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Abstract—The new Industry 4.0 envisions a future for agile
and effective integration of the physical operational technologies
(OT) and the cyber information technologies (IT) as well as
autonomous cooperation among them. However, the wide variety
and heterogeneity of industrial systems and field devices -
especially on the factory floor - increase integration complexity.
To address these challenges, new technologies and concepts such
as the Industrial Internet of Things (IIoT), Service-oriented
Architecture (SoA), Semantic Technologies, Machine Learning
and Artificial Intelligence are being introduced to the indus-
trial environment. In this paper, we focus on how industrial
automation systems and field devices can be integrated into the
IIoT framework and coordinated to adapt to dynamic operating
environment. Specifically, this paper proposed an interoperability
solution that makes use of SoA and Semantic Technologies to
achieve supervised coordination of IIoT application systems. To
illustrate the potential of this approach, the Service-oriented
Architecture-based Arrowhead Framework is used as the fun-
damental framework for the implementation of the approach.

I. INTRODUCTION

The development of new technologies such as Industrial
IoT (IIoT), Industrial Cyber-Physical Systems (ICPS), and
Service-oriented Architecture (SoA) has opened a promising
future where the physical and the digital worlds work together,
leading to a new wave of industrial revolution, namely Industry
4.0 [1]. Industry 4.0 envisions an industrial environment where
field devices that employ different physical operation technolo-
gies (OT) are represented digitally in the cyber information
technology (IT) for autonomously monitoring, performing
control, and making management decisions [2]. The two pri-
mary goals to enable this vision are cross-layer integration, and
semantic interoperability among the components and systems
with open vendor-independent architecture [3].

Consequently, there is a high demand for interoperability
among the processes, devices from the factory floor, and
enterprise and business systems. The main goal is to enable
the high-level application to exploit process data produced
in the field. For example, these data can be provided to the
Product Lifecyle Management (PLM) system for real-time
coordination of the production or the Enterprise Resource
Planning (ERP) system to update the production plans and
schedules. Furthermore, the field data is also critical for Man-
ufacturing Execution Systems (MES) and Supervisory Control
and Data Acquisition (SCADA) systems. However, due to the

high complexity and variety of heterogeneous devices and
technologies used in the field, the integration between these
systems and the factory floor is often not completely achieved
[2]. Furthermore, the communication protocols used by the
field devices are not designed to fully support exchanging data
with the standard IT systems. Instead, many current machines
and devices in legacy systems are using vendor-dependent
protocols with their own payload and syntaxes, leading to con-
siderable integration efforts for manual configuration, parsing,
and annotating the data [2].

SoA stands out as a promising candidate to support IT-
OT integration in order to make the systems from these two
layers more interoperable. There are several European projects
such as SOCRADES [4], [5], SIRENA [6], SODA [7] that
introduce a SoA middleware to exposes shop floor devices as
services to the application at higher layer such as MES and
ERP systems [8]. However, these frameworks are designed to
support devices that can host web services, which is not the
case for most legacy industrial systems.

To address these emerging integration challenges discussed
above, this paper proposes an approach that facilitates the
collaboration between physical devices and higher-level ap-
plication systems by introducing an intermediate layer that
transforms the data and operations at the OT layer into the
services supported by the IT systems. To implement the
proposed approach, the Arrowhead Framework [9] - a SoA
cloud-based framework for IIoT - is applied as the fundamental
technology. Furthermore, to coordinate the collaboration of
the application systems, a supervision approach is developed
by using semantic technologies to enable self-adaptation. The
ultimate goal is to reduce the engineering cost related to the
migration of legacy industrial systems while not introducing
too much complexity to the design of those systems. We make
the following contributions:

1) A service-oriented solution to integrate heterogeneous
automation systems into an IIoT framework.

2) An edge-based supervision approach to make industrial
IoT systems interoperable.

3) A prototype based on Arrowhead Framework is imple-
mented to illustrate the great potential of the approach.

The remainder of this paper is organized as follows: Section
II gives a brief overview of the Arrowhead Framework and



the core systems that are used for the implementation of
this approach. The proposed architecture for implementing
interoperability between cyber (IT) and physical (OT) systems
is discussed in Section III. In Section IV, the detail of the
implementation is presented. Section V introduces a small use
case of the proposed approach. In Section VI, we provide an
overview of the related works and discuss the improvement of
this approach toward those works. Finally, the paper is rounded
up with conclusions and future works in Section VII.

II. ARROWHEAD FRAMEWORK

Arrowhead Framework is a cloud-based framework that
aims to facilitate the creation of Local Automation Clouds
and support real-time, security, interoperability, and scalability
requirements of automation and industrial IoT systems [9]. Ar-
rowhead Framework approaches the transformation from large
monolithic organizations to multi-stakeholder cooperations via
the interactions of multiple Local Automation Clouds, thus
satisfying the high-level requirements of today’s society such
as sustainability, flexibility, efficiency, and competitiveness
[10]. Within Arrowhead Framework,

• A service contains the information about the interface
(e.g., communication protocol, data format, connection
endpoint) that is used for information exchanging among
the application systems.

• A system is a software artifact that either produces or con-
sumes services. There are three different types of systems:
the mandatory core systems that empower the fundamen-
tal properties of a local cloud, the automation support
core systems that facilitate the automation application
design, engineering, and operation, and the application
systems that implement the application functionalities.

• A device is a piece of equipment, machine, or hardware
with computational and memory capabilities which can
deploy one or several systems.

By employing the SoA, within one Arrowhead Local Au-
tomation Cloud, the communication between the systems
becomes producing and consuming services, thus constituting
a System of Systems Architecture. This architecture introduces
the following properties: (i) loose coupling, which enables the
producer to decide whom to consume its services, (ii) late
binding, which makes the consumer connect to the services at
any time, and (iii) lookup for run-time service discovery [11].

To construct a minimal Arrowhead Local Automation
Cloud, the following three mandatory core systems are needed:

• The Service Registry stores the information of the services
published within the local cloud. The Service Registry
produces services for the provider systems to register
their services as well as for the consumer systems to look
for published services in the local cloud.

• The Authorization System provides services for authenti-
cating and authorizing application service usage.

• The Orchestration System provides mechanism for dis-
tributing instruction about the communication between
the consumer and provider systems.

Besides those mandatory core systems, there are also various
automation support core systems that facilitate the design and
implementation of automation systems such as the System
Registry and Device Registry that support the on-boarding
procedure of new systems and devices [10], the Configuration
System that provides services for the distribution of config-
urations to the application systems [12], the Data Manager
that provides services for short-term and long-term data stor-
age, data retrieval and filtering, the Autonomic Orchestration
System that enables self-adaptation at service level by using
semantic rules and ontological reasoning [13].

III. THE PROPOSED ARCHITECTURE

Traditional industrial architectures are developed based on a
pyramid model with various layers organized in a hierarchical
structure, which have very limited support for vertical inte-
gration between the layers [2]. As a result, several alternative
architectures which have less levels, stricter boundary and
more standard inter-connected components have been pro-
posed. Typically, these modern architectures are organized
based on two layers: OT and IT layers, where the commu-
nication protocols employed by the OT systems are usually
different from the information models used in the IT domain.
As a result, there is a need of an intermediate layer that
facilitates the transformation of data of the physical devices
and components into the information models applied by the
systems of the cyber layer.

This paper proposes a solution for (i) integrating the legacy
industrial devices into application systems at cyber layer and
for (ii) the interoperability among those systems. First of all,
for the integration support, we employ the SoA architecture
in which the data of physical devices will be abstracted into
services that are made available for the application systems to
consume. Figure 1 illustrates the components necessary for the
implementation of the approach. Accordingly, as most legacy
industrial devices do not support modern communication pro-
tocols (e.g., OPC-UA, RESTful, MQTT) which are usually
employed by the application systems at the high-level layer,
we propose an intermediate layer between the physical devices
and application systems, namely Adapter Systems, to transform
the data and functionalities of the physical devices into ser-
vices. As a result, this integration step is done separately from
the physical layer, thus there is no need for modifications or
upgrades of physical devices. Furthermore, once the physical
services are published, the application systems can decide
which physical services to consume at any time in a flexible
way. However, this approach requires the implementation of an
adapter for each legacy communication protocol. Nevertheless,
the resulting cost related to this migration step may not be high
as there may be a limited number of legacy protocols used in a
particular manufacturing system and the adapter can be reused
and duplicated for the same protocol.

Secondly, in order to make the application systems in-
teroperable, we apply a supervision approach enabled by
the Interoperability Management Systems. Particularly, those
Interoperability Management Systems are deployed at the edge



of the network to enable real-time monitoring and coordinating
the collaborations among the application systems. For exam-
ple, these Interoperability Management Systems can provide
suggestions for an application system to connect to appropriate
service or to react to an anomaly that is not handled in
their designs. The Interoperability Management Systems do
not handle any application logic; instead, they monitor the
application systems and provide them necessary instructions.
These instructions are made based on the high-level policies
which could be added or updated at run-time. Therefore,
this approach increases the flexibility and possibilities for the
collaboration among the application systems. Furthermore, as
the supervision logic is implemented separately in the In-
teroperability Management layer, this edge-based supervision
approach helps to reduce the complexity of the application
systems as well as the effort related to maintenance and
diagnosis of the unexpected situations.
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Fig. 1. Implemented components of a cross-layer architectures for enabling
interoperability among IIoT systems.

IV. IMPLEMENTATION APPROACH

This section discusses the implementation of our proposed
approach in detail. Specifically, we employ the Arrowhead
Framework as the fundamental technology for the implemen-
tation of our service-oriented approach. As can be seen from
Figure 1, we exploit existing core systems and application
systems for the implementation of the Adapter and the In-
teroperability Management Systems. Figure 2 illustrates the
communication flow of those systems within an Arrowhead
Local Cloud.

For the adapters, Arrowhead Framework provides the client
library that facilitates the development of Arrowhead appli-
cation systems that publish RESTFul services in a flexible
and efficient way [14]. This library is proven to reduce code
duplication and enhance the readability of the implementation.
This library can also help to simplify the implementation of
the adapters for other protocols as well. As an example, the
work in [15] presented an engineering procedure to wrap OPC-
UA functions and publish them as a service to the Arrowhead
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Fig. 2. Communication flow of the systems within an Arrowhead Local
Automation Cloud.

local cloud. For other industrial protocols, the adapters can
be manually implemented with the client library based on the
same mechanism proposed in [15].

Furthermore, within Arrowhead Framework, there are also
available native solutions to integrate industrial standards (e.g.,
Modbus TCP, MQTT, Z-Way, FIWARE and BaSys) and make
them available under the form of services. For example,
the Translation System, an automation support core system,
provides translation as a service that can map OPC-UA to
other protocols such as CoAP, RESTful, MQTT [9], [16].
Arrowhead Framework also offers another automation support
core system, namely Modbus TCP System, that provides the
mechanism to wrap the Modbus TCP functions to RESTful
service. As discussed earlier, the adapters and these native
support systems can be reused for other physical devices
employing the same protocol, thus saving effort for the im-
plementation in this step.

Regarding the Interoperability Management Systems, the
following systems are leveraged to enable interoperability
among the application systems:

• Service Registry and Authorization System: these two
systems provide services for the other systems to dis-
cover, authenticate and authorize the service usages.
Typically, the interaction with these two core systems will
be handled automatically by the Orchestration System
whenever an application system makes an orchestration
query. Therefore, application systems do not need to
consume the services provided by these two core systems.
Detail of the interaction is discussed in [9] and is not
presented in figure 2 for simplicity of the illustration.

• Data Manager System: acts as a central storage of the data
from the services for monitoring purposes. Particularly,
all of the application systems that want to collaborate with
each other have to record their data to the Data Manager.



1 (?c rdf:type auto:Consumer)
2 (?c auto:consumesService ?s1)
3

4 (?s1 auto:hasState auto:OfflineState)
5 (?p1 auto:producesService ?s1)
6 (?d1 auto:hasService ?s1)
7 (?o1 sosa:madeBySensor ?d1)
8 (?o1 auto:hasUnit ?u1)
9

10 (?s2 auto:hasState auto:OnlineState)
11 (?p2 auto:producesService ?s2)
12 (?d2 auto:hasService ?s2)
13 (?o2 sosa:madeBySensor ?d2)
14 (?o2 auto:hasUnit ?u2)
15

16 notEqual(?u1 ?u2)
17 ->
18 substitute(?c ?s1 ?p1 ?s2 ?p2)
19 configure(?c ’unit’ ?u2)

Fig. 3. An adaptation policy to substitute one temperature service that is
disconnected and reconfigure the unit.

To do so, these application systems need to consume
the Proxy Service provided by the Data Manager. This
service provides a mechanism to cache one message and
is suitable for low-power, resource-constrained devices.
By employing the Data Manager as the central data
storage, we avoid creating many connections to the
application services as well as reduce the effort related
to the discovery of necessary services for monitoring and
the transformation of the data.

• Autonomic Orchestration System: this is the main system
that implements the centralized supervision approach for
interoperability. Specifically, this system is developed
based on our previous work that applied semantic tech-
nologies to standardize the data and further reason for
smart decision on the structured data [17]. The final goal
is to address semantic interoperability issues and enable
self-management for the application systems. As can be
seen from figure 2, the Autonomic Orchestration System
also consumes the Proxy Service to monitor relevant
physical devices and reason for any adaptations specified
by the Adaptation policies. These adaptations will then be
transform into reconfiguration rules and re-orchestration
rules to supervise the interaction of the corresponding
application systems. Specifically, the Orchestration Up-
dater Service provided by the Autonomic Orchestration
System is used to handle this transformation and push the
new orchestration/configuration rules to the Orchestration
System and Configuration System respectively. Adaptation
policies specify the high-level interaction strategies that
show the application systems which and how to interact
with each other. In this approach, we use semantic rule
as the syntax to specify these policies. Figure 3 presents
an example of such policies. This polices guides the
consumer system to substitute its currently-consuming
service (i.e., the substitute predicate) that is disconnected
from the cloud (i.e., has state OfflineState) by another rel-

evant service (i.e., has state OnlineState) and reconfigure
the unit (i.e., the configure predicate) if the units are not
the same (i.e., the notEqual predicate). The Adaptation
policies can be registered to the Autonomic Orchestration
System manually by the administrator of the local cloud
or programmatically by the application systems via the
Orchestration Register Service provided by this core
system. More information about the implementation of
the Autonomic Orchestration System can be found in [13].

• Configuration System: this system stores the configuration
and settings of the application systems. Whenever there
is newly-generated reconfiguration rules, the Autonomic
Orchestration System will push these rules to the Config-
uration System via Config Management Service provided
by this Configuration System. Subsequently, the new
Configuration can be retrieved by the application systems
via the Config Service also provided by this core system.

• Orchestration System: this system stores the orchestration
rules of the application systems and provide them to the
application system on request. Similar with the Configu-
ration System, the Orchestration System will receive new
re-orchestration rules from the Autonomic Orchestration
System via Orchestration Store Management Service and
push them to the corresponding application systems via
Orchestration Service.

V. APPLICATION EXAMPLE

In the previous section, we have presented our approach to
enabling interoperability among the IIoT systems by exploiting
different core systems of the Arrowhead Framework. In this
section, in order to illustrate the detailed interaction among
those systems, we present a step-by-step communication pro-
cedure within an example application that displays the tem-
perature value and automatically reconfigures itself whenever
errors occur. In this example, there are three application sys-
tems involved: Temperature Display System, Temperature1 and
Temperature2. The two temperature systems capture the mea-
surements from two temperature sensors and provide services
for other systems to retrieve those values. The two sensors
are located at the same location but configured to provide
values in two different units: Fahrenheit and Celsius. Figure 4
shows the output of the service provided by Temperature1. The
services employ SenML1 format to display the information
such as name of the provider system, timestamp, unit, and
value of the measurement. The Temperature Display System
is a web application that consumes either one of those two
temperature services and displays the temperature in Kelvin
degree to a web page. Internally, this system is implemented
with two functions to convert from Fahrenheit or Celsius
to Kelvin. In this example, by employing our approach, the
Temperature Display System is enabled to re-orchestrate to
use a new temperature service and reconfigure the conversion
function accordingly based on the collaboration with the
Interoperability Management Systems.

1https://datatracker.ietf.org/doc/html/rfc8428



1 {
2 "bn" : "Temperature1",
3 "bt" : 1.627410726679E12,
4 "bu" : "Fahrenheit",
5 "ver" : 1,
6 "e" : [ {
7 "n" : "Indoor Temperature",
8 "v" : 107.08383965661564,
9 "t" : 1.627410726679E12

10 } ]
11 }

Fig. 4. Payload of the Temperature1 service.

illlFigure 5 illustrates the interaction of the systems in
this example. Initially, the Temperature Display System is
configured to consume the service of Temperature1. Message
#1 indicates the main operation of the Temperature Display
System, which is periodically retrieving the temperature value
via the service, convert it to Kelvin degree, and display it
accordingly. Furthermore, this system may register its or-
chestration and configuration policies with the Autonomic
Orchestration System via the Orchestration Register Service
(message #2). In this example, we use only one policy which
is shown in figure 3. Specifically, this policy guides the
Temperature Display System to re-orchestrate to the other tem-
perature service and re-configure the unit conversion function
respectively whenever the currently-consuming temperature
service disconnected. Moreover, the two temperature services
need also to update their data to the Data Manager System
periodically via Proxy service in order for the Autonomic
Orchestration System to monitor their status (message #3-
6). In this example, the Autonomic Orchestration System is
configured to change the status of the services to OfflineState
if their measurement values are not updated within 5 seconds.
Once this situation happens, new orchestration and configura-
tion will be generated based on the registered policy in figure
3 and be stored in the Orchestration System (via Orchestration
Store Management Service) and the Configuration System (via
Config Management Service) respectively (message #7, 8).
Then, this new adaptation will be updated to the Tempera-
ture Display System for re-orchestration and re-configuration
(message #9, 10). Finally, the Temperature Display System
continues its operation with the newly-configured temperature
service (message #11).

VI. RELATED WORK

Due to the growing demand for interoperability among
the processes, devices, and systems - down from the factory
floor up to the enterprise systems - the integration of IT and
OT layers is of utmost importance [18]. However, due to
the wide variety and heterogeneity of the technologies and
standards used on the factory floor, this integration becomes a
significant challenge. The most common solution is to develop
an intermediate layer to transform the heterogeneous protocols
at the OT layer into a unified information model supported by
the IT. For example, Schmidtmann et al. proposed a hardware

abstraction layer for uniformly mapping the physical devices
of the manufacturing system into symbols in XML config-
uration files [19]. These XML files will then be processed
by the layer whenever there are actions performed by these
devices. Givehchi et al. proposed a similar approach with an
interoperability layer that maps the data of the physical layer
into OPC-UA information model [2]. These related works re-
quire the business systems to adapt to the designated protocols
(e.g., OPC-UA) in order to interact with the physical layer,
which may require substantial modification of the application
systems. Also, bottlenecks issues may be experienced at the
intermediate layer whenever the number of physical devices
increases. By introducing an adapter for each communication
protocol, our approach can avoid too much modification of the
application system while also addressing the scalability issue
as those adapters can be deployed on distributed hardware.

SoA is also a potential architecture for the heterogeneity
challenge of the physical layer. The use of SoA in auto-
mated manufacturing is being investigated in several European
projects such as SOCRADES [4], [5], SIRENA [6], SODA [7].
The primary objective of the SOCRADES project is to develop
an architecture for the future factory including middleware
that supports the devices from the shop floors. SIRENA and
SODA project proceeds along similar lines that introducing
SoA frameworks for multiple domains apart from industrial
automation. These projects are developed based on the smart
devices that can host web services (e.g., DPWS enabled
devices (Devices Profile for Web Services)), which demands
device modifications as most legacy industrial devices support
no protocol stack for modern protocols. In this work, we
address this problem by introducing a separate layer handling
the mapping of those devices to services.

Furthermore, in this work, we move one step further by
monitoring the services and providing instructions for re-
orchestration and reconfiguration with the support of semantic
technologies. Similar support can be found in [5], [20], [21].
However, those related works are either at the conceptual stage
or addressed only specific application domains.

VII. CONCLUSION

Service-oriented concepts enable the collaboration of het-
erogeneous hardware and software platforms, which is crucial
to the future industrial revolution. In this paper, by applying
the SoA, we proposed an approach to enable the integration of
the physical devices of the OT associated with the technical
process into the application systems from the IT associated
to the business process. Furthermore, we also present our
supervision solution to enable the interoperability of those
application systems. The approach is implemented by lever-
aging different core systems provided by the service-oriented
Arrowhead Framework. This proposed implementation can
help to increase the efficiency for the enterprise as it improves
the interoperability without any modification to the physical
devices while not introducing too much complexity to the
high-level enterprise systems.



Temperature 
Display System
Temperature 

Display System

{Policy matches}

looploop

OrchestrationUpdaterOrchestrationUpdater

Temperature1Temperature1 Temperature2Temperature2

OrchestrationRegisterOrchestrationRegister

Autonomic Orchestration System

ConfigConfig

Configuration System

ConfigManagementConfigManagement

Orchestration System

OrchestrationStore
Management

OrchestrationStore
Management

OrchestrationOrchestration

DataManager System

ProxyProxy

2. Register(AdaptationPolicy)

3. Push(SensorData)

5. Push(SensorData)

4. Fetch():SensorData

6. Fetch():SensorData

7. StoreOrchestration(StoreRules)

8. StoreConfiguration(StoreRules)

9. GetOrchestration(ServiceRequestForm):OrchestrationResponse

10. GetConfig(SystemName):ConfigurationResponse

1. Get():SensorData

looploop

looploop 11. Get():SensorData

Fig. 5. Interaction among the systems of the example application.

As future work, we will evaluate additional requirements
for the security and usability of the proposed implementation.
Specifically, other automation support core systems such as
System Registry and Certificate Authority will be investigated
to enable seamless integration and monitoring of new appli-
cation systems and address advanced security requirements
related to the usage of services. Furthermore, an approach to
assist the user in creating, editing, and validating adaptation
policies will be investigated as the current syntax of the
semantic rule is very error-prone.
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