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Abstract

Medical and healthcare researches have benefited greatly from machine learn-
ing (ML), but these effects have been definitely slower and more limited than in
other application areas. Various concerns, particularly those relating to privacy,
may restrict the access and use of electronic health record (EHR) data. This
is mostly because patient privacy concerns have prevented data being widely
available to the broader ML research community. Medical and healthcare data
have been faced with security restrictions. Accessing medical data is hindered
by privacy, security, and legal limitations. Organizations are incapable of shar-
ing data due to the sensitivity of the data that involves information such as
personally identified information or personally identifiable health information.

Generating synthetic data from real data is a possible approach that can
tackle some of the challenges with medical data. A generative adversarial neural
network (GAN) is a popular and powerful method to generate synthetic data
from noise given a training dataset. Although promising it is not entirely clear
how well privacy is preserved when GANs are used.

In this thesis various GAN methods for synthetic data generation have been
investigated in terms of their generation and privacy preserving capabilities.
Among all of the studied methods, Conditional Tabular GAN (CTGAN), Tab-
ular GAN (TGAN), Wasserstein GAN (WGAN) and anonymization through
data synthesis using GAN (ADS-GAN) were the methods that can generate
tabular data, handle missing values and produce missing values in the generated
sample on the same scale, handle an unbalanced dataset, and protect privacy
so that there is minimal risk of data leakage. These methods were applied to
the public adult census income dataset and different evaluation metrics were
calculated to analyse the quality of the generated data for each method.

The findings show that none of the selected GAN methods is superior for
all evaluation metrics. Based on the overall scores, the CTGAN and TGAN
were selected to be applied on a privacy sensitive real world dataset provided
by Fürst, which is a company that analyses blood samples in Norway. In depth
evaluation is performed on the Fürst data and the results revealed that CTGAN
can generate a high quality synthetic data that is similar to the real data but
does not obfuscate the original data enough to protect privacy. Although in
our experiments on the public data, it was concluded that TGAN can generate
private synthetic data, it did not obtain a good score for the additional evalu-
ation metrics and it performed the same as CTGAN. Based on our findings, it
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is clear that there is a trade-off between the quality of the generated data and
how much privacy is preserved. The main finding is that just by using GANs
to create synthetic data from real data is not enough to preserve privacy.
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Chapter 1

Introduction

1.1 Background and motivation

There is an increasing demand for the utilization of Machine Learning (ML)
technologies for medical applications. The implementation of machine learning
on medical records can pave the way for medical trajectories and offer many
advantages in terms of accurate and time-saving diagnoses, analyzing medical
tests, new insight and knowledge about different diseases etc. Machine-learning
techniques can help to predict progressions and treatments for different diseases,
the consequences of the medicine tests by analyzing and monitoring patterns
among existing data samples.

However, strategies for the analysis of medical data are often faced with
major problems of having small and/or flawed datasets, In such cases, synthetic
data can support developing and testing machine learning models. Moreover,
data privacy is becoming increasingly important for the healthcare domain.
Medical data includes personal and health information which is highly sensi-
tive. Therefore, specific machine learning methods would be needed to generate
anonymous data. These artificially generated data would help healthcare orga-
nizations to share knowledge while preserving the information. Synthetic data
generation can maintain the significant characteristics of the main sample which
has the most impact for specifying the pattern accurately and it is the modi-
fication of the existing data. Accordingly, using synthetic data would benefit
healthcare systems to test and analyse medical records without exposing user’s
data.

In this project, the goal is to implement machine learning algorithms and
explore frameworks for generating high-quality synthetic samples based on real
patient records collected and stored by Fürst Medisinsk Laboratorium. The
data is records of blood tests of patients and the goal is to generate blood
test analysis results. In the project we will specifically focus on GAN. GAN
is an unsupervised learning method consisting of two neural networks that are
competing with each other. It tries to learn the pattern of its input by itself
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and generate new samples with similar characteristics to the real dataset. VAE
which are another approach for generating synthetic data, describe observations
in latent space based on their probability. An encoder would be formulated to
report the probability distribution of each latent attribute. The auto-encoder
takes the high dimensional input data, runs it through the neural network and
tries to compress the data into a smaller representation that has less dimension.
Afterwards, it will reconstruct the input and the loss function of the model will
compute the reconstruction loss by comparing the input and output.

1.2 Problem statement

Generative adversarial network methods are widely used in generating samples
such as images and tabular data. The main objective for this thesis is to study
different GAN methods and find the most suitable method(s) that can perfectly
generate samples that meet the demanding criteria, both in quality and privacy
aspects. Then we use this method(s) to generate the most ideal samples based
on the real patient’s blood sample. The following research questions (RQs)
should be raised:

• RQ 1 What are the best GAN methods for generating synthetic tabular
data?

• RQ 2 How well do the proposed GAN methods perform in terms of data
privacy and similarity?

• RQ 3 How effective are the chosen GAN methods for generating synthetic
data from a real world dataset, namely the Fürst dataset?

This work is divided into three stages to address the aforementioned ob-
jectives. The first stage involve studying different GAN methods, their struc-
ture and their advantages and disadvantages. The second stage is selecting
the methods that are capable of generating high quality and private tabular
datasets. The selected benchmarks are analysed to see how good the generated
samples are in terms of quality and confidentiality. Various evaluation metrics
are used to inspect the results and best model(s) are selected. In the last stage,
these outperformed metrics are performed on the real dataset, synthetic data
are generated and the quality evaluations are conducted.

1.3 Limitations

In order to make reliable conclusions from a study, the sample needs to be valid
and large enough. It will be difficult to find meaningful links in the data if your
sample size is too small or includes a lot of missing values. Hence, the selected
method should be capable of handling missing values and generating data that
compensates for the lack of inadequate data.
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Moreover, working with sensitive data faces the problem of having limited
access. This research involves medical data of people, which includes sensitive
information that needs to be kept private. Being incapable of sharing the dataset
may cause bottleneck. The in-depth data exploration is not feasible. However,
as long as no individual information involves, the results of the study can be
shared to do comparisons and further studies.

1.4 Contributions

This thesis is focused on study of performance of generative adversarial network
(GAN) methods on generating synthetic health data. Throughout this thesis, we
learned that some GANmodels can generate high quality synthetic tabular data.
However, in healthcare concepts, the importance is not only about producing
data with equivalent statistical properties to the real data, but also generating
synthetic data that can preserve privacy. Moreover, a paper for this thesis will
also be published.

The main contributions of this thesis are the following:

1. We research different GAN methods and study their layout and use cases
to find out what are the most relevant methods for generating synthetic
tabular data.

2. We compare the performance of the selected GAN methods by conducting
experiments on a public tabular dataset and evaluate the performance of
each GAN method in terms of similarity and privacy. The results show
none of the GAN methods can outperform the other in all the evaluation
metrics. Based on the overall performance score, CTGAN and TGAN are
the two final selected methods.

3. The final selected methods are performed on the private Fürst Medisinsk
Laboratorium dataset to evaluate the performance of the selected meth-
ods. More in depth evaluations are conducted to compare the results of
the two methods.

4. Based on our findings, CTGAN can produce very similar and high quality
data. However, it can not gain a high margin in terms of privacy. Even
though the TGAN performs the best among the other selected methods
in the initial examination in terms of privacy, it does not outperform the
CTGAN in the additional evaluations. Therefore, GANs should be used
with caution when dealing with highly sensitive data because they do not
protect privacy by nature.

1.5 Ethical Considerations

Since people make unconscious decisions while choosing the data that seems
most appropriate for a dataset, biases exist in all datasets. This issue might be
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made worse by synthetic data. Synthetic data will not produce a ”fair sample”
of the real data it represents; instead, it is more likely to concentrate on and
accentuate certain biases and patterns that exist in the real world. A synthetic
dataset will only ever be a ”snapshot in time”, whereas, real data will constantly
change and develop. The AI models generate a limited sets of predictions since
they were trained on the biased and repetitive datasets. There are many cases
that the synthetic data is not able to accurately model reality and these are the
challenges that people are needed to be aware of to choose whether they need to
face the complexity of collecting real data or they can settle for synthetic data
for that problem.

The dataset has been kept confidential and anonymous to avoid any re-
identification or disclosures of the data. All the experiment have been performed
on a specific machine provided by Simula research laboratory in Fürst Medisinsk
Laboratorium to preserve data and observe confidentiality and the research
has benefited from the Experimental Infrastructure for Exploration of Exascale
Computing (eX3), which is financially supported by the Research Council of
Norway.
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Chapter 2

Preliminaries

Before going deep into generating synthetic data, it is needed to define some
basic concepts for a better understanding. This chapter tries to clarify some
related concepts about machine learning, specifically Generative Adversarial
Networks(GANs) methods.

2.1 Synthetic Data

Inadequate data is causing many problems for AI industries. Synthetic data is
an approach to overcome a series of pitfalls with these problems which could
be generated either by data manipulation or producing artificial data. Arti-
ficial data does not exactly look like the real data, but it tries to mimic the
characteristics of it. Many applications of synthetic data are being used in the
fields of social sciences, healthcare, and economics. mostly, the main concern of
researchers in healthcare area that leads them to the synthetic data is privacy
issues rather than lack of data [32, 4].

2.2 Machine Learning

A branch of computing algorithms called machine learning, a subset of artificial
intelligence, is constantly developing and aims to mimic human intelligence by
learning from the environment (Figure 2.1). The typical stages of the learn-
ing process starts with a given collection of labeled examples. Labeled data
means that values or categories are assigned to the examples. The data will
be separated into a training sample, a validation sample, and a test sample
randomly. Afterward, practical relevant features will be associated with the
example so that the learning process can be trained. At this step values of the
hyperparameter (the values that are not determined by the learning algorithm)
will be tuned by selecting different hypotheses for each value. At last, with the
best-performed hypothesis, the labels of the example in the test sample will be
predicted [30, 16].

17

Chapter 2

Preliminaries

Before going deep into generating synthetic da ta , it is needed to define some
basic concepts for a better understanding. This chapter tries to clarify some
related concepts about machine learning, specifically Generative Adversarial
Networks(GANs) methods.

2.1 Synthetic Data
Inadequate da ta is causing many problems for AI industries. Synthetic da ta is
an approach to overcome a series of pitfalls with these problems which could
be generated either by da ta manipulation or producing artificial da ta . Arti-
ficial da ta does not exactly look like the real da ta , but it tries to mimic the
characteristics of i t . Many applications of synthetic da ta are being used in the
fields of social sciences, healthcare, and economics. mostly, the main concern of
researchers in healthcare area tha t leads them to the synthetic da ta is privacy
issues rather than lack of da ta [32, 4].

2. 2 Machine Learning
A branch of computing algorithms called machine learning, a subset of artificial
intelligence, is constantly developing and aims to mimic human intelligence by
learning from the environment (Figure 2.1). The typical stages of the learn-
ing process star ts with a given collection of labeled examples. Labeled da ta
means that values or categories are assigned to the examples. The da ta will
be separated into a training sample, a validation sample, and a test sample
randomly. Afterward, practical relevant features will be associated with the
example so that the learning process can be trained. At this step values of the
hyperparameter (the values tha t are not determined by the learning algorithm)
will be tuned by selecting different hypotheses for each value. At last, with the
best-performed hypothesis, the labels of the example in the test sample will be
predicted [30, 16].

17



Figure 2.1: comparison of AI, machine learning and deep learning

Training data, the order and method of capturing data procedure, and the test
data which is used for assessing determine the types of learning algorithms (Fig-
ure 2.2). The following learning scenarios are the most common ones:

Supervised learning: In this scenario, a function will be developed by the
algorithm which gets a set of labeled data as training input and maps it to
the output which is the prediction or classification for the unseen data. In su-
pervised learning, the agent (software entity that obtains information from the
environment) tries to learn from the training set and minimize the difference
between the predicted and the expected values with the received information.
Meanwhile, it also tries to avoid over-fitting which is simply memorizing the
training set instead of learning the classification technique. Supervised machine
learning problems is been distinguished based on the type of the output.This
could be regression problem with numerical output or classification with cate-
gorical ones [3, 6].

Unsupervised learning: In unsupervised learning there is no available labeled
example for the learner. This method is basically about modeling the proba-
bility density of the input. The algorithm learns to extract information from
data distribution, finds patterns and best presentation of the data. Clustering
similar groups and dimensionality reduction are two simple classic examples
of unsupervised learning. Moreover, Object segmentation, similarity detection
and automatic labeling are some of the common unsupervised application areas
[19, 23].
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Figure 2.2: Overview of machine learning algorithms

Reinforcement learning: Learning process in this method is based on the
information that the environment gives to the learner as a feedback which also
called reward. The agent will learn from direct interaction with the environment,
and that is what differentiates reinforcement learning from other computational
approaches. The learner tries the actions to meet the ones that results in the
highest reward. Each action has impact on each current state’s reward and
subsequently the following rewards. In other words, the agent can trade off
short-term rewards for long-term rewards. Therefore, trial and error, and de-
layed reward are the most important features in this method of learning [6, 43].

2.3 Deep learning

2.3.1 Adversarial neural networks

In a generative network, the generative model is set against a rival. The gener-
ator observes the real sample distribution, attempts to generate synthetic data
that looks similar to the real data, and fools the discriminator so that it can not
differentiate between real and fake data. In contrast, the discriminator model
learns to detect the real data from the fake ones [21].
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2.3.2 Probability distribution

The probability distribution is the likelihood of each possible state that is being
taken on by a random variable or sets of random variables and the definition of
the probability is based on the variables being discrete or continuous.

Probability mass function (PMF) is used over discrete variables. The state
of a random variable will be mapped to the probability of that random vari-
able acquire that state. Probability density function (PDF) is used to describe
probability distribution for continuous variables. PDF conveys how likely the
variable lies in a very small zone with volume δx. [19].

Joint probability distribution: A probability distribution that can serve
many variables simultaneously, is referred to as a joint probability distribution.

2.4 Generative adversarial network

Generative Adversarial Network was first introduced by Ian Goodfellow (2014)
[21]. This framework is simulated as a two player game in which two mod-
els contend with each other. The generative indicates creating new data and
adversarial refers to the competitive dynamic between the two models. A gen-
erative model’s objective is to analyze a set of training examples and discover
the probability distribution that produced them. The estimated probability dis-
tribution is then used by Generative Adversarial Networks (GANs) to produce
more instances.

The generative model (G) attempts to capture the distribution of the real
sample of the training and create non-distinguishable fake data from real data.
Meanwhile, the discriminator’s (D) objective is to distinguish whether the data
comes from the real samples or the fake examples that the generative produced
(Figure 2.3). By way of explanation, D is getting trained to maximize the like-
lihood that training examples and samples from G will receive the right label.
In parallel, G is being trained to reduce the value [log(1 − D(G(z)))] which
means generating realistic data so it can fool the discriminator. Accordingly,
the objective of GAN can be described as follows [20]:

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD(x))] + Ez∼pz(z) [log(1−D(G(z)))] (2.1)

Although GANs are widely used for image generation, but they can also gen-
erate tabular data. Simply put, tabular GANs are GANs that produce datasets
with a tabular format. The generator and discriminator in the initial GAN
architectures were both fully connected neural networks [19]. In tabular data
generation , each row in table (T) is a vector (C), and the table itself includes
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n-c continuous variables and n-d discrete (categorical) variables with unknown
joint distribution (P). A generative model (M) is being trained. M must create
a new T-synth synthetic table with P-like distribution [2].

Figure 2.3: Overview of the generative adversarial network workflow 1

Numerical variables Tanh activation function enable neural networks to
efficiently produce values with a distribution centered around (-1, 1). How-
ever, in multi modal data, the networks can not make proper data. Therefore,
they train a Gaussian Mixture Model (GMM) with m (m=5) components for
each of C to cluster a numerical variable. At the end, Finally, C is normalized
to produce V using GMM. In addition, they generate a vector U representing
the likelihood that C will come from each of the m Gaussian distributions.[46, 2]

categorical variables Using softmax activation function, the probability
distribution can be directly produced. However, category values must be trans-
formed into binary variables using a one-hot encoding representation with noise.
It will be prepossessed with n c + n d columns and then transform them into
V, U, and D vectors. This vector serves as both the discriminator’s input and
the generator’s output in a GAN. GMM parameters are inaccessible to GAN [2].

2.4.1 Generator:

In the beginning of the training, the generator produces samples that are easily
distinguishable by the discriminator. The generator takes the noise vector as
input. The benefit of using noise vector is to make sure it does not generate
the same data. The noise will be generated by random numbers from a normal
distribution.

Training examples (x) in generative modeling are taken from an unknown
distribution pdata(x). Writing a function called pmodel(x; θ) that is explicitly
controlled by parameters θ and then looking for the value of the parameters

1https://developers.google.com/machine-learning/gan/gan structure
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that makes pdata and pmodel as close as possible are two simple ways to learn
an approximation of pdata. The generator G which is a differentiable function
represented by a multilayer perceptron with parameters θg, is defined by a prior
distribution p(z) over a vector z that is used as input to the generator function
G(z; θG) [20].

2.4.2 Discriminator:

The discriminator model predicts a binary class label of real or fake based on
an input example from the domain (either real or generated data). The training
dataset contains the actual example and the generator model outputs the created
examples.

2.4.3 Challenges with GANs in Tabular Data

A GAN model’s design is challenging because of some unique properties of tab-
ular data [48].

imbalanced categorical columns Many of the tabular datasets are im-
balance. Therefore, training opportunities for minor classes would be limited
due to having imbalanced data. This can cause intense mode collapse.

Mixed data types Tabular data in the real world contains a variety of
types. GANs must use both softmax and tanh on the output to produce a mix-
ture of discrete and continuous columns.

Multimodal distributions If a tabular dataset has multiple modes, it may
be challenging to model the multimodal distribution of continuous columns.

Non-Gaussian distributions Unlike the pixel values in image which follow
a gaussian-like distribution and can be normalized to [-1,1], tabular data usually
continuous non-Gaussian values which can lead to vanishing gradient problem
[48].
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Chapter 3

Related works

In This section, we discuss the methods of generating synthetic data and their
advantages and disadvantages, and compare them with each other. We studied
these methods in detail.

3.1 DataSynthesizer

Dankar et al. [11] investigated the impact of different synthetic data generations
on the utility of the generated synthetic data. They centered the investigation
on four domains.

• How data pre-processing affect the utility of the synthetic data generation

• Applying tuning on the synthetic dataset during the generation supervised
machine learning models

• The importance of sharing the primary machine learning results for data
generation model’s improvement

• To what extend propensity score can predict the accuracy of the model in
real-life usage.

They used propensity score and 4 classification algorithms to assess synthetic
data utility: Logistic regression (LR), support vector machines (SVM), Random
forest (RF) and decision trees (DT).

The authors used four data synthesizer for this evaluation. DataSynthe-
sizer or DS builds a Bayesian network to comprehend the hidden relationship
structure of the different attributes. DS supports various types of data such as
numeric, categorical and non-categorical, date, string, and missing values [38].
The Synthetic Data Vault (SDV) uses latent Gaussian copula to predict the
common distribution of the population by considering all the attributes being
numeric. In case that this assumption did not run, the pre-processing is needed
to be applied to the dataset to reconstruct the attributes into a 0 to 1 range
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advantages and disadvantages, and compare them with each other. We studied
these methods in detail.
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Dankar et al. [11] investigated the impact of different synthetic da ta generations
on the utility of the generated synthetic da ta . They centered the investigation
on four domains.
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• To what extend propensity score can predict the accuracy of the model in
real-life usage.
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of numerical values which indicates the repetition of the values in the dataset.
Similarly, the DateTime can be converted to numerical values by counting the
number of seconds. Moreover, in SDV missing values are considered null values
and they count as important information for the model [37]. Synthpop or SP
uses conditional distribution estimation to generate a synthetic dataset and it
uses two methods for that. SP-np method works with nonparametric CART al-
gorithm (Classification and Regression Trees) and SP-p uses logistic regression
and linear regression [33].

The results from Dankar et al. [11] experiments on 15 different tabular pub-
lic datasets showed that according to propensity score, generating synthetic
data from raw real dataset tended to have better performance compared to
pre-processed real data. Furthermore, importing the real data tuning setting
granted better accuracy across all ML algorithms and for all synthesizers, rather
than tuning the synthetic data independently. Besides, there was insignificant
difference between tuned and non-tuned synthetic dataset which was generated
from raw unprocessed data. Therefore, there is no confirmation to tune the
synthetic dataset. Ultimately, employing propensity scores raise the prediction
accuracy when synthetic data is generated using SP-p and DS synthesizers.

3.1.1 Table-GAN

A study has been conducted in order to compare the techniques of preserving
privacy while sharing or releasing data in the public [34]. Four real-world
datasets from four different domains were employed to compare anonymization,
perturbation, and generation techniques.

Anonymization techniques remove sensitive attributes. However, the iden-
tification of records can be retrieved if adversaries have that knowledge. Data
perturbation is about adding noise or altering the values. Still, these modifica-
tions can have an adverse influence on data usability. Park et al. [34] proposed
table-GAN method to generate synthetic tables. Their model adopts the deep
convolutional GAN (DCGAN) [40] architecture with an additional neural net-
work called classifier. Accordingly, the model has a generator neural network G
to produce synthetic records, a real and fake records identifier called discrimina-
tor (D) and, a classifier neural network (C) to predict synthetic records’ labels.
Having a classifier will help to keep the consistency of values in the generated
records. According to the results, table-GAN presents the best balance between
privacy level and model compatibility.

3.1.2 TGAN

A GAN-based synthetic data generator called TGAN for tabular data is de-
veloped by Xu et al. [49]. They selected three tabular datasets from the UCI
Machine Learning Repository and used LSTM (Long short-term memory) in
their model and they intended to produce mixed variable types like multino-
mial, discrete, and continuous. The generated synthetic data by TGAN was
statistically evaluated. The authors claimed that training the machine learning
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model with data generated from TGAN presented a better performance and
generates high-quality synthetic data compared to three other data synthesizers
(GC, BN-Id, and BN-Co) that rely on multivariate probabilistic graphical mod-
els. However, the presented model only supports a single table with numerical
and categorical features.

3.1.3 CTGAN

Conditional Tabular GAN (CTGAN) [48] is one of the numerous extensions
of GAN that models tabular data distribution. Generating tabular data with
GAN has been faced with some challenges. Continuous values in tabular data
are usually non-Gaussian. Through normalizing, these values face vanishing
gradient problem. Additionally, modeling the multimodal distribution of con-
tinuous columns could be challenging. To tackle these dilemmas, Xu et al. [48]
design the mode-specific normalization in which each column is processed in-
dependently, each value is represented as a one-hot vector indicating the mode
and a scalar indicating the value within the mode. Therefore, it turns continu-
ous values into a limited vector which is proper for neural networks. Moreover,
they design conditional generators and training-by-sampling to deal with the
imbalanced data issue.

3.1.4 Bayesian Network

Benedetti et al. [12] investigate some facets of issues that can be faced while
using synthetic data as a substitute for real care data. ”Handling the com-
plexities of real-world data to transparently capture realistic distributions and
relationships, modeling time, and minimizing the matching of real patients to
synthetic data points” were issues that the authors mentioned and they believed
using the suitable modeling approach would lead to a secure and transparent
synthetic dataset. They employed two real datasets, MIMIC III dataset1 which
is the records of the stay of a patients and Clinical Practice Research Datalink
(CPRD Aurum Database) which contains fully-coded patient electronic health
records2, and used Bayesian network to obtain the main characteristics of data
and generated samples imitating those features. Moreover, the extended ap-
proach has successfully captured the key characteristics of blood pressure data
by using dynamic Bayesian networks. Lastly, the nearest neighbor analysis was
conducted to check the risk of the real and fake data equivalence. It concluded
that the risk is unlikely to occur, and it is remarkably difficult to reach sensitive
information.

3.1.5 SynSys

Machine learning-based synthetic data generation method, called SynSys, was
introduced by Dahmen et al [10] to deal with complexity and realism limitations

1https://physionet.org/content/mimiciii/1.4/
2https://cprd.com/primary-care-data-public-health-research
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that happen in the existing synthetic data generating methods. The generated
synthetic time-series data was made of nested sequences using hidden Markov
models and regression models. This model was tested on a real annotated smart
home dataset which can be considered as a part of healthcare application. Smart
home data represent the activities occurring in a smart home with a time series
structure containing sensor events ordered by time. The first step in SynSys
is to train the HMM (Hidden Markov Models library)3 to generate a realistic
sequence of activities. The second HMM is trained to generate the sequence
of sensor events. Each activity of the sequence of activities that are generated
by the first-level HMM is expanded into the corresponding sequence of sensor
events generated by the second-level HMM. The last step is training the re-
gression learners for creating the timestamps that calculate the time gap within
sensor events and the duration of each activity. They compared SynSys and an
alternative synthetic data generation method that does not use combinations of
HMM’s and regression algorithms. According to the results, SynSys algorithm
generates more realistic synthetic data.

3.1.6 HealthGAN

Yale et al. [50] proposed HealthGAN that generates privacy-preserving synthetic
health data which is a GAN-based method for generating mixed continuous and
categorical data. The workflow of HealthGAN is to train the model inside a
secure sandboxed environment using real data and export the model outside
of the data-secure environment to generate the synthetic data. The authors
implement the HealthGAN on MIMIC data (Medical Information Mart for In-
tensive Care) which consists of de-identified ICU data from 2001 to 2012. To
assess the resemblance and privacy of synthetic data, nearest neighbor adver-
sarial accuracy was used. They compared HealthGAN to other data generative
methods including Gaussian Multivariate [13], Parzen Windows [35], Additive
Noise Model (ANM) [24], Differential Privacy-preserving data obfuscation (DP)
[14], and Copy the real data (CP). According to the results, HealthGAN was the
only effective method in privacy maintenance, and that allowed model export.

3.1.7 medGAN

Choi et al. [8] focused on generating high-dimensional discrete variables to un-
dertake the problem of aggregating discrete features derived from longitudinal
EHRs (electronic health records) which is time-consuming. The authors pro-
posed a neural network model that generates high dimensional multi-label dis-
crete variables named medGAN. The design of the medGAN mode is a combina-
tion of an autoencoder and the adversarial framework. The dataset was derived
from the multi-label discrete electronic health records (EHR). The authors de-
clared that medGAN had an impressive results for both binary variables and
count variables and the attribute disclosure had limited risk in this presented
model. Yet, it is only capable of generating discrete data.

3https://ghmm.sourceforge.net/
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3.1.8 CoreGAN

Correlation capturing Generative Adversarial Network (CorGAN) is proposed
by Torfi and Fox [45] to generate synthetic healthcare records. This framework
is composed of Convolutional GANs and Convolutional Autoencoders (CAs)
and it is able to generate both discrete and continuous synthetic records. Due
to the privacy assessment, this method provides an acceptable level of privacy.
The selected datasets were MIMIC-III for binary discrete variables experiment
and UCI Epileptic Seizure Recognition dataset (an unbalanced dataset) which
contains brain activities characterizes for continuous variables experiment. The
effectiveness of this method was measured by comparing it to Stacked Deep
Boltzmann Machines (DBMs), Variational Autoencoder (VAE) and medGAN.
According to their analysis, in CorGAN, the generated synthetic data represents
a similar performance to the real data in different Machine Learning settings
such as classification and prediction.

3.1.9 PATE-GAN

PATE-GAN [53] methodology is for generating differentially private synthetic
data. Besides producing high-quality synthetic data, it provides differential pri-
vacy guarantees. Thi method is structured by modifying the version of the
Private Aggregation of Teacher Ensembles (PATE) framework for the training
procedure of the discriminator so it could be differentially private. The Credit
card fraud detection real-world dataset from Kaggle, The Meta-analysis Global
Group in Chronic Heart Failure (MAGGIC) dataset, The United Network for
Organ Transplantation (UNOS) dataset , Kaggle cervical cancer dataset , UCI
ISOLET dataset and UCI Epileptic Seizure Recognition dataset were the au-
thor’s selected datasets. Two methods were used for evaluating the similarity
of the synthetic datasets with a real dataset: ”comparing the predictive per-
formance of models trained on the synthetic datasets and tested on the real
dataset”, and ”comparing the performance rankings of predictive models on the
synthetic datasets with their performance rankings on the real dataset”. The
authors stated that ”using PATE to enforce differential privacy results in higher
quality synthetic data than DPGAN” and this method operated better compare
to the state-of-the-art method [53].

3.1.10 G-PATE

Long et al. [28] believed that ”It is not necessary to ensure differential privacy
for the discriminator in order to train a differentially private generator”. There-
fore, they represented a new approach for training differentially private data
generator G-PATE, by combining GAN framework with the PATE mechanism
in which it ensures privacy property on the information flow from the discrimi-
nator to generator. In this model the generator is differentially private, not the
entire GAN, since the generator is the only part that is published for data gener-
ation. Kaggle credit card fraud detection dataset, MNIST and Fashion-MNIST
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image datasets were chosen for this experiment. Due to the results, this model
beats DP-GAN and PATE-GAN in terms of data utility. The results showed
better performance compare to the prior works image and non-image datasets
and works well on more complex image which DP-GAN is almost incapable of
performing it well.

3.1.11 WGAN

In Wasserstein GAN the authors focused on a number of techniques to mea-
sure how closely the model distribution matches the real distribution. WGAN
increases the model’s stability during training and offers a loss function that
correlates with the quality of the generated data. This method Provide realis-
tic learning curves useful for debugging and hyperparameter searches, eliminate
problems like mode collapse and make learning more stable. In WGAN, instead
of discriminator, a critic is introduced. The Wasserstein distance is predicted by
the critic network, which has a similar design to a discriminator network but is
optimizes to find the value to maximize the Wasserstein distance. The training
process is more reliable and less sensitive to model architecture and selection of
hyperparameter configurations with the WGAN. The loss of the discriminator
appears to be related to the generator’s ability to provide high-quality data,
which is maybe most significant. [1]

3.1.12 ADS-GAN

To mitigate the risk of breaching patient confidentiality, Yoon et al. [51] pro-
posed ADS-GAN (anonymization through data synthesis using generative ad-
versarial networks) which is the modification of the conditional GAN framework.
They performed a quantifiable, mathematical definition for “identifiability” to
discuss the sufficient anonymization of the data. ADS-GAN generates the com-
ponents based on optimizing the conditioning set for each patient and in this
model the conditioning variables are not pre-determined. This step makes the
improvement of the data quality as well as preserving the patient’s identity
by making sure that no combination of features can reveal those identities.
The Meta-analysis Global Group in Chronic Heart Failure (MAGGIC) and The
United Network for Organ Transplantation (UNOS) dataset4 were selected for
this experiment. They evaluated the marginal distribution mismatch for each
feature as well as how well the generated synthetic data preserves the joint dis-
tribution of the original data. This framework was compared to PATE-GAN,
DP-GAN, MedGAN, and WGAN-GP and the authors claimed that ADS-GAN
outperformed all these models and it is the best solution to open data sharing
of EHR-type datasets.

4https://unos.org/data/

28

image datasets were chosen for this experiment. Due to the results, this model
beats DP-GAN and PATE-GAN in terms of data utility. The results showed
better performance compare to the prior works image and non-image datasets
and works well on more complex image which DP-GAN is almost incapable of
performing it well.

3.1.11 W G A N
In Wasserstein GAN the authors focused on a number of techniques to mea-
sure how closely the model distribution matches the real distribution. WGAN
increases the model's stability during training and offers a loss function that
correlates with the quality of the generated data. This method Provide realis-
tic learning curves useful for debugging and hyperparameter searches, eliminate
problems like mode collapse and make learning more stable. In WGAN, instead
of discriminator, a critic is introduced. The Wasserstein distance is predicted by
the critic network, which has a similar design to a discriminator network but is
optimizes to find the value to maximize the Wasserstein distance. The training
process is more reliable and less sensitive to model architecture and selection of
hyperparameter configurations with the WGAN. The loss of the discriminator
appears to be related to the generator's ability to provide high-quality data,
which is maybe most significant. [l]

3.1.12 ADS-GAN
To mitigate the risk of breaching patient confidentiality, Yoon et al. [51] pro-
posed ADS-GAN (anonymization through data synthesis using generative ad-
versarial networks) which is the modification of the conditional GAN framework.
They performed a quantifiable, mathematical definition for "identifiability" to
discuss the sufficient anonymization of the data. ADS-GAN generates the com-
ponents based on optimizing the conditioning set for each patient and in this
model the conditioning variables are not pre-determined. This step makes the
improvement of the data quality as well as preserving the patient's identity
by making sure that no combination of features can reveal those identities.
The Meta-analysis Global Group in Chronic Heart Failure (MAGGIC) and The
United Network for Organ Transplantation (UNOS) dataset4 were selected for
this experiment. They evaluated the marginal distribution mismatch for each
feature as well as how well the generated synthetic data preserves the joint dis-
tribution of the original data. This framework was compared to PATE-GAN,
DP-GAN, MedGAN, and WGAN-GP and the authors claimed that ADS-GAN
outperformed all these models and it is the best solution to open data sharing
of EHR-type datasets.

4 h t tp s : / / un os.org/ d a t a /

28



3.2 Privacy Preserving Methods

There are some privacy-preserving methods that are currently using broadly.
Anonymization techniques remove the sensitive attributes. K-anonymity [42]
which is still used in the healthcare world, is a method in which the QID(attributes
like ZIP code, gender, age, etc.) is modified with the same modified QIDs and
equivalence class with respect to the concept of ”equivalence class of records”
that says one record is similar to at least k-1 other records in the same equiv-
alence class concerning their QIDs. However, in this method, other sensitive
attributes can be recovered and it is open for homogeneity and background
knowledge attacks (attribute disclosure).

To tackle this problem, l-diversity [29] was introduced to present more guar-
antee to preserve the existing leakages in K-anonymity. Yet, this method is
effective in protecting categorical attributes and it is not developed for contin-
uous sensitive attributes. moreover, the sensitive attributes can breach if the
global distribution of it is identified. Li et al. [26] proposed a novel approach
called t-closeness such that ”it requires that the distribution of a sensitive at-
tribute in any equivalence class is close to the distribution of the attribute in
the overall table ”(i.e., the distance between the two distributions should be
no more than a threshold t)”. It overcomes the possibility of re-identification
attacks by constructing equivalence classes of sensitive values. Also, data per-
turbation is about adding noise or altering the values. It can perturb continuous
and categorical values.

3.3 Data synthesizing Methods Summary

The effectiveness of the medGAN method was assessed by comparing it with
different versions of the medGAN and several other generative methods. The
different versions of the medGAN that were assessed are GAN (the same archi-
tecture as medGAN with the standard training strategy, but do not pre-train the
autoencoder), GANP (pre-train the autoencoder and use minibatch discrimina-
tion), GANPA (pre-train the autoencoder and use minibatch averaging) and the
generative methods were Random Noise, Independent Sampling, Stacked RBM,
and Variational Autoencoder. In medGAN they pre-trained the autoencoder,
used minibatch averaging, used batch normalization, and a shortcut connection
for the generator G. To generate synthetic patients records, medGAN was ca-
pable to generate high-dimensional discrete variables better compared to other
tested methods. Still medGAN does not generate multimodal continues vari-
ables and the similarity of the real data and generated data had some flaws
[8].

Table-GAN tried to solve the problem of generating synthetic data for a
tabular dataset. In Park et al. experiment the table-GAN method using deep
learning techniques was employed on the Health dataset which consists of various
information (such as blood test results, questionnaire survey, diabetes, and so
on). Comparing to state-of-the-art anonymization, perturbation, and generation
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for the generator G. To generate synthetic patients records, medGAN was ca-
pable to generate high-dimensional discrete variables better compared to other
tested methods. Still medGAN does not generate multimodal continues vari-
ables and the similarity of the real da ta and generated da ta had some flaws
[8].

Table-GAN tried to solve the problem of generating synthetic da ta for a
tabular dataset . In Park et al. experiment the table-GAN method using deep
learning techniques was employed on the Health dataset which consists of various
information (such as blood test results, questionnaire survey, diabetes, and so
on). Comparing to state-of-the-art anonymization, perturbation, and generation
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techniques, table-GAN only showed a consistent balance between privacy level
and model compatibility since the model compatibility is crucial and as it stated,
table-GAN showed the better performance accomplishing that. Yet, it does not
support generating other data types such as strings.

Tabular data includes discrete and continuous columns. The multi-modal
values within each continuous column and the imbalance of categorical columns
made it hard to model this type of data. Conditional Tabular GAN (CTGAN)
tackled these challenges and it outperformed MedGAN, VeeGAN, Table-GAN.

PATE-GAN framework ensures the (differential) privacy of the generator of
the Generative Adversarial Nets (GAN). As it is stated by the authors, this
model ”can be used for generating synthetic data on which algorithms can be
trained and validated, and on which competitions can be conducted, without
compromising the privacy of the original dataset.” Their experiment was on
various types of data including sound classification. For the authors, Further
research is to examine with Extending PATE to the regression setting, whether
Wasserstein GAN can be used instead or not.

G-PATE is an approach for training a differentially private data generator
based on the Private Aggregation of Teacher Ensembles (PATE) framework. In
this mode the student generator is connected with an ensemble of teacher dis-
criminators, and a private gradient aggregation mechanism is used for securing
the differential privacy of all the flowing information from teacher discriminators
to the student generator. The privileges of using G-PATE over PATE-GAN and
DP-GAN are improvement of using privacy budget by using it in part of the
model that needs to published for data generation and, training the discrimina-
tor on real data.

The structure of Tabular GAN (TGAN) is close to table-GAN with some few
fundamental differences. Table-GAN uses convolutional neural networks while
TGAN uses recurrent networks. TGAN generates synthetic tables while simul-
taneously generating discrete and continuous variables. TGAN has been limited
to generating only a single table with numerical and categorical features and
needs to be developed for modeling sequential data and multiple tables. SynSys
method was formed to generate synthetic time-series data that is composed of
nested sequences having only a small amount of ground truth data.

The healthGAN method is based on the medGAN architecture idea with the
combination of Wasserstein GAN gradient penalty (WGAN-GP) to solve the
existing issues with medGAN which are generating only binary and unrealistic
data. According to the comparison of 5 other data generation methods which
are Gaussian Multivariate, Parzen Windows, Additive Noise Model (ANM),
Differential Privacy-preserving data obfuscation (DP), and Copy the real data
(CP), the HeathGAN method claimed as a novel approach with better perfor-
mance among these other aforementioned methods. It improved the medGAN
algorithm and performed a better metrics for evaluating the quality of synthetic
health data. But this version of the HealthGAN does not provide time-series
data.

CorGAN which utilizes the convolutional generative adversarial networks
was successful in generating both discrete and continuous synthetic values and
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it outperformed DBMs, VAE and medGAN methods. From what has been dis-
cussed we can achieve that medGAN has some flaws which current methods tried
to resolve. The TGAN is the improved version of table-GAN. This method plus
CTGAN outperforms the table-GAN method and both methods are successful
in generating discrete and continuous variables. HealthGAN and CorGAN are
other useful methods in generating discrete and continuous synthetic values.
SynSys is useful in generating synthetic time-series data.PATE-GAN focuses
on the privacy of the generator of GAN whilst generating synthetic data and
G-GAN has improved the PATE-GAN and DP-GAN model and works well for
both image and none-image data.

Among different approaches that can be utilized to generate synthetic data,
generative adversarial networks are one of the most successful methods in gen-
erating high quality samples. Exploring these studies helped us to get familiar
with the layout and functionality of each method, and discover the advantages
and disadvantages of each generative model. After these investigations, we can
decide what are the most relevant and applicable methods for generating real-
istic synthetic patient records
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Chapter 4

Proposed methods

4.1 Selected GAN methods for tabular data

Among all the studied GAN models, we needed to select the models which
meet the requirements for our data type. The choices were narrowed down
to the models in which they fit tabular data the best, generate numerical and
categorical data with similar distribution as the real data, to handle missing
values and to produce missing value in the same scale in the generated sample,
manage an imbalanced dataset, as well as preserving privacy in a way that
revealing the information from the sample won’t be feasible. After the models
comparison in section 3.3, we picked the models which outperformed the others
in order of generating the tabular samples. The models for our experiments are
TGAN, WGAN, ADS-GAN and, CTGAN, as well as VanillaGAN. The reason
of choosing VanillaGAN is that we want to have the basic model of GAN so
that the other models can be relatively compared to the base model.

4.1.1 Dataset:

To evaluate the selected GAN models, a real dataset was used to set-up a
benchmarking system. The adult cencus income provided by Kaggle dataset
repository1.

The dataset consists of 32561 rows and 15 columns. Attribute characteristics
involve ordinal, categorical, and numerical values. The aim of this dataset is
to predict whether the person’s income exceeds $50,000 a year based on its
attributes. The detail of the dataset’s features are described in the table 4.1.

4.2 Generated data quality check

After deciding which GAN models best fit the type and model of our dataset, it
is needed to investigate the performance of all these selected models to realize

1https://www.kaggle.com/datasets/uciml/adult-census-incom
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which one(s) are the perfect match for our data and generate data which meet
high quality and privacy aspects. Many evaluation have been conducted to
address these matters.

4.2.1 Similarity

Checking the similarity between the synthetic data and the real data is one
of the quality check steps. TableEvaluator2 is the chosen method for sim-
ilarity evaluation of the real and the fake data. TableEvaluator is a python
library in which it measure how real the fake data is. The given information
in TableEvaluator consist of both plotting visual evaluation metrics and sim-
ilarity score. The statistics that are calculated by TableEvaluater are as follows:

Mean Absolute Error (MAE): Mean Absolute Error evaluates the aver-
age of the amount of error in the measurement. This measurement is a useful
method for comparing anticipated DATA with their actual outcomes. Hence,
the smaller the value, the closer the real and fake data points are [9].

MAE =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |ei|
n

. (4.1)

Where:
n = total number of data points,
yi is the predicted value and xi is the true value.

Euclidean distance: The Euclidean distance between two points measures
the distance between those two points. Here, it measures the distance between
the real values and the predicted values [9].

d(p,q) =

√√√√
n∑

i=1

(qi − pi)2 (4.2)

Where:
p, q = two points in Euclidean n-space
qi, pi = Euclidean vectors
n = n-space

Root Mean Square Error (RMSE): This metric calculates the average
distance between the predicted value and the actual value. In other words, how
far the data points from the regression line (line of the best fit) are. Lower
RMSE represents a better model that fits a dataset [9].

2The GitHub repository is available here: https://github.com/Baukebrenninkmeijer/table-
evaluator
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RMSE =

√∑N
i=1 (x̂i − xi)

2

N
(4.3)

Where:
n = the number of observations
x̂i = the predicted value
xi = the actual value

Cosine similarity: Cosine similarity defines the similarity of the data ob-
jects irrespective of their size. In this metric data objects will be assumed as
vectors and the cosine similarity is the cosine of the angle between them. Un-
like Euclidean distance which is restricted by the size of the document, the two
similar documents may increase similarity score in cosine similarity even if it is
measured as being far apart by Euclidean distance. Smaller angle leads to the
higher cosine similarity [22].

cosine Similarity = SC(A,B) := cos(θ) =
A ·B

‖A‖‖B‖
=

n∑
i=1

AiBi

√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(4.4)

Where:
Ai and Bi are components of vector A and B.

Column correlation: The column correlation returns mean correlation be-
tween all columns of the two datasets. In tableEvaluater, the correlation of the
categorical columns are evaluated by Theil’s U and Cramér’s V, and numeric
columns are evaluated by Pearson correlation coefficient.

Cramér’s V measures how deeply the relationship between the two cate-
gorical variables is. The range of Cramér’s varies between 0 (no association)
and 1 (complete association) [17].

V =

√
ϕ2

min(k − 1, r − 1)
=

√
χ2/n

min(k − 1, r − 1)
(4.5)

Where:
ϕ = the phi coefficient
χ2 = Pearson’s chi-squared test
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A-B
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 i l  A;  i l  Bz

Where:
Ai and Bi are components of vector A and B.

Column correlation: The column correlation returns mean correlation be-
tween all columns of the two datasets. In tableEvaluater, the correlation of the
categorical columns are evaluated by Theil's U and Cramer's V, and numeric
columns are evaluated by Pearson correlation coefficient.

Cramer's V measures how deeply the relationship between the two cate-
gorical variables is. The range of Cramer's varies between O (no association)
and l (complete association) [17].

V=
cp2 x 2 / n

m i n ( k - 1 , r - 1 ) min(k - 1 , r - 1 )
(4.5)

Where:
cp= the phi coefficient
x2= Pearson's chi-squared test
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n = the sample size
k = number of columns
r = number of rows

Theil’s U or uncertainty coefficient measures the degree of nominal asso-
ciation between two variables. It is calculated from conditional distribution of
joint distribution of the two variables. It indicates if the forecasting model is
better than naive forecasting. Naive forecasting is a method that uses previous
period to predict the next period. If the Theil’s value is less than 1, the model is
better than the naive forecasting, and if it is greater than 1, the model is worse.
This statistic is helpful to remove methods with large error with magnifying the
errors [44].

U(X|Y ) =
H(X)−H(X|Y )

H(X)
(4.6)

where:
H(X) = entropy of a single distribution
H(X|Y ) = conditional entropy

Pearson correlation coefficient: Pearson’s r measures the linear correla-
tion between two datasets. The value varies between -1 and 1. 0 indicates no
relation between two datasets and -1 or 1 denotes the same correlation [5].

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.7)

where:
xi and yi are the sample points from x and y vector
x̄ = 1

n

∑n
i=1 xi = mean of vector x

ȳ = 1
n

∑n
i=1 yi = mean of vector y

n = sample size

Jensen-Shannon Distance: The disparity between two probability distri-
bution P and Q is calculated by this metric and it varies between 0 and 1, having
0 means the two distributions are the same. The probability distribution shows
the likelihood of a random variable taking different possible outcomes. Q can
be referred to as the fake samples distribution and, P as the real sample distri-
bution. The J-S distance is derived by Kullback–Leibler divergence. unlike K-L
divergence, The J-S distance value is symmetric and finite. Kullback–Leibler
divergence is also measures the difference in two probability distributions [27].
It is calculated as follows:
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DKL(P ‖ Q) = −
∑
x∈X

P (x) log

(
Q(x)

P (x)

)
(4.8)

Therefore, The J-S distance would be:

JSD(P ‖ Q) =
1

2
D(P ‖ M) +

1

2
D(Q ‖ M) (4.9)

Where:
M = 1

2 (P +Q) is the mean of the P and Q distribution

Kolmogorov–Smirnov test: This metric compares the distribution of the
fake and real samples by quantifying the distance between the empirical dis-
tribution functions of two samples and checks if they have equal underlying
distributions [21].

Table evaluator calculated the F1 score on different machine learning models
including Logistic Regression, RandomForestClassifier, DecisionTreeClassifier,
and, MLPClassifier. Thus, the model with the highest F1 score will be the best
model that makes the best predictions. For that reason, the evaluate method
uses real dataset, split it into 80% train and 20% test dataset, train multiple
machine learning models and calculate the F1 score on the 20% of the test data
as well as the fake data. This procedure take place for the fake data as well.
The fake data will be split into test and training sets, the models will be trained
on the training set of the fake data and the F1 score will be calculated on the
test set of the fake data and real data.

The similar and close results of F1 score for the fake and real data indicates
that they have similar distribution and behaviour. Furthermore, the higher
score represents that the machine learning model is performing better among
others. Although a high value means a perfect score for similarity aspects, hav-
ing a very similar generated data may raise questions in terms of the privacy
and identifiability.

In the visual evaluation graphs of the table evaluators, CTGAN plots illus-
trated a fairly close distribution of the real and fake datasets for each column
(Figures 4.1 till 4.8). The result of a F1 score shows that CTGAN has the best
performance compared to the others. For instance, after training a Random-
Forest model on a generated sample, the accuracy on the real data is 0.82 which
is also close to the accuracy of the generated test sample. The similarity score
between real and generated samples is 0.93 (Table 4.3, 4.2).
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x E X
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Figure 4.1: Absolute Log mean and STDs of numeric data for CTGAN

Figure 4.2: cumulative sums for age and work-class columns in the real and fake
dataset for CTGAN

CTGAN
Similarity Score 0.93
Column Correlation Distance RMSE 0.05
column correlation distance MAE 0.03

Table 4.2: Table evaluator statistical results on CTGAN
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Figure 4.2: cumulative sums for age and work-class columns in the real and fake
dataset for CTGAN
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Similarity Score 0.93
Column Correlation Distance RMSE 0.05
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Table 4.2: Table evaluator statistical results on CTGAN
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Figure 4.3: cumulative sums for final weight and education columns in the real
and fake dataset for CTGAN

Figure 4.4: cumulative sums for edcation num and marital status columns in
the real and fake dataset for CTGAN
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Figure 4.5: cumulative sums for occupation and relationship columns in the real
and fake dataset for CTGAN

Figure 4.6: cumulative sums for race and sex columns in the real and fake dataset
for CTGAN
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Figure 4.7: cumulative sums for capital gain and capital loss columns in the real
and fake dataset for CTGAN

Figure 4.8: cumulative sums for hours per week, native country and income
columns in the real and fake dataset for CTGAN

4.2.2 Discriminator and generator losses

The difficulty of training the GAN models is due to the concurrent training of
generator and discriminator in a way that progress in one model leads to cost
for another model. Therefore, it is advantageous to monitor the possible failures
in training GAN models. By tracking the discriminator loss for both real and
the fake samples and, loss for the generator, the line plot of loss at the end of
the training phase can be plotted. Evaluating the performance of the GAN, can
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be done by tracking the performance of the generated samples and assess them
[7, 18, 21].

This evaluation method was integrated into each GAN model’s library. Dur-
ing the training process, the loss of the discriminator for real and fake samples
and, loss of the generator have been reported each iteration for each model, the
results have been saved and, used for creating the line plots of loss. Although
it was attempted to implement the loss plot in the TGAN library as well, the
output did not generate for this model.

The losses plots shows the performance of the GAN models during their
training process (figure 4.9 till figure 4.12). These patterns’ absolute values
and time scales (such as the number of training epochs or iterations) will vary
depending on the problems and the type of GAN model.

The Vanillagan loss plots (figure 4.9) shows many fluctuations in discrim-
inator and generator losses during the training process and this is due to the
bad performance of this method in generating the samples. There is no clear
pattern and the loss for the generator oscillate over time which represents mode
collapse, meaning there are many identical generated examples.

Figure 4.9: Generator loss and Discriminator loss on real and fake data on
VanillaGAN

CTGAN plot shows a good trend since when the training initiates, the loss
for the discriminator is low and the generator loss is high because the initial
phases of data generation produce low-quality data. As it progresses, the dis-
criminator loss increases as the loss of the generator decreases. This trend occurs
in CTGAN loss plot figure 4.10.

In WGAN the losses start at zero. The discriminator loss of the real data is
stable, but the variance between discriminator loss for fake data and generator
loss is increasing (Figure 4.11).

In ADS-GAN after epochs 200, the losses start to stabilize, although the
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Figure 4.10: Generator loss and Discriminator loss on real and fake data on
CTGAN

Figure 4.11: Generator loss and Discriminator loss on real and fake data on
WGAN

variance increases between the losses (Figure 4.12).

Figure 4.12: Generator loss and Discriminator loss on real and fake data on
ADS-GAN
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4.2.3 PRDC evaluation

Precision and recall are evaluation metrics for estimating the quality and cov-
erage of the generated samples by generative model [41]. If we consider the real
distribution as P(X), and the generative model as Q(Y), the portion of Q(Y)
that can be generated by P(X) would be defined as Precision, and the portion
of P(X) that can be generated by Q(Y) is considered as recall.

The improved version of precision and recall addresses the drawbacks of the
previous version. Hence in this version, The expected likelihood of fake samples
compared to the real manifold is measured by precision, and the expected like-
lihood of real samples compared to the real fake manifold is measured by recall.
In the equations 4.10 and 4.11, N and M are the number of real and fake data
and 1(.) is the indicator function [25].

precision :=
1

M

M∑
j=1

1Yj∈manifold(X1,...,XN ) (4.10)

recall :=
1

N

N∑
i=1

1Xi∈manifold(Y1,...,YM ) (4.11)

The manifolds are defined as:

manifold (X1, ..., XN ) :=

N⋃
i=1

B (Xi, NNDk (Xi)) (4.12)

Where B (x, r) represents the sphere in RD around x with radius r, and
NNDk (Xi) represents the distance between Xi and its kth nearest neighbor
among {Xi} excluding itself.

Nonetheless, the improved precision and recall still have some flaws includ-
ing failing to detect the match between two identical distributions, being weak
against outliers and, randomly selection of the hyper parameters evaluation.
By using k-nearest neighbor distances instead of the k-means and the uniform-
density assumption, the probability density functions are computed in this met-
ric.Density counts the number of real-sample neighbourhood spheres contain
fake data Yj (equation 4.13), where k is the k-nearest neighbourhoods. The
highest the density the better it is.
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density :=
1

kM

M∑
j=1

N∑
i=1

1Yj∈B(Xi,NNDk(Xi)) (4.13)

Coverage counts the percentage of real samples in areas where at least one
fake sample is present. The range of coverage is 0 to 1, the higher the value the
better coverage it has. (equation 4.14).

coverage :=
1

N

N∑
i=1

1∃ j s.t. Yj∈B(Xi,NNDk(Xi)) (4.14)

Figure 4.13 and 4.14 demonstrate the advantage of using density over preci-
sion and coverage over recall. [31]

Figure 4.13: Precision versus density [31]

PRDC evaluation has been performed on three outperformed GAN models,
CTGAN, TGAN and, ADG-GAN, as well as the basic model, VanillaGAN.
This evaluation starts with smaller sample of the Adult dataset. The first
5,000 samples have been selected for all the methods and PRDC evaluation has
been performed on them. This experiment was conducted with three different
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Figure 4.13: Precision versus density [31]

PRDC evaluation has been performed on three outperformed GAN models,
CTGAN, TGAN and, ADC-GAN, as well as the basic model, VanillaGAN.
This evaluation starts with smaller sample of the Adult dataset. The first
5,000 samples have been selected for all the methods and PRDC evaluation has
been performed on them. This experiment was conducted with three different
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Figure 4.14: Recall versus coverage [31]

nearest neighbour values; 5, 10 and 20 (see figures 4.15 till 4.20). In almost all of
the experiments, besides having a high precision and recall value, CTGAN has
the highest density and coverage overall and after that TGAN has the closest
best result. For instance, in figure 4.18, the density and coverage for CTGAN
is 96.6% and 91.2% respectively, and for TGAN it is 87.3% density and 81%
coverage.
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Figure 4.14: Recall versus coverage [31]

nearest neighbour values; 5, 10 and 20 (see figures 4.15 till 4.20). In almost all of
the experiments, besides having a high precision and recall value, CTGAN has
the highest density and coverage overall and after that TGAN has the closest
best result. For instance, in figure 4.18, the density and coverage for CTGAN
is 96.6% and 91.2% respectively, and for TGAN it is 87.3% density and 81%
coverage.
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Figure 4.15: PRDC evaluation on whole adult dataset with K value equal to 5

Figure 4.16: PRDC evaluation on whole adult dataset with K value equal to 10
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Figure 4.15: PRDC evaluation on whole adult dataset with K value equal to 5
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Figure 4.16: PRDC evaluation on whole adult dataset with K value equal to 10
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Figure 4.17: PRDC evaluation on whole adult dataset with K value equal to 20

Figure 4.18: PRDC evaluation on 5000 sub-samples of the adult dataset with K
value equal to 5
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Figure 4.17: PRDC evaluation on whole adult dataset with K value equal to 20
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Figure 4.18: PRDC evaluation on 5000 sub-samples of the adult dataset with K
value equal to 5
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Figure 4.19: PRDC evaluation on 5000 sub-samples of the adult dataset with K
value equal to 10

Figure 4.20: PRDC evaluation on 5000 sub-samples of the adult dataset with K
value equal to 20
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Figure 4.19: PRDC evaluation on 5000 sub-samples of the adult dataset with K
value equal to 10
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Figure 4.20: PRDC evaluation on 5000 sub-samples of the adult dataset with K
value equal to 20
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4.2.4 Privacy evaluation

The privacy aspects of the information in the health industries has significant
value since the information involves a lot of private clinical information of the
patients. Therefore, examining the generated data for the privacy sake is crucial.

The General data protection regulation (GDPR) defined the ”personal data”
as ”any information relating to an identified or identifiable natural person (‘data
subject’); an identifiable natural person is one who can be identified, directly
or indirectly, in particular by reference to an identifier such as a name, an
identification number, location data, an online identifier or to one or more factors
specific to the physical, physiological, genetic, mental, economic, cultural or
social identity of that natural person” 3.

There are different types of data identifiability. Direct identifiers include crit-
ical information such as name or unique individual numbers. Indirect identifiers
contains less evident information. Potentially identifiable includes information
which by having extra data will lead to the re-identification of an individual
[39, 51].

Differential privacy (DP) has been able to address many issues regarding
the confidentiality and privacy preserving in computer science. Differential pri-
vacy which consists of statistical and machine learning analysis is a criterion of
privacy protection.

Under the view of DP, information is categorized in two classes, general
information and, private information. The statistical analysis of DP ensures
the privacy protection against a wide range of privacy attacks. It also guar-
antees the problem of ”composition” which is about reaching the conclusion in
data through the results of multiple analyses using information about the same
individual.

Yet, DP can only assure the privacy preserving when general information
and private information are determined. It only protects the private informa-
tion and, if the general information includes any confidential information, then
it will not be protected anymore. Therefore, DP fails to handle critical concepts
in medical and health research [15, 47, 51].

ADS−GAN [52] privacy measurements checks that the patient’s identity can
not be exposed from any combination of the features in the synthetic data and
with the combination of all the data on any individual, it defines the identi-
fiability based on the likelihood of the re-identification of these data. In the
original data, each of the two different observations are distinguishable since
they are different individual, so they are ”different enough”. Accordingly, the
minimum distance between the original observations is used as a measurement
for “different enough” between the synthetic and original data.

To calculate the minimum distance between two observations in terms of
identifiability, weighted Euclidean distance is used instead of simply using Eu-

3https://edps.europa.eu/data-protection/dataprotection/glossary/p en
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clidean distance, since some features are not as frequent as others, thus they
are more identifiable. The calculation of the term “different enough” for the
observation xi and other original observations in D is as follows:

i = minxj∈D/xi
||w(xi − xj)|| (4.15)

Where:
D/xi = dataset D without xi

w = weight vector

Similarly the minimum distance between xi and the generated observations
in D̂ is as follows:

r̂i = minx̂j∈D̂||w(xi − x̂j)|| (4.16)

Having ri and r̂i, the ε-identifiability definition can be described as ”the
synthetic data are different enough from the real data when synthetic data
do not reveal the ≥1 − ε ratio of the real data” [52]. Thus, a completely non-
identifiable dataset would be equivalent to 0-identifiability and a perfectly identi-
fiable dataset to 1-identifiability. It can be concluded that the D̂ is ε-identifiable
from D when:

I
(
D, D̂

)
=

1

N
[I(r̂i < ri)] < ε (4.17)

Where:
I = Identity function

The outliers are more subjected to be identified. Therefore, more restrictions
has been applied by adding more noise. To define the weight vector for the
definition of weighted Euclidean distance, discrete entropy has been employed.
The discrete entropy of the i-th feature is:

H
(
X(i)

)
= −

∑
x(i)∈X (i)

P
(
X(i) = x(i)

)
log(P

(
X(i) = x(i)

)
) (4.18)

The weight of the identifiability is the inverse of the entropy since the entropy
denotes the uncertainty of the feature and higher uncertainty results in smaller
identifiability.
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w = (w1, ..., wd) =

(
1

H
(
X(1)

) , ..., 1

H
(
X(d)

)
)

(4.19)

The generated samples need to meet the requirements of the identifiability
constraints since calculating the maximum value of the loss (LD) which mea-
sures the Wasserstein distance between the joint distributions of original and
synthetic datasets itself does not guarantee the identifiability constraints. Thus,
the identifiability loss has been described as:

LI = Ex,x̂|x [−||w. (x− x̂) ||] (4.20)

With the condition that the generated sample x̂ is ”different enough” from
the original sample, this equation (4.21) depicts the generator’s attempt to
maximize the weighted Euclidean distance between the two samples. Thus, the
generator tries to minimize the loss (maxD[LD]) and identifiability loss (LI).
Hence, the final optimization problem is:

minG = �maxD �LD�+ λLI�
= minG �maxDEx∼Px,z∼Pz �D(x)−D (G (x,z))

−η (||∇x̂D (x̂) ||2 − 1)
2 − λEx,x̂ [||w. (x− x̂) ||]�

(4.21)

λ > 0 is a hyperparameter which straighten out how much information can
be presented in the way that it would be sufficient as well as not being too much
so they can be identifiable.

These metrics are applied to the selected GAN methods to calculate the
identifiability value of each of these methods. λ was set to 0.1, the mini-batch
size to 128 and, the process ran for 1000 iterations. At the first trial the identifi-
ability value for VanillaGAN was 0. This was due to the poor performance of the
vanillaGAN in a way that the generated data does not have the similar distribu-
tion of the real samples, After normalizing the real and the generated samples
this value changed to 3.11e-5, which still denoted a low performance. Among
other GAN extensions, TGAN with the lowest value of 0.009 outperformed the
other methods in term of the identifiability. Nevertheless, the CTGAN and
ADS-GAN had considerable performances as well (Table 4.4).

GAN Method VanillaGAN ADS-GAN TGAN CTGAN
Value 3.11e-5 0.019 0.009 0.245

Table 4.4: Identifiability measure for GAN methods
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(4.19)

The generated samples need to meet the requirements of the identifiability
constraints since calculating the maximum value of the loss (LD) which mea-
sures the Wasserstein distance between the joint distributions of original and
synthetic datasets itself does not guarantee the identifiability constraints. Thus,
the identifiability loss has been described as:

L y = lEx,xlx l-llw (x - x) Ill (4.20)

With the condition that the generated sample i is "different enough" from
the original sample, this equation (4.21) depicts the generator's attempt to
maximize the weighted Euclidean distance between the two samples. Thus, the
generator tries to minimize the loss (m a x D[LD l) and identifiability loss (Ly).
Hence, the final optimization problem is:

m i n e = l m a x D lLvJ+ ALyj
= m i n e lmaxDlEx~Px,z~Pz lD(x) - D (G (x,z))

-17 (lIVxD (x) ll2 - 1)2 - AlEx,x [l[w. (x - x) ll]J
(4.21)

>.> 0 is a hyperparameter which straighten out how much information can
be presented in the way that it would be sufficient as well as not being too much
so they can be identifiable.

These metrics are applied to the selected GAN methods to calculate the
identifiability value of each of these methods. >.was set to 0.1, the mini-batch
size to 128 and, the process ran for 1000 iterations. At the first trial the identifi-
ability value for VanillaGAN was 0. This was due to the poor performance of the
vanillaGAN in a way that the generated data does not have the similar distribu-
tion of the real samples, After normalizing the real and the generated samples
this value changed to 3.lle-5, which still denoted a low performance. Among
other GAN extensions, TGAN with the lowest value of 0.009 outperformed the
other methods in term of the identifiability. Nevertheless, the CTGAN and
ADS-GAN had considerable performances as well (Table 4.4).

GAN Method VanillaGAN ADS-GAN TGAN CTGAN
Value 3.l le-5 0.019 0.009 0.245

Table 4.4: Identifiability measure for GAN methods
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4.2.5 Summary

In summary, after evaluating different GAN methods, CTGAN, TGAN, WGAN
and ADS-GAN were selected as the most suitable methods that can generate
synthetic tabular data preserving privacy of the real samples and be able to
handle the imbalanced samples and those containing null values. Afterward,
the synthetic data were analysed by different evaluation metrics. These experi-
ments were conducted on the adult census dataset available on the Kaggle data
repository.

According to the F1 score and the table evaluator plots, CTGAN performs
the best in terms of the similarity of the synthetic data and the real data. The
PRDC evaluation results showed that CTAG and thereafter TGAN have the
best performance among others. In ε-identifiability metric from ADS-GAN the
TGAN performed the best compared to CTGAN and ADS-GAN. In discrimi-
nator and generator losses plots the ADS-GAN losses stabilized after 300 epochs.

We cannot declare for sure which GAN model outperformed the best among
others. Accordingly, the methods in which they have the best performance in
terms of similarity and privacy were selected to be performed on the real dataset.
Therefore, the CTGAN was chosen since it has the best similarity performance
among others, and after that TGAN was selected because it also performed
good in terms of similarity and privacy.
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Attribute Data
Type

Description (possible values)

Age Continuous Age of the person
Work Class Categorical Private, Self-emp-not-inc, Self-emp-inc,

Federal-gov, Local-gov, State-gov, Without-
pay, Never-worked

Final
Weight

Continuous “Number of units in the target population that
the responding unit represents”

Education Categorical Bachelors, Some-college, 11th, HS-
grad, Prof-school, Assoc-acdm,
Assoc-voc, 9th, 7th-8th, 12th, Masters,
1st-4th, 10th, Doctorate, 5th-6th, Preschool

Education
Number of
Years

Continuous Number of Years of education in total

Marital-
status

Categorical Married-civ-spouse, Divorced, Never-married,
Separated, Widowed, Married-spouse-absent,
Married-AF-spouse

Occupation Categorical Tech-support, Craft-repair, Other-service,
Sales, Exec-managerial, Prof-specialty,
Handlers-cleaners, Machine-op-inspect, Adm-
clerical, Farming-fishing, Transport-moving,
Priv-house-serv, Protective-serv, Armed-Forces

Relationship Categorical Role in the family (Wife, Own-child, Husband,
Not-in-family, Other-relative, Unmarried)

Race Categorical White, Asian-Pac-Islander, Amer-Indian-
Eskimo, Other, Black

Sex Categorical Female, Male
Capital-
gain

Continuous income from investment sources other than
wage/salary

Capital-loss Continuous income from investment sources other than
wage/salary

Hours-per-
week

Continuous Hours of work in every week

Native-
country

Categorical United-States, Cambodia, England, Puerto-
Rico, Canada, Germany, Outlying-US(Guam-
USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy,
Poland, Jamaica, Vietnam, Mexico, Portu-
gal, Ireland, France, Dominican-Republic, Laos,
Ecuador, Taiwan, Haiti, Columbia, Hungary,
Guatemala, Nicaragua, Scotland, Thailand, Yu-
goslavia, El-Salvador, Trinidad Tobago, Peru,
Hong, Holland-Netherlands

Table 4.1: Adult data set description

53

Attribute Data
Type

Age Continuous
Work Class Categorical

Final Continuous
Weight
Education Categorical

Education Continuous
Number of
Years
Marital- Categorical
status

Occupation Categorical

Relationship Categorical

Race Categorical

Sex Categorical
Capital- Continuous
gain
Capital-loss Continuous

Hours-per- Continuous
week

Description (possible values)

Age of the person
Private, Self-emp-not-inc, Self-emp-inc,
Federal-gov, Local-gov, State-gov, Without-
pay, Never-worked
"Number of units in the target population that
the responding unit represents"
Bachelors, Some-college, 11th, HS-
grad, Prof-school, Assoc-acdm,
Assoc-voe, 9th, 7th-8th, 12th, Masters,
1st-4th, 10th, Doctorate, 5th-6th, Preschool
Number of Years of education in total

Married-eiv-spouse, Divorced, Never-married,
Separated, Widowed, Married-spouse-absent,
Married-AF-spouse
Tech-support, Craft-repair, Other-service,
Sales, Exec-managerial, Prof-specialty,
Handlers-cleaners, Machine-op-inspect, Adm-
clerical, Farming-fishing, Transport-moving,
Priv-house-serv, Protective-serv, Armed-Forces
Role in the family (Wife, Own-child, Husband,
Not-in-family, Other-relative, Unmarried)
White, Asian-Pac-Islander, Amer-Indian-
Eskimo, Other, Black
Female, Male
income from investment sources other than
wage/salary
income from investment sources other than
wage/salary
Hours of work in every week

Native-
country

Categorical United-States, Cambodia, England, Puerto-
Rico, Canada, Germany, Outlying-US(Guam-
USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy,
Poland, Jamaica, Vietnam, Mexico, Portu-
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Real Fake
real data LogisticRegression F1 0.80 0.78
real data RandomForestClassifier F1 0.84 0.81
real data DecisionTreeClassifier F1 0.80 0.77
real data MLPClassifier F1 0.77 0.77
fake data LogisticRegression F1 0.77 0.80
fake data RandomForestClassifier F1 0.82 0.84
fake data DecisionTreeClassifier F1 0.75 0.78
fake data MLPClassifier F1 0.80 0.77

Table 4.3: Table evaluator Classifier F1scores on CTGAN
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Real Fake
reaLdata_LogisticRegression_F l 0.80 0.78
reaLdata_RandomForestClassifier_Fl 0.84 0.81
real.data.DecisionTreeClassifier_Fl 0.80 0.77
reaLdata_MLPClassifier_Fl 0.77 0.77
fake_data_LogisticRegression_F l 0.77 0.80
fakedata.RandomliorestClassifier_Fl 0.82 0.84
fakedata.DecisionTreeClassifier_Fl 0.75 0.78
fakedataMl.PClassifier_Fl 0.80 0.77

Table 4.3: Table evaluator Classifier Flscores on CTGAN
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Chapter 5

Experiments on the real
data

This chapter presents the experiments on the real data set and their results.

5.1 Data Description

The dataset has been provided by Fürst Medical laboratory which is results of
patient’s blood test. Permission to use these data for research purposes has been
granted to Fürst by REK (the regional committee for medical and healthcare
research ethic) under the project Anonymous and accurate health data synthesis
using deep learning, project number 259224. The data are stored in a secured
server located at Fürst, and made accessible for analysis only to the participants
in the REK-approved project. In this thesis , I have shown only descriptive and
aggregate data, which do not disclose individual patient records.

The dataset has 952685 rows and 26 columns. Each row represents a req-
uisition (a set of analysis/tests ordered by a doctor and performed at the lab-
oratory), reporting the gender, the results of 11 blood tests and whether such
results are pathological or not. There is also a label/class which categorizes
each patient as healthy (”Euthyroid”) or as affected by a pathology/condition
(”Hyperthyroidism” and ”Hypothyroidism” are the main ones).

The main test results are those reporting the values of three hormones which
regulate the function of the thyroid gland: TSH, T4, T3 (columns 4-6). The
values of eight other blood markers are also reported.

In this dataset, 14 features out of 26 were chosen for this experiment, the
other features were explanations and flags of these 14 main features. This
dataset contains 2 categorical and 12 numerical features. Although the ID did
not contain any private information on it, the ID column was also dropped for
the further experiments. The data description are represented in detail in table
5.1.
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Column Col Name Description

1 ID a generic ID (string)
2 gender 0 Male, 1 Female (integer)
3 age age of the patient (integer)
4 TSH Reporting the result of the test measuring the

level of TSH in blood (numeric)
5 T4 Control in the treatment of thyroid diseases (nu-

meric)
6 T3 Free triiodothyronine, Assessment of thyroid

function (numeric)
7 Kreatinin Measurement of how concentrated the urine is

(numeric)
8 HDL High density lipoprotein, assessment of risk for

cardiovascular disease (numeric)
9 LDL Low density lipoprotein, assessment of risk for

cardiovascular disease (numeric)
10 Kolesterol Assessment of risk for cardiovascular disease

(numeric)
11 Urinstoff Assessment of protein and amino acid turnover.

Fluid balance. Kidney function. Assessment of
the degree of toxicity in uraemia (numeric)

12 VB12 Vitamin B12 (numeric)
13 Alat Liver diagnostics, toxic liver damage (numeric)
14 Label 8 classes-conditions/pathologies (string)

Table 5.1: Fürst dataset description

5.2 Exploratory Data Analysis (EDA)

In this chapter, we want to explor the data analysis and inspect the distribution
of the features and check how balanced the label feature is. Multiple libraries
have been used to do the AutoEDA.

5.2.1 Pandas Profiling

The pandas profiling1 is an open source library in python which is used for
data analysis and represent different information of univariate and multivariate
report of the dataset such as mean, medaian, correlation matrix, etc.

5.2.2 SweetVIZ

SweetViz2 is also an open source python library which illustrates the target
characteristics, analyzes the train and test data, correlation of the variables and

1https://pandas-profiling.ydata.ai/docs/master/index.html
2https://pypi.org/project/sweetviz/
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the target value, etc.

5.2.3 AutoViz

AutoViz3 is another python open source library that visualize the information
of the dataset shape in heat map, bar chart, pair plot etc.

In the plots from Autoviz library, the distribution and skewness of each
feature are represented. See figures 5.1 till 5.9. These graphs demonstrate
uneven distributions of the dataset features. Moreover, the label feature figure
5.10 illustrated a very imbalanced distribution for different classes.

Figure 5.1: Distribution plot, boxplot and probability plot-skew of T3

Figure 5.2: Distribution plot, boxplot and probability plot-skew of T4

The EDA clearly showed that we have an imbalance dataset. To simplify
the problem, first, it was chosen to make two subsets of the data. First subset
consists of “Euthyroid” and (“Hypo” or “Sub-Hypo”) in which all the Sub-
hypo were replaced by Hypo. And the second subset involves “Euthyroid” and
(“Hyper” or “Sub-Hyper”). The SubHyper were substituted with Hyper. At
second step, the GAN model was trained with all the 8 label classes.

3https://github.com/AutoViML/AutoViz
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Figure 5.2: Distribution plot, boxplot and probability plot-skew of T4

The EDA clearly showed that we have an imbalance dataset. To simplify
the problem, first, it was chosen to make two subsets of the data. First subset
consists of "Euthyroid" and ("Hypo" or "Sub-Hypo") in which all the Sub-
hypo were replaced by Hypo. And the second subset involves "Euthyroid" and
("Hyper" or "Sub-Hyper"). The SubHyper were substituted with Hyper. At
second step, the GAN model was trained with all the 8 label classes.

3 h t t p s : / / g i t h u b . c o m / AutoViML/AutoViz
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Figure 5.3: Distribution plot, boxplot and probability plot-skew of VB12

Figure 5.4: Distribution plot, boxplot and probability plot-skew of Urinstoff

Figure 5.5: Distribution plot, boxplot and probability plot-skew of TSH

5.3 Generated data quality check

In this section all the evaluation metrics on both CTGNA and TGAN are de-
scribed in details.

5.3.1 Similarity

The results of the table evaluator give us a good insight of how close the real
data and the generated data are, both visually and statistically. The plots shows
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Figure 5.3: Distribution plot, boxplot and probability plot-skew of VB12
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Figure 5.5: Distribution plot, boxplot and probability plot-skew of TSH

5.3 Generated data quality check
In this section all the evaluation metrics on both CTGNA and TGAN are de-
scribed in details.

5.3.1 Similarity
The results of the table evaluator give us a good insight of how close the real
data and the generated data are, both visually and statistically. The plots shows
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Figure 5.6: Distribution plot, boxplot and probability plot-skew of LDL

Figure 5.7: Distribution plot, boxplot and probability plot-skew of HDL

Figure 5.8: Distribution plot, boxplot and probability plot-skew of Kolesterol

almost overlaps in the distribution of the real and the generated data features
in both CTGAN and TGAN, so, the distributions are quite the same.

F1 score is the weighted average of precision and recall which contains both
false positive and false negative predictions. One of the benefit of F1 score
is that it is able to be performed on the imbalance data as well4, which suits
our dataset. In cases where the datasets are severely skewed, a model which
performs poorly and only predicts the majority class will appear accurate based

4https://stephenallwright.com/good-f1-score/
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Figure 5.6: Distribution plot, boxplot and probability plot-skew of LDL
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Figure 5.7: Distribution plot, boxplot and probability plot-skew of HDL
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Figure 5.8: Distribution plot, boxplot and probability plot-skew of Kolesterol

almost overlaps in the distribution of the real and the generated data features
in both CTGAN and TGAN, so, the distributions are quite the same.

Fl score is the weighted average of precision and recall which contains both
false positive and false negative predictions. One of the benefit of Fl score
is that it is able to be performed on the imbalance data as well", which suits
our dataset. In cases where the datasets are severely skewed, a model which
performs poorly and only predicts the majority class will appear accurate based

4 h t tp s : / / stephenallwright.com/ good-fl-score/
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Figure 5.9: Distribution plot, boxplot and probability plot-skew of Kreatinin

Figure 5.10: Distribution of the label feature

on other metrics, such as accuracy. The model won’t have excellent precision
or recall on the positive class, hence the full level of under-performance will be
revealed in the F1 score (equation 5.1).

The F1 score has a range of 0 to 1, with 0 denoting the poorest possible result
and 1 denoting a flawless result, meaning that the model accurately predicted
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Figure 5.10: Distribution of the label feature

on other metrics, such as accuracy. The model won't have excellent precision
or recall on the positive class, hence the full level of under-performance will be
revealed in the Fl score (equation 5.1).

The Fl score has a range of Oto l, with Odenoting the poorest possible result
and l denoting a flawless result, meaning that the model accurately predicted
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Figure 5.11: Bar plot for Kreatinin by label

Figure 5.12: Bar plot for TSH by label

each observation.

F1Score = 2 ∗ (Recall ∗ Precision)/(Recall + Precision) (5.1)
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Figure 5.11: Bar plot for Kreatinin by label
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Figure 5.12: Bar plot for TSH by label

each observation.

F l S c o r e = 2 *(Recal l* Precision)/(Recall + Precision) (5.1)
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Figure 5.13: Bar plot for T4 by label

Figure 5.14: Bar plot for T3 by label

Table evaluator results for CTGAN

Whole dataset: The F1 score shows a similar behaviour and high score accu-
racy both for real and generated sample with different machine learning models.
More precisely, if we train a model on the generated data, it will be able to pre-
dict great on the real dataset as well, which means it has a close distribution to
the real data. The similarity score is 0.94 which represents very high similarity
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Figure 5.13: Bar plot for T4 by label

Average T3 by label (Top 20)

Figure 5.14: Bar plot for T3 by label

Table evaluator results for C T G AN

Whole dataset: The Fl score shows a similar behaviour and high score accu-
racy both for real and generated sample with different machine learning models.
More precisely, if we train a model on the generated data, it will be able to pre-
dict great on the real dataset as well, which means it has a close distribution to
the real data. The similarity score is 0.94 which represents very high similarity
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Figure 5.15: Bar plot for Urinstoff by label

Figure 5.16: Bar plot for HDL by label

between real and generated samples. The overall column correlation distance
root mean square error RMSE between real and generated sample is 0.04 and
the mean absolute error MAE is 0.03 which approve the high resemblance of
the real and the generated data (Table 5.2, 5.4 ).

sub hypo: Similarly, the F1 score for the hyper subset were high and rep-
resented a high accuracy in predicting the generated sample after training on
the real data and vice versa. The similarity score is 0.96, RMSE between real
and generated sample is 0.04 and MAE is 0.02, which indicates a well generated

63

Average Urinstoff by label (Top 20)
7

6

5

4

3

2

0

./ .,,f ,(> .,4: '£>.,.
-<. <> l',l ..,/ #

·i,,"'',\ ""<:J -t/ o/<:J ,p
q<" 4<$'

(Ii 4' /
.,J>

Figure 5.15: Bar plot for Urinstoff by label

Average HDL by label (Top 20)

Figure 5.16: Bar plot for HDL by label

between real and generated samples. The overall column correlation distance
root mean square error RMSE between real and generated sample is 0.04 and
the mean absolute error MAE is 0.03 which approve the high resemblance of
the real and the generated data (Table 5.2, 5.4 ).

sub. h y p o : Similarly, the Fl score for the hyper subset were high and rep-
resented a high accuracy in predicting the generated sample after training on
the real data and vice versa. The similarity score is 0.96, RMSE between real
and generated sample is 0.04 and MAE is 0.02, which indicates a well generated
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Figure 5.17: Bar plot for Kolesterol by label

Figure 5.18: Bar plot for LDL by label

synthetic sample similar to the real dataset distribution (Table 5.2, 5.4 ).

sub hyper: This subset has a very similar results to the subset of hy-
pothyroidism. The results showed a similar and high accuracy performance for
real and generated sample.

The overall review of the table evaluator F1 score and the statistical scores
indicates a slightly better performance of hypothyroidism and hyperthyroidism
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Figure 5.18: Bar plot for LDL by label

synthetic sample similar to the real dataset distribution (Table 5.2, 5.4 ).

sub.hyper: This subset has a very similar results to the subset of hy-
pothyroidism. The results showed a similar and high accuracy performance for
real and generated sample.

The overall review of the table evaluator Fl score and the statistical scores
indicates a slightly better performance of hypothyroidism and hyperthyroidism
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Figure 5.19: Bar plot for VB12 by label

subsets compared to the whole dataset (Table 5.2, 5.4 ).

Table evaluator results for TGAN

Whole dataset: The results represented a modest performance in terms of
similarity. The F1 score related to the machine learning models’ results showed
that after training the model on the generated sample, it cannot predict well on
the real dataset, which implies not a very close distribution to the real sample.
For instance, after training a decision tree classifier on the generated sample,
the accuracy on the test set of the generated sample was 0.51 which is like a
random guess, and the accuracy on the real sample was 0.14 which indicates a
very bad result and the similarity score is 0.40 (Table 5.3, 5.4).

Sub hypo: According to F1 score for this subset, after training different
machine learning model on real sample, the overall evaluation shows that it
has a great performance on the test set of the real sample, but it did not
performed well on the generated sample. For example, after training a decision
tree classifier model on the training set of the real sample, the accuracy on the
test set of the real sample was 1, while it was 0.24 on the generated sample
which denotes the poor performance of the model. Similarly, after training the
decision tree classifier on the generated sample, the accuracy on the test set of
the generated sample was 0.88 which represents a good performance, but it was
0.34 accurate on the real dataset.

The similarity score between the real and generated sample is 0.43 in TGAN
which is not a perfect result in case of similarity. The overall column correlation
distance root mean square error RMSE between real and generated sample is
0.13 and the mean absolute error MAE is 0.07 which denotes some differences
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in the these two datasets (Table 5.3, 5.4).

Sub hyper: This dataset shows the best performance among all other sets
in TGAN. After training a random forest model on the generated sample, the
accuracy of the prediction on the real data was 0.81, and the similarity between
the real and the generated sample is 0.69 (Table 5.3, 5.4).

5.3.2 Synthetic Data Vault (SDV)

It was decided to experiment more evaluation metrics for the synthetic data.
Synthetic Data Vault (SDV) [36] is a set of libraries in which the users can gen-
erate new data from single-table, multi-table and timeseries datasets. Moreover,
it has various methods to evaluate the quality of the synthetic data. SDV frame-
work is benefited from deep learning based techniques and multiple probabilistic
graphical modeling.

SDV statistical metrics:

These metrics do the one by one feature comparison between the real and the
synthetic data. two of these metrics are used in this evaluation, KSTest and
CSTest.

• sdv.metrics.tabular.KSTest: KSTest compare the distribution of the con-
tinuous columns by using two-sample Kolmogorov–Smirnov test and em-
pirical CDF. Empirical CDF (ECDF) is the probability distribution of
the sample generated by the data, and two-sample Kolmogorov–Smirnov
check if the two samples have the same distribution. This metric measures
the maximum distance between the expected CDF and the observed CDF
value for each column in which it is 1 minus the KS test D statistic and
the output value is the average score of these values. More precisely, it
measures the likelihood that the two samples were taken from the same
distribution in which the higher the value the similar the distributions are.

• sdv.metrics.tabular.CSTest: This metric compare the distribution of two
discrete columns using Chi-Squared test. The output is the probability of
those columns having the same distribution. Similar to KSTest, the closer
it get to 0, the more likely it is to have a similar distribution.

These two statistical metrics were used both in CTGAN and TGAN. In
each case, the statistical test will be run on all the compatible columns. So,
categorical or boolean columns for CSTest and numerical columns for KSTest,
and the results will be reported with the average score.

In CTGAN, the KSTest for continuous columns of all sets (whole dataset,
hypo and hyper subsets) was 0.95 which represents a very similar distribution
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of the real and the generated samples. In TGAN this values is slightly less and
the highest value is drawn in the whole dataset with 0.78 (Table 5.5).

The CSTest values for categorical column were quite the same for both
CTAGN and TGAN, and in both cases the highest value was for the whole
dataset with value 0.99. Merely There was a small difference in the hyper sub-
set in which the value was 0.93 for CTGAN and 0.88 for TGAN (Table 5.5).

The overall review shows that the real and the generated samples in CTGAN
have more similarities in distributions compared to TGAN.

SDV Detection Metrics:

This metric uses a machine learning model to assess how difficult it is to dis-
tinguish the synthetic data from the real data. Therefore, the real data and
synthetic data will be shuffled along with the flags showing the real and syn-
thetic data. Afterwards, the machine learning model will be cross validated
by attempting to predict the flags. The output value of this metric will be 1
minus the average score of ROC AUC of all the cross validation splits. ROC
AUD score represents how good the classification model is at predicting the
classes.The higher the AUC score is, the better model is at prediction. Accord-
ingly, in detection metrics, the higher the values is, the harder it is to distinguish
the real and the synthetic data.

• sdv.metrics.tabular.LogisticDetection: this metric implements a Logisti-
cRegression classifier from scikit-learn.

After implementing this metric on the CTGAN and TGAN, we noticed a
massive difference between the results of these two methods. The value of the
LogisticDetection metric in CTGAN was 0.78 for the whole dataset, 0.77 for
hypo subset, and 0.83 for hyper subset. So, the hyper subset performed better
compared to the other two sets while this value in TGAN was 0.07 for the whole
dataset, 0.03 for hypo subset, and 0.06 for the hyper subset. This implies that it
is much more difficult to distinguish the generated and the real data in CTGAN
which indicate a very similar distribution for these two datasets (Table 5.6).

Efficacy Metrics:

By training a machine learning model on the synthetic data and then analyzing
the score it receives when evaluated on the real data, these metrics will determine
whether it is possible to solve a machine learning problem without using real
data. This metric required a target column to run a classification model. In
Fürst dataset, the target is the label column which indicates the whether the
patient status is normal or not. The quality of our synthetic data and the
difficulty of the Machine Learning problem we are attempting to answer, both
affect the value produced by this metric.
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• MulticlassDecisionTreeClassifier: This metric was implemented on the
whole dataset since it has 8 labels in the target column.

• BinaryDecisionTreeClassifier: This metric was chosen for the two subsets,
since they have two labels each.

After executing decision tree classifier metrics, the hypo and hyper subsets
in CTGAN presented very good results with value 0.94 and 0.98 respectively
which means it can successfully solve a machine learning problem without using
real data. Although it was not a quite good result for the whole dataset which
was 0.48. Similarly, the efficacy metric for hypo and hyper subsets in TGAN
were 0.85 and 0.88 which also represented good results. Moreover, the whole
dataset in TGAN showed a very bad performance with the value 0.13 which
indicates that it was unable to train a machine learning model (Table 5.7).

SDV Privacy Metrics:

these metrics assess a synthetic dataset’s privacy considering the notion of given
the synthetic data, can an attacker identify sensitive dataset characteristics. To
answer that, An adversarial attacker model will be fit on the synthetic data to
predict the sensitive attributes. Afterward, the accuracy of the real data will
be evaluated using this model.

Two other inputs are needed in this metric, the list of the private columns
(sensitive fields) and the list of columns that the prediction of the sensitive
columns are based on(key fields). Age and gender are considered as the key field
and, label as the sensitive fields. Hence, we want to know if attackers have the
age and gender of a patient, can they predict the status(label) of the patient.

These metrics are categorized into categorical metrics and numerical metrics.
Based on the data type, one should be selected to implement the metric on the
data and it can not handle data that contains both categorical and numerical
data. Hence, the Numerical Linear Regression privacy metric and the Numerical
Support-vector Regression privacy metric were chosen to evaluate the privacy
of the datasets. Therefore, the label column in the Fürst dataset was label-
encoded. Since these metrics do not allow missing data, we substituted 0 for each
missing value before running them. Afterward, the numerical privacy metric was
applied on the data. The output range of the metric is 0 and 1. A higher value
represents higher score in privacy of the data.

The results of the CTGAN and TGAN for these metrics were relatively
the same. in CTGAN the numericalLR and numericalSVR metrics value for
the hypo subset were 0.06 and 0.05 respectively which indicate a none private
dataset. Similarly the value for numericalLR was 0.04 and 0.05 for numeri-
calSVR in the whole dataset. The hyper subset surpasses the other results of
the CTGAN with the value of 0.27. Hence, this subset is more private compared
to other sets. In TGAN also the hyper subset outperformed the other datasets
in terms of privacy with the value 0.26 (Table 5.8).
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Chapter 6

Conclusions

6.1 Summary

In different medical contexts such as patient’s medical records, accessing real
and valuable data is severely limited due to the privacy requirements. One of
the possible solutions is utilizing synthetic data which mimics the distribution of
the real data and tries to generate samples with distribution as close as possible
to the real data. There are several methods that can generate synthetic data. In
this study it was aimed to investigate different GAN methods that are capable
of generating tabular data. We explored different methods to find the most suit-
able method and to get a better understanding of the trade-offs between privacy
and quality of the generated data. The methods were selected based on their
ability to generate tabular data with similar distribution as the real data, han-
dle missing values, manage an imbalanced dataset, as well as preserving privacy.

The selected GAN methods were CTGAN, TGAN, WGAN and ADS-GAN.
These investigations were initiated with experiments on an open-access dataset,
the Adult Census Income dataset provided by the Kaggle data repository. The
reason for choosing this dataset is due to having ordinal, categorical, and numer-
ical values of their attributes, same as our real dataset. In each GAN method, a
model was fitted and from the learned model, new synthetic samples were gen-
erated. Afterwards, different evaluation metrics were implemented to explore
the performance of each of the selected methods and check the quality of their
generated data. The generated samples were examined in two aspects: 1) The
statistical characteristics of the synthetic data match those of the real data, and
2) The leakage of private data from the model is insignificant.

The results on the analysis revealed that none of the methods outperformed
the others in both considered aspects. Therefore the choices were limited to the
overall performance score of the methods. Hence, CTGAN and TGAN were
selected to be investigated on the real world Fürst dataset. The investigation
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was carried on with the real private dataset. Models were fitted both in CTGAN
and TGAN and the synthetic samples were generated by these models. Through
rigorous evaluations it was determined that in respect of similarity, CTGAN
performed superior to other GAN methods. In the matter of privacy, when we
were evaluating the confidentiality of the data on the dummy dataset in section
4.2.4, the TGAN outperformed others with a high margin. While TGAN and
CTAGN’s outcomes in the SDV privacy evaluation metric were almost the same
and CTGAN even performed slightly better.

Moreover, the generated datasets were not private enough based on the SDV
privacy metrics. Nonetheless, the hyper subset performed far better for both
CTGAN and TGAN compared to the other sets. When we created subgroups of
the dataset, not many findings were significantly impacted in terms of similarity
but the outcomes were affected concerning privacy. Compared to other sets, the
hyper subset seems to be more private.

6.2 Contributions

In section 1.2, three research questions were raised to be considered in this
thesis. The work is summarize by identifying the goals and explaining how this
study answered the given problems.

• RQ 1: What are the best GAN methods for generating synthetic tabular
data?

This question was answered in chapter 3 where we studied different GAN
methods and examined their structures and functionalities. We concluded
that among all the explored methods, ADS-GAN, CTGAN, TGAN and
WGAN appeared to be the most relevant GAN methods for generating
synthetic tabular data that can follow the two characteristics of similarity
and privacy.

• RQ 2: How well do the proposed GAN methods perform in terms of data
privacy and similarity?

These assessments were accomplished in chapter 4 where we conducted
different evaluation metrics on the generated data by CTAGN, TGAN,
WGAN, and DS-GAN methods. The evaluations were performed both for
similarity and privacy inspections. According to the performed metrics
in this chapter, none of the GAN methods were able to outperform in all
the evaluation metrics Therefore, based on the overall score, CTGAN and
TGAN were selected. Overall we can conclude that GANs are not privacy
preserving by default and should be considered with care when used for
highly sensitive data.

• RQ 3: How effective are the chosen GAN methods for generating synthetic
data from a real world dataset, namely the Fürst dataset?
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The two final selected GAN methods were used for the Fürs data. Since the
data was imbalanced, all the experiments were conducted on three datasets: the
whole dataset, and two subsets of the data, to counter the unbalancing of the
data and investigate the results. After generating the synthetic data, additional
assessments were performed for more in-depth evaluations. The SDV evaluation
metrics were calculated to compare the real and the generated data. According
to these results, CTGAN performed excellently concerning the similarity and
the statistical properties of the synthetic data are equivalent to the real data.
Concerning privacy, both CTGAN and TGAN failed to obtain a high score while
it was shown in section 4.2.4 that TGAN can produce private synthetic samples.
However, the hyper subset appeared to be more private compared to the two
other sets (whole dataset and the hypo subset). This confirms our finding in RQ
2 that synthetic data generated with GANs is not privacy preserving by default.

We discussed the trade-offs of multiple methods and metrics, offered advice
on factors to keep in mind when creating and utilizing synthetic medical data.
Concluding we can say that different use cases and different metrics may result
in different outcomes. Broadly, we have to make a compromise on what is
the most important factor for generating our synthetic data. Generating too
similar synthetic data may risk privacy concerns and we may have to increase
the dissimilarities of the two datasets.
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Chapter 7

Future work:

There are several directions that can be explored in the future work. In this
project a thorough investigation of the existing methodologies and their evalu-
ations was conducted.

One of the next experiments can be adding the evaluation metrics to the
learning steps of the model. For instance implementing the generator and dis-
criminator loss plots (discussed in chapter 4.2.2) in the learning steps of the
generator and discriminator to monitor the losses trends and determine where
to stop the training procedure. In addition, there could be methods to tune
parameters to suit both similarity and privacy and not only create identical
data.

Another interesting study can be generating time series synthetic data which
is a collection of measurements that have been obtained repeatedly over time.
Due to the requirement to preserve strict ordering and complex relationships
between time and measurement results, time-series data has proven to be one
area that has been particularly difficult for producing realistic synthetic data.
Therefore investigating and evaluating methods in which they can produce high
quality time series data can be conducted in the future.

Certainly, more methods and more evaluation metrics can be implemented
to examine the quality of the generated data.
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Appendix A

Additional graphs

In chapter 5, we decided to make subsets of the dataset to reduce the complexity
of the dataset. Below is the distribution of the labels in CTGAN and TGAN:

Figure A.1: Distribution of the label column in Hypothyroidism subset

Figure A.2: Distribution of the label column in Hyperthyroidism subset

In section 5.3.1 We discussed about the table evaluator results on the Fürst
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dataset. Below we show the distributions of some of the features in CTGAN
and TGAN.

(a) Distribution of age in CTGAN (b) Distribution of age in TGAN

(c) Distribution of TSH in CTGAN (d) Distribution of TSH in TGAN
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(e) Distribution of T4 in CTGAN (f) Distribution of T4 in TGAN

(g) Distribution of Kreatinin in CTGAN (h) Distribution of Kreatinin in TGAN
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(i) Distribution of Label in CTGAN (j) Distribution of Label in TGAN
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