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Abstract

Power line inspection has a critical role in providing uninterrupted power supply. Vegetation
surrounding power lines can cause power outages by impacting them. Utility owners spend
a lot of resources on the surveillance of transmission lines. In this thesis, we performed land
cover semantic segmentation using satellite imagery obtained from International Society for
Photogrammetry and Remote Sensing (ISPRS) 2D Semantic Labeling Contest for Potsdam
and Vaihingen. We analyzed the performance of different deep neural architectures on
these dataset. This information can help utilities identify the area requiring their attention.
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Chapter 1

Introduction

Grid-lines are an important part of the infrastructure that provides power to our homes,
companies, and communities. Regular inspections and timely maintenance are crucial for
lowering resource input, maintaining cheap pricing, and restoring power quickly. However,
the current methods are insufficient. Most power grid operators use on-the-ground staff
and low-flying helicopters to monitor their electrical wires. Drones are also being used
to inspect electrical lines. These devices can be outfitted with cameras or other sensors
to inspect powerlines from above or below, providing detailed views as well as any faults
discovered. They are very useful when investigating gridlines in troubled places, such as
high voltage conditions.

Figure 1.1: Power Line Inspection using Figure 1.2: Power Line Inspection using
Helicopter Image credit: [37] Drone Image credit: [23]

Satellite imagery is becoming more widely available, and it can be a helpful resource
for grid line assessment. Satellite photography, which uses computer vision and machine
learning algorithms, provides a more faster and more precise way of analyzing grid lines
than traditional approaches. These algorithms can be used to evaluate gridline pictures or
videos for potential flaws or defects, such as wear or corrosion. This allows maintenance
personnel to detect and rectify defects instantly, ensuring that gridlines are not jeopardized
in a safe and effective manner. By tracking gridlines over time, satellite imaging provides
proactive maintenance solutions that reduce unexpected outages or other issues, whereas
satellite tracking provides another monitoring method that monitors gridlines continuously
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to allow frequent repairs that prevent outages before they occur.

Figure 1.3: Power line view from a satellite imageImage credit: [31]

1.1 Machine Learning and Satellite Imagery for Gridlines
Inspection

In order to detect and assess faults and errors quickly along a gridline, machine learning
algorithms are combined with satellite imagery. A more in-depth exploration of their roles
in gridline assessment can be found here:

Image analysis is one of the primary applications of machine learning with satellite
imagery. A collection of annotated photos showing various forms of flaws or issues on
gridlines such as wear or damage can be used to train machine learning algorithms.
Subsequently, algorithms can be utilized to analyze new gridline satellite photos and
predict any flaws or abnormalities present within them. This allows maintenance employees
to quickly discover any faults in gridlines that require repairs so that corrective actions
may be taken and ensure their operation safely and efficiently. Predictive maintenance is
another application of machine learning with satellite imagery. Training a machine learning
model on images and data collected from sensors installed near gridlines allows one to
predict when these might experience issues or require maintenance. This model can be
applied to new satellite photos of gridlines to estimate their likelihood of faults or defects
using attributes from its training dataset. This allows maintenance professionals to address
potential problems before they become serious issues ensuring gridlines operate safely and
efficiently.
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Figure 1.4: Al tool result of detection of a Power line from a satellite image Image credit:
[31]

Machine learning algorithms can also detect abnormalities or strange patterns in satellite
imagery that could indicate potential faults or defects, by training a machine learning model
on an initial dataset of normal photos and then applying that model to detect anomalies
in new gridline satellite images. This enables maintenance employees to promptly discover
potential issues and take appropriate actions quickly in order to ensure gridlines continue
operating safely and effectively. Overall, the combination of machine learning algorithms
with satellite imagery provides a powerful tool for gridline inspection that efficiently detects
any faults or defects quickly and precisely. This can help maintenance employees ensure
that gridlines operate safely and effectively, maintaining continuous electricity distribution
to customers.

1.2 Research Objectives

The goal of this research is to compare the performance of deep learning algorithms
conducting Land Cover Semantic Segmentation. The performance of the two datasets,
Potsdam and Vaihingen, will be compared. The dataset was acquired via the 2D Semantic
Labeling Contest by the International Society for Photogrammetry and Remote Sensing.
The background chapter provides a detailed description of the algorithms and datasets.

RQ 1 How do different deep neural architectures perform on land cover semantic segmentation?

RQ 2 How does adding infrared data affect the comparison of modern deep state of art of
architecture?

This study is organized into five chapters: an Introduction chapter covers its motivation
and goals; a Background chapter delves deeply into Semantic Segmentation and deep
learning algorithms; the Related Work chapter offers a thorough review of its literature;
experiments are described thoroughly in an Experimental Setup chapter, followed by Results
chapter with illustrations depicting experimental results, Discussion section discussing
them further, and ultimately concluding results being provided as reported in Conclusions
chapter.






Chapter 2

Background

This chapter presents a comprehensive introduction to Gridlines Inspection, Satellite
Imagery, Land Cover Semantic Segmentation, and Deep Learning.

2.1 Gridlines Inspection

The practice of inspecting power lines, also known as gridlines, that transmit electricity
from power plants to homes and businesses is known as gridline inspection. This is done to
detect and assess potential flaws. Gridlines are an essential component of modern society’s
infrastructure, and they must run efficiently and safely. Their visual inspection consists
mostly of visually inspecting lines and checking for wear and deterioration. Sensors and
other technologies are also utilized to keep track on the lines’ status. Sensors, drones,
robotics, and computer vision algorithms are a few examples.

Figure 2.1: Manual grid line inspection Image credit: [20]

Maintenance staff used to physically inspect electrical cables for signs of corrosion
or wear. The lines were visually inspected for flaws such as cracks, bends, and other
irregularities. To obtain a better view at the lines, maintenance workers may use binoculars

5
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and telescopes. Maintenance workers were frequently expected to work in hazardous
environments or at heights, which made their occupations dangerous and time-consuming.

Drones are increasingly being used in grid line inspection since they are a quick and
safe technique of inspecting gridlines and spotting possible faults or deficiencies. Drones, or
autonomous tiny aircraft outfitted with sensors or cameras, can be used to monitor gridlines
from a safe distance. You can see the gridlines from above and notice any faults such as
wear and damage. Drones can monitor big gridlines or gridlines in difficult-to-reach areas
such as subterranean or high-voltage situations. Drones are an excellent tool to inspect
grid lines in regions that would be difficult or perhaps dangerous for maintenance staff
to access. Drones, for example, can be used to survey gridlines in challenging situations
such as high mountains or dense forest. Gridlines can be maintained safely and effectively
without placing maintenance employees in danger.

2.2 Satellite Imagery

Satellite imagery is a sort of remote sensing data gathered by Earth-orbiting satellites
equipped with cameras or other sensors that snap photographs or collect data about the
Earth’s surface and atmosphere before relaying it back to Earth for analysis and usage in
various ways.

Satellite imagery can help gridline inspection by remotely monitoring and analyzing
their condition. Through techniques such as image analysis, predictive maintenance and
anomaly detection, satellite imagery can detect potential issues or defects with gridlines.
A machine learning model trained on labeled images or sensor data installed near gridlines
could then analyze satellite images taken at different points along the line to predict defects
or issues more rapidly and accurately - helping maintenance personnel quickly recognize
potential issues and take corrective actions quickly ensuring safe operation of gridlines.

2.3 Land Cover Semantic Segmentation

Land cover semantic segmentation is the practice of classifying various types of land covers
such as vegetation, water bodies, urban areas and bare land using satellite or aerial images.
Images are divided into segments or classes to represent these different forms of coverage -
each segment representing one type of cover. Land cover semantic segmentation is used for
various applications, including:

¢ Environmental monitoring:
It can be used to track changes in land cover over time. For example, urbanization
and vegetation loss as a result of deforestation. This is helpful in assessing the
environmental impact of human activities and identifying places that are at risk of
degradation.

¢ Land use planning:
Land cover segmentation, which gives information on the types and locations of
various land cover categories, can help influence land use planning. It can assist
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planners in making sound decisions about land use, such as agriculture, urbanization,
and conservation.

Disaster management:

Land cover segmentation is an effective method for assessing the impact of natural
disasters such as wildfires and floods on land cover. This can help emergency
responders discover sites in danger and in need of assistance. It can also aid in
rehabilitation and reconstruction efforts.

Natural resource management:

It can detect and map natural resources such as lakes and forests, as well as monitor
their condition and utilization. This can be used to encourage resource management
and sustainable land usage.

2.4 Deep Learning

Deep learning is a subset of machine learning derived from brain function and structure.
[22] Artificial neural networks are used to recognize patterns within data and make decisions
based on these findings. Deep learning algorithms are named such due to being composed
of layers of artificial nodes or neurons that receive and process data before passing it along
to another layer; their output serves as input for further computation allowing algorithms
to recognize subtler patterns within it and make decisions accordingly.

Artificial Intelligence
(A1)

To incorporate human behavior and
intelligence to machine or systems.

Machine Learning
(ML)

Methods to learn from data or past
experience, which automates
analytical model building.

Deep
Learning
(DL)

Computation through multi-layer
neural networks and processing.

Figure 2.2: Deep Learning Illustration Image credit: [22]

Deep learning systems have the ability to outperform humans in categories like language
translation, speech recognition and image recognition. Trained on large datasets, deep
learning algorithms often outshone traditional machine-learning techniques - often outpacing
them entirely! Deep learning algorithms are widely utilized for computer vision applications
as well as audio recognition and natural language processing tasks in applications like
healthcare banking and transportation industries.
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o Convolutional neural networks (CNNs):
Image categorization and object detection are common applications for these techniques.
They excel in analyzing and interpreting visual data and are commonly employed in
computer vision and image recognition applications.

fe3 fc_a
Fully-Connected Fully-Connected

Neural Network Neural Network
Conv_1 Conv_2

z RelU activation
Convolution Convolution e
(5.x5) kernel Max-Pooling (5x5) kernel - pay.pooling (with
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Figure 2.3: Architecture of a CNN. Image credit: [36]

o Recurrent neural networks (RNNs):
These algorithms are designed to handle sequential data, such as time series or natural

language. They are often employed in the fields of language translation and speech
recognition.

Input layer

Hidden layer
: Output layer

4\’.‘; N
&S
S

Lk

Recurrent network

Figure 2.4: Architecture of a RNN classifier. Image credit: [28]

¢ Autoencoders:
These techniques are used for a variety of purposes, including data compression and

feature extraction. They consist of an encoder and a decoder, which work together
to learn a compact representation of the input data.
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Figure 2.5: Architecture of an Autoencoder. Image credit: [4]

o Generative adversarial networks (GANs):
These algorithms, among other things, are employed for image production and
data augmentation. They are composed of two neural networks, a generator and
a discriminator, which work together to generate new data that is similar to the
training dataset.
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Figure 2.6: Overview of a GAN. Image credit: [35]

o Self-organizing maps (SOMs):
These algorithms are used for a variety of purposes, including data visualization and
clustering. They are composed of a grid of neurons arranged in a two-dimensional
map that is used to organize and group data into similarity-based groups.
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Feature map

Input vector

Figure 2.7: Overview of a SOM. Image credit: [12]

2.5 Dataset Description

The International Society for Photogrammetry and Remote Sensing (ISPRS) is an international
organization that promotes photogrammetry, remote sensing, and related spatial information
sciences. The 2D Semantic tagging Contest entails the development and testing of
algorithms for semantic tagging on aerial photography. Semantic Labeling is the process of
assigning a class to each pixel based on the items or attributes in a scene. A semantic labeling
system, for example, might classify pixels as belonging to one of several classifications,
such as “building”, “road”, “vegetation” or “water.” This study’s dataset is based on two

I

different places, namely Potsdam and Vaihingen.

2.5.1 Potsdam

The Potsdam dataset is part of the International Society for Photogrammetry and Remote
Sensing’s 2D Semantic Labeling Contest. It includes high-resolution aerial photographs
of Potsdam, Germany. These photos have a 5cm per pixel resolution and include Red,
Green, Blue, and Near Infrared channels. This dataset is used for semantic segmentation
tasks. These include categorizing every pixel in an image, such as “building”, “tree”, “car”,
“road”, and so on. The collection contains aerial laser scan data, which is used to generate
a Digital Surface Model, or DSM, which represents the height of structures at each site.
This includes buildings and trees. The Potsdam dataset contains ground truth data that
serves as semantic labels to each pixel. This is essential for the training and evaluation
semantic segmentation models. The dataset covers an area of about 6 square kilometers.

It is divided into 38 tiles measuring 6000x6000 pixels each.

10
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Figure 2.9: Sample patches of the semantic object classification contest with (a) true
orthophoto, (b) DSM, and (c) ground truth. Image credit: ISPRS [32]

2.5.2 Vaihingen

The dataset was created in Vaihingen by the German Association of Photogrammetry
and Remote Sensing. (DGPF) for testing digital aerial cameras. The test dataset is
divided into three major areas: "Inner City”, "High Riser”, "Residential Area” each of
which showcases different urban structures and settings. A larger "Roads”, test site is also
available to evaluate urban road extraction methods. The dataset contains digital aerial
images, orienta-tion parameters, and Airborne Laserscanner Data from the Leica ALS50
System. Multiple images are available for each test area, with an average density of 4
points/m2 in each strip. Since January 2013, a TrueOrtho image, a DSM (digital surface
model) from image matching and a DSM (digital surface model from image comparison),
as well as the original point cloud, are also provided.[32]

11
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Figure 2.11: Sample patches of the semantic object classification contest with (a) true
orthophoto, (b) DSM, and (c¢) ground truth. Image credit: ISPRS [32]

2.6 Machine Learning Algorithms

This study aims to evaluate how accurately machine learning algorithms can perform
semantic segmentation. Semantic segmentation is used to classify land cover types. The
study has used the following algorithms.

e ResNet50

e ResNet101

¢ FC-ResNet50
e VGG-19

12
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e UNetFormer

2.6.1 ResNet-50

ResNet50 was created by Microsoft researchers to be a component of the ResNet family
of models, which are renowned for their complexity and capacity to efficiently learn from
enormous datasets. It was created by Microsoft researchers to be a component of the ResNet
family of models, which are renowned for their complexity and capacity to efficiently learn
from enormous datasets.It consists of two independent parts, an encoder and a decoder,
which cooperate to carry out image recognition.[3] Here is a more thorough breakdown of
the encoder and decoder components of ResNet50:

An Encoder employs convolutional layers applied successively to an input image in
order to extract its low-level features. Batch normalization layers may also be included
within these convolutional layers in order to improve model stabilization and performance,
with feature maps then downsampled using pooling layers after passing through many
convolutional layers - this reduces both feature map size and computational load on the
model; each convolutional layer block making up ResNet50 encoder includes numerous
convolutional layers; pooling layers downsample their feature maps created by these
layers while following each convolutional block is followed by numerous convolutional
layers that create feature maps which is followed by downsampling pooling layers that
downsampled feature maps created from convolutional layers - size reduction is reduced
while computational load on model reduced accordingly. As they progress through the
convolutional layers, the feature maps become more abstract and capture intricate elements
of input images. The encoder component is made up of a collection of feature map that
captures the key aspects of an input image.

The ResNet50 Decoder first upsamples the feature maps that the encoder has created
using a transposed layer of convolutional. The feature maps are enlarged and combined with
low-level features the encoder learned. The final output is generated by passing upsampled
features maps through convolutional layers that are trained to combine high-level and
lower-level information. The decoder part of the model produces a set of feature map that
is used to make the final prediction. This prediction can be either a label for a class or a
series of bounding box boundaries to detect objects, depending on the task that the model
has been trained to perform.

2.6.2 ResNet-101

ImageNet was used to train ResNet101 (a neural network). This is a huge image collection
with labels for 1,000 different classes. It was designed by Microsoft researchers as a ResNet
model, which is noted for its depth and capacity to learn from massive datasets.[3]

ResNet101, a deep CNN model with 101 layers, is one of the more complicated ResNet
models. Because of its additional layers, it can extract more complicated features from
input data. This can boost its performance in tasks like object detection and image
classification. It consists of two distinct components that work together to conduct image

13
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recognition: an encoder (which translates images) and a decoder (which interprets them).

It is the encoder’s responsibility to extract features from the input image. By using
convolutional layers and pooling, the image is made smaller and more complicated. The
encoder extracts data from the input image that the decoder uses to classify it. The
features are combined so that the neural network can predict the class of an input image.
The architecture of the encoders and decoders will vary depending on how ResNet101 has
been implemented. In general, however, the encoder includes a few convolutional layers
and a pooling layer, while the decoder contains a few fully connected layers.

2.6.3 FC-ResNeth0

FC-ResNet50 is similar to ResNetb0 but without the FC layer. This means that its output
is the feature map produced by the decoder portion of the network rather than final
predictions. This output captures high-level features of an input image and can be used
as input into other models or applications such as semantic segmentation which assigns
class labels for every pixel in an image. FC-ResNet50 [2] comprises several layers such as
convolutional layers, pooling layers and batch normalization layers; here is an in-depth
breakdown of its architecture here:

An input image is processed through several convolutional layers that learn to extract
low-level features from it, including optional normalization layers that help stabilize
and enhance performance. After being passed through multiple convolutional layers,
feature maps are downsampled using pooling layers in order to reduce both map size and
computational load. By doing this, both the size of feature maps and the computational
load on the model can be reduced significantly. The FC-ResNet50 encoder comprises
multiple convolutional layer blocks containing multiple convolutional layers for maximum
reduction in size and computation load. Pooling layers, which downsample feature maps
created by convolutional layers, follow each block of convolutional layers. As they move
through each of these blocks of convolutional layers, their feature maps become increasingly
abstract and capture more complex aspects of an input image. An encoder component of
the model’s output comprises of feature maps that capture key aspects of an input image,
followed by upsampling with transposed convolutional layers by FC-ResNet50 decoder.
As a result, feature maps expand in size, merging low-level features that the encoder has
learned with high-level features that the modeler has learnt. Finally, the output of the
model is produced by passing upsampled feature maps through convolutional layers trained
to combine high-level and low-level information into one coherent output. FC-ResNet50
decoder produces feature maps which highlight key aspects of an image, for use in semantic
segmentation - for instance assigning class labels to pixels within it - or other tasks as
input for models or programs. These feature maps may then be utilized as input into other
models or used directly as part of these tasks.

ResNet50’s overall architecture is similar to FC-ResNet50, but without FC layers at
the top. This indicates that feature maps generated by ResNet50’s decoder component
are used as output rather than as predictions; when performing tasks such as semantic
segmentation where class labels must be assigned for every pixel in an image, feature maps

14
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generated by decoder can help capture high-level features from an input image.

2.6.4 VGG-19

The VGG-19 model is a convolutional neural network (CNN) architecture developed by
researchers at the University of Oxford. It was trained on the ImageNet dataset, which
consists of a large number of images categorized into 1000 different classes. The VGG model
family, to which VGG-19 belongs, is well-known for its effectiveness in image classification
tasks. The VGG-19 architecture is composed of various layers, including convolutional
layers, pooling layers, and fully connected (FC) layers. [1]

2 i maxpool maxpool maxpool maxpool
AR depth=256 depth=512 depth=512
depth=64 depth=128 3x3conv 3x3 conv

3x3 conv conv3_1

convl 1 conv3_2

convl 2 conv2_2 conv3_3

Figure 2.12: Architecture of VGG Image credit: [11]

The process involves applying convolutional layers successively on an input image so
they can learn to recognize low-level features, followed by pooling layers to reduce feature
map sizes created by convolutional layers. At each block of convolutional and pooling
levels, additional convolutional layers and pooling levels will be added, increasing as feature
maps progress through the network - this allows the model to learn complex aspects of an
image while giving predictions based on features learned.

VGG-19 is a relatively simple architecture consisting of convolutional, pooling and
FC layers. It is often used in image classification tasks and performs well across several
benchmarks.

2.6.5 UNetFormer

U-Net is a convolutional neural system (CNN) that has been modified to perform efficient
semantic segmentation for remote sensing data of urban scenes. This variant is also known
as a “UNet-like Transformer.” Semantic segmentation assigns class labels to each pixel of
an image using the features that the model has acquired. Remote sensing urban scene
images are used to describe images of cities captured by satellites or aircraft. They can be
used in a number of ways, such as identifying buildings and classifying land uses.

15
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Figure 2.13: Architecture of UNetFormer Image credit: [30]

The UNetFormer uses a hybrid architecture consisting of a Transformer decoder and
CNN encoder. We create a global local Transformer block (GLTB), which is used to
build the encoder, and we use ResNet18 for the decoder. The GLTB suggests creates a
global-local attention system with an attentional local branch and a convolutional global
branch that captures both global and local contexts of visual perception. This is in contrast
to the five self-attention blocks used by the regular Transformer.[30]

2.7 Evaluation Criteria And Comparisons of Algorithms

2.7.1 Evaluating the performance of models

Jaccard coefficient and validation loss have been used for evaluating the performances of
models.

The Jaccard coefficient is also known as Intersection over Union. It is a statistical
tool used to evaluate model performance for tasks like picture segmentation or object
detection. It calculates the ratio between the intersection of two set to their union in order
to determine the similarity of their sets. In the context of a validation set, the Jaccard
coefficient measures the accuracy of the predictions of the model in comparison with the
ground truth labels. The Jaccard coefficient can be computed in image segmentation by
comparing the predicted masks with the real masks of the validation set.It quantifies the
degree of overlap or agreement between the expected and true masks.

B |AN B

/i, 8) = |AU B]

(2.1)

o ANB represents the intersection of sets A and B (the elements common to both sets).
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o |ANB]| represents the cardinality (number of elements) of the intersection.
o AUB represents the union of sets A and B (all unique elements from both sets).

o |AUB] represents the union of sets A and B (all unique elements from both sets).

Validation loss measures the performance of machine learning models during their
validation phase. It represents the model’s average loss or error on the validation dataset.
The validation loss can be estimated by applying the model gained during training to a
second dataset (known as the validation dataset) that was not utilized during training. The
model’s ability to generalize to previously unseen data is evaluated. When the validation
loss is low, the model’s validation dataset performs well.

[y: log(9:) + (1 — ys) log(1 — ;)] (2.2)

E

1

1 loss = ——
va 0SS N -
=1

e N is the total number of validation samples

o y_i represents the ground truth (actual) label for the i-th validation sample (either 0
or 1)

o ; represents the predicted probability of the positive class (between 0 and 1) by the
model for the i-th validation sample

2.7.2 Comparisons of Algorithms

When comparing algorithms, the t-test have been used to determine whether there is a
statistically significant difference in their performance. Typically, this is accomplished
by measuring a certain metric or performance indicator (such as accuracy, error rate, or
execution time) for each algorithm on a specified dataset or set of tasks.

The unpaired t-test is a statistical test used to compare the means of two independent
groups. The formula for calculating the t-value in an unpaired t-test is given by:

mean; — means

\/ varianceq T variances

sample size| sample sizeq

where mean; and means are the means of the two groups, variance; and variances are
the variances of the two groups, and sample size; and sample size, are the sample sizes of
the two groups.

The calculated t-value can then be compared to the critical t-value from the t-
distribution to determine if the difference between the means is statistically significant.
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Chapter 3

Related Work

This chapter provides a fair review of the literature on image analysis of satellite data for
power line inspection.

Regular inspections and timely maintenance of gridlines are critical for reducing
resource input, keeping prices down, and swiftly restoring power. Traditional techniques of
inspection, including foot patrol and helicopter-assisted surveys, have typically been used,
which are cumbersome, expensive, and potentially hazardous. Recently, drone technologies
have been introduced for inspections which are better than the conventional techniques
but it introduces new issues related to operations, flying time, and mission planning. If
we could conduct grid lines surveillance using satellite imagery this could be a substantial
contribution. There are a few studies that have addressed the application of performing
grid inspection using image analysis techniques on satellite data.

3.1 Literature Survey

A thorough literature survey was carried out to discover potentially relevant studies. The
databases incorporated in the primary literature survey consisted of ACM Digital Library,
IEEE Xplore and Google Scholar. Since, the concept of using image analysis and deep
learning model on satelite data is relatively new, so those studies were particulary considered
which were conducted recently in past seven years. Additionaly, for the sake of credibility
studies having decent number of citation were given preference. Keywords were used to
narrow down the search and find the most relevant articles.

3.1.1 Image Analysis, Satellite Data and Grid Lines Inspection

This section presents a number of studies that have investigated the application of power
line inspection using image analysis techniques on satellite data.
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Table 3.1: Summary of Database Search Results-1
Database Keywords No. of Matches

ACM Digital Machine Learning, 1
Library Satellite Images,
Power line
Inspection

TEEE Xplore Machine Learning, 2
Satellite Images,
Power line
Inspection

Google Scholar Machine Learning, 6
Satellite Images,
Power line
Inspection

A Review of Vegetation Encroachment Detection in Power Transmission Lines
using Optical Sensing Satellite Imagery

This study by F. M. E. Haroun et al. focuses on monitoring vegetation encroachment
along the power lines corridor using satellite images.[16] They state the importance of
vegetation monitoring alongside power lines. The most commonly used strategies for
detecting vegetation using satellite pictures are the object-based detection method, the
Vegetation Index-based method, Stereo matching-based techniques, and others.

Vegetation monitoring in power line
corridor right-of-way using satellite
images

\ A

VerEten Object Stereo
y Detection Matching ML Based
Index Based
Based Based

Figure 3.1: Techniques for Vegetation Encroachment Detection Image credit: [16]

The current detection approaches rely on manually setting threshold values, which
makes it impossible to detect vegetation in varying resolutions and testing situations in a
dynamic manner. Deep Learning, on the other hand, can be quite effective in detecting
several objects in satellite photos with high classification accuracy. This opens the door to
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a possible option for monitoring vegetation encroachment in power line corridors.

An intelligent identification and acquisition system for UAVs based on edge
computing using in the transmission line inspection

This research proposes an intelligent acquisition system for UAVs used in transmission line
inspection, designed to automate the image collection process and reduce manual PTZ
camera control reliance.[15] The system comprises of front-end edge computing detection
module using Single Shot Multibox Detector algorithm as well as Pan Tilt Zoom camera
control module. Experimental results demonstrate substantial improvements in recognition
accuracy, with an overall success rate of 73% for identifying transmission line equipment. By
integrating cutting-edge technologies such as edge computing and the SSD algorithm, the
system streamlines transmission line inspections, enhancing their efficiency and precision.
The findings contribute to the field of UAV-based inspection systems, highlighting the
potential of automated image acquisition techniques in revolutionizing transmission line
inspections.

Automated Power Lines Vegetation Monitoring Using High-Resolution Satellite
Imagery

This research by M. Gazzea et al. focused on vegetation survelliance using satellite images.
[26] The research was carried out a power distribution system operator (DSO) in Norway’s
western region. It highlights that whenever vegetation gets in the way of electrical lines,
it poses a threat to people’s safety, the economy, and the envi-ronment. LiDAR scans
performed by helicopters or drones are commonly used for vegetation monitoring. If a
large transmission or distribution business performs Li-DAR-based line monitoring, it is
usually done seldom, once every 5 to 10 years. The cost of satellite imaging has decreased
dramatically in recent years as launching prices have decreased and the number of satellites
and mini-satellites has increased. Using high-resolution satellite photos, this research
presents a system for monitoring vegeta-tion near power lines. It’s a hybrid of a supervised
machine learning method with a deep unsupervised architecture. A geolocation map for
vegetation-related risks near power lines is the result of the proposed approach.

21



CHAPTER 3. RELATED WORK

N Data Preprocessing Semi-Supervised Learning Vegetation Risk Mapping

e

Fe

N e

Supervised
Segmentation

Unsupervised
Segmentation

Accuracy

evaluation [JELTEHRG]
iy AWareness

along Power-Lines

Manual Labeling gl g j—

Ground-Truth Generation

Vegetation Status:
1. Negligible

2. Minar
3. Maderate
4. Severe

‘;TA A_. Th !
D projection 4 ] P 31 \
| 2 ‘:’! ‘
. i
| Trees (white)
. no trees (black] [ Tree Density Index
= - Map

Ground-truth

Figure 3.2: Overview of Proposed Algorithm for Vegetation Monitoring Image credit: [26]

The framework can be separated in different blocks: Data Pre-processing Block
where labelling of training and testing of data is performed. Semi-supervised consist-
ing of supervided and unsupervised segmentation. Supervised Image Segmentation Block
extracting texture features, spectral features, and a Gaussian kernel. A fully convolutional
neural network (FCN) extracts features, and a superpixel refinement method self-trains the
model in the Unsupervised Segmentation Block. They evaluated the picture segmentation
method for a power grid in western Norway using aerial LiDAR. According to preliminary
findings, this method can correctly identify vegetation danger zones in this area with
an accuracy of 84 percent. In 92 per-cent of situations, no-risk areas are appropriately
identified. These preliminary find-ings show that this satellite-based architecture has a lot
of promise. approach.

Aerial video inspection of greek power lines structures using machine learning
techniques

Pioneering research investigates the use of unmanned aerial vehicles (UAVs) equipped with
camera sensors, coupled with deep learning algorithms, to automate and enhance power
line inspections.[29] Key attention is given to the fine structure of power lines, with a focus
on an effective deep learning architecture capable of segmenting these thin structures and
reducing background noise. The study found that Deep Neural Networks (DNNs) using
dilated convolutions perform impressively, particularly the D-LinkNet architecture. Two
public datasets, representative of urban and mountainous settings, were utilized for training,
and tests were conducted on videos from real UAV flights in challenging environments. To
overcome the limitation of small training datasets, data augmentation techniques were
used. The study underscores the significance of dilated convolutions in maintaining image
resolution, which is essential for power line structures. D-LinkNet outperformed other
architectures across different datasets, showing higher precision and recall. This research
showcases the potential of UAVs and deep learning in power line inspection, with promising
implications for real-time fault detection and alerts in future research, thereby augmenting
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the safety and efficiency of power line inspections.

Automatic autonomous vision-based power line inspection: A review of current
status and the potential role of deep learning

V.N. Nguyen et al. examine existing strategies for automated electrical line inspection and
the possible use of deep learning.[10] The benefits and cons of helicopter-assisted inspection,
climbing robots inspection, foot patrol inspection, automated helicopter-assisted inspection,
and unmanned aerial vehicle (UAV) inspection are examined.

The main tasks of an inspection are mapping and inspecting power line components,
monitoring vegetation encroachment, detecting and measuring icing, and monitoring
disasters. Synthetic aperture radar pictures, optical aerial images, optical satellite images,
ultraviolet images, airborne laser scanner data, thermal images, land-based mobile mapping
data, and unmanned aerial vehicle data are all conceivable inspection data sources. They
address related studies briefly and critique them, with a particular emphasis on navigation
and inspection using UAV and optical imaging. They discovered that no completely
automated autonomous vision-based inspection system capable of detecting a wide range of
faults has been developed successfully. Deep learning vision-based algorithms for navigation
and inspection, as well as their difficulties and potential solutions, are reviewed.

The authors propose to combine GPS waypoints-based, pole-detection-based and power-
line detection-based navigation with an autopilot in order to create a hybrid system. To
detect faults with varying shapes, sizes, and conditions (e.g. cracked insulators and rotten
poles), (i) use multistage objects detection, classification, segmentation pipelines. (ii), use
contextual information to enhance fault detection performance (e.g. eliminating invalid
faults); and (iii), combine multiple data sources to detect complex faults (e.g. cracked
insulators and rotten Poles).

Figure 3.3: Detection of different components of a utility pole Image credit: [10]
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The Future Application of Transmission Line Automatic Monitoring and Deep
Learning Technology Based on Vision

The paper under review offers an intensive exploration of automatic vision monitoring
technology as an efficient and safer alternative to traditional manual and helicopter-assisted
methods for monitoring power transmission lines and distribution grids.[14] The authors
dissect existing automatic vision monitoring systems, highlighting their strengths and
weaknesses. In response to the identified shortcomings, a fresh scheme for automated
transmission line vision monitoring is proposed, grounded on optical images and deep
learning for data analysis. Deep learning algorithms such as SSD, fast R-CNN, YOLO,
R-FCN, and ResNet are highlighted for their impressive target detection and classification
capabilities. Furthermore, DPN and Mask R-CNN are pointed out for their semantic
segmentation capabilities when coupled with traditional background removal techniques.
Despite the potential of deep learning in this domain, the paper acknowledges challenges
such as scarcity of training data, ineffective detection of small targets, and complexities in
detecting transmission lines in complex backgrounds. To combat these, the authors suggest
image processing techniques, localizing region of interest in images, and a comprehensive
scheme of multiple line detection methods, respectively. Ultimately, this study paints a
hopeful future for deep learning-based automatic vision monitoring of power transmission
lines while providing solutions to potential roadblocks.

Vision-based autonomous navigation approach for unmanned aerial vehicle
transmission-line inspection

The research presents an autonomous navigation approach for Unmanned Aerial Vehicles
(UAVs) inspecting electricity lines.[8] A perspective navigation model is used in the strategy
to improve 3D direction perception and safety during inspection. For transmission tower
detection, the system employs a Faster Region-Based Convolutional Neural Network (Faster
R-CNN) in conjunction with Kernelized Correlation Filters (KCF). Fully Convolutional
Networks (FCNs) are also utilized for transmission line extraction, which is critical for
estimating flight direction via the vanishing point (VP). The method also considers instances
in which a VP is not present. The suggested method’s usefulness is demonstrated by
experimental findings in a practical context, marking the first time a transmission tower-
based navigation approach has been presented and implemented. However, the authors note
that keeping a safe distance from transmission lines and traversing more complex situations
may demand the usage of GPS. Future work will focus on establishing a transmission-line
tracking algorithm and an online transmission-line fault diagnosis system.

A survey of intelligent transmission line inspection based on unmanned aerial
vehicle

The article provides a comprehensive survey of intelligent transmission line inspection
using unmanned aerial vehicles (UAVs).[33] It outlines the development of this practice,
its current processes, and potential challenges and future solutions. The process involves
integrated navigation via differential GPS information from an RTK(Real-Time Kinematic)
base station to select and calculate patrol points, followed by path planning, trajectory

24



3.1. LITERATURE SURVEY

tracking, and finally, fault detection and diagnosis using images captured by the UAV and
intelligent algorithms. The survey identified several challenges: improving autonomous
navigation technology and obstacle avoidance, enhancing the stability and accuracy of
trajectory tracking, expanding fault detection beyond insulators, implementing advanced
image processing technology for small equipment detection, handling strong electromagnetic
interference around high voltage lines, and improving UAV flight endurance. Despite the
challenges, the study concludes that intelligent power inspection is a long-term development
process requiring multi-disciplinary cooperation. The increasing application of UAVs in
this area is expected to remain a research hotspot for a significant period.

Review of data analysis in vision inspection of power lines with an in-depth
discussion of deep learning technology

The article provides a thorough review of current literature and challenges in the field of
power line inspection data analysis using unmanned aerial vehicles (UAVs).[17] The main
data sources for this process include image data and non-image data (mainly airborne laser
scanner (ALS) data). The paper focuses more on image data, particularly visible images
due to their prevalence, practicality, flexibility, low-cost, and high-quality acquisition. The
authors gave an in-depth overview of deep learning approaches and their application in
this industry, including the use of current frameworks, extracting deep features, network
cascading, resolving data scarcity, and domain knowledge-based enhancements. The paper
also contains a proposed deep learning-based system for inspection data analysis, which
covers data preparation, component detection, fault diagnosis, and model training and
optimization. The authors finish the work by outlining future research directions, such
as dealing with data quality issues, small item detection, embedded applications, and
establishing evaluation baselines.
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3.1.2 Dataset and Land Cover Semantic Segmentation

Table 3.2: Summary of Database Search Results-2

Database Keywords No. of Matches
ACM Digital ISPRS, land 1
Library cover  semantic
segmentation
TEEE Xplore ISPRS, land 4
cover  semantic
segmentation
Google Scholar ISPRS, land 7
cover  semantic
segmentation

Semantic Segmentation in Aerial Images Using Class-Aware Unsupervised
Domain Adaptation

This research presents an unsupervised domain adaptation (UDA) framework for deep
neural network-based semantic segmentation of aerial imagery.[21] By learning class-aware
distribution discrepancies between the source and target domains, this innovative approach
overcomes the issue of domain shift, a typical problem in aerial photographs due to major
visual appearance changes. On the target domain, entropy minimization is also used
to generate high-confidence predictions. In comparison to prior methods, the unique
strategy, which incorporates class-aware distribution alignment and entropy minimization,
is non-adversarial, simpler to train, and requires less parameters for training.

Fxperimental results demonstrate that this method outperforms the current state-of-
the-art methods on the ISPRS segmentation challenge dataset. Importantly, the proposed
method demonstrates significant improvements in the segmentation of hard-to-detect
objects. The paper indicates that this unique strategy of class-wise distribution alignment
paired with entropy minimization increases domain adaption performance for semantic
segmentation in aerial photos significantly. The authors propose that this work be extended
to semi-supervised learning scenarios using a small set of labeled data.
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Figure 3.4: Proposed network architecture Image credit: [21]

A Comparison of Deep Learning Architectures for Semantic Mapping of Very
High Resolution Images

The article conducts an in-depth comparison of advanced deep learning segmentation
architectures used for semantic mapping in high-resolution aerial images.[9] The authors
specifically test and analyze models such as PSPNet, GCN, DUC, FCN, U-Net, and
SegNet using the ISPRS Potsdam dataset. These models were evaluated based on their
ability to conduct semantic segmentation of the data, with image patches and a series of
augmentations applied to the dataset to ensure accurate analysis. The AdaDelta optimizer
and a 2D cross-entropy loss function with median frequency balancing were used for model
training. The results showed that the DUC model achieved the best mean F1 score of 88.2%
and mloU of 79.3%, though performance was closely followed by the PSPResNet50 and
SegNet-VGG19 models. The authors concluded that models using dilated convolution such
as DUC are promising for handling multi-scale and large objects, while models using global
average pooling methods like PSP could be beneficial for detecting smaller objects. The
study was the first of its type, concentrating on distant sensing semantic mapping with a
variety of leading deep learning architectures from the most recent Pascal VOC competition.

CTMFNet: CNN and Transformer Multiscale Fusion Network of Remote
Sensing Urban Scene Imagery

The research investigates the possibilities of Convolutional Neural Networks (CNN) and
Transformers in the semantic segmentation of remotely sensed urban scene photos.[34]
The researchers suggest a CNN and Transformer Multiscale Fusion Network (CTMFNet)
with a dual backbone attention fusion module (DAFM) for combining local and global
context information, as well as a multilayer dense connection network (MDCN) to bridge
the semantic gap between scales. Their experiments using the International Society of
Photogrammetry and Remote Sensing (ISPRS) Vaihingen and ISPRS Potsdam datasets
show that their method outperforms current methods. The suggested method, however,
has only been validated for semantic segmentation of remotely sensed urban scene images,
with future enhancement plans to accommodate more distant sensing vision tasks.
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Aerial Image Semantic Segmentation Using Spatial and Channel Attention

In the study, A new land cover categorization approach is proposed that makes use of spatial
and channel attention inside an Encoder-Decoder network structure.[13] This technique
employs Deep Convolutional Neural Networks (DCNNs), ResNet_ v2-101 as the feature
extractor, Atrous Spatial Pyramid Attention (ASPA) as the context encoder, and a Spatial
Attention module for decoding. The ISPRS Potsdam 2D-Semantic Segmentation Challenge
Dataset was used to test the approach, which contains 38 hand-annotated aerial photos, 32
for training and 6 for testing. Subimages for training and testing were extracted using data
augmentation techniques. The performance metrics revealed that the proposed Spatial
and Channel Atrous Spatial Pyramid Attention Network (SC-ASPA-net) outpaced the
established Deeplab_ v3+ algorithm, exhibiting a 5% enhancement in mean Intersection
over Union (mloU).

Semantic Segmentation of Aerial Images With Shuffling Convolutional Neural
Networks

In the research, a novel method of performing semantic segmentation on aerial imagery using
shuffling Convolutional Neural Networks (CNNs) is proposed.[6] The paper introduces two
versions of the Shuffling CNNs (SCNNs): Naive-SCNN and Deeper-SCNN, both proficient at
detecting small objects. A Field-of-View (FoV) enhancement technique, suitable for various
networks, is proposed to improve predictions. The study leverages ISPRS Vaihingen and
Potsdam datasets to evaluate the proposed models, with performance gauged on F1-scores
across various categories. Results indicate that SCNNs significantly surpass baseline models
such as RDM and RDM-ASPP, chiefly by learning to upsample, thereby achieving smoother
and more accurate semantic segmentation. Particularly, SCNNs outperform RDMs by
more than 10% and 6% in detecting small objects for the Vaihingen and Potsdam sets,
respectively. The models also displayed considerable efficiency, with SCNNs notably faster
than FPL and NDFCN networks. The study introduces an ensemble method that improves
the overall precision by averaging the score maps from different model checkpoints, leading
to further enhancements in performance. However, while the Atrous Spatial Pyramid
Pooling (ASPP) was tested within the SCNNs, its improvement was found to be limited.

Land-Use Mapping for High-Spatial Resolution Remote Sensing Image Via
Deep Learning: A Review

The review article, discusses the use of deep learning (DL) techniques in land-use mapping
(LUM) with high-spatial resolution remote sensing images (HSR-RSIs).[25] It thoroughly
reviews different high spatial resolution datasets, various basic DL methods used in LUM,
and the performance of different models on the ISPRS Vaihingen and Potsdam datasets.
The methods reviewed include supervised, semi-supervised, and unsupervised learning
techniques, and both pixel-based and object-based approaches. They tested four state-of-
the-art architectures for semantic segmentation: SegNet, U-Net, FCN-32s, and FCN-8s,
all using VGG-16 as the backbone. The results suggest that DL-based LUM methods
have significantly improved land-use mapping for HSR-RSIs, with continued advancements
from semantic segmentation models. The encoder-decoder structures such as SegNet and
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U-Net were noted as particularly promising, and U-Net’s ability to train well with small
datasets was highlighted. However, the study identified challenges in handling interclass
homogeneity, small object segmentation, accurate edge segmentation, and insufficient
training labeled HSR-RSIs for semantic segmentation.

Supervised methods of image segmentation accuracy assessment in land cover
mapping

This article examines the present state of picture segmentation accuracy assessment and
future research needs in the context of land cover mapping.[7] From 2014 to 2015, the
authors evaluated literature from three major remote sensing publications, concluding
that while qualitative visual interpretation is often utilized, several quantitative methods
exist. The geometric and non-geometric categories of supervised methods are thoroughly
investigated. The authors disclose that the application of these approaches is still in its
early stages, owing to a lack of a solid basis in image segmentation accuracy assessment,
challenges in implementing the methods, and a lack of credible suggestions for method
selection. Key considerations for selecting methods are proposed, emphasizing application
goals, the relative importance of under- and over-segmentation errors, and the pros and cons
of the methods. The authors call for more exhaustive testing and comparison of supervised
methods in different contexts and a reevaluation of over- and under-segmentation error
concepts. They conclude that further research is needed to elevate the standard of image
segmentation accuracy assessment.

RAANet: A Residual ASPP with Attention Framework for Semantic Segmentation
of High-Resolution Remote Sensing Images

The article introduces an improved deep learning model, RAANet (Residual ASPP with
Attention Net), for semantic segmentation of high-resolution remote sensing images.[27]
RAANet aims to improve classification accuracy of land-use types, capitalizing on the
atrous-spatial pyramid pooling (ASPP) framework and incorporating an attention module
and residual structure to capture important semantic information and reduce network
complexity. The model was tested using the land-cover domain adaptive semantic
segmentation (LoveDA) and ISPRS Vaihingen datasets and compared against PSPNet,
U-Net, and class-wise FCN (C-FCN) models. The results showed RAANet, specifically its
convolutional block attention model (CBAM) variant, outperformed these models in terms
of mloU, mRecall, and mPrecision, producing higher prediction accuracy. Notably, the
mloU score of the LoveDA dataset and the ISPRS Vaihingen dataset was 2.94% higher
than DeeplabV3plus and 1.12% higher than C-FCN respectively.
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Figure 3.5: Structure of the RAANet Image credit: [27]

FRF-Net: Land Cover Classification From Large-Scale VHR Optical Remote
Sensing Images

The article presents a novel deep learning approach, called the full receptive field (FRF-
Net), for the classification of large-scale and very high-resolution (VHR) land cover from
optical remote sensing images.[18] Leveraging the ResNet-101 backbone, the FRF-Net
uses a self-attention mechanism to generate an ensemble feature that captures long-range
semantics and a fusion attention mechanism that integrates low-level and high-level features
to offer a refined semantic description for precise land cover mapping. The algorithm was
tested on two datasets, namely the GID and ISPRS, using several state-of-the-art deep
learning networks (Deeplab v3+, GCN, PSPNet, U-Net, and Seg-Net) for comparison. The
experiments included various data augmentation strategies and were evaluated on the mean
of classwise Intersection over Union (mIOU) and Pixel Accuracy (PA) metrics. The FRF-
Net outperformed other models on both datasets, achieving an mIOU of 66.71% and 64.17%,
and PA of 86.04% and 76.24% on the ISPRS and GID datasets, respectively. Crucially,
the FRF-Net offered these superior results at a lower computational cost compared to
competing models.

Transformer Meets Convolution: A Bilateral Awareness Network for Semantic
Segmentation of Very Fine Resolution Urban Scene Images

In the research paper, a Bilateral Awareness Network (BANet) is proposed to effectively deal
with the challenges in semantic segmentation from very fine resolution (VFR) urban scene
images.[24] The BANet contains two key components, a dependency path and a texture
path. The dependency path is designed based on ResT, a Transformer backbone with a
memory-efficient multi-head self-attention mechanism to capture long-range relationships,
while the texture path utilizes stacked convolution operations to capture fine-grained
details. The authors further devise a feature aggregation module with a linear attention
mechanism to fuse dependency features and texture features. To validate the effectiveness
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of BANet, comprehensive experiments were performed on three large-scale urban scene
image segmentation datasets, namely the ISPRS Vaihingen dataset, ISPRS Potsdam
dataset, and UAVid dataset. Results showed that the BANet outperformed the baselines,
achieving a 64.6% mean Intersection over Union (mloU) on the UAVid dataset. The
proposed method holds potential applications in urban planning, land cover classification,
autonomous driving, and other related urban applications.

Learning Aerial Image Segmentation From Online Maps

In this study, the authors investigate the challenge of acquiring enough annotated training
data for deep learning algorithms, such as convolutional neural networks (CNNs), used in
high-resolution aerial image segmentation.[5] They suggest using large volumes of readily
available data from legacy sources or crowd-sourced maps, despite their potential noise and
inaccuracies, as an alternative to manually labeling extensive datasets. The researchers
employed a leading CNN architecture designed for semantic segmentation of buildings and
roads in aerial images, and examined its performance when trained on various datasets,
including pixel-accurate ground truth from the same city and automatic training data
obtained from distant locations via OpenStreetMap. The outcomes highlight that the
volume of such extensive, public datasets can make up for their lower accuracy. Also,
training data covering multiple cities improved the model’s ability to generalize to new,
unseen locations. These findings advocate for the use of large-scale, "weakly” labeled
training data as a feasible approach to attain satisfactory performance and enhance the
generalization capability of models in aerial image segmentation tasks.

Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification

In the research paper the authors developed machine learning models utilizing a modified
U-Net structure for creating land cover classification maps from satellite imagery.[19] The
goal was to enhance the accuracy of existing land cover maps and aid in detecting land
cover changes. The study relied on two datasets, namely the BigEarthNet satellite image
archive and a self-curated set featuring a Sentinel2 image with a CORINE land cover map of
Estonia. The convolutional models performed admirably, exhibiting a high overall F1 score
of 0.749 on multiclass land cover classification with 43 possible image labels and indicating
high ToU scores for specific land cover classes such as forests, inland waters, and arable land.
The research also highlighted noise in the BigEarthNet dataset due to possible mislabeled
images, emphasizing the need for class-based analysis and accuracy measurement. The
paper achieved its objectives, setting a stage for future research directions like adjusting
classes for better segmentation results and considering the hierarchical structure of the
CORINE land cover classification to refine results.

3.2 Summary

The decision to use the Potsdam and Vaihingen satellite image datasets from the International
Society for Photogrammetry and Remote Sensing (ISPRS) was primarily influenced by the
findings of the article “Learning Aerial Image Segmentation From Online Maps” [5]. This
paper highlighted the advantages of using large-scale publicly available labels to replace a
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substantial part of the manual labeling effort while still maintaining satisfying performance.
The insights from this article guided the selection of these particular datasets, which come
with pre-labeled information about different land types.

In the choice of machine learning models - ResNet50, ResNet101, FC-ResNet50, VGG-
19, and UNetFormer - multiple articles underscored the effectiveness of these models for
image segmentation tasks. Specifically, research papers like “Deep Residual Learning for
Image Recognition” [3] and “Fully Convolutional Networks for Semantic Segmentation”
[2] illuminated the capabilities of ResNet and FC-ResNet architectures, respectively, in
handling high-dimensional data and achieving precise image recognition results. The usage
of VGG-19 was inspired by “Very Deep Convolutional Networks for Large-Scale Image
Recognition” [1], which showcased the model’s robustness in learning from large image
datasets. Lastly, the application of the UNet model stemmed from the understanding gained
from “Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification”
[19] about its effectiveness in handling semantic segmentation tasks, especially in the
context of aerial images.

After applying these models, their performances were compared through a statistical
lens, revealing the most accurate model for this specific task. This comparative analysis was
shaped by numerous scientific studies that emphasize the importance of proper evaluation
metrics in assessing the performance of machine learning models.
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Chapter 4

Experimental Setup

The experimental setup used for the study is fully described in this chapter.

4.1 Dataset Preprocessing

Potsdam and Vaihingen datasets were specially prepared for ISPRS(Semantic Labeling)
competition, consisting of aerial photos taken of German cities of Potsdam and Vaihingen
with associated ground truth data that labeled each pixel according to class.[32] The aim
is for algorithms that can accurately categorize these datasets using available ground truth
information.

4.1.1 Potsdam

In Potsdam, there were 38 patches in the data set (all of the same size), each of which is a
true orthophoto (TOP) that was taken from a larger TOP mosaic. Images were provided
as TIFF files with various channel compositions:

1. IRRG: 3 channels (IR-R-G)
2. RGB: 3 channels (R-G-B)

3. RGBIR: 4 channels (R-G-B-IR)

The size of each patch/image was 6000 x 6000, which was not suitable for training.
Some images were (5999, 5999) pixels, which had to be padded. 33 images were used for
training and 5 for testing. Each image was further divided into 400 small images of size 300
x 300. The pixels of each small image were divided by 255. It is a typical preprocessing
step in computer vision which helps in scalability of the data and enhances the efficiency of
machine learning algorithms. The number of classes in the dataset were 6 i.e ‘Impervious’,
‘Building’, ‘Low vegetation’, ‘Tree’, ‘Car’, and ‘Clutter’.
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Figure 4.1: Example of Dataset Image credit: [32]

4.1.2 Vaihingen

In Vaihingen, there were 33 patches in the data set. Each of which is a true orthophoto
(TOP) that was taken from a larger TOP mosaic. Images were provided as TIFF files with
various channel compositions:

1. IRRG: 3 channels (IR-R-G)
2. RGB: 3 channels (R-G-B)
3. RGBIR: 4 channels (R-G-B-IR)

The resolution of images in the dataset were of 2250x2569 and 1800 x 1919 pixels. The
different sized images were handled by resizing all the images to 2560 x 1920 pixels. 28
images were used for training, and 5 for testing. Fach image was further divided into 150
small images of size 256 x 128. Again, pixels of image were divided by 255, which enhances
performance of the model and the results can be more easily understood. The number of

classes in the dataset were 9 i.e ‘Powerline’, ‘Low vegetation’, ‘Impervious’, ‘Tree’, ‘Car’ ,
‘Fence’, ‘Roof’, ‘Facade’, and ‘Shrub’.

4.2 Deep Learning Algorithms

Following algorithms were used on both datasets i.e Potsdam and Vaihingen with the same
setting but both have different data pre-processing.

4.2.1 Resnet 101

Hyperparameter tuning was used to determine the optimal configuration of the ResNet
101 model for image classification. As a starting point for our tuning process, we selected
the initial parameters of a learning rate set at 0.0001, batch size 20, and Adam Optimizer.
The initial values were influenced based on previous experience. However, they were not
the final values. Keras Tuner’s hyperparameter tuning tool allowed us to test a wide range
of parameters, such as the learning rate and batch size. We also tested the optimizer type
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and number of epochs. Our goal was to maximize the validation Intersection Over Union
(IoU) of our model, our chosen evaluation metric.

These were not the final values. We tested hyperparameters such as the learning
rate and batch size. The optimizer type was also tested. Our goal was to maximize the
validation Intersection Over Union (IoU) of our model, our chosen evaluation metric. The
best results were achieved by the Adam optimizer when it was paired with the learning rate
of 0.001. We found that after several experiments, 30 epochs produced the best performance.

Hyperparameter tuning led to significant enhancements of model performance. The
final model configuration included a learning rate of 0.001, batch size of 8, Adam as the
optimizer, and training for 30 epochs.

4.2.2 Resnet-50

GeoPandas, Rasterio and Shapely were employed to manage data processing and model
training tasks efficiently in Python. For geospatial data processing tasks, Sklearn’s
train_ test_ split function played an integral part; its partition of dataset into training
and validation sets using train_ test_ split was essential as well. hbpy was utilized as
an additional safeguard against potential operational mishaps with weight-saving models
while TensorFlow provided crucial machine learning library support in constructing and
training machine learning models using TensorFlow’s well-established machine learning
library facilitating construction and training of machine learning models using TensorFlow’s
well-established machine learning library which helped in building and training machine
learning models with ease.

We created a parameter grid containing values for key hyperparameters, including batch
size, number of epochs, learning rate, network architecture and learning rate schedule. We
then utilized the Random Search Algorithm to exhaustively search through all possible
combinations of these parameters while simultaneously evaluating model performance
against an objective scoring metric such as accuracy or loss.

Cross-validating different parameter combinations allowed us to identify the optimal
set of hyperparameters with cross-validation using the Grid-Search algorithm, then using
cross-validation again we determined which set were performing best based on the highest
achieved performance metric score. These optimal hyperparameters included 32 batch size,
30 epochs, learning rate of 0.001, constant learning rate schedules, and data augmentation;
which allowed us to attain the best performance on the validation set.

4.2.3 VGG-19

Our TensorFlow-based image classification model training process involved extensive
hyperparameter tuning to achieve an ideal configuration. To begin the process, initial
parameters were established - such as learning rate of 0.0001 and batch size of 20 in
combination with Adam optimizer settings - that were not chosen arbitrarily, but were
determined based on past experience and commonly adopted practices in our field.
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Although these settings were used as the starting point for tuning, which was assisted by
Keras Tuner. Experimentation involved testing different hyperparameters such as learning
rate, batch size, optimizer type and configurations of convolutional and dense layers - with
the goal being to find an ideal combination that maximized validation Intersection over
Union (IoU), our chosen evaluation metric. Out of the various optimizers tested - SGD and
RMSprop among them - Adam Optimizer with a learning rate of 0.001 produced better
results.

We significantly improved the performance of the model through an iterative tuning
process. The final model was created using the Adam Optimizer, with a learning rate
0.001, batch size 8, and optimal configurations of convolutional and dense layer.

4.2.4 FC-Resnet-50

In our experiment, we optimized a Fully-Convolutional Network (FCN), which was based
on ResNet architecture. Several trials were conducted for hyperparameter optimization to
find the best values for key parameters. We explored a search space systematically using
Keras Tuner to optimize the model’s performance.

The optimal learning rate was identified as 0.001, which struck a balance between
model stability and learning speed. Adam was the most efficient and effective optimizer
for our model and data. DataGenerator’s batch size was tweaked in order to optimize the
tradeoff between computational efficiency, and generalization of the model.

Hyperparameters for the ReduceLROnPlateau callback were adjusted in order to adapt
effectively to the model’s learning progression. We decided on decreasing learning rate by
50% when validation loss didn’t improve for three epochs; minimum learning rate set at
0.000001; optimal number of epochs determined at 30; this allowed the model to identify
patterns without overfitting.

4.2.5 Unet-Former

Google Colab’s computational capabilities were used in this experiment. The first step was
to install Conda to manage library dependency. Pip then installed specific libraries like
Rasterio and Pillow, while Conda enabled the installation of PyTorch-related packages.
Google Drive was mounted in Colab to enable direct data access. The GeoSeg repository
from GitHub, which contains network architectures, was cloned and Datal.oader was
installed for efficient data handling.

In order to meet the requirement, GeoSeg installed additional Python libraries. Due
to the large size of the image, the patch-based approach was chosen as the best strategy.
To achieve more efficient processing during both training and validation, smaller patches
from large images were generated using the potsdam_ patch_ split.py script, splitting off
sets for this purpose. To train the model, UNet-Former was used in conjunction with a
configuration file specific to the Potsdam dataset. Once training began, metrics like F1
score, overall Accuracy (OA) and mean intersection over Union (IoU) were used to evaluate
the performance of the model. These measurements provide insight into the segmentation
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capability of the model.

Inference was then performed using the UNet-Former trained model on a large-scale
image. The predictions were then saved and compared visually by loading the predicted
masks and the ground truth masks in a separate database. This allowed a qualitative
evaluation of its performance.
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Chapter 5

Results

This chapter is devoted to discussing the findings and is organized around the research
questions established in the introduction chapter.

5.1 Results on Potsdam dataset

This table displays the performance of several algorithms on the Potsdam dataset, which
is another often used benchmark for measuring the performance of algorithms in semantic
segmentation. The table depicts the mean intersection over union (IOU), F1 score, and
accuracy, as well as the performance for each specific class.

Table 5.1: Performance Comparison on Potsdam dataset

ResNet- | ResNet- | FC VGG-19 | UNetFormer
101 50 ResNet-
50

Impervious | 0.844 0.844 0.817 0.840 0.846
Building 0.822 0.822 0.895 0.900 0.899
Low 0.744 0.773 0.798 0.833 0.798
vegetation
Tree 0.698 0.698 0.814 0.724 0.717
Car 0.924 0.924 0.932 0.931 0.835
Clutter 0.703 0.704 0.769 0.723 0.669
Mean IOU | 0.543 0.543 0.629 0.825 0.790
F1 score 0.765 0.765 0.821 0.809 0.880
Accuracy | 0.775 0.770 0.846 0.820 0.888
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UNetFormer is the top performing algorithm in the table, with the highest F1 scores
and accuracy of all methods. UNetFormer excels in the majority of classes. It has strong
Impervious and Building ratings. ResNet-101, ResNet-50, and UNetFormer all do well
in most classes but have lower total results. FC ResNet-50, VGG-19, and ResNet-101 all
perform worse overall and in several classes.
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Figure 5.1: Performance Analysis on Potsdam
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5.2 Results on Vaihingen dataset

This table shows the results for the Vaihingen dataset. The table displays accuracy for

each class, the F1 score, accuracy, and average intersection over union (IOU).
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Table 5.2: Performances of Algorithms on the Vaihingen dataset

ResNet- | ResNet- | FC VGG- UNetFormer
101 50 ResNet- | 19
50

Powerline 0.997 0.997 0.998 0.998 X
Low 0.881 0.487 0.420 0.704 0.770
Vegetation
Impervious | 0.942 0.750 0.660 0.917 0.891
Car 0.389 0.363 0.412 0.352 0.724
Fence 0.98 0.975 0.998 0.989 X
Roof 0.950 0.725 0.835 0.851 0.932
Facade 0.975 0.995 0.997 0.979 X
Shrub 0.995 0.997 0.998 0.989 X
Tree 0.885 0.709 0.630 0.858 0.792
Mean 10U | 0.726 0.455 0.402 0.656 0.800
F1 score 0.928 0.799 0.743 0.893 0.892
Accuracy | 0.927 0.787 0.730 0.893 0.920
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Figure 5.2: Performance Analysis on Vaihingen

Among the algorithms in the table and graph, UNetFormer has the highest accuracy, F1
score, and mean IOU. UNetFormer excels in the majority of classes. It has high Powerline
and Low Vegetation ratings. ResNet-101, VGG-19, and VGG-19 also perform well in some
classes but score lower than UNetFormer.

5.3 Comparison on Potsdam dataset

On the Potsdam dataset, Following table compares the performance of various models,
including UNET Former ResNet-101 ResNet-50 VGG-19 and FC ResNet-50. The t-test
findings are used to make the comparison. This is a statistical strategy for comparing two
distinct samples or groups.

In each row, the t-value reflects how much the UNET Former mean performance differs
from the other models. The larger the t value, the bigger the gap in mean performance
between the two groups.

Table 5.3: Comparison of UNetFormer with other models on the Potsdam dataset
ResNet-101 | ResNet-50 VGG-19 FC ResNet-50
T-Value 24.47 24.47 16.62 15.41

P < 0.0001 < 0.0001 < 0.0001 < 0.0001

According to the table above, the t value is large in all comparisons. It ranges from
15.41 and 24.47. This shows that UNET Former outperforms the other models on the
Potsdam dataset. This table compares the performance of UNET Former, ResNet-50, and
VGG-19 on the Vaihingen dataset. The p-value (0.0001) is relatively low, indicating that
the differences observed are statistically significant. This comparison is based on the t-test
results.
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5.4 Comparison on Vaihingen

On the Vaihingen dataset, this table compares the performance of several models, including
UNET Former ResNet-101 ResNet-50 VGG-19 and FC ResNet-50. This comparison is
based on the t-test results. The t-test is a statistical procedure used to compare two
independent samples or groups.

Table 5.4: Comparison of UNetFormer with other models on the Vaihingen dataset

ResNet-101 | ResNet-50 VGG-19 FC ResNet-
50
T-Value 9.643 3.6 29.6 102.5
P < 0.0001 < 0.0001 < 0.0001 < 0.0001

The table demonstrates that the t value is large in all comparisons. It ranges between
9.643 and 102.5. This suggests that UNET Former performs much better than the other
models on the Vaihingen dataset. In all comparisons, the p value is quite low (0.0001).
This means that the differences detected are statistically significant.

We can see, in particular, that FC ResNet-50 is the one with the highest t-value.
This indicates the biggest difference in performance when compared to UNET Former.
ResNet-50, VGG-19 and UNET Former also have a significant difference in performance.
ResNet-101 shows the lowest t-value indicating the least difference in performance when
compared to UNET Former. However, it is still significant with a 0.0001 value.

5.5 Performance of ResNet-101 Models on Potsdam Dataset:
RGB And IRRG

The table below shows the performance of two ResNet-101 models using the Potsdam
dataset. The first ResNet-101 is trained using RGB images while the second ResNet-101 is
trained with RGB and infrared images.

42



5.6. COMPARISON OF RESNET-101 ON RGB AND IRRG

Table 5.5: Performance comparison of algorithms on the Potsdam dataset

Performances of Algorithms on Potsdam dataset
ResNet-101 | ResNet-101
(RGB) (IRRG)
Impervious | 0.825 0.858
Building 0.841 0.939
Low 0.744 0.807
vegetation
Tree 0.740 0.723
Car 0.931 0.949
Clutter 0.695 0.820
Mean IOU | 0.563 0.632
F1 score 0.775 0.854
RGB vs IRRG
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Figure 5.3: Analysis of Resnet-101 on RGB and IRRG Potsdam datset

In the table and graph, it is clear that the ResNet-101 model (IRRG), in terms of IOU
and F1 scores, outperforms ResNet-101 model (RGB). The ResNet-101 model (IRRG), in
comparison to the ResNet-101 model (RGB), achieves higher scores on the Impervious,
Low Vegetation, Car and Clutter classes. ResNet-101’s (RGB model) performs better in
the Tree class than ResNet-101’s (IRRG model). The ResNet-101 model’s mean IOU score
and F1 scores are higher than the ResNet-101 model (RGB), indicating the ResNet-101
model (IRRG), is better at segmenting the Potsdam dataset.

5.6 Comparison of Resnet-101 on RGB and TRRG

The following table compares two ResNet 101 models that were trained on the Potsdam
dataset. One model uses RGB images, and the other RGB and infrared images (IRRG).
The comparison is based upon the results of the t-test. This is a statistical method used to
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compare two independent samples or groups.

Table 5.6: Comparison of ResNet-101 RGB on the Potsdam dataset

ResNet-101

IRRG
T-Value 2.80114
P-Value 0.01897

The table shows that the t-value for ResNet-101 RGB is 2.80114. This indicates a
statistically significant but small difference in performance. The p value is 0.01897 which
is less than 0.05 and indicates that the observed performance difference is statistically
significant.
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Chapter 6

Discussion

The discussion of the findings from the Results chapter is included in this chapter. It is
organized in accordance with the introduction chapter’s research questions.

6.1 Performance of Modern Neural Networks in Land Cover
Segmentation

The performance of UnetFormer (a deep learning-based technique) was compared to that of
typical unsupervised picture segmentation techniques in this study. The research also looked
into how UnetFormer’s performance differs based on the type of image or dataset being
studied. UnetFormer will be compared to regularly used deep-learning-based approaches
such as ResNet-50, VGG-19, and FC ResNet-50.

Techniques based on deep learning are becoming more popular in sectors such as remote
sensing, computer vision, and medical imaging. The study discovered that UnetFormer
outperformed typical unsupervised techniques, ResNet-101 and ResNet-50, in terms of
accuracy and F1 scores. The study also emphasizes the need to select the segmentation
technique based on the type of image and dataset being studied. The study’s findings may
be useful to researchers and practitioners in selecting the optimum picture segmentation
method for their application.

Even though UnetFormer has been identified as the most effective model, other
architectures or methods that have not yet been explored may produce better results. The
exploration of the integration of infrared was limited to one source. This leaves the question
of the performance improvements that can be achieved by using other data types open. The
results may also vary depending on the datasets used, which is another factor that requires
further investigation. In looking back at the research process, it was found that the choice
of deep learning architecture and the inclusion of infrared images were major influences on
performance. These insights will be valuable in future efforts to optimize the performance
of such tasks. Future improvements may incorporate advanced hyperparameter tuning
methods such as grid searching, random searching, or Bayesian Optimization to further
enhance the model’s performance.
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6.2 Effect of Inclusion of Infrared Data on Modern Deep
Learning Architectures’ Performance

This study looked at how adding infrared information to ResNet-101 models affected image
segmentation accuracy and efficiency, as well as how using both RGB images and IRRG
affected image segmentation accuracy and efficiency. The high-resolution Potsdam dataset
was used to test the ResNet 101 models. Individuals who were only trained with RGB
images outperformed those who were only trained with IRRG images, earning higher IOU,
F1, and accuracy values. ResNet-101 had a median IOU of 0.632 and an F1 of 0.854 after
being trained on IRRG pictures. It also had an accuracy of 0.868.

Incorporating infrared (IR) data into deep learning networks can increase their performance
in remote sensing and image processing greatly. Thermal information captured by IR
data, allows the identification of temperature fluctuations and patterns, which can be
critical in a variety of applications such as environmental monitoring, agricultural, and
infrastructure inspection. This data can aid in the detection of hotspots or anomalies,
assuring the dependability and safety of important systems. The combination of IR and
visible spectrum data can improve object detection and classification tasks, resulting in a
more complete picture of the scene. IR data can also resolves restrictions associated with
visible spectrum data alone, especially under difficult lighting circumstances. Additional
convolutional layers and pooling levels will be added at each block of convolutional and
pooling levels, rising as feature mappings pass through the network this helps the model
to learn complicated parts of an image while providing predictions based on features learned.

Deep learning models can give more accurate and resilient solutions for remote sensing,
surveillance, and infrastructure monitoring applications by harnessing the capabilities of
both spectra. Using IR data opens up new avenues for enhanced analysis and insights,
resulting in better decision-making processes and assuring the effectiveness and reliability
of important systems and activities.

According to the findings, integrating IR data can be a useful strategy for increasing
deep-learning model performance in semantic segmentation. utilizing IRRG images is more
efficient in terms of accuracy, computing time, and efficiency than utilizing RGB images.
These findings have far-reaching implications for a variety of applications requiring high
accuracy and efficiency in semantic segmentation tasks. Our study adds to the literature
on the use of alternative information sources, such as IR images, to improve ResNet-101’s
performance in semantic segmentation tasks.
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Chapter 7

Conclusion

This study reviewed the performance of deep-neural architectures in land-cover semantic
segmentation tasks, focusing on UnetFormer ResNet-101 ResNet-50 FC ResNet-50 and
VGG-19. These models were assessed for their performance in land cover segmentation as
well as the effects of integrating infrared pictures. According to the findings, UnetFormer
was the best model in terms of many criteria. Infrared data was also integrated into ResNet-
101, which improved performance. This underscores the significance of multidimensional
data for such jobs. These findings are critical because they demonstrate the power of
deep-learning models for semantic segmentation. Potential uses include remote sensing
and medical imaging.

The study also addressed the research objectives by providing a comparison of the
performance and effects of infrared data in land cover segmentation tasks. These results
set the stage for future explorations that may investigate the integration of different types
of data, or the use novel deep learning architectures in order to improve the performance
of semantic segments. This research has a significant impact on the field of semantic
segmentation, enhancing the literature and providing practical implications to industry
practitioners. This study, which concludes this article, has demonstrated the effectiveness
of UnetFormer for land cover segmentation tasks. It also highlighted the potential to use
infrared images to improve model performance. This study could be viewed as a major step
forward in the domain of semantic segmentation and opens the door for future research to
optimize performance.
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