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Abstract: We propose a framework for fitting multivariable fractional polynomial models as special
cases of Bayesian generalized nonlinear models, applying an adapted version of the genetically
modified mode jumping Markov chain Monte Carlo algorithm. The universality of the Bayesian
generalized nonlinear models allows us to employ a Bayesian version of fractional polynomials in
any supervised learning task, including regression, classification, and time-to-event data analysis.
We show through a simulation study that our novel approach performs similarly to the classical
frequentist multivariable fractional polynomials approach in terms of variable selection, identification
of the true functional forms, and prediction ability, while naturally providing, in contrast to its
frequentist version, a coherent inference framework. Real-data examples provide further evidence in
favor of our approach and show its flexibility.

Keywords: Bayesian model selection; MCMC; nonlinear effects

1. Introduction

Linear regression models are arguably among the most popular tools in statistics,
especially their generalized versions (GLM). As the name suggests, they model a (func-
tion of a) response variable with a linear function of the predictors. While imposing a
linear structure has many advantages, including the reduction in the variance, often it
may not adequately reflect the functional form of the association of a predictor with the
response and may lead to nonlinear structures of the residuals, which indicates a violation
of the model assumptions and inappropriateness of the standard asymptotic inference
procedures. For example, mis-specifying a truly nonlinear functional form of the predictor–
response relationship as linear may result in biased estimates of the regression coefficients,
a non-constant variance, and finally in a wrong interpretation of the modeling results.
Heteroscedasticity can still be a problem in Bayesian linear regression models. The reason
is that the posterior distributions of the regression coefficients depend on the likelihood,
which in turn depends on the residuals. Residuals with non-constant variance may affect
the shape of the likelihood and lead to incorrect posteriors for the regression coefficients.

Nonlinearities in the predictor–response relationship can be adequately captured by
flexible modeling approaches such as splines, often used within the framework of (general-
ized) additive models. Although powerful and effective, these approaches have the strong
drawback of making the model interpretation hard. Roughly speaking, these methods
do not supply regression coefficients that can be easily interpreted. For this reason, it is
often convenient to transform the predictors with specific global functions, for example,
by taking the logarithm or the square root, and then assuming a linear relationship of the
transformed predictor with the response variable. In a linear model, the corresponding
regression coefficient will then have the familiar interpretation of “expected difference
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in the response variable for a unit difference of the—now transformed—predictor”. Fol-
lowing this way of thinking, Royston and Altman [1] introduced the fractional polyno-
mial approach. The basic idea is to select a transformation of a predictor x from a set of
eight possible functions (x−2, x−1, x−0.5, log x, x0.5, x1, x2, x3), which is then used as an inde-
pendent variable in the linear model. This set corresponds to a set of powers of polynomials
{−2,−1,−0.5, 0, 0.5, 1, 2, 3} for the Box–Tidwell transformation, where x0 := log(x) [2].

Many refinements have been considered, including combinations of these functions’
fractional polynomials of order d (see Royston and Altman [1]), a multivariable approach [3],
a modification to account for interactions [4,5], and others. In particular, the fractional
polynomials of order d, hereafter FP(d), allow multiple transformations of the predictor
such that, for a simple linear model,

E[Y|X] = β0 + β1Xp1 + · · ·+ βdXpd

where p1, . . . , pd belong to {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. By convention, the case that pj′ = pj

for any j 6= j′ indicates a repeated power with transformations Xpj and Xpj′ log(X). While
in theory fractional polynomials of any order d are possible, in practice only fractional
polynomials of order 1 or 2 have typically been used ([5], Ch 5.9).

Multivariable fractional polynomials are the natural extension of the procedure to
multivariable regression problems. In this case, each predictor X1, . . . , XJ receives a specific
transformation among those allowed by the order of the fractional polynomial. While
conceptually straightforward, this modification complicates the fitting procedure due to
the high complexity of the model space. Sauerbrei and Royston [3] proposed a sort of
back-fitting algorithm to fit multivariable fractional polynomial (MFP) models. Herein,
all variables are first ordered based on the significance of their linear effect (increasing
p-values for the hypothesis of no effect). Then, variable by variable, a function selection
procedure (FSP) based on a closed testing procedure with likelihood ratio tests is used
to decide whether the variable must be included or can be omitted and if it should be
included with the best-fitting second-order fractional polynomial, with the best-fitting
first-order fractional polynomial, or without transformation. The FSP is performed for
all predictors, keeping the remaining fixed (as transformed in the previous step) for a
pre-specified number of rounds or until there are no differences with the results of the
previous cycle.

Limited to Gaussian linear regression, Sabanés Bové and Held [6] implemented an ap-
proach to MFP under the Bayesian paradigm. Based on hyper-g priors [7], their procedure
explores the model space by MCMC and provides a framework in which inferential results
are not affected, for example, by the repeated implementation of likelihood-ratio tests. The
restriction to Gaussian linear regression problems highly limits the applicability of this
procedure. Moreover, while computationally attractive, the MCMC algorithm may struggle
to efficiently explore the complicated model space induced by highly correlated predictors.

To address these drawbacks, here, we propose a novel approach based on the char-
acterization of the fractional polynomial models as special cases of Bayesian generalized
nonlinear models ([8], BGNLM) and the implementation of a fitting algorithm based on
the genetically modified mode jumping MCMC (GMJMCMC) algorithm of Hubin et al. [9].
Bayesian generalized nonlinear models provide a very general framework that allows us
a straightforward implementation of MFP beyond the linear Gaussian regression case,
including, but not limited to, generalized linear models, generalized linear mixed models,
Cox regression, and models with interactions. In addition, GMJMCMC enables searching
through the model space to find the set of models with substanital probability mass. GMJM-
CMC is an extension of the mode jumping MCMC, which is an MCMC variant designed to
better explore the posterior distributions, particularly useful when the posterior distribu-
tion is complex and has multiple modes. Mode jumping struggles when the dimensionality
increases, which can be an issue in the case of fractional polynomials, as one needs to
explore 28J models (in the case of the first-order fractional polynomials described above) as
compared to 2J for the linear models. The GMJMCMC algorithm resolves these limitations
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by creating a genetic evolution of sets of features controlled by the genetic component,
where simple mode jumping MCMCs can be run. In this work, therefore, we provide a
powerful tool for fitting fractional polynomials in various applications.

Thus, the main contributions and innovations of this paper include building a novel
Bayesian framework for fitting fractional polynomials using the genetically modified
mode jumping Markov chain Monte Carlo (GMJMCMC) algorithm. Further, our priors
ensure theoretically consistent model selection. The approach is validated through a
comprehensive simulation study, demonstrating its reliable model selection consistency
and good predictive performance of the method in three real-data examples, including
regression, classification, and survival tasks. The inclusion of interactions in the fractional
polynomial model enhances its interpretability and captures complex relationships between
predictors and the response. The versatility of our framework allows for generalization
to different types of responses and predictors from the exponential family, making it
applicable to a wide range of real-world problems. Overall, our work provides a robust
and interpretable Bayesian method for fitting fractional polynomials with strong predictive
ability in various data analysis tasks.

The rest of the paper is organized as follows. Section 2 describes the multivariable
Bayesian fractional polynomial models in the framework of BGNLM, including the fitting
algorithm based on GMJMCMC. In Section 3, the performance of our procedure is evaluated
via simulations, while three applications to real data are reported in Section 4, where we
show our approach applied to regression, classification, and time-to-event data problems.
Finally, some remarks conclude the paper in Section 5.

2. Methods
2.1. Bayesian Generalized Nonlinear Models

Consider the situation with a response variable Y and a J-dimensional random vector
of input predictors X = (X1, . . . , XJ). Bayesian fractional polynomial models can be seen
as special cases of Bayesian generalized nonlinear models [8],

Y ∼ f(y|µ, φ),
h(µ(X)) = α + ∑m

j=1 γjβ jFj(X, ηj),
(1)

where f denotes the parametric distribution of Y belonging to the exponential family with
mean µ and dispersion parameter φ. The function h is a link function, α and β j, j = 1, . . . , m
are unknown parameters, and γj is an indicator variable that specifies whether the (possibly
nonlinear) transformation of predictors Fj, and its set of inner parameters ηj, is included in
the model.

Equation (1) provides a very general framework, that contains as special cases models
that span from the linear Gaussian regression to neural networks. Following
Hubin et al. [8], if the set of nonlinear functions contains sigmoid(X

′
η), which is the sig-

moid function, then BGNLM covers numerous possible neural networks with the sigmoid
activation function. BGNLM also includes decision trees, intervals, and higher-dimensional
regions through multiplications of simple decision rules represented by the nonlinear
function I(X ∈ κη). Multivariate adaptive regression splines can be incorporated using
piece-wise linear functions max 0, x− η and max 0, η − x. Logic regressions, among oth-
ers, are also easily included within the BGNLM framework. Moreover, BGNLM allows
for combinations of different types of features, resulting in complex predictors such as(
0.5x1 + 10x0.5

2 + 3I(0.2x2 > 1) + 0.1σ(2.5x3)
)2. With the appropriate choice of nonlinear

functions, highly interpretable models can be built. For example, in Hubin et al. [8], the
authors show that BGNLM can recover Kepler’s third law in the closed form. However,
when nonlinear functions are not chosen carefully for a given application, a complicated
black-box solution may arise. Furthermore, the cardinality of the model space of BGNLM
grows super-exponentially with respect to the depth of the features, which slows the infer-
ence down significantly. Both of these issues do not arise in Bayesian fractional polynomials,
which are a special case of BGNLM that we study in this paper.
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Bayesian Fractional Polynomials

For the purpose of this paper, it is convenient to constrain the framework to only allow
univariate transformations ρk(xj), k = 1, . . . , K, of the predictors, and regression on the
mean, µ = µ(X):

Y ∼ f(y|µ(X); φ),
h(µ(X)) = α + ∑J

j=1 ∑K
k=1 γjkβ jkρk(xj).

(2)

Note that the vector M = {γjk, j = 1, . . . , J, k = 1, . . . , K} fully characterizes a model,
as it defines which predictors xj are included in the model and after which transformation ρk.
This vector allows us to perform model comparison and selection using standard Bayesian
approaches, including the median probability model [10], Bayes factors [11], or log posterior
marginal probabilities.

It is now sufficient to define priors on M and on the related (read given M) coefficients
α and β jk to complete the procedure. Let us start by defining the prior for M,

P(M) ∝ I(|M| ≤ q)
J

∏
j=1

K

∏
k=1

I
([

K

∑
k=1

γjk

]
≤ d

)
a

γjk
k , (3)

where q, d ∈ N and 0 < ak < 1, k = 1, . . . , K. Here, |M| = ∑J
j=1 ∑K

k=1 γjk is the total number
of terms included in the model, which can be bounded by q to favor sparse models, and
a

γjk
k are prior penalties on the individual terms. Furthermore, I(∑K

k=1 γjk ≤ d) are (common
for each predictor) prior indicators which restrict the number of terms per predictor to be
simultaneously included into the model. d controls the order of the fractional polynomials,
with d = 1 only allowing for one polynomial term per predictor, i.e., the classical definition
of a fractional polynomial model. At the same time, d > 1 allows softer versions of prior
penalties and, thus, more flexibility in modeling a fractional polynomial regression. Thus, q
and d are defining prior constraints on the models. If M and M′ are two models satisfying
the constraints induced by d and q but differing in one component, say γjk = 0 in M and
γjk = 1 in M′, then

P(M′)
P(M)

= a < 1

showing that larger models are penalized more. This result easily generalizes to the comparison
of more different models and provides the basic intuition behind the chosen prior.

As a fully Bayesian approach, BGNLM also requires priors on the parameters. Here,
we follow Hubin et al. [9] and use the common improper prior [12,13] π(φ) = φ−1 to the
unknown dispersion parameter φ, and simple Jeffreys priors [14,15] |J M

n (α, β)| 12 on the
regression parameters, where J M

n (α, β) is the observed information for the model M.
The Jeffreys prior is known to have attractive properties of being objective and scale

invariant [15]. Moreover, when using the Jeffreys prior, the marginal likelihood of a model
P(Y|M) can be approximated accurately using the Laplace approximation. In the case of a
Gaussian model, if we choose the aforementioned priors for the dispersion parameter and
the coefficients, the Laplace approximation becomes exact [16]. This results in a marginal
likelihood of the simple form

P(Y|M) ∝ P(Y|M, θ̂) n
|M|

2 , (4)

where θ̂ refers to the maximum likelihood estimates of all parameters involved and n is
the sample size. On the log scale, this corresponds exactly to the BIC model selection
criterion [17] when using a uniform model prior.

2.2. Consistency of Model Selection under Our Priors

In this section, we shall show model selection consistency under our priors. Assume
ak = exp(−sk log n), where sk is an arbitrary positive and finite scalar. This is a special case
of what is called BIC-type penalization of complexity in Hubin et al. [8] that we shall also
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use in the experimental sections. Let θ̂i be the maximum likelihood estimate (MLE) of the
parameters in model Mi. Define pi = |Mi|+ ∑J

j=1 ∑K
k=1 γi

jk2sk as the sum of the standard
BIC penalty [18] and our prior penalty (excluding log n) for Mi. Define PICi to be a negative
log posterior (up to a constant) of Mi under Laplace approximations, i.e., as

PICi = −2l(θ̂i|Mi) + pi log n, (5)

where l(θi|Mi) = log P(Y|θi, Mi) is the log-likelihood of the data given the MLE of the
parameters in model Mi. Then, P(Mi|Y) ∝ exp(−PICi

2 ). Assuming the true model M0 is in
the set of candidate models and does not coincide with the null model, in the following
proposition we show that as n→ ∞, the probability of selecting the true model M0 among
the candidate models goes to one. The regularity conditions are very standard for the
model selection literature, the only important thing to keep in mind in practice is that in
the case of nonidentifiable predictors, i.e., a binary x1, which is collinear with say x2

1, the
true model is assumed to include x1 but not x2

1 in order to be selected by our PIC criterion.
Furthermore, it is worth mentioning that in practice there is no true model generating the
data, unless we have a simulated or fully human-created phenomenon.

Proposition 1. Let ak = exp(−sk log n) with 0 < sk < ∞. Let M0 be the unique parsimonious
true model living on our model spaceM which has 1 < |M0| ≤ q and ∑K

k=1 γ0
jk ≤ d, ∀j = 1, . . . , J.

Further, let M1, . . . , MK ⊆M be the set of candidate models onM that satisfy constraints induced by
q and d. Then, the PIC criterion from Equation (5) is consistent in selecting M0 among M1, . . . , MK.

Proof. The proof consists of 3 standard steps for proving model selection consistency: I.
We take a limit in probability of the PIC criterion for the true model and the alternative
model. II. We take a limiting difference of the PICs of these models. III. We resolve ties to
guarantee consistency in all cases.

I. Let An be the event that the PIC selects the true model M0, i.e.: An = I{PIC0 <
PIC1, . . . , PICK}. We want to show that P(An = 1) → 1 as n → ∞. By the law of
large numbers and the continuous mapping theorem, we have plim

n→∞

1
n l(θ̂0|M0) =

E0[l(θ0|M0)], where plim is the limit in the probability operator and E0 denotes the
expectation under the true model M0. Therefore, we have

plim
n→∞

PIC0 = plim
n→∞

− 2l(θ̂0|M0) + p0 log n = −2nE0[l(θ0|M0)] + p0 log n.

Similarly, plim
n→∞

PICi = −2nEi[l(θi|Mi)] + pi log n, where Ei denotes the expectation

under model Mi.
II. Taking the limiting difference between PIC0 and PICi, we have

plim
n→∞

PIC0 − PICi = −2n∆i + Ci log n = −∞, ∀i : Mi ∈ {M1, . . . , MK} \M0 ⊆M,

where ∆i = E0[l(θ0|M0)]− Ei[l(θi|Mi)] and Ci = p0 − pi. In other words, we show
that

plim
n→∞

An = plim
n→∞

I(PIC0 < PICi, i 6= 0) = plim
n→∞

I(∆i >
1

2n
Ci log n, i 6= 0) = 1.

III. Above, ∆i ≥ 0 and we have two cases to check: 1. if ∆i = 0, then M0 is a nested model of
Mi and hence Ci < 0 by the uniqueness and parsimony of the true model. 2. For ∆i > 0,
it is sufficient that limn→∞

1
2n (Ci) log n = 0, ∀Ci : |Ci| < ∞, and Ci is always finite by

the construction of our priors and the fact that J < ∞ and K < ∞. Thus, we have shown
that the PIC criterion is consistent in selecting the true model as the sample size increases.
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2.3. Bayesian Fractional Polynomial Models as Bayesian Generalized Nonlinear Models

In order to recover our fractional polynomial models, we just need to specify the appro-
priate set of transformations D and parameters in the prior on M defined in Equation (3). The
parameters of the latter, in particular, control both the order of the fractional polynomials
and the model selection mechanism.

2.3.1. Set of Transformations:

As per the definition of fractional polynomials, the following transformations of
each predictor are allowed: the identity, F0 = {x}; 7 simple functions F1 = {x−2, x−1,
x−0.5, log x, x0.5, x2, x3}; and 8 functions specifying repeated powers F2 = {x−2 log x,
x−1 log x, x−0.5 log x, log x log x, x0.5 log x, x log x, x2 log x, x3 log x}. If we want to fit frac-
tional polynomials of order 1, then D = {F0 ∪ F1}, while for fractional polynomials of
order 2,D = {F0 ∪ F1 ∪ F2}. In this framework, it is straightforward to increase the order of
the fractional polynomials by adding further interaction terms, but according to (Royston
and Sauerbrei [5], Ch. 5.9) they are not used in practice, and we do not consider them here.

2.3.2. Order of the Fractional Polynomials:

The order of the fractional polynomials is controlled by the value of the parameter
d in the prior (3), as d is the maximum number of transformations that are allowed for
each explanatory variable. So, d = 1 only allows for one polynomial term per variable,
while d > 1 allows more flexibility in modeling a fractional polynomial regression up to the
desired order. Note that in the case d > 1, additional modifications of the prior on M are
necessary if one wants to exclude combinations in F2 without the corresponding term in F1.
This can be easily achieved by forcing the model priors including such transformations to
be 0.

2.3.3. Model Selection:

In MFP models, there are two sources of complexity to take into account when per-
forming a model selection procedure: the number of regression parameters and the degree
of the transformations. Following a paradigm of parsimony, one would ideally consider
including variables only if they are related to the response and transforming the variables
only if needed. In the framework of BGNLM, there are two separate (sets of) parameters
to control the two sources: the parameter q sets an upper bound to the number of active
components of the models (i.e., the predictors and their transformations), while the ak,
k = 1, . . . , K, set a cost to include individual predictors and can, therefore, be used to
penalize harder more complex transformations. The penalty to add a linear term (the trans-
formation belonging to F0) is set to be much lower than that for adding a transformation
(those in F1 and F2). Fractional polynomials of order 2 are naturally penalized more as they
require 2 terms, i.e., the penalty on the log scale has the form log ak′ + log ak′′ .

Further, in this work, we follow Sabanés Bové and Held [6] and use the median
probability rule [10] to select a set of important predictors. This means we select γij :
p(γij = 1|Y) > 0.5, which is in practice robust to model mis-specifications.

2.4. Model Fitting via the Genetically Modified Mode Jumping MCMC

In fractional polynomial regression models with the mean parameter linked to the
data through Equation (2), the model space can become prohibitively large even with
only moderate values of the number of candidate predictors J. The strong correlation
among predictors (especially that between different transformations of the same variable),
moreover, can lead to many local minima in the posterior distribution, in which a standard
fitting algorithm such as the classical MCMC may become stuck with a higher probability.
To address these issues, we implement the genetically modified mode jumping MCMC
algorithm proposed by Hubin et al. [9] to fit Bayesian fractional polynomial models.

The key idea behind GMJMCMC is to iteratively apply a mode jumping MCMC
algorithm [19] to smaller sets of model components of size s : q ≤ s� 16J. This reduces
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the number of models in the model space to ∑
q
k=1 (16J

k ). A sequence of so-called populations
S1,S2, . . . ,STmax is generated. Each population St is a set of s transformations and forms
a separate search space for exploration through mode jumping MCMC iterations. The
populations dynamically evolve allowing GMJMCMC to explore different parts of the total
model space.

The generation of the new population St+1 given St works as follows: some compo-
nents with low posterior probability from the current population are removed, and then
replaced by new components generated through mutation, multiplication, modification,
or projection operators. The probabilities for each operator are defined as Pin, Pmu, Pmo,
and Ppr, respectively, and must add up to 1. Since fractional polynomials are a specific
case of BGNLM with only modification transformations allowed, in this context the al-
gorithm is simplified by setting Pmu = 0 and Ppr = 0. The algorithm is summarized in
Algorithm 1 and accompanied by diagramns in Figure 1 for easier understanding of the
steps of GMJMCMC.

Algorithm 1 GMJMCMC
1: Initialize S0
2: Run the MJMCMC algorithm within the search space S0 for Ninit iterations and use results to

initialize S1.
3: for t = 1, ..., T − 1 do
4: Run the MJMCMC algorithm within the search space St for Nexpl iterations.
5: Generate a new population St+1
6: end for
7: Run the MJMCMC algorithm within the search space ST for N f inal iterations.

For a complete description of the mode jumping MCMC, including its theoretical
properties, we refer the reader to Hubin and Storvik [19]. For further details on the
GMJMCMC, see Hubin et al. [9], while results on its asymptotic exploration of the space of
nonlinear models are available in Hubin et al. [8].
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Initialize S0

MJMCMC within S0 for Ninit iterations

Generate new population S1

MJMCMC within S1 for Nexpl iterations

Generate new population S2

. . .

MJMCMC within ST for Nfinal iterations

Diagram 1: Visulaization of Algorithm 1.
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S0 = {x1, x2, ..., x100}

P̃(γ1,1 = 1|Y), ..., P̃(γ100,1 = 1|Y)

S1 = {x1, ρ5(x3), ρ1(x5), x5, ρ7(x9)}

P̃(γ1,1 = 1|Y), ..., P̃(γ7,9 = 1|Y)

S2 = {x1, ρ5(x3), x6, x5, ρ2(x8)}

. . .

Get P̂(γ1,1 = 1|Y), ..., P̂(γ100,16 = 1|Y)

Diagram 2: Example J = 100, s = 5, ρ1(x) = x.

2.5. Using the Output of GMJMCMC to Compute the Marginals of Interest

The posterior probability of a model M given the observed data Y can be expressed as
the product of the prior probability of the model P(M) and the marginal likelihood of the
data given the model P(Y|M) divided by the sum of the same expression over all possible
models in the model space M, which is infeasible to explore. To approximate this, the
GMJMCMC algorithm explores for a set of good models Ω ⊆ M (either all models visited
by GMJMCMC or models from the last population ST can serve as Ω), and the resulting
approximation for the posterior probability of a model M given the data Y is denoted as

P̂(M|Y) = P(Y|M)P(M)

∑M′∈Ω P(Y|M′)P(M′)
.

The marginal inclusion probabilities for a specific effect γjk, denoted as P̂(γjk = 1|Y),
can then be calculated as the sum of the approximated posterior probabilities over all
models in Ω that include this effect, i.e.,

P̂(γjk = 1|Y) = ∑
M∈Ω:γjk=1

P̂(M|Y).

Further, marginal posterior of any other quantity of interest ∆ can be approximated as

P̂(∆|Y) = ∑
M∈Ω

P(∆|Y, M)P̂(M|Y).

This allows us to make predictions based on the output of GMJMCMC.

2.6. Extensions of the Model

The description of the Bayesian fractional polynomials models seen so far only covers
the GLM setting (see Formula (2)), but our approach can be easily extended to many other
cases. Due to their particular practical relevance, here we cover the cases of generalized
linear mixed models, the Cox regression model, and models with interactions.

Figure 1. Left panel: Visulaization of Algorithm 1 and Right panel: Illustration of its work
J = 100, s = 5, ρ1(x) = x.

2.5. Using the Output of GMJMCMC to Compute the Marginals of Interest

The posterior probability of a model M given the observed data Y can be expressed as
the product of the prior probability of the model P(M) and the marginal likelihood of the
data given the model P(Y|M) divided by the sum of the same expression over all possible
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models in the model spaceM, which is infeasible to explore. To approximate this, the
GMJMCMC algorithm explores for a set of good models Ω ⊆M (either all models visited
by GMJMCMC or models from the last population ST can serve as Ω), and the resulting
approximation for the posterior probability of a model M given the data Y is denoted as

P̂(M|Y) = P(Y|M)P(M)

∑M′∈Ω P(Y|M′)P(M′)
.

The marginal inclusion probabilities for a specific effect γjk, denoted as P̂(γjk = 1|Y),
can then be calculated as the sum of the approximated posterior probabilities over all
models in Ω that include this effect, i.e.,

P̂(γjk = 1|Y) = ∑
M∈Ω:γjk=1

P̂(M|Y).

Further, the marginal posterior of any other quantity of interest ∆ can be approximated as

P̂(∆|Y) = ∑
M∈Ω

P(∆|Y, M)P̂(M|Y).

This allows us to make predictions based on the output of GMJMCMC.

2.6. Extensions of the Model

The description of the Bayesian fractional polynomial models seen so far only covers
the GLM setting (see Formula (2)), but our approach can be easily extended to many other
cases. Due to their particular practical relevance, here we cover the cases of generalized
linear mixed models, the Cox regression model, and models with interactions.

2.6.1. Latent Gaussian Models

It is straightforward to extend our approach to generalized linear mixed models
by incorporating both polynomial terms and latent Gaussian variables. These variables
can be used to model correlations between observations in space and time, as well as
over-dispersion. Basically, we just need to substitute the function h in Equation (2) with

h(µ(X)) = α +
J

∑
j=1

K

∑
k=1

γjkβ jkρk(xj) +
R

∑
r=1

γJK+rδr, (6)

where δr ∼ N(0, Σr) are latent Gaussian variables with covariance matrices Σr. These
variables allow us to model different correlation structures between individual observations.
The matrices typically depend only on a few parameters ψr, so that in practice we have
Σr = Σr(ψr).

The model prior of Equation (3) needs to be generalized to handle inclusion indicators
γJK+r, r = 1, . . . , R of the latent Gaussian variables and becomes:

P(M) ∝ I(|M| ≤ q)
J

∏
j=1

K

∏
k=1

I
([

K

∑
k=1

γjk

]
≤ d

)
a

γjk
k

R

∏
r=1

ãγJK+r
r ,

where ãr are prior inclusion penalties for the corresponding latent Gaussian variables.
The parameter priors are adjusted as follows:

β|γ ∼Npγ(0, Ipγ e−ψβγ ), (7)

ψk ∼πk(ψk). (8)

We can choose any type of hyperparameters of priors that are compatible with the
integrated nested Laplace approximations (INLA) [20]. This allows us to efficiently compute
the marginal likelihoods of individual models using the INLA approach [21]. For a detailed
example of how to use latent Gaussian variables in our context applied to epigenetic data,
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see Section 5.3.2 in Hubin et al. [8]. In the context of BFP, one would only be limited to the
functions in the set D = {F0 ∪ F1 ∪ F2}.

Additionally, any other extensions with computable marginal likelihoods are possible
within our framework, as the availability of the marginal likelihood is sufficient to run our
inference algorithm described in Section 2.4.

2.6.2. Cox Regression Model

Our approach can also be used to analyze time-to-event data, for example by using
the Cox regression model. Here, the adaptation of the formula in Equation (2) is not
straightforward, as the Cox regression model works with hazards and not densities,

λ(y; µ(X)) = λ0(y) exp{µ(X)},

where λ0(y) is the so-called baseline hazard function, i.e., that function that models the part
of the hazard that does not depend on the predictors (including the intercept, we will not
have a parameter α here). An additional complication in the analysis of time-to-event data
is the presence of censored observations, i.e., those statistical units for which the outcome
is only partly observed (the typical case of censoring occurs when the event of interest is
known to happen after some observed time, but not exactly when). For our model fitting
procedure, however, we just need the (partial) likelihood of the Cox model:

L(µ(X)) =
n

∏
i=1

µ(Xi)

∑r∈R(yi)
µ(Xr)

, (9)

where R(yi) includes all the observations at risk at the time yi, and consider

log(µ(X)) =
J

∑
j=1

K

∑
k=1

γjkβ jkρk(xj).

In the case of a partial likelihood in the form of Equation (9), there is a useful approxi-
mation of the marginal likelihood provided by Raftery et al. [22]. Here, we used their results.
The priors on the model and the parameter, instead, are the same as those in Section 2.3.

2.6.3. Fractional Polynomials with Flexible Interactions

As a specific case of BGNLM, our BGNLM_FP can easily be generalized to handle
interactions up to a given order I between the polynomial terms of different predictors,
which results in the following generalization of our model:

h(µ(X)) =α +
J

∑
j=1

K

∑
k=1

γjkβ jkρk(xj) +
J

∑
j=1

K

∑
k=1

J

∑
j(1)=1

K

∑
k(1)=1

γ
(1)
jkj(1)k(1)

β
(1)
jkj(1)k(1)

[
ρk(xj)× ρk(1)(xj(1))

]
+

J

∑
j=1

K

∑
k=1

J

∑
j(1)=1

K

∑
k(1)=1

J

∑
j(2)=1

K

∑
k(2)=1

γ
(2)
jkj(1)k(1) j(2)k(2)

β
(2)
jkj(1)k(1) j(2)k(2)

[
ρk(xj)× ρk(1)(xj(1))× ρk(2)(xj(2))

]
+ · · ·+

J

∑
j=1

K

∑
k=1

J

∑
j(1)=1

K

∑
k(1)=1

J

∑
j(2)=1

K

∑
k(2)=1

· · ·
J

∑
j(I)=1

K

∑
k(I)=1

γ
(I)
jkj(1)k(1) j(2)k(2) ...j(I)k(I) β

(I)
jkj(1)k(1) j(2)k(2) ...j(I)k(I)

[
ρk(xj)× ρk(1)(xj(1))× ρk(2)(xj(2))× · · · × ρk(I)(xj(I))

]
.

Now, an extended vector M = {γjk, γ
(1)
jkj(1)k(1)

, γ
(2)
jkj(1)k(1) j(2)k(2)

, . . . , γ
(I)
jkj(1)k(1) j(2)k(2) ...j(I)k(I) ,

j = 1, . . . , J, k = 1, c, K, j(i) = 1, . . . , J, k(i) = 1, . . . , K, i = 1, . . . , I} fully characterizes a
model with the order of interactions up to I. It then defines which predictors Xj, which
transformations ρk, and which interactions between them are included in the model. Finally,
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we generalize the priors from Equation (3) by means of setting d = ∞ and defining
akk(1) , akk(1)k(2) , . . . , akk(1)k(2) ...k(I) as follows:

akk(1) = ak × ak(1)

akk(1)k(2) = ak × ak(1) × ak(2)

. . .

akk(1)k(2) ...k(I) = ak × ak(1) × ak(2) × · · · × ak(I) .

The parameter priors here remain the same as those defined in Section 2.3. The
inference is enabled by assigning a non-zero value to the tuning parameter Pmu > 0 in the
GMJMCMC algorithm.

3. Simulation Studies
3.1. Aims

The primary goal of the simulation study is to evaluate numerically the consistency of
our novel algorithm and contrast its performances with those of current implementations of
multivariable fractional polynomials. In particular, we want to assess its ability to recover
the true data-generating process when increasing the signal-to-noise ratio, or, at least,
selecting the relevant variables.

3.2. Data-Generating Mechanism

We take advantage of the ART study [5], an existing simulation design essentially created
to assess fractional polynomial models. Based on a large breast cancer data set [23], the ART
study provides a realistic framework when it concerns the distribution of the predictors and
their correlation structure; see Tables 10.1 and 10.3 in Royston and Sauerbrei [5] for the details.
More specifically, the ART study consists of six continuous (x1, x3, x5, x6, x7, x10) and four
categorical explanatory variables, in particular an ordered three-level (x4), an unordered
three-level (x9) and two binary (x2 and x8) variables. For a detailed description of the
univariate distributions of the variables and their correlation structure, we refer to chapter
10 in Royston and Sauerbrei [5]. The response is computed through the model

y = x0.5
1 + x1 + x3 + x4a + x−0.2

5 + log(x6 + 1) + x8 + x10 + ε,

where x4a denotes the second level of x4 (the first being used as a baseline) and ε ∼ N(0; 1).
The instances used in the original simulation study are available at http://biom131.imbi.uni-
freiburg.de/biom/Royston-Sauerbrei-book/Multivariable_Model-building/downloads/
datasets/ART.zip (accessed on 3 August 2023) and directly used here. In total, the dataset
has n = 250 observations.

While the original study is interesting to evaluate the FP approach in a likely situation,
it does not allow us to fully investigate the properties of our algorithm, since the term x−0.2

5
is not feasible in the settings of fractional polynomials and prevents us evaluating how
often the algorithm selects the true model.

In order to study the properties of our priors and algorithm, we propose a modification
of the existing study. We change the original model by including an FP(−1) effect for x5
(instead of x−0.2

5 , such that the true model belongs to the set of the possible models) and by
modifying the effect of x3 from linear to an FP2(−0.5, −0.5), to make the search for the true
model more challenging. The new response generating mechanism now follows

y = x0.5
1 + x1 + x−0.5

3 + x−0.5
3 ∗ log(x3 + ε) + x4a + x−1

5 + log(x6 + ε) + x8 + x10 + ε, (10)

where again x4a denotes the second level of x4 and ε = 0.00001 is a small positive real
number used to avoid problems with the support of a logarithm function. As in the orig-
inal formulation ([5], chapter 10), the true regression coefficients are all set equal to 1.
Finally, ε ∼ N(0, σ2) and we run 16 different scenarios with a sample size of n = 250 and
σ2 ∈ {100, 50, 25, 10, 1, 0.1, 0.01, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10} allowing us

http://biom131.imbi.uni-freiburg.de/biom/Royston-Sauerbrei-book/Multivariable_Model-building/downloads/
http://biom131.imbi.uni-freiburg.de/biom/Royston-Sauerbrei-book/Multivariable_Model-building/downloads/
datasets/ART.zip
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to quantify the consistency of model selection for the compared approaches when increas-
ing the signal-to-noise ratios (that, under the Gaussian distribution, is mathematically
equivalent to increasing the sample size). For the corresponding values of R2, see Figure 2.
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Figure 2. Best log marginal posteriors found with GMJMCMC (black) and those of a data-generative
model (red). Upper axis report R2 of the true model.

3.3. Estimands and Targets

The targets of interest in this simulation study are the sets of predictors selected by a
method and their functional form.

For each method, we consider the selected predictors and transformations that the
respective method declared to be (with respect to the criterion used in the method) optimal
for the dataset. For the Bayesian approaches, a predictor is classified as selected if the
(estimated) marginal inclusion probability is larger than 0.5. This corresponds to the median
probability model of Barbieri et al. [10].

3.4. Methods

Our novel model, hereafter BGNLM_FP, was fitted using the GMJMCMC algorithm
using the EMJMCMC package available at http://aliaksah.github.io/EMJMCMC2016/ (ac-
cessed on 3 August 2023). The simulations for each σ2 were run on 32 parallel threads
L = 100 times. Each thread was run for 20,000 iterations with a mutation rate of 250 and the
last mutation at iteration 15,000. The population size of the GMJMCMC algorithm was set
to 20. For the detection of the functional forms, the median probability rule [10] was used.
For all simulation scenarios, we specified the following values of the hyperparameters of
the model priors: q = 20 and d = 16. Further, ak was chosen to be ak = exp(− log n) for
k : ρk ∈ F0, ak = exp(−(1 + log 2) log n) for k : ρk ∈ F1, and ak = exp(−(1 + log 4) log n)
for k : ρk ∈ F2. No additional fine-tuning was performed to specify our tuning and hyperpa-
rameters. The final script is available on GitHub https://github.com/aliaksah/EMJMCMC2
016/blob/master/supplementaries/BFP/simulations.R (accessed on 3 August 2023).

For comparison, the frequentist version of multivariate fractional polynomials (MFPs)
was fitted using the R package mfp [24]. We allowed for fractional polynomials of maximal
order 2 and used a significance level α = 0.05.

The current Bayesian version of fractional polynomials by Sabanés Bové and Held [6]
was fitted using the R package bfp [25], with “flat” (BFP_F), “sparse” (BFP_S), and “de-
pendent” (BFP_D) priors. We used the default value of 4 as the hyperparameter for the

http://aliaksah.github.io/EMJMCMC2016/
https://github.com/aliaksah/EMJMCMC2016/blob/master/supplementaries/BFP/simulations.R
https://github.com/aliaksah/EMJMCMC2016/blob/master/supplementaries/BFP/simulations.R
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hyper-g prior and the option “sampling” to explore the posterior model space. In this case,
as well, the median probability rule was used to detect the functional form.

3.5. Performance Metrics

We distinguish between functional (strict) and predictor (soft) levels. In the former,
we are interested in how often the model selects the true functional form (and how often
a wrong one); in the latter, in how often the model selects a relevant variable (no matter
in which form) and how often it incorrectly selects an irrelevant variable. This distinction
of levels is useful because the difference between functional forms may be quite small
(consider, for example, the logarithmic and the square root transformation) and, therefore,
the impact of selecting a wrong functional form on predictions may be low.

Specifically, we compute:

• true positive rate (TPR), defined as the relative frequency of selection of truly relevant
effects (often addressed as power in variable selection studies);

• false discovery rate (FDR), measuring the relative frequency of selection of irrelevant
variables among all selections.

Both TPR and FDR are computed at the functional and predictor levels. At the former
level, a find is considered a “true positive” only if the model includes the true predictor
with the correct transformation. At the latter level, instead, we consider it sufficient to
select a relevant predictor (so even if the model includes the variable with an incorrect
transformation). Similarly, for the FDR, a “false positive” is any functional form that is
not included in the model generative function (functional level) or a variable that is not
included at all (variable level).

3.6. Results

In Figure 3, top row, we see that the TPR grows, both at the functional (left panel) and at
the predictor level (right panel), for all approaches when the signal-to-noise ratio increases.
At the functional level, our approach (BGNLM_FP) and MFP uniformly outperform the
current Bayesian approaches when there is enough signal (from σ2 ≈ 1 on), while BFP
with a data-dependent prior (BFP_D) works the best for low signal-to-noise data. Note,
moreover, that BGNLM_FP has a better performance than MFP in almost all scenarios, with
the single exception of σ = 0.001. At the variable level, all approaches have a comparable
TPR, with the notable exception of BFP_F on the low signal-to-noise ratios. In fact, in
these cases, BFP with a flat prior selects all variables with a linear effect, which raises some
doubts about the choice of this prior in this context. Obviously, as a consequence, the FDR
for BFP_F at the variable level (Figure 3, bottom right panel) is worse than all the others.

At both the functional and variable levels, we see the FDR decreasing with larger
signal-to-noise for both MFP and BFP (bottom line of Figure 3, left and right panels,
respectively). While noticeably smaller than that of the competitors in almost all cases,
a bit surprisingly, the FDR of BGNLM_FP becomes larger for a stronger signal. This
counter-intuitive behavior is most probably related to the strong correlation between the
true functional forms and other FP transformations. Even GMJMCMC seems to be stuck
in some local extrema for lower noise levels, which under the same number of iterations
do not allow it to reach the close neighborhood of the true model. When we force the
search path to also include the true model (BGNLM_FP_IDEAL), in contrast, the median
probability model correctly identifies it as the best option (see the yellow line in the left
panels of Figure 3): for noise levels smaller or equal to σ2 = 0.0001, the TPR is 1 and the
FDR is 0, showing in practice the consistency in model selection under our family of priors.
Furthermore, the problem with FPR is almost negligible at the variable level (right panels
of Figure 3).
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Figure 3. TPR and FDR at the functional and predictor level for various methods: BGNLM_FP
(black), MFP (red), BFP_F (green), BFP_S (blue), BFP_D (purple), and BGNLM_FP_IDEAL (yellow).

Figure 2 displays this BGNLM_FP’s behavior through the maximum value of the
posterior. The GMJMCMC algorithm, whose search for the best model reaches the largest
possible value (that of the true model, red in the figure) at lower signal-to-noise ratios, at
certain points settles for a “good enough” value and does not reach anymore the largest
one given the same number of iterations. This can be explained by the fact that with a
larger signal the correlation between the response and almost right fractional polynomials
increases, leading to stronger local extrema from which it becomes harder to escape.

To better appreciate the performance of all approaches on a single dimension, we also
report in Figure 4 the TPR for the variable X3. The left panel shows the TPR at the variable
level: the task of identifying X3 as relevant seems pretty easy as all reasonable (remember
that BFP_F includes all variables) approaches start to include it when σ2 is between 0.1 and 1.
Even giving an unfair advantage in the case of BGNLM_FP_IDEAL does not change much, as
the same process happens at almost the same signal-to-noise ratio level.
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Figure 4. Left panel: TPR for variable x3 for different methods. Right panel: TPR for functional form
FP1(x3, −0.5) across methods (colors same as in Figure 3).
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More interestingly, MFP and all the BFP models seem to almost always include X3 as
FP1(−0.5), meaning that they identify the first-order part of the transformation. BGNLM_FP
does not have the same behavior, and even at the largest signal-to-noise ratio sometimes
sticks to the correlated form (most probably FP1(-1); see the right panel of Figure 4). None of
the approaches (except for the artificial BGNLM_BFP_IDEAL), anyhow, manage to identify
the correct FP2(−0.5, −0.5) form (data not shown), no matter how large the signal-to-noise
ratio is. Only the version of BGNLM_FP_IDEAL with the right model forced into the search
path achieves it, starting at σ2 = 0.01 and fully happening from σ2 = 0.0001. This can be
inferred by contrasting the right plot of Figure 4 and the top left panel of Figure 3.

4. Real-Data Applications

In this section, we contrast our approach with many competitors in real-data examples
with responses of different natures, namely, a continuous response, a binary response, and
a time-to-event response. Note that the Bayesian approaches considered here are based
on sampling from the posterior, and, therefore, contain a stochastic component. For these
algorithms, we perform 100 runs and report the median, the minimum, and the maximum
result. As a consequence, we can also evaluate their stability. All scripts are available on
GitHub https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/
BFP (accessed on 3 August 2023).

4.1. Regression Task on the Abalone Shell Dataset

The Abalone dataset, publicly available at https://archive.ics.uci.edu/ml/datasets/
Abalone (accessed on 3 August 2023), has served as a reference dataset for prediction
models for more than two decades. The goal is to predict the age of the abalone from
physical measurements such as gender, length, diameter, height, whole weight, peeled
weight, the weight of internal organs, and the shell. The response variable, age in years, is
obtained by adding 1.5 to the number of rings. There are a total of 4177 observations in
this dataset, of which 3177 were used for training and the remaining 1000 for testing. To
compare all approaches, we use the following metrics: root mean square error (RMSE); mean
absolute error (MAE); and Pearson’s correlation between observed and predicted response
(CORR), also defined in Hubin et al. [8].

In our case, 1000 was the test sample size. In addition to the aforementioned ap-
proaches, here we also include the original BGNLM (see Equation (1)) from Hubin et al. [8]
and a version with only linear terms BGLM (see Equation (2), with ρ(x) = x).

For BGNLM_FP, GMJMCMC was run on 32 parallel threads for each of the 100 seeds.
Each thread was run until 10,000 unique models were visited, with a mutation rate of
250 and the last mutation at iteration 10,000. The population size of the GMJMCMC
algorithm was set to 15. For all runs, we used the following hyperparameters for the
model priors: q = 15 and d = 15. Further, ak was chosen to be ak = exp(− log n) for
k : ρk ∈ F0, ak = exp(−(1 + log 2) log n) for k : ρk ∈ F1, and ak = exp(−(1 + log 4) log n)
for k : ρk ∈ F2.

The best performance (see Table 1) is obtained with the general BGNLM approach. This
is probably not surprising as the relationship between response and explanatory variables
seems complex (see also Table 2) and BGNLM is the most flexible approach, which contains
all the other models as special cases. Notably, this result seems to show that the GMJMCMC
algorithm is effective in exploring the huge model space. On the other hand, the performance
of BGLM, ranking the worst in all the three metrics considered, shows the importance of
including nonlinear effects in the model when analyzing this dataset.

https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/BFP
https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/BFP
https://archive.ics.uci.edu/ml/datasets/Abalone
https://archive.ics.uci.edu/ml/datasets/Abalone
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Table 1. Abalone shell dataset: prediction performances for different models based on RMSE, MAE,
and CORR. Median measures (with minimum and maximum in parentheses) are displayed for
methods with variable outcomes. Models are sorted by median RMSE.

Model RMSE MAE CORR

BGNLM 1.9573 (1.9334, 1.9903) 1.4467 (1.4221, 1.4750) 0.7831 (0.7740, 0.7895)
BFP_F 1.9649 (1.9649, 1.9649) 1.4617 (1.4617, 1.4617) 0.7804 (0.7804, 0.7804)
BFP_S 1.9649 (1.9649, 1.9649) 1.4617 (1.4617, 1.4617) 0.7804 (0.7804, 0.7804)
BGNLM_FP 1.9741 (1.9649, 2.0056) 1.4679 (1.4623, 1.4896) 0.7783 (0.7702, 0.7805)
MFP 1.9792 (-, -) 1.4710 (-, -) 0.7770 (-, -)
BFP_D 1.9754 (1.9754, 1.9769) 1.4668 (1.4668, 1.4677) 0.7779 (0.7774, 0.7779)
BGLM 2.0758 (2.0758, 2.0758) 1.5381 (2.0758, 2.0758) 0.7522 (2.0758, 2.0758)

Table 2. Abalone shell dataset, BGNLM_FP: frequency of selection of explanatory variables and
nonlinear transformations with posterior inclusion probability above 0.1 in more than 10 out of
100 simulation runs (in brackets, the “power” of the transformation). Frequency indicates the number
of simulations selecting the given feature.

Linear Effects Frequency Non-Linear Effects Frequency

ShuckedWeight 100 WholeWeight (p = 2) 68
Male 100 ShuckedWeight (p = 2) 59
Diameter 100 ShellWeight (p = 0) 58
Length 100 ShuckedWeight (p = 3) 46
WholeWeight 100 Height (p = 2) 43
Height 100 Length (p = 3) 39
VisceraWeight 100 VisceraWeight (p = 3) 32
ShellWeight 100 VisceraWeight (p = 2) 31
Female 100 Height (pp = 3) 30

Length (p = 2) 29
WholeWeight (p = 3) 28
ShellWeight (p = 2) 21
Height (p = 0) 20
ShellWeight (p = 3) 16
ShellWeight (p = −0.5) 13
ShuckedWeight (p = 0) 10

Between these two extremes lie all the FP implementations. Our proposed approach
BGNLM_FP seems slightly better than MFP and BFP_D but worse than the other two
implementations of BFP (BFP_F and BFP_S), which, in this case, have exactly the same
performances. Nonetheless, no matter which metrics we consider, the differences among
all FP-based approaches are very small. Additionally, results for other less related statis-
tical learning baselines are added to Appendix A of the paper. They confirm the overall
robustness and good performance of the Bayesian nonlinear method for this task.

Table 2 provides insight into the variable selection for our approach. This helps us to
identify nonlinear effects and give us a hint of each variable’s importance for the prediction
task. The frequency of inclusion shows that all nine explanatory variables were selected
in all 100 simulation runs, meaning that each variable is relevant, at least with a linear
effect. In addition, many nonlinear effects had a posterior probability larger than 0.1 (see
the right column of Table 2). In particular, the variables WholeWeight, ShuckedWeights,
Height, Length, and VisceraWeights seem to have an effect between quadratic and cubic,
while ShellWeight seems to have a logarithmic effect, as the logarithmic transformation is
selected 58% of the time (third row of Table 2), against around 20% for other transformations
(quadratic 21%, cubic 16%, and x−0.5 13%). The presence of these nonlinear polynomials
in the model indicates that the relationship between the explanatory variables and the
response (abalone age) is most probably nonlinear and highlights the importance of using
methods such as BGNLM_FP to predict the outcome.
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4.2. Classification Task on the Wisconsin Breast Cancer Dataset

This example uses breast cancer data with 357 benign and 212 malignant tissue ob-
servations, which were obtained from digitized fine needle aspiration images of a breast
mass. The data can be found at the website https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic) (accessed on 3 August 2023). Each cell nucleus
is described by 10 characteristics, including radius, texture, perimeter, area, smoothness,
compactness, concavity, points of concavity, symmetry, and fractal dimension. For each
variable, the mean, standard error, and mean of the top three values per image were calcu-
lated, resulting in 30 explanatory variables per image. The study used a randomly selected
quarter of the images as the training dataset, and the rest of the images were used as the
test set.

As in the previous example, we compare the performance of the BGNLM_FP to that
of other methods, namely, MFP, BGNLM, and its linear version BGLM. As BFP is not
available for classification tasks, it could not be included in the comparison. BGNLM_FP
uses Bernoulli observations and a logit link function, and the variance parameter is fixed
at φ = 1. Forecasts are made using ŷi = I( p̂(Yi = 1) ≥ 0.5), where Yi represents the
response variable in the test set. The model averaging approach is used for prediction,
where marginal probabilities are calculated using the Laplace approximation.

For BGNLM_FP, GMJMCMC was run on 32 parallel threads for each of the 100 seeds.
Each thread was run until 10, 000 unique models were visited, with a mutation rate every 250
iterations and the last mutation at iteration 10, 000. The population size of the GMJMCMC
algorithm was set to 45. For all runs, we used the following hyperparameters for the model
priors: q = 45 and d = 16. ak was chosen to be as follows: ak = exp(− log n) for k : ρk ∈ F0,
ak = exp(−(1+ log 2) log n) for k : ρk ∈ F1, and ak = exp(−(1+ log 4) log n) for k : ρk ∈ F2.
To evaluate the performance of the models we computed the following metrics: prediction
accuracy (ACC), false positive rate (FPR), and false negative rate (FNR). The choice of these
metrics is in line with that of Hubin et al. [8], and allows direct comparison with the results
therein. Detailed definitions of the metrics are also available in Hubin et al. [8].

Table 3 presents the results for each metric. We can see that BGNLM_FP performs
better than MFP both in terms of prediction accuracy and false negative rate, while it is
slightly worse than MFP when it concerns the false positive rate. Both FP-based models,
however, perform worse than both BGNLM and its linear version BGLM. The very good
performance of the latter, almost as good as the former in terms of accuracy and FNR,
and even slightly better in terms of FPR, seems to suggest that nonlinearities are not
very important for this classification problem. This also explains why there is not much
advantage in using an FP-based method. Both the frequentist approach and our proposed
procedures tend to only select linear effects, as can be seen (for BGNLM_FP) from Table
4, where all the effects selected in more than 10 (out of 100) runs are reported. The same
happens for BGNLM (see [8], Table 4): even the most general model only selects mostly
linear effects. The reason why BGNLM and BGLM have better results in this example is
most probably related to better use of the priors (see the Discussion for more on this point).
Furthermore, additional baselines, reported in Appendix B of the paper, confirm our main
conclusions of the linear relationship between the covariates and the responses and of the
high robustness of the proposed BFP approach.

Table 3. Breast cancer dataset: prediction performances for different models based on ACC, FNR,
and FPR. Median measures (with minimum and maximum in parentheses) are displayed for methods
with variable outcomes. The models are sorted according to median ACC.

Model ACC FNR FPR

BGNLM 0.9742 (0.9695, 0.9812) 0.0479 (0.0479, 0.0536) 0.0111 (0.0000, 0.0184)
BGLM 0.9718 (0.9648, 0.9765) 0.0592 (0.0536, 0.0702) 0.0074 (0.0000, 0.0148)
BGNLM_FP 0.9601 (0.9554, 0.9648) 0.0756 (0.0702, 0.0809) 0.0756 (0.0702, 0.0809)
MFP 0.9413 (-,-) 0.1011 (-,-) 0.0255 (-,-)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Table 4. Breast cancer dataset , BGNLM_FP: frequency of selection of the explanatory variables with
a posterior inclusion probability above 0.1 in more than 10 out of 100 simulation runs.

Effect Frequency Effect Frequency

fractal_dimension_se 100 radius_worst 100
smoothness_se 100 symmetry_mean 100
concave.points_se 100 texture_mean 100
fractal_dimension_worst 100 compactness_se 100
concavity_mean 100 compactness_worst 100
area_worst 100 texture_worst 100
smoothness_mean 100 concavity_worst 100
perimeter_mean 100 perimeter_se 100
compactness_mean 100 concavity_se 100
concave.points_worst 100 symmetry_worst 100
perimeter_worst 100 area_se 100
texture_se 100 radius_se 100
smoothness_worst 100 fractal_dimension_mean 100
symmetry_se 100 area_mean 100
radius_mean 100 concave.points_mean 97

4.3. Time-to-Event Analysis on the German Breast Cancer Study Group Dataset

As an example outside the GLM context, we consider a dataset with a time-to-event
response. In particular, the German Breast Cancer Study Group dataset contains data from
686 patients with primary node-positive breast cancer enrolled in a study from July 1984 to
December 1989. Out of the 686 patients, 299 experience the event of interest (death or cancer
recurrence), while the remaining 387 are censored observations. The data are publicly avail-
able at https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-
statistik/Dateien/Studium_und_Lehre/Lehrbuecher/Multivariable_Model-building/gbsg_
br_ca.zip (accessed on 3 August 2023) and contain information about eight variables: five
continuous (age, tumor size, number of positive nodes, progesterone status, and estrogen
status), two binary (menopausal status and hormonal treatment) and one ordinal vari-
able with three stages (tumor grade). The training set contains about two-thirds of the
observations (457), with the remaining one-third forming the test set. The observations are
randomly split, but the proportion of censored observations is forced to be the same in the
two sets.

As in the previous examples, here we compare our approach BGNLM_FP with a few
competitors, namely, the general BGNLM, its linear version BGLM, the classical MFP, and
a linear version of the latter as well. All approaches are based on the partial likelihood of
Equation (9), so all approaches provide a Cox model, with the latter model being the simple
Cox regression model. Furthermore, in this case, BFP is not used as it is only developed for
Gaussian responses.

For BGNLM_FP, GMJMCMC was run on 32 parallel threads for each of the 100 seeds.
Each thread was run for 20,000 iterations, with a mutation rate of 250 and the last mutation
at iteration 15,000. The population size of the GMJMCMC algorithm was set to 15. For
all runs, we had the same hyperparameters of the model priors as in all of the other
examples : q = 15 and d = 15. Further, ak was chosen to be ak = exp(− log n) for
k : ρk ∈ F0, ak = exp(−(1 + log 2) log n) for k : ρk ∈ F1, and ak = exp(−(1 + log 4) log n)
for k : ρk ∈ F2.

To evaluate the performance of the models, here we compute the standard metrics:
integrated Brier score (IBS) and concordance index (C-index). Both IBS and C-index are
defined and computed following the notation from pec [26].

Table 5 reports the results of this experiment. This dataset was used by Royston and
Sauerbrei [5] to illustrate the fractional polynomials, so probably not surprisingly the two
FP-based approaches have the best performance. Both MFP and our proposed BGNLM_FP
are better than the competitors, especially those based on linear effects. It is known, indeed,
that the effect of the variable nodes is not linear ([5], Section 3.6.2), and our approach finds

https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/Multivariable_Model-building/gbsg_br_ca.zip
https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/Multivariable_Model-building/gbsg_br_ca.zip
https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/Multivariable_Model-building/gbsg_br_ca.zip
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this nonlinearity 100% of the time (see Table 6). A bit more surprisingly, BGNLM does
not perform so well in this example, but this is most probably related to the fact that the
extreme simplicity of a good model (at least the one found by BGNLM_FP only contains
two explanatory variables, one of them even with a simple linear effect) does not justify the
use of complex machinery.

Table 5. German Breast Cancer Study Group dataset: prediction performance for different models
based on IBS and C-index. Median measures (with minimum and maximum in parentheses) are
displayed for methods with variable outcomes. Models are sorted by median IBS.

Model IBS C-Index

MFP 0.1609 (-,-) 0.6939 (-,-)
BGNLM_FP 0.1619 (0.1604, 0.1635) 0.6913 (0.6871, 0.6960)
BGNLM 0.1677 (0.1647, 0.1792) 0.6656 (0.6319, 0.6801)
BGLM 0.1697 (0.1697, 0.1697) 0.6497 (0.6494, 0.6500)
Linear 0.1701 (-,-) 0.6184 (-,-)

Null model 0.1893 0.504

Table 6. German Breast Cancer Study Group dataset, BGNLM_FP: frequency of selection of the
variables/nonlinear transformations with a posterior inclusion probability above 0.1 in more than 10
out of 100 simulation runs.

Linear Effect Frequency Non-Linear Effect Frequency

Progesterone status 100 FP1 (number of positive nodes, 0) 100

4.4. Including Interaction Terms into the Models

As discussed in Section 2.6.3, our approach makes it straightforward to add interaction
terms in the Bayesian fractional polynomial models. Mathematically, we need to go
back to Formula (1) and also consider bivariate transformation, while algorithmically we
need to enable multiplication operators in the GMJMCMC algorithm. In this section, we
report the results obtained by BGNLM_FP with interactions. We keep all other tuning
parameters of GMJMCMC unchanged, except for allowing multiplications. Furthermore,
all hyperparameters of the models are unchanged, except for setting d = ∞ and I = 4.

4.4.1. Abalone Data

As we can see in Table 7, allowing interactions into the model enhances the perfor-
mance of the BGNLM_FP model on the abalone shell age dataset. Adding the interactions is
not sufficient to reach the performances of the general BGNLM, but it considerably reduces
the gap.

Table 7. Abalone shell dataset: results for the BGNLM_FP model when allowing for interactions.
The results for BGNLM and BGNLM_FP are reported from Table 1 for comparison.

Model RMSE MAE CORR

BGNLM 1.9573 (1.9334, 1.9903) 1.4467 (1.4221, 1.4750) 0.7831 (0.7740, 0.7895)
BGNLM_FP with interactions 1.9660 (1.9397, 2.0039) 1.4514 (1.4326, 1.4759) 0.7812 (0.7705, 0.7874)
BGNLM_FP 1.9741 (1.9649, 2.0056) 1.4679 (1.4623, 1.4896) 0.7783 (0.7702, 0.7805)

4.4.2. Breast Cancer Classification Data

As expected from the results of Table 3, in the case of the breast cancer classification
dataset, in which BGLM already performs better than BGNLM_FP, incorporating interaction
terms into the FP model does not produce any substantial advantage (see Table 8). This
does not come as a surprise, as nonlinearities do not seem to play a credible role in the
prediction model.
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Table 8. Breast cancer dataset: results for the BGNLM_FP model when allowing for interactions. The
results for BGNLM and BGNLM_FP are reported from Table 3 for comparison.

Model ACC FNR FPR

BGNLM 0.9742 (0.9695, 0.9812) 0.0479 (0.0479, 0.0536) 0.0111 (0.0000, 0.0184)
BGNLM_FP with interactions 0.9601 (0.9554, 0.9671) 0.0702 (0.0647, 0.0809) 0.0702 (0.0647, 0.0809)
BGNLM_FP 0.9601 (0.9554, 0.9648) 0.0756 (0.0702, 0.0809) 0.0756 (0.0702, 0.0809)

4.4.3. German Breast Cancer Study Group Data

Finally, Table 9 shows the results of the model with interactions for the time-to-
event data analysis. There is no advantage in allowing for interactions here as well.
This is a typical case of the advantage related to the bias-variance trade-off when using
simpler models for prediction tasks. We can notice from its IBS values that the model
with interactions can have the best performance (0.1597), but the performance varies so
much (as bad as 0.1660) that the median is worse than for the simpler model (that without
interactions). Note, moreover, that Table 6 seems to suggest that there are only two relevant
variables, so it is not likely to detect relevant interactions.

Table 9. German Breast Cancer Study Group dataset: results for the BGNLM_FP model when
allowing for interactions. The results for BGNLM and BGNLM_FP are reported from Table 3
for comparison.

Model IBS C-INDEX

BGNLM_FP 0.1619 (0.1604, 0.1635) 0.6913 (0.6871, 0.6960)
BGNLM_FP with interactions 0.1623 (0.1597, 0.1660) 0.6885 (0.6663, 0.6973)
BGNLM 0.1677 (0.1647, 0.1792) 0.6656 (0.6319, 0.6801)

5. Discussion

In this paper, we studied how BGNLM fitted by GMJMCMC introduced by
Hubin et al. [8] can deal with fractional polynomials. It can be seen as an opportunity
of fitting a BGNLM that can handle nonlinearities without any loss in model interpretabil-
ity, and, more importantly, as a convenient implementation of a fractional polynomial
model that assures a coherent inferential framework, without losing (if not gaining) any-
thing in terms of prediction ability. The broad generality of the BGNLM framework,
moreover, allows adding complexity with a minimum effort, as we show for the inclusion
of interaction terms.

Note that the current implementation is based on a direct adaptation of the priors
defined in Hubin et al. [8]. Further investigations on the choice of the priors will certainly
be beneficial and further improve the performance of BGNLM_FP, as we already noticed in
the simulation study in Section 3. For example, a better balance between the penalty for the
different fractional polynomial forms can be implemented. Our real-data experiments never
showed evidence in favor of a fractional polynomial of order 2. This may be related to the
implausibility of an FP(2) transformation, especially in a prediction context where simplicity
is often awarded, but it may also indicate that we penalized these terms too much.

One drawback with the Bayesian versions of the fractional polynomial models is the
computational costs of fitting them. This is not specific to our approach, it also concerns
the current BFP implementation of Sabanés Bové and Held [6] and can become an issue
in the case of very large datasets. Currently, we distribute the computational workload
across multiple processors to achieve convergence to descent regions in the model space. In
the future, subsampling the data could allow for a reduction in computational cost when
computing the marginal likelihoods. This will allow the use of the Bayesian fractional
polynomial approach in big data problems as well. Furthermore, in the case of large
datasets, Laplace approximations of the marginal likelihoods become very accurate, making
this approach even more appealing. To make the computations efficient, stochastic gradient
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descent (SGD) can be used to compute the Laplace approximations, which also guarantees
convergence [27] of MJMCMC in the class of Bayesian GLMs. Therefore, incorporating data
subsampling and using SGD to compute the Laplace approximations may be a promising
future direction in inference on Bayesian fractional polynomials under the setting of a
large n.

Another challenge is selecting appropriate values for the tuning parameters of GMJMCMC.
The tuning parameters in GMJMCMC control the proposal distributions, population size,
frequencies of genetic operators, and other characteristics of the Markov chain. Their values
can significantly affect the convergence and mixing properties of the algorithm. To deal with
this challenge, one may perform extensive tuning of the algorithm, which involves testing a
range of values for the tuning parameters and evaluating the performance of the algorithm
using problem-specific diagnostic tools such as power (TPR)-FDR in simulations or RMSE
for regression prediction tasks. A detailed discussion of setting the tuning parameters in
GMJMCMC is given in the "Rejoinder to the Discussion" in Hubin et al. [9]. In the future, it
may also be interesting to develop adaptive tuning methods that automatically adjust the
tuning parameters based on the performance of the algorithm as it is running.

GMJMCMC is a Markov chain Monte Carlo algorithm that is designed to explore
the space of models with non-zero posterior probabilities. However, as with any MCMC
algorithm, there is a risk that the chain may not converge to the desired target distribution
in a finite time. This means in our settings that the set of models with non-zero posterior
probabilities may not be fully explored in a single run of the algorithm. One consequence
of this is that the estimates obtained from GMJMCMC may vary from run to run, since
different runs may explore different parts of the model space. Even if the algorithm is run
for a long time, there is still a positive probability that it may miss some of the models
with non-zero posterior probabilities. Variance in the estimated posterior in turn induces
variance in the predictions if the latter is of interest. To mitigate this issue, it is recommended
to run the algorithm multiple times, using as many of the available resources as one can and
check for convergence of the estimates. Additionally, it may be helpful to use informative
model priors or other techniques to help guide the algorithm toward the most relevant
parts of the model space.

Even though there are still a few challenges and limitations in the current state of
Bayesian fractional polynomials, these models have potential applications in a variety of
areas where uncertainty handling, explainability, and nonlinear relationships are essential.
These include but are not limited to fields such as pharmacology, epidemiology, finance, and
engineering. In pharmacology, for example, fractional polynomials can be used to model the
dose–response relationship between a drug and a patient’s response, taking into account
the nonlinear and complex relationships between the variables. In finance, fractional
polynomials can be used to model the relationship between financial variables such as
stock prices, interest rates, and exchange rates, and to quantify the uncertainty associated
with these relationships. Similarly, in engineering, fractional polynomials can be used to
model the relationship between variables such as stress, strain, and material properties,
providing a way to make predictions while taking into account nonlinear relationships and
the associated uncertainty. In all of these cases, Bayesian fractional polynomials offer a
flexible and robust way to handle uncertainty and model nonlinear relationships, making
them a useful tool for a wide range of applications in the future. Given the important
role that uncertainty handling, explainability, and nonlinear relationships play in various
applications, we hope that the novel Bayesian fractional polynomial inference algorithm
presented in this paper, as well as the suggested extensions to various practical settings
such as survival analysis and GLM, will allow these often overlooked models to be more
widely used in the future.
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Appendix A. Additional Baselines for the Regression Task

For additional baseline methods on the abalone age regression task, we reproduced
the analysis from the supplementary script https://github.com/aliaksah/EMJMCMC201
6/tree/master/supplementaries/BGNLM/abalone%20age (accessed on 3 August 2023)
of Hubin et al. [8]. The results are summarized in Table A1. Here, RIDGE stands for ridge
regression, GR for linear regression, LASSO for lasso regression, RFOREST for random
forest, DEEPNETS for artificial neural networks [28] for all five models, and VARBAYES is
the variational inference for linear regression from Carbonetto and Stephens [29]. Finally,
LXGBOOST stands for linear extreme gradient boosting and TXGBOOST for tree-based
extreme gradient boosting [30]. These results confirm that linear algorithms such as RIDGE
and LASSO perform more poorly compared to some nonlinear methods. Hence, nonlinear
relationships between the features and target are important in this data. The results for
deep learning algorithms are, however, relatively diverse, with some deep learning models
performing very well, while others perform poorly, which is often the case in neural
networks, which tend to converge to different local extrema of the parameter space in different
runs. Hence, more regularization may be needed to smooth the penalized likelihood. We
observe here both superior and more robust performance of the Bayesian nonlinear methods
suggested in this paper.

Table A1. Abalone shell dataset: additional baseline results.

Algorithm RMSE MAE CORR

RFOREST 2.0352 (2.0020, 2.0757) 1.4924 (1.4650, 1.5259) 0.7633 (0.7530, 0.7712)
LASSO 2.0765 (-,-) 1.5386 (-,-) 0.7514 (-,-)
VARBAYES 2.0779 (-,-) 1.5401 (-,-) 0.7516 (-,-)
GR 2.0801 (-,-) 1.5401 (-,-) 0.7500 (-,-)
LXGBOOST 2.0880 (2.0879, 2.0880) 1.5429 (1.5429, 1.5429) 0.7479 (0.7479, 0.7479)
TXGBOOST 2.0881 (2.0623, 2.1117) 1.5236 (1.4981, 1.5438) 0.7526 (0.7461, 0.7590)
RIDGE 2.1340 (-,-) 1.5649 (-,-) 0.7347 (-,-)
DEEPNETS 2.1466 (1.9820, 3.5107) 1.5418 (1.3812, 3.1872) 0.7616 (0.6925, 0.7856)

Appendix B. Additional Baselines for the Classification Task

For the classification task, we also reproduced the baselines from Hubin et al. [8];
scripts at https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/
BGNLM/breast%20cancer (accessed on 3 August 2023). The results in Table A2 show
the performance comparison of the rest of the models for the breast cancer classification
task. The metrics used are, as previously, accuracy (ACC), false positive rate (FPR), and
false negative rate (FNR). The linear methods, RIDGE, LR (logistic regression) [28] and
LASSO, have higher median accuracy compared to the nonlinear methods, LXGBOOST,
TXGBOOST, RFOREST, and NBAYES (naive Bayes) [31]. This confirms the results from

http://biom131.imbi.uni-freiburg.de/biom/Royston-Sauerbrei-book/Multivariable_Model-building/downloads/datasets/ART.zip
http://biom131.imbi.uni-freiburg.de/biom/Royston-Sauerbrei-book/Multivariable_Model-building/downloads/datasets/ART.zip
https://archive.ics.uci.edu/ml/datasets/Abalone
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/Multivariable_Model-building/gbsg_br_ca.zip
https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/Multivariable_Model-building/gbsg_br_ca.zip
https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/Multivariable_Model-building/gbsg_br_ca.zip
https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/BFP
https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/BGNLM/abalone%20age
https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/BGNLM/abalone%20age
https://github.com/aliaksah/EMJMCMC2016/tree/master/supplementaries/BGNLM/breast%20cancer
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the main paper, that linear methods perform better on this particular dataset. Among
these baselines, RIDGE has the highest median accuracy of 0.9742, followed by regularized
DEEPNETS with 0.9695. The highly nonlinear methods have lower accuracy, with the
highest being TXGBOOST with 0.9531 and the lowest being RFOREST with 0.9343 on
average. These results confirm that linear relationships between features and the target are
more important in this dataset, and nonlinear methods may overfit the data and find irrelevant
nonlinearities. Thus, we confirm the robust good performance of the Bayesian nonlinear
methods suggested in this paper.

Table A2. Breast cancer dataset: additional baseline results.

Model ACC FNR FPR

RIDGE 0.9742 (-,-) 0.0592 (-,-) 0.0037 (-,-)
DEEPNETS 0.9695 (0.9225, 0.9789) 0.0674 (0.0305, 0.1167) 0.0074 (0.0000, 0.0949)
LR 0.9671 (-,-) 0.0479 (-,-) 0.0220 (-,-)
LASSO 0.9577 (-,-) 0.0756 (-,-) 0.0184 (-,-)
LXGBOOST 0.9554 (0.9554, 0.9554) 0.0809 (0.0809, 0.0809) 0.0184 (0.0184, 0.0184)
TXGBOOST 0.9531 (0.9484, 0.9601) 0.0647 (0.0536, 0.0756) 0.0326 (0.0291, 0.0361)
RFOREST 0.9343 (0.9038, 0.9624) 0.0914 (0.0422, 0.1675) 0.0361 (0.0000, 0.1010)
NBAYES 0.9272 (-,-) 0.0305 (-,-) 0.0887 (-,-)
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