process model 70
RMSE of larger model vs. smaller model 72
Effect of first four learning rate steps in training the generative model . . . 74
Network architectures of the Soft Actor Critic (SAC) agent 76

Network architectures of the Proximal Policy Optimization (PPO) agent . . 77
Network architectures of the Deep Deterministic Policy Gradient (DDPG)
agent L 78
Normalized initial observation data for an instance of the generative model 79
Normalized initial observation data for two random instances of the process

model 80
Experiment 0: SAC agent training progress (a) and log-scaled (b) 82
Experiment 1: SAC agent training progress on generative model (a) and

simulated process model response (b) o Lo 83
Experiment 2: PPO agent training progress on generative model (a) and

simulated process model response (b) oL 83
Experiment 3: DDPG agent training progress on generative model (a) and

simulated process model response (b)o Lo 84
Particle size distribution from multivariate test case 85
Randomized particle samples 86
Episode data for training an agent based on a sparse reward scheme 87
Simulation towards generative modelo oL 88
Simulation towards process model oo 88
Experiment 5: SAC agent training progress on generative model (a) and

simulated process model response (b) using trained reward model 90
Training SAC agent towards process model, = 90.56 and 0 =0.19 91
Training SAC agent towards process model with 0.1% noise on controlled

variables, yt =90.54 and o = 1.71o 92
Experiment 8: PPO agent training progress on generative model (a) and

simulated process model response (b) using trained reward model 93

Experiment 9: DDPG agent training progress on generative model (a)
and simulated process model response (b), and introducing 0.1% noise on
controlled variables (c), using trained reward model 94
Experiment 10: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model 95

5.21

5.22

5.23

5.24
5.25

5.26

5.27

5.28

5.29

5.30
5.31
5.32

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15

8.1
8.2
8.3

8.4
8.5

Experiment 11: SAC agent training progress on generative model (a) and
simulated process model response (b) using trained reward model
Experiment 13: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model
Running Matlab Experiment Manager: parallel bayesian hyperparameter
search of the generativemodel
Generative model retraining with modifications, RMSE=2.5
Experiment 14: PPO agent training progress on (a) log sccale and (b) normal
scale ..o L
Experiment 14: PPO agent simulation towards (a) the generative model
(n=107.73,0 = 1.76) and (b) the process model (x = 111.20,0 = 1.67)
Experiment 15: SAC agent training progress on (a) log scale and (b) normal
scale . .o L e
Experiment 15: SAC agent simulation towards (a) the generative model
(b =119.4,0 = 4.18) and (b) the process model (u = 121.67,0 = 9.67) . . .
Monte Carlo simulation of neural prediction, a dataset is perturbated with
a distribution of choice to produce a set of distributed predictions.
Value-based uncertainty simulated on the generative model
Value-based uncertainty simulated on the process model
Uncertainty estimation of 30 initial sequences of a PPO agent running
towards the processmodel L L

Mean uncertainty estimation of 30 initial sequences of a PPO agent running
towards the processmodel L L

System architecture for training and executing agent policy
System boundary for the real world model
Cloud plot of data distributions and variable correlations
Dataset sequences for generative model training
One-step forecast from the generative model for real world data
Zero-vector bias estimation for sequence length of 3.
Zero-vector bias estimation for sequence length of 12
Generative model forecasting of steps 1-6, original data (blue) and forecast

(red) . . o
Generative model forecasting of steps 1-6, recorded RMSE and correlation .
SAC agent training progress on (a) log scale and (b) normal scale
PPO agent training progress on (a) log scale and (b) normal scale
Real time simulation with SACagent
Real time simulation with PPO agent
Five simulation runs for the PPO agent towards setpoint of 100°C
Five simulation runs for the SAC agent towards setpoint of 100°C

Cascade control of two processes with disturbance model
RL for control of non-linear functions
Average reward per episode per agent, first 1000 episodes for demonstration

CASE + v v v e e e e e e e e
Three modes of rewards
A simplified autoencoder

8.6

Al
A2
A3

B.1

RNN for one-step forecast and horizoned forecast 139

Class diagram of datastores 160
Class diagram of generative models 168
Class diagram of implemented RL environments 175

Matlab Experiment Manager for Bayesian optimization of generative model
hyperparameters 190

List of Tables

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3

7.1
7.2

Relationships between spray drying parameters 39
Implementation tasks o oo 48
System signals, nominal values and units 51
Results of applying different noise levels and tuning of K, 51
Ranges for hyperparameters for generative model 57
Experiment 1: SAC training and simulation results 82
Experiment 2: PPO training and simulation results 83
Experiment 3: DDPG training and simulation results. 84
Experiment 4: SAC training and simulation results 86
Experiment 5: SAC training and simulation results 91
Experiment 8: PPO training and simulation results 92
Experiment 9: DDPG training and simulation results. 93
Experiment 10: PPO training and simulation results 96
Experiment 13: PPO training and simulation results 97
RQ 1 Results o 110
RQ 1.1 Results 110
RQ 2 Results 110
SAC training and simulation results L. 125
PPO training and simulation results 125

XV

List of Code

4.1 Querying the generative model (Matlab code) 66
4.2 Custom Huber loss regression layer (Matlab code) 71
4.3 Generative model neural network layers (Matlab code) 71
5.1 Direct response reward function (Matlab code) 81
5.2 Sparse reward function (Matlab code) 0oL 87
5.3 Reward function for querying the reward model (Matlab code) 89
5.4 Inverse dropout layer (Matlab code) 104
5.5 Our understanding of conformal prediction (Matlab code) 105
7.1 Calculating zero-vector bias (Matlab code) 121
Al spray fomo 159
A.2 RolloutDatastore.m L 161
A.3 HistorianDatastore.m 163
A4 GenerativeModel.m 168
A5 RewardModel.m 171
A.6 spray rollout_pidm 172
A.7 spray_ rollout_pid_stablem L 173
A.8 SyntheticEnvironment.m 175
A.9 ProcessEnvironment.m Lo 177
A.10 direct_response_reward.mo 180
Adl sparsereward.m Lo 180
Al12learnt reward.m 181
Al3agent_sac_ vl _norm.m 182
Aldagent_ppo_vl_norm.m 183
A15agent_ddpg vl norm.m 184
A 16 sim_confident.m 185
A.17 CascadeEnvironment.m 186

xvii

Chapter 1

Introduction

The wise are instructed by reason; ordinary minds by experience, the stupid
by necessity, and brutes by instinct!

We experience the world in linear time, from birth till death. Life unfolds between
those milestones, consisting of millions of small decisions, life experiences and episodes
of crisis and happiness, mixed with a myriad of ingredients and condiments. We develop
knowledge and moral from our cultural proximity, by guidance, experimentation and genes.
We become who we are as a combination of society, environment and preconditions.

Unlike computer algorithms, our decisions are executed sequentially and shape whom
we become. We cannot always undo our actions but must live with the consequences. A
computer program can restart, and retry the same scenario over and over again to learn
what matters. This is its strength, but also its culprit. A computer program cannot restart
if it transforms sensory information into insecure actions: a self-driving car must not crash
just to build experience. Experimental transactions from a stock-market robot will quickly
demonstrate its failure when faced with real life. A reward is given to the computer for
not crashing or doing the best stock investments. But is a reward-scheme comparable to
our evaluation of success? The current state of research within artificial intelligence is to
allow the computer to fail in simulated environments based on human-stated priors. Its
experience is transferred to the real world when we have enough confidence in its success.

As demonstrated by OpenAl, their GPT-3 algorithm is capable of conversing with
humans for extended peridods.? The question remains unanswered: is advanced reasoning
a kind of pattern recognition in our brains? If so, can synthetic algorithms, like those used
for Al replace human decision-making? Can Al become human, with feelings, passion and
moral? Nobel price winner Kazuo Ishiguro describes a world where our perception of the
human being is challenged when we consider that we are no longer unique individuals, but
the sum of artificial intelligence algorithms.?

In this report, a small, staggered stepping-stone is laid on the path to general artificial
intelligence. The hope is not to replace the perception of humanity as such, but to establish
a framework for assisting decision-making. Can we learn the computer to understand
the elements of success, and how will its moral story unfold? Within deep reinforcement
learning research, the actor-critic framework is popular for learning from rewards in unknown

'Marcus Tullius Cicero, Roman statesman 106 BC-43 BC
Zhttps://www.aftenposten.no/kultur/i/563rpK /interviu-med-en-kunstig-intelligens

Shttps://www.nrk.no/kultur /nobelprisvinner-ishiguro_ -er-mennesket-mer-enn-summen-av-algoritmer_ -
1.15394666

CHAPTER 1. INTRODUCTION

systems. The actor proposes actions, while the critic evaluates its future expected reward.
The role of the critic is to behave as the grown adult in the room, while the actor must
learn from its childly experience.

1.1 Background and motivation

In a reinforcement learning problem, the idea of discovering long-term discounted rewards
through exploring combinations of action-space rewards leads to a trail of actions with the
least penalty or highest reward in the terminal state, as stated by Watkins and Dayan [18].
Watkins [16] introduced the concept of learning from delayed rewards through the Q-
learning-algoritm. The science of Q)-learning has been known for some time through the
method of temporal differences [15]. Here, prediction of a future state assign rewards for
temporally successive predictions and establish an experience buffer for prediction of future
behaviour.

Building the Q-knowledge is done by iteratively exploring all possible actions and
rewards, and thereby establishing a set of policies for each state. An agent decides on
transitions between the states done by observation of responses from an observation space,
the environment as shown in Figure 1.1. The typical method is to utilize a process
simulator where the agent can invoke actions in a safe environment with a performance
outmatching a real-life learning process. Synthetic sensory feeds the Deep Q-network with
virtual responses corresponding to the result of an action transition. The system learns by
discounted rewards the best policies for any given state. The trained network is then put
in a real-world context using transfer learning and executed on real-world systems, which
also continues the learning process with new policy updates.

4 A
Agent
(. J
New state s;11 Reward ry41 Action ay
()
Environment |«
| J

Figure 1.1: Agent and environment interaction

Deep reinforcement learning introduces deep neural networks as function approximators
as they efficiently can be trained to interpolate within a trained state-space. The function
approximator is computationally efficient and offers many options in its architectural
alternatives. There are observered challenges in using reinforcement learning as pointed
out by Dulac-Arnold et al. [92]:

1. Training off-line from the fixed logs of an external behaviour policy is complex.

2. Learning on the real system from limited samples is hard when using deep neural
networks, which are sample-intensive.

1.2. APPLICATIONS

3. High-dimensional continuous state and action spaces involves broad data coverage
for training.

Many samples and runs, called episodes in RL, are necessary to train the agent, as well
as exposing the agent to all facets of the observational space. An interesting aspect is to
investigate methods for obscuring data in such a way that enough training samples can be
provided from a limited data log set. It is critical for the learning outcome that the dataset
is diversified to avoid overfitting the network. Further, the reward-function necessary in
an RL context might not always be sufficiently engineered. Can the reward-function be
trained? What are the implications of trained reward-functions: will they behave differently
given the state of the system?

1.2 Applications

The motivation for entering this field of science is the broad application impact where
sequential decision workflows are involved. Implementing this project is relevant for many
application areas within many business processes. We can broadly categorize businesses
goals as iterative processes on several scenes:

1. Minimize energy consumption
2. Maximize yield

3. Minimize waste

4. Control quality

5. Improve realibility

6. Improve effectiviness

7. Sustainability

8. Reduce emissions

9. Optimize supply chains

Can reinforcement learning be applied as a general optimization concept and trained
on historical logs of data? A clear goal is optimized control and higher product yield
and quality, with less energy usage and waste. To investigate this hypothesis, we select a
delicate industrial process for analysis, further detailed in the Use Case chapter (Chapter 3).

Establishing closed-loop control of either industrial processes or even algorithmic stock
traders involves deep knowledge within the respective field. A traditional control model of
an industrial process may be solved by ordinary differential equations and Kalman filters,
given the correct model. The necessary mathematics may appear intimidating without
proper knowledge. Pre-training an RL agent on data and automatically specifying the
reward function would make algorithmic control more accessible and increase the efficiency
of implementation within the industry. As closed-loop control gains both acceptance and
momentum in many business fields, the need for efficient methods for implementation is
imperative for being able to deliver new ideas and applications, and improve existing ones.

3

CHAPTER 1. INTRODUCTION

There is a clear distinction between optimizing existing processes and establishing
completely new ones. In the latter case, traditional engineering might be the solution.
For existing processes, or processes where comparable data is available, we foresee that
optimization and control can be completely done by learning from historical data logs.

1.2.1 Research questions

As earlier mentioned, an RL agent will be trained by a historical dataset, and the reward
function estimated based on the data behaviour. The research involves the implementation
of a generic agent with several capabilities. The aim is to be able to apply the agent to
different industrial processes with minimal engineering effort. For this to succeed, the
performance of such an agent should match or surpass existing control strategies. There
are economic aspects to why such an implementation is tempting.

The research questions will surface both in the analysis of the problem, the choice of
methods, the design and implementation of the project, and, most importantly, it will
be revisited in the discussion and conclusion parts of the report. In light of the problem
statement, the research will be divided into the following research questions:

RQ 1 Can an RL Agent be efficiently trained on historical data logs?

RQ 1.1 Which choice of RL Agent realizations would be a generic solver for the
problem?

Here, a process model simulation will be executed by using data from a well-known
industrial process, and the resulting data will be recorded. Multiple runs of this dataset
will be used for separate training of an RL agent. The trained agent will then replace
the process control regulation and the performance of the agent evaluated towards the
state-of-the-art regulated process.

Given a selected control strategy, can a viable control simulation that exposes the
state-space, be modelled and used for generating data logs for RL training? In a real-
world situation, an existing process data log will substitute the simulation, but the agent
performance should be evaluated on the same process as the data was generated. It seems
not economically viable to expose the agent to a real process within the first exploratory
part of the training. After evaluation, confidence can be established for stepping into
physical processes.

RQ 2 Can a reward function be approximated and learned without supervision?

RQ 2.1 What are the implications of trained reward-functions: will they behave
differently given the state of the system?

We investigate the problem of using neural networks as a reward function approximator
and training this on data logs. Further, an analysis of the most important features by using
techniques from Explainable AT will give valuable insights to evaluate if the trained reward
function matches our a priori system knowledge. The term eXplainable AI has become
a popular topic lately, and Arrieta et al. [104] describes opportunities and challenges
regarding trustworthiness in the application of AI models, also called black-boz-models,
where the internals are difficult to test and visualize. Two paths are explained, the ante-hoc
route where model internals and factors affecting them are attempted described, as well

4

1.2. APPLICATIONS

as post-hoc explanations, where the model results are interpreted. Lundberg and Lee [72]
reviews several frameworks for the latter and proposes the SHA P-framework for assigning
importance values for all model features for a particular prediction result. eXplainable Al
will become important for our RL agent to validate its knowledge causality. In evaluating
RL frameworks, the reward function would be the main training input for the critic,
representing the moral of the agent.

1.2.2 Method

To successfully build a deep recurrent network, we must expose our system to as many
states and policies as possible. This can be done by simulating the target system for
accelerated learning, or expose the system to the real environment as described above.
In the latter case, practical implications will most likely render this unacceptable in a
running industrial process, due to resource constraints, health- and security implications
etc., and to the fact that the learning process is a tedious task where the system needs
many iterations of trial-and-error to establish a sensible decision network.
Petsagkourakis, Sandoval and Bradford et al. [110] proposes a multi-step algorithm
where a process is controlled using reinforcement learning. They introduce transfer learning
as a central concept, where the policy gradients are updated based on a step-wise-approach:

1. Step 1, Preliminary off-line learning using a stoichiometric model

[\

. Step 2-3, Transfer learning by updating policies based on real data

w

. Step 4, On-line transfer learning by updating rewards based on real data

4. Step b, Terminatory policy update on a real system

Several case studies were done and they conclude that it should be possible to train a
reinforcement network where the true system dynamics are unknown. They build their
work on the assumption that a bioprocess model can be established using hybrid approaches
with both data-driven methods and physical models [103], requiring access to historical
process data. Rio-Chanona et al. reviewed several methods of the performance for physical
and data-driven models for bioprocess simulation [91]. Their experiments show that models
in general only can model mechanisms it has been designed or exposed for. Extrapolating
to unknown state-spaces cannot be verified. An approach to counter-balance this would be
to be sure to expose the learning process to extremely varying process conditions, also those
scenarios resulting in faulty or bad quality products. Training in a simulated environment
covers this requirement, and one can presumably to some degree perturbate the input data
to augment uncovered system states.

The rules of physics must be learned by the agent, but prior knowledge of physical
causality could increase the training efficiency and extrapolation properties. Karpatne
et al. [70] investigates the possibility to add such priors through the use of adapted loss
functions with physical knowledge. They show that better generalization is achieved
with physics-based loss functions. In applications where the agent has no physical reality,
other constraints may be necessary. This might for example be cases of a stock market
trading agent, where the consistency rules might be juridic- and trading-specific laws and
regulations.

CHAPTER 1. INTRODUCTION

1.2.3 Hypothesis formulation and testing

An exploratory quantitative evaluation strategy will be chosen to test the success of the
different model realizations. Evaluating reinforcement network outcome can be done on the
reward function result after applying each action in the environment. The difference between
real-world observation and our policy result, is the model error, as we infer that the existing
process is under control at this stage. Over the course of training, the agent will attempt
to minimize this error and increase accuracy towards the existing control. The models
should gradually decide on the best long-term strategy to increase the accuracy towards
the reward function. Regression accuracy of the models will be measured using standard
machine learning metrics, where Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE) and Pearson correlation coefficient (R?) are widely used. The RMSE penalizes
larger model errors as shown in Equation 1.1 due to the squared prediction error. Here,
the squared difference between the real value y and our estimation ¢ is calculated on @
value pairs.

n

RMSE = || =3 (i —)? (1.1

i=1

We will also experiment using Huber loss estimation as an alternative to MAE and

RMSE.

1.2.4 Experiment modelling

The idea involves training an agent on offline data, but at some point, we reach the
need to integrate the algorithm into an online solution. A proper real-time execution
environment must be in place, and access to historical and real-time data must be available.
The execution model must also be architected, and the proper hyperparameter selection
strategy chosen. Step 1-3 will be executed off-process until the agent converges towards
plausible accuracy.

Step 4 will be executed by piggy-backing a selected process and run the reinforcement
in real-time but with no closed-loop control. Step 5 involves proper risk management and
mitigation, and need careful termination strategies implemented in the target organization.
The risk will be in the categories of health, environment and safety, as well as resource
utilization. This report will not implement real time control experiments due to the impact
of these considerations.

1.2.5 Architecture

The RL agent will be solved using Matlab as computation environment. An architecture
for the exploration, evaluation and deployment will be a part of the report.

1.3 Contribution

The main contribution of this thesis are:

o It is demonstrated that a shallow recurrent LSTM network can be trained on historical
logs of time-series data in order to reproduce the dynamics of a system

1.4. REPORT OUTLINE

e Given such a trained generative model, it is demonstrated that a reinforcement
learning agent can be sufficiently trained in a multivariate scenario and propose
actions towards a new goal set

o It is also demonstrated that the reward function of an agent can be trained by training
an autoencoder network with a specified class of time-series data

1.4 Report Outline
This section drafts an outline of the report and a foundation for the work progress.

Part 1 will discuss the theoretical foundation of reinforcement learning, and
Related work and different actor implementations.

Part 2 will describe an architecture and implementation of an agent for
testing the hypothesis.

Part 3 will be an Evaluation of the agent to see if the performance is viable.

Part 4 will focus on testing in real-world scenarios and use the agent to
solve real-world tasks in an experimental setting.

Part 5 will be Discussion and elaboration on Research Questions as well as
aspects of further work.

The thesis will end with a Conclusion.

Chapter 2

Literature

The image of the world around us, which we carry in our head, is just a
model. Nobody in his head imagines all the world, government or country. He
has only selected concepts, and relationships between them, and uses those to
represent the real system.!

2.1 Foundations

In chapter 7 of Alan Turings 1950 article [5], the learning machine is discussed referencing
a machine that can mimic the human brain. Turing presents the neutron that holds
remote ideas, and given enough disturbance exhibits critical phenomena. Turing’s ideas
are descriptive of today’s deep learning neural networks, abled by developments in silicon
performance, programming languages and knowledge sharing in science.

Neural networks have shown their ability to learn from examples, through supervised
learning. A proficient property is the ability to discover the data representation itself and
mask features, not only the mapping to the output. This is what we call representation
learning and can often result in better model performance [63]. Less pre-processing of the
input data is thus necessary. Deep learning solves a central challenge in representation
learning where the machine builds different abstraction layers where each neuron layer
builds upon knowledge from previous layers, as we go deeper into the network topology.
By combining our understanding of physical processes in the brain and construct networks
of neurons that are interconnected, we are able to solve many modelling problems through
architecting the neural networks accordingly for a broad set of applications [71].

Frank Rosenblatt introduced the theory of the perceptron [6] and that learned associations
in a differentiated environment approaches a better-than-chance classification as the number
of learning stimuli increases. A perceptron is an activation function with associated weighted
inputs, where incoming stimuli fire the perceptron or leave it idle.

Figure 2.1 shows a perceptron with three inputs x1, 2, z3 and one output. Each input
has associated weights w1, w2, w3 and is commonly referred to as synapses, the synaptic
weight vector w. The activation function in Equation 2.1 outputs a binary representation

1 Jay Wright Forrester, 1971

CHAPTER 2. LITERATURE

1T o—— W1

x2 O w2 fact e yout

d

Ir3 o—— W3

Figure 2.1: A simple neural network architecture

of the weighted sum so that the output is fed to the next layer of perceptrons and their
input.

0if) . w;x; < threshold

output = {1 if %J wjxj > threshold (2.1)
g I

The weights are trained by observing the output with a true sample. The error is
iteratively calculated using a backpropagation algorithm. It is now common that the
activation of a neuron is a scalar number in the range of —1,1 and that a neuron has a bias
added to the activation function [63, p. 187]. In order to train our network, we can employ
a stochastic gradient descent strategy that estimates weight updates during iterations. In
backpropagation, we start at the output and step backwards in the network iteratively
adjusting the weights and bias with the weighted error derivative, as proposed by [49]
showed in Equation 2.2 where C' represents a cost-function, the error between the network

state and the true state, L is the layer and a is the activation.

F(Aw) = AC - aE7Y . ¢/ (a'F) (2.2)

The design of the cost function C, activation function ¢ and strategy of gradient descent
has been a long-standing focus for the research community, and the selection of the method
is tightly dependent on the application.

2.1.1 Markov processes

A Markov decision process is described by a state space S, a possible action-space A, a
transition space T and reward function R [16].

P=SATR (2.3)

The next state syt is dependent on an applied action a in state s;, where an agent selects
the best action according to some policy. There is a probabilistic relationship between
the chosen action and the new state, a relation which is the core of the reinforcement
learning problem: a Markovian decision is a process in which the path to the end result
is always known based on the immediate observed state. In a non-propelled bullet case,
you will be able to calculate its terminal ballistic trajectory by knowing the state at any
point (speed, mass and direction). The calculation function can be based on first principle
physical models or data-driven by reinforcement learning and neural networks as function
approximators. A Markovian process chain is one where the history of previous events

10

2.1. FOUNDATIONS

determine the action and represents a class of algorithms that utilizes a discounted reward
system, based on the system horizon being episodic or continuous. The Markovian property
of the problem space is an important prerequisite for reinforcement learning: the future
state is only dependent on the current state.

2.1.2 Temporal differences

A history of machine learning theory is nicely summoned by [15] by describing the problem
of learning to predict by temporal differences. This field has its roots in the late 1950s
starting with Samuel’s checker-playing program [7], followed up by various articles in the
1980s. In traditional machine learning, a problem is optimized towards a minimal error
residual between a system’s true state and the predicted state. This can be described
as supervised learning where a true state is presented to learn the system probabilities
given a set of known inputs. The idea of T'D learning is to learn from a set of successive
predictions in a sequence, as a multi-step prediction problem. Correctness is increased as
evidence of the true system is partially revealed. The reasoning behind this is founded on
how humans perceive problems and relate to the world, where we often make decisions
based on partially available information in a stream of related patterns. The decisions
reveal more information, and we learn from these temporal differences. We can model such
a multi-step sequence as

L1, 22, X3, eeey Ty 2 (2.4)

where each x; is an observation vector at time ¢ leading to outcome z. For many such
sequences, a learner produces several predictions, each P, corresponding to the outcome z:

Py, Py, P, ..., P (2.5)

Each prediction has corresponding weights w with a functional dependence towards
x, we can then explicitly write the probability function as P(x;, w). Our problem is now
narrowed towards learning w with the delta rule, with backpropagation or with the Widrof-
Hoff-rule. Sutton [15] presents the incremental TD-procedure, that can be calculated at
each sequence time step with the sum of all past values. The generalized T D(\)-function
introduces a learning rate, in which earlier prediction sequences can be weighted differently
as opposed to the more recent observations. We see from the function

t
Awy = a(Piy1 — P) Y XN TFAL P (2.6)
k=1

that the probability weight is updated by the temporal difference of predictions, learning
rate a and the sum of earlier weight updates, adjusted by the dynamic learning rate A.

The whole idea of learning by temporal differences is that it allows us to predict the next
state given a sequence of preceding states. In this way, we are not only using the current
state to predict the next, which could lead to a less favourable next state but instead use
our earlier observations and experiences to select states that might be intermediate towards
our terminal state. The T'D(\)-procedure tries to use the information from the sequence
predictions, while traditional machine learning methods simply ignore them. In such a
system, there will only be one prediction given the current state, if the history is ignored.

11

CHAPTER 2. LITERATURE

It is tempting to draw a relation towards Bayes’ theorem that states that the conditional
probability of an event is based on knowledge of other related events. Mathematically, this
is described as

P(B|A)P(A)

PAIB) = =55

(2.7)

where the conditional probability of A given event B is described using already known
relations of events A and B. In a frequentist interpretation, P(A) and P(B) is the likelihood
of the event given available data. In a dice game, we might initially say that there is a
probability of % for each side of the dice, which is our initial estimate of the maximum
likelihood of the event. Learning the agent becomes a task of presenting available data,
and update our belief system’s probability distribution given new events.

The TD-learning process follows the principles of statistical gradient descent, pushing
the predictions in the direction of the steepest descent. Further, we may be interested
in the cumulative score when predicting the outcome of a gameplay, and the process can
be used intermediary, where system re-evaluation can be done at each time step. The
predicted score, cost or reward is cumulative, and thus we can calculate the remaining
cumulative cost anywhere in the observation sequence given an episodic model. The
cumulative cost prediction is the walue of the observation sequence, hinting towards a
separate critic part of an actor. The strength of the TD-learning algorithm is its computing
efficiency and memory utilization, not needing access to previous observation and prediction
sequences. Sutton [15] links to related research, the most prominent is backpropagation in
connectionist networks [12] which decides which part of a network to change. An error
derivative combines the descent and weight update.

Further, we can map the episodic learning to a continuous learning case by discounting
the predictions:

o
2t = Z'th—i-k—i-l (2.8)
k=0

where v is a discount parameter. This way, we can predict with a parameterizable
horizon in the infinity time scale where we can balance the need for long-term or shorter-term
predictions.

Williams [19] argues that the search behaviour of a learning function should include
some randomness in the input-output state to accommodate exploratory behaviour. The
prediction function can be implemented in a neural network where each unit is considered
a learning agent that predicts the reinforcement signal r. In an immediate-reinforcement
learning problem, 7 is learnt at each time step, as opposed delayed-reinforcement where r
is learnt at the end of a sequence. The network is trained for each time step, a situation
applicable to real-time scenarios, however, we will later see that immediate training can
unnecessarily skew the training towards the last events. Williams [19] describes a simple
actor-critic algorithm where the actor at each time step predicts the output given the
input, and the reinforcement value r of the input/output pair is predicted by the critic.
Such a prediction can be a function of time or given by the sequence history.

The network weights are updated using r towards a baseline difference b:

Aw = ar —be (2.9)

12

2.1. FOUNDATIONS

with o being the learning rate and e a characteristic eligibility of w. Each weight w is
locally updated to reflect the globally predicted reinforcement signal r. Selecting a proper
baseline is done towards minimizing the variance of the weight changes over time. This
gradient-based approach integrates well with backpropagation and serves as a starting
point for other reinforcement learning algorithms.

2.1.3 Delayed reinforcement learning

Tesauro [17] describes the delayed reinforcement learning paradigm where the learner
passively observes a temporal sequence of input states that leads to a reinforcement signal
r. This method is used to learn a system from scratch with no prior knowledge of the
optimal control strategy. By observing the temporal differences with the T'D(\)-algorithm,
actions that lead to the highest terminal reinforcement signal is learned. By terminal, we
mean that there is no supervised signal telling the success of each transient state during a
sequence. The temporal observed actions might therefore be suboptimal, depending on the
actual player performance in the system. Tesauro [17] describes practical considerations of
implementing the T'D(\)-algorithm to complex real-world problems, bringing the field of
reinforcement learning forward by applying TD-learning to the game of backgammon.

The problem is very well suited for reinforcement learning due to several appealing
features. Backgammon is non-deterministic, as opposed to chess and checkers, due to a
stochastic dice roll that controls the game. Several strategies can be employed for blocking
opponents, hitting them and resetting their pieces, but depending on game state, different
tactics are usually employed. At the start of the game, blocking configurations are engaged,
as opposed to the end of the game were racing the pieces to the goal is more important.
Further, branching ratios are high, meaning that there is no single best way or action
state. Tesauro [17] employs both deep- and shallow fully connected neural networks, and
demonstrate that the system has better performance than competing solutions at the time
of writing the article.

The network is trained with a sequence of board positions 1, x2, x3, ..., Z;, and a final
reward signal z. In a control scenario, the network is presented with new stochastic dice
rolls, enforcing an exploration strategy of the state space. This way, new strategies and
improved evaluations can be discovered [20].

However, the T'D(\)-algorithm does not address prediction-control tasks and Tesauro [17]
proposes to train a separate controller network for this purpose. Convergence of the
prediction and control networks towards a global optimum can be an issue in non-linear
problems like this. Volatility in stochastic networks may also influence weight updates,
as the noise should not exceed the baseline variance. Employing a learning rate schedule
and tuning the A-parameter is important, as well as considerations for avoiding overfitting
by tuning the number of nodes and layers in the network, what we can call the network
fidelity.

Input volatility and network fidelity must be balanced in complex problems as the
network might only see x; and the succeeding state once. If z;11 and x; is unrelated due
to high volatility, the network might not be a good predictor. One way to overcome this is
to iterate on state x; multiple times and assure that all states are visited during training.
There is a direct relation between these considerations and system performance. Neural
networks are known to interpolate well but fails at extrapolating. In these cases, physical
modelling rules can be of importance, depending on the problem being solved.

13

CHAPTER 2. LITERATURE

2.1.4 Q-learning

A true Markovian approach may in some cases be attractive, depending on the application.
In systems with finite state spaces, where there is no dependency on earlier observations
or actions, a learning process can be based on delayed rewards only. The Q-learning
is such a method described by Watkins [16]. In a @-table, the future expected reward
for each possible state-action pair is trained by exploring all possible states and noting
the final reward in the terminal state. This trial-and-error approach is called exploring
the environment and is typically the strategy we use during training the Q-table and
learning the environment. Training each state-action-pair can be done with a simple
one-step-Q-learning, where the Q(s,a) is trained by a simple iterative update of Q:

Q(z,a) = (1 — a)Q(z,a) + ar (2.10)

where « is a learning rate parameter. At some point, we will select the action with the
highest future expected reward in each state. This is called exploitation of the environment
where the agent suggests experimental actions. It is easy to see that balancing exploration
and exploitation is a matter of performance and security. We would optimally find a
strategy that balances these issues so that our @-table is kept valid. Watkins [16] note that
exploration of the environment should be done when it adds value, is cheap and the time
used for exploration is short compared to the time we will use the behaviour.

2.2 Rediscovery

Playing games has a long history of being a demonstrator for reinforcement learning.
Gameplay consists of a goal, a player and the game with rules, and the interaction between
the player and the game to reach a specific target. Since computer games are excellent
non-destructive opponents (the real world state is never manipulated and stays intact),
training reinforcement agents within such an environment is tractable. A property of
computer programs is the ability to duplicate and parallelize, and speeding up beyond
real-time, thereby accelerating training. Further, games have often rounds where the player
takes action based on evaluation of a state. The action manipulates the state, initiates
environment feedback, and then the player can take his next draw based on the new state.
The gameplay metaphor fits perfectly for the evaluation of reinforcement learning.

2.2.1 Deep Q-learning

Mnih et al. [51] of Deepmind? demonstrates how a deep convolutional neural network
can learn control policies from complex environments. Advances in deep learning and the
introduction of convolutional layers in neural networks have made it possible to represent
high fidelity sensory data efficiently. Mnih et al. [51] demonstrates the use of raw pixel
inputs from an Atari game emulator, as illustrated in Figure 2.2, to learn a deep neural
network with very little pre-processing. In fact, no specific feature engineering was done
except reducing the dimension space by resizing and cropping image input and colour
channels from the raw pixels outputted from the game emulator, in order to reduce
computation time and network volatility. The same neural network architecture was used
to train an agent to play multiple games, some outperforming human players.

https://deepmind.com/

14

2.2. REDISCOVERY

D D ") T R
-
Figure 2.2: Screenshots from five Atari 2600 Games
Figure from [51]

There are nearly 20 years of research history between the initial backgammon TD-
learning and the Atari Deep @) Network by Deepmind. However, as the authors point out,
the relative advances have not been as expected. The backgammon gameplay seemed to
be the most promising attempt at reinforcement learning, probably due to its stochastic
nature and dice-roll, enabling efficient environment exploration. Attempts with chess and
checkers have not seen similar successive developments.

Deepmind was able to demonstrate that the principles of the @-learning can be used
to calculate a Q-network, a neural network used as a function approximator instead of the
Q-table. The neural network was built with one input layer, two convolutional layers and
a fully connected layer. The output layer was organized with one node for each possible
action in the game under test, saving computation of the Q-value to one network pass only.
This would not be suitable for continuous action spaces, although the use case presented
a finite action space for each game under test. This was the only difference between the
game plays. The input layer was the pre-processed raw pixels from the emulator without
any additional feature engineering.

However, learning from a sequence of consecutive samples would skew the network in
the direction of the most recent training. Deepmind introduced experience replay in the
learning process which should break those correlations and reduce variance. A fixed history
of state-action-values is kept in a cyclic memory, and a random selection from this memory
is applied whenever the network is trained on new samples. New samples would also be
inserted into the memory and used for training later.

The reward function followed the game score but was clipped to the set [—1,0, 1],
indicating negative, neutral or positive game score development. This was done so that the
same learning rate parameter could be used across all gameplay training, but it could affect
the system’s ability to counter the different magnitude of score changes. Last, a frame-
skipping strategy was chosen to further limit the data presented to the network. Depending
on the game, only every 3rd or 4th frame was used as input. We will later observe that
this is a common technique for training, Dota 2 by OpenAlI [98] uses the frame-skipping
technique so that the system can perform its evaluation and policy-calculation in real-time,
enabling game plays with human opponents.

The performance of the DQN-network is impressive, and an update on the matter was
presented in Nature in 2015 with results of several other games trained under the same
conceptual framework. Out of 49 tested games, the methods show better-than-human
performance in 29 of the games [60]. Further, the authors demonstrated that training a
separate target network affects the results.

15

CHAPTER 2. LITERATURE

2.2.2 Value networks

Silver et al. [67] continued to work on mastering the game of Go, a task long time seen
as an ultimate goal for Al gameplay. They introduced value networks that evaluates the
current game state that outputs the probability of winning based on the board positions in
their project AlphaGo. Further, a policy network outputs action probability distributions
based on the state. Combined with a tree search algorithm, a look-ahead search algorithm
is used to evaluate the actions with the highest state value, where the nodes store the
action value Q(s,a), the visit count N(s,a) and prior probability P(s,a). On each game
iteration, a game simulation occurs where an action is selected as to maximize the action
value and a bonus u being the proportion between P and N:

ar = argmaz(Q(ss, a) + u(s¢, a)) (2.11)

On each pass, the game is simulated to its terminal state using the tree search, starting
from the root node. After each simulation iteration 4, the search tree is updated with
@, N and P. u(s;,a) decays after many visits to a node, encouraging exploration of the
environment. When reaching a leaf node, it can be expanded by adding the probabilities
from a different policy network trained using supervised learning on human gameplay. The
game is simulated using a fast rollout policy network combined with a value network, and
the tree is updated on each simulation iteration with the updated values reaching the
terminal state with the desired outcome. This combination is controlled with a mixing
parameter A, indicating which method has the most impact, value networks or rollout policy.
The most visited action from the root indicates the move with the highest probability of
winning and is chosen for updating the environment in that round.

Game 1 Game 2 . . Game 3
Fan Hui (Black), AlphaGo (White) AlphaGo (Black), Fan Hui (White) Fan Hui (Black), AlphaGo (White)
AlphaGo wins by 2.5 points AlphaGo wins by resignation AlphaGo wins by resignation

o 00 04
2 %%, 8¢
; 7,183 33'17&5*’3 3 5¥5
5 et 5
o B S C8e
o : N ISt 008
R o > . e | g LA
@; 65 63@|r1 @gr 3 9 @‘;
5 Ao - +a s O
: 9La0.d 29
¢ 200 L o0e
‘5 ‘4?@’9&*‘01 105, 37 =$5
27 151*159*‘*()3 B ;
& 299 P 060
320 B0 G B
56 00 0.0 \
OB ¢ 2B
et 4

ZED

Figure 2.3: AlphaGo game play
Figure from [67]

This Monte Carlo tree search method combined with value- and policy networks were
able to beat a European Go champion in five games and achieved a winning rate of 99.8%
against other Go programs. The authors also evaluated different mixing parameters A, and

16

2.2. REDISCOVERY

they found a balancing 0.5 had the best performance, however, using value networks only
(A = 0) with no rollout policy network, AlphaGo exceeded the performance of all other
Go algorithms. This indicates that a value network implementation is a viable method to
evaluate states.

The authors introduced the AlphaGoZero in 2017 [74], where the algorithm did not
use pre-trained networks of human gameplay but learned the strategy itself without any
guidance. Only the game rules were known, and the system is trained by random self-play
only, using the historic- and current board positions as the input state. There is no
separate policy- and value networks, only one single neural network that outputs the action
probabilities and the state value. The gameplay uses this single network for look-ahead
search and updates the network based on the error between the actual winner and the
predicted winner. The implementation is efficient and defeats other implementations of
Go. In January 2017 it defeated human professional players 60-0 in online games [74].

Central to this pure reinforcement learning strategy is how to improve the policy
network. A traditional approach is to alternate between policy evaluation and policy
improvement as to estimate the value function based on outcomes from different gameplays
[112]. A greedy approach is to only select actions as to maximize the value function using
the error residual. This approach is useful in environments with large state spaces as
demonstrated in AlphaGoZero.

2.2.3 Memory networks

A group of scientists from OpenAl demonstrated the use of deep reinforcement learning
with recurrent networks on a large-scale gaming platform, the Dota 2 [98]. This game
presents challenges of long time horizons, complex environments and occlusion of state
information by only being able to partially observe the environment. The complexity
is increased by high dimension state- and observation spaces, where the reinforcement
agent controlled a team of several players, forming groups when the gameplay rewarded
such strategy. In early phases of the game, solo achievements were more valuable than
cooperative manoeuvres, ending in pure group collaboration in the end phases of the game.
The agent was trained with a single-layer LSTM recurrent memory network with 4096
nodes for several months of self gameplay, for a total of 159 million network parameters.
The network outputs a fully connected layer with action space probabilities and state value.

During training, the team updated parts of their algorithms, and to preserve the
training weights they invented a method called surgery, in which parts of the affected
network is replaced by the updated algorithms to avoid restarting the training. This
method performed well and was evaluated by complete retraining on the final algorithm
by evaluating the differences with the networks that were iteratively undergoing surgery.
The system utilizes one network instance per game hero, the character controlled by the
agent, and use frame-clipping to reduce the observational space and hence computation
time. The policy was trained based on a variation of the advantage actor critic, using
Prozimal Policy Optimization algorithm. Ezperience buffers was used for training, but also
for distributing training across computers and GPUs.

However, the reward function was hand-made by humans, forcing the agent to learn
strategies that humans believe are best choices, like killing enemies and gaining resources.
OpenAl also engineered the reward function such that it forced the agent to change its
play strategy during playtime, to accommodate for group formation towards the end of
the game through a dynamic team spirit that was dependent on game time. Different

17

CHAPTER 2. LITERATURE

Figure 2.4: Game play from Dota 2
Figure from [98]

rewards were given based on the human setup, like rewarding different towers concurred
and spending gold on resources. The rewards differed whether the resources were bought
individually or as a team. In sum, the reward function heavily determines game progress,
and it could be argued that the agent shows less self-intelligence when the reward function
is heavily engineered by humans. At least, we can say that the agent exhibits tactical
intelligence, but not strategic intelligence. The authors also reflect that investigating other
reward schemes is interesting future work.

One of the interesting approaches to reinforcement learning is to estimate the reward
function, which is one of the research questions in this thesis.

2.3 Physical control

Bringing the success of gameplay to the physical world enables us to broaden the menu
of available control strategies when considering a control problem. If we could let the
computer learn how the physical world works, it could potentially drive wider adoption of
data-driven methods within control engineering. There are situations where other methods
are better suited, i.e. in fields where less sensory data is present, or where you cannot
express the system state adequately. Here lies the culprit of data-driven methods: to use
them, we need data. In the case of reinforcement learning using neural networks, we need
a lot of training data to drive the network adaption and avoid gradient valleys.

2.3.1 Simulated environment

Within Deep @Q-learning, Mnih et al. [51] and OpenAl [98] demonstrated control in
complex environments. Their method using convolutional neural networks and memory
networks to play computer games was however limited to a predefined discrete action space.
Applying DQN to the continuous action space is not so straight forward as the method
relies on maximizing each action-value pair, and iterating within the continuous domain
makes each step an optimization problem itself, which is computationally impractical. One

18

2.3. PHYSICAL CONTROL

solution is to discretize the action space to such a level that does not break the system’s
ability to learn the underlying system dynamics, however, this may be inadequate within
environments of higher action space complexity.

Lillicrap et al. [59] proposes a model-free, off-policy actor-critic method that is able
to learn within high-dimensional continuous action spaces so that a; € RY. The work is
based on extending the deterministic policy gradient (DPG) by Silver et al. [54] to what
the authors call the Deep DPG. The work challenges the algorithm on several robotic
control problems using two different observational spaces: one low-dimensional space
based on sensory inputs like joint positions and cartesian coordinates, and a pure camera-
based input using the pixel values directly. Training such algorithms is done in a virtual
environment that can simulate physical dynamics and react on the actions proposed by
the RL agent. Instead of learning the action-value directly, the states are mapped to a
probability distribution over the actions 7 : S — P(A).

An interesting discovery is that the same network architecture and hyperparameters
could be used on different control tasks. Further, they also observed that the agent in
some cases found policies that out-performed the dynamics engine itself. The algorithm
makes use of the experience replay memory technique whereby samples are stored for
later use for random training, and also batch normalization where samples in training on
mini-batches are normalized to unit mean and variance. The reasoning here is that the
network should slowly work towards convergence and minimize covariance shift, as well as
accepting observations of different magnitudes. Another interesting approach is that the
target network is also updated slowly by weighting the updates, and not directly replaced
as done by Mnih et al. [51]. The stability gained outweighed the negative consequences of
slow learning.

Exploration vs. exploitation of environments must be balanced, and the topic must
be addressed when applying reinforcement learning. Exploration means that the agent
is presented observations never or seldom seen before, to learn wider action policies. A
popular method is the epsilon greedy policy, in which we randomly select an action in € of
the iterations to explore new parts of the environment. This is viable in discrete action
space implementations but cannot be directly applied here. Lillicrap et al. [59] makes use
of a noise function N added to the policy, so that

W= p(se|0) + N (2.12)

N could be any noise function suited for the application; Lillicrap et al. [59] selected
the Ornstein-Uhlenbeck function [1] to generate temporally correlated noise. Another way
to explore is to present more samples to the network [63, p. 233] by data augmentation
where random data disturbance is introduced. For pixels or image data, this can be done
by e.g., zooming, rotating, occluding, de-focusing etc. [99]. Other ways are to introduce
random disturbance is in the form of homoscedastic noise [110], Del Rio-Chanona et al.
proposes noise 3% the standard deviation [91], or by synthetically re-create a signal using
Generative Adversarial Networks [68].

2.3.2 Transfer to the physical environment

Haarnoja et al. [81] demonstrates the use of reinforcement learning within the physical
domain by creating a learning algorithm for a multi-legged walkable robot. They argue that
as opposed to simulated environments, updates and hyperparameter searches in the real

19

CHAPTER 2. LITERATURE

world cannot be done extensively. This would impose the danger of damaging the physical
equipment through such trial-and-error policies. By applying the maximum entropy method,
they show that minimal training is necessary to achieve reasonable performance early in
the training, without utilizing simulated environments.

Figure 2.5: Illustration of a walking gait learned in the real world
Figure from [81]

They propose the soft actor-critic and removes the manually tuned temperature
parameter « which is used to balance exploration of the environment with environment
exploitation in maximum entropy algorithms. They also show that minimal hyperparameter
tuning is necessary to reach stable performance across several control tasks. In this task,
the robot executes continuously with no defined terminal state, except where humans must
intervene due to physical constraints and safety. Hence, the given reward is discounted by
a factor v so that the sum of future expected rewards are finite:

Ry =) " 're(se, ax) (2.13)
=t

The ~ influences the control horizon where a smaller factor makes the algorithm more
short-sighted than a larger factor.

Maximum entropy RL is robust and sample efficient, and the authors demonstrate
that it can be insensitive to hyperparameters by dynamically tuning the temperature
parameter « by Langrangian relaxation. Optimal entropy relies on the magnitude of the
reward and policy, which develops during training to be more and more efficient, and again
would influence the need to update the temperature parameter across tasks and trained
policies. The authors add « to the value function, and periodically optimize this parameter
during training to achieve an efficient physical control demonstration without the use of a
simulated environment.

To the other extent, there are also examples of systems where all training is done in a
simulator before being transferred and executed on a real system. This is an appealing
approach where safe operation of equipment is critical. OpenAl [99] used a robotic hand
to solve the Rubik’s cube based on RL, computer vision and convolutional neural networks
by the concept of a Deep () Network. Central to the concept is environment randomization
where changes and occlusions in the simulated environment introduce randomness in the

20

2.3. PHYSICAL CONTROL

training, and hence situations that are slightly new to the system. This would further
help to generalize the trained network to the real world. A virtual simulator was set up
replicating the robotic hand model and robotic environment, using three virtual cameras
of the Rubik’s cube as input to a Deep @) Network to estimate the cube’s and finger’s
positions. All fingertips of the robot had a special pulsating light-emitting diode system
attached so that the cartesian coordinates of all fingertips could be tracked by altering the
LED pulse individually for each finger, via the same camera system. Further, the robot
joint positions were also recorded.

The reward system was highly specialized towards the task; distance between current
state and goal state and goal-reaching. Dropping the cube gave negative rewards. OpenAl
used 1024 LSTM memory blocks in two separate networks, one for the policy, and one
for the value network, where the value network was only trained in simulation as showed
in Figure 2.6. There was also a separate observation network based on ResNet50, where
cube positions were trained via supervised learning and inputted as real values to the RL
network.

(a) Network architecture for value function (b) Network architecture for agent policy
| Value (1) | [Action distribution (11x20) |
f f
| LSTM (1024) | | LSTM (1024) |
[} [}
| ReLU | | ReLU |
1 1
[Fully-connected (2048) | [Fully-connected (2048) |
| ReLU | | ReLU |
) |)

Sum

[Embedding (512) | | Embedding (512) | [Embedding (512) | | Embedding (512) |
| Normalize | | Normalize | e | Normalize | | Normalize |
| Observation 1 | | Observation 2 | | Noisy observation 1 | | Noisy observation 2 |
N J J
Y Y
Inputs available in simulation Inputs available on the real robot

Figure 2.6: Neural network architecture for (a) value network and (b) policy network
Figure from [99]

The combination of pixel- and sensory input make out a complex observation space
where the network needs to observe as many perturbations as possible. In the simulator,
parameters to the physics engine, vision and observation modules were randomized according
to a Automatic Domain Randomization formula. When training was reaching convergence,
the system gradually extended the parameters so that training could commence in a broader
environment. The degree of domain randomization was dynamically adjusted according to
the entropy of the parameter distribution. This method allows for no manually engineered
randomizations and hence more efficient system implementation.

21

CHAPTER 2. LITERATURE

2.4 Bioprocess modelling

Advances in reinforcement learning raise the question of whether combining first principle
dynamic models and modern machine learning concepts can be applied to modelling and
control, and whether these models can be explained and tested for significance in the real
world. Reinforcement learning has shown to handle nonlinear stochastic control problems
well and is an attractive implementation alternative [110].

Del Rio-Chanona et al. [91] presents methods and experiments for improving bioprocess
modelling based on traditional machine learning and dynamic models. The authors
conducted bacterial laboratory experiments and studied the variation and equality between
dynamic kinetic models, artificial neural networks and Gaussian process models. The
intention was to compare control strategies for algae- and bacterial wastewater treatment,
for the sake of efficiency and safety of bioprocesses. They also address the challenge of
building data-driven models from scarce datasets and present a method for augmenting
time series by linear interpolation.

Traditionally, kinetic models have been used for modelling bioprocesses and require
extensive model studies. Kinetic models are basically differential equations that model cell
growth, substrate uptake and end-product. Primarily, most time is used on the construction
of such models and parameter optimization, to be applied to a specific process. These
models need less data for training than machine learning methods but underlying knowledge
of the chemical processes are needed, and the authors report that typical model construction
times are several weeks, as opposed to machine learning methods where construction can
be done in a few days. This, however, requires extensive and continuous sensory data for
training, often not available, or at least limited. The article also refers to several studies
where machine learning methods have been applied, but the problem of scarce datasets in
bioprocesses limits the usefulness.

Laboratory experiments were conducted by the authors to study the effect of numerical
prediction accuracy of glucose, nitrate, phosphate and biomass by the different models. The
article shows that neural networks tend to diverge in prediction compared with traditional
methods and data observations during the longitudinal progression of the experiments.
They used a fully connected neural network without taking the sequence of observations
into account, this would probably influence the results such that false conclusions are made.
The authors point out that while machine learning methods need interpolated training
datasets, sometimes kinetic models are the only choice, e.g. during process scale-up where
no historical data exists. They claim machine learning methods can not replace traditional
methods in every aspect, and so those two paradigms serve different purposes.

Applying reinforcement learning in such a context is particularly interesting since the
long-term drift of such models could possibly be reduced, as well as the potentially positive
economic aspects.

2.4.1 Process optimization on economic factors

Powell et al. [111] investigates the performance of their novel algorithm for process
optimization using reinforcement learning. In their work, economic incentives are included
in the model that directly controls a continuously stirred reactor process. As such, different
external resources may have a differing cost depending on time: when power prices are low,
more heat can be used in exchange for reactants, and vice versa. Economic factors can
include power cost, but also commodity prices or other ambient conditions. Extending RL

22

2.4. BIOPROCESS MODELLING

beyond steady-state control still uses many of the aforementioned methods and techniques.
The article proposes that RL can be used in the real-time optimization domain, extending
from the more traditional regulatory applications that use first-principle models. In
cases where the plant model is unknown, the process is highly uncertain or where skilled
manpower is unavailable, a data-driven methodology for optimization should be possible.
They show that reinforcement learning is a viable alternative to non-linear programming
methods in optimization tasks, although more work is needed to fully compete with them.

The idea is that the model is learnt from contextual data, environmental data and plant
inputs. The model will respond with an optimal learnt policy in a continuous action space.
The authors use the actor-critic method utilizing a deep neural network, and separates
the value- and policy network into two different and standalone networks, where the
value network is trained before the policy network, on process data alone (see Figure 2.7).
Training of the policy network uses a static version of the value network to train discounted
future rewards for a particular state-action pair of the policy network. The value network
is trained using traditional backpropagation of the error derivate using a gradient-based
solver. This is done on the plant’s process data with corresponding decision variables
from a historic recording, or from simulated data, as was done by the authors. The value
network is trained on all available data at once, decreasing the risk of entering local minima
as can happen when iterating on small datasets consisting of recent data only.

| Agent

Critic

Evaluates the
current policy

’
’

Policy update/ .-

improvement //' Reward/
= “Value function” Response
Actor Dynamic
Implement the > >
policy Control action System System
output

Figure 2.7: Actor-Critic RL design architecture
Figure from [111]

Solving the policy network function need careful consideration: the goal is to maximise
the reward and an error-minimizing algorithm is undesirable. Instead, the authors train
the policy network to select actions that maximise the reward using a non-gradient-based
particle swarm optimization algorithm implemented in Matlab. The reward function was
engineered according to the optimization goal: maximizing profit subject to environmental
conditions. This could lead to actions that are undesirable from a normal plant operation
view, so a penalty term was added so that actions were kept within a secure process
envelope. Having these two goals as part of the reward function is an interesting feature to
investigate in this thesis.

From a simulation perspective, as soon as the networks converge, they can be kept
constant. However, in a real-time application, plant drift or unknown conditions must

23

CHAPTER 2. LITERATURE

be catered to avoid a mismatch between the model and the actual plant. As such, the
networks should be updated as new process data becomes available to compensate for such
plant drift during operation, either in real-time or via asynchronous tasks on separate
computing resources. The penalty term of the reward function should secure that the
actions space does not over-compensate for such drift. The work shows that static learned
policies can be used for real-time execution whereas updating them could be separated
and run in parallel.

Without any knowledge of the system, the actor-critic method was able to learn
strategies so that performance of the system was increased. This alone demonstrates the
effectiveness of reinforcement learning as an alternative to non-linear programming in
control- and optimization tasks.

2.5 Model predictive control

Mathematical models can serve as a basis for control algorithms, as described earlier. A
theoretical model of the application domain is constructed to predict the future given
the inputted actions. Feedback to the model with the state response would then be
used to update the model’s perception of the real world to make better predictions. The
model would allow a selection of optimal control actions if it is able to describe the
application model. In practice, modelling every aspect is not possible due to system drift,
instrumentation noise and unknown system relations, so a feedback signal is used to correct
the model accordingly for such deviations, to some extent. This error signal e; is the
measured deviation to some system set point of the monitored and controllable signal,
€t = Msetpoint — Mmeasured-

Many of today’s control applications utilizes Propotional Integral Derivative (PID)
control. PID is widely used in both the industrial and medical domain for basic closed-loop
feedback control [38]. The basic idea is that deviations to the controlled quantity is
corrected by the degree of error and the sum of past deviations. The input is then adjusted
proportionally to the target deviation given a sum of three formulas:

Ay = ert + K; / erdt + Kd% (214)

where e; is the error signal and the gain coefficients K,, K; and K, are tunable

parameters controlling the weight of each individual formula. Some systems utilize only

the proportional part, while others a combination of two or all parts. This simple system
is widely used due to its simplicity and performance.

A PID controller is reactive in that it will directly respond to the system state, while
other methods allow for predictive control and hence falls under the umbrella Model
Predictive Control. The modern research area picked up speed after World War II and is
an attractive strategy for complex systems [13].

For MPC, the concept of the PID-controller is extended to include [106]:

1. A dynamic simulation model that can predict the future state given a sequence of
control actions.

2. A mathematical solver that can optimize the actions given the control response from
the simulation model.

24

2.5. MODEL PREDICTIVE CONTROL

3. Boundaries of acceptable action dynamics and states

4. Optimization goal that the solver should achieve

An algorithm will iteratively calculate the future states on each time step t, the receding
horizon. The mathematical solver will adjust its parameters to regressively focus on
the states that would achieve the optimization goal and recalculate the receding horizon
prediction whenever new state observations are available and apply the first action to the
environment. The response feedback is then re-evaluated in this iterative fashion.

Identification of the system model is historically exercised by identifying ordinary
differential equations (ODEs) describing a dynamical system, often relying on first principle
physical equations. Identifying the model involves data analysis and data wrangling, and a
deep theoretical understanding of the application domain. In some cases, the staff is not
available for such modelling, or the system complexity makes it economically unattractive.
However, the model could also utilize data-driven methods by using neural networks [106].

In a dynamical system, next state is dependent on the current state, i.e. there is a
Markovian relationship within the states of a sequence. Chen et al. [77] observes that
residual neural networks models this behaviour where the output of a layer is the sum of
the layer activation itself and the input:

hiv1 = he + f(he, 6r) (2.15)

where ¢t € {0...T'} is residual block number and f is a function learned by layers inside
the block. By rewriting to

dhy
O = F(h,t,0) (2.16)

the hidden dynamics of f can be solved with an ODE solver, replacing the network to
a continuous network where the function parameters 8 are trained using gradient methods.
The authors claim there are many benefits of learning this function, such as computation
efficiency and constant memory utilization. Honchar [93] demonstrated applications of this
technique using standard non-linear functions, and showed that a multilayer hyperbolic
tangens network as ODE was able to learn a dynamic problem quite well using this method.

Tuor et al. [115] demonstrated the use of a neural network as a replacement of ODEs,
where a system model can be learned by a sparse amount of data. The learnt ODEs are
represented as fully connected layers using a rectified linear unit as activation function.
They demonstrate that such a network can have stability guarantees by constraining the
eigenvalues of the weights of the layers. The result is a network able to generalize physically
consistent ODEs. Look and Kandemir [95] propose a Bayesian version of neural ODEs
where prediction accuracy can be well established.

With relation to reinforcement learning, the MPC receding horizon prediction is
trained within the critic network. That is, the future discounted reward for an action
sequence is continuously updated as changes to both the network parameters and function
approximation is done as new data is trained towards a reward signal. As such, reinforcement
learning has the potential to succeed MPC as it is lightweight, data-driven and computationally
effective and being able to constantly adjust for drift and system dynamics given that it is
properly trained. By focusing on limiting the function dynamics to physically legal actions,
the security of such a data-driven method should be achievable.

25

CHAPTER 2. LITERATURE

2.6 Agent training strategies

Drawing lines back to the early days of T'D-learning, the research community has seen
tremendous developments within reinforcement learning. Deep Actor Critic-methods are
now some of the most advanced approximators in this field, involving deep neural networks
in many combinations and utilizing many extensions. A non-exhaustive overview and
relations of some of the current algorithms are shown in Figure 2.8, but many more exists.
The Soft Actor Critic is an algorithm of many reasons applicable to the real world, as
earlier described.

RL Algorithms

Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model

‘Policy Gradient‘<—) DQN ‘ H World Models ‘ M AlphaZero
B — DDPG — —
e — C51 ‘ *{ 12A ‘
‘ *{ MBMF ‘
HER ‘ —»[MBVE ‘

Figure 2.8: A non-exhaustive, but useful taxonomy of algorithms in modern reinforcement
learning

‘ A2C / A3C ‘4;

‘ PPO ‘<—

QR-DQN

il

‘ TRPO ‘4;

Figure from [87]

Even though the combinations of possible methods and parameters are endless and
somewhat intimidating, a template for actor-critic-algortihms from Bhatnagar, Sutton,
Ghavamzadeh and Lee [37] is still valid under general circumstances. Algorithm 2.6
describes a framework for an agent: input data, calculate action, observe reward, update
value- and policy network. Variations on the algorithm differ between methods, but still,
the general template holds.

2.6.1 Representation learning

Neural networks architectures are roughly divided into generative and discriminative
models. Fawaz et al. [78] reviews the state of research within this area for time series
classification and regression tasks. A generative model tries to find a representation of the
data prior to training. Such networks estimate the output variables through learning the
probabilistic distribution of a set of latent variables. These are often used for data filtering
and reconstruction tasks in multivariate problems, an example is the Auto-Encoder type of
neural networks. Discriminative models directly learn the mapping between the input and
output. For classification tasks, the output would be a probability distribution over the

26

2.6. AGENT TRAINING STRATEGIES

Algorithm 1 A Template for actor-critic algorithms
Input:
Randomized parameterized policy ¢
Value function feature vector f
Initialization:
Policy parameters 6 = 6
Value function weight vector v = vy
Step sizes a = ag, B = By, & = cay
Initial state sq
fort=0,1,2,3... do
Execution:
Draw action a; ~ 7% (s¢, az)
Observe next state si1 ~ P(s¢, at, St41
Observe reward 741
Average Reward Update
TD Error
Critic Update
Actor Update
end for
return Policy and value function parameters 6, v

class variables of the dataset, in a regression problem, the output is a continuous variable
[78].

Convolutional Neural Networks (CNNs) is a special kind of architecture for handling
image recognition and classification. CNNs are very similar to fully connected networks
but assume input data that has a spatial relationship. This could be 1-dimensional
data in the form of a time series, 2D images and also 3D spatial volumes like Magnetic
Resonance images. A convolution operation is performed on the input data transforming a
matrix to a more abstract representation given parameterized filter matrices, learned by
backpropagation.

A deep network of multiple convolution operations has the ability to learn specific
abstract details of the input and is analogous to how the visual cortex in our brain is
thought to be architectured. The mammalian visual system is in one model described by
two cell types: Simple and Complex [8]. The S-cells identify basic shapes, and the C-cells
combine a larger receptive field without being sensitive to shape positions. The neocortex
is thought to store this information hierarchically, and the concept of the neocognitron used
this analogy to recognise patterns after learning [10].

CNNss are a successor of this research, appearing first in the LeNet-5 CNN [23], describing
a result of merging two sets of information, the input and a filter matrix and sliding this
over the input. At every such location, a matrix multiplication with the filter is performed
which results in a feature map for that location. The filter is designed to react on image
features like edges, horizontal and vertical lines etc., but research has shown that using
several randomly initialized filter matrices can produce better results than hand-designed
filters, especially when followed by a pooling layer after an activation layer [45]. The filter
matrices are the learned parameters in a convolutional layer, and we can apply several
such filters per layer. Randomizing the first weights is a way of letting each filter travel

27

CHAPTER 2. LITERATURE

in different descents. Pooling is effective to make further processing invariant to small
changes in the input and gathers statistics of neighbouring activations.

Today, CNNs are superior within the image classification domain, but the methods can
also be applied to multivariate time series: given a univariate time series X = [z1,x2, ..., T{]
where x € R, a multi-dimensional time series X consists of m different univariate time series
in a matrix: X = [X1, Xo, ..., Xa/] as illustrated in Figure 2.9. An image is also formed
as a matrix, often with several colour channels in addition representing as n matrices per
image.

time series

% non-linear probability
transformations . o .
. 3 o §
A/ﬂf’/‘ . X g = > of the input 3 . distribution
P S over K classes
1%

>
py

input X2 time series
multivariate v
time series W \ -
univariate

input time
series

3

Figure 2.9: Multivariate time series
Figure from [78§]

Networks based on CNNs are divided into a feature extraction part consisting of
several layers of convolution, and a classification/regression part built on fully connected
neurons. Applying convolution filters on a time series results in a new representation with
dimensions equal to the number of filters used. Learning multiple discriminative features is
achieved by stacking several layers of convolution. Applying a global pooling aggregation
before the classification layers, reduces the number of learnable parameters and the risk of
overfitting to the data [78]. Adding Dropout layers is another strategy to avoid overfitting.
Dropout randomly disconnects neurons and is a simple way to introduce regularization [48],
[55]. Such networks play well on all input data formed as matrices and serve as a basic
discriminative neural network.

Adding a global pooling layer would also enable us to utilize class activation maps
that explains a model’s decision for a particular prediction [78]. The CAM method would
identify which parts of the time series matrix is responsible for the prediction and hence
reduce the black-box-effect of neural networks.

The sliding filter needs to be properly sized and is shown to be an important hyper-
parameter known as the kernel size. Tang et al. [114] demonstrates the relation between
larger kernel sizes and their ability to capture more correlations. However, oversized kernels
might have useless features that must be trained to zero, thus requiring more training
data. Under-sized kernels have less frequency resolution and do not capture important data
features. Randomly initializing the filters leads to noise in the data that must be trained,
but is not necessarily so that the training data exhibits features that train all filters. The
authors argue that time-series data has multiple salient signals that require multiple kernel
sizes to capture them. They propose that the kernel size should be part of the learning
process simply by adding several convolution operations with different kernel sizes on each
convolutional layer, visualised in Figure 2.10. The stochastic gradient descent will simply
assign weights to the kernels that best represent the data during backpropagation, and the

28

2.6. AGENT TRAINING STRATEGIES

author’s experiments confirm the performance. We also see that they have added a global
pooling layer for the benefit of Class Activation Mapping and explainability of the model.

l L2t l

— N,

l Filter result Concatenation ‘

[Batchnorm+RelLu]
Filter result Concatenation
Batchnorm+ReLu
Average pooling

Figure 2.10: Different kernel sizes (blue box) within each layer
Figure from [114]

Recurrent Neural Networks (RNN) represents another form of networks with memory,
but is seldom used for classification, according to Fawaz et al. [78] due to the problem of
vanishing gradients on training on long time series. Further, the computational resources
needed are greater, making RNNs a complex alternative. RNNs has seen success in
forecasting time series, although another variant, the long-short-term memory (LSTM)
networks have proven better accuracy [101].

2.6.2 Partial observability and physical consistency

Hausknecht and Stone [58] demonstrated that adding recurrency to a convolutional network-
based reinforcement agent would benefit the agent’s possibility to act on partially visible
states. They argue that a single observation is not enough to estimate the state of all
agents, which in case would make them non-Markovian. Such agents should not be limited
to using the current input data frame only. By replacing the fully connected layers in the
classification parts of a network with long-short-term memory blocks (LSTM), the agent
becomes a Partially-Observable Markov Decision Process.

Using LSTM as the classification layer is extensively demonstrated by the architecture
of Dota 2 by OpenAlI [98]. In Solving Rubik’s cube with a robotic hand [99], the visual
model and policy network is separated, where the visual model uses CNNs and the policy
network is LSTM-based.

Hausknecht and Stone [58] observe that performance of pure DQN agents decline when
given incomplete state observations, but by adding recurrency, the agent is better able to
capture the underlying system dynamics. However, their experiments show that adding
recurrency has no systematic benefit over stacking input frames to the convolutional network
as separate image channels, where each channel represents a moment in time (z;—2, x¢—1,x;)
rather than colours (7, g, b). We must remember that the authors use gameplay with virtual
screens as frame inputs to the agent. Stacking the frames leave a trail of history, and in

29

CHAPTER 2. LITERATURE

the case of games, physical properties of the play can be deducted from this information,
as illustrated in Figure 2.11.

Figure 2.11: Stacking images leaves trails of history for physical model identification
Figure from [58]

The added information from the time-sequenced frames would indicate that the agent can
learn the physical dynamics of the underlying system. Karpatne et al. [70] demonstrated
that neural networks benefit from implementing physical consistency rules in the loss
function of the stochastic gradient descent algorithm. They argue that sparse datasets
would benefit from constraining the learning rules to be physically consistent. There is no
guarantee that a standard loss function

Loss(V,Y) = % S (i —) (2.17)
=1

would be physically consistent. By adding a physical model to the loss term, the
authors were able to demonstrate that a network modelling inland water temperatures
would converge and provide more detailed results than currently available methods. The
physical model would generate a negative or positive number according to the input, and
during inference a standard rectified linear unit would negate data that do not conform to
the physical model, thus pushing the neural network to behave physically consistent.

2.6.3 Pre-training and imitation learning

The effect of randomness in the initialization of neural networks is well established within
supervised learning [45], [63], but Fawaz et al. [78] demonstrated a significant decrease
in accuracy on a classification task given bad randomisation. There might be several
explanations to this effect, like entering into different local minima for each training
session or being exposed for vanishing gradients for long time series. In recent years,
adding rectified linear units (ReLUs) as activation functions has shown to be effective.
Using multiple convolutional layers instead of many fully connected layers is also useful,
however as a general rule, training deep networks with random weight initialisation provide
worse results than shallow networks [101]. One approach to succumb to the challenge of
entering local minima due to bad randomisation, is pre-training the network weights with
a generative model.

30

2.6. AGENT TRAINING STRATEGIES

Sagheer and Kotb [101] propose a method for pre-training a network using an LSTM-
based stacked autoencoder (LSTM-SAE). Stochastic gradient descent has a difficulty of
learning long-term dependencies, but the authors developed a deep-LSTM memory network,
capable of capturing these long-term dependencies in a time series forecasting problem [100].

When training a machine learning model, our aim is that the model capture only
relevant information from the data presented and filters noise, bad samples and unknown
data. Using neural networks, many data samples are necessary to push the weights in the
correct directions. When the network complexity increases due to a increase in number of
trainable parameters, training is demanding as compared to traditional machine learning
algorithms. Further, there is no convergence guarantee for the network.

Sagheer and Kotb [101] train an autoencoder to learn the representation of the data in
an unsupervised manner in a method they call greedy layer-wise pre-training, visualised in
Figure 2.12. They successively add layers to the stack during training, to increase the search
space while preserving the already collected knowledge in the upper layers. Initializing the
upper layers first might push the weights in the direction of high-level abstractions of the
data, an idea that has been proposed earlier by others and investigated by the authors. As
more layers are added, better detail is achieved.

| 7 LSTM-AE I
! |
T = Decoder
\ | - | Output Layer
: LSTM-AE | : Eutput Layer)
—_—————— Decoder Encoder -
N I N
(Decoder) 11 Cencoter)~ |
Decod Encoder
ecoder ‘\ 7\{2nd Hndden Iayer) Can Hidden Iayer)

|
|
: S
I
7| -Clst Hidden layer) C 1st H|dden Iayerj C 1st Hidden Iayer)

Figure 2.12: Greedy layer-wise pre-training
Figure from [101]

l
i
Hali
il

When the pre-training phase ends, the result is encoder-layers of our network with
learned weights for the data representation that we disconnect from the autoencoder-
architecture. An output layer is then added for the classification or regression problem
at hand, and the fine tuning phase starts. In this phase, standard supervised learning is
executed to push the classification layer weights towards the problem solution. The authors
were able to demonstrate improved performance and faster convergence than other models.
They also conclude that this method is suitable for situations of correlated multivariate
input.

Using a layer-wise pre-training on time series could also alleviate the problem of sparse
data by pushing the model in the correct direction earlier in the training process.

Another related method of interest is described by Ho and Ermon [64]: Generative
Adversarial Imitation Learning. Their framework claims to directly extract policy from data
through generative adversarial networks, training a network G to confuse a discriminative
classifier D. When network D cannot see the difference between G and real data (given a
reasonable threshold term), successful cloning of expert behaviour is met. They tested the

31

CHAPTER 2. LITERATURE

algorithm on OpenAl testbench environments and showed that the method was able to
perform close to expert’s behaviour on several physical environment tests.

2.6.4 Latent space training

Ha and Schmidhuber [80] proposes to separate agent models in three parts: vision V,
memory M and controller C in order to effectively train the networks for the parts they
actually focus on. They argue that the vision model could be trained in an unsupervised
fashion using autoencoder convolutional neural networks to represent the complex input
frames in an abstract, compressed world without convergence towards a supervised output.
This model could be trained separate from the task, meaning that excessive computing
power for representing the temporal and spatial properties of the world can be done once,
and reused for several tasks. Continued training of the vision can be done over time
for adding new representations. While the vision model compresses the moment, the
memory model abstract the time axis, abling prediction over what happens in the future
by remembering through recurrent neural networks, or LSTMs.

The last controller layers are deliberately made small and shallow, to keep the complexity
of the problem reside in the V and M models. This means the controller can be retrained
for several tasks in an effective fashion. Figure 2.13 show this architecture in relation to
what the authors call a World Model.

environment -
action

~_

VAE (V)
RN

observation

world model | MDN-RNN (M)

) action

Figure 2.13: Vision V, memory M and controller C networks forms the World Model
Figure from [80]

The latent space model in the autoencoder of V enables us to separate the real world
from a simulated world. In effect, a controller can be trained on a simulated world and act
accordingly when transferred to the real world, which makes this an interesting architecture
for cases where execution on real actuators is limited, costly or not preferred due to
health or safety. The authors were able to demonstrate superior performance in OpenAl
environments.

Robine et al. [113] further extends this idea by increasing the latent space into the
multidimensional domain to preserve world representations, using a model-free Proximal
Policy Optimization. They demonstrate superior performance in an Atari gameplay context.
Another change is the ability to predict the next latent variable based on the previous
latent variable and action, independent of the observation. The reward should not be
dependent on the next latent variable as well. Further, the policy is trained on the latent
variables.

32

2.6. AGENT TRAINING STRATEGIES

2.6.5 Regularization

According to Thodoroff et al. [89], reinforcement learning in high-dimensional domains
suffers from instability due to high variance. There are many sources for this variance, like
randomness in data collection, state of initial parameters, the complexity of the learner,
hyperparameters and of course sparsity in the reward signal. Regularization is one way to
increase generalisation. An example is to introduce data augmentation on the signal input,
i.e. adding noise of some distribution. However, the authors suggest smoothing the reward
trajectory through temporal regularization. An important assumption is that a state is
dependent on the previous state in a sequence, that is, it occurs after a known state. A
time series is such a sequence where each value is somehow connected to the predecessor
and falls under the umbrella of being a Markov Decision Process.

The goal is to find the policy that maximizes future expected return. The method
is simply to smooth the value estimate of a state with estimates occurring earlier in
the sequence. The smoothing function could use standard methodology from time series
prediction, like exponential smoothing, ARMA etc. The authors demonstrate that this
method reduces variance and helps the learning process. They implemented the algorithm
in a high-dimensional setting using an actor-critic trained by proximal policy optimization
(PPO), exponentially smoothing the target of the critic by temporal regularization,
controlled by a decay factor A\ as a hyperparameter. This improves the performance
when testing on a suite of Atari games, reduces variance and increase robustness. The
authors claim the method is particularly appealing for real-world applications where agents
might not observe all states during training, i.e. the data is sparse.

Instead of assuming that rewards are similar for spatially close states, the authors turn
the RL problem around and assume that the rewards are similar for states visited closely
in time. This could prove useful for the exploration of new states.

Antoniou et al. [68] presents a more traditional route to regularization by training
a generative adversarial network to produce data. The model learns to produce data
that are generalised within the same class, exhibiting similar features as expected from a
missing value. The point is to generate more data for training to avoid overfitting to a
small sample space. The generator network G produces samples, and a network D tries
to discriminate the generated samples from real samples according to the Wasserstein
distance. The authors conclude that the method improves the performance of classifiers
and is applicable in low-data settings.

2.6.6 Experience replay

Experience replay is a method to increase the available samples during the training of a
reinforcement learning agent, as we have seen several examples of earlier. Typically, a
circular buffer with a defined capacity keeps the n latest transitions in memory or persistent
storage. When training, random samples from this buffer are mixed with new transitions
and is used to avoid overfitting the network, avoiding a skew towards the last visited states.
The buffer increases the available sample size when training the RL network, and is a way
to avoid the network to forget earlier knowledge. Fedus et al. [105] review several aspects
of this method and studied the effects of different replay buffer parameters towards a DQN
network.

It is worthwhile to draw a line between this method and neuroscience. According
to O’Neill et al. [42], experience replay is suggested to explain hippocampus-dependent

33

CHAPTER 2. LITERATURE

memory formation in the brain. This happens in two phases, slightly analogous to our
usage of experience replay within reinforcement learning. First, memories are encoded
during full wakefulness, that is, added to our buffer. In phase two, sharp wave/ripple events
are fired in the hippocampus, initiating the start of our training. Here, the memories are
either transferred to long-term storage or used for strengthening associations in the brain.
This likely happens during sleep, according to emerging evidence. Several parts of the
brain are active during this time, coordinated by the hippocampus.

firing
probability
—
——
—
——
—
\
'
'

exploration 1 sleep after exploration 2 sleep after

(:] el —

A | | mun A | I I

E 1 I I LI I

| | me o Cc [[C LI (1] | C | | L[]
wi i D 1] | | | D Iml | | D I | |

Lo | A | | 1

o0 > @

Figure 2.14: Reactivation patterns during sleep after hippocampal reactivation
Figure from [42]

Three important factors determine the experience replay performance, according to
Fedus et al. [105]. The replay capacity is the total number of transactions stored in the
buffer, the age can be expressed in the number of steps since the transition was inserted,
and the replay ratio is the relative frequency between transitions from the buffer and the
environment used for training. Their experiments show that increasing replay capacity
increases performance, although keeping the replay ratio fixed has varying improvements.
They also discovered that using n-step returns on increased capacity buffers is a critical
factor for taking advantage of larger buffers. They tested the extreme where an RL
agent was trained by offline data only, without any environment to interact with, just the
recording. A setting of n > 3 showed very positive results. This discovery would enable us
to architecture agents where training is done separately from the inference platform.

2.6.7 Inverse reinforcement learning

Reinforcement learning is about finding a policy 7 : S — A 4 that maximizes the future
expected reward for each state-action-pair (s,a) € S - A. Inverse Reinforcement Learning
(IRL) on the other hand, is about learning the reward function given system dynamics and
expert behaviour. One example is the reward function for autonomous driving that should
capture the desired behaviour of the driver. Such behaviour could be stopping at red lights,
avoiding pedestrians and one-way roads etc. [76]. Engineering these rules would require us
to identify a list of every such situation, as well as each rule’s importance towards other
rules. One example of a very detailed reward function is the one engineered by the Open
ATl Dota 2 team.

Within IRL, a policy or sequence of actions embedding some expert behaviour is used
to find a reward function that explains this behaviour. We note that the reward function
completely captures the optimal set of policies in a system. An important assumption
is that the expert acts optimally so that we can estimate the function that led to this
behaviour. This is our first attempt at estimating an actor’s own actions, guided by expert
advice. We might be philosophical at this point and warn about the consequences of

34

2.6. AGENT TRAINING STRATEGIES

learning bad behaviour. How can we alleviate a situation where an agent acts against
human actions?

Ramachandran and Amir [33] considers the problem from a Bayesian perspective where
a probability distribution over the reward space is estimated. Expert behaviour is seen as
the posterior evidence that is used to update the prior using a modified Markov Chain
Monte Carlo (MCMC) algorithm. They claim that this method allows imperfect pieces of
expert advice, as well as multiple expert inputs. However, they assume that an agent X
always choose actions that maximize the future reward, meaning that all actions are perfect
in the sense of being less exploratory. Further, they assume a stationary policy meaning
that any policy for action a is independent of the previous sequence of actions. This would
imply that the expert always exploit his or her knowledge without exploring new paths in
the environment since it is assumed a fully learned expert. However, Bayesian statistics
and the Central Limit theorem assumes normal distributivity, and thus we would accept
some expert noise in that respect. The method makes the following assumption:

PT’)((OX’R) = P?‘X«Sl, al)’R)PT’)(((SQ, ag)’R)...PTX«Sk, ak)]R) (2.18)

where the probability distribution of expert behavior Ox = (s1,a1), (s2,a2), (Sk, ax)
given a reward function R is the individual reward function distributions for each state-
action pair, multiplied through the chain rule of probability [123]. Each product in the chain
is independent, so for each state-action-pair we would estimate the probability of (s, ax)
given R. Finding the distribution of R would mean we want to find the distribution that
maximizes the value of (s, ar). This is an optimization problem with calculation of priors
depending on the application. The authors explain reward learning and apprenticeship
learning as methods for such and demonstrated implementations of gameplay using the
framework.

Lopes et al. [39] uses the IRL-perspective in a sense of active learning. The authors argue
that their algorithm query an expert when needed since a policy is unlikely to be completely
specified beforehand, instead of learning from static state samples. The algorithm actively
learns from expert samples when needed, that is when informative decisions for the policy
needs to be taken. The problem space of learning the policy on sampling only is complex,
meaning that the system will likely calculate multiple optimal reward functions and multiple
possible policies for one reward function. In comparison to MCMC, which is an uniform
sampling approach, the active learning algorithm could potentially use the most recent
learnt expert advice for a local control problem not experienced in the general sense.

The agent is given a set of expert demonstrations D = (s, a;) and updates an estimate
of possible reward functions P(r|D). When the probability distribution’s standard deviation
is above some threshold, the agent becomes unsure about the policy and can query an
expert for the correct action. Their method reduces the number of samples necessary to
learn the system and they argue that the Markov Chain Monte Carlo-algorithm (MCMC)
from Ramachandran and Amir [33] becomes computationally expensive in large dimensional
spaces. The method was demonstrated on several problems describing a Markov Decision
Problem consisting of a continuous state space and discrete action space. A defined reward
function using some relation to the problem domain where the parameters are estimated
by the algorithm should be a better choice than just defining r : X — [0; 1], i.e. a sparse
reward space. In the latter case, the authors indicate that the problem may be too complex
for active learning due to the computational cost.

35

CHAPTER 2. LITERATURE

A real-world example of IRL active learning is given by Ziebart et al. [36]. They employ
maximum entropy to the IRL problem originating from the stem that expert behaviour has
noise and that a system has difficulties of differencing policies when such noise correlates
to several policies. By maximizing the entropy, the uncertainty of expert behaviour is
reduced. They demonstrate the method in a driver route modelling problem including
route preferences and possible destinations. Destinations for a driver are modelled using
Bayes theorem.

We could relate this problem to Florensa et al. [69] where agent goals are generated
during the course of agent experience. The idea is that an external adversarial network
generates tasks that the agent has the knowledge to achieve, slightly making each new task
more complex. When a task is complete, a new slightly more difficult task is generated.
The authors claim this method allows for sparse reward methods, i.e. where the reward is
either 0 or 1.

2.6.8 Soft Actor Critic

As described by Haarnoja et al. [81], a Soft Actor Critic (SAC) algorithm has shown
sample-efficient attributes and might have less sensitivity to hyper-parameters. SAC
utilizes maximum entropy for choosing exploratory actions that maximize the reward,
with minimum pre-learning. Haarnoja et al. [82], [83] describes an Off-Policy Mazimum
Deep Reinforcement Stochastic Actor with continuous state and action spaces and three
distinct characteristics: separate value- and policy networks, off-policy formulation and
entropy maximation. Instead of just acting on future discounted rewards as shown in
Equation 2.8, SAC utilizes maximum entropy in order to act as randomly as possible while
still completing the tasks.
Let J(m) be the value function of a policy, then

T
J(m) = Eisy anyops [F(51,a1) + aH(7(-]51))] (2.19)
t=0
where the temperature parameter « controls the relative importance of the entropy
term against the reward which must be tuned. Further, gradient update of the policy is
done off-policy utilizing the history of available data from a replay buffer. This gradient
update means slower learning of the agent than just replacing the target network as done
earlier by Mnih et al. [51]. The soft policy update alternates between policy evaluation
and policy improvement as described by Sutton and Barto [112]. The stochasticity of the
policy and value update prevents premature convergence and encourages exploration due
to the maximum entropy objective. The authors were able to demonstrate an agent that
quickly learned the underlying dynamical model based on actions in the real world.

36

Chapter 3

Use Case

3.1 Introduction to spray drying

To investigate the main research questions, a delicate industrial drying process is selected
for analysis due to its widespread use and available scientific material. Drying material
substances is widely applied in all types of industries, and there are many technologies
implemented to either reduce moisture content or completely dry out water from a product
liquid stream. Using spray drying technology, a liquid material can be nearly completely
dried to a single material substance in the form of solid particles. This process poses an
interesting problem since the control of the spray drier process equipment directly affects
the end-product quality, and that there is an optimization potential on other factors as
well. Still, the operation of a spray drier involves some manual adjustments and knowledge
for optimum operation.

System boundary

Atomizer

Drying gas —> 0 & Liquid feed

Exhaust gas

Drying chamber —

\
|
|
|
|
|
|
|
|
|
|
|
I

Scrubber
N L ____Z2_- Cyclone

Dry particles collector

Figure 3.1: A typical spray drier setup

37

CHAPTER 3. USE CASE

Spray driers are used in the production of food and feed, detergents, polymers,
pharmaceuticals and within the pulping industry to convert liquid lignin to powder.
Reducing product moisture content means efficient logistics and transport, as well as
potentially longer storage periods.

By definition, spray drying is the transformation of feed from a fluid state into a dried
form by spraying the feed into a hot drying medium [40]. The technology dates back to
the 1860s and has of course undergone massive development since then, however, the
underlying principle is the same today. The first patent dates back to 1872 by Samuel
Percy, for the production of milk powder by spray drying [75].

Figure 3.1 give a schematic overview of a typical spray drier process and is described in
several sources ([40], [88], [11]): a liquid product feed is discharged into the atomizer, a
critical component that converts the substance into very fine particles. This is done either
using high-pressure nozzles or a spinning disc, where the aim is to increase the surface
area of the liquid through the liquid disintegration phenomenon [88]. The selection of the
design of the atomizer is carefully done according to the type of material to deplete.

When the liquid spray enters the drying chamber, gravity pulls the particles downwards
and turbulent gas flows in the form of heated air either with- or counter-flow the product
stream. This phase is called the particle formation phase [88] where the large droplet area
contributes to efficient energy exchange. As the particle heat is increased due to hot-air
contact, moisture is exchanged due to the evaporation of water inside the particles. At the
bottom of the chamber, moist hot air and dry powder exit through a powder separation
system using vacuumized cyclones. Particles are accepted at the bottom of the cyclones,
whereas the reject stream is the moist and hot air that can be released as emission gases.

The emission gas is most often cleaned through wet scrubbers in order to minimize the
escaped particle content and odours released into the atmosphere. The collected particles
can be re-introduced to the liquid product flow and will as such blend with the liquid and
re-agglomerate.

Hot air is used both as a drying medium and for transport of the product flow. For the
efficient operation of the spray drier, a delicate balance between airflow, air temperature,
feed flow and -temperature as well as atomizer speed and cyclone vacuum level, must
be maintained. Even moisture of the incoming airflow will influence the process, as the
moisture difference between the airflow and product particles directly affects the timing of
the drying process. If the incoming air is moist (as in the summertime when hot weather
increases the air absolute humidity potential), the heat difference between air and product
must be increased to assure a proper level of evaporation. Chamber size must also be
designed such that enough drying time is exerted for the product in question. The feed flow
viscosity and feed temperature also influences the process and is of likewise importance.

Further, the process operation also dictates end-product qualities, mainly the end-
product moisture content, particle size and density. The optimum operation window varies
in time, given the large operational envelope and degrees of freedom.

3.2 Controlling the process
Spray drying is still preferred over other methods mainly due to its continuous and efficient
single-step method that shows great adaptibility [88]. Further, the end-product does not

need any additional processing and the process is excellent for heat-sensitive materials.

38

3.3. MODELING THE PROCESS

By empiric observation, some guiding relationships of the process parameters exist.
Santos et al. [88, p. 16] give an excellent overview over the inherently interconnected
relationships of some major process parameters in Table 3.1.

Parameter Tout Dropletg;,. hout Efficiency
Drying air flow rate ™ 3 ™

Air humidity T ™ 4

Inlet temperature ™M1 3 0
Atomizing air flow i W

Feed rate W T ™

Solid concentration in feed | 171 M + ™~

Table 3.1: Relationships between spray drying parameters
By increasing the parameter in the first column, the rate of increase/decrease in the
related parameter is shown by corresponding arrows Source: [88, p. 16]

These process parameters relate to the outlet temperature, particle size, final product
moisture and overall efficiency of the spray drier. Some parameters can be controlled
through engineering, but some is a consequence of weather, feedstock and equipment design.
The spray drier operational envelope is designed according to the feed type and target
efficiency, so some parameters will also be fixed, like chamber size, atomizer technology,
chamber insulation, cyclone size and efficiency etc. Air heating technology and feed
pre-processing are also fixed according to the application. Inherently, spray drying is an
energy-intensive process and actions for preserving energy, energy recycling and reducing
energy consumption is also part of the equation of designing a plant.

Sensing the important characteristics of the process should be done by careful digitalization
by appropriate sensors and data collection mechanisms. A pilot plant is exemplified by
Pote and Sudit [61]. Here, an architecture for controlling the process via PID regulators is
established with proposals for further work using first-principle models and grey-box models.
Moisture content as a quality parameter could be indirectly controlled by maintaining a
specific outlet temperature. This could be controlled by varying either the feed flow or
the inlet temperature according to Parastiwi and Ekojono [65]. Other product quality
parameters are difficult to control, like product thermal degradation, aroma retention and
structure and size of particles. Parastiwi and Ekojono [65] showed that applying a simple
PID controller using outlet temperature as the feedback signal, greatly stabilizes the spray
drying process, at least when considering the moisture content and outlet temperature
relation.

3.3 Modeling the process

Understanding the underlying process is necessary to develop control schemes that target
specific optimization criteria, like increased quality, less energy consumption or higher
throughput. A mathematical model could be established as a source for finer process
control. However, this is a complex task and according to Azadeh et al. [46], claiming
that traditional regression methods can not model the process. The reason is explained
through the non-linearity of the process as well as the current state of sensor technology.
Zbicinski [75] reviews the state of spray drier modelling and simulation, showing several

39

CHAPTER 3. USE CASE

challenges with mathematical models when scaling up a spray drier design. However,
advances in computer simulation show a positive correlation with physical experiments
and is now considered an established method, involving Computational Fluid Dynamic
simulations (CFD).

The question of creating mathematical models as a universal problem-solving method
comes to a point of available competence, funding and evaluating return-on-investment
within a research area. Oakley [26] describes a layered approach to spray drier modelling
where items can be modelled at different levels:

e Level 0 Heat and Mass Balances.
e Level 1 Heat and Mass Balances with solid-vapour equilibrium.
e Level 2A Rate-based with simplifying assumptions about particle motion.

o Level 2B Rate-based with a simulation of gas flow and particle motion (CFD).

Oakley [26] uses the word fidelity to describe the model quality according to the level.
High fidelity models give detailed predictions with the added cost of work and computation.

Modelling heat and mass balances is an established science field used in many situations.
The core is understanding the physics and making an informed assumption of the necessary
model fidelity according to the application. Hence, the layered approach by Oakley [26] is
important when designing a modelling strategy.

3.3.1 System boundary

We will create a simple level 1 model for our use case as visualised in Figure 3.2. This
model serves several purposes: first, it will be used for creating synthetic process logs for
later generative modelling. Second, the model will act as the environment for our RL agent
when evaluating its performance.

Tfeed Dfeed erm Tin ans env gas

I A M A

Q feed ——> Spray drier ——> Nout
——> Dropletg; e

Figure 3.2: System boundary for the model

The model is parameterized by:

e Manipulated variables: Process variables we directly control from the control simulation

e Controlled variables: Process variables we can restrict for the purpose of experiment
design

o Responding variables: Process signals describing the response of the system as a
function of the manipulation

40

3.3. MODELING THE PROCESS

3.3.2 Level 0 Heat and mass balance model

A level 0 spray drier model is established using the fundamental laws of conservation of
mass, stating that the mass of a system remains constant over time and cannot change [124].
Materials can neither be created nor destroyed but can change their form. Further, all
inputs and outputs add or subtract to the total mass balance. Our mass balance formula
considers three compartments of mass, in the form of solids, liquid and gas, adapted from
Oakley [26]:

Ffeed,solids + Finfgas,solids = Lout—gas,solids + FpTOduct,solids (31)

Ffeed liquid + En— as,liquid = Fout— as,liquid T+ F, roduct,liquid (32)
)11q gas,iiq gas,itq P q

Ffeed,gas + Fin—gas,gas = Lout—gas,gas + Fproduct,gas (33)

where Fj ; is the mass flow (kg/min) of component j in compartment i. To model the
energy balance, we use the first law of thermodynamics [126]:

AUsystem = Q + W (34)

stating that the change of energy in a system is equal to the difference between the
heat supplied to the system (@) and the work (W) done on the system. We model the
energy balance of our system as:

Ffeedered + En—gasHin—gas = Fout—gasHout—gas + Fproducthroduct + Q (35)

where H; is the enthalpy (J/kg) of compartment i and @) (Watt) is heat exchange
between the system and the environmen, mainly heat loss. The model will ignore the heat
exchange parameter.

Model implementation and results

We rewrite this to model the feed and gas streams we can measure by sensors (or at least
give a good estimate on) by integrating a rate formula for the mass balances:

d .
7?] = _Ffeed + Ffeed (36)
dt
dy
dt
where F' (kg) is the state and I (kg/min) is the rate of state change given by the
formula:

_En—gas + En—gas (37)

Qxp

T

F=

(3.8)

where @ is the stream rate (m®/h) and p the stream density (kg/m?) and 7 the
simulation time constant. The stream density can be either measured (for the feed) or
estimated (for gas). The density of air varies with temperature [125], but is not modelled

41

CHAPTER 3. USE CASE

here and set constant. The energy balance considers only an instant heat flux between the
two streams and we apply the first law of thermodynamics to acquire the heat capacity of
the system as:

AE = mcAT (3.9)

where m is the mass (kg), ¢ is the heat capacity (J/kg°C) and AT is the temperature
difference between the streams. Our heat flux between gas and feed energy is

AFE

T=—"7"7 (3.10)
Ffeedcfeed
Applied to our differential equations, this gives us
d .
d%{ — Ty +T (3.11)

where T, is the estimated temperature of the output product feed.

For the sake of the simulation, and learning the RL agent, we will consider the feed
rate) as our variable to manipulate, and the T, as the interesting responding variable.
Keeping the other variables constant, yields the result according to Figure 3.3 and Figure 3.4
when running the simulation in Matlab.

9 T T T T T 100
- Feed(mh)
out
86 f 196
8.4+
194
8.2+
< 192
o 8f —
S
490
7.8+
188
76
7.4+ 186
7oL 184
7 1 1 1 1 1 82
0 10 20 30 40 50 60

t

Figure 3.3: System response with a constant feed rate Q = 8

Intuitively we observe that the temperature decreases as the feed rate is increased, in
line with the reported relationship by Santos et al. [88]. As the feed rate increases, more
solvent needs to be evaporated and the energy flux from the hot air is increased. If the
energy level is kept constant, the temperature drops.

42

3.3. MODELING THE PROCESS

8 T T T T T 130

4125

751
1120
1115

7 -

41110
< 65 Feed (m%h) —
™ 5F 4
E TOUI

4100

6 -
495
490
55
185
5 1 1 1 1 1 80
0 10 20 30 40 50 60

Figure 3.4: System response when ramping up feed rate Q from 5 to 8

3.3.3 Level 1 Droplet size and evaporation dynamics

We extend the model to include droplet formation and evaporation dynamics, by using the
above mass- and heat balances as input. The formula Sauter mean droplet size [35] is an
empiric formula that model the droplet size from a rotating disc atomizer:

1.4 x 10%p0-24

Dus = (Nd)O83 x (nh)012

(3.12)

where D, is the mean droplet diameter (pm), d is atomizer disc diameter (m), h is
atomizer disc vane height (m), N=disc rotating speed (rpm) and M is mass feed rate
(kg/h). This formula is found and tested by experiments [35], and one must assume that the
overall design of a spray drier, and the atomizer in particular, heavily influence the model.
Hence, it might not be representative of all spray driers on the market, and one should
carefully implement designed experiments to create a model that suits a particular process.
For our simulations, we assume that the model is sufficient. Figure 3.5 demonstrates the
model output over a feed rate of 5 to 8 m3/h while keeping the atomizer rotating speed
fixed at 7,600 rpm.

Further, modelling the evaporation dynamics can be a daunting task depending on
the level of detail wanted. As each particle flow down the chamber, energy between gas
and the particles are exchanged to an equilibrium. However, as the moisture evaporates
from the particle, the temperature dynamics is altered. The gas flow’s ability to store
moisture is dependent on the gas’ ability to maintain a humidity difference, as a function
of the gas temperature profile. We could also model the particle relative velocity, expressed
through the Reynolds number, to account for the evaporation from the particle surface due
to the airstream velocity. Depending on chamber design, one could easily assume that the

43

CHAPTER 3. USE CASE

8 T T T T T 140
75| 1120
41100
7 -
180
e
o L €
= 65 =
4160
6 -
Feed(m°h) 140
Droplet size (um)
55T 120
5 1 1 1 1 1 O
0 10 20 30 40 50 60

Figure 3.5: Droplet size when ramping up feed rate Q from 5 to 8

particle evaporation time is not constant for all fractions, as air turbulence would cause
some particles to re-enter the main flow, and also temporary deposit on the walls.

To approximate our model, we make the following assumptions, using the droplet size
model as input:

e The droplet is fully heated before evaporation starts

o Evaporation is linear, as a function of droplet size

o All particles are perfectly dried, e.g. powderized

e Droplet mass is homogenous and relates to the volume and density

e The droplet is dried in atmospheric pressure

Therefore, we create a very simplified evaporation model for our use case, adapted from
the classical constant droplet temperature model (d?-law) stating that the squared value
of the droplet diameter decreases linearly with respect to time. We state that

Tdroplet

Edroplet = ’yAdroplet X A*h (313)

where F is evaporation, T is the droplet temperature, A is the droplet area and h is
the absolute droplet humidity (grams/mm3), empirically adjusted by the v parameter.
The model calculates droplet relative humidity. Our model nowhere justifies the amount
of work in the field over the years and is just implemented as a reference for our agent
learning.

44

3.3. MODELING THE PROCESS

Another factor is the glass transition temperature T, and the problem of sitckyness,
where the material becomes sticky and deposits on the chamber surfaces [27]. Our model
does not take T, into account.

The model yields the simulation of relative humidity in the end product as shown in
Figure 3.6. The feed rate was ramped from 5 to 8 m3/h while keeping the controlled
variables fixed.

8 T T T T T 3
75
125
7 -
12
= T
~ L D:
mE 6.5 2
11,5
6 -
Feed(m®/h)
Humidity (%RH) 11
551
5 1 1 1 1 1 05
0 10 20 30 40 50 60

Figure 3.6: Droplet size when ramping up feed rate Q from 5 to 8

Our immediate evaluation is that the humidity increases as the feed rate is increased, a
relationship described by Santos et al. [88] and well preserved in our model.

The model is a very coarse representation of a spray drier and is made for demonstration
of the reinforcement learning concept. It does not capture many of the necessary components
of spray drying physics, as briefly discussed above. As a general model that serves our
purpose of the reinforcement learning agent, the level of detail should be sufficient.

Complete code listing for the spray drier ODE model is in Appendix A.1.

3.3.4 Historical logs

The effort of making a model needs some explanation. First, in order to explore Autonomous
Learning, a lot of process data is needed as we enter the field of Sequence-to-Sequence
modelling with generative networks. It might be tempting to use data from an existing
process plant, but for the sake of explainability of the agent and for developing the concept,
synthetic data will be used for training and testing different model scenarios.

Later, real-world applications of the model will need careful data preparation and access
to a long history of sequential process operation using a quantifiable method. In such a
scenario, the historical dynamics of the process operation will be directly learned by the
generative model and locked to one historic operational scheme. A synthetic model enables

45

CHAPTER 3. USE CASE

us to experiment with several process control strategies and vary the setup of manipulated
and controlled variables.

The model behaves like the physical operation of the central parts of the spray drier.
A rollout framework is made, and the model is encapsulated in a class derived from
matlab.io.Datastore for convenient usage when training the generative network. The
DataStore presents Sequences of data to a compatible DataStore user, i.e. during training
of a memory network in Matlab, as an alternative to raw disc storage.

3.4 Autonomous Modelling

The hypothesis of this report is whether logs of historical data can be used to train an
RL agent for optimization towards more complex feedback schemes, taking into account
other and more sparse parameters than just sensor data. The idea is that the recorded
historical logs will contain enough description of the dynamics in order to properly make a
detailed model. The introduced use case model will serve as a basis for generating such
logs as synthetic runs of a fictive spray drier. Later, an agent is trained on the historical
logs and evaluated by running a control scheme towards the real model.

The next section will present an implementation of such exemplified through the
presented spray drier use case.

46

Chapter 4

Autonomous Learning of Core
Skills

In God we trust, all others bring data.!

4.1 Introduction

Central to training an RL agent is establishing the environment and a reward function for
iterative and exhaustive learning. As presented earlier, a traditional approach would be to
mathematically model the environment using game engines or 3D engines, as presented
by OpenATl’s Solving Rubik’s cube project [99], Dota 2 competition [98] and DQN-based
gameplay [60], amongst others. Time series are data, logs or process signals that are related
in time and as such fit as input to a Markov decision chain concept, which is relevant for

our research.
Q % % o Real world
N N
C> N

N~ e
e e a
—>| Agent
7T
2

=
<
s

Agent
m

w‘

Figure 4.1: Concept for Autonomous Learning of Core Skills
1. Train a Generative Process Dynamics Model on historical data log sequences S;,. Skills
are stored in latent space of a generative network. 2. Train an RL agent policy 7 using the
generative model as the environment E applying action a with the model E. 3. Execute
non-linear control in real world proposing action a based on policy m and observation
input F.

! American engineer and statistician William Edwards Deming (1900-1993)

47

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

Using the ideas of multidimensional latent space models [80], [113], we utilize generative
models to passively learn system dynamics. We define a Generative Process Dynamics
Model that is trained for representing the historical data logs, from this point on called
sequences. The training is unsupervised, that is, a generative network is presented with
many sequences and stores latent space vectors in the network. After training, we can
sequentially query the network and change the input parameters according to the action
output of the RL agent. We are then able to estimate the next step in the sequence after any
given action. The RL agent would apply the proper reward- and explore/exploit-scheme
for action proposal. The result is an agent that can be trained on historical logs and
execute dynamic non-linear control in a real-time scenario exhibiting the same dynamics
as described in the logs, a concept visualised in Figure 4.1. Of course, a prerequisite is
that the logs exhibit relevant system dynamics.

For us to explore this idea, the work is divided into the tasks outlined in Table 4.1. The
work is implemented using Matlab and several add-ons: Statistics and Machine Learning,
Deep Learning, Reinforcement Learning and Parallel computing toolboxes. Matlab is also
used for all data engineering and statistics tasks.

All experiments are executed in silico by using Matlab-simulation and the Reinforcement
Learning Toolboxz.

Define first principle model

Build a dynamic model of an example process,
namely a level of the spray drier process as
described in Chapter 3.

Generate synthetic process data logs

Using the dynamic model, create a large
amount of fictious run data applying
traditional control schemes for univariate and
multivariate scenarios.

Establish a predictive baseline

Evaluate the power of traditional control
schemes.

Train a Generative Model

Train off-line using the process data logs.

Train a Reinforcement Agent

Train using the Generative Model as the
Environment. Actions are applied to the
Generative Model and functions as the
Observation space. Explore several agent

types.

Evaluate Agent towards model

Use the first principle model designed in the
Use Case chapter as a real time environment
for control evaluation.

Approximate a reward function

By transfer learning or according to
optimization. Evaluate performance of sparse
feedback in continuous processes presented in
the use case.

Table 4.1: Implementation tasks

48

4.2. GENERATING SYNTHETIC DATA

4.2 Generating synthetic data

The main part of this chapter will focus on generating data from the spray drier first
principle model as presented in Chapter 3 with the goal of establishing a baseline for
comparison with a reinforcement learning agent. Data could be fetched from disc files as
historical logs, but we choose to generate synthetic data in real-time, to save maintenance
task time, as well as having a short turn-around-cycle for testing new ideas. This means
that we solve the ordinary differential equations when data from the logs are requested, in
real-time.

The real-time rollout mechanism is implemented as class RolloutDatastore descending
from the matlab.io.Datastore class, which makes it compatible with the Deep Learning
toolboxes in Matlab. The class will roll out data using the control scheme and generate
sequences that can be used for neural network training.

First PID Datastore s %
principle regulator sequences mn %

model rollout

Figure 4.2: Architecture of the RolloutDatastore class

The rollout algorithm is made with two scenarios in mind:
e Univare control of output temperature using PID
e Multivariate control of output temperature and particle size

The first scenario is used for evaluating the generative model concept and for training
univariate RL agents. The second scenario is used for investigating the performance of an
RL agent trained by a multivariate generative model. As such, the system boundary will
be adjusted to be multivariate, that is, the manipulative variable set includes more than
one signal, as shown in Figure 4.3.

Tfeed Pfeed T, ans env gas

R T R

Spray drier ——> hous
——> Dropletg;.e

Qfeedﬁ

erm E——

Figure 4.3: System boundary for a multivariate model

We choose the Z,,,, signal as the second manipulative variable as this could cater for
some interesting challenges. Droplet size calculation is dependent on both @ feeq and Z,pm,
and could be an example of a conflicting control strategy, where an optimum in both signal
paths is not easily achievable. Balancing adversarial optimums by a trained reward model
is of particular interest in fields involving human decision making.

49

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

4.2.1 Connecting to the Environment

The RolloutDatastore is used for training the generative model. To accomplish this, each
rollout of size n is broken into several sequences according to a defined sequence length m.
Figure 4.4 demonstrates this process and the relations. The produced set of sequences is
denoted S;, as they are used for input to the generative model learning process.

1 n

Rollout e e eeoeoeeeeeee <
00000000000 U 51
000000000000 " U 5
0Cc0eeeeo000000 "L 53
Oocoeeeeo00000 "L S }S'
0O0O0OOeeeeo0000 ~ N\ Ss wm
0coooocoeeeeoo0o0 ~“~_ Ss
0coooooococeeee ~~_ S

Figure 4.4: Generating sequences S;, from a rollout

For each rollout of size n, a sliding window starting at the first position is glided over
the rollout. For each step, a sequence of size m is produced. The process is similar if one
reads a historical data log from a disc file, however in this case the synthetic first principle
model is used as input instead. In a file-based scenario, a continuous-time series with no
time gaps qualifies as one rollout. One could also use any historian data collector with
querying capability as input.

The synthetic rollout does not take into account all faults that can happen in a real
process. Normally, one would need to pre-process any historical data to ensure that all
input values are valid, which might not always be the case in a real process. Instrument
failures, communication failures and calibration errors are common in industrial processes
and will influence the data quality. Further, several types of exceptions occur that do
not contribute to explaining the overall process dynamics. The focus is on synthetically
produced data where we have full control of the data quality to explore the control concept,
and not on engineering a data cleaning strategy. However, to implement these ideas into
real life, the focus must turn into data quality.

4.2.2 Predictive baseline

Our Matlab-model for generating data is flexible in terms of control scheme, but we will
follow the system boundary as presented in Figure 3.2 for the univariate case. Here,
feed flow @ feeq is the manipulated variable and we select T,,; responding variable as the
feedback. An overview of the system signals is given in Table 4.2.

By using T,y as a error feedback variable, we can define a setpoint T, and use a simple
PID-regulator for control of @ fceq by calculating @, only using the propotional clause. We
define the regulator as:

Qt = Kp(Tsp - thl) (41)

where the gain coefficient K, is empirically tuned to 0.1. We can also call this the
damping factor of the process as responses to system dynamics is smoothed by this factor.

50

4.2. GENERATING SYNTHETIC DATA

Manipulated variables Nominal value or range Unit
Qfeed 2-15 m>/h
Controlled variables

Tteed 95 °C
Pfeed 1200 kg/m’
Zyrpm 7,000-12,000 rpm
T; 180 °C
Qgas 100,000 m>/h
Tenv 25 °C
hgas 50-99 %
Responding variables

Tout 90-100 °C
hout 1-5 %
Dropletg;,. 90-120 um

Table 4.2: System signals, nominal values and units

By applying the regulator on the spray drier model, the system response is a clean signal
as shown in Figure 4.5.

We observe in Figure 4.5 that the temperature response is a stable signal on ¢t > 10
when K, = 0.1. The controlled variables are fixed in this scenario, contributing to an
effective regulation by using PID with only the K, term.

4.2.3 Process noise

However, the controlled variables in a real-world process are not noise-free due to e.g.
sensor drifts and deviation, changes in the environment and material, as well as external
regulators that affect our system, amongst many other sources. The main noise source
we consider is the sensor standard deviations. This noise would be an ideal source for
randomness in training the policy of an RL agent. By introducing random disturbance to
our controlled variables and our feedback source, the T,,; responding variable, our model
should behave closer to a real process.

We add random disturbance +n% the standard deviation, a method proposed by Del
Rio-Chanona et al. [91] and record the mean and standard deviation for some combinations
of n and K,,. Table 4.3 lists the results and an example is given in Figure 4.6.

Variables Results

n K, I o
1% 0.1 100.0 1.5
1% 0.01 101.2 5.4
3% 0.1 100.0 4.5
3% 0.01 100.9 5.6
5% 0.1 100.0 7.3
5% 0.01 101.3 8.6

Table 4.3: Results of applying different noise levels and tuning of K,

51

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

2.335 T T T 100.35
Feed (m*h)
- {100.3
233 out
1100.25
2.325
1100.2
232 il
- 100.15
mE —
1 100.05
2.31
100
2.305
199.95
2.3 L . . 99.9
0 5 10 15 20

Figure 4.5: System response using a propotional regulator

We can argue that a controlled process may have a noise level at +1%, or even less, but
that depends on the instrumentation of the process. The noise level can be estimated or
calculated based on available instrument data and documentation. Using neural networks
in an RL agent might be challenging if the operational window in the data logs is narrow
and the sample space is low. Neural networks do not extrapolate well outside its generalized
data space, and are sample inefficient during training. As such, we can argue that the
rollout mechanism for generative model training should utilize parameters that uses a higher
noise setting than +1%. This is also the reasoning behind utilizing only a proportional
regulator, as this might introduce regulation of the system where system dynamics is
visible. By adding both integral- and derivative steps to the PID, and tuning the regulator
perfectly to the process, one could probably obtain much finer control over the temperature
profile. However, this is not the goal of the rollout mechanism - we want to assure that the
historical logs exhibit the system dynamics, which is the priority.

Randomizing the noise parameter and selecting different set points for 7,,; could be
done for each rollout to capture a larger parameter window. We could also measure the
system response according to the same static or variable input.

4.2.4 Randomized input

A randomized @ feeq in the range 3-20 m3/h is input into the model with a varying frequency
of every t. As anticipated, the process is not under control via this scheme with a p = 75.3
and o = 30.6, illustrated in Figure 4.7. This gives a coefficient of variance of C, = 0.41,
the ratio of the standard deviation to the mean, which we can argue should be below 0.10
or less. Of course, other results are obtained for each simulation run.

52

4.2. GENERATING SYNTHETIC DATA

4 T T T T 105
Feed. (m%/h)
38+ in 41104
T
out
36 4103
102
101
100 +
99
98
24+ 497
22+ 496
2 1 1 1 1 95
0 20 40 60 80 100

Figure 4.6: System response using a propotional regulator and added system noise, +1%
of o using K, = 0.1
Result is 4 = 100.0 and o = 1.5.

20 T T T T T 200
18 + 4180
16 1160
120
= 12r
«E 100 .
10r
3 80
8 Feed, (m“/h)
. — Tow 60
L U
VAR I
4+
120
2 1 1 1 1 1
0 10 20 30 40 50 60

Figure 4.7: System response using a random input if Q feq in the range 3-20
Result is 4 = 75.3 and o = 30.6 for this run.

53

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

It is clear that a randomized control input is not ideal to reveal system dynamics in
the form of controlled sequences.

4.2.5 Sinusoidal input

Varying one manipulated variable at a time and recording the system response is a
traditional method for identifying a system in control theory. A noisy sinusoidal @ feeq is
input into the model, and the system response is visualised in Figure 4.8. We see that the
response is a bit off-phase from the input with an R? = 0.55, a property of a cooling effect
when increasing the feed of the spray drier, as noted by Santos et al. [88].

13 T T T T 200
Feed. (m%/h)
127 " 1180
T
out
11 160
10 140
9 120
<
'_
e 8 100
7
80
6
60
5
40
4
120
3 1 1 1 1
0 100 200 300 400 500

Figure 4.8: System response using a sinusoidal input of @ fecq-

Creating rollouts using sinusoidal inputs could be one way of generating data. Converting
this to the real world, a proper Design-of-FExperiments could be conducted to record system
response to varying input, in the case, a process is not under control yet and one need to
create an initial set of data logs for the system.

4.2.6 Randomized step-wise input

A randomized step-wise input strategy changes each manipulative parameter at random
time ¢, where we observe the dynamics response to the change by recording the responding
variables. The change could either be random or a fixed rate from a baseline. The benefit
of this explorative strategy is the ease of implementation and clear dynamics response.

54

4.3. DESIGN OF GENERATIVE MODEL

4.2.7 Data augmentation

Using the rollout mechanism connected to the first principle model, we can produce many
unique runs because of the randomness introduced through process noise that is added
to the signals, the data augmentation, and the signal input strategy. We can therefore
assume that each sequence being generated holds the property of being more or less unique.
Importing data from an existing real-world process could utilize the same method when
the sample space is scarce, adding noise to each rollout, producing many unique sequences.

4.3 Design of generative model

The generative model captures the dynamics of the data logs. The idea is that this model
can serve as the environment simulator for the RL agent and be able to generate any
process response of an action proposed by the agent.

We can extend the problem formulation to finding a function f that minimizes the
error of estimating the next step of a sequence as opposed to the actual sequence:

min L(f)
N
L(f) = Z LG, yt)
t=to (4.2)
where
Ti+1 = Yt
Uy = f(l”t)

Depending on the agent’s exploration scheme, the generative model can perform
unsatisfactory outside its trained data space. When confronted with an action that violates
earlier knowledge, as a random action that the network cannot understand the consequence
of, the network might confuse the agent more than being an informative colleague. We
expect that the choice of the RL agent algorithm must be in line with this prerequisite. A
soft actor-critic utilizing maximum entropy as the exploration scheme is probably a good
candidate, as this agent type is shown to perform well even on a low number of samples [81],
but still explore the environment as randomly as possible. This claim will be challenged as
we choose to train both a soft actor-critic (SAC) agent and a selection of other agent types.

A benefit of training a generative model from process data is the ability to produce
many unique sample sequences for RL training. RL training is sample intensive and requires
many training runs on unique data sets. By encoding the process data in a memory network
by using long short-term memory (LSTM) blocks in a shallow autoencoder architecture,
we capture both the dynamics and signal relationships in function f. The architecture is
visualised in Figure 4.9. Querying the network takes into account the state of the memory
network, and as such, producing data would differ for each RL training pass, given the
randomness introduced in RL exploration. The generative model has a dropoutlayer for
the benefit of intensifying this randomness and provide regularization of the model.

Discovering the latent variables is done by unsupervised training of the memory network.
Our RolloutDatastore produces data for this purpose, and we add another feature to this
class for time series forecasting. Traditionally, in unsupervised training of an autoencoder,

55

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

Encoder Decoder
(" 4 4)
e [o— f —e
~_ |
~— 4 N N 1/
SequencelnputLayer IstmLayer IstmLayer D L .
b hidden b hidden r?c;p:ou(;n 2ayer fullyConnectedLayer regressionLayer
units units ’

Figure 4.9: Generative model LSTM-AE neural network architecture. h is estimated by
Bayesian optimization.

the input sequence X is used as output sequence Y where X =Y, to train the latent space.
In our case, we shift the output sequence by one time step to obtain forecasting abilities:

X(af, 2y ™) =Y e) (4.3)

where m is the sequence length and z* is the kth vector of the sequence, where ¢ + 1
indicates a shift by one time step.

This important addition means that we can input an observation vector into the
generative model and receive an estimate on the next vector of a similar sequence from
history when inferring from the network. This forecasting ability is made possible by
the autoencoder mechanism and the memory ability of the recurrent neural network,
implemented through a chain of LSTM network blocks. Training is done by shifting the
data by one step as described in Equation 4.3. According to the problem formulation in
Equation 4.2, the neural network should learn by minimizing training loss. Evaluating the
loss and prediction RMSE should explain the forecasting ability.

4.3.1 Training and evaluating the Generative Process Dynamics Model

The class GenerativeModel is a tool for model training using the RolloutDatastore class
and tools from the Matlab Deep Learning Toolbozx, as well as loading and saving trained
models to disk. The class also handles the normalization and de-normalization of data.
Normalizing data input is recommended for all machine learning methods, especially when
dealing with features with different magnitude of numeric ranges.

The RolloutDatastore class will create a baseline for normalisation parameters by
creating n number of rollouts when first being initialized. The u and o is calculated and
stored for global standardisation of all generated datasets, and also for de-standardisation
to each feature’s numeric range.

To estimate relevant dynamics for all responding variables and create the functional
approximation of the problem formulation in Equation 4.2, we design an experiment where
the T, for the regulator is randomized in the range 88-92 °C' for each rollout every 60th
time step. The generative network is then presented with n number of rollouts. As earlier
mentioned, this is the point where historical logs from the process are input to the model,
but for experimental efficiency, we use the differential equations as presented in the Use
Case chapter implemented in the RolloutDatastore class.

56

4.3. DESIGN OF GENERATIVE MODEL

Hyperparameter optimization

Selecting the proper hyperparameters may greatly impact the performance of a neural
network model. We make educated guesses of many hyperparameters for training the
generative model, however parameters for capturing relevant process dynamics need some
consideration. We identify the following hyperparameters that are relevant to explore:

Sequence vector length

Rollouts per epoch

Number of hidden units in the generative model

e Minibatch size

Minibatch size is a technical way to iterate on smaller parts of the dataset per epoch
before doing backpropagation for all of them. The minibatch size can influence the RMSE
but is mostly tuned for computational reasons [47].

Due to the immense computing power needed to test all combinations of hyperparameters,
we choose to use Bayesian optimization as an alternative to exhaustive hyperparameter
search. Bayesian optimization selects new parameters based on a selection from a Gaussian
distribution of each hyperparameter. The theory is that adaption of the parameters is
done based on their calculated impact on the response.

Further, we train the generative model for only 100 epochs per hyperparameter search
run. There are some implications to this which need some consideration. First, the
number of epochs needed to train a model is greatly influenced by the hyperparameters.
One obvious relation is the number of hidden units: a high number might need several
magnitudes of more training iterations. We restrict here the number of iterations. Second,
due to this restriction, we should not use the found hyperparameters directly. We manually
estimate the direction of the selection of hyperparameters and make an initial set of efficient
parameters to use for one single final run. This assumption is based on the fact that
Bayesian optimization will iterate on the results and narrow the parameter search based
on the Gaussian state. The final run will be set up with more epochs and potentially run
for a longer period.

Matlab Ezperiment Manager is used for establishing 30 hyperparameter search runs
using Bayesian optimization. The parameters are constrained to ranges that we believe are
relevant to evaluate the parameter trends (see Table 4.4).

Parameter Range
sequence length 1-60
rollouts 10 - 50
numhiddenunits 4 - 32
minibatchsize 8- 128

Table 4.4: Ranges for hyperparameters for generative model

A screenshot of this session can be seen in Figure 4.10.

o7

AUTONOMOUS LEARNING OF CORE SKILLS

CHAPTER 4.

s1ojotreredodAy [opow oArjRIDULS JO UoIjeZIII)do URISOARY 10} I9SRURIN JUoWLIOdXH qR[IRIN (0 F 0InsIg

s1ze'e vL0Z'0 £L50°0 eELZ @ CEEEN A4 000097 800005 eeea*T 095 | U 9L Jy 0 %000 . N s1eidwoD B 0g
s1£0°0 605" 8 £650°8 ze8z 0 @000°LZT 0002° €T 0000 7T 2000 "EE sssgguw oy %000 NG adwod § 62
6218°8 Sest’e 98TL"8 188 8000°ZZT 8008° ST 800885 800" E 295 ¢l uw 9Ly 0 | %000 I szdwoD § 8z
escee furAl] 9cze‘e [F4 740} CEEEN:TAY @eee 7T 0000 0S 0000° LS 095 / UMW G| Jy 0 %000 . NN sjsidwoD B Vi
L¥18°e ETLT'D ££90°8 B99E°@ 8000°50T 8008°ST 800@° T 000" 5T 29sZGUW 90 %000 I apdwod @ 9z
96009 63610] 6E8Z'@ @080°TZT 0000 ZT 000e ' TT @080 8s sesgzuw om0 %000 I sjsdwod B 52
veza'e s91Z'0 vEzo'e zotz 0 0e00° 98 aoee° LT 0000 €7 0000° LE 098 Z UIW gy 0 %000 | NG ajzdwon B ¥z
s1z8°e T02°8 £910°0 BEST'@ ©800°BZT 8008° LT 8008 TT 800" £ 28spEUW 90 | %000 I sjaidwod § £z
vete’e tyrice Irsee 28ZE'@ 080" SZT 0000 ¥Z 0008’ 0S @080 ST 23S £ UWIGL YO | %000 I @isidwoD B 4
16£8°@ S6LZ°@ 20010 SEVY @ 2000 °BZT @e0e " IT 2000 " 8t 2008 ZE os |guw Ly o %000 NG agdwod G T4
BEBR "2 EVEL'D 92£0°0 £552°@ 8800°92T 8008 €T 8008° 85 2800°Z 295 6y UW gLy 0 | %0 00 - I sjaidwod 0z
15180 LEi1°0 (8108 zE6T @ 000" vZT 0000° 57 o002’ oS 200089 sasGzuw gLy | %000 sjeidwoD 6l
BL0@"@ i 85v0°0 9Z0E '@ 8000°9ZT 8008 €T 0008° 05 000" vT 298 Zy UW L0 %0 00 - I |jz1dwod B 8l
o5t e QELE' D] vigz e @eee°sTT 0000° Tt 0008 T @000 2t 2asgguw gl o | %000 sjeidwod Lh
z810°0 80ET 0 s@se e BEIE‘@ @000 rZT [-1-1EN 43 200867 o089 sespguwcLiyo %000 NG azdwod al
L] SLTE"D eeve"e 8782°@ 2800° 60T 8008 ° 8T 000857 2@00° 55 298 ZGUW GL Y0 | %0 00 - I slzdwon Gl
rite'e EISL'® SeEe @ vz e CLEEN:744 EEEENEYY [-LEEM o4 LEEEN: 23S 0L UW 90 95000 | NG siadwoD ¥l
Zsve e L1 £1Ze"9 90z @ 2000°8Z1 200" 6T 2008 T @800 "1z 288 Q) UW L ayQ 90 00 | INEGNG alaidwod G €l
9z1a'e 86518 Ela o] SIEF @ 2080 82T 8080"TT 8008 ZT /088" 5 095 L€ UW 9 Iy 0 950 00 1 NG slaidwod 2L
1600°0 TSEL'® 8vZe s szzz'@ CLEEN:TAY PeeR" LT 200 €T @epect 28S QP U QIY O 95000 | INEGCGEG__—— alaidwod § L
5618°8 SLET°@ IEre e ES6Z'@ 2000°1ZT 2008°6 8008° T 28005t 28SZIUW L0 %000 . NG sjadwon @ oL
6612°8@ 96610 98Ze"e EBEZ'@ eeee 1IT peea’ 8T Peea it 208015 29SGEUW QYO 25000 | NG sjaidwon 6
s9€@°0 teiz e Sive e 180E"@ 2000 £z ool T 8002 ET 200265 988 §G UIW £ 1Y 0 90000 L NG alzdwod g
Lv9@°8 B65E°@ 585878 TZVE"D 2800°871T 2008°5 2008°TT 2800 " vE 28S PZ UW E IO %000 . NG slsdwon @ L
zvzee 662" 0 c0ze 8 £vOZ @ @eee .71 8008 T 0008 ° 67 e80T sesgguw g0 | %000 N sjeidwoD 9
15Z@°@ eriz e 44N sser'a 2000°BZT ee0a TT 000297 a0 83 sssgruwgliyo %000 NG alajdwod @ g
78500 891E°8 TLLTe 75658 2800° vt 8008 T 8008° L7 800" 8E 295 zL uw gzu o | %000 |laidwoD § v
Ze'e 6SSL°@ srve e [Tl eese-9zL el el [-L5 M x4 2002 EV 998 i UIW 9 1Y O 95000 L INEGCGEG—— aladwod =
zi18°0 £S8T°0 £850°8 ziiEe 0000°5TT 0008 LT 000867 000" vT 288 EUW SL Y0 | %000 - I ajaidwod T
£092°9 88VE" @ EL7EAl] BLEL’@ eeee"1Z ee0e’ v 0008 ° 9T 009" 65 29s gl uw 1z | %000 sisidwod § 3

§807] UOREP||EA 3SIY UoREP|[EA ss07 Bujujes) 3IsWy Bujujesy ‘synojjod *'ua| sousnbas awy pesde|g ssauBoig smes [LITTN
i

W) ESZL°0 “ISINY uoneplieA ‘BT
0 pajgouey X 0 Buuuny O
0 louz @ o eiBdwen §

(0€ XeW) OF ‘pelen|eas sjeu|

(00:00:00 XBW) ZE:¥:G0 aun| pasde|3

0LELBL "IZ0Z'6'0Z H&IS

[ERINEISPUEIIER = RETY]
ydosedAy [spojy eApeIBuED

Jnsey uopeziwpdQ ueisafeg a

o8

4.3. DESIGN OF GENERATIVE MODEL

The parameter search results and RMSE results from the Ezrperiment Manager has
then been analysed to select a final parameter set. First, the results from Figure 4.10 is
entered into Matlab and we smooth the data using a 10-point window moving average as a
pre-treatment technique. This is done to detect trends in the data and remove some of the
stochasticity of the optimization process results. The sequence plot in Figure 4.11 visualises
the optimization process and we can see that the RMSE is decreasing as a function of time.

Hyperparameter optimization sequence
T T T T T

140 0.28
0.27
120 -
0.26
100 0.25
g
= 10.24
g 80 - \ ! sequence length
d \ rollouts chDJ
% V! WO N numhiddenunits 1023 £
£ . N~/ ‘/ | minibatchsize o
g = = validation RMSE 10.22
o \
\ ! 0.21
40 + N N Ihs
\Y’ \ —
0.2
20 r \ /
N 10.19
\ 4
0 ! 1 L L L 0.18
0 5 10 15 20 25 30

Sequence number

Figure 4.11: Bayesian hyperparameter optimization sequence results from Matlab
Experiment Manager

We then run a 2-component Principal Component Analysis and obtain the plot in
Figure 4.12. We see that the varying components that result in a low RMSE are relatively
clustered around a plane that might resemble the optimization sequence. From this, we
can infer that the parameter selection is not random and that it should be possible to
converge on parameters that affect the RMSE and that we might not need more iterations
of the hyperparameter search to conclude on a final set.

For our final selection of parameters, we scatterplot all pre-treated parameters towards
the validation RMSE and obtain the results in Figure 4.13.

The trends show us the direction of the parameters, and we deduct the following:

e The rollout parameter has less impact on the RMSE but should be higher than 40.

e The minibatch size should be set high. There is a cluster around high values and
should be set larger than 120.

e The number of hidden units in the generative model could be set to more than 20.

e The sequence length should be 25 or less.

59

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

PCA of bayesian hyperparameter optimization results

0.26
031 . 0.25
= 0.2
o o 0.24
5 ® "o
2 01 ° w
E ® 023 £
(@] ° o
o .l . g
g o 022 &
© [] (] °
S I G
£ -0.1 PY .. 021 >
2 o
N _02F ..
0.2
0.3
0.19

-0.7 -06 -05 -04 -03 -02 -0.1 0 0.1
1st Principal Component

Figure 4.12: PCA of Bayesian hyperparameter optimization sequence results

Correlation of hyperparameters

2 2
r°=0.86 ° ° .‘ =-0.49
< o ® ®
o Lo, 235 =
g% % ce £ fe.)
= °
33009, % o¥ 2% w oo
oy o e ©
K 25[A 25 o ©
20 20
0.2 022 024 026 0.2 022 024 026
. r?=-0.78 r?=-0.68
0000 ® ¢ 00
{. o® 0 o 120 ff" o ©
£ 2008 % 5
€ 20 -y ° £ 110 .
g) T 100 e
ke ° e} []
15 ° _ IS °
T' - e S 9% .
10 80
0.2 022 024 026 0.2 022 024 0.26
Validation RMSE Validation RMSE

Figure 4.13: Correlation of hyperparameters twoards validation RMSE

As such, we can decide on parameters taking the available dataset and computational
resources into account.

60

4.3. DESIGN OF GENERATIVE MODEL

Training a univariate model

The network is initially trained on 300 epochs with the Adam optimizer using 60 unique
rollouts per epoch, resulting in a training session equivalent to 18,000 unique rollouts. Each
rollout is then presented to the network using the skewing mechanism with a sequence
length of 20 time steps resulting in a magnitude of increase in data input. The minibatch
size is set to 128 and the number of hidden units is set to 32. Further, we step down the
learning rate from an initial setting of Ir = 0.05 by a factor of 0.2 for every 50th epoch.
The RolloutDatastore is also used for validation using another set of randomized rollouts
and the same standardisation settings.

The training session is done using Matlab running the Parallel Computing toolbox on a
dedicated NVIDIA Quadro T1000 GPU. We evaluate the generative model by letting the
model predict the next step in a sequence, given 20 steps of data from a random rollout.
Based on these steps, the next step should be estimated. The RMSE of the training, and
the evaluation, should be as low as possible. Low numbers close to 0 means that the model
has predictive ability and that the network has converged to the dynamic model. This is an
important discovery, as a higher RMSE will not enable predictive power of the generative
model. Figure 4.14 show four random runs and their results.

61

AUTONOMOUS LEARNING OF CORE SKILLS

CHAPTER 4.

SUNI 4599 wopuel Jo sdojs JxXou JI0J [oPOW dAIJRIOUDS oY) SUIAIOND Jo $)NSoY :F'F 0InSIg

66°0=¢4 ‘TT°0 ASINY ‘T0°0 AVIN (P)

009
180}
[paud
. W . 26
uonoipaid indino aouanbas |
009 00S 0o 00€ 002 00} 0
T T T T T g9
F 42
A U A — "Ny
L ummuc 48
nmac
. | . g8
uonaipaid induj asuanbas p
e ¢ . ¢ .
00" T=,+ ‘60°0 ASINY ‘€0°0 AVIN (q)
009 009 00% 00€ 002 00} 0
Is8)
[paid
. . . 26
uonoipaid indino aosuanbas |
009 00S 00 00€ 002 00} 0
T T T T T g9
F 42
TSNe—— T N T .
. M
L umeO 48
umaO
S8

:o,:o_uw.a _:nr_ mu:w:cow, [5)

00" =+ ‘60°0 ASINY ‘T0°0 AVIN ()

009 00S 00t 00€ 002 00} 0
T
L| "oy
nma._.
T L L L L Nm
uonoipaid indino asuanbas |
009 00S 00t 00€ 002 00} 0
T T T T T 9
r 42
F I/E S/
L _ww_o 18
uwao
. | . g8
uonoipaid ndui asuanbas p
e ¢ . ¢ .
00" T=¢+4 ‘600 HSINY ‘F0°0 AVIN (®)
009
1sa)
[paud
. . . 26
uonaipaid indino asuanbas |
009 00S 00t 00€ 002 00} 0
T T T T T S9
r 42
| Jju\l\ul‘(lju\ -~
L _mm_O 418
umac
I S8

uonoipaid _=nr_ oo:m:uwm, o)

62

4.3. DESIGN OF GENERATIVE MODEL

Simulating sequences

The input to the prediction is the previous sequence from the random rollout, so to test
the predictive ability, we input skewed estimated sequences from the generative model itself
instead of the random rollout. We need to start with an initial sequence from the rollout
and add the model’s output to a historical sequence. These outputs will then be used as
an input to the next prediction step. This process will resemble the RL agent training
mechanism explained later. We choose a randomly step-wise change of the manipulative
variable () and record the dynamic response from the model. Figure 4.15 show four random
runs and their results, where the initial @ is changed by 5% at some random t.

We see that the model responds by decreased temperature when the flow rate is
increased, which corresponds to our earlier beliefs of the physical process. This method of
replacing values during sequence prediction will be our method of simulation. Simulation is
done by querying the environment using the current state as input, and a proposed action.

63

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

009

88

G'88

68

G'68

06

§'06

G'16

26

SUNI 4599 wWopuel Jo sdojs JxXou JI0J [OPOW dAIJRIOUDS o) SUIAIOND JO $)NSOY :GT'F 0InSIg

G9¢ = 7 Y& pasue O p unt wopuey (p)

00S

00¥% 00e 002

00t

0

ul

no

' ——

=11e
pabueyd o

S9€

009

88

G'88

68

§'68

06

§'06

§'l6

c6

161 = 7 Y& paSueyp O ‘g unt wopuey (q)

00S

:o:,o_uo._n _oumE EYVIGITY

,:ow

00 00€ 002

00t

=lle
pabueyo o

161

. .
uonolpaid |apow aAneId

uan

ol

el

o

ch

009
88

T¥g = 7 Yo peSuep) ‘¢ uni wopuery (9)

00S 00¥ 00€ 002

00}

0

68 -

G'68 -

06

§'06

16 -

no

ul

' —

1e

ey

26

pabueyds o

009
88

uonoipaid |apow aAljeId

82¢ = 7 1e pasuep @ ‘1 uni wopury (e)

,:00

00S 00 00€ 002

00k

0

68 -

S'68

G06 -

16

=lle
pabueyd

8¢¢

26

. .
uopoipaid |apow aapesd

uan

oL

cl

ot

clk

64

4.3. DESIGN OF GENERATIVE MODEL

4.3.2 Querying the Environment

A feature of our GenerativeModel class is to act as input to the Environment for RL
agents created in Matlab, querying the trained generative model. As such, we also create
a class SyntheticEnvironment descendant from class rl.env.MATLABEnvironment. This
class will receive step-signals from the RL agent where the Agent’s action proposal is
a parameter, based on previous calls to the step-function. The class responds with an
Observation from the Enviroment based on a query towards the generative model.

The query process needs a little explanation: when we trained the generative model,
the Y-sequence is a shifted version of the X resulting in a time series forecasting ability.
We now utilize this property by actually replacing the feature for the Action with the
proposal from the RL agent, and forecast the generative model based on the observation
from the last step. The new forecast contains both Action and Observation, but we return
only the Observation vector to the environment. However, the complete sequence with
historical Action proposals, is stored in the environment class instance. This way, new
queries will take into account the earlier states of combined Actions and Observations.

[[N
{
T%P

E;
____/
2 3

J

0000000 000O0
00006000 00O

|
[

Figure 4.16: Querying the generative model
1. The previous Observation-vector is concatinated with the policy action proposal from
the RL agent into vector T'. 2. Vector T is predicted by the generative model, which
returns P, which is the next step estimate. 3. The subset of the P-vector representing the
Observation is stored for next step as well as returned to the RL Agent for processing.

Figure 4.16 explains the process, also outlined in Code 4.1. Figure 4.15 visualises an
example of the model response when changing the input.

Within the SyntheticEnvironment class, we also define a reward-function where the
system reward and termination conditions are evaluated.

4.3.3 Process model as RL environment

For us to evaluate the performance of the concept of training an RL agent with a generative
model, another class, ProcessEnvironment is developed as a connector between the real
process as implemented in the ordinary differential equations and the Matlab Reinforcement
Learning framework. The ProcessEnvironment class can be connected to an RL agent
for performance evaluation of the learned policy. During such execution, the termination

65

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

function this = step(this, actions)
% Predict next step by changing action but keep observation
% input to the network
T = [actions this.Observation']';

% Predict one step
[this.net, P] = predictAndUpdateState(this.net,{T});

P = P{1};

% Update states

act_size = size(this.datastore.MV, 2);

this.Action = actions;

this.Observation = double(P(l+act_size:end));
end

Listing 4.1: Querying the generative model (Matlab code)

criterion is disabled since the environment will be used for evaluation and simulation, and
not learning. By disabling termination, we can observe the full length of the consequences
of a learnt policy. This resembles the situation of executing the policy in real life, where
process restarts are not always feasible.

4.3.4 Training a multivariate generative model

Droplet size optimization is added for the multivariate case, as presented in Figure 4.3.
The term for controlling the atomizer speed, Z,p,, is promoted from being a controlled
variable to a manipulative variable in parallel with @ fccq. To train the generative model
in the multivariate case, we do the following additions and changes:

¢ Rollouts are made from a set of four fixed rpm values in the range from 7600 - 9200,
in addition to the @ feeq rollout scheme

o Huber loss function is introduced

Further, we train a model using 1024 hidden nodes (in two layers), trained for 3,000
epochs and compare performance with a model using 32 hidden nodes trained for 300
epochs. Both versions utilize the same learning rate decay, however, the length of the steps
vary according to the number of epochs.

To learn the dynamics from the multivariate case, we present 60 unique rollouts per
epoch, resulting in a training session equivalent to 180,000 unique rollouts. Total training
time is 54 hours on a dedicated NVIDIA Quadro T1000 GPU for 3,000 epochs. The
learning rate decay scheme is adjusted to accommodate for longer training sessions as
illustrated in Figure 4.17.

We can see from Figure 4.18 the results of querying the generative model for random
rollouts. The input is the previous sequence (20 steps) from a random rollout slid over the
time frame. We see a positive correlation of the model compared to the real signal.

Further, we test the model’s predictive performance by letting the model free-run by
sliding the predictions. We do this to test the model’s behaviour in a simulation scenario.
By randomly step-wise changing the manipulative variables, and recording the sequence
predictions, we can evaluate if the model has captured the process dynamics. Figure 4.19(a)
show the results of keeping the manipulative variables constant and changing them at
specific times t. @ feeq is changed (increased) at ¢t = 192 and we see a temperature drop.

66

4.3. DESIGN OF GENERATIVE MODEL

Learning rate decay

0.05 107"
0.045
0.04
4102 .
0.035 =
(&)
o w
§ 0.03 _8’
> .
1403 Q@
g 0.025 10 @
g o
28 002 -_——- <
1 <
©
0.015 | g
| o = = 110
0.01 |
|
0.005 |
0 ‘ | 10°
0 500 1000 1500 2000 2500 3000

Epoch

Figure 4.17: Step-wise learning rate decay

Further, at ¢ = 444, Z,,,, is changed, affecting the particle size. The particle size is affected
by both the feed rate and the atomizer speed.

Q sequence input prediction

8.5

8r Qpred 7
75k Quy | 1

7 - —
65 Il Il Il Il Il

0 100 200 300 400 500 600
92 T sequence output prediction
T T T T

90 test
88 RS
0 100 200 300 400 500 600
Z sequence output prediction
T
9000 [1
pred
8500 [-7 8
test
8000 - b
1 1 1 \ 1 1
0 100 200 300 400 500 600

Figure 4.18: Results of querying the generative model, multivariate scneario

67

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

To evaluate if the generative model has captured any real process dynamics, we re-run
the scenario towards the process model (the ODEs), employing the same input scheme
and changes as we did towards the generative model. As we see from Figure 4.19(b), the
process model response is in lieu with the generative model.

The scatter plots in Figures 4.20(a) and 4.20(b) visualises the correlation between the
models. Some intermittent dynamics is not captured exactly, but we can conclude that the
multivariate generative model has been able to replicate most of the dynamics.

68

4.3. DESIGN OF GENERATIVE MODEL

Generative model prediction
T

12 T) s—— T T 92
132 G
1ok ! % é Tout <191
5 ©
e 1
oo) 4 O
e gl | 90
i 189
6r I ~
1 l 1 1 1 1 88
0 100 200 300 400 500 600
Z sequence
10000 w - al — w 130
R\ o<
RoRe) D
| O~ [<
. 54
9000 - ig w 5% 1120
IS e} N S
o L 3
g — ‘
8000 - | 4110
z i i
Particle size } }
7000 : - . e . 100
0 100 200 300 400 500 600

(a) Results of querying the generative model for next steps of random test run,
multivariate scenario

Process model
T

12 T T LD ~ T T 92
132 G
10 : % A Tout <191
5w
e
= e} 4 (@]
e sl 90 §
i 189
6r I
1 l 1 ik 1 88
0 100 200 300 400 500 600
Z sequence
10000 : - al — : 130
1 O QA [
RN (8%—
| O o) <+
5 54
9000 5 5% 120
|
N
o
T
8000 | 4110
z i i
Particle size | | |
7000 ! L ! ! ! ! 100
0 100 200 300 400 500 600

(b) Results of querying the process model for next steps of random test run, multivariate
scenario

Figure 4.19: Multivariate query of the generative model vs. process model

69

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

Predicted Tout VS. process Tout

91,5
X
X
91+ <
X
X
X
X
90.5 X
— >e< al
3 N e
o X
€ 90f %X
2 i
>
.‘c_g X
— X
o 89.5 X
S x
(_'j X
X
89 X
R ;@5"“
X%
8851 Xy e
xﬂ&x
88 L 1 1 1 1 1 1 1
88 88.5 89 89.5 90 90.5 91 91.5

Process model

(a) Correlation between generative model and process model for Toy:, first sequence
clipped

Predicted erm Vs. process erm

128 1

P\ 4

126

124 X

122 |

120

118 X

Generative model

116

114»¢,q?s x
X

112 1 1 1 1 1 1 1 1
112 114 116 118 120 122 124 126 128

Process model

(b) Results of querying the process model for next steps of random test run, multivariate
scenario

Figure 4.20: Comparison of generative model and process model

70

4.3. DESIGN OF GENERATIVE MODEL

Huber loss function

As an alternative to Matlab’s standard loss function based on calculated RMSE, we create
a custom loss layer based on Huber loss estimation [9]. Huber loss is less sensitive for
outliers in data than RMSE and essentially select either mean absolute error (MAE) or
RMSE based on whether the residual a is large or small when calculating the loss:

a? for |a| <6,

Ls(a) = { 0 (la] —d/2) otherwise. (4.4)

Code for the custom layer is presented in Listing 4.2. Here, we implement a forward
loss function by using Matlab’s own Huber loss function implementation.

classdef huberRegressionlLayer < nnet.layer.RegressionLayer
% Custom regression layer with Huber loss.

methods
function layer = huberRegressionLayer (name)
layer .Name = name;
layer.Description = 'Huber loss';
end
function loss = forwardLoss(layer, Y, T)

% Calculate Huber loss of the mini-batch between
% the predictions Y and the training targets T.
loss = huber(Y,T,"DataFormat","CB");
end
end
end

Listing 4.2: Custom Huber loss regression layer (Matlab code)

The benefit of using a built-in huber-function, is that we do not need to implement
the derivative of the Huber loss due to Matlab’s automatic differentiation technique. The
backward pass error derivative function is automatically determined by the framework
during gradient descent.

The custom loss layer replaces the RegressionLayer in the neural network. The final
generative model supporting both univariate and multivariate cases is listed in Code 4.3.

function layers = lstm_network(this, numHiddenUnits)
layers = [

sequencelInputlayer (this.datastore.featureDimension)
lstmLayer (numHiddenUnits)
dropoutlLayer (0.2)
lstmLayer (numHiddenUnits, "OutputMode", "last")
dropoutLayer (0.2)
fullyConnectedLayer (this.datastore.featureDimension)
huberRegressionLayer ('huber')

end

Listing 4.3: Generative model neural network layers (Matlab code)

Effect of changing number of epochs and hidden nodes

Increasing the number of nodes to 1024 and the number of epochs to 3,000 also results in an
increased computation time. On an NVIDIA Quadro T1000 GPU, the computation time is

71

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

54 hours for 3,000 epochs of the selected rollout configuration. However, by recalculating
the model using the original setup of 32 hidden nodes and 300 epochs, we gain performance.
Figure 4.21 is the result of running 30 test sessions for each of the models: training a larger
model results in a higher mean RMSE than a smaller model.

2 T T T T T T

I arger model
1.8 I Smaller model

1

RMSE

0.8 .

04r y

0.2r y

0 5 10 15 20 25 30
Test run

Figure 4.21: RMSE of larger model vs. smaller model
The larger model has a higher mean RMSE and standard deviation than the smaller.

The larger model has an average RMSE of 0.82 and o = 0.57, while the smaller model
has ¢ = 0.65 and o = 0.43. We can probably explain this difference from the fact that the
smaller model, due to its smaller size, has a higher grade of generalisation. The smaller
multivariate model will be used for the later experiments.

Effect of learning rate decay

The initial learning rate is according to Bengio [47] the single most important hyperparameter
in a deep neural network and should be the first parameter to be tuned. The learning
rate is a factor describing how much the network weights and other parameters should
be changed on each iteration pass by the derivative error of the optimization function. A
large initial learning rate avoids entering into spurious local minima and results in faster
training. It is also a common belief that stepping down the learning rate avoids oscillation
around a non-relevant parameter set, mathematically analyzed by Kleinberg and Yuan [85].

There are a few ways to decay the learning rate, most notably and simplest to implement,
are step-wise and exponential learning rate decay schedules. However, other methods exist
that can converge faster, on the cost of complexity. Lecun et al. [23] introduces the
stochastic diagonal Levenberg—Marquardt procedure. Here, a Hessian matrix of second
derivatives of the errors is used to calculate learning rates for each individual parameter.

72

4.3. DESIGN OF GENERATIVE MODEL

For our problem, we select a step-wise approach due to its simplicity and path of least
resistance.

Using the gradient descent explanation of the effect of the learning rate, we start with
a high initial value I = 0.05 and decay by a factor r = 0.2 on every n epoch, as illustrated
in Figure 4.17. The total number of total decay steps is set to an empirical value s = 6.
To see the effect of the stepping, training is halted at the end of each decay step and a
query towards the generative model is done. This is compared to the test data produced
by the process model. Figure 4.22 illustrates the results after the first four decay steps.

We observe the following interesting phenomena:

o Noise is suppressed after the first decay step

o Patterns are identified after the second decay step

Our training progresses by constantly tweaking the network parameters in the right
direction, updating in smaller steps as we decay the learning rate. After breaking the initial
loss wall during the first iterations, we observe a stable learning process where noise is
suppressed and patterns are more precisely recognised. Either, our dataset gently conforms
to the gradient descent theory, where few parameter valleys exist, or we see a different
effect.

You et al. [102] introduces an alternative explanation than gradient descent that fits
the observation from our data. Their view is that;

e an initially large learning rate suppresses the memorization of noisy data

e while decaying the learning rate improves the learning of complex patterns

Through experiments, they challenge the original theory of gradient descent and
attribute this to the fact that deeper networks need other explanations, than what is
developed for simpler neural networks. They also argue that the focus on minimas must be
turned towards the data; noisy data is suppressed by a high learning rate, and the learning
rate decay step learns complex patterns only after this noise suppression.

Our generative model’s ability to learn is in either case accomplished by utilizing
learning rate decay scheduling. Although we can support their idea by data, we cannot
falsify the gradient descent theory.

73

[opow dAT)RIOUSS oY) Sururel) Ul sdojs ojel SUTUIRY[INOJ JSIF JO J00PH g F 9Ins1q

sypoda 00z 1€ F000°0 = -4 ¥ doig (p) syoode (GT 10938 7000 = 4] ‘¢ deyg (9)

AUTONOMOUS LEARNING OF CORE SKILLS

CHAPTER 4.

009 00S 00% 00e 002 00} 0 009 00S 00 00e 002 00+
T T T T T T T T T T
r -10008 r 0008
L _mmzN Jooss L _mm_N 0058
nmaN umaN
= .)) -0006 o))) 0006
uonoipaid ndino aouanbas 7 uonoipaid indino asuanbas 7z
009 00S 00 00€ 002 00} 0 009 005 00 00€ 002 004 0
T T T T T 88 T T T T T 88
|- _mE._. 06 L _ww_n_- 06
Ea._. _uma._.
e, . . . 26 AT . . . 26
uonoipaid indino asuanbas | uonoipaid indino aouanbas |
009 00S 00% 00€ 002 00} 0 009 00S 00¥ 00€e 002 00} 0
T T T T T S99 T T T T T S9
o L F L
) Jg/ I G/
| [Pordyy lg | [peidy 8
. | . g8 . | .)
uonaipaid induj asuanbas p uonjoipaid indui asuanbas p
syoode (0T Y. 10°0 = 4] :¢ do1g (q) syoode (g 1093 600 =] T do1g (®)
009 00S 00% 00€ 002 00} 0 009 005 00¥ 00€ 002 004 0
T T T T T T T T : .
L +oo08 r 0008
| [, looss L[y 0058
cmaN uwaN
r , , 0006 r N I\ , , 0006
uonoipaid indino aosuanbas z uopoipaid indino asuanbas 7z
009 00S 00¥% 00€ 002 00} 0 009 005 00¥ 00e 002 00} 0
T T T T T 88 T T T T T 88
L N \‘ v . 06
d | WA
Py ey
| | | VamAn 26 R I | A 26
uonoipaid indino aouanbas | uonoipaid indino asuanbas |
009 00S 00¥% 00e 002 00} 0 009 005 00¥ 00e 00c 00} 0
T T T T T S9 T T T T T 9
F N 3 L
| g Jg, Y S/
L | Porg lg BN g
S8 g8

:m_ o1paid Sg,:_ mo:w:cwm,o

:w_—o_uwa Snr_ wo:m:uwm,c

74

Chapter 5

Autonomous Control

The road to wisdom?—Well, it’s plain and simple to express: Err and err
and err again but less and less and less'

5.1 Design of the Reinforcement Learning agent

This chapter is dedicated to the concept of learning for control by using a reinforcement
learning agent, trained by the generative model. Several experiments are conducted to
reflect the performance of the concept.

Three different agent types are evaluated for learning a control strategy: the Soft Actor-
Critic (SAC) agent, Proximal Policy Optimization (PPO) agent and the Deep Deterministic
Policy Gradient (DDPG) agent. They all share the common idea of learning from an
environment based on rewards. Whereas SAC is sample efficient, PPO excels in stochastic
high-dimensional environments. DDPG is the deep learning’s equivalent of @Q-learning in
continuous action spaces.

5.1.1 Soft Actor-Critic (SAC)

The soft actor-critic (SAC) algorithm is described as a model-free, online, off-policy, actor-
critic reinforcement learning method by Haarnoja et al. [83]. The algorithm calculates a
policy that maximizes the long-term expected reward, but also the entropy of the policy.
We can think of entropy as the measure of uncertainty of a state, and the higher the entropy
value, the more exploration of this uncertain state is promoted. Balancing exploration
and exploitation of the environment is done by both maximizing the cumulative long term
reward and the entropy.

SAC operates stochastically, meaning that we try to act as random as possible while
still completing the task. For a process control problem, this might be a good fit: we want
to minimize training time and we might have limited data available for off-line training.
Maximizing the usage of the available data means that exploration of the state-space is
limited to the area surrounding the process mid-point, meaning that the agent should learn
the dynamics only within the available data window. This is an important pre-requisite,
as the data window should describe possible process logs only, and not that of greatly
exaggerated excitements. Selecting an agent that is compatible with the view of the
generative model’s inability to extrapolate outside the process window seems important.

'Danish poet and scientist Piet Hein (1905-1996)

75

CHAPTER 5. AUTONOMOUS CONTROL

To illustrate this point, let us denote 7* as the optimal policy that has the highest
expected reward for every action:

oo
7 = argmax E [Z Yr (s, at)]} (5.1)
™ T [t=0
where trajectory 7 has been sampled from the probability distribution of the policy
7. In this scenario, the cumulative expected reward for the trajectory forces the agent
to select actions that it might have visited before, but knowingly leads to a state of high
reward. The SAC adds the entropy term H:

T T~ t=

7" = argmax E [Ooovt[r(st, ay) + o/H(7r(~|st))]] (5.2)

where the temperature parameter o controls the relative importance of the entropy
term against the reward [83]. This forces the agent to consider the uncertainty, not only
the reward associated with the state and selecting actions it has not yet seen. This would
mean that the agent stochasticity is somewhat controlled, at least when it comes to the
degree of randomness introduced.

Further, gradient update of the policy is done off-policy utilizing the history of available
data from a replay buffer. This gradient update means slower learning of the agent than
just replacing the target network, as described earlier by Mnih et al. [51]. The soft policy
update alternates between policy evaluation and policy improvement as described by Sutton
and Barto [112].

Matlab Reinforcement Learning Toolboxr includes an implementation of the Soft Actor-
Critic algorithm and will be used in the experiments. The setup of the actor and critic
networks is done by following the example SAC RL agent from Matlab.? We utilize long
short-term recurrent memory blocks for Critic output and Actor input. Figure 5.3 visualises
the two network architectures. The temperature parameter o was in the first publication of
the SAC-algorithm an adjustable hyperparameter, although recent updates of the algorithm
involve an automatic optimization of this . Matlab includes this updated algorithm and
is therefore not included in the hyperparameter search.

SAC Actor Network SAC Critic Network
o, o,
ety SNt
.
Mo , Q”E‘%zepc
Oty ! o
i cy
) ’vsme,?s v en
o,)i la .
Ry, .
- Rer, " an%‘e’"c X) ey oy
ance, 7 St 2 . Cr
e, * S, o
MReyy 7R !
s
)) m
M, ¥ Sty
. o
S’a”"g’ﬂtey e o
. ot o ol
s, 0,
t
et
(a) Actor (b) Critic

Figure 5.1: Network architectures of the Soft Actor Critic (SAC) agent

https:/ /se.mathworks.com/help/reinforcement-learning /ref/rlsacagent.html

76

5.1. DESIGN OF THE REINFORCEMENT LEARNING AGENT

Input to the networks is standardised by normalising the data (subtract the mean
and divide by the standard deviation). Setting up training involves selecting a few
hyperparameters, mainly:

e Discount factor
e Target smooth factor 7
o Experience buffer length

The entropy weight parameter « is automatically optimized by the algorithm.

5.1.2 Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) algorithm, and its sibling Trust Region Policy
Optimization (TRPO), seek to maximize the parameter steps to be taken when evaluating
the next policy update. PPO and TRPO try to operate as stochastic as possible and
step as long as possible, without stepping too far. PPO does this by evaluating the
Kullback—Leibler (KL) divergence when optimizing the next policy update through a clipped
surrogate objective function [73]. The KL-divergence is the relative entropy between two
probability distributions and is somewhat related to the entropy term of the SAC agent.

PPO is a less complex implementation than TRPO and is included in Matlab as a
parameterizable RL agent. We adjust the networks of the actor and critics to be compatible
with the PPO agent while still keeping a similar configuration, as illustrated in Figure 5.3.

One notable drawback of the PPO algorithm is reduced performance in deterministic
environments with few dimensions, which may cause a challenge utilizing our process model
based on a few time series.

PPO Actor Network PPO Critic Network

° .
b, Obsg,
et "ty

.
i
’“stzepc ,
i
CS&?!QQSIW
i
/Cslste,':cg
.
o
’/O‘?QUQ
MY M
v sty 1" meg,, by

.
i
9 Ot

Ry Ry
Presen, Prese,
i, Nt
Loss N oss

(a) Actor (b) Critic

Figure 5.2: Network architectures of the Proximal Policy Optimization (PPO) agent

5.1.3 Deep Deterministic Policy Gradient (DDPG)

The Deep Deterministic Policy Gradient (DDPG) algorithm is deep Q-learning for continuous
action spaces [54], [59] as visited and covered in Chapter 2.3.1. DDPG updates the target
network by averaging and adding noise to the proposed actions as an exploration mechanism.

The networks for the DDPG agent has a similar configuration profile as for the SAC
and PPO agents, and are visualised in Figure 5.3.

7

CHAPTER 5. AUTONOMOUS CONTROL

DDPG Actor Network DDPG Critic Network
.
Boonc,
Obse,
MVetio O
o e
At lere,
"
o < * Cu act,
Az, Sty
4 o, G
" i i
! Co S, . M%nrq
4
rRety Tsdd
iy
o5
4 y
torg, -
"R <
L2 Sy l
Ac Ce
ks oy,
o ®Cry
u "up,
(a) Actor (b) Critic

Figure 5.3: Network architectures of the Deep Deterministic Policy Gradient (DDPG)
agent

5.2 Initial conditions

Whenever we start training an episode, we restart the environment to a known state, our
initial condition. This operation places the agent at a known place in the environment and
resets the generative model. Any steps taken by the agent will be evaluated solely from the
episode actions, and not the accumulative state of the generative model. Depending on
the application at hand, we might want to change this condition whenever the RL agent
has gained enough learning. This is might be important in situations where we consider
that there are significantly different conditions at other positions.

We can compare this to an autonomous driving simulator that provides environment
feedback to an agent. At every episode start, we are placed at the same road intersection.
But when we have learnt to handle the environment to some degree, we may want to rotate
the starting point to a different place in the simulation, and even change the weather- or
traffic conditions. In a time series approach, we could restart the environment to any point
in time, so that the agent learns how to escape from the situation and into the action path
that corresponds to the reward policy.

The generative model provides the initial data set at the beginning of each episode, and
for the experiments, we choose to always start training at the same time series position
for the current training session. A new initial observation is created during training of
the generative model and is used for all subsequent RL training sessions. This way, we
can compare agent performances at fair grounds. Figure 5.4 show a plot of the stored
initial observation for the 300 epoch-version of the generative model we have used for RL
agent training. The figure shows the five observation vectors in the same normalized plot,
visualising the first 20 steps of a training sequence, to be used as our starting point. Initially,
this vector was sampled from a random rollout from our process model. During learning,
only the last time step vector is returned to the agent as the environment observation.

However, when simulating towards the process model, we draw a new rollout for each
episode. This way, we make sure that the agent can escape any situation and enter the
envelope satisfying the reward policy. Figure 5.5 visualises two random episode starts
where we rotate the initial conditions on episode start.

78

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

0.8 T T T
0.6
0.4 r :
() 02 I 7
=
g \ Feature 1
- Or Feature 2| 7
_g Feature 3
g 02+ Feature 4|
= Feature 5
o
Z 04t
-0.6 - :
0.8 4
_1 1 1 1
0 5 10 15 20

Sequence step

Figure 5.4: Normalized initial observation data for an instance of the generative model

5.3 Reward functions and terminal conditions

The reward function directly affects the behaviour of an RL agent. Ideally, we would
like to incorporate several information types into one scalar rewarding signal: is the
current state allowed and sound? Are the applied actions within tolerances? Do we
have enough information to shape the agent’s decision on the best way forward? The
work of engineering a proper reward function can be an iterative task involving a lot
of experimentation. According to the research questions, the role of a trainable reward
function is investigated.
We will implement several strategies when engineering the reward function:

e Direct response reward from equation with v = 0.99, univariate scenario
e Sparse reward from result distribution with v = 0.05, multivariate scenario
e Trained reward model with v = 0.99, multivariate scenario

We prepare the generative model as described above but simplify the datasets by not
introducing noise to the manipulative variables, and excluding all controlled variables.
Some noise (0.5%) is added to the responding variables, as instrument noise.

The training is done towards the generative model, while the simulation is done on the
process model with no termination criteria. The process model environment represents
the real system, so the agent cannot restart simulation even if the termination criterion is
breached. This resembles the situation in the real world where the agent has no second
chance for selecting a control strategy. Further, we add 0.5% noise to all controlled variables
in the process model for increased realism of the simulator. The controlled variables are
not part of the generative model training.

79

CHAPTER 5. AUTONOMOUS CONTROL

Feature 1] |
Feature 2

Feature 3 1
Feature 4| | __
Feature 5

Feature 1
Feature 2
Feature 3
Feature 4
Feature 5

Normalized value
o
Normalized value
)

5 10 15 20 : 0 5 10 15 20
Sequence step Sequence step

(a) (b)

Figure 5.5: Normalized initial observation data for two random instances of the process
model

5.3.1 Direct response reward, univariate scenario

The first strategy involves crafting a reward function that resembles the proportional
PID-regulator in the process simulator. The aim is that the agent can behave similarly to
the PID-regulator by calculating the inverse error between a T, and T,,; and using that
for maximizing the reward r. We also add a penalty term as a dampening factor for the
selected action, taking the previous action into account (Aa):

1
Tobservation = m
5.3
Taction = _6 : ‘Aa| ()

T = Tobservation T Taction

A starting point for the action dampening reward is set to § = 0.05. The action
dampening will reward slowly changing the system over sudden moves in actions. Further,
we add a small number € = 1 x 107° to the denominator in ropserpation t0 avoid any
potential divide-by-zero errors. This reward function is implemented as part of the RL
Agent step-function in Matlab:

Since the generative model is trained on rollouts in the range of an output temperature
of 88-92 °C', we set the T, to a middle 90 °C and a termination condition where we do
not allow the system to continue training on the current rollout if the error is greater than
the process window of 2 degrees. These are the process conditions and boundaries we have
trained for from the historical logs. Since the reward function is targeted towards nearly
immediate feedback, the discount factor v is set high, typically v = 0.99.

The following experiments are run using the univariate generative model trained for
300 epochs.

Experiment 0: Initial baseline

We need a way to identify when to stop agent training, the point where we assume that
a suitable policy has been found. An easy method is to stop training when a certain
average reward count has been reached. The theoretical total reward can be calculated by

80

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
epsilon = 1le-5;

(... clipped ...)

% Setpoint offset penalty

setpoint = 90;

errTout = abs(setpoint - scaled_world(2)) + epsilon; % MV + CV + RV vectors
rT = (1 / errTout);

% Penalize control effort
rA = -0.05%abs(previous_action - action_scaled);

% Get reward
Reward = rT + rA;

% Check terminal condition

IsDone = errTout > 2;

notifyEnvUpdated (this);
end

Listing 5.1: Direct response reward function (Matlab code)

multiplying the maximum step reward by the number of steps per episode. For the direct
response reward function, this would mean that the total reward is

Tobservation =

a | =

Taction = 0

T = Tobservation T Taction

1
- (5.4)
r=1x10°
600
Ttotal = Zri
=1

Ttotal — 6 X 107

We would never reach this total reward due to the stochasticity of the system, so our
first experiment is to find the point where a suitable policy has been found at the minimum
training time. Beforehand, we do not know where this point might be, and it might vary
with the application, environment parameters and the type of RL agent.

The average reward expected from one episode might dictate the threshold value we
use for stopping training. As we see in Figure 5.3.1, a SAC agent has been running for
1323 episodes so that we can identify the step where the agent has identified the policy.

We can see that the agent policy is identified after ~ 700 episodes for the SAC agent
and that the average reward threshold for stopping training could be set to 1.2 x 10* for the
following experiments, for a value of 600 rollout steps per episode. We see that by training
for an extended time, we might accomplish greater policy accuracy. For the experiments,
we choose to select a lower number. Further, we set another stopping condition where we
abort the training if more than 5000 episodes have been running without reaching the
convergence criteria.

A secondary observation is that the SAC RL agent has identified a control policy by
using the generative model as a dynamic process simulator. This is an important and

81

CHAPTER 5. AUTONOMOUS CONTROL

Average reward
Episode value

N
S
log-scale

;i Ll ! A . 0
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Episode Episode

(a) (b)

Figure 5.6: Experiment 0: SAC agent training progress (a) and log-scaled (b)
We clearly see the step where a policy is identified (around step 700).

positive discovery in the direction of supporting the hypothesis claim. We also see that
training performance increases beyond the stopping criteria, which could indicate that the
agent is a continuous learner.

Experiment 1: Train & simulate a Soft Actor-Critic (SAC) agent with direct
response reward, univariate scenario

A SAC agent with the following hyperparameters is executed until reaching the total
reward criteria:

e Discount factor v = 0.99
« Target smooth factor = 1 x 1073

« Experience bufffer length = 1 x 10°

This results in the results visualised in Figure 5.7 and Table 5.1.

Agent type Episodes Value p Steps Total Reward Observation g Observation o
SAC 868 18.76 600 23796.83 90.21 1.11

Table 5.1: Experiment 1: SAC training and simulation results

In Figure 5.7, we see that the agent action for the control signal for @ (blue line)
successfully controls the observation of output temperature (red line) with an overall
@ = 90.2 and ¢ = 1.11, not far from the setpoint of the agent training towards the
generative model.

Experiment 2: Train & simulate a Proximal Policy Optimization (PPO) agent
with direct response reward, univariate scenario

We exchange the agent type with a PPO agent with the following parameters:

o MiniBatchSize = 20 (the sequence length)

82

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

Average reward
10t F Episode value

log-scale

i

0 100 200 300 400 500 600 700 800 900
Episode

(a)

Figure 5.7: Experiment 1: SAC agent training progress on generative model (a) and
simulated process model response (b)

« ExperienceHorizon = 1 x 10°

e Discount factor v = 0.99

108 T T T 12 T T T 100

Average reward Feed (m/h)
Episode value " 98
1M out

92
9l

90
8

88

0 500 1000 1500 2000 0 100 200 300 400 500
Episode t

(a) (b)

log-scale
m%h

Figure 5.8: Experiment 2: PPO agent training progress on generative model (a) and
simulated process model response (b)

Agent type Episodes Value p Steps Total Reward Observation g Observation o
PPO 1801 80.7 600 12191.0 90.40 0.86

Table 5.2: Experiment 2: PPO training and simulation results

From Figure 5.8, we can see that the PPO reaches a more stable temperature signal, but
need more than the double number of episodes compared to SAC for reaching convergence.
This observation supports the claim that PPO is sample intensive. However, this might
come with a positive side, since the generative model can produce any number of samples
for training, given its learnt system dynamics.

83

CHAPTER 5. AUTONOMOUS CONTROL

Experiment 3: Train & simulate a Deep Deterministic Policy Gradient (DDPG)
agent with direct response reward, univariate scenario

12 T T T T 100

Average reward Feed (mh)
Episode value T " 98
11 out

log-scale

0 100 200 300 400 500 600
Episode t

(a) (b)

Figure 5.9: Experiment 3: DDPG agent training progress on generative model (a) and
simulated process model response (b)

Agent type Episodes Value p Steps Total Reward Observation g Observation o
PPO 598 283.28 600 12319.0 89.92 1.03

Table 5.3: Experiment 3: DDPG training and simulation results

Figure 5.9 show the results from DDPG training. We observe a performance close to
that of the SAC agent.

5.3.2 Sparse reward and learning from failure

The second strategy is more involved and is set up to evaluate the performance of using
sparse rewards for process control. The idea is that the agent should learn from its failures
and only be rewarded when the results fall into an acceptable range. The agent will not
get any accumulated reward during a sequence, which means that the control strategy is
entirely up to the agent to develop. The reward scheme will not give any hints towards
how the process is to be controlled. The agent should learn how to control the process to
meet a specific end result that is sparsely presented.

The particle size calculations that are part of the responding variables and calculated
by the empirical Sauter mean droplet size formula as presented in Equation 3.12 by Huang
and Mujumdar [35], is used as sources for the sparse reward scheme. The end result might
typically be a laboratory test result which often is a delayed parameter in real processes.
In our experiments, we use the particle size distribution from the Sauter mean droplet size
calculations to resemble this relationship. We define an acceptable normally distributed
end result and the desired centre volume, where the reward function is a statistic evaluated
to resemble the sparsity of the reward. We use a low discount factor of v = 0.05 to promote
long-term planning.

To evaluate this strategy, we analyse the particle size records from the multivariate test
case above. A histogram of the result from this test case is demonstrated in Figure 5.10.

84

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

We also calculate an overlaid normally distributed curve by using the normpdf-function,
where the distribution p and ¢ are parameters. This curve represents our desired particle
size distribution.

Particle size distribution

250 T T

200

150 |

Counts

100 |

0
100 105 110 115 120 125 130 135
£m

Figure 5.10: Particle size distribution from multivariate test case
p = 116.36, o = 5.07, Anderson-Darling-test failed with p = 1.07 x 1076

Our sparse reward scheme should evaluate whether a distribution is close to normality
or not, and we select Matlab’s Anderson-Darling-test® for this evaluation purpose. The
Anderson-Darling-test returns a decision for a null hypothesis indicating that the test data
is from a population of normal distribution within a 5% significance level. The dataset
for Figure 5.10 fails this test, but when we create a randomized demonstration dataset
with 351 samples based on the same p and o, we pass a re-run of the test, as visualised in
Figure 5.11. This would be our desired process result during episode training.

The statistical comparison function results in a sparse reward: 1 if the conditions for
normality and volumes are satisfied, otherwise 0. Whenever the conditions are not present
during learning, we terminate the episode. We start the reward evaluation after collecting
some samples during the start of an episode, so the first few samples will receive 0 reward
and termination will be inhibited until we start the evaluation.

To be able to accomplish learning to control by sparse rewards, the agent would need
to learn how to change parameters dynamically to meet the distribution criteria, in our
case the () fecq parameter and the speed of the atomizer Z,,, which is part of the formula
for mean droplet size. This means that Z,,,, will be changed from a controlled variable
to a manipulative variable in those experiments, as presented through the multivariate
generative model discussion. Further, we do not employ any control restrictions, meaning

3https:/ /se.mathworks.com/help/stats/adtest.html

85

CHAPTER 5. AUTONOMOUS CONTROL

Random particle samples Particle size distribution

135 90
130
1251
120 ‘
: |
115 1 ‘
110 u
105
100 ' : :
0 100 200 300 400 100 110 120 130

Sample Jum

Figure 5.11: Randomized particle samples
Sample size: 351, = 116.36, 0 = 5.07, Anderson-Darling-test pass with p = 0.81

that the agent is free to control the system to any temperature and speed levels necessary.
The designed reward function is listed in Code 5.2.

Experiment 4: Train & simulate a Soft Actor-Critic (SAC) agent with sparse
reward, multivariate scenario

A SAC agent is trained using sparse reward for 327 episodes using manual termination.
We can see from Figure 5.12 that a policy was identified after roughly 50 episodes.

When simulating the agent towards the generative model, we see from Figure 5.13
an interesting policy. The agent rapidly varies both @ feeq and Z,py, in order to create a
particle distribution that satisfies the sparse reward scheme. This behaviour is repeatable
across several retries of learning and simulation.

Agent type Episodes Value p Steps Total Reward Observation p Observation o
SAC 327 0.17 33 33.8 90.79 5.74

Table 5.4: Experiment 4: SAC training and simulation results

We then test the agent in a free-running process environment (the ODEs), and we see
the same pattern of rapid action control, in Figure 5.14 with more exaggerated responding
variables.

The policy seems to be a good example of the Cobra effect [25], where our control
scheme has unintended effects we originally did not design it for: high temperature variation
and rapidly exaggeration of control signals in order to reach the goal as quickly as possible.

86

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

function [Reward, IsDone] = sparse_reward(logged_signals, sequence_length)

% Sparse reward
dist = makedist('normal', 'mu',122,'sigma',b); % target distribution
rS = 0;
h = 0;
if size(logged_signals,1) > sequence_length
theset=logged_signals (sequence_length:end,4);
[h,p,adstat,cv] = adtest(theset',"Distribution", dist);
rS = ~h;
end

% Get reward
Reward = rS;

% Check terminal condition
IsDone = h;

Listing 5.2: Sparse reward function (Matlab code)

45 T T T

T T 0.4

Average reward
Episode value

U
U 4.
F
| Ny

0 1 1 1 1 1 1.6
0 50 100 150 200 250 300 350

Episode

10.2

Figure 5.12: Episode data for training an agent based on a sparse reward scheme

A human operator would probably ease the operating envelope for the machinery, as well
as distribute the controls over longer intervals for more controlled production. A sparse
reward scheme for the multivariate case is probably not suitable for real-life control without
adding penalty terms for the control efforts.

Employing a reward shaping process, in which we further tweak and redesign the direct
response reward in an iterative fashion, can be an alternative. Reward shaping can take
other properties such as control dampening, process enveloping and soft ramping into
account. This quickly becomes a manual multivariate optimization task, an engineering
effort we hope to avoid.

87

CHAPTER 5. AUTONOMOUS CONTROL

um

100
5

3 10 115 120 125 130

pm

(a) Simulation result sequence, u = 90.06, (b) Particle size distribution
o =0.93

Figure 5.13: Simulation towards generative model

105 80
Feed, (m%h) +100
Ml T“‘ {95
'PWLWI | -
JEL i -

485

80
0 50 100 150 200 250 300 350 400 450 500
t

150

140

4130

um

120

4110

100
50 100 150 200 250 300 350 400 450 500 105 110 115 120 125 130 135 140
t
pm

(a) Simulation result sequence, p = 90.79, (b) Particle size distribution
o =574

Figure 5.14: Simulation towards process model

5.3.3 Trained reward model, multivariate scenario

The goal of the agent is to control the process within operating limits, the envelope of
dynamics, and reach some kind of specified target. We have seen in the former experiments
examples of reward functions that can control the process. However, the reward strategy
we choose can either involve tedious detailed work as done by the team for the Dota 2
competition [98], or we could introduce a level of imitation learning in which the manual
efforts could be lower.

In classical imitation learning, the policy is learnt directly and replaces the agent
model during simulation. Hence, a reward strategy is not necessary. If we would enable
the agent to evolve by continuous training during execution, we need to employ some
kind of reward model. As we have visited earlier, Inverse Reinforcement Learning is an
example of imitation learning where the agent needs to identify a reward model based on
demonstration examples. This could be by intervention from an expert, where we assume
the demonstration is correct. Or, it could be by sampling from function approximators
that are trained towards the desired behaviour.

88

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

We could use the learnt generative model as a reward model. By calculating the inverse
error AFE between the normalized versions of observation estimate and actual observation,

AE = Eestimate - Eactual
1 (5.5)
r = —-
|AE]
reward r would continuously update the reward according to visited states. This way,
the agent will learn to replicate the behaviour exhibited in the logs and in theory reward
any action that conforms to the generative model.

However, there might be a conflict between the recorded logs and the goal of the
agent. The logs might include dynamics outside the required process envelope, and data
that comes from an uncontrolled process, in that sense it does not follow the goals of our
requirements. By introducing a classification learner, we can build a reward model where
only desired behaviour is recorded. For example, only sequences that contain dynamics
that are manually marked as desired could be used for learning the reward model. The
difference between the environment and the state of the reward model would dictate a
lower reward. Hence, an agent exhibiting similar dynamics as the reward model is trained.
This way, we do not employ static limits but rather learn from examples of good processes.

To set up an experiment for such a reward model, we create a new subclass RewardModel
which share the functionality of the parent class GenerativeModel, although the parameter
values to initialize the class instance might be different. This model will then be trained
on good examples only and queried in the reward function. The inverse error between the
model estimate and the actual observation is returned as the action reward. The above
equation and reward model query is implemented as a reward function in Code 5.3.

function [Reward, IsDone, RewardModel] = learnt_reward(previous_action,
action_scaled, scaled_world, logged_signals, sequence_length,
generative_model, reward_model)

% Extract sequence

trail_length = min(size(logged_signals,1), sequence_length)-1;

data = logged_signals(end-trail_length:end-1,:);

% Query the reward model

data = reward_model.scale(data);

[reward_model.net, Y] = predictAndUpdateState(reward_model.net,{data'});
Y = reward_model.inverse_scale(Y);

% Scale to similar range

Y = generative_model.scale(Y);

X = generative_model.scale(scaled_world);
err = abs(sum(X-Y));

% Get reward
Reward = 1/err;

% Check terminal condition

IsDone = 0;

if size(logged_signals,1) > sequence_length*2
IsDone = err > 2;

end

RewardModel = reward_model;

Listing 5.3: Reward function for querying the reward model (Matlab code)

89

CHAPTER 5. AUTONOMOUS CONTROL

When training the reward model, we use the same network parameters as the generative
model, but the rollout function is changed to produce good samples only, that is, the
temperature setpoint Ty, is restricted to a stable level (90°). Further, the Z,,, is fixed at
7600 rpm with a 0.1% added noise. The controlled variables are fixed and removed in this
model. We instantiate, train and save the reward model by:

rewardmodel = RewardModel(filename, @spray_rollout_pid_stable, 60, 120, ...
128, 32, sequence_length, environment_length)

[rewardmodel ,~] = rewardmodel.train_model

rewardmodel .save_model

The environment is instantiated after training by refering the reward function and
reward model:

env = SyntheticEnvironment (genmodel, true, Qlearnt_reward, rewardmodel);
validateEnvironment (env) ;

Experiment 5: Train & simulate a Soft Actor-Critic (SAC) agent with reward
model, multivariate scenario

A SAC agent with the following hyperparameters is executed until reaching the total
reward criteria (set to 12,000):

o Discount factor v = 0.99
« Target smooth factor = 1 x 1073
« Experience bufffer length = 1 x 10°

The agent reach the termination criteria after 1695 episodes, whereby the deterministic
policy was applied to the process model. The results are visualised in Figure 5.15 and
Table 5.5.

L L L L L L L L L 80
0 50 100 150 200 250 300 350 400 450 500
t

log-scale
3
>

11000

10000

9000
8000
7000
6000

150

icle size | 7 140

L L L L L L L L L 100
50 100 150 200 250 300 350 400 450 500

q130 _
<1120 -

q110

0

0 200 400 600 800 1000 1200 1400 1600 1800 0

Episode t

(a) (b)

Figure 5.15: Experiment 5: SAC agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

In Figure 5.15, we see that the agent action for the control signal for @Q);, has been
identified with a reward model strategy.

We need to evaluate whether the policy is sane by setting up new experiments 6-7.
Here, we will evolve the agent by switching the training environment from the generative
model, to the process model.

90

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

Agent type
SAC

Episodes
1695

Value 1 Steps
87.42 480

Total Reward Observation ¢ Observation o
19158 90.55 0.84

Table 5.5: Experiment 5: SAC training and simulation results

Experiment 6: Evolving the SAC agent from Experiment 5

The trained policy has been shown to control a simulated process environment by its
deterministic policy. In this experiment, we evolve the agent by using the process
environment directly during training and using the trained reward model for the reward
function. The process environment is instantiated with a reference towards the reward
model and its query function;

envProcess = ProcessEnvironment (genmodel, true, Q@learnt_reward, rewardmodel);
validateEnvironment (envProcess) ;

We add 0.1% noise to the controlled variables and train the agent for additional number
of episodes, reaching termination criteria after 79 episodes:

trainStats = train(agent,envProcess,opt);
12 T T T T T T T T T 105
Feed, (ms/h) 4100
10 — T
oul
< 195
o —
E 8 e i M A A A A AN A o i e Nt b | 90
ol 185
1 1 1 1 1 1 1 1 1 80
0 50 100 150 200 250 300 350 400 450 500
t
1 1 000 T T T T T T T T T 1 50
- erm
10000 (*_ Particle size| | 140
£ 9000 1130 e
e 3
8000 1120
7000 1110
6000 1 1 1 1 1 1 1 1 1 100
0 50 100 150 200 250 300 350 400 450 500

t

Figure 5.16: Training SAC agent towards process model, 4 = 90.56 and ¢ = 0.19

We see from Figure 5.16 that the agent keeps the process in control according to the
reward model.

91

CHAPTER 5. AUTONOMOUS CONTROL

Experiment 7: Exaggerated process environment on SAC agent from Experiment 5

This experiment introduces increased process noise (0.1%) on the controlled variables and
further trains the SAC agent from experiment 5, within the process environment. Training
is terminated after 106 episodes when reaching the termination criteria.

12 T T T T T T 105
Feed, (m%h)| - 100
10 L
E ou | 95
© -
E 8 4190
sl 485
1 1 1 1 1 1 80
0 100 200 300 400 500 600 700
t
11000 T T T T T T 150
erm
10000 t Particle size | | 140
W‘WVWWW”WWWWWWWW —
9000 | 4130
o MWMMMMWMMMWWWMMM [
7000 [4110
6000 : : : : : : 100
0 100 200 300 400 500 600 700

Figure 5.17: Training SAC agent towards process model with 0.1% noise on controlled
variables, p = 90.54 and 0 = 1.71

We can see from Figure 5.17 that the agent does not control the temperature at all,
but seeks to reduce the error from the reward model by increasing the atomizer speed and
compensating with process noise by rapidly changing the speed. The feed rate @;, is not
touched by the agent. According to the synthetic process model, the dynamics for the
atomizer has faster response times than regulating the feed rate. This might be the reason
for this behaviour.

Experiment 8: Train & simulate a Proximal Policy Optimization (PPO) agent
with reward model, multivariate scenario

Agent type Episodes Value u Steps Total Reward Observation g Observation o
PPO 200 15.98 480 17203 90.00 0.28

Table 5.6: Experiment 8: PPO training and simulation results

A PPO agent identifies a policy after a short amount of episodes, and we see that
conformance is reached after a stable learning process.

92

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

Average reward
Episode value 10

10% 1 6

0 50 100 150 200 250 300 350 400 450 50
2 4 t

log-scale
3

11000

o g 10000
E 9000 E\ Whoihe
"] = 8000 iy A g

7000 1110

n n L 6000 L L L L L L n n n 100
0 50 100 150 200 0 50 100 150 200 250 300 350 400 450 500
t

Episode

(a) (b)

Figure 5.18: Experiment 8: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

Experiment 9: Train & simulate a Deep Deterministic Policy Gradient (DDPG)
agent with reward model, multivariate scenario

A DDPG agent was trained but was automatically terminated after 5000 episodes, on
several attempts. Figure 5.19 show that the reward level stays stable and that the agent
is not able to control the process. Further, we see that when adding 0.1% noise to the
controlled variables, the agent has no policy for a countermeasure.

Agent type Episodes Value p Steps Total Reward Observation g Observation o
DDPG 5000 28.04 480 15.72 90.00 0.23

Table 5.7: Experiment 9: DDPG training and simulation results

The policy of the agent has not reached convergence within the limit for the experiment
training.

93

CHAPTER 5. AUTONOMOUS CONTROL

102 T 3 12 105
° 100
——— Episode value 10
< 95
o [
Es %0
1 4
10 6 85
80
2 0 500
2
g
2 11000 150
0
10 10000 140
g 9000 10 o
8000 4120 ©
7000 —Zpm H110
10—1 \ Particle size
- . . . 6000 100
0 1000 2000 3000 4000 5000 0 50 100 150 200 250 300 350 400 450 500
Episode t

0 50 100 150 200 250 300 350 400 450 500

11000 T T T T T T T T T 150
10000 1140
9000 1130
g g
8000 4120
7000 110
6000 100
0 50 100 150 200 250 300 350 400 450 500

Figure 5.19: Experiment 9: DDPG agent training progress on generative model (a) and
simulated process model response (b), and introducing 0.1% noise on controlled variables
(c), using trained reward model

94

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

5.3.4 Trained reward model with an inverse mean squared error as
reward

As the reward model seems promising in itself, the reward calculation can be improved
by replacing the inverse mean absolute error, with the mean squared error, so that AFE
becomes:

AE = (Eestimate - Eactual)2
1 (5.6)
~IAE|

r

and the termination critera T(AFE) is updated to:

1 for vVAE > 6,

0 otherwise. (5.7)

T(AFE) = {
where § = 2, to leave room for evolving the episodes. RMSFE = 1.5 when training
the reward model, so the environment could possibly reach this error level. A theoretical
maximum reward per episode will in this case be % =1 x 10°, but we establish a baseline
by first training the agents for several runs. The PPO agent was able to reach an average
reward on several trials at 1,800 which was set as the termination criteria for training SAC,
PPO and DDPG agents. This reward corresponds to an RMSE of 1800~ = 5.6 x 107,
The reward model should penalize larger control efforts by using the squared error and
ease the compensation of slow dynamics by faster dynamic control signals.

Experiment 10: Train & simulate a PPO agent with reward model, MSE
evaluation, multivariate scenario

A PPO agent was trained using the MSE method of evaluating the result from the reward
model. We see from Figure 5.21 that the PPO agent has identified a policy, and according
to Table 5.8, the p and o are well inside the original data range of +1°.

0 50 100 150 200 250 300 350 400 450 50

log-scale

1 4 11000
10000

9000

7000

L L L L L L L L L 100
0 100 200 300 400 500 600 0 50 100 150 200 250 300 350 400 450 500
t

10! 6000

Episode

(a) (b)

Figure 5.20: Experiment 10: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

95

CHAPTER 5. AUTONOMOUS CONTROL

Agent type Episodes Value p Steps Total Reward Observation g Observation o
SAC 502 20.91 480 1804 89.95 0.24

Table 5.8: Experiment 10: PPO training and simulation results

Experiment 11: Train & simulate a SAC agent with reward model, MSE
evaluation, multivariate scenario

A SAC agent was attempted trained but never reached the termination goal for average
reward. Training was automatically terminated when reaching 5,000 episode counts.

The maximum average reward for the training pass was 233.07, well beyond the
termination criteria.

250

200

>

150

L L L L L L L L L 80
0 50 100 150 200 250 300 350 400 450 500
t

11000 150

100

10000 140
g 9000 q130

=

. S
8000 T 120

"
J 1 7000 | 4110
L

-2 6000 100
0 1000 2000 3000 4000 5000 0 50 100 150 200 250 300 350 400 450 500
Episode t

(a) (b)

Figure 5.21: Experiment 11: SAC agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

Experiment 12: Train & simulate a DDPG agent with reward model, MSE
evaluation, multivariate scenario

A DDPG agent was attempted trained but never reached the goal for the reward. Training
was automatically terminated when reaching 5,000 episode counts.

5.3.5 Training towards the process model using the reward model

An alternative approach to train our RL agent is to utilize the process model directly,
and the learnt reward model. In such a scenario, the agent is directly connected to a
real-time process, in our case the ordinary differential equations. In this particular case,
we disconnect the generative model and focus on the reward model only.

Experiment 13: Train & simulate a PPO agent towards process model and
synthetic reward model, MSE evaluation, multivariate scenario

A PPO agent was trained reaching the termination criteria of an average reward of 1800.
We can see from Figure 5.22 and Table 5.9 that converge was reached after only 194

96

5.4. COVERING UNMODELED DYNAMICS

Agent type Episodes Value p Steps Total Reward Observation p Observation o
SAC 194 26.28 480 1893.7 90.00 0.22

Table 5.9: Experiment 13: PPO training and simulation results

episodes. This experiment demonastrates the RL concept validity and that an agent can
learn from a process model.

5

+100

10!
10
9!

490
8!
8
0

log-scale

150
—4140
q130 _

120

7000 q110

107 6000 - . . . — - . . 100
0 50 100 150 200 0 50 100 150 200 250 300 350 400 450 500
t

Episode

(a) (b)

Figure 5.22: Experiment 13: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

5.4 Covering unmodeled dynamics

The experiments show us that the agent quickly learns the system dynamics from the
process and that the mean and standard deviation is comparable to when training the
agent towards the generative model. An important discovery is that a PPO agent trained
with the generative model performs similar to an agent trained on the real process. Further,
a reward model trained on time series representing a class of data can be used for agent
training towards behaviour that resembles such classes, e.g. good data, or other sets of
data classes. However, we also see from experiments that the agent has limited knowledge
of proper countermeasures when presented with cases representing time series data outside
the dynamics envelope it was trained for. We also see that the agent compensates for
changes in the environment by selecting fast-moving dynamics Z,,,, instead of slowly
moving the control signal, which in the real world might be a more costly strategy than
regulating with the ;, due to the mass transport involved in changing the rotation speed
of the atomizer. These are both examples of the Cobra effect discussed earlier and a set of
conflicting objectives which to the agent only has one solution: the path of least resistance
to reach the reward.

The background for this behaviour might descend from the process data’s properties:

e There is synthetic instrument noise we add to the responding variables which might
be mistaken by the agent, in our human sense, as a selectable action space

97

CHAPTER 5. AUTONOMOUS CONTROL

e The synthetic model of the atomizer is not taking the cost of speed change into
account

e A change of dynamics in the controlled variables has not been trained for in the
generative model and the reward model

e There is no difference in cost taking action A over action B

To robustify the model, we increase the process model space by exciting the process
parameters slightly. This will involve adding the controlled variables to the process model,
which we model as stable with added noise. The process model is already developed for
these signals, so adding them means that we clear the suppression of them.

5.4.1 Retraining the generative model

We turn our attention towards training the generative model for an excited process. This
means that we expand the trained range for the temperature setpoints to 88 — 142°C' and
add increased normally distributed instrument noise to the controlled variables to 0.5%.
This way, we produce data that should lie outside the process operational window so that
the generative model can learn policies to escape such situations. We also change the
process model for the atomizer to accommodate for slower dynamics, by a factor of 0.01.
Exciting the process this way is similar to the model identification steps in classic control
theory.

With these changes implemented, we do a new hyperparameter search by Bayesian
optimization. This time, the minibatch (60), the number of rollouts (128) and the number
of epochs (30) is kept constant. We will optimize the neural network architecture: number
of hidden units, number of layers and sequence length. Also, we add the number of hidden
layers to the search, to see the effect of stacked LSTM layers.

The RolloutDatastore class is extended to support parallel processing by also subclassing
matlab.io.datastore.Partitionable and implementing the required methods. This way,
the parameter search can utilize Matlab’s Parallel Computing Toolbox and increase the
throughput of our experiments by running several workers in parallel, either locally or by
using a cloud service. An example of parallel hyperparameter search is shown in Figure 5.23,
which is a screenshot for the Matlab Experiment Manager. Here, we see that three workers
have completed their search run, while six other workers are active.

T e o o e e o
0 mervs | —
O Running . 43.3%

O Running [233%
© Running 0.0% 0 hr 0 min 8 sec 1.0000 32.0060 0.0000 10.6000

22.6000 58.0000 1.0000 15.0000
8.0000 43.0000 1.0000 27.0000 2.6336 2.9453
33.0000 20.0000 1.0000 17.0000

8.0000 44.0000 1.0000 28.0000

8.0000 15.0000 0.0000 17.0000

Figure 5.23: Running Matlab Experiment Manager: parallel bayesian hyperparameter
search of the generative model

There is a danger here that every time a worker is finished, the framework calculates a
new set of parameters for the next available worker. Since the smaller parameter space is
more computationally efficient, we will naturally get an unbalanced result set since more

98

5.4. COVERING UNMODELED DYNAMICS

experiment evaluation is done on smaller parameter sets. Fewer workers testing larger
parameter sets are able to finish, and could therefore compromise the results since their
share in the bayesian calculation is low. We need to evaluate the results with this in mind
and distribute our weights taking the unbalanced result set into account. An alternative
approach is to do an exhaustive parameter search if we assume it is important to cover
the whole parameter space, or discard the parallel search altogether and apply sequential
search.

As seen by the screenshot results in Appendix B, the results from the hyperparameter
search show us that the validation RMSE for all 30 runs is ~ 2.5. We can infer that the
network architecture has less impact on the result, as well as the sequence length.

The sequences could be adjusted to the length we believe captures important start-
and ends of dynamics, e.g. a time series containing data from one recipe run, or from a
block of residence time in the process. Due to the slowly varying dynamics of the atomizer
speed, we therefore select a sequence length of 60 time steps. Clearly, we would need a
better method to estimate the sequence length as this directly influences the reinforcement
learning performance, more than the generative model.

We also see from the hyperparameter search that the validation loss is lower for a
higher number of hidden nodes, using no hidden layers. We select 64 hidden nodes in two
layers as our architecture.

7 ‘ ‘ 0.06

Validation loss
Learning rate

10.05

10.04

10.03 =

10.02

1 0.01

2 I | L 0
0 1 2 3 4 5 6

Iteration «10%

Figure 5.24: Generative model retraining with modifications, RMSE=2.5

With these modifications, the generative model is retrained during 300 epochs. The
process is visualised in Figure 5.24 utilizing the learning rate decay schedule as discussed
earlier.

5.4.2 Retraining the reward model

We establish a new instance of the reward model by training the network over sequences
generated from rollouts created from good process data. In this case, we establish 110°C
as the setpoint for the PID regulator and present the reward model with these sequences.

99

CHAPTER 5. AUTONOMOUS CONTROL

0.1% noise is also added to the controlled variables as well as the temperature sensor
output. The resulting RMSE is 2.7 for the dataset.

5.4.3 Retraining the agents

Using the new generative model and the new reward model, we retrain our agents. Further,
we complexify the agent training by randomly sampling a new rollout for every initial
observation where the added noise is 0.5%. This way, all episodes are provided with an
initial observation that is completely new, although taken from the Gaussian distribution
of the prior. Further, we set the discount factor v = 0.98 to accommodate for a longer
sequence length.

Experiment 14: Train & simulate a PPO agent towards noisy generative model
and reward model, multivariate scenario with initial observation rotation

The PPO agent did not reach the convergence criteria of an average reward of 1800 and
terminated on the episode count of 5000. However, as we can see from the training plot in
Figure 5.25, the agent has repeatedly identified several policies, although they are discarded
in favour of a new search branch when not terminating.

Average reward

Episode value 450
T F 400
10%] 350 \
300 -
" 5
I 250
20
’ 200
o 15
150

100

log-scale

0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Episode Episode

(a) (b)

Figure 5.25: Experiment 14: PPO agent training progress on (a) log sccale and (b) normal
scale

The agent cycles from wvalley to valley and ends with a policy with an average reward
of 460.15 and a value of 38.44, which also is the average maximum value for all attempts.
We then simulate the agent both towards the generative environment as well as the process
environment.

In Figure 5.26, we can see that the agent policy reaches the reward model stable signal
at 110°C with a ¢ > 1. However, the performance might be a good starting point for
evolving the agent on a real process.

Experiment 15: Train & simulate a SAC agent towards noisy generative model
and reward model, multivariate scenario with initial observation rotation

A SAC agent was trained towards the complex model and reached convergence after 188
episodes with an average reward of 3564.7 and value of 5.72.

100

5.4. COVERING UNMODELED DYNAMICS

+100 +100

L L L L L L L L L 80 L L L L L L L L L 80
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
t

11000

150 11000 T

10000 140 10000

£ 9000 B] 119 ¢ £ 9000
= 8000 < — 120 8000

7000 q110 7000 4110

6000 L L L L L L L L L 100 L L L L L L L L L 100
0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
t t

(a) (b)

Figure 5.26: Experiment 14: PPO agent simulation towards (a) the generative model
(n=107.73,0 = 1.76) and (b) the process model (u = 111.20,0 = 1.67)

4000 10

3500

3000

2500

2000

log-scale

1500

1000

500

0 50 100 150 200 0 50 100 150 20
Episode Episode

(a) (b)

Figure 5.27: Experiment 15: SAC agent training progress on (a) log scale and (b) normal
scale

However, the results when simulating are not that impressive, as seen in Figure 5.28. It
might seem that the agent has locked on to the noise distribution and generated a gaussian
policy that resembles the noise.

The high reward given might just be that the random policy and random noise is
randomly in phase. However, we could anticipate the situation by also evaluating the
discounted future reward, which is lower than that for the PPO agent policy and setting this
as the termination criteria. However, the Matlab framework does not allow for explicitly
setting value as a termination criterion. Another method could be to increase the average
reward termination criteria, to avoid what seems to be a phase locked loop.

Experiment 16: Train & simulate a DDPG agent towards noisy generative
model and reward model, multivariate scenario with initial observation rotation

A DDPG agent was attempted trained for several sessions but never reached any termination
criteria before being manually stopped. The computation resources needed exceeded the
quotas multiple times, as only a few hundred episodes were evaluated after > 14 hours with

101

CHAPTER 5. AUTONOMOUS CONTROL

Feed, (m°h)

B N W T T TN L TN e

0
0 50 100 150 200 250 300 350 400 450 500

11000

10000

£ 9000
s b g A A I P A o e
8000 \W i + " *

7000 1110

6000

L L L L L L L L L 100 L L L L L L L L L 100
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
t t

(a) (b)

Figure 5.28: Experiment 15: SAC agent simulation towards (a) the generative model
(n=119.4,0 = 4.18) and (b) the process model (= 121.67,0 = 9.67)

GPU training each time. The operator-observable average reward for these non-evaluated
sessions was in the range of 10 — 15, a low number compared to the other agents.

The bad performance on DDPG for our experiments can be explained by DDPG’s
exploration strategy being non-compliant with our data augmentation policy and model
dynamics. DDPG explore the environment by randomly changing the action on every step,
whilst the environment dynamics might not respond in time for this agent to evaluate the
policy correctly.

5.5 Estimating uncertainty

In the preceding experiments, we have demonstrated the capability to learn dynamics
from recorded data and train a reinforcement learning agent on these data, eliminating
the need for environment modelling in such cases. The culprit remains that we still must
excite the process, or at least use data from such sessions, in order to be able to learn all
facets of the process. When increasing the size of the observation space, such as when
adding more sensor observations or incorporating image- or spectroscopic data, the data
dimensionality increase becomes a combinatorial problem where the optimum is visitation
of all relevant states during training. If the observation space is Gaussian, the policy could
have a conformed uncertainty across states. However, in high-dimension non-linear systems
with long time-dependent seasonality variations, we must ensure we have balanced datasets
from these periods.

Ideally, we should have training data and real-world data that are exchangable in terms
of sequences, meaning that we capture all relevant dynamics we can foresee in the real
world. Let Z denote sequences of state-action-pairs, and we have

Zhistory ~ quture (58)

What we have observed during the experiments, is that the agent action proposal does
not always lead us to the correct reward situation, if the current situation is not trained
for, as demonstrated in Experiment 15. We should have tools to remedy the situation

102

5.5. ESTIMATING UNCERTAINTY

by estimating the uncertainty during operation, indicating situations where the agent is
uncertain. As such, we should be able to estimate the uncertainty as a prediction interval:

[—a0,§+a-0] (5.9)

where « is the desired level of confidence. Neural networks capture non-linear data, so
applying a global statistic calculated from training data might not always hold, at least
when considering sequence-to-sequence regression. We present here three popular methods,
and our own method.

5.5.1 Monte Carlo simulation

One simple method that has shown its importance in light ray-trace rendering optimization,
is the use of Monte Carlo simulations [31], [32]. Translated to our problem, we assume that
the uncertainty of the non-linearity is already modelled as part of the neural network’s
latent spaces. By randomly perturbating the input from a distribution of choice, the
prediction result of the network varies according to this uncertainty.

~
Perturbate Predict > @
Perturbate Predict >

>

o ,u o
Perturbate Predict >
J

Figure 5.29: Monte Carlo simulation of neural prediction, a dataset is perturbated with a
distribution of choice to produce a set of distributed predictions

Dataset

o
v 0y

As visualised in Figure 5.29, by running several perturbations per prediction cycle, we
capture a prediction set where we can extract the mean and variance of the prediction.
Depending on the sequence length, dimensionality and network architecture, the process
might be computationally expensive in the inference phase. It has no impact on the training
phase.

5.5.2 Variational inference

Another Monte Carlo simulation method is described by Gal and Ghahramani [56], [57]
where we utilize Dropout layers during the inference phase. Dropout layers are normally
active during training, where outputs are stochastically disconnected by setting their
weights to 0. Using Dropouts is a simple and effective way of preventing overfitting in
neural networks [55], and is used in our versions of both the generative model and the RL
agents.

103

CHAPTER 5. AUTONOMOUS CONTROL

By changing the behaviour of the Dropout layer to also disconnect outputs during
inference, we explore the uncertainty space of a model, as described by Gal and Ghahramani [57].
Instead of perturbating the input, the input is static for a repeated number of prediction
passes through the network, where the Dropout will randomly disconnect weights according
to some probability setting. In a sequence-to-sequence scenario, this would mean fewer
iterations since we do not need to change the input data according to its length and
structure.

We can implement a forward-pass/inverse Dropout layer in Matlab easily, as demonstrated
in Code 5.4. Here, we draw a binary mask from some probability distribution by the
randsrc-function and apply 0 weight to the outputs on each pass.

classdef inverseDropoutLayer < nnet.layer.Layer

properties
Probability
end
methods
function layer = inverseDropoutlayer (name, probability)
layer.Name = name;

layer.Probability
layer.Description
end

probability;
'Inverse dropout';

function Z = predict(~, X)
% generate an inverse binary matrix whos bit value is
% drawn with a probability

mask = randsrc(size(X,1), size(X,2), ...
[1,0; layer.Probability, 1-layer.Probability]);
mask = logical (mask);

% set weights to zero and return
X(mask) = 0;
Z = X;
end
end
end

Listing 5.4: Inverse dropout layer (Matlab code)

In an LSTM scenario, we need to ensure that each pass is done on copies of the initial
network so that the recurrent state is not altered. The result from multiple passes can be
summarized statistically. This method is computationally less intensive than the previous
example, although it scales linearly according to the training passes selected (e.g. 30 passes
per prediction).

5.5.3 Conformal prediction

The area of conformal prediction involves estimating the uncertainty during inference,
described by Vovk and Balasubramanian et al. [30], [52]. The concept applies to any type
of regression or classification algorithm, but in essence, we add estimation of the statistical
parameters to the regression method as long as the datasets for training and testing are
exchangable as described earlier. In addition to predicting the mean, we add prediction
and training towards another distribution metric, like the variance, standard deviation or
other quantile descriptors.

104

5.5. ESTIMATING UNCERTAINTY

We can apply this method in several ways. One method described by Mendels [96]
involves building two models: mu and mo?, where mp is first trained the usual way:

N
2
Eu(z) = Z(yz — my(zi)) (5.10)
i
This model is trained on one part of our training data set. The other part is used for
training mo? with the squared error as the dependent variables:

N
Ep () =Y (g — mu(@:))?) = my2(:)? (5.11)
i
This involves two passes our one dataset during training, and as relatively small impact

on the inference, although prediction of the confidence interval must be done separately, as
shown in Code 5.5.

% Prerequisite:
% x_test, x_train, y_train and x_var is given in workspace

% Normalization parameter calculation
x_mean = mean(x_train);
x_std = std(x_train);

% Train the mean network
options = trainingOptions('adam', 'MaxEpochs',1000);

mu_net = trainNetwork(x_train, y_train, model_fc(x_mean, x_std), options)

% Train sigma network based on mean network predictions

y_varpred = predict(mu_net, x_var);
y_se = (y_var - y_varpred).”2; 7 squared residuals
sigma_net = trainNetwork(x_var,y_se,model_fc(x_mean, x_std),options)

% Predict test network
y_pred_mu = predict(mu_net,x_test);
y_pred_sigma = predict(sigma_net,x_test);

Listing 5.5: Our understanding of conformal prediction (Matlab code)

If the framework allows, it is also possible to implement the prediction into one network,
as demonstrated by Thorn [90]. Here, the number of outputs from the network is increased
to accommodate for the statistics prediction. During a custom training pass, a custom loss
function is called on each minibatch to update the dataset statistics.

5.5.4 Value-based uncertainty

In an actor-critic reinforcement learning problem, we have all the information available for
our uncertainty estimation, although in a slightly different form. An RL agent draws the
action from a Gaussian distribution in the policy, and this distribution is described by the
value learnt by the critic from its action probability distribution. By querying the critic
by the observation sequence, we receive a representation loss value approximated from the
critic network trained towards the long-term reward.

The received value cannot be unpacked to represent each signal’s contribution to the
reward, but by keeping the training statistics from the RL agent training, we can find
the maximum value obtained during training. Hence, we can calculate a probability value

105

CHAPTER 5. AUTONOMOUS CONTROL

representing the agent’s confidence of being able to reach the goal given the current state
observations, given that the agent converged:

Ut

DPlevel = (512)

max(%rain)

To utilize this concept, we create a new method sim_confident that replaces the
sim-function in Matlab with a custom simulation function, based on the template given
from the Matlab documentation.? This would give us an indication on the certainty of
agent state, and hence the following multivariate action proposals.

There are several ways to utilize this level, for instance in the secure evaluation of the
agent, as we will see in the next chapter. We could also use the Datastore’s values for
normalization to infer that we are pjeye; sure that the actions are within 5 - o of the actions.
This is a simple calculation that can be used to create the confidence bands we can show
to the user:

[:’3 -5 0(1 - plevel)a g+5- 0(1 - plevel)] (513)

Selecting 5 - o corresponds to a p-value of 31077 and statistically covers almost all real
results. We then add the error bars to the plots and simulate with the modified function
to extract the value vector. Figure 5.30 show the results from the uncertainty estimation
for simulating towards the generative model, and Figure 5.31 show for the process model.
Both simulations were done on randomly initial conditions and run for 50 time steps on
the PPO agent from Experiment 14.

140

1120

1100

80

I I I I I I
20 25 30 35 40 45 50

11000 T T T
erm
Particle size

150

10000 - 1140

9000

e

8000

7000

1130

120

110

100

pm

6000 I I I I I
0 25 30 35 40 45
t

I I I I
5 10 15 20 50

Figure 5.30: Value-based uncertainty simulated on the generative model

We can see that the process model has slightly elevated uncertainty during the initial
sequence but quickly gain confidence.

“https://se.mathworks.com/help/reinforcement-learning /ug/train-reinforcement-learning-policy-using-
custom-training.html

106

5.6. VARYING CONDITIONS

12 T T T T T T T T T 140

Feed, (m%h)
Tou 1120

1100

11000

pm

10000 - Particle size | |

9000

pm

8000 =120

7000 1110

6000 100
0 5 10 15 20 25 30 35 40 45 50

Figure 5.31: Value-based uncertainty simulated on the process model

5.6 Varying conditions

Using the pjeper metric is a sensible way of evaluating agent performance on varying
conditions. We already know that the agents are capable of generalising a policy given
different instances of initial conditions. Although not shown earlier, the initial condition
we see as the first observation, is in fact a sequence of n observations, depending on the
selected sequence length for the training. These are not shown to the agent, which only
uses the last observation of the initial sequence, but resides as part of the generative model.
The state of the generative model at restart, is an unknown, or undefined, process situation
within the operational envelope. The process model is somewhat linked to the generative
model, by actually using this randomized initial sequence as its initial conditions.

Experiment 17: Value-based performance of RL agent on varying conditions

We can therefore assume that by restarting an agent several times, and generating random
initial condition rollouts, we can evaluate an agent performance by value-based uncertainty.
The evaluation is done by running 30 instances of an agent and recording the results for
one sequence length period, running towards the real-time process model. However, we
select only the PPO agent from the Experiment 15 for this evaluation due to its stable
training performance and highest value of the three agents from Experiments 14-16.

We can see from the surface plot in Figure 5.32, that although the agent starts with a
randomized initial condition, it will quickly converge in all runs and settle on an uncertainty
of ~4.5% of 5- 0.

107

CHAPTER 5. AUTONOMOUS CONTROL

0.16 —
014 —

012 —

Uncertainty
o
|
L

0.08 —

0.06 —

04— 7

0 10

/ / /A Run #
20 30 40 50 60
Sequence t

Figure 5.32: Uncertainty estimation of 30 initial sequences of a PPO agent running towards
the process model

108

Chapter 6

Evaluation

There are two kinds of people:
1) Those who cannot extrapolate from incomplete data

6.1 Method

We have explored the area of autonomous learning by asking a set of research questions
that have guided the research and experimentation process. The experiments have been
conducted exploratory, where results from one experiment have dictated both the content
and development of a succeeding set of experiments. As such, the experimentation has been
both for evaluation of the methods and for the development of an innovative framework in
this field.
Evaluating experiment performances have been done both quantitatively and qualitatively

and is summarized here.

6.2 Research questions

To evaluate the research questions, we have set up a framework for compressing historical
time-series by a generative model, realized through a shallow recurrent memory neural
network (LSTM-based), whose parameters were set by a Bayesian optimization evaluation.
This model was then used for generating succeeding time series from an initial set of data
sequences. We were also able to demonstrate a technique for generating time-series for
the purpose of simulating a response from this compressed model, given a set of either
univariate- or multivariate manipulative variables. The generative model was realized as a
Matlab Reinforcement Learning Environment, making it suitable for use in training any
reinforcement learning agent supporting continuous action- and observation spaces.

To train the generative model, we first established a classic simulation model based on
first principle ordinary differential equations of an industrial spray drier process where both
energy- and thermal dynamics were modelled. The generative model was trained by querying
time step states from these ODEs using a classic PID regulator. The generative model
predictions and actual rollouts show a high correlation, as demonstrated in Chapter 4.3.4.

For all experiments, we would evaluate a ¢ < 1 as an acceptable result. The best results
within each research question are written in bold text.

109

CHAPTER 6. EVALUATION

RQ 1 Can an RL Agent be efficiently trained on historical data logs?

Experiments 1-3 addressed this question and the results are summarized in Table 6.1.

Experiment Agent type Episodes 1 o

Experiment 1 SAC 868 90.21 1.11
Experiment 2 PPO 1801 90.40 0.86
Experiment 3 DDPG 598 89.92 1.03

Table 6.1: RQ 1 Results

The agents were trained on a univariate goal of attaining a process output temperature
of 90°C from a direct response reward function. As we see from the results, all agent types
are able to regulate the temperature within approximately £1°C. These results confirm
that we can train all tested agents on historical data logs.

RQ 1.1 Which choice of RL Agent realizations would be a generic solver for
the problem?

Experiments 14-16 addressed this question and the results are summarized in Table 6.2.

Experiment Agent type Episodes 1 o
Experiment 15 SAC 188 121.67 9.67
Experiment 14 PPO 5000%* 111.20 1.67
Experiment 16 DDPG Aok

Table 6.2: RQ 1.1 Results
*Terminated with a high value **Did not converge

The agents were trained on a multivariate goal using a reward model trained for a
temperature output of 110°C and a stable atomizer speed. As we see from the table, only
the PPO agent was able to produce results near the acceptable limit. Of the three agents,
the increased complexity of the multivariate case was only solvable by the PPO agent.

RQ 2 Can a reward function be approximated and learned without supervision?

Experiments 10-12 addressed this question and the results are summarized in Table 6.3.

Experiment Agent type Episodes I o
Experiment 11 SAC *

Experiment 10 PPO 502 89.95 0.24
Experiment 12 DDPG *

Table 6.3: RQ 2 Results
*Did not converge

The agents were trained on a multivariate goal using a reward model trained for a
temperature output of 90°C and a stable atomizer speed. As we see from the table, only

the PPO agent was able to produce results, and in range.

110

6.2. RESEARCH QUESTIONS

RQ 2.1 What are the implications of trained reward-functions: will they
behave differently given the state of the system?

Experiment 17 addressed this question using the trained PPO agent from Experiment 14.
As we see from Figure 6.1, the PPO agent converged to a policy with a mean stable
uncertainty after less than 10 time steps, at an uncertainty of ~ 4.5% of 5 - o, when
repeating the experiment 30 times. We conclude that using trained reward functions are
viable alternatives due to the good performance demonstrated upon changing the system
state. The agent is able to bring the system state into equilibrium from any of the random
initial conditions.

0.16

0.14 H

0.12

Mean uncertainty
o
o o
I o

o
o
>

0 10 20 30 40 50 60
Sequence

Figure 6.1: Mean uncertainty estimation of 30 initial sequences of a PPO agent running
towards the process model

6.2.1 Limitations

The generative model was trained by a synthetic model where stochasticity was added
at several levels. One limitation of the experiments is their inability to describe the
performance of the agents when used on real-world data. However, we do believe that the
synthetic model is a comparable descriptor of real-world processes, based on the available
literature. Using data from a real-world process involves data quality engineering and is
briefly discussed in the next chapter.

Further, we have only experimented with time-series data. There are no spatial
data involved, which could leverage the performance of the agents. However, adding
measurements that are relevant should positively increase the performance further.

6.2.2 Advantages

The resulting framework used for experimentation has been developed in such a way
that fosters further expansion, compatible with the Machine Learning and Reinforcement
Learning toolboxes in Matlab. We also see the disruptive power of using reinforcement
learning within process control optimization.

111

CHAPTER 6. EVALUATION

6.3 Building experience

All the aforementioned experiments are conducted with specific termination criteria based
on the average reward and total number of episodes. However, we see from the results of
Experiments 14-16 that the PPO agent has reached a policy that has better performance
than the SAC agent. The PPO agent terminated on a total episode count (5000), while
the SAC agent terminated based on the average reward criteria after 188 episodes.

From this result, it is evident that training RL agents cannot be solely based on the
reward criteria, but should be done by evaluating the value function result in addition. The
value function is a slower moving target but is our actual target that should be evaluated
in training.

This observation makes sense, since training an RL agent is not only about finding a
policy, but for making a robust agent, we want to find multiple policies satisfying the goal
for a high future expected reward (the value) so that the agent builds experience that can
be used on different situations in the real world.

We will use this insight to construct agents in the next chapter that satisfies this
condition.

112

Chapter 7

Applied Use

Many are stubborn in pursuit of the path they have chosen, few in pursuit
of the goal.!

7.1 Introduction

In Chapters 4 and 5, we constructed a framework for autonomous learning and control
and demonstrated that both PPO and SAC agents can gain experience at such a level that
enables data-driven control- and optimization operations. The DDPG agent showed less
performance in this respect. The key to proper agent training is a generative model that
has learnt enough dynamics of the system in question, and that forecasting is possible to a
necessary degree. We also demonstrated the ability to train for sparse rewards, but with
an indication that the agent needs directional hints to keep training performance high. We
were not able to conclude on a pure sparse reward scheme.

We have demonstrated the concept using synthetic data from a set of ordinary differential
equations, simulating an industrial spray drier using mass- and energy balance calculations.
In this chapter, we will use a direct response reward scheme and train RL agents on data
originating from a commercial spray drier to validate the concept in the real world.

Using real-world data needs careful considerations of the sensors involved, measurement
confidence and filtering data from periods that we do not want to model. Equipment can
run several products and recipes, as well as maintenance periods, cleaning-in-place periods,
inactive downtime etc., and depending on our application, data quality considerations must
be made in each specific case. However, as this chapter show, modelling dynamics in a
generative model actually relies on inputting as much dynamics as possible. In contrast
to linear modelling, like OLS and PLS that relies on filtering away unwanted dynamics,
the success of the generative model relies on our ability to learn from periods of great
interaction between the model variables, e.g during equipment startup- and shutdown
periods or where the processing conditions change. Filtering away this data leads to
models of less knowledge and predictive ability. We were also able to identify a method
for zero-vector bias estimation that can be a method to evaluate what actually enough
dynamics is.

'German philosopher Friedrich Nietzsche (1844-1900)

113

CHAPTER 7. APPLIED USE

7.2 Architecture

Figure 7.1 show an overview of the complete system architecture. Training the generative
model has earlier been done using the RolloutDatastore connected to a synthetic ODE
model, regulated by PID. This generative model is then the simulator for a SyntheticEnvironment
class using the rollout mechanism described in Chapter 4. A compatible RL agent uses
this environment for training a policy. New in this architecture is that we use the policy to
generate future actions and responding variable forecasts, using updated real-time data,
that is, purely new data from the process.

Our success criteria are to be able to propose an action that will lead the process from
its current state on a path towards a Ty,; of 100°C. We know that the process reacts quickly
to manipulations, indicating that the agent should learn a policy with equal reaction time.

There are few changes necessary to enable usage of real data, mainly developing a new
class deriving from the matlab.io.Datastore, sharing the interface of the datastore. We
develop a new class HistorianDatastore that enables us to read historical process data
directly from a plant, in this case using the commercial OSISoft PI Web APL? The PI
system and API is in operation at an industrial pulping site, enabling historical access to
all process data on-site.

Historian

) Synthetic RL
[Generative modelJ |::> [environment J ::> [agent]

model
<

Synthetic

R C

Figure 7.1: System architecture for training and executing agent policy

7.2.1 HistorianDatastore design

A generic class HistorianDatastore is developed and can be a framework for connection
to any source of time-series data, either flat files or queriable tabular databases. In this
particular case, we develop a connector to the OSISoft PI Web API which let us query
the time-series database for tags, time periods and method of interpolation interval. In
the case of PI, time-series are stored in a compressed format where each query to the API
reconstructs the data to the time-scale in the query.

We also provide a filter function to the datastore, that contains simple rules for data
inclusion. The datastore queries all data first, and then filter away the data by the filter

2https://docs.osisoft.com /bundle/pi-web-api-reference

114

7.3. SYSTEM DESIGN

function. In a big data world, this method is exhaustive and not particularly fine-tuned for
use cases with more data than can fit in memory, and should be technically enhanced if
the need arise.

Instantiating the datastore is done by:

source_interval = 'Im';
resample_interval = 1; 7 minute
pidatastore = HistorianDatastore(sequence_length, @tag_function, ...

@data_filter_function, start_date, end_date, source_interval, ...
resample_interval, '00:01:00');

where we supply the generative model sequence length, tags- and filter function pointers,
as well as the start date and end date. The interval is supplied to the API for data
reconstruction. The last two parameters control the internal resample interval and the
threshold for identifying gaps in time.

When data is filtered, we have gaps in the time series. To avoid merging incompatible
time-series sequences, we identify these gaps as borders for establishing sequences as
illustrated by data queried in Figure 7.4. We ensure that each sequence length is twice
the requested length for training so that we have space for the sliding window mechanism
described earlier. Sequences that are too short to satisfy this condition, are discarded. The
last parameter to the class constructor is our gap threshold time, namely how long a period
of missing data in the source is treated as a border for the gap calculation. Missing data
below this threshold are interpolated using the resample_interval numerical parameter.
By splitting the data into sequences, we can divide the data source into shuffable blocks of
training-, test- and validation data without losing the time-dependency of the data.

From this point on, data sequences are provided in a sequence-to-one forecasting
method, as described and implemented in Chapter 4. Whenever the datastore user issues
a read request on the datastore, the datastore provides the next data window available as
a sequence, and the next data vector. Subsequent requests of data will be returned as a
slid set of sequences.

As the last processing step, 0.1% noise is added to all signals for each read request.
During training, all data will be visited for each epoch. By adding noise, we incorporate
the knowledge discussed in Chapter 2.3.1, effectively ensuring a data augmentation scheme
on every epoch.

7.3 System design

7.3.1 System boundary

When selecting the system boundary, we need to ask ourselves which potential influencers
of the observable dynamics a system might have, based on knowledge of the physical system
and available literature. Then, we need to identify what can be measured to estimate the
state of these dynamics. We have earlier described the relation between Q) feeq and Tiys,
and also how the temperature of the inflow gas influences the process. We have seen that
even the environmental temperature and humidity affect the dynamics.

Figure 7.2 show our defined system boundary for the real-world model. This is an
over-simplified version of an actual plant, which involves more equipment, systems and
process measurements. However, for our case, this simplification is beneficial due to its
simplicity of explanation, and still presumably a high level of dynamics capture.

115

CHAPTER 7. APPLIED USE

T T
JIEd 1‘15 Tenvzlonment RHepvironment

i

Qfeed% Spray drier — Tout

Figure 7.2: System boundary for the real world model

We have included only environmental measurements as controlled variables. This is
related to the fact that the process is mostly modelled using energy- and mass balances,
dynamics that are observable in these measurements. The dataset used does not reveal
any information regarding the products themselves, their recipes or any disclosed IP
information.

7.3.2 Data exploration

First, we select process tags that correspond to the system boundary variables and extract
data for a period of seven months with 10-minute intervals. In Figure 7.3, we see a cloud
plot of the data distributions and correlation between variables. It is not easy to identify
any clear correlations from this plot, however, we see that data distributions are mostly
normally distributed with different levels of skewness and kurtosis. The requirement of
normality is important in machine learning. Unbalanced datasets need more treatment,
commonly by log-scale transforms or oversampling the data to create a balance between
the predictors.

We have included all operational data from the period, making visual identification
of any correlations tricky, since we might assume that variables are highly non-linear
during startup- and shutdown periods. The only filtering we do is removing all data
where the equipment has been at a complete standstill, that is, we filter away data where
Qfeed < 1m3 /h. We have not removed periods of cleaning or when the system runs without
product, e.g. only water spray. We see that we have a dataset that describes all areas of
the data distributions.

In Figure 7.4, we see the complete dataset in a sequence plot. Using the filtering criteria
of Qfeea < 1m3/h, some gaps in the data are identified and used as sequence delimiters for
the datastore. The plot visualises the input that the HistorianDatastore has calculated
and uses as input to generative model training. Before training, dataset mean and standard
deviation is calculated and stored for normalization of training- and real-time test data,
using the same method as for the synthetic model. After the processing steps, we have a
dataset of 27,693 sample vectors, distributed on 52 different time-series sequences.

7.3.3 Generative model training

We use the same parameters for the generative model as earlier, but reduce the number of
epochs to 60. We are looping all data for each epoch, in contrast to the selectable rollout

116

7.3. SYSTEM DESIGN

aaaapg

T
tenvironment
= Nw NEOOO
© 000 coooo

environmen

H
(9]
(=]

R
o
=1

3 E
,° 100

80

150 200 0 10 20 30 50
T

80

T .. RH_ T
gas environment environment out

Figure 7.3: Cloud plot of data distributions and variable correlations

count when using the RolloutDatastore, and therefore we limit the time used at each
learning rate step.

When tweaking the network architecture, the Matlab documentation takes an interesting
view on how to select the number of neurons in an LSTM network for dynamics capture:

The number of hidden units required for modelling a system is related to
how long the dynamics take to damp out. [...] there are two distinct parts to
the response: a high-frequency response and a low-frequency response. A higher
number of hidden units are required to capture the low-frequency response. If a
lower number of units are selected the high-frequency response is still modelled.
However, the estimation of the low-frequency response deteriorates.’

This view corresponds with our experienced beliefs during work on the experiments: we
try to minimize the number of layers and neurons to such a level that the dynamics are still
captured. We do this in order to generalize the model. Increasing the number of neurons
results in a network where more parameters must be learned and should be compensated
with either more available data, or by increasing the number of epochs. By smoothing input
data, the high-frequency dynamics is lost, and part of the lower frequencies might also be
filtered. It is advisable to train the network using raw data sequences without any data
smoothing contrary to what we would apply to linear system modelling. However, as noted
by Thodoroff et al. [89], smoothing reduces variance and helps the learning process. We
believe that the amount of smoothing necessary must be tested to suit the data available.

In Figure 7.5 we see the result of a one-step forecast for real-world data, estimated by a
trained generative model. The data has been adjusted for bias found using zero-vector bias

3https://se.mathworks.com/help/ident /ug/use-lstm-for-linear-system-identification.html

117

CHAPTER 7. APPLIED USE

estimation, as we will discuss in the next section. Our impression is that the generative
model provides estimates in lieu of system dynamics.

118

7.3. SYSTEM DESIGN

01X

ge

SUIUTRI) [OPOW OAIJRIDUDS 10 Soouonbos joseje(]) oINS

,,
i

———

—

I}

=

L

i
= = &

i

119

APPLIED USE

CHAPTER 7.

BJEP P[IOM [BAI I0] [POUWL SAIJRISUSS o1} WOI] }seda10] dojs-ou() :G') IMSI

002k 0004 008 009 007 002 0
[enoy
uonopald
002k 0004 008 009 007 002 0
00+
TuewuoHAUS
SO,
002k 0004 008 009 00t 002 0
= JusWuOIIAUS
1
002k 0004 008 009 007 002 0
— [[—A10LL
[TN J e
| | |))) Yy d
le Al 1 | .) 1 A Akl . M . Rl
— "y Al T WA bty Y PRAM f Tkl y ;,, — 08}
002k 0004 008 009 00t 002 %
— —0s
— 004
=N
002k 0004 008 009 007 002 o,
— —r
L) _le
o SR o N AL AN A N AV AL
8

120

7.3. SYSTEM DESIGN

7.3.4 Zero-vector bias estimation

Our intuition tells us that when supplying a vector of zero-values to an autoencoder, we
should receive an estimate of zero. Any deviation from zero would be the network error,
given that the training has crossed the zero centre vector. By predicting on a network
trained by normalized values, any deviation from the population mean and standard
deviation is represented as positive or negative scores, indicating that the middle value of
a network is zero. This assumption would indicate that a zero-vector estimate is directly
in the centre of the neural network.

In a recurrent network scenario, we can use the subsequent estimation of zero-vectors
to initialize a model correctly and record the baseline zero-vector estimation error, an idea
taken from the Matlab documentation.? By non-formal experimentation, there seems to
be a two-way-relation between a network’s ability to forecast dynamics, and the dynamics
of the zero-vector estimation. These relations could be used to automatically evaluate the
generative model’s predictive power, and correct each prediction before de-normalization:

§=N(z)—b (7.1)

where b is the recorded bias vector, and NV is the network prediction function. We
assume the following;:

e A shorter stabilization time indicates more accurate dynamics capture

o A small zero-vector error indicates more accurate dynamics capture

Whether these assumptions hold, is an interesting future work. However, initial testing
shows positive results and we apply this method to evaluate the selection of sequence length
of the generative model. In a multivariate scenario, like the autoencoder, the RMSE does
not vary much in favour of selecting the sequence length, as seen in our initial experiments
and the Bayesian optimization run in Figure 4.10. By evaluating the zero-vector bias, we
might have another evaluation criteria for our generative model.

To test these assumptions, we train two generative models using two different sequence
lengths: 3 and 12. Each model is then initialized with zero vectors in a loop of 150 steps
according to Code 7.1.

% Find the zeromapping where the network is stable

results = [];

for steps=1:150
initializationSignal = zeros(genmodel.datastore.featureDimension, ...

sequence_length*steps) ;

genmodel.net = resetState(genmodel.net);
genmodel.net = predictAndUpdateState(genmodel.net, initializationSignal);
zeroMapping_mu = mean(predict(genmodel.net,initializationSignal));
results = [results; zeroMapping_mul;

end

Listing 7.1: Calculating zero-vector bias (Matlab code)

Each loop predicts n number of zero-vectors of length sequence length. We then plot the
mean of the results vector and visually evaluate based on when the mean differentiated
signal is approaching infinity, which indicates that the base signal, the bias, is stable. Based

“https://se.mathworks.com /help/ident /ug/use-lstm-for-linear-system-identification.html

121

CHAPTER 7. APPLIED USE

on empiri, we assume this step number should be as low as possible, i.e. we assume that a
shorter stabilization time indicates more accurate dynamics knowledge. Figure 7.6(b) and
7.7(b) show the dynamics of the tests. Figure 7.6(a) and 7.7(a) is the bias vector from the
first loop, and we see that the model with the lowest sequence length has one decade more
error than the model of sequence length 12.

Infinty |

Predictor Step

(a) (b)

Mean error 3
1st derivative

infinity | |

1 2 3 4 5 6 0 50 100 150
Predictor Step

(a) (b)

Figure 7.7: Zero-vector bias estimation for sequence length of 12

Our comparison of the two schemes reveals that a generative model with a short sequence
length has limited forecasting capability if we follow our assumptions above. Based on
our knowledge of the data and system, this observation strengthens our assumptions. We
select 12 as the sequence length for the further tests.

7.3.5 Evaluating forecasting capability

We can evaluate the captured dynamics by forecasting beyond a horizon of one time
step. Ideally, we would want to be able to simulate all dynamics indefinitely. This would
mean that the generative model is an exact replica of the system dynamics. In reality, we
must expect to see lower performance when working on real-world stochastic systems with
unknown state estimators and non-linear noise and relations.

122

7.3. SYSTEM DESIGN

We believe that the experiments done earlier using the synthetic model has forecasting
ability beyond one step, given the positive results from agent testing. Evaluating the
generative model’s forecasting capability is an important input to the considerating of the
reward function and for how long we can expect the agent to calculate the future expected
reward in agent training.

To evaluate the dynamics captured by the generative model, we randomly select a
sequence from the datastore and test the forecasting for steps 1 to 6. That means we
forecast every datapoint 1 step, 2 steps, 3 steps etc. and compare with the original sequence
data. The deviation will give us information on what to expect from the generative model
using the selected sequence length.

Forecast step #1 Forecast step #2
110 110
105 105
100 100 v “W M" “u ““ ‘ 1
0 500 1000 0 500 1000
Forecast step #3 Forecast step #4
110 110
105 105
0 500 1000 0 500 1000
Forecast step #5 Forecast step #6
110 110
105 105
100 100
0 500 1000 0 500 1000

Figure 7.8: Generative model forecasting of steps 1-6, original data (blue) and forecast
(red)

In Figure 7.8 we see six forecasts of about 1,100 data points, where the forecast (red)
is overlaid the original data. We can see that the generative model starts to deviate from
step 3 onwards. For most of the dataset, the forecast is within the expected range, and
the deviation could originate from a combination of unknown dynamics, lack of data, lack
of training or inability to model. Figure 7.9 summarizes this run, and we see that after 6
steps, the correlation between the test set and the forecast is about 7% ~ 0.76, with a linear
descending trend. This means that we enter a negative correlation after approximately
30 steps, but to have any forecasting power, we would like to set a threshold of 72 > 0.80.
This means that we can expect on average that the model can forecast 4 steps ahead with
known correlation. This would imply that the applicable use cases for the spray drier
generative model should be limited to reward schemes utilizing four time steps lookahead
horizon.

123

CHAPTER 7. APPLIED USE

1 T T T

\
oof | HEEERVSE

Correlation

0.92

0.9

0.88
0.7
0.86
0.6
- 0.84
UQJ 05 oL
0.82
0.4
0.8
0.3
0.2 0.78
0.1 0.76
0 0.74
1 2 3 4 5 6
Horizon

Figure 7.9: Generative model forecasting of steps 1-6, recorded RMSE and correlation

7.4 Training RL agents

Two agents, a SAC and a PPO, are trained with the generative model as the synthetic
environment. We apply a direct response reward using the inverse absolute error as reward:

AFE = Eestimate — Lactual
1 (7.2)

"TIAE

and a termination critera of T'(AE):

1 for AE > 6,

0 otherwise. (7.3)

T(AFE) = {

where 6 = 1. The termination criteria is evaluated when i > s, where 7 is the current

step number and s the sequence length (12). We do this in order for the agent to have
time for policy evaluation and building before a strict termination criteria occurs.

7.4.1 Soft Actor-Critic agent

A SAC agent was trained for 2000 episodes using manual termination due to resource quota
constraints. We can see from Figure 7.10 that the value growth indicates steady knowledge
gain from the generative model. We also see that the value fluctuates when approaching
termination, indicating that the agent might have reached a global error minima.

Table 7.1 summarizes the results, and we can see that the policy on average can provide
accurate action prediction for 2.1 steps beyond the sequence length of 12. Considering the

124

7.4. TRAINING RL AGENTS

10 - - - - 1400

Average reward Average reward

— K I

1200

102 El 1000

10! k| 800

log-scale

100 E 600

107 F 400

. . . . 10
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Episode Episode

(a) (b)

Figure 7.10: SAC agent training progress on (a) log scale and (b) normal scale

above evaluation of the generative model forecasting ability, we would expect the agent to
forecast up to 16 steps.

Agent type | Episodes Max value | Reward p | Steps p Max Steps
SAC 2000 53.62 56.97 14.1 377

Table 7.1: SAC training and simulation results

7.4.2 Proximal Policy Optimization agent

A PPO agent was trained for 5000 episodes using manual termination. In comparison to
the SAC agent, there is a substantial difference in computation time between the two agent
types, where the PPO requires less resources. However, from our experience, the PPO
agent tends to lock itself into a minima. Restarting the training is often necessary in cases
where the agent cannot identify any policy.

We can see from Figure 7.11 that the value cycles from wvalley-to-valley as described
earlier for the PPO agent. In the end, the maximum gained value is less than that for the
SAC agent. However, in Table 7.2 we see that the average number of steps has reached 16,
indicating that the PPO agent is able to be trained for the maximum forecast of four steps
beyond the grace period of 12 steps.

Agent type | Episodes Max value | Reward p | Steps p Max Steps
PPO 5000 8.76 124.37 16.1 209

Table 7.2: PPO training and simulation results

7.4.3 Simulating with real-time data

Fach policy is simulated with real time data from the process. Another instance of
the HistorianDatastore class fetches the latest process data and simulate with the
sim_confident function, utilizing the policy state value as an estimation of uncertainty. We
observe from several runs that both agents successfully proposes similar action manipulation

125

CHAPTER 7. APPLIED USE

x10*

Average reward
Episode value

Average reward
Episode value

10%

log-scale
3

lL LL \J .L.LJL el o nl“ sl

3000 4000 5000 0 1000 2000 3000 4000 5000
Episode Episode

(a) (b)

0 1000 2000

Figure 7.11: PPO agent training progress on (a) log scale and (b) normal scale

for @ feeq for the process to reach a state toward T,,,; ~ 100°C, as exemplified by Figures 7.12
and 7.13.

However, even though the SAC agent completed training with a higher maximum value,
the confidence interval for the action manipulation is narrower than that of the PPO. This
would indicate that the SAC agent is more confident that the proposed action will lead the
process in the correct direction.

126

AGENTS

Juade HYG UM UOTIRINIILS oW [edY gL 9IN3I]

St [S 0

(43

1seosjo4
\

Sk [S 0

—05-

—1 08

— 00}
— 05k

1sB08.

JuBWUOIIAUS

HY

St [S 0

—loz-

—02
—0F

1sE81

JUBWLOIIAUS

1

E or S 0

;seaamL
|
8

St [S 0

— 001~

— 00k
— 002

1se08l

pady

E or S 0

Lo Wwo K

JEREY!

poa}

127

se

02

uese Odd UMM UOIJe[NUIS oW} [89Y €T/, 9InJIq

St

1seosjoq

02

1sB08I

02

St

uswuoIIAUS

HY

1seoa104

02

Sk

JUBWUOIIAUS

1

10810}

02

St

1S90l

(4

Sk

(=]

Jseoax_

[

00k

002

0z~

(4

091
08}
002
(44

128

7.5. EVALUATING SIMULATION RUNS

7.5 Evaluating simulation runs

Figures 7.12 and 7.13 visualises one random simulation run with confidence interval for both
agents on the latest real-world data. The current state of the agents at this point is that
they are only trained by the generative model. A natural extension is to further train the
agents by applying them to the real process and update their experience buffers and policies
accordingly, a task not covered in this report. Petsagkourakis, Sandoval and Bradford et
al. [110] mentions transfer learning of the weights of the agents to accommodate for the
real system. However, in our case, we have trained the agents not on a stoichiometric
model, but by the original process data itself, through the generative model. The agents
should behave within the same scale of numbers as the real process, so a particular process
of transfer learning should not be necessary.

It is not possible for us to explicitly evaluate the performance of the agents. As we have
identified earlier, the real world training set we use has limited forecasting ability, probably
due to a more stochastic process and unmodeled dynamics than what we experienced using
the process simulator. We must also remember that no pre-processing and data quality
engineering of the measurement variables is done. We expect that the agents at this point
only can recommend a direction of the manipulated variables due to this limitation, but as
the agents evolve on a real system, they will behave more in lieu of the reward scheme.
Evolving the agents is a task for further work.

25

110 T T T T

Forecast

105

100

95 1 1 1 1

Figure 7.14: Five simulation runs for the PPO agent towards setpoint of 100°C

We can see this effect by running the agents multiple times, where each run is initialized
with a new set of initial conditions from the process data. Data from both agents are
visualised in Figure 7.14 and 7.15. The SAC agent seems to be more aligned towards the

setpoint than the PPO agent, even though the number of training episodes is less than a
half (2000 vs. 5000).

129

CHAPTER 7. APPLIED USE

8 T — T
(72}
[\
7 -
6 M J
4 1 1 1 1
0 5 10 15 20 25
110 x x ot ;
(72}
[\
(6]
o
105 S 1
100
95 1 1 1 1
0 5 10 15 20 25

Figure 7.15: Five simulation runs for the SAC agent towards setpoint of 100°C

We know from empiri covered by Santos et al. [88] discussed in Chapter 3.2, that
increasing the feed rate will lower the outlet temperature. By visual inspection, both agents
comply with this evaluation requirement. They are able to propose actions that will guide
the process towards the setpoint, although we see signs of policies that are not accurate
enough for finer control at this point of agent experience level.

130

Chapter 8

Discussion

Once there is the slightest suggestion of combinational possibilities on the
board, look for unusual moves. Apart from making your play creative and
interesting, it will help you get better results.!

8.1 Introduction

Training neural networks for dynamics crosses the lines between science, art and philosophy.
We have yet to invent appropriate methods to design network architectures with a
prescriptive quantitative performance. Much of the selection of choices depends on a
trial-and-error approach to designing a system, and we have no performance guarantee
until we have calculated a set of data on a selected architecture. Still, we cannot be sure
on the future outcome. Although we think and act mathematically in the context of neural
networks, can we be sure that we are operating within the fundamental mathematical
domain, or that we, due to the randomness and stochasticity involved, observe and act
based on universal randomness? The anthropic probability principle [50] can be applied to
the problem domain: by setting a lower bound on the statistical probability of the outcome,
we can deduct that our observations of the performance are within the pre-described world
of neural networks. This statement implies that our trial-and-error results are within
context and that we select amongst possible outcomes already part of the population. Any
choice of architecture will give results within our range of presumable outcomes if we follow
this principle.

The analogy is a chess player that acts according to a rule set on a chessboard. In
comparison with neural networks, the board and the chess rules are our architectural
opportunity space. The player has seemingly endless options of winning the game and must
employ either a mathematical view, use earlier training and intuition, or a combination
of both. His or her actions have a tint of strategy involved, adjusted by the level of the
opponent, or a higher goal in the tournament. Still, the concept of the game entails the
universe to explore.

In the case of reinforcement learning agents, assuring the outcome can only be done
by exploring the known universe: hence, from a philosophical standpoint, we should be
able to select the best solution if we explore the whole environment. In practice, this
means that the more we explore, the more experience we capture. Reaching all parts of the

'Russian chess player and author Alexander Kotov (1913-1981)

131

CHAPTER 8. DISCUSSION

environment is not always achievable, mostly from a practical and computational view and
is a founding principle to why our agents implement different strategies to explore vital
parts of the environment, as early as possible. Our problem lies in the nature of perception
bias: at one point we believe the environment is fully discovered, whereas we indeed have
not covered the parts we do not see. This masking of data heavily influences science and
often lead to misconceptions. In the survivorship dilemma, our occluded observation of the
world also makes us falsely conclude based on the set of data we can see. In a population,
weak organisms do not survive, and by observing only the strongest and most prominent
remaining samples, we risk falsely making assumptions of the past. In a neural network,
weak parts will diminish in the same way, leaving the survivors for us to observe.

8.2 Contribution

Can reinforcement learning be applied as a general optimization concept and trained
on historical logs of data? In Chapter 6, we evaluated the research questions and draw
conclusions that support our hypothesis. We also explored the necessary techniques to
develop a framework that can be implemented in real-world processes based on time-series
data. By training a shallow recurrent LSTM autoencoder network on historical time-series
data, we can reconstruct the dynamics of a system in a forecasting scenario. We have also
tested methods to evaluate the performance of such a model and expanded the typical
RMSE calculations with the zero vector estimate toolset and showcased techniques for
forecasting evaluation. With these methods, we have power tools at hand to make informed
decisions on the capabilities of a generative model to support a specific optimization
scenario.

We call the contribution a generative model. This is a compressed model of a system
and is an efficient way of exchanging, storing and simulating system dynamics. Being
generative implies that the model generates data that in lieu with system dynamics, albeit
not necessarily a copy of the data it has seen before. We have shown that by manipulating
the network, we are able to produce new data that describes the dynamic response of a
system given the manipulation. This generative model can sufficiently train a multivariate
reinforcement learning agent and respond to action proposals towards a new and higher
goal set. The agent reward function has also been shown to be trainable by a static neural
network.

Pitfalls have been identified and validated, the most prominent is that data-driven
models declines in performance when extrapolating to unknown state-spaces, also reported
by Del Rio-Chanona et al. [91] and others. Our experiments support the observation of
this phenomenon, and we have learned that the generative model should be exposed to
varying system conditions, also those resulting in faulty states or bad outcomes. Learning
the generative agent on successful time-series only will lead to a model with less knowledge
of the dynamics.

One might further raise the question of why we detour training an RL agent on a trained
dynamics model, instead of jumping directly to direct training of the RL agent policy by
representation learing, as demonstrated by Powell et al. [111]. This is a viable question,
raised by the fact that the generative model learning introduces noise and biases, which is
then amplified by agent training. However, to deal with the fact that the agent strategy
might be different than what we have data available on, we cannot divert to representation
learning only. If we have a specific optimization goal where the data logs do not represent

132

8.3. AGENT SELECTION

this goal, we cannot train the policy directly. Hence, we must develop a reward scheme
that satisfies the optimization goal and simulate the environment, demonstrated by our
generative model.

8.3 Agent selection

Of the three agents we chose to experiment with, PPO and SAC have shown to be trainable
within the problem domain and specified termination. The DDPG agents did not converge
to solutions within the criterion we set. The agent might need longer training time than
we catered for, and our longer model dynamics might be incompatible with the stochastic
action exploration scheme in DDPG. We can neither conclude on which of PPO and SAC
are most suitable since they exhibit different performances given different training scenarios.
In general, it should be advisable to train both agent types when working on a problem, to
compare their performance.

To verify this conclusion, we have trained each of the three agents on a set of known
transition functions for a propotional cascade control of two processes. This setup is a
typical use of industrial PID control where an outer loop controls the process and a faster
inner loop achieve rejection of disturbances, as visualised in Figure 8.1.

do

sp
C 1 C2
+ +

Inner loop

Outer loop

Figure 8.1: Cascade control of two processes with disturbance model

This cascade controlled process is implemented in an environmental class CascadeEnvironment
that can be trained on any of the three agents. We define two fictual sequential processes
P, and P;, where the inner loop process P is

3

Pals) = = (8.1)
and Pl
Pu(s) = (101+05)3 (8.2)

Each of the processes are disturbed by d; and ds, which are two phase shifted sine-
functions. We utilize the same network configuration for each of the three agents as we
have used in all preceding experiments and implement a linear-quadratic reward function
for penalizing large control efforts outside the set point of 1. The demonstration code is
available in Appendix C.

Figure 8.2 visualises the results. The cascade P-controller in Figure 8.2(a) is manually
tuned using the Ziegler—Nichols method [2], and we see an initial ring oscillation before it

133

CHAPTER 8. DISCUSSION

stabilizes around the setpoint. Of all agents, SAC is the only agent capable of performing
similar or better than PID control in this case. The DDPG agent does not converge at all,
and the PPO agent policy behaves oscillatory.

Figure 8.2: RL for control of non-linear functions
(a) cascade control using two P-regulators, (b) PPO agent solution after 4254 episodes, (c)
DDPG agent solution after 2802 episodes, (d) SAC agent solution after 1019 episodes

In Figure 8.3 we can see the performance of the agent training by plotting the average
reward per episode for the first 1000 episodes tested. Clearly, the SAC agent converges
faster than PPO and DDPG, and was terminated after 1019 episodes. PPO exposes a
valley-to-valley effect which it never escapes from, while the DDPG agent does not converge.

As general rules, we have found from our experiments that

e PPO agents have short training times, but do not always converge and might
necessarily be restarted. PPO finds the first policy fast but might discard it in favour
of others. This is visible in a wvalley-to-valley effect. Restarting the agent means
resetting the internal weights and biases to a new randomized set. PPO converged in
the multivariate cases using a trained reward model.

e« SAC agents are stable in their training performance but requires substantially more
computing power than PPO. SAC seems to gather more and more experience and
steadily increase its value estimation and is not particularly sensitive to restarts.
The stochasticity of the policy and value update prevents premature convergence

134

8.3. AGENT SELECTION

and encourages exploration due to the maximum entropy objective. SAC did not
converge in the multivariate cases, but its performance in univariate action spaces is
similar to PPO.

« DDPG agents does not converge easily within complex continuous observation-
and action spaces, and as noted by Lillicrap et al. [59], the DDPG algorithm requires
a large number of episodes to converge. Being patient using DDPG and running for
many thousand episodes, is also noted in the Matlab documentation for DDPG.?

3<104

SAC
PPO
DDPG

Reward

Episode

Figure 8.3: Average reward per episode per agent, first 1000 episodes for demonstration
case

The case that restarting the PPO agent training increases its likelihood to identify a
policy, can be an issue with the weight initialization of the actor and critic neural networks.
By restarting, a new set of random weights are issued which might turn out to be especially
effective for training. This trait is by Frankle and Carbin [79] described as winning the
initialization lottery. We might then indicate that SAC is a more stable learner since we
have not seen the same behaviour here.

We might criticize our experiments on the fact that the agent runs were terminated
after 5000 episodes. However, depending on the horizon of the long-term reward and the
complexity of the problem domain, we would probably see results within this training
frame for time series like ours. For pure sparse reward scenarios, our generative model
must first be able to forecast over the horizon before we can set the agent to train using the
generative model as a simulator. In such a case, we expect that the number of episodes to

2https://se.mathworks.com /help /reinforcement-learning /ug/create-policy-and-value-function-
representations.html

135

CHAPTER 8. DISCUSSION

train for must be increased, in order to explore more of the environment and dependency
paths.

An actor-critic reinforcement learning agent operates under the assumption that the
system is Markovian and that any particular state has an expected future reward for taking
an action, expressed through the Bellman equation:

V(s) = mazq(R(s,a) + vV (s")) (8.3)

In systems describable by thermodynamics, mass balances and mechanical physics, any
state is expected to be Markovian. The error between the real state and the measured state
used for training, is the sensors inability to measure, their errors or that state measurements
are not available. Extrapolating for unknown state spaces is crucial, and is why we need to
excite the system to extreme values, to be able to generalize the model. Any process not
described by the sensors, cannot be dynamically identified.

A central concept to environment exploration is information entropy as defined by
Shannon [3] and others as:

H=- sz‘logz (i) (8.4)

used in the value function for a SAC agent [82] as:

T
T(m) =D Eisyanyps (56, a0) + aH(w(-[s0))] (8.5)

t=0

The entropy of a learnt policy’s state and action pairs 7(s, a;) affects the value of the
state, influencing an agent’s inclination to select which parts of the environment to explore.
The PPO agent uses a variant of the entropy loss and estimation of information gain using
the Kullback—Leibler divergence [73]. The SAC agent trains a temperature factor « for the
entropy term, which is not done in the PPO agent. This might be one of the elements that
diverge the results between the two seemingly similar agents.

8.4 Reward engineering

The key to a successful agent policy is the reward scheme, given a balanced dataset for the
process data. We have shown that both a manual reward scheme as well as a learnt model
utilizing inverse reinforcement learning, can be used for training an agent. Depending
on the application, the desired reward function will be the main focus of any practical
RL-powered application. The reward function’s role is not only to give direct feedback
on the current actions but the path to a future reward. Designing the reward function
when dealing with future rewards should involve a feedback mechanism on the trajectory
towards this reward. Without it, training becomes a computationally intensive problem.
We can also combine manual rewards with a learnt reward model. Powell et al. [111] added
a penalty term to aid the direction of the reward, a term we have included in the reward
functions tested. We saw early that an action penalty was crucial for the trainability of the
agents. Further, we added a quadratic term to the penalty in order to accelerate learning.

136

8.4. REWARD ENGINEERING

The reward function is one scalar value that aids the agent action selection in the
correct direction combined with several parameters. These parameters should be internally
weighted so that they are on the same scale, calculated by the reward function R:

R(z) = [wir; + wplp% + wpgpg + wy| (8.6)

where z is the observation vector and

r1,w; = Reward and weigth of primary observation (on responding variables)

P, wp1 = Penalty and weigth of action effort (on manipulative variables)

p3, wye = Penalty and weigth of secondary observation (on controlled variables)

g, w = Distance and weigth to future reward / goal

Designing a reward function that transforms to a new function when reaching a specific
goal is also possible, for instance, when we have received one goal and need to transit
to another goal, as demonstrated by the Dota 2 team by OpenAl [98] and Florensa et
al. [69]. This is specifically useful in situations of mode shifts from production to cleaning,
or change of recipes, products etc. in a continuous process. The dynamics of the generative
model will propose actions to shift from one situation to another given the current state of
the system. One important prerequisite is that we have process logs that exhibit these
dynamics from earlier runs and that the model has process signals relevant for the task.

Reward engineering and the agent termination criteria are closely related in terms
of being the factors that directly affect training. We have used the termination criteria
actively to both limit the agent training to a narrow result set, and to indicate when
the proper goal has been achieved. Both ways are equal in the sense that they lead the
agent on the state-action trajectory to success, faster. In terms of computing efforts, it is
advisable to terminate an episode as early as possible, when it is clear that the long-term
goal cannot be reached. A proper goal state and reward scheme should reflect this.

iii?

Figure 8.4: Three modes of rewards
(a) continuous, (b) sparse and (c¢) directed

We have at least three general modes of agent reward types as illustrated in Figure 8.4:
a continuous, a long-term based on sparse rewards (episodic), and a directed sparse reward.
In the episodic, or long-term mode, we want the agent to accomplish a greater goal, like

137

CHAPTER 8. DISCUSSION

winning a game or reaching a specific laboratory measurement result as a sparse reward.
We have shown that the generative model is less likely to perform in a pure sparse reward
scenario and that the reward scheme should lead the agent towards the sparse reward.
With this, we mean that the agent should be able to optimize long-term reward trajectories
if a consistent way of expressing the future goal in a current reward context exists. This
observation is really dependent on the specific trained generative model’s ability to forecast
over the horizon. If the system state can be estimated accurately in the future, the
generative model should be able to support the pure sparse reward scenario. In a pure
continuous reward scheme, we have demonstrated that the concept can produce action
proposals similar to the performance of the PID-regulator that generated the original
training data.

8.5 Autoencoder and recurrency

The foundation for our generative model is the combination of the properties of the
autoencoder and network recurrency. An autoencoder stores a latent representation of the
learnt world, enabling the regeneration of data. Recurrency is about using earlier states
for inference in the current state. Those two methods combined, we can forecast the future
based on the past [116]-[118]. By changing the state as described in Chapter 4, we have
also demonstrated simulation capabilities from a learnt model.

An important prerequisite for the autoencoder is that the system is generalisable,
i.e. that we have sufficiently trained the network for its domain. In a fully connected
autoencoder network, we construct the network with a limited number of hidden nodes,
with input- and output nodes being of similar dimensions. We call the input layer the
encoder while the output is the decoder, as exemplified in Figure 8.5.

f 4 N)

QOO
Heleleole

Latent
_) __space J

=
S
Q
o)
Q.
@
(D

Figure 8.5: A simplified autoencoder

During training, the latent space nodes are gradually adjusted to minimize the error of
the output compared to the input. The trained weights are a Gaussian representation of
the problem, capable of reproducing data within the same domain. Autoencoders are one
popular method for anomaly detection, where the neural network’s generalisation properties
are exploited. Trained on normal operation, autoencoders can recreate the current situation,

138

8.5. AUTOENCODER AND RECURRENCY

if the input is within the latent space of the autoencoder. The autoencoder sum of errors
will increase when confronted with data outside its training range, indicating anomalies.
This method is becoming a usual method in equipment monitoring and system health
surveillance.?

A recurrent neural network (RNN) uses past state to infer the next state. At each step
in a sequence, we update the state and output according to a set of equations. In a plain
RNN as described by Goodfellow et. al [63], forward pass through one node is as expressed
in Equation 8.7:

ar — b+ Wht_l + UXt
h; = o(a) (8.7)
S;t =c+ Vht

where U, V, W are trainable weight matrices, b, ¢ are trainable biases, x is the input
vector and y the output vector. We can use either tanh or sigmoid activation function
based on whether we have a classification or regression problem. The persistent state
across the data is represented by h. Backward passing is done by the derivative of the
above functions, used for training through time with backpropagation and gradient descent.
We traverse the training sequences backwards for each epoch when updating the error
derivative.

We can demonstrate the capabilities of this simple method by training this algorithm
to learn the dynamics of a sinus curve. The goal is to recreate and forecast future dynamics
based on a sequence input. By using only four RNN nodes each implementing Equation 8.7,
we are able to learn the dynamics both for a one-step forecast and a horizon forecast, as
illustrated in Figure 8.6.

15 T T T T 15

Actual Actual
Prediction —6— Forecast t

1 T3 I % &
b
o)
0.5 "‘ 00} 5 ¢
05 4 o) ¢] o
¢
0 o o
0] ¢ () ¢
0 1 i IR T ¢
05 o) &
b q
&
o O © o ® o
05 | . d
80

0 20 40 60 100 0 20 40 60 80 100

(a) (b)

Figure 8.6: RNN for one-step forecast and horizoned forecast

Complete demonstration of the code is given in Appendix D. We see that recurrent
memory is a powerful technique for dynamics learning. A limited set of equations and
training is able to recreate the dynamics of the problem. Scaling the problem in time
and variables, we are able to learn real-world system dynamics in a similar way, and
combined with the powers of neural network frameworks, we can mix and combine different
architectural components and numerical solvers to suit our problem.

3Honeywell Uniformance®Asset Sentinel, Intelecy AS and others

139

CHAPTER 8. DISCUSSION

In recurrent training, gradients are backpropagated by walking through the sequences
backwards in time (Backpropagation Through Time, BPTT). In standard RNN we encounter
the problem of wanishing gradients. Hence, it is customed to implement a clipping
mechanism on the gradients and as a consequence limit the number of steps to walk
backwards (Truncated BPTT). RNN tends therefore to forget the past and is not especially
effective for problems with long-term dependencies. One example is text prediction, where
the grammar is heavily dependent on earlier events in a sentence.

The Long Short-Term Memory (LSTM) [21] has gradually evolved into a set of equations
that is able to remember earlier events and by far surpasses the vanilla RNN model. We
have earlier shown projects that use LSTM for dynamics in Chapter 2, and our generative
model and the actor and critic networks are all made using LSTM. The internals of such a
cell is illustrated in Equation 8.8 from Ismail et al. [84].

it = o(Waixe + Wphe 1 + by)

ft = O'(Wmfxt + thht—l + bf)

0t = J(Wmoxt + Wpohi 1 + bo)

ét = tanh(chXt + thht—l + bc)
c=f0c1+iO¢

h; = tanh(o; ® ¢;)

(8.8)

Here, we introduce the concept of gated cells, where the recurrent unit control what
information is passed through. LSTM contain computational blocks that control the
flow of information through many time steps. The LSTM cell consists of four sequential
computing steps during the forward pass: the forget stage, where we execute what we
have learned to forget, storing relevant new information to the state, selectively update
the cell state, and finally the output gate that controls the information sent to the next
state. There are several versions of the recurrent node with additions of functionality, or
simpler implementations for specific purposes, like the Gated Recurrent Unit (GRU) or
Linear Antisymmetric Recurrent Neural Networks (LARNN) [109], [121].

Per the documentation, the default initialisation of weights in the Matlab implementation
of LSTM is done according to the findings of Glorot and Bengio [41]. Our RNN regression
example demonstrator above uses the same method when initializing by drawing the initial
weights from a normally distributed population.

8.6 Network design

By stacking LSTM layers, as we do in the generative model, we are able to capture more
detailed information about the dynamics as we pass through the network if we have enough
data coverage. However, by Bayesian optimization in Chapter 4, we have seen that the
network need not be deep at all, we can obtain quite accurate results only with one LSTM
layer, as demonstrated in Chapter 7.

Even though a single layer LSTM network per definition is not an autoencoder, we
predict the same number of outputs as inputs. Per se, the encoder and decoder part of
the autoencoder is embedded within the LSTM cells, effectively creating the illusion of an
autoencoder.

During the experiments, we have observed some anomalous effects that should be
addressed during engineering the generative model:

140

8.6. NETWORK DESIGN

o Estimating the mean When the LSTM network start forecasting the mean, the
network has probably no data coverage for the particular region, and assumes the
mean is the best option for the lowest loss

o Shifted estimates The LSTM network outputs shifted /skewed estimates, usually
an indication of estimating the last value only and thus the network has no predicting
ability

e Bias on estimates The estimates are lower or higher than the real values and may
be an indication that the bias values are not trained properly or that the network is
not properly initialized

o Instability The estimates have a high-frequency component. This instability is
visible just before resorting to mean estimation

Addressing these effects are done by adjusting the hyperparameters like the sequence
length, the number of layers and the number of nodes per layer, as well as assuring training
data is sufficient for modelling. For our model to generalize, we aim to simplify the
architecture as much as possible. We have also observed that increasing the number of
neurons and layers might lead to models with less predictive powers. We expect this to
happen as a combination of not being able to generalize and not having enough training
passes and training data.

We have also shown that a learning rate decay scheme is important for network training.
By stepping down the learning rate, we see that the network have more accurate dynamics
predictions. Increasing the number of epochs must be done according to the decay ratio.

Depending on the amount of training data available, the number of epochs should
be selected wisely, and we have demonstrated that increasing the epoch count does not
necessarily have a positive effect on the result. During one epoch, all training data are
passed through the network once. If we augment the data by adding a noise component,
each epoch is presented with slightly altered data to help the error update process, but noise
itself could make the network unstable for a high number of epochs due to the integrated
component. An alternative to our used function is the Ornstein-Uhlenbeck process [1] that
generates noise correlated with previous noise in order to prevent degradation of overall
dynamics. In DDPG, this process is used as enviornment exploration method, and should
be implemented in our framework as well.

In Matlab, training data is broken into minibatches, mainly for computation efficiency
purposes. However, Matlab updates the network weights after each minibatch. Randomizing
the block sequence of training data for each epoch should be advisable, but is not tested
here and remains a future work.

We can also use other methods and network elements to create models, like the Bi-
LSTM [62]. In Bi-LSTM, we divide in forward- and backward layers when presented with
an enclosed time series. Since our training of the generative model is based on presenting
sequences of data to the network, we have the possibility to traverse the data in both
directions. Potentially, this could increase the dynamics description capability of the
network and should be tested as further work. Switching LSTM for one-dimensional CNNs
is also an architecture that should be tested, as demonstrated by Lang et al. [94].

Entering the real-time domain involves many considerations of data quality and sampling.
Ideally, we need to retain the sample time for process data in real-time, as during training.
However, we might experience an irregular sampling of data in a real process, which

141

CHAPTER 8. DISCUSSION

recurrent neural networks are particularly sensitive to due to their dependency on the
state matrices. Habiba and Pearlmutter [108] combine neural network training and neural
layers based on the training of ODE functions within the network to overcome this issue.
From this knowledge, one idea could involve introducing an autoencoder layer between
process data and the agent environment interface using ODE neural networks to pertain
the sample rate. A positive side effect of this would be inherent data filtering and anomaly
detection on the input.

8.7 Use cases

We have used the industrial spray drier as an example system due to its simplicity in
explanation, available literature and various possibilities for control as detailed in Chapter 3.
However, we should not limit ourselves to controlling industrial processes. Time-series
data are everywhere and in all businesses. The current value of a stock is a result of a
time series of events, and the current price of electric power is the result of a multivariate
chain of events and capacity forecasts. Optimization and planning are everywhere, and the
method presented by this thesis could be seen as a recommender system for humans to
make informed decisions.

The problem of human-computer interaction is a broad area of science in both
computational fields and cognitive psychology. In his book The Design of Everyday
Things, Norman [14] uses the metaphor of the Gulf of Fvaluation and Ezecution to frame
the problem of operators of a system making errors. He argues that an operator’s inability
to comprehend a system leads to suboptimal system manipulations, i.e. there is a broader
or narrower gulf between what an operator think is his or her evaluation of the system
state is, as compared to the actual system state. The system state might be more complex
than humans can handle, in terms of multivariate parameters and path dependencies. We
tend to break the state into manageable pieces, losing the big picture.

Within evolutionary game theory and evolutionary economics, this term is called
bounded rationalty [43]. Players in a multi-agent simulation game act according to the
information and knowledge provided to them, although in a broader essence, the players act
wrong according to some global strategy. Bridging the gulf of evaluation using recommender
systems could make the operator situational awareness increase, as a generative model is
able to forecast the consequences of actions. The gulf of execution describes the sequence of
actions necessary to reach a goal and our reduced understanding of being able to reach this
state rationally. In essence, this describes the reasoning behind the reinforcement learning
concept and long-term rewards. The distance between a system state and the desired state
is expressed as the gulf, whereas the action sequence is expressed through the policy. If an
agent has the policy to move from one state to another, this action sequence is a rational
answer to the problem. Being able to identify when the agent is wrong or uncertain, is key
to a successful human-computer trust relationship. In Chapter 5.5 we briefly discussed
some popular methods for estimating uncertainty and demonstrated some of the principles
and uses.

Bridging this gulf is the target for many of the applications within optimization and
control. However, the method we have presented in this thesis differs when it comes
to how we model the world when compared to classic control theory. Due to neural
networks inherent black box property, we cannot state proof on the outcome. There are
some initiatives within Ezplainable AI, namely through the calculation and evaluation of

142

8.8. FRONTIER IN RESEARCH

SHapley Additive exPlanations [72] and Local Interpretable Model-Agnostic Explanations
(LIME) [66]. It is an interesting future work to apply these methods to our framework.
However, the methods presented can be used as-is in a secure setting. Below we present
some other ideas for exploration:

e Scenario simulation Given the current state of a system, we should be able to
use the simulation method presented in Chapter 4 to let an operator simulate the
consequences of an action on a system.

e Advisory and recommendation Given the current state, we could also utilize a
trained RL agent to propose the next recommended action on a system, as presented in
the example in Chapter 7. This particular method of system-operator communication
has also been implemented by Google Deepmind for proper datacenter cooling.*

e Long term optimization Given a properly trained generative model able to forecast
beyond the horizon, we could build a system that optimizes a strategy for long term
rewards, for example within energy use and capacity planning, as well as forecasting
and alleviating emissions from a multi-step process. This could also be used for
balancing a steam energy system, or for adjustments of windmill parameters like
blade pitch, relative headings etc. according to weather prognosis and individual
features of each windmill.

¢ Chemical reactions Chemical reactions and other mixing problems could use this
method to derive the most optimal policy for reactant addition and process control,
for example in a pulping process where the acidic bleaching step uses chlorine dioxide
(ClO9) and hydrogen peroxide (H202) in a mix depending on the material quality,
recipe and various other parameters [24], [28], [34], [44]

o Batch processes Batch processes possess an interesting problem area where we can
expect that each batch has an outcome known upon completion. This would map
to the pure sparse reward discussed earlier. In such a problem, we must be able to
train a generative model to forecast longer than one step. If we can do so, a batch
process contains time series of the process from start till finish. Training on batch
time series could for example be used in crystallization processes where we want to
predict the best time for process termination.

e Model for MPC with Kalman filter We could also use the generative model in
a more traditional context where we apply the model within a Kalman filter, for use
with Model-Predictive Control (MPC)

As a summary, we believe that this method could be applied to overcome many of the
industrial challenges as presented in Chapter 1.2.

8.8 Frontier in research

It is not known to the author a similar method used to train an RL agent for process
control. As we introduced earlier, Petsagkourakis et al. [110] demonstrated and proposed a

“https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-
control

143

CHAPTER 8. DISCUSSION

framework for learning the dynamics by hybrid methods: first by defining a mechanistic
model based on historical data, and then train the agent using this model and real-time
data. We have also seen research on data-driven modelling within process control [86],
[91], [122], [128], but not a combination as we have presented. However, we expect that
the method eventually will be discovered by many scientists and refined for different
applications.

There are many research projects working in the field of machine learning, reinforcement
learning and industry. One such research project is Towards Autonomy in Process Industries
(TAPI)® where scientists and industry experts cooperate on several aspects within data-
driven modelling. Of relevancy to our project, compressed sensing is a technique for
modelling the un-measured part of a signal, as demonstrated by Lundby et al. [120] for
an aluminium electrolysis process. The method could provide more stable learning due to
measurement stabilization.

A successor of the LSTM network node, the Linear Antisymmetric Recurrent Neural
Network node (LARNN) [109], [121] adapts an ODE function approximation within the
recurrent node for stability reasons. We expect that a LARNN node is particularly suitable
within the field of time series for process dynamics, as the mass-, energy- and mechanistic
balances have a strong dependency in time and towards a Markovian function.

Handling uncertainty in both data and method is for the moment at least, a human
task. In a recent article, Gawlikowski et al. [119] review many of the methods available for
uncertainty estimation. One takeaway is to differentiate between epistemic noise, which
originates from variability in the real world, and aleatoric noise, where the sensors or
measurement variable’s inability to reflect the state accurately introduces noise. The
combination of these two main factors make up the complete noise picture, but we must
handle each of them differently. We cannot throw bad data on a neural network and expect
it to deliver top results.

8.9 Further work

Based on the findings in Chapter 7.3.4, an interesting and presumably powerful technique for
zero-vector bias estimation is to dynamically compensate for state drift during estimation.
This could be done by keeping a copy of the current state of a network and estimating the
bias correction for the current state. This estimation could then be used for correcting
the output dynamically. We have also observed that erroneous bias estimations are an
indication of network instability, which could help in uncertainty estimations.

As an alternative to compressed sensing and data augmentation by noise addition,
Yang et al. [127] proposes Feature distribution smoothing (FDS) for imbalanced datasets.
Within classification, it is vital that the training dataset is balanced across the classes to
predict, and a similar requirement for regression is to assure as normally distributed input
data as possible. However, combinations of input data might not present the whole picture
across the numeric range for the prediction.

Deep Imbalanced Regression (DIR) is a method to generate data by Feature distribution
smoothing (FDS) for missing data areas. Our generative model is trained by datasets of
unknown quality in this respect, and to limit the amount of uncontrolled interpolation, we
could introduce this method for datasets when training the generative model.

®https://www.sintef.no/en/projects/2019/tapi-towards-autonomy-in-process-industries/

144

8.10. LIMITATIONS AND THREATS TO VALIDITY

Of particular interest within RL research, is to find a viable method to restrict an
agent’s actions so that a process can be run securely, with respect to the environment,
health and safety (EHS). A basic method would be to limit the action range and dampening
when the process is under direct control from an agent, or by estimating the unknown
dynamics for robust control [129]. Another possibility is to let the agent estimate process
set points and let the process be controlled by traditional means. Google Deepmind®
introduced a layered approach with several control barriers between the agent and the
process. The integration of an RL agent into real-world control is an obvious further work
based on the findings in this work.

Evolving the generative model, and the RL agent needs to be considered when
monitoring reveals drift in the system. Drift comes from changed process conditions,
unmodelled dynamics and changes in system requirements, amongst others. Introducing
new data would either mean a complete recalculation of either model or train each model
on new data with a low learning rate. Handling drift identification and compensation is a
supportive task to the initial modelling to assure continuous operation over time. Further,
we see that when a learnt reward approximation is used as a reward function, the operation
monitoring must include this model as well. Handling this area correctly is considered to
be one of the key success criteria for user acceptance.

An alternative implementation of the generative model’s recurrent network could be a
variant of the Generative Adversarial Network for time-series forecasting, discovered by
Goodfellow et al. [53]. GANs are powerful neural networks for the recreation of highly
credible copies of the real world, mainly within image- and audio recreation. However, we
have also seen that GANs can be used for heart signal electrocardiogram synthesis [107].
It would be interesting to consider GANs for the generative model, and how to adapt the
concept for simulation.

When considering cooperation between multiple RL agents working in isolation within
their specific process, devising a scheme for agent cooperation could be beneficial. The
ideas of evolutionary game theory have been applied to economical models, surveyed by
Safarzynska et al. [43], but recently multiple agent simulation has surfaced using the
same ideas. According to Tuyls and Nowé [29], agents working in their own Markovian
space cannot converge when set to cooperate, since their joint action spaces are different.
Evolutionary game theory is about the strategies employed when conflicting objectives
make any action sub-optimal. By mathematical study, these strategies can be evaluated
and an optimum can be found.

8.10 Limitations and threats to validity

This thesis has used both synthetic- and real-world data in the evaluation of the research
questions. The use case tested is a limited and dynamically simple process. It could be
considered a limitation to the conclusions as other systems would cater for more complex
dynamics. We believe simplicity is part of the reason for our results.

Further, we have briefly touched on the neural network design of the tested agents,
but have not optimized them in any way. Our intention has been to create the network
architectures as similar as possible for agent comparison.

Shttps://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-
control

145

CHAPTER 8. DISCUSSION

The research area is in constant motion, and our hope is that the ideas and culprits
presented here would be criticised, undermined and improved by others.

146

Chapter 9

Conclusion

For all the justified concern over automation gone wrong, surveillance, and
all the other tech-enabled horrors, it’s easy to forget that at its core, technology
is about the triumph of humanity.'

The initial motivation of this thesis has been to demonstrate the theory and methods
that lead us towards a higher stage of autonomy. The fundamental question of how we
can formalize all knowledge of the world and utilize the data we have gathered in order to
learn more remains a guiding star for this science field.

We have presented the foundation of research within reinforcement learning from the
early days of Q-learning to the commonly used actor-critic methods of today, used for
continuous action spaces with recurrent neural networks as function approximators. We
have answered research questions that support the claim that reinforcement learning can
be applied as a general optimization concept and trained on historical logs of data towards
new goal sets. Evolving the agent on the target system seems necessary for finer control.

A generative model has been proposed for learning the compressed dynamics of a
system. We have used an industrial spray drier as an example of a Markovian system
well suitable for modelling. A spray drier can be explained in terms of mass- and energy
balances, and we have constructed a synthetic model for training a generative model
based on a recurrent autoencoder network. This generative model is able to reproduce the
dynamics of a system, and by modification of the model input, we are able to demonstrate
simulation and forecasting characteristics.

This generative model is then used as a synthetic environment for training a reinforcement
agent. It is demonstrated that a reinforcement learning agent can be sufficiently trained in
a multivariate scenario and propose actions towards a new goal set, making it particularly
suitable for optimization scenarios as an alternative to traditional control mechanisms. We
have also shown that the reward function of an agent can be trained based on a specified class
of time-series data enabling efficient reward engineering and human behaviour replication.

Finally, we were able to extract data from a real spray drier and demonstrate the
method’s applicability in the real world domain. It is not known to the author any current
initiatives demonstrating the combination of these features, although all building blocks
are known and available.

Initially, we raised the concern on how to build experience with an example of crashing
a self-driving car. In a simulator, insecure actions lead to negative rewards, in the real

'Bionic Eye, Emily Mullin, medium.com

147

CHAPTER 9. CONCLUSION

world an agent acts according to a learnt policy and value function. Training the critic
is crucial, and resembles the human morale engine. What constitutes negative rewards
in the scenario of agent training, depends on the human engineer. Those who train the
critic, copy their morality into the digitized agent. One of the findings of Chapter 5.3.2
demonstrates this dilemma clearly: we need data from failures in order to learn.

How can we be sure that the agent acts according to human morality standards? It is
a danger that in the world of Al-operated decision-makers, we will cross borders and use
autonomous technology to harm humanity. History is full of examples, the grimmest ones
can be found in the military drone industry and in the seemingly never-ending cyber-attacks
on process plants and other actuators connected to the internet. The challenges for Al
and humanity is not necessarily technological but remains to be a question of morality and
cultural imbalance.

We will conclude this thesis by stating the three laws of robotics from the Handbook of
Robotics, 56th Edition, 2058 A.D. transcribed by science fiction writer and professor Isaac
Asimov [4] which may serve as a guiding light for agent training:

e First Law A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

e Second Law A robot must obey the orders given it by human beings except where
such orders would conflict with the First Law.

e Third Law A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

Or, as nicely summoned by Google: Don’t be evil.

148

Bibliography

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Phys.
Rev., vol. 36, no. 5, pp. 823-841, Sep. 1930.

J. G. Ziegler, N. B. Nichols, et al., “Optimum settings for automatic controllers,”
Trans. ASME J. Appl. Mech., vol. 64, no. 11, 1942.

C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379-423, Jul. 1948.

I. Asimov, “Runaround. i, robot (the isaac asimov collection ed.),” New York City:
Doubleday. (first published 1942), 1950.

A. M. Turing, “I—COMPUTING MACHINERY AND INTELLIGENCE,” Mind,
vol. LIX, no. 236, pp. 433-460, 1950.

F. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain, 1958.

A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM
J. Res. Dewv., vol. 3, no. 3, pp. 210-229, Jul. 1959.

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” en, J. Physiol., vol. 160, pp. 106—154, Jan.
1962.

P. J. Huber, “Robust estimation of a location parameter,” en, aoms, vol. 35, no. 1,
pp. 73-101, Mar. 1964.

K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network model
for a mechanism of visual pattern recognition,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-13, no. 5, pp. 826-834, Sep. 1983.

K. Masters et al., “Spray drying handbook,” Spray drying handbook., 1985.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science,
Tech. Rep., 1985.

J. G. Balchen and K. I. Mummé, Process control: Structures and applications. Kluwer
Academic Pub, 1988.

D. A. Norman, The design of everyday things. Currency Doubleday, 1988.

R. S. Sutton, “Learning to predict by the methods of temporal differences,” Mach.
Learn., vol. 3, no. 1, pp. 9-44, Aug. 1988.

C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

149

BIBLIOGRAPHY

[17]

150

G. Tesauro, “Practical issues in temporal difference learning,” Mach. Learn., vol. 8,
no. 3, pp. 257277, May 1992.

C. J. C. Watkins and P. Dayan, “Q-Learning,” Tech. Rep., 1992, pp. 279-292.

R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learn., vol. 8, no. 3, pp. 229-256, May 1992.

G. Tesauro, “TD-Gammon, a self-teaching backgammon program, achieves master-
level play,” en, Neural Comput., vol. 6, no. 2, pp. 215219, Mar. 1994.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” en, Neural Comput.,
vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

T. Fukuda and T. Arakawa, “Intelligent systems: Robotics versus mechatronics,”
Annu. Rev. Control, vol. 22, pp. 13-22, Jan. 1998.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.

J. Gullichsen, C.-J. Fogelholm, and O. Fapet, “Chemical pulping, papermaking
science and technology,” Book 6B, 2000.

H. Siebert, Der Kobra-effekt: Wie man irrwege der Wirtschaftspolitik vermeidet. Dt.
Verlag-Anst., 2001.

D. E. Oakley, “Spray dryer modeling in theory and practice,” Drying Technol.,
vol. 22, no. 6, pp. 1371-1402, Jun. 2004.

B. Adhikari, T. Howes, D. Lecomte, and B. R. Bhandari, “A glass transition
temperature approach for the prediction of the surface stickiness of a drying droplet
during spray drying,” Powder Technol., vol. 149, no. 2, pp. 168-179, Jan. 2005.

D. Major, M. Perrier, S. Gendron, and B. Lupien, “Pulp bleaching control and
optimization,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 466-476, Jan. 2005.

K. Tuyls and A. Nowé, “Evolutionary game theory and multi-agent reinforcement
learning,” Knowl. Eng. Rev., vol. 20, pp. 63-90, Mar. 2005.

V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World.
Springer, Boston, MA, 2005.
Y.-C. L. A i, S. H. Fan, S. Chenney, and C. Dyer, “Photorealistic image rendering

with population monte carlo energy redistribution,” Furographics Symposium on
Rendering, 2007.

S. H. Fan, “Population monte carlo samplers for rendering,” Tech. Rep., Sep. 2007.

D. Ramachandran and E. Amir, Bayesian inverse reinforcement learning, https:
//www .aaai.org/Papers/IJCAI/2007/IJCAIO7-416.pdf, Accessed: 2021-4-24,
2007.

P. W. Hart and D. Connell, “Improving chlorine dioxide bleaching efficiency by
selecting the optimum ph targets,” Tappi J., vol. 7, no. 7, pp. 3—11, Jul. 2008.

L. X. Huang and A. S. Mujumdar, “The effect of rotary disk atomizer RPM on
particle size distribution in a Semi-Industrial spray dryer,” Drying Technol., vol. 26,
no. 11, pp. 1319-1325, Oct. 2008.

https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

B. D. Ziebart, A. Maas, J. Andrew Bagnell, and A. K. Dey, Mazximum entropy inverse
reinforcement learning, https://www . aaai .org/Papers/AAAT /2008 /AAAT08~
227.pdf, Accessed: 2021-2-20, 2008.

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor—critic
algorithms,” Automatica, vol. 45, no. 11, pp. 2471-2482, Nov. 2009.

M. Hoekstra, M. Vogelzang, E. Verbitskiy, and M. W. N. Nijsten, “Health technology
assessment review: Computerized glucose regulation in the intensive care unit—how
to create artificial control,” en, Crit. Care, vol. 13, no. 5, p. 223, Oct. 2009.

M. Lopes, F. Melo, and L. Montesano, “Active learning for reward estimation in
inverse reinforcement learning,” in Machine Learning and Knowledge Discovery in
Databases, Springer Berlin Heidelberg, 2009, pp. 31-46.

GEA Process Engineering, “Milk powder Technology-Evaporation and spray drying,”
Tech. Rep. Fifth edition, Feb. 2010.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” 2010.

J. O’Neill, B. Pleydell-Bouverie, D. Dupret, and J. Csicsvari, “Play it again:
Reactivation of waking experience and memory,” en, Trends Neurosci., vol. 33,
no. 5, pp. 220-229, May 2010.

K. Safarzynska and J. C. van den Bergh, FEvolutionary modelling in economics: a
survey of methods and building blocks. Max Planck Institute of Economics, Jena,
2010.

V. Tarvo et al., Modeling chlorine dioxzide bleaching of chemical pulp. Aalto-yliopiston
teknillinen korkeakoulu, 2010.

A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, “On random
weights and unsupervised feature learning,” in ICML, vol. 2, cl.uni-heidelberg.de,
2011, p. 6.

A. Azadeh, N. Neshat, A. Kazemi, and M. Saberi, “Predictive control of drying
process using an adaptive neuro-fuzzy and partial least squares approach,” en, Int.
J. Adv. Manuf. Technol., vol. 58, no. 5-8, pp. 585596, Jan. 2012.

Y. Bengio, “Practical recommendations for Gradient-Based training of deep architectures,’

in Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and
K.-R. Miiller, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 437-478.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors, 2012.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, “Efficient BackProp,” in
Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and
K.-R. Miiller, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9-48.

N. Bostrom, Anthropic Bias : Observation Selection Effects in Science and Philosophy,
1st Edition. Routledge, May 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” Dec. 2013. arXiv:
1312.5602 [cs.LG].

151

https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://arxiv.org/abs/1312.5602

BIBLIOGRAPHY

[52]

[53]

[54]

152

V. Balasubramanian, S.-S. Ho, and V. Vovk, Conformal Prediction for Reliable
Machine Learning: Theory, Adaptations and Applications, en. Newnes, Apr. 2014.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Jun. 2014. arXiv:
1406.2661 [stat.ML].

D. Silver, “Deterministic policy gradient algorithms,” in Proceedings of the 31st
International Conference on MachineLearning, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A simple way to prevent
neural networks from overfitting,” The journal of machine, 2014.

Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout in
recurrent neural networks,” Dec. 2015. arXiv: 1512.05287 [stat.ML].

—, “Dropout as a bayesian approximation: Representing model uncertainty in
deep learning,” Jun. 2015. arXiv: 1506.02142 [stat.ML].

M. Hausknecht and P. Stone, “Deep recurrent Q-Learning for partially observable
MDPs,” Jul. 2015. arXiv: 1507.06527 [cs.LG].

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” Sep. 2015.
arXiv: 1509.02971 [cs.LG].

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” en, Nature, vol. 518,
no. 7540, pp. 529-533, Feb. 2015.

S. Pote and S. Sudit, Automatic control system for spray drier pilot plant, https:
//www .erpublication.org/published_paper/IJETR032111.pdf, Accessed: 2021-
8-21, May 2015.

S. Cornegruta, R. Bakewell, S. Withey, and G. Montana, “Modelling radiological
language with bidirectional long Short-Term memory networks,” Sep. 2016. arXiv:
1609.08409 [cs.CL].

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, en. MIT Press, Nov.
2016.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” Jun. 2016. arXiv:
1606.03476 [cs.LG].

A. Parastiwi and Ekojono, “Design of spray dryer process control by maintaining
outlet air temperature of spray dryer chamber,” in 2016 International Seminar on
Intelligent Technology and Its Applications (ISITIA), Jul. 2016, pp. 619-622.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”: Explaining
the predictions of any classifier,” Feb. 2016. arXiv: 1602.04938 [cs.LG].

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” en, Nature, vol. 529, no. 7587, pp. 484—489, Jan. 2016.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1512.05287
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1509.02971
https://www.erpublication.org/published_paper/IJETR032111.pdf
https://www.erpublication.org/published_paper/IJETR032111.pdf
https://arxiv.org/abs/1609.08409
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1602.04938

BIBLIOGRAPHY

A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative adversarial
networks,” Nov. 2017.

C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation for
reinforcement learning agents,” May 2017. arXiv: 1705.06366 [cs.LG].

A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physics-guided neural networks
(PGNN): An application in lake temperature modeling,” Oct. 2017. arXiv: 1710.
11431 [cs.LG].

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234,
pp- 11-26, 2017.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
in Advances in Neural Information Processing Systems, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30,
Curran Associates, Inc., 2017, pp. 4765—-4774.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” Jul. 2017. arXiv: 1707.06347 [cs.LG].

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” en, Nature, vol. 550, no. 7676, pp. 354-359, Oct. 2017.

1. Zbicinski, “Modeling and scaling up of industrial spray dryers: A review,” J.
Chem. Eng. Jpn., vol. 50, no. 10, pp. 757-767, Oct. 2017.

J. Alexander, Learning from humans: What is inverse reinforcement learning? https:
//thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-
learning/, Accessed: 2021-4-27, Jun. 2018.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary
differential equations,” Jun. 2018. arXiv: 1806.07366 [cs.LG].

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning
for time series classification: A review,” Sep. 2018. arXiv: 1809.04356 [cs.LG].

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” Mar. 2018. arXiv: 1803.03635 [cs.LG].

D. Ha and J. Schmidhuber, “World models,” Mar. 2018. arXiv: 1803.10122 [cs.LG].

T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning to walk
via deep reinforcement learning,” Dec. 2018. arXiv: 1812.11103 [cs.LG].

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy
maximum entropy deep reinforcement learning with a stochastic actor,” arXiv
[es.LG], Jan. 2018.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic algorithms and applications,”
Dec. 2018. arXiv: 1812.05905 [cs.LG].

A. A. Ismail, T. Wood, and H. C. Bravo, “Improving Long-Horizon forecasts with
Expectation-Biased LSTM networks,” Apr. 2018.

153

https://arxiv.org/abs/1705.06366
https://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1707.06347
https://thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-learning/
https://thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-learning/
https://thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-learning/
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1809.04356
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1812.11103
https://arxiv.org/abs/1812.05905

BIBLIOGRAPHY

[85]

154

B. Kleinberg, Y. Li, and Y. Yuan, “An alternative view: When does SGD escape
local minima?” In Proceedings of the 35th International Conference on Machine

Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Research,
vol. 80, PMLR, 2018, pp. 2698-2707.

S. Moe, A. M. Rustad, and K. G. Hanssen, “Machine learning in control systems:
An overview of the state of the art,” in Artificial Intelligence XXXV, Springer
International Publishing, 2018, pp. 250-265.

OpenAl, Part 2: Kinds of RL algorithms — spinning up documentation, https:
//spinningup.openai.com/en/latest/spinningup/rl_intro2.html, Accessed:
2021-5-2, 2018.

D. Santos, A. C. Mauricio, V. Sencadas, J. D. Santos, M. H. Fernandes, and
P. S. Gomes, “Spray drying: An overview,” in Biomaterials, R. Pignatello and
T. Musumeci, Eds., Rijeka: IntechOpen, 2018, ch. 2.

P. Thodoroff, A. Durand, J. Pineau, and D. Precup, “Temporal regularization in
markov decision process,” Nov. 2018. arXiv: 1811.00429 [cs.LG].

S. Thorn, Predicting uncertainty with neural networks, https://medium. com/
O@steve_thorn/predicting-uncertainty-with-neural-networks-aec0217eb37d,
Accessed: 2021-10-31, Mar. 2018.

E. A. Del Rio-Chanona, X. Cong, E. Bradford, D. Zhang, and K. Jing, “Review of
advanced physical and data-driven models for dynamic bioprocess simulation: Case
study of algae—bacteria consortium wastewater treatment,” Biotechnol. Bioeng.,
vol. 116, no. 2, pp. 342-353, Feb. 2019.

G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world reinforcement
learning,” Apr. 2019. arXiv: 1904.12901 [cs.LG].

A. Honchar, Neural ODFEs: Breakdown of another deep learning breakthrough,
https : //towardsdatascience . com/neural - odes - breakdown - of - another -
deep-learning-breakthrough-3e78c7213795, Accessed: 2021-4-20, Jun. 2019.

C. Lang, F. Steinborn, O. Steffens, and E. W. Lang, “Electricity load forecasting —
an evaluation of simple 1D-CNN network structures,” Nov. 2019. arXiv: 1911.11536
[cs.LG].

A. Look and M. Kandemir, “Differential bayesian neural nets,” Dec. 2019. arXiv:
1912.00796 [cs.LG].

G. Mendels, Estimating uncertainty in machine learning models — part 3, https:
//towardsdatascience.com/estimating-uncertainty-in-machine-learning-
models-part-3-22b8c58b07b, Accessed: 2021-10-31, Oct. 2019.

S. Minaee, E. Azimi, and A. Abdolrashidi, “FingerNet: Pushing the limits of
fingerprint recognition using convolutional neural network,” Jul. 2019. arXiv: 1907.
12956 [cs.CV].

OpenAl, : C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Jozefowicz, S. Gray, C. Olsson,
J. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter,
J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang, “Dota 2 with
large scale deep reinforcement learning,” Dec. 2019. arXiv: 1912.06680 [cs.LG].

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://arxiv.org/abs/1811.00429
https://medium.com/@steve_thorn/predicting-uncertainty-with-neural-networks-aec0217eb37d
https://medium.com/@steve_thorn/predicting-uncertainty-with-neural-networks-aec0217eb37d
https://arxiv.org/abs/1904.12901
https://towardsdatascience.com/neural-odes-breakdown-of-another-deep-learning-breakthrough-3e78c7213795
https://towardsdatascience.com/neural-odes-breakdown-of-another-deep-learning-breakthrough-3e78c7213795
https://arxiv.org/abs/1911.11536
https://arxiv.org/abs/1911.11536
https://arxiv.org/abs/1912.00796
https://towardsdatascience.com/estimating-uncertainty-in-machine-learning-models-part-3-22b8c58b07b
https://towardsdatascience.com/estimating-uncertainty-in-machine-learning-models-part-3-22b8c58b07b
https://towardsdatascience.com/estimating-uncertainty-in-machine-learning-models-part-3-22b8c58b07b
https://arxiv.org/abs/1907.12956
https://arxiv.org/abs/1907.12956
https://arxiv.org/abs/1912.06680

BIBLIOGRAPHY

[99] OpenAl I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek,
P. Welinder, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solving rubik’s cube
with a robot hand,” Oct. 2019. arXiv: 1910.07113 [cs.LG].

[100] A. Sagheer and M. Kotb, “Time series forecasting of petroleum production using
deep LSTM recurrent networks,” Neurocomputing, vol. 323, pp. 203213, Jan. 2019.

[101] ——, “Unsupervised pre-training of a deep LSTM-based stacked autoencoder for
multivariate time series forecasting problems,” en, Sci. Rep., vol. 9, no. 1, p. 19038,
Dec. 2019.

[102] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learning rate decay help
modern neural networks?,” Aug. 2019. arXiv: 1908.01878 [cs.LG].

[103] D. Zhang, E. A. Del Rio-Chanona, P. Petsagkourakis, and J. Wagner, “Hybrid
physics-based and data-driven modeling for bioprocess online simulation and optimization,’
Biotechnol. Bioeng., vol. 116, no. 11, pp. 2919-2930, Nov. 2019.

[104] A. Barredo Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik, A.
Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F.
Herrera, “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AL” Inf. Fusion, vol. 58, pp. 82-115, Jun. 2020.

[105] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland,
and W. Dabney, “Revisiting fundamentals of experience replay,” Jul. 2020. arXiv:
2007.06700 [cs.LG].

)

[106] T. A. Gaffoor, AI for industrial process control (part 2): Model predictive control deep
dive, https://www.innovyze.com/en-us/blog/ai-for-industrial-process-
control-part-2-model-predictive-control-deep-dive, Accessed: 2021-4-17,
Nov. 2020.

[107] T. Golany, D. Freedman, and K. Radinsky, “SimGANs: Simulator-Based generative
adversarial networks for ECG synthesis to improve deep ECG classification,” Jun.
2020. arXiv: 2006.15353 [eess.SP].

[108] M. Habiba and B. A. Pearlmutter, “Neural ordinary differential equation based
recurrent neural network model,” May 2020. arXiv: 2005.09807 [cs.LG].

[109] S. Moe, F. Remonato, E. I. Gregtli, and J. T. Gravdahl, “Linear antisymmetric
recurrent neural networks,” in Proceedings of the 2nd Conference on Learning for
Dynamics and Control, A. M. Bayen, A. Jadbabaie, G. Pappas, P. A. Parrilo,
B. Recht, C. Tomlin, and M. Zeilinger, Eds., ser. Proceedings of Machine Learning
Research, vol. 120, PMLR, 2020, pp. 170-178.

[110] P. Petsagkourakis, I. O. Sandoval, E. Bradford, D. Zhang, and E. A. del Rio-Chanona,
“Reinforcement learning for batch bioprocess optimization,” Comput. Chem. Eng.,
vol. 133, p. 106 649, Feb. 2020.

[111] B. K. M. Powell, D. Machalek, and T. Quah, “Real-time optimization using
reinforcement learning,” en, Comput. Chem. Eng., vol. 143, no. 107077, p. 107077,
Dec. 2020.

[112] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction.
2020.

155

https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/1908.01878
https://arxiv.org/abs/2007.06700
https://www.innovyze.com/en-us/blog/ai-for-industrial-process-control-part-2-model-predictive-control-deep-dive
https://www.innovyze.com/en-us/blog/ai-for-industrial-process-control-part-2-model-predictive-control-deep-dive
https://arxiv.org/abs/2006.15353
https://arxiv.org/abs/2005.09807

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]

[126]

[127]

[128]

156

J. Robine, T. Uelwer, and S. Harmeling, “Discrete latent space world models for
reinforcement learning,” Oct. 2020. arXiv: 2010.05767 [cs.LG].

W. Tang, G. Long, L. Liu, T. Zhou, J. Jiang, and M. Blumenstein, “Rethinking
1D-CNN for time series classification: A stronger baseline,” Feb. 2020. arXiv: 2002.
10061 [cs.LG].

A. Tuor, J. Drgona, and D. Vrabie, “Constrained neural ordinary differential
equations with stability guarantees,” Apr. 2020. arXiv: 2004.10883 [eess.SY].

P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos, “Learning the
effective dynamics of complex multiscale systems,” Jun. 2020. arXiv: 2006.13431
[physics.comp-ph].

T. Xayasouk, H. Lee, and G. Lee, “Air pollution prediction using long Short-Term
memory (LSTM) and deep autoencoder (DAE) models,” en, Sustain. Sci. Pract.
Policy, vol. 12, no. 6, p. 2570, Mar. 2020.

M. Elsaraiti and A. Merabet, “A comparative analysis of the ARIMA and LSTM
predictive models and their effectiveness for predicting wind speed,” Oct. 2021.

J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe,
R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu,
“A survey of uncertainty in deep neural networks,” Jul. 2021. arXiv: 2107.03342
[cs.LG].

E. T. B. Lundby, A. Rasheed, J. T. Gravdahl, and I. J. Halvorsen, “A novel hybrid
analysis and modeling approach applied to aluminum electrolysis process,” J. Process
Control, vol. 105, pp. 62-77, Sep. 2021.

S. Moe and C. Sterud, “Decoupling dynamics and sampling: RNNs for unevenly
sampled data and flexible online predictions,” Learning for Dynamics and Control,
2021.

C. Sterud, S. Moe, M. V. Bram, S. Roberts, and J.-P. Calliess, “Recurrent neural
network structures for learning control valve behaviour,” Automation, Robotics &
Communications for Industry 4. 0, p. 20, 2021.

Wikipedia contributors, Chain rule (probability), https://en.wikipedia.org/
w/index.php?title=Chain_rule_(probability)&oldid=1017757604, Accessed:
2021-4-27, Apr. 2021.

——, Conservation of mass, https://en.wikipedia.org/w/index.php?title=
Conservation_of_mass&o0ldid=1036600537, Accessed: 2021-8-1, Aug. 2021.

——, Density of air, https://en.wikipedia.org/w/index.php?title=Density_
of _air&oldid=1031055600, Accessed: 2021-6-29, Jun. 2021.

——, Laws of thermodynamics, https://en.wikipedia.org/w/index . php?
title=Laws_of_thermodynamics&oldid=1039497430, Accessed: 2021-8-19, Aug.
2021.

Y. Yang, K. Zha, Y.-C. Chen, H. Wang, and D. Katabi, “Delving into deep
imbalanced regression,” Feb. 2021. arXiv: 2102.09554 [cs.LG].

S. Moe, B. Myhre, A. M. Rustad, H. Helness, and F. Batey, “Neural network to
analyze wastewater treatment plant with CEPT,”

https://arxiv.org/abs/2010.05767
https://arxiv.org/abs/2002.10061
https://arxiv.org/abs/2002.10061
https://arxiv.org/abs/2004.10883
https://arxiv.org/abs/2006.13431
https://arxiv.org/abs/2006.13431
https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/2107.03342
https://en.wikipedia.org/w/index.php?title=Chain_rule_(probability)&oldid=1017757604
https://en.wikipedia.org/w/index.php?title=Chain_rule_(probability)&oldid=1017757604
https://en.wikipedia.org/w/index.php?title=Conservation_of_mass&oldid=1036600537
https://en.wikipedia.org/w/index.php?title=Conservation_of_mass&oldid=1036600537
https://en.wikipedia.org/w/index.php?title=Density_of_air&oldid=1031055600
https://en.wikipedia.org/w/index.php?title=Density_of_air&oldid=1031055600
https://en.wikipedia.org/w/index.php?title=Laws_of_thermodynamics&oldid=1039497430
https://en.wikipedia.org/w/index.php?title=Laws_of_thermodynamics&oldid=1039497430
https://arxiv.org/abs/2102.09554

BIBLIOGRAPHY

[129] C. Sterud, S. Moe, and J. T. Gravdahl, “Stable and robust neural network controllers,”

157

Appendix A

Matlab Code

A.1 Spray drier ODE function

A function pointer to this function is used for the ode45' ordinary differential equation
solver in Matlab, called by the PID regulator in spray_rollout_pid for training the
generative model, spray_rollout_pid_stable for training the reward model and within
ProcessEnvironment as a real time process simulator. This ODE function models the
spray drier mass- and energy balances.

function dydt = spray_f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,tau)
dydt = zeros(6,1);) (Qstate Qgstate Tout Dropletsz Hum bv

% specific heat capacity
cfeed = 4000; ’ Empiric unknown % water 4184, Joules per kilogram per degree Celsius (J/kg°C).
%pfeed = 1200; % density feed, kg/m3

cgas = 600; % air, Joules per kilogram per degree Celsius (J/kg°C)
% density, kg/m3 (table), varies with temp/RH: https://en.wikipedia.org/wiki/Density_of_air
pgas = 0.7; % Empiric unknown, 1.225 (20%C);

% Mass balance

mwrate = (Q * pfeed) / tau;) water rate m3/h to mass kg/min
mgrate = (Qg * pgas) / tau; % gas rate m3/h to mass kg/min
dydt (1) -y(1) + mwrate;

dydt (2) -y(2) + mgrate;

% Atomizer rpm
dydt (3) = (-y(3) + rpm) * 0.05;

% Energy balance, instant heat flux

beta = 0.9;

deltat_gas = Tin - Tfeed; % gas - feed, diff temp (K)
energy_gas = mgrate * cgas * deltat_gas * beta;

dydt (4) = -y(4) + (energy_gas / mwrate / cfeed); 7 Celsius

% Droplet size from atomizer
% Sauter mean droplet size formula, L. X. Huang and A. S. Mujumdar
M = (Q * pfeed);

nom = 1.4e4*x(M~0.24);
d = 0.7; % diameter m
n = 0.1; % height m

h = 1; % unkown

denom = ((y(3) * d4)70.83) * ((n * h)~0.12);
droplet_size = nom / denom;

dydt (5) = -y(5) + droplet_size; 7 micrometer (um)

"https:/ /se.mathworks.com/help/matlab/ref/ode45.html

159

APPENDIX A. MATLAB CODE

end

% Evaporation dynamics, assumptions:

% The droplet is heated before evaporation starts

yA Near-linear evaporation (as a function of droplet size)
time = 2; % s

temp = 1/y(4); % C

area 1/y(5); % um

% Convert relative humidity to absolute humidity

% https://carnotcycle.wordpress.com/2012/08/04. ..

% /how-to-convert-relative-humidity-to-absolute-humidity/

deltaRH = (6.112 * exp((17.67 * 25)/(25+243.5)) * RHg * 2.1674) / (273.15+25);
deltaRH = deltaRH / 1000;

gamma = 1.8;
evap = time * temp * area * 1/deltaRH * 100 * gamma;
dydt (6) = -y(6) + evap;

% Bulk weight linear model r~2=0.76
dydt (7) = -y(7) + y(6) * 0.0276 + 0.5088;

Listing A.1: spray_f.m

A.2 Datastores

The datastores are used for training the generative- or reward models as pluggable classes

for

training and validation data according to the moving window skewing mechanism

described in Chapter 4. There are two datastores implemented; the RolloutDatastore
and HistorianDatastore.

» Datastore
matlab.io

(+)
» Partitionable

matlab.io.datastore

» HistorianDatastore » RolloutDatastore

Figure A.1: Class diagram of datastores

The RolloutDatastore takes a PID function as input and calls this function to calculate

in real time the process data, which otherwise could come from timeseries log files.

Instantiating the class is done by:

datastore = RolloutDatastore(@rollout_func, rollouts, sequence_length);

160

A.2. DATASTORES

where @rollout_func is a function pointer to one of the implemented rollout functions:

e spray_rollout_pid

e spray_rollout_pid_stable

The HistorianDatastore connects to a Historian database and queries for the tag
data available.

A.2.1 RolloutDatastore.m

% A custom datastore for generating data from specified ODE function rollout
% Data is scaled based on an initial dataset and pre-processed accordingly
classdef RolloutDatastore < matlab.io.Datastore &

matlab.io.datastore.Partitionable

properties
featureDimension

Mean

Std

Rollouts

Sequence_length
Empty_columns

MV % manipulated variables

CV % controlled variables
RV 7 responding variables
end
properties (Access = private)
rollout_func
counts
end
methods
function this = RolloutDatastore(rollout_func, rollouts, sequence_length)
this.rollout_func = rollout_func;
this.Rollouts = rollouts; 7 number of calculated rollouts per session/epoch
this.Sequence_length = sequence_length;
reset (this);
% Establish parameters for scaling by creating random
% rollout distributions. This will be overwritten if loading a model from
% disk (GenerativeModel.m)
Tt = [1;
for i=1:rollouts
[T, MV, CV, RV] = this.rollout_func();
Tt = [Tt;T];
end
this.Mean = mean(T);
this.Std = std(T);
% Identify columns with standard deviation of zero (or some
% other threshold, need to verify
this.Empty_columns = ~any(std(T),1);
this.Mean(:, this.Empty_columns) = [];
this.Std(:, this.Empty_columns) = [];
this.featureDimension = size(this.Mean,2);
% Remove those columns from metadata
mask = mat2cell(this.Empty_columns, 1, [numel(MV) numel(CV) numel(RV)]);
this .MV = MV (-~mask{1});
this.CV = CV(~mask{2});
this.RV = RV(~mask{3});
end
function [rollout, legend] = inverse_scale(this, rollout)

161

APPENDIX A. MATLAB CODE

rollout = (rollout .* this.Std) + this.Mean;
legend = {this.MV this.CV this.RV};
end

function [rollout, legend] = scale(this, rollout)
rollout = (rollout - this.Mean) ./ this.Std;
legend = {this.MV this.CV this.RV};

end

function [mv_std, mv_mean, legend] = inverse_scale_params_mv (this)
mv_std = this.Std(1:numel(this.MV));
mv_mean = this.Mean(1:numel(this.MV));
legend = {this.MV};

end

function tf = hasdata(this)
tf = this.counts <= this.Rollouts;
end

function [data,info] = read(this)
T = this.rollout_func();

% Remove columns with standard deviation of zero
T(:, this.Empty_columns) = [];

% normalize
T = (T - this.Mean) ./ this.Std;

% To forecast the values of future time steps of a sequence,
% specify the responses to be the training sequences with values

% shifted by one time step. That is, at each time step of the input sequence,

% the LSTM network learns to predict the value of the next time step.
forecast_window = 1;

% Separate the data into chunks of sequence length (skewed by forecast_window

sequence_length = this.Sequence_length;

% The predictors are the training sequences without the final time step.
% Transform data to be supervised learning

pointer = 1;
data = [];
room = 2*sequence_length-forecast_window;

while pointer < size(T,1)-room
% Many to many (OutputMode = sequence)
%x_end = pointer+sequence_length-forecast_window;
%y_end = x_end+sequence_length;
%X = T(pointer:x_end,:)"';
%Y = T(x_end+forecast_window:y_end,:)';

% Many to one (OutputMode = last)

x_end = pointer+sequence_length-forecast_window;
X = T(pointer:x_end,:)';

Y = T(x_end+forecast_window,:)"';

data = [data; {X Y}];

pointer = pointer + forecast_window;
end
info = [];
this.counts = this.counts + 1;

end

function reset(this)
this.counts = 0;
end

function subds = partition(ds,n,ii)
subds = copy(ds);
reset (subds) ;

end

162

A.2. DATASTORES

end

methods (Access = protected)
function n = maxpartitions(ds)
n = 30;
end
end

methods (Hidden = true)
function frac = progress(this)
frac = this.counts / this.Rollouts;
end
end

end

Listing A.2: RolloutDatastore.m
A.2.2 HistorianDatastore.m

% A custom datastore for reading and presenting data from Osisoft PI Historian

% Data is scaled based on the largest dataset and pre-processed accordingly

classdef HistorianDatastore < matlab.io.Datastore &
matlab.io.datastore.Partitionable

properties
featureDimension
Mean
Std
Sequence_length
MV % manipulated variables
CV 7% controlled variables
RV 7 responding variables
end

properties % (Access = private)
sequence_counter
T
currentT
pointer
forecast_window
tag_function
filter_function
source_data
miniBatchSize
created
mirrored_output
ipredictors
iresponses
add_noise

end

methods

function this = HistorianDatastore(sequence_length, tag_function, filter_function,

starttime, endtime, interval, resample_interval, gap_threshold,
mirrored_output, add_noise)

this.Sequence_length = sequence_length;

this.tag_function = tag_function;

this.filter_function = filter_function;

this.created = datetime('now');

this.mirrored_output = mirrored_output;

this.add_noise = add_noise;

if endtime == 'x'
[D, MV, CV, RV] = this.read_data_single(starttime, endtime,
interval, resample_interval);
else
[D, MV, CV, RV] = this.read_data(starttime, endtime,
interval, resample_interval);
end

163

APPENDIX A. MATLAB CODE

this.source_data = D;

% Separate predictors and responses
if mirrored_output 7 autoencoder
this.ipredictors = 1:size(D,2);

this.iresponses = 1:size(D,2);
else
this.ipredictors = 1:numel ([MV' CV']);
this.iresponses = numel (this.ipredictors)+1:numel(this.ipredictors)+numel(RV');

end

% Find time gaps in data

gap = diff(D.Timestamp);

idx = find(gap > gap_threshold);

if numel(idx) == 0 % if no gaps, treat as one sequence
idx = [size(D,1)];

end

% Break into sequences

X={};

prev = 1;

for i = 1:length(idx)
X{i,1} = cell2mat(table2cell (D(prev:idx(i),:)))"';
prev = idx(i)+1;

end

% Get the sequence lengths for each observation.

sequencelengths = [];
for i=1:numel (X)
sequence = X{i};
sequencelengths (i) = size(sequence,2);
end
[this.miniBatchSize, max_index] = max(sequencelLengths);
idx = 1:numel(sequencelengths);

% Normalization parameter calculation on all data
this.Mean = cell2mat(table2cell(varfun(@mean,D)));
this.Std = cell2mat(table2cell(varfun(@std,D)));
this.featureDimension = size(this.Mean,2);

% Remove short sequences

mask = sequencelengths < (this.Sequence_lengthx*2);
idx(mask) = [1;

this.T = X(idx);

% Stop if we have no sequences
if numel(idx) == 0

error ("No sequences satisfying conditions the found")
end

% Set initial pointers
reset (this);

this.MV = MV';
this.CV = CV';
this.RV = RV';
end
function [D, MV, CV, RV] = read_data(this, starttime, endtime, interval, resample_interval)

% Read data from PI in chunks
[MV, CV, RV] = this.tag_function();

D = [1;
currentt = datetime(starttime);
while currentt < endtime
stt = datestr(currentt,'yyyy-mm-dd');
ent = datestr(currentt + calmonths(1) - days(1l),'yyyy-mm-dd');

d = get_data([MV;CV;RV], 'startTime', stt, 'endTime', ent, ...
'interval', interval, 'resample_interval', resample_interval);

D = [D;d];

currentt = currentt + calmonths(1);

164

A.2. DATASTORES

end
D = this.post_process_data(D);
end
function [D, MV, CV, RV] = read_data_single(this, starttime, endtime, interval, resample_interval)

% Read data from PI

[MV, CV, RV] = this.tag_function();

D = get_data([MV;CV;RV], 'startTime', starttime, 'endTime', endtime,
'interval', interval, 'resample_interval', resample_interval);

D this.post_process_data(D);

end

function D = post_process_data(this, data)
% Filter unwanted data
[D, smoothing, fill] = this.filter_function(data);

% Smooth data
if smoothing

D = smoothdata(D);
end

% Fill missing data
if fill
D = fillmissing(D, 'constant',0);

end
end
function this = replace_data(this, starttime, endtime, interval, resample_interval)
[D, ~, ~, ~] = read_data_single(this, starttime, endtime, interval, resample_interval);
%TODO Calculate starttime
%This function's intention is to replace sequencelength amount
%of data back in time, for resetting the generative model with
%live data
this.T = [1;
this.T{1,1} = cell2mat(table2cell(D))"';
% Set initial pointers
reset (this);
end
function [rollout, legend] = inverse_scale(this, rollout)
rollout = (rollout .* this.Std) + this.Mean;
legend = {this.MV this.CV this.RV};
end
function [rollout, legend] = scale(this, rollout)
rollout = (rollout - this.Mean) ./ this.Std;
legend = {this.MV this.CV this.RV};
end
function [rollout, legend] = scale_predictors(this, rollout)
rollout = (rollout - this.Mean(this.ipredictors)) ./ this.Std(this.ipredictors);
legend = {this.MV this.CV};
end
function [rollout, legend] = inverse_scale_responses(this, rollout)
rollout = (rollout .* this.Std(this.iresponses)) + this.Mean(this.iresponses);
legend = {this.RV};
end
function [mv_std, mv_mean, legend] = inverse_scale_params_mv (this)
mv_std = this.Std(l:numel(this.MV));
mv_mean = this.Mean(1:numel(this.MV));
legend = {this.MV};
end

function tf = hasdata(this)
% return true if there are more sequences available
tf = this.sequence_counter < size(this.T,1);

165

APPENDIX A. MATLAB CODE

end
function tf = hasdata_in_sequence(this)
room = this.Sequence_length - this.forecast_window;
tf = this.pointer < size(this.currentT,1) - room;
end
function [data,info] = read(this)

% Noise to be added to the signals
sigma = 0.001;

data = [];
if ~hasdata_in_sequence(this)
next_sequence (this);

end

if hasdata_in_sequence (this)
% Many to one (OutputMode = last)

x_end = this.pointer + this.Sequence_length - this.forecast_window;
X = this.currentT(this.pointer:x_end,this.ipredictors)';
Y = this.currentT(x_end + this.forecast_window,this.iresponses)';

% Add noise to all signal channels
if this.add_noise
for i=1:size(X,1)
X(i,:) = addNoise(sigma, X(i,:));
end
for i=1:size(Y,1)
Y(i,:) = addNoise(sigma, Y(i,:));
end
end

data = [{X Y}I;
this.pointer = this.pointer + this.forecast_window;
end

info = [];
end

function reset (this)
this.sequence_counter = 0;
this.forecast_window = 1;

this.next_sequence();
end

function next_sequence(this)
this.pointer = 1;
this.sequence_counter = this.sequence_counter + 1;

% Randomly select a sequence
this.currentT = randsample(this.T,1);
this.currentT = this.currentT{1}';

% normalize
this.currentT = this.scale(this.currentT);
end

function subds = partition(ds,n,ii)
subds = copy(ds);
reset (subds);

end

end

methods (Access = protected)
function n = maxpartitions(ds)
n = 30;
end
end

166

A.3. GENERATIVE MODEL

methods (Hidden = true)
function frac = progress(this)
frac = this.sequence_counter / size(this.T,1);
end
end

end

Listing A.3: HistorianDatastore.m
A.2.3 get_data.m

The get_data function is a low level call towards the OSISoft Web API? used by the class
HistorianDatastore.

function T = get_data(tags, varargin)
api = <url to pi web api server>;
options = weboptions('CertificateFilename',<certificate>,'ContentType','json');

% Parse input arguments
narginchk (1, inf)

params = inputParser;

params.CaseSensitive = false;

params.addParameter ('startTime', '-1h', @(x) ischar(x));
params.addParameter ('endTime', '*', @(x) ischar(x));
params.addParameter ('interval', 'Im', @(x) ischar(x));
params.addParameter ('resample_interval', 1, @(x) isnumeric(x));

params.parse (varargin{:});

T = [1;
for i = 1:length(tags)
points = webread([api '/points'], 'path',tags{i},options);
response = webread([api '/streamsets/interpolated'],'webId',points.WebId,...

'startTime',params.Results.startTime, 'endTime',params.Results.endTime, 'interval',...

params.Results.interval,options);

for j = 1l:numel(response.Items.Items);
if ~isnumeric(response.Items.Items(j).Value)
response.Items.Items(j).Value = nan;
end
end
D = struct2table(response.Items.Items);

.Properties.VariableNames{2} = tags{i};

.Timestamp = erase(D.Timestamp, 'Z');

.Timestamp = datetime(D.Timestamp);

= removevars(D,{'UnitsAbbreviation', 'Good"',...
'Questionable', 'Substituted', 'Annotated'});

ODouoo

D = table2timetable(D);

if isempty(T)
T = D;

else
T = synchronize(T,D, 'regular','linear','TimeStep',...

minutes (params.Results.resample_interval));
end
end
end

A.3 Generative Model

The GenerativeModel class is used as environment simulator for the SyntheticEnvironment
class.
The model uses the choice of datastore during instantiation:

%https://docs.osisoft.com /bundle/pi-web-api-reference

167

APPENDIX A. MATLAB CODE

genmodel = GenerativeModel (name, datastore, epochs, minibatchsize, numHiddenUnits,
numHiddenLayers, numLatent, sequence_length, environment_length)

» GenerativeModel

VAN

» RewardModel

Figure A.2: Class diagram of generative models

A class RewardModel inherits all properties and methods from the GenerativeModel
class.

A.3.1 GenerativeModel.m

% Class for handling training of generative model (historical process data)
classdef GenerativeModel

properties
Name
Action
Observation
ObservationSequence
end

properties Y, (Access = protected)
layers
options
net
info
filename
datastore
sequence_length
environment_length
initial_observation
zeroMapping J bias of network

end
methods
% Contructor method
function this = GenerativeModel(name, datastore, epochs, minibatchsize,
numHiddenUnits, numHiddenLayers, numlLatent, sequence_length, environment_length)
this.Name = name;

168

A.3. GENERATIVE MODEL

this.datastore = datastore;
this.sequence_length = sequence_length;
this.environment_length = environment_length;
this.initial_observation = [];

% Define autoencoder network
this.layers = this.lstm_network(numHiddenUnits, numHiddenLayers, numLatent);

% Set Training Options
this.options = this.train_options(epochs, minibatchsize);

% Load existing file
this.filename = [name '.mat'];
if isfile(this.filename)
load(this.filename, 'mnet', 'datastore', 'initial_observation', 'info');

this.net = net;

this.datastore = datastore; % override the above init
this.info = info;

this.initial_observation = initial_observation;

end

% read the initial sequence, our starting point for RL
if isempty(this.initial_observation)
this.initial_observation = read(this.datastore);
this.initial_observation{1,1};
end
end

function [this, info] = train_model(this)
% Train the mean network
% Assume that the mean response, (ylx), is normally distributed
[this.net, info] = trainNetwork(this.datastore, this.layers, this.options);
this.info = info;
end

function this = plot_training(this)
figure
x = linspace(l,numel(this.info.Trainingloss) ,numel(this.info.Trainingloss));
plot(x, this.info.TrainingRMSE,"LineWidth",0.1)
ylabel ("RMSE")
yyaxis right
plot(x, this.info.BaselLearnRate,"LineWidth",1)
legend (["Validation loss", "Learning rate"])
ylabel("1r")
xlabel ("Iteration")

end

function [this, info] = continue_train_model(this, initial_1r)
this.options.InitiallLearnRate = initial_lr;
[this.net, info] = trainNetwork(this.datastore, this.net.Layers, this.options);
this.info = info;

end

function valError = test_model(this, rollout_func)

[T, MV, CV, RV] = rollout_func();

T = T(:,[1 2 9 10 11]); 7 TODO column selection net<-->ode
[T,~] = this.datastore.scale(T);

resetState(this.net);

err=[];

for i=1:size(T,1)-this.sequence_length
X = T(i:i+this.sequence_length,:);
Y = T(this.sequence_length+this.environment_length,:);
[this.net, pred] = predictAndUpdateState(this.net,{X'});
err(i) = sum(Y) - sum(pred);

end

valError = sqrt(mean(err).”2);

end

function save_model(this, info)

169

APPENDIX A. MATLAB CODE

net = this.net;

datastore = this.datastore;

initial_observation = this.initial_observation;

info = this.info;

save(this.filename, 'net', 'datastore', 'initial_observation', 'info');
end

function [ObservationInfo,ActionInfo] = get_environment (this)
obs = [this.datastore.MV this.datastore.CV this.datastore.RV];
obs_size = size(obs, 2);
act_size = size(this.datastore.MV, 2);

ObservationInfo = rlNumericSpec([obs_size this.environment_lengthl);
ObservationInfo.Name = [this.Name ' Observation'];
ObservationInfo.Description = strjoin(obs);

% Initialize Action settings
ActionInfo = rlNumericSpec([act_size 1], 'LowerLimit',-15,'UpperLimit',15);
ActionInfo.Name = [this.Name ' Action'];
ActionInfo.Description = strjoin(this.datastore.MV);
end

function this = reset(this)
this = initialize_network(this, 60);

% Reset initial observation
this.datastore.reset ();
this.initial_observation = read(this.datastore);

0 = this.initial_observation{1,1};
this.initial_observation{1,2};

=
]

% split into action and observation space
act_size = size(this.datastore.MV, 2);
this.Observation = 0(:,end-this.environment_length+1l:end);
this.ObservationSequence = 0; 7 towards generative model
this.Action = A(l:act_size);

end

function this = step(this, actions)
this.Action = actiomns;

% Predict next step by changing action but keep observation
% input to the network

act_size = size(this.datastore.MV, 2);
T = this.ObservationSequence;
T(l:act_size,end) = this.Action;), replace last action vector in observation

% Predict one step, network accepts sequence input only
[this.net, pred] = predictAndUpdateState(this.net,{T});
pred = pred - this.zeroMapping;

% Add some noise
sigma = 0.005;
pred = addNoise(sigma, pred);

pred = pred'; 7 for many-to-one models

% Update states, slide window one step.
%pred(l:act_size) = this.Action; J uncomment for disabling dynamics prediction
this.ObservationSequence(:,this.sequence_length+1) = pred;
this.ObservationSequence(:,1) = [];
this.Observation = this.ObservationSequence(:,end);

end

function [rollout, legend] = inverse_scale(this, rollout)
[rollout, legend] = this.datastore.inverse_scale(rollout);

end

function [rollout, legend] = scale(this, rollout)
[rollout, legend] = this.datastore.scale(rollout);

170

A.3. GENERATIVE MODEL

end

% Return parameters needed for inverse scaling of Manipulated Variables
function [mv_std, mv_mean, legend] = inverse_scale_params_mv (this)

[mv_std, mv_mean, legend] = this.datastore.inverse_scale_params_mv();
end

function this = initialize_network(this, initialization_period)

initializationSignal = zeros(this.datastore.featureDimension,
this.sequence_length * initialization_period);

this.net = resetState(this.net);
this.net = predictAndUpdateState(this.net, initializationSignal);
this.zeroMapping = predict(this.net, initializationSignal);

end

end

methods % (Access = protected)
function layers = lstm_network(this, numHiddenUnits, numHiddenLayers, numLatent)
% Define input
layers = [
sequencelnputlayer (this.datastore.featureDimension)

1;

% Define decoder
for i=1:numHiddenLayers
layers = [
layers
lstmLayer (numLatent)
dropoutLayer (0.2)
1

end

% Define output

layers = [
layers
lstmLayer (numHiddenUnits, "OutputMode", "last")
dropoutLayer (0.2)
fullyConnectedLayer (this.datastore.featureDimension)
huberRegressionLayer ('huber')

1;
end

function options = train_options(this, epochs, minibatchsize)
numberOfWorkers = 1;
minisize = minibatchsize * numberOfWorkers;
initiallLearnRate = 0.05 * minisize/minibatchsize;

options = trainingOptions('adam',
'Plots', 'training-progress',
'Verbose', true,
'GradientThreshold',1,
'InitiallLearnRate',initiallearnRate,
'LearnRateSchedule', 'piecewise’,
'LearnRateDropPeriod',epochs/6,
'LearnRateDropFactor',0.2,
'MaxEpochs',epochs,...
'Shuffle', 'never',
'MiniBatchSize',minisize);

end
end

end

Listing A.4: GenerativeModel.m
A.3.2 RewardModel.m

classdef RewardModel < GenerativeModel

methods

171

APPENDIX A. MATLAB CODE

end

end

Listing A.5: RewardModel.m

A.4 Rollout functions

A function pointer to any of the rollout functions is inputted as argument to the instantiation
of the RolloutDatastore.

A.4.1 spray_ rollout_ pid.m

% Generate process data table T with stoichrometic model
% The process step response is recorded
function [T, MV, CV, RV] = spray_rollout_pid

% Manipulated variables: Q, 10-minute steps
MV = [uQn urpmn].

t = linspace(1,60%10,60%10)';

a = 2;

b = 20;

r = (b-a).*rand(1,1) + a;

Q = repelem(r, length(t))'; % start value is randomized

% Tsp-scenario, randomize sp every n step
Tsp = repelem(l, length(t))';
n_step_r = 60;
for i=1:n_step_r:length(t)
r = getrandom(88, 142); % orig: 88-92
Tsp(i:i+n_step_r-1) = repelem(r, n_step_r);
end

% rpm-scenario, randomize sp
rpm = repelem (7600, length(t))';
n_step_r = floor(length(t)/3);
for i=1:n_step_r:length(t)
r = randsample ([7600, 8000, 8600, 9200],1);
rpm(i:i+n_step_r-1) = repelem(r, n_step_r);
end

% Controlled variables

Cv = ["Tin", "Qg", "Tg", "RHg", "pfeed", "Tfeed"]; 7%, "tsignal"l;
sigma = 0.005;

%rpm = addNoise(sigma, repelem(7600,length(Q)))'; % atomizer rpm
Tin = addNoise(sigma, repelem(180,length(Q)))'; % gas temp in

Qg addNoise(sigma, repelem(100000,length(Q)))"'; % gas flow in m3/h
Tg addNoise(sigma, repelem(25,length(Q)))'; % outside temp

RHg = addNoise(sigma, repelem(88,length(Q)))'; % gas RH in

pfeed = addNoise(sigma, repelem(1200,length(Q)))"'; 7 density feed
Tfeed = addNoise(sigma, repelem(95,length(Q)))'; % feed temperature
%tsignal = repmat(getsine(1l, 1, 0),[1 6]1)"';

% Responding variables

RV = ["Tout", "DropletSZ", "Hum"];
Tout = repelem(nan,length(Q))';
DropSZ = repelem(nan,length(Q))"';
Hum = repelem(man,length(Q))';

T
T

table(Q, rpm, Tin, Qg, Tg, RHg, pfeed, Tfeed, Tout, DropSZ, Hum); 7%, tsignal);
table2array (T);

tStep = linspace(1,numel(Q),numel(Q));
yo = [1 1 7600 95 100 5 0.65]; 7% (state Qgstate rpmstate Tout Dropletsz Hum bv
T(1,9) = y0(4); % Tout

172

A.4. ROLLOUT FUNCTIONS

T(1,10) = y0(5); % Dropletsz
T(1,11) = y0(6); % Hum
tau = 60;

for index = 2:numel(tStep)
% select row
Q = T(index-1,1); % previous one
rpm = T(index,2);
Tin = T(index,3);
Qg = T(index,4);
Tg T(index,5);
RHg = T(index,6);
pfeed = T(index,7);
Tfeed = T(index,8);

% Regulate Q against Tsp and Tactual

%MV = Kp * (SP - PV)

Qdot = -0.01 * (Tsp(index) - T(index-1,9));
Q = Q + Qdot;

% Integrate

af = @(t,y) spray_£f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,tau);
t = tStep(index-1:index); % 1 minute

[t, y] = ode4b5(af, t, yO);

% Final value of x is initial value for next step
yO = y(end, :);

% Collect the results
sigmaR = 0.001; 7 noise on Responding
T(index,1) = Q;
T(index,2) = y(end, 3);
T(index,9) = addNoise(sigmaR, y(end, 4));
T(index,10) = y(end, 5);
T(index,11) = y(end, 6);
end
T=T(60:end,:); % clip first frames (warmup)

end

Listing A.6: spray_ rollout_ pid.m

A.4.2 spray_ rollou_ pid_ stable.m

For reward model

% Generate process data table T with stoichrometic model
% The process step response is recorded
function [T, MV, CV, RV] = spray_rollout_pid_stable

% Manipulated variables: Q, 10-minute steps
MV = [IIQII’Ilrpmll];

t = linspace(1,60%10,60%10)';

a = 2;

b = 20;

r = (b-a).*rand(1,1) + a;

Q = repelem(r, length(t))'; 7/ start value is randomized

% Stable Tsp-scenario
Tsp = repelem(110, length(t))';

% Controlled variables

CV = ["Tinll, lng"’ lngll, |IRHg"’ llpfeedll, "Tfeed"]; 'ya, "tSlgnal"];
sigma = 0.001;

rpm = addNoise(sigma, repelem(7600,length(Q)))"'; % atomizer rpm
sigma = 0.001;

Tin = addNoise(sigma, repelem(180,length(Q)))'; % gas temp in

Qg = addNoise(sigma, repelem(100000,length(Q)))"'; % gas flow in m3/h

173

APPENDIX A. MATLAB CODE

Tg = addNoise(sigma, repelem(25,length(Q)))'; % outside temp

RHg = addNoise(sigma, repelem(88,length(Q)))'; % gas RH in

pfeed = addNoise(sigma, repelem(1200,length(Q)))'; % density feed
Tfeed = addNoise(sigma, repelem(95,length(Q)))'; ’ feed temperature
%tsignal = repmat(getsine(l, 1, 0),[1 6])"';

% Responding variables

RV = ["Tout", "DropletSZ", "Hum"];
Tout = repelem(nan,length(Q))"';
DropSZ = repelem(nan,length(Q))';
Hum = repelem(nan,length(Q))"';

T = table(Q, rpm, Tin, Qg, Tg, RHg, pfeed, Tfeed, Tout, DropSZ, Hum); %, tsignal);
T table2array (T);

tStep = linspace(1,numel(Q),numel(Q));
yo = [1 1 7600 95 100 5 0.65]; % Qstate Qgstate rpmstate Tout Dropletsz Hum bv
T(1,9) = y0(4); % Tout

T(1,10) = y0(5); 7 Dropletsz
T(1,11) = y0(6); % Hum
tau = 60;

for index = 2:numel(tStep)
% select row
Q = T(index-1,1); % previous one
rpm = T(index,2);
Tin = T(index,3);
Qg T(index,4);
Tg = T(index,5);
RHg = T(index,6);
pfeed = T(index,7);
Tfeed = T(index,8);

% Regulate Q against Tsp and Tactual
hMV = Kp * (SP - PV)

Qdot = -0.01 * (Tsp(index) - T(index-1,9));

Q = Q + Qdot;

% Integrate

af = @(t,y) spray_f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,tau);
t = tStep(index-1:index); % 1 minute

[t, y] = ode45(af, t, y0);

% Final value of x is initial value for next step
yO = y(end, :);

% Collect the results
sigmaR = 0.001; % noise on Responding
T(index,1) = Q;
T(index,2) = y(end, 3);
T(index,9) = addNoise(sigmaR, y(end, 4));
T(index,10) = y(end, 5);
T(index,11) = y(end, 6);
end
T=T(60:end,:); % clip first frames (warmup)

end

Listing A.7: spray_rollout_ pid_ stable.m

A.5 RL Environments

The RL environment classes are used for training an RL agent. The SyntheticEnvironment
class is a bridge between the GenerativeModel and the environment, where action proposals
from the agent is comitted through the generative model.

174

A.5. RL ENVIRONMENTS

(+)
» MATLABEnvironm...

rl.env

» ProcessEnvironment » SyntheticEnviron...

Figure A.3: Class diagram of implemented RL environments

Instantiating the class is done by first specifying the generative model, the reward
function and any reward model, if one exists:

env = SyntheticEnvironment (genmodel, doplot, @reward_func, reward_model) ;validateEnvironment (env);

where @reward_func is a function pointer to one of the implemented reward functions:

e direct_response_reward
e sparse_reward

e learnt_reward

The ProcessEnvironments uses the spray_£ function for real time simulation towards
the spray drier ordinary differential equations, and can be used for both training and agent
validation:

envProcess = ProcessEnvironment (genmodel, false, sigma, Qreward_func, reward_model);
validateEnvironment (envProcess);

In a case where no process data exists, but a model of the process is implemented as
solvable ODE’s, the ProcessEnvironment can be used as the primary training environment
for an agent.

A.5.1 SyntheticEnvironment.m

classdef SyntheticEnvironment < rl.env.MATLABEnvironment
properties

Rollout
end

175

APPENDIX A. MATLAB CODE

properties % (Access = protected)
generative_model
plot_sequence
save_sequence
Figure
filename
m
reward_function
reward_model

end
methods
% Contructor method creates an instance of the environment
function this = SyntheticEnvironment (generative_model, plot_sequence, reward_function, reward_mc
% Query the generative model for the environment
[ObservationInfo,ActionInfo] = generative_model.get_environment;
this = this@rl.env.MATLABEnvironment (ObservationInfo,ActionInfo);
this.generative_model = generative_model;
this.plot_sequence = plot_sequence;
this.save_sequence = plot_sequence;
this.reward_function = reward_function;
this.reward_model = reward_model;

%time = datestr(mow, 'yyyy_mm_dd_hh_MM_ss');
%this.filename = sprintf ('savedEpisodes\\training_%s.mat',time);
%m = matfile(filename, 'Writable', true);

end

% Apply system dynamics and simulates the environment with the

% given action for one step.

function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
LoggedSignals = [];

% Scale incoming action
[mv_std, mv_mean, ~] = this.generative_model.inverse_scale_params_mv();

action_scaled = (Action .* mv_std') + mv_mean';

% Apply action to the generative model

previous_action = (this.generative_model.Action .* mv_std') + mv_mean';
this.generative_model = this.generative_model.step(Action);

Observation = this.generative_model.Observation;

scaled_world = [this.generative_model.Observation(:,end)'];
[scaled_world, ~] = this.generative_model.inverse_scale(scaled_world);

this.Rollout = [this.Rollout;scaled_world];

[Reward, IsDone, this.reward_model] = this.reward_function(previous_action, action_scaled,
scaled_world, this.Rollout, this.generative_model.sequence_length,
this.generative_model, this.reward_model);

notifyEnvUpdated (this);
end

% Reset environment to initial state and output initial observation
function InitialObservation = reset(this)
% plot previous (and complete) episode
if this.plot_sequence
plotSequence (this);
end
if this.save_sequence
saveSequence (this);
end

% reset model
this.generative_model = this.generative_model.reset;
InitialObservation = this.generative_model.Observation;

scaled_world = [this.generative_model.Observation(:,end) '];

[scaled_world, ~] = this.generative_model.inverse_scale(scaled_world);
this.Rollout = scaled_world;

176

A.5. RL ENVIRONMENTS

if ~isempty(this.reward_model)

this.reward_model = this.reward_model.initialize_network(10); % TODO param!

end

notifyEnvUpdated (this);
end
end

methods
% (optional) Visualization method
function plot(this)
% Initiate the visualization

% Update the visualization
envUpdatedCallback (this)
end

function plotSequence(this)
if ~isempty(this.Rollout)
%tiledlayout (2,1);
%nexttile
plot(this.Rollout(:,end)) %3
ylim ([80 1501);
yyaxis right
plot (this.Rollout (:,1))
ylim([1 201);
yyaxis left
end
end

function saveSequence(this)
if ~isempty(this.Rollout)

%m = matfile(this.filename, 'Writable', true);
%[nrows,ncols] = size(m,'episode');
%m.episode(end+1,:) = this.Rollout;

end
end

function plotRollout(this)
if ~isempty(this.Rollout)
stackedplot (this.Rollout)
end
end
end

methods (Access = protected)
% update visualization everytime the environment is updated
% (notifyEnvUpdated is called)
function envUpdatedCallback(this)
%if ~isempty(this.Figure) && isvalid(this.Figure)

%end
end
end
end

Listing A.8: SyntheticEnvironment.m
A.5.2 ProcessEnvironment.m

classdef ProcessEnvironment < rl.env.MATLABEnvironment

properties
Rollout
end

properties(Access = protected)
generative_model
plot_sequence
Figure
%tStep

177

APPENDIX A. MATLAB CODE

yo
observation
index
tau
previous_action
reward_function
reward_model
sigma

end

methods
% Contructor method creates an instance of the environment

function this = ProcessEnvironment (generative_model, plot_sequence, sigma,

reward_function, reward_model)
% Query the generative model for the environment

[ObservationInfo,ActionInfo] = generative_model.get_environment;
this = this@rl.env.MATLABEnvironment (ObservationInfo,ActionInfo);

this.generative_model = generative_model;
this.plot_sequence = plot_sequence;
this.tau = 60;
this.sigma = sigma;
this.reward_function = reward_function;
this.reward_model = reward_model;

end

% Apply system dynamics and simulates the environment with the
% given action for one step.

function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)

LoggedSignals = [];
epsilon = le-5;
this.index = this.index + 1;

% Scale incoming action (cannot find bug, network should do it)

[mv_std, mv_mean, ~] = this.generative_model.inverse_scale_params_mv();
action_scaled = (Action .* mv_std') + mv_mean';

Q = action_scaled(1);

rpm = action_scaled(2);

% Action damping

%alfa = 0.9;

%this.Q = (alfa * this.Q) + ((1-alfa) * Qp);
%this.Q = Qp;

% Step with Action

%sigma = 0.001;

%rpm = addNoise(sigma, 7600); % atomizer rpm

Tin = addNoise(this.sigma, 180); % gas temp in

Qg = addNoise(this.sigma, 100000); ’ gas flow in m3/h
Tg = addNoise(this.sigma, 25); 7% outside temp

RHg = addNoise(this.sigma, 88); 7% gas RH in

pfeed = addNoise(this.sigma, 1200); 7 density feed
Tfeed = addNoise(this.sigma, 95); J), feed temperature

% Integrate

af = @(t,y) spray_f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,this.tau);

t =
[t, y] = ode45(af, t, this.y0);

% Final value of x is initial value for next step
this.y0 = y(end, :);

% Collect the results

this.observation(1) = Q;

this.observation(2) rpm;

this.observation(9) = y(end, 4); ’addNoise(sigma, y(end, 3)
this.observation(10) = y(end, 5);

this.observation(11l) = y(end, 6);

Observation = this.generative_model.scale(this.observation)';
this.Rollout = [this.Rollout;this.observation];

[Reward, IsDone,

178

this.reward_model] = this.reward_function(this

[this.index this.index+1]; Y%this.tStep(this.index:this.index+1); % 1 minute

.previous_action,

A.5. RL ENVIRONMENTS

action_scaled, this.observation, this.Rollout, this.generative_model.sequence_length,
this.generative_model, this.reward_model);

this.previous_action = action_scaled;

IsDone = 0; % do not stop the process simulator

notifyEnvUpdated (this);
end

% Reset environment to initial state and output initial observation
function InitialObservation = reset(this)
% plot previous (and complete) episode
if this.plot_sequence
plotSequence (this);
end

% Reset model
% randomized

initial_observation = read(this.generative_model.datastore);
this.observation = (initial_observation{1}(:,end))"';

% static from genmodel

%this.observation = (this.generative_model.initial_observation{1}(:,end))"';
[this.observation, ~] = this.generative_model.inverse_scale(this.observation);
act_size = size(this.generative_model.datastore.MV, 2);
this.previous_action = [this.observation(l:act_size)'];

Q = this.observation(1);

rpmstate = this.observation(2);

Tout = this.observation(3);

Dropletsz = this.observation(4);

hum = this.observation(5);

% Qstate Qgstate Tout Dropletsz Hum bv
this.y0 = [Q 100000 rpmstate Tout Dropletsz hum 0.65];

InitialObservation = this.observation';
%this.Q = Q;
this.index = 0;

% Make a log
this.Rollout = [this.observation];
notifyEnvUpdated (this);
end
end

methods
% (optional) Visualization method
function plot(this)
% Initiate the visualization

% Update the visualization
envUpdatedCallback(this)
end

function plotSequence(this)
if ~isempty(this.Rollout)

tiledlayout (2,1);
nexttile
plot(this.Rollout(:,3))
ylim ([80 1001);
yyaxis right
plot(this.Rollout(:,1))
ylim([5 121);
yyaxis left

%multivariate:
%nexttile
%histogram(this.Rollout (20:end,4))

nexttile

plot (this.Rollout(:,4))
ylim([100 150]1);

yyaxis right

179

APPENDIX A. MATLAB CODE

plot (this.Rollout(:,2))
y1lim ([7000 100001) ;
yyaxis left
end
end

function plotRollout(this)
if ~isempty(this.Rollout)
stackedplot (this.Rollout)
end
end
end

methods (Access = protected)
% (optional) update visualization everytime the environment is updated
% (notifyEnvUpdated is called)
function envUpdatedCallback(this)
%if ~isempty(this.Figure) && isvalid(this.Figure)

%end
end

end
end

Listing A.9: ProcessEnvironment.m

A.6 Reward functions

A choice of reward function is inputed to the instantiation of the RL environment classes.

A.6.1 direct_response_reward.m

function [Reward, IsDone, RewardModel] = direct_response_reward(previous_action, action_scaled,
scaled_world, logged_signals, sequence_length, generative_model, reward_model)

epsilon = le-5;

% Setpoint offset penalty

setpoint = 90;

errTout = abs(setpoint - scaled_world(3)) + epsilon; % MV + CV + RV vectors

rT = (1 / errTout);

% Penalize control effort
rA = -0.05*abs(previous_action(1l) - action_scaled(1));

% Get reward
Reward = rT + rA;

% Check terminal condition
IsDone = errTout > 2;

RewardModel = reward_model;

Listing A.10: direct_response_reward.m

A.6.2 sparse_reward.m

function [Reward, IsDone, RewardModel] = sparse_reward(previous_action, action_scaled,
scaled_world, logged_signals, sequence_length, generative_model, reward_model)

epsilon = le-5;

% Shaped Sparse reward

dist = makedist('normal','mu',122,'sigma’',b); % target distribution
rS = 0;

h = 0;

if size(logged_signals,1) > sequence_length+4

180

A.7. AGENT NEURAL NETWORKS

theset=logged_signals(sequence_length:end,4);
[h,p,adstat,cv] = adtest(theset',"Distribution", dist);
rS = (~h);

end

% Get reward
Reward = rS;

% Check terminal condition
IsDone = h;

RewardModel = reward_model;

Listing A.11: sparsereward.m

A.6.3 learnt reward.m

function [Reward, IsDone, RewardModel] = learnt_reward(previous_action, action_scaled, scaled_world,

% Extract sequence
trail_length = min(size(logged_signals,1), sequence_length)-1;
data = logged_signals(end-trail_length:end-1,:);

% Query the reward model

data = reward_model.scale(data);

[reward_model.net, Y] = predictAndUpdateState(reward_model.net,{data'});
Y = reward_model.inverse_scale(Y);

% Scale to similar range

Y = generative_model.scale(Y);

X = generative_model.scale(scaled_world);
err = abs(sum(X-Y));

mse = abs(sum((X-Y)."2));

% Get reward
Reward = 1/mse; Jerr

% Check terminal condition

IsDone = 0;
if size(logged_signals,1) > sequence_length*2
%IsDone = err > 2;

IsDone = sqrt(mse) > 5;
% reward model RMSE is lower
end

RewardModel = reward_model;

Listing A.12: learnt_ reward.m

A.7 Agent neural networks

The SAC, PPO and DDPG agents uses similar network architectures for the actor and
critics, adjusted for framework specific requirements. To train the different actors, the
neural network functions below are used.

Example of creating a SAC Agent:

[actor, criticl, critic2] = agent_sac_vl_norm(genmodel) ;agentOptions =
r1SACAgentOptions(..."Sequencelength",
sequence_length, ..."DiscountFactor",0.98,..."TargetSmoothFactor",le-
3,..."ExperienceBufferLength", 1e6,..."UseDeterministicExploitation", false,
..."ResetExperienceBufferBeforeTraining", false,..."SaveExperienceBufferWithAgent", true);agent
= r1SACAgent(actor, [criticl critic2],agentOptions);

Example of creating a PPO Agent:

[actor, critic] = agent_ppo_vl_norm(genmodel);

agentOpts = r1lPPOAgentOptions(...
"MiniBatchSize", sequence_length,...
'ExperienceHorizon',1e6,...

181

logged_si

APPENDIX A. MATLAB CODE

'DiscountFactor',0.98,...
"UseDeterministicExploitation", false);
agent = rl1PPOAgent(actor,critic,agentOpts);

Example of creating a DDPG Agent:

[actor, critic] = agent_ddpg_vl_norm(genmodel);

agentOpts = rl1DDPGAgentOptions(...
"Sequencelength", sequence_length,...
'TargetSmoothFactor',le-3,...
'ExperienceBufferLength',le6,...
'DiscountFactor',0.98,...
"ResetExperienceBufferBeforeTraining", false,...
"SaveExperienceBufferWithAgent", true);

agent = rlDDPGAgent (actor,critic,agentOpts);

All agents can then be trained in a similar way:

opt = rlTrainingOptions(...
'MaxEpisodes',5000,

'MaxStepsPerEpisode',600,... % minutes
'Verbose', false,
'Plots', 'training-progress',...

'StopTrainingCriteria',"AverageReward", 'StopTrainingValue',1800);

trainStats = train(agent,env,opt)

A.7.1 agent_sac_vl_norm.m

function [actor, criticl, critic2] = agent_sac_vl_norm(genmodel)

% Datastore sequence: MV, CV, RV

[obsInfo, actInfo] = genmodel.get_environment;
numObs = obsInfo.Dimension(1);

numAct = actInfo.Dimension(1);

action_mean = genmodel.datastore.Mean(1:numAct)';
action_std = genmodel.datastore.Std(1:numAct)';
observation_mean = genmodel.datastore.Mean';
observation_std = genmodel.datastore.Std';

% Critic
statePathl = [
sequencelnputLayer (numObs, 'Normalization', 'zscore', 'Mean', observation_mean,
'StandardDeviation', observation_std, 'Name', 'observation')
fullyConnectedLayer (400, 'Name','CriticStateFC1')
relulayer ('Name', 'CriticStateRelul')
fullyConnectedLayer (300, 'Name','CriticStateFC2')

1;
actionPathl = [
sequenceInputlayer (numAct, 'Normalization', 'zscore', 'Mean', action_mean,
'StandardDeviation', action_std, 'Name', 'action')
fullyConnectedLayer (300, 'Name', 'CriticActionFC1")
1;
commonPathl = [

additionLayer (2, 'Name', 'add')
lstmLayer (8, 'OutputMode','sequence', 'Name','lstm')

relulayer ('Name','CriticCommonRelul')
fullyConnectedLayer (1, 'Name','CriticOutput')
1;

criticNet = layerGraph(statePathl);
criticNet = addLayers(criticNet,actionPathl);

criticNet = addLayers(criticNet,commonPathl);

criticNet = connectlayers(criticNet, 'CriticStateFC2','add/inl');

criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');

criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',le-3,...

182

A.7. AGENT NEURAL NETWORKS

'UseDevice',"gpu",...
'GradientThreshold',1, 'L2RegularizationFactor',2e-4);
criticl = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
'Observation',{'observation'}, 'Action',{'action'},criticOptions);
critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...

'Observation',{'observation'}, 'Action',{'action'},criticOptions);

% Actor
statePath = [
sequencelInputlLayer (numObs, 'Normalization', 'zscore', 'Mean', observation_mean,

'StandardDeviation', observation_std, 'Name', 'observation')
fullyConnectedLayer (400, 'Name','commonFC1')
lstmLayer (8, 'OutputMode', 'sequence', 'Name','lstm')

relulayer ('Name', 'CommonRelu')];

meanPath = [
fullyConnectedLayer (300, 'Name', 'MeanFC1')
relulayer ('Name', 'MeanRelu')
fullyConnectedLayer (numAct, 'Name', 'Mean')
1;

stdPath = [

fullyConnectedLayer (300, 'Name','StdFC1')
reluLayer ('Name','StdRelu')
fullyConnectedLayer (numAct, 'Name','StdFC2')
softplusLayer ('Name','StandardDeviation')];

concatPath = concatenationlayer (1,2, 'Name','GaussianParameters');

actorNetwork = layerGraph(statePath);

actorNetwork = addLayers(actorNetwork,meanPath);

actorNetwork = addLayers(actorNetwork,stdPath);

actorNetwork = addLayers (actorNetwork,concatPath);

actorNetwork = connectlLayers(actorNetwork, 'CommonRelu', 'MeanFC1/in');

actorNetwork = connectLayers(actorNetwork, 'CommonRelu','StdFC1/in');

actorNetwork = connectLayers(actorNetwork, 'Mean','GaussianParameters/inl');

actorNetwork = connectlLayers(actorNetwork, 'StandardDeviation','GaussianParameters/in2');

actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1le-3,...
'UseDevice',"gpu",...

'GradientThreshold',1, 'L2RegularizationFactor',1le-5);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,
actorOptions, 'Observation',{'observation'});

Listing A.13: agent_sac_vl_norm.m
A.7.2 agent_ppo_vl_norm.m

function [actor, critic] = agent_ppo_vl_norm(genmodel)

% Datastore sequence: MV, CV, RV

[obsInfo, actInfo] = genmodel.get_environment;
numObs = obsInfo.Dimension(1);

numAct = actInfo.Dimension(1);

action_mean = genmodel.datastore.Mean(1:numAct)"';
action_std = genmodel.datastore.Std(1:numAct)"';
observation_mean = genmodel.datastore.Mean';
observation_std = genmodel.datastore.Std';

% Critic

criticNet = [
sequencelInputlayer (numObs, 'Normalization', 'zscore', 'Mean', observation_mean,

'StandardDeviation', observation_std, 'Name', 'observation')

fullyConnectedLayer (400, 'Name', 'CriticStateFC1')
relulayer ('Name','CriticStateRelul')
fullyConnectedLayer (300, 'Name', 'CriticStateFC2"')
relulayer ('Name','CriticRelu2')
lstmLayer (8, 'OutputMode', 'sequence', 'Name','lstm')
fullyConnectedLayer (1, 'Name','CriticOutput')
regressionlLayer ('Name','RepresentationLoss')

183

APPENDIX A. MATLAB CODE

criticNet = layerGraph(criticNet);

criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',le-3,...
'UseDevice',"cpu",...
'GradientThreshold',1, 'L2RegularizationFactor',2e-4);
critic = rlValueRepresentation(criticNet,obsInfo,'Observation',{'observation'},criticOptions);
% Actor

actorNetwork = layerGraph();
templLayers = [
sequenceInputlayer (numObs, 'Normalization', 'zscore', 'Mean', observation_mean,
'StandardDeviation', observation_std, 'Name', 'observation')
fullyConnectedLayer (400, "Name","fc_1")
relulayer ("Name","relu_body")
fullyConnectedLayer (300,"Name","fc_body")
relulayer ("Name","body_output")
lstmLayer (8,"Name","1lstm")];
actorNetwork = addLayers(actorNetwork,tempLayers);

templLayers = [
fullyConnectedLayer (numAct,"Name","fc_std")
softplusLayer ("Name","std")];

actorNetwork = addLayers(actorNetwork,tempLayers) ;
tempLayers = [

fullyConnectedLayer (numAct ,"Name","fc_mean")

tanhLayer ("Name","tanh")

1;
actorNetwork = addLayers(actorNetwork,tempLayers);
tempLayers = [

concatenationLayer (1,2,"Name","output")

regressionLayer ("Name","RepresentationLoss")];
actorNetwork = addLayers(actorNetwork,tempLayers);
actorNetwork = connectlLayers(actorNetwork,"lstm","fc_std");
actorNetwork = connectlLayers(actorNetwork,"lstm","fc_mean");
actorNetwork = connectLayers(actorNetwork,"std","output/in2");
actorNetwork = connectlLayers(actorNetwork,"tanh","output/inl"); ’scale
actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1le-3,...

'UseDevice',"cpu",...

‘GradientThreshold',1,'L2Regu1arizationFactor',1e-5);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,
'Observation',{'observation'},actorOptions);

Listing A.14: agent_ppo_v1l_norm.m
A.7.3 agent_ddpg_vl_ norm.m

function [actor, critic] = agent_ddpg_vl_norm(genmodel)

% Datastore sequence: MV, CV, RV

[obsInfo, actInfo] = genmodel.get_environment;
numObs = obsInfo.Dimension(1);

numAct = actInfo.Dimension(1);

action_mean = genmodel.datastore.Mean(1:numAct)';
action_std = genmodel.datastore.Std(1:numAct)';
observation_mean = genmodel.datastore.Mean';
observation_std = genmodel.datastore.Std';

% Critic
statePathl = [
sequenceInputlayer (numObs, 'Normalization', 'zscore', 'Mean', observation_mean,
'StandardDeviation', observation_std, 'Name', 'observation')
fullyConnectedLayer (400, 'Name', 'CriticStateFC1')
relulayer ('Name','CriticStateRelul')
fullyConnectedLayer (300, 'Name', 'CriticStateFC2"')

184

A.8. RL SIMULATION FUNCTION

1;
actionPathl = [
sequencelnputlLayer (numAct, 'Normalization', 'zscore', 'Mean', action_mean,
'StandardDeviation', action_std, 'Name','action')
fullyConnectedLayer (300, 'Name', 'CriticActionFC1')
1;
commonPathl = [

additionLayer (2, 'Name', 'add')
lstmLayer (8, 'OutputMode', 'sequence', 'Name','lstm')

relulayer ('Name','CriticCommonRelul')
fullyConnectedLayer (1, 'Name','CriticOutput')
1;

criticNet = layerGraph(statePathl);
criticNet = addLayers(criticNet,actionPathl);

criticNet = addlLayers(criticNet,commonPathl);
criticNet = connectLayers(criticNet,'CriticStateFC2','add/inl');
criticNet = connectlayers(criticNet,'CriticActionFC1','add/in2');
criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate’',le-3,...
'UseDevice',"gpu",...
'GradientThreshold',1, 'L2RegularizationFactor',2e-4);
critic = rlQValueRepresentation(criticNet,obsInfo,actInfo,...

'Observation',{'observation'}, 'Action',{'action'},criticOptions);

% Actor
actorNetwork = [
sequencelInputLayer (numObs, 'Normalization', 'zscore', 'Mean', observation_mean,

'StandardDeviation', observation_std, 'Name', 'observation')
fullyConnectedLayer (400, 'Name', 'ActorFC1')
relulayer ('Name','ActorRelul')
fullyConnectedLayer (300, 'Name', 'ActorFC2')
relulLayer ('Name', 'ActorRelu2')

lstmLayer (8, 'OutputMode', 'sequence', 'Name','lstm')
relulayer ('Name','ActorCommonRelul')
fullyConnectedLayer (numAct, 'Name','ActorFC3')
softplusLayer ('Name', 'ActorOutput')

1;
actorNetwork = layerGraph(actorNetwork);
actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1le-3,...
'UseDevice',"gpu",...
'GradientThreshold',1, 'L2RegularizationFactor',1le-5);
actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,

'Observation',{'observation'}, 'Action',{'ActorOutput'},actorOptions);

Listing A.15: agent_ ddpg vl norm.m

A.8 RL Simulation function

When agent training is terminated, we can simulate its performance using the sim_confident
function:

values = sim_confident (agent, envProcess, trainStats, sequence_length);

towards a selected environment, e.g. the ProcessEnvironment as shown here.

function values = sim_confident (agent, env, trainStats, maxStepsPerEpisode)
obs = reset(env);
actor = getActor (agent);
critic = getCritic(agent);
maxQValue = max(trainStats.EpisodeQ0);
values = zeros(1l,maxStepsPerEpisode);

for stepCt = 1l:maxStepsPerEpisode

% Select action according to trained policy

185

APPENDIX A. MATLAB CODE

action = getAction(actor,{obs});

if isa(agent,'rl.agent.rl1SACAgent')
value = getValue(critic(1) ,{obs},action); 7% SAC
end
if isa(agent,'rl.agent.r1PPOAgent')
value = getValue(critic,{obs}); 7% PPO
end
values (stepCt) = value / maxQValue;

% Step the environment
[nextObs,reward,isdone] = step(env,action{1});

% Check for terminal condition

% if isdone
% break
% end
obs = next0Obs;
end

Listing A.16: sim_ confident.m

A.9 Cascade demonstration environment

classdef CascadeEnvironment < rl.env.MATLABEnvironment

properties

sp
s
s1
s2
s11
s21
d1i
d2
ul
u2

end

methods
% Contructor method creates an instance of the environment
function this = CascadeEnvironment ()
ObservationInfo = rlNumericSpec([2 11);
ActionInfo = rlNumericSpec([2 1],'LowerLimit',-3,'UpperLimit',3);
this = this@rl.env.MATLABEnvironment (ObservationInfo,ActionInfo);
end

function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
LoggedSignals = [];
this.t = this.t + 1;

ul Action(1); J outer regulator P
u2 = Action(2); 7 inner regulator P

this.s = this.s + ul + u2;

this.s this.P2(this.s) + this.d2(this.t);
this.s2 = this.s;

Observation(1l) = this.s;

this.s21 = [this.s21 this.s];

this.s = this.P1(this.s) + this.d1(this.t);
this.sl = this.s;

Observation(2) = this.s;

this.s1l = [this.s1l this.s];

186

A.9. CASCADE DEMONSTRATION ENVIRONMENT

Reward=1/abs (((this.sp - this.s)"2) + (0.01*(Action(1)72)) + (0.001*(Action(2)72)));
IsDone = 0;

Observation = Observation';
notifyEnvUpdated (this);

end

% Reset environment to initial state and output initial observation

function InitialObservation = reset(this)
if ~isempty(this.s1l)
clf
hold on
plot(this.sQl,'——',"LineWidth",l)

plot(this.s1l,"LineWidth",1)
y1lim ([0 (this.sp*3)])
legend ("Inner-P2","Qut-P1")
grid

end

this.sp = 1;
this.s = 0;

this.sll =
this.s21
this.s1=0;

this.s2=0;

this.dl = getsine(1,0.1,1);

this.d2 = getsine(1,0.1,0.5); 7 phase shift
this.ul = 0;

this.u2 = 0;

this.t = 0;

[1;

InitialObservation = {[this.s2; this.s1]};

notifyEnvUpdated (this);
end

function y=P2(this, x)
y=3./(x+2);
end
function y=P1(this, x)
y=10./((x+1) .73);
end
end

end

Listing A.17: CascadeEnvironment.m

187

Appendix B

Bayesian optimization run

189

BAYESIAN OPTIMIZATION RUN

APPENDIX B.

-

s1ojomrered1odAy [opowl oA RIDUSS JO UOIjezIUI)do URIsOARY 10} I98RURIN JUOWLIOAXH qR[IRIN :T'{ oINS

9645°T TEow'T 6099°7 SEEP'T 0000° LT eoge’e 0000 t9 eeed’r sesgpuw Lo %000 NG sjsidwoD B g
S@65°Z 1690° T vevs T vL15°T 8@00° LT 80082 8008 8T 000" T 29SEEUW B0 | %0 00 I aadwod G 62
6919°T €8IV T S98E°€ 5508°T 2000°ST EEERC] 0000 8T 2000° 89 osszguwalyo %000 NG sjsdwon B 74
1665°T SELVT 8859°7 g85b°T 0000 L7 0000 @ 0000° 75 2000°89 sesgg UW gy 0 | %000 I ajzdwon B 1z
£i19°T 6T SL18°T 6T45°T 8@00°BE 8008 T 8008 L7 800" BE 295 gL Uw pZ U0 | %0 00 - I azdwoD § 74
L09°T LLLY'T 05£9°T TE6P' T 0000 ST EERC] 8000 St @00 vl oes LEuw gL yo | %000 NG @isidwoD B 74
1229°2 6I8F°T 99TL"T 8685 T 200081 2800 T 2000 £t 200891 oesgLuwstayo %000 NG sjzdwon e
61£9°Z SY8y T 61977 1975 ee00° 9z 0008 T 000805 @e00°ST 2as Gy uw L1y o | %000 I sjaidwed § £Z
STES T 90L0°T 6VEQ°E 6249°C 00891 TR 0000 67 @0a0° 8l 288 GG UW EL Y0 | %000 I sisidwoD B zz
9v59°Z 796v°T 8v2°T 8zzs'T 8800° ZE 8008 T 8008 8T 2800° vT 298 Gy UW gL Y0 | %0 00 - I sjaidwod § 1z
B6BS T LOiV'T Seve T LBI9°T [:LEER 14 LL:ENC EEEEMES 2080 1z 29s Lpuw Ly o %000 G sigdwon (74
598577 1990°¢C 18224°2 S815°T 2000 °ZE pooR T L1104 @008 T sesgg uw oLy o %000 NG azdwod :18
8519°Z 108" s9zL°T vvO5 T 8800°EZ 8008 T 800837 800" 89 295 ZG UW ZE W 0 | %0 00 - I sizdwon gl
£565°2 veiv'z 8L18°C 8765°C 208057 oeee 0000 Tt 200055 235 0p W LZ U0 | %000 sjeidwoD Ll
EVLS T (414 9/E8°T 6983°C ee8a"sT 2600 8000t @000 T 298 6E UW B4 0 %0 00 - N sjzdwon @ 9l
81657 2897° (CECRS 16£9°C 0000 6T 0008 T 000867 000" T 29s sguw s 0 | %000 I sisdwon -
TL96°T 2919°¢7 79E6°E BIET'E CLEER 44 eeoR T [:EEEM @epe" T 28SZEUW G YO 95000 L NG sl dwod ¥l
L548°T BEBS'T S8e8° v ESBT'E 2800°8T 2008 T 2008t 280081 s8sppuw oLy 0 %000 NG sisdwon @ €l
8908°E EEER'T BLLS Y BOEE"E [:LEER 14 LL:ENC] [-LEEM eepe T 29§ QZUW G YO 25000 | NG sjadwon Q zZi
Tess 7 BESP'T FA23-0 4 SELYP'T o000 ZE [-1-1EN 200867 @e00"zZ sespguw gLy %000 NG aladwod G L
P8RS T EPOP'T EBPR"T S045°T 20800 ZE LN 2008 TE 808" € 2959 UIW QL O %000 . NG slsdwon oL
8985°C 699v° T S6TL"T [:EL A4 eese ol EEENC] et eese" T 295 G UIW 6 1Y 0 95000 | NG sledwoD @ 6
SET9°T EBLP'T ETEB"T £955°T ee8a" L1 0600 @ 8000° ST 20008 o8s Lpuw oL o %000 NG sjedwon g
v809°T (.74 24 6899577 BLIV T 2000 8T eeee T 2eee v 2ese’8 WS ZGUW EL O 25000 1 NG siadwon [~] L
9LE9°Z €98y T VRLL'T 6IES°T eese L1 eeee’ L 000 ez 2002 £E sasQguw /L iyo %000 NG aledwod a9
98197 TI8P'T ESPE"T SEET'T 288017 2008 T 2008 £ 20088 285 § U fL YO %000 . INNEG_ slsdwon @ G
PPES T VEBEP T SBSLTT zI25°T eeee-sT eeea T 2008 8s eeee -zt seszruwzziyo %000 NG sjadwon Q 14
660L°T 1815°CT 6189°C TEBS'T ee0e-9T ee0a T -1 ae00° 23 58S U /L YO o000 | NG aladwod § €
6465°C YT ET68°T 1583°'7 2080°£2 80008 8880°' 27T 2888° 5 29S |G UW oLy 0 %000 NG slsidwon Zz
LST9°T S6LPT 6ELE T 9659°C eeee"11 eeee T eeeeor @eed"zT 988 Z UIW 61 1Y 0 %000 I elaidwoD § 3

$507 UOREPIIEA “ WY UopEp|EA $507 Bujujely 3ISWY BujuiesL U aw|L pasde|g ssaiboid smes leuL

(BzZ|Wiuy) 529+ Z “3ISINY uopep|eA ‘BT
pejgaueD X 0 Buuuny O
o3 @ 1€ sgdwon @

(0€ ¥e) GE :pelenjead sjeuL

(00:00:00 X2W) 00:6Z:1.0 *3wiL pasde3
2E:SG:L0 120201 G2 WIS

(55IN05 JUsWnady g Mmai)
ydosadAy [apojy sApeIBUED

ynsay uoneziwndQ ueisafeg a

190

Appendix C

Demonstration of cascade
implementation

191

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION
Cascade control

https://se.mathworks.com/help/control/ug/designing-cascade-control-system-with-pi-controllers.htmi

https://se.mathworks.com/help/reinforcement-learning/ug/tune-pi-controller-using-td3.html

sp
¢y
+

We define two fictual sequential processes P2 and P1, where the inner loop process P2 is

3
}%3(5) = :;i;jzi
and P1
10
b)) = o33

Each of the processes as disturbed by d1 and d2, which are two phase shifted sine-functions.

Regulate by P

figure, hold on

dl = getsine(1,0.1,1);

d2 = getsine(1,0.1,0.5); % phase shift
ul = 0;

u2 = 0;

regulate = true;

for t=1:100

if regulate
% manually tuned from unregulated process
ul = (2.5286*(sp-sl1)); % outer regulator P
u2 = (0.5666*(sp-s2)); % inner regulator P

192

0n
1l

S + ul + u2;

s = P2(s) + d2(t);
s2 = s;

s = P1(s) + di(t);
sl = s;
sll = [s1l s];

end

plot(s2l,'--',"LineWidth",1)
plot(sil,"LineWidth",1)
legend("Inner-pP2","0Out-P1")
grid

3 —
- === Inner-P2

; Out-P1
25
.]
/
"
i
2!

0 20 40 60 80 100

Process disturbances

figure, hold on
plot(d2,'--',"LineWidth",1)
plot(di,"LineWidth",1)

legend("P2 disturbance","P1 disturbance")
grid

193

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION

- - = = P2 disturbance
P1 disturbance

100

Train agent

env = CascadeEnvironment();
validateEnvironment(env);
env.reset;

sequence_length = 10;

SAC agent
[actor, criticl, critic2] = agent_sac_vi(env);
agentOptions = rlSACAgentOptions(...

"SequencelLength", sequence_length,...
"DiscountFactor",0.99,...
"TargetSmoothFactor",le-3,...
"ExperienceBufferLength", 1le6,...
"UseDeterministicExploitation"”, true,
"ResetExperienceBufferBeforeTraining"”, false,...
"SaveExperienceBufferWithAgent", true);

agent r1SACAgent(actor, [criticl critic2],agentOptions);

PPO agent

[actor, critic] agent_ppo_vi(env);

agentOpts r1PPOAgentOptions(. ..
"MiniBatchSize", sequence_length,..
'ExperienceHorizon',le6,...

194

'DiscountFactor',0.99,...
"UseDeterministicExploitation"”, true);
agent = rlPPOAgent(actor,critic,agentOpts);

DDPG agent

[actor, critic] = agent_ddpg_vi(env);

agentOpts = rlDDPGAgentOptions(...
"SequencelLength", sequence_length,...
'TargetSmoothFactor',le-3,...
'"ExperienceBufferLength’',le6,...
'DiscountFactor',0.99,...
"ResetExperienceBufferBeforeTraining", false,.
"SaveExperienceBufferWithAgent"”, true);

agent = rlDDPGAgent(actor,critic,agentOpts);

opt = rlTrainingOptions(...
'MaxEpisodes', 5000,
'MaxStepsPerkEpisode',100);

trainStats = train(agent,env,opt);

3 —
= === Inner-P2
Out-P1
25r
2 -

0 20 40 60 80 100

Episode plots

figure
plot(trainStats.AverageReward, 'LineWidth',1); hold on;
plot(trainStats.EpisodeQ@, 'LineWidth',1); hold off;

xlabel("Episode™)
195

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION
ylabel("log-scale")
set(gca, 'YScale', 'log')
legend(["Average reward","Episode value"])

106 E T T T T T
: Average reward]
Episode value

1045

log-scale

10-4 []]] | |
0 200 400 600 800 1000 1200

Episode

Warning: Negative data ignored

figure

plot(trainStats.AverageReward, 'LineWidth',1);
yyaxis right;

plot(trainStats.EpisodeQ®, 'LineWidth',1);
xlabel("Episode™")

legend(["Average reward","Episode value"])

196

4
10 10 [. . . . 600

Average reward
Episode value

44/@' 71500
8_

21 1400
°r 1300
il |

1200
N 1100

10
| | | _100

0 200 400 600 800 1000 1200

Episode

numel(trainStats.EpisodeIndex) % episodes
trainStats.EpisodeQ@(end) % value
trainStats.AverageReward(end) % total reward

%save("savedAgents/2021-12-11-cascade-sac.mat", "agent’, "trainStats’)
%load("savedAgents/2021-12-10-cascade-ppo.mat", "agent', 'trainStats")
%save("savedAgents/2021-12-10-cascade-ddpg.mat"”, 'agent', 'trainStats’')

Simulate

env.reset;

simOpts = rlSimulationOptions('MaxSteps',100);
experience = sim(env,agent,simOpts);
env.reset;

197

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION

- === Inner-P2
Out-P1

251

151

0 20 40 60 80 100

function y=P2(x)
y=3./(x+2);

end

function y=P1(x)
y=10./((x+1).73);

end

198

Appendix D

Demonstration of RNN
implementation

199

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION
Recurrent Neural Network from Scratch
References:

* https://www.analyticsvidhya.com/blog/2019/01/fundamentals-deep-learning-recurrent-neural-networks-
scratch-python/
* https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85

Output

rng(@);

figure

sin_wave = sin([1:200]);
plot(sin_wave(1:50))

200

0.6

0.2

0 10 20 30

Prepare dataset

X =A{};
Y ={};

seq_len = 50;
num_records = numel(sin_wave) - seq_len;

for i=1:num_records - seq_len
X(i) = {sin_wave(i:i+seq_len-1)};
Y(i) = {sin_wave(i+seq_len)};

end

Create the Architecture for RNN model

learning rate = 0.0001;

nepoch = 25;

T = seq_len; % length of sequence
hidden_dim = 4; % neurons

output_dim = 1;

bptt_truncate = 5;
min_clip_value -10;
max_clip_value = 10;

Define the weights of the network

40

50

201

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION

a® = b+ Wht L Uz®
R® = tanh(a®)
gy softma}:{ul“t})
avg = 0;
sigma = 1;
U = normrnd(avg, sigma, hidden_dim, T);
W = normrnd(avg, sigma, hidden_dim, hidden_dim);
V = normrnd(avg, sigma, output_dim, hidden_dim);

Train model

for epoch=1:nepoch
loss = 0.0;

for i=1:size(Y,2)
x = X{i};
y = Y{i};
prev_h
layers

zeros(hidden _dim, 1);

{};

dU = zeros(size(U));
dV = zeros(size(V));
dW = zeros(size(W));

du_t = zeros(size(U));

dvV_t = zeros(size(V));
dW_t = zeros(size(W));
du_i = zeros(size(U));
dW_i = zeros(size(W));

% do a forward pass to get prediction
for t=1:T
new_input = zeros(size(x))';
new_input(t) = x(t);
mulu = (U * new_input);
mulw = (W * prev_h);
add = mulw + mulu;
h = sigmoid2(add);
o=V * h;
layers{t} = {h, prev_h};
prev_h = h;
end

% Truncated back propagation through time (TBPTT)

% derivative of pred
202

dmulv = (o - y);

% backward pass

for t=1:T
1 = layers{t};
dv_t = dmulv * 1{1}'; % s
dsv = V' * dmulv;

ds

= dsv;
dadd =

add .* (1 - add) .* ds;

dmulw = dadd .* ones(size(mulw));

dprev_s = W' * dmulw;

for i=t-1:-1:max(-1, t-bptt truncate-1)

ds = dsv + dprev_s;

dadd = add .* (1 - add) .* ds;
dmulw = dadd .* ones(size(mulw));
dmulu =

dWw_i = W * 1{2}; % prev_s

dprev_s = W' * dmulw;

dadd .* ones(size(mulu));

new_input = zeros(size(x))"';

new_input(t) = x(t);
dUu_ i = U * new_input;
dx = U' * dmulu;

du t = dUu t + dU i;
dW_t = dW_t + dW_i;
end
dv = dV + dV_t;
du = dU + dU_t;
dW = dW + dW_t;

if max(duU) > max_clip_value
du(du > max_clip_value)

end

if max(dV) > max_clip_ value
dv(dv > max_clip_value)

end

if max(dW) > max_clip_value
dW(dW > max_clip_value)

end

if min(dU) < min_clip_value
du(dU < min_clip_value)

end

if min(dV) < min_clip_value
dv(dV < min_clip_value)

end

max_clip_value;

max_clip_value;

max_clip_value;

min_clip_value;

min_clip_value;

203

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION
if min(dW) < min_clip_value

dW(dW < min_clip_value) = min_clip_value;
end

end

update

U - (learning_rate * dU);
= V - (learning_rate * dV);
W - (learning_rate * dW);

=< C X
1}

% calculate error

loss_per_record = (y - 0).72 / 2;

loss = loss + sum(loss_per_record);
end

loss = loss / size(y,2);

disp(['Epoch ' num2str(epoch) ' loss ' num2str(loss)])

end

Epoch 1 loss 39.4363
Epoch 2 loss 38.2377
Epoch 3 loss 36.5682
Epoch 4 loss 35.6673
Epoch 5 loss 35.2582
Epoch 6 loss 35.0073
Epoch 7 loss 34.8418
Epoch 8 loss 34.7373

Epoch 9 loss 34.6772

Epoch 10 loss 34.6488
Epoch 11 loss 34.6437
Epoch 12 loss 34.6551
Epoch 13 loss 34.678

Epoch 14 loss 34.7085
Epoch 15 loss 34.7437
Epoch 16 loss 34.7814
Epoch 17 loss 34.82

Epoch 18 loss 34.8582
Epoch 19 loss 34.8953
Epoch 20 loss 34.9307
Epoch 21 loss 34.964
Epoch 22 loss 34.9949
Epoch 23 loss 35.0234
Epoch 24 loss 35.0495
Epoch 25 loss 35.0732

Predictions

One-step prediction

preds = [];
for i=1:size(Y,2)
x = X{i};

prev_h = zeros(hidden dim, 1);

% Forward pass
for t=1:T
mulu = U * x';
204

mulw = W * prev_h;
add = mulw + mulu;
h = sigmoid2(add);
mulv = V * h;
prev_h = h;

end

preds(i) = mulv;
end

figure

ass = cell2mat(Y);
plot(ass,"LineWidth",1); hold on;
plot(preds,"LineWidth",1);
legend("Actual”,"Prediction™)
xlabel("t")

1.5 T T T T T

Actual
Prediction

0.5 .

_15 1 1 1 1 1
0 20 40 60 80 100 120

U

U =
0.5237 0.3048 3.5644 0.7114 -0.1381 0.6575 0.4749 0.2799 - - -
1.8361 -1.3055 2.7716 -0.0608 1.4919 -1.2053 1.0369 -0.7851
-2.2491 -0.4239 -1.3402 0.7245 1.4187 0.7270 0.7366 0.8981
0.8622 0.3426 3.0349 -0.2050 1.4172 1.6302 -0.3034 -1.1471

205

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION

0.3630 0.3149 0.0174 -0.6960
-0.7421 0.8030 0.1417 -0.1961
0.9570 0.2692 -0.5242 -0.7042
0.3392 -0.9093 1.7142 -1.1421

Y,
V =
-0.3851 -0.4618 1.3429 -0.4377
Forecast

preds = X{1}; % start sequence
length=size(preds,2);
for i=length:length+50
prev_h = zeros(hidden_dim, 1);
x = preds(end-length+1l:end);

% Forward pass

for t=1:T
mulu U * x';
mulw = W * prev_h;
add = mulw + mulu;
h = sigmoid2(add);
mulv = V * h;

prev_h = h;
end
preds(i+l) = mulv;
end
figure

% ass = cell2mat(Y);

plot(1:50, X{1},"LineWidth",1); hold on;
plot(50:100,preds(50:100), '-o0', "LineWidth",1);
legend("Actual","Forecast")

xlabel("t")

206

1.5 T T T T
Actual
—O— Forecast
1F (‘ (% .
L D |
05 ; q)
D N)
D
0r D o
D p Y
¢
D
D D
N | g j j
1k .
[0}
_1 '5 1 1 1 1
0 20 40 60 80 100

function sig = sigmoid2(x)
sig =1 ./ (1 + exp(-x));
end

207

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Code
	Introduction
	Background and motivation
	Applications
	Research questions
	Method
	Hypothesis formulation and testing
	Experiment modelling
	Architecture

	Contribution
	Report Outline

	Literature
	Foundations
	Markov processes
	Temporal differences
	Delayed reinforcement learning
	Q-learning

	Rediscovery
	Deep Q-learning
	Value networks
	Memory networks

	Physical control
	Simulated environment
	Transfer to the physical environment

	Bioprocess modelling
	Process optimization on economic factors

	Model predictive control
	Agent training strategies
	Representation learning
	Partial observability and physical consistency
	Pre-training and imitation learning
	Latent space training
	Regularization
	Experience replay
	Inverse reinforcement learning
	Soft Actor Critic

	Use Case
	Introduction to spray drying
	Controlling the process
	Modeling the process
	System boundary
	Level 0 Heat and mass balance model
	Level 1 Droplet size and evaporation dynamics
	Historical logs

	Autonomous Modelling

	Autonomous Learning of Core Skills
	Introduction
	Generating synthetic data
	Connecting to the Environment
	Predictive baseline
	Process noise
	Randomized input
	Sinusoidal input
	Randomized step-wise input
	Data augmentation

	Design of generative model
	Training and evaluating the Generative Process Dynamics Model
	Querying the Environment
	Process model as RL environment
	Training a multivariate generative model

	Autonomous Control
	Design of the Reinforcement Learning agent
	Soft Actor-Critic (SAC)
	Proximal Policy Optimization (PPO)
	Deep Deterministic Policy Gradient (DDPG)

	Initial conditions
	Reward functions and terminal conditions
	Direct response reward, univariate scenario
	Sparse reward and learning from failure
	Trained reward model, multivariate scenario
	Trained reward model with an inverse mean squared error as reward
	Training towards the process model using the reward model

	Covering unmodeled dynamics
	Retraining the generative model
	Retraining the reward model
	Retraining the agents

	Estimating uncertainty
	Monte Carlo simulation
	Variational inference
	Conformal prediction
	Value-based uncertainty

	Varying conditions

	Evaluation
	Method
	Research questions
	Limitations
	Advantages

	Building experience

	Applied Use
	Introduction
	Architecture
	HistorianDatastore design

	System design
	System boundary
	Data exploration
	Generative model training
	Zero-vector bias estimation
	Evaluating forecasting capability

	Training RL agents
	Soft Actor-Critic agent
	Proximal Policy Optimization agent
	Simulating with real-time data

	Evaluating simulation runs

	Discussion
	Introduction
	Contribution
	Agent selection
	Reward engineering
	Autoencoder and recurrency
	Network design
	Use cases
	Frontier in research
	Further work
	Limitations and threats to validity

	Conclusion
	Bibliography
	Matlab Code
	Spray drier ODE function
	Datastores
	RolloutDatastore.m
	HistorianDatastore.m
	get_data.m

	Generative Model
	GenerativeModel.m
	RewardModel.m

	Rollout functions
	spray_rollout_pid.m
	spray_rollou_pid_stable.m

	RL Environments
	SyntheticEnvironment.m
	ProcessEnvironment.m

	Reward functions
	direct_response_reward.m
	sparse_reward.m
	learnt_reward.m

	Agent neural networks
	agent_sac_v1_norm.m
	agent_ppo_v1_norm.m
	agent_ddpg_v1_norm.m

	RL Simulation function
	Cascade demonstration environment

	Bayesian optimization run
	Demonstration of cascade implementation
	Demonstration of RNN implementation

