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Abstract

This thesis describes an exploratory study that measures the overall performance impact on a tex-

tured and non-textured multiresolution terrain rendering system when using pre-processed Java3D

binary files. Much of the work has focussed on studying fundamental concepts and algorithms for

processing large virtual terrains. Based on the output from this work, a software testbed capable

of collecting quantitative measures from the rendering output was implemented. The testbed was

implemented in order to be able to study, and understand, the performance impact of Java3D binary

serialized files by looking at the entirety of a virtual terrain rendering system.

The testbed implements a novel approach to LOD control using the high level graphics API

Java3D, and we will argue that this approach is viable for generating large virtual terrains.

The performance comparisons are made by running a set of tests that simulate typical user

operations performed in virtual terrain software. Based on the output from the testing, the thesis

gives guidance on when it is most appropriate to use Java3D binary serialized files.
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Chapter 1

Introduction

The use of maps dates back to the Stone Age, and appears to exist several millenniums earlier

than written language. Even though cartography has developed significantly from hand-drawings to

extensive use of computers today, old maps are surprisingly similar to the maps we use today.

Figure 1.1: A map of the world from Tabulae Rudolphinae 1627 by Johannes Kepler

While we tend to think of maps as reduced, simplified 2D images of the world, the rapid de-

velopment of computer hardware has made it possible to draw large 3D representations of terrains

on a normal personal computer. In the 1980s and 1990s such visualisation would have required a

1



2 Chapter 1. Introduction

mainframe or supercomputer. Technology and especially the more widespread use of computers,

have not only changed the way we create maps, but has also changed the way we view and work

with maps.

Even though researchers, and the geographic information system (GIS) business, has worked

with virtual terrain visualisation since the late seventies and still do, the interest for geo-data systems

amongst the general population has not increased before the latter years. The increased interest is

popularised by Virtual Globe applications such as Google Earth1 and NASA Worldwind2. Virtual

Globes are 3D spherical representations of the Earth, in which a user can move freely around.

The virtual terrain project3 lists some common usages and hypes concerning virtual globes.

Some of the interesting areas they describe includes virtual tourism, education, urban planning,

visualisation of weather and video games.

Figure 1.2: A map of the world in 2009 using the Virtual Globe application - Google Earth

Virtual Globe applications have not only resulted in a renewed interest in research in the area,
1http://earth.google.com/
2http://worldwind.arc.nasa.gov/
3http://www.vterrain.org
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but also in the availability of public-access terrain databases.

1.1 Motivation

In virtual terrain or virtual globe software, a large number of activities take place behind the scenes;

downloading files from servers, reading and parsing files, creating geometry, building data struc-

tures, paging in and out of memory, mapping textures and so on. In order to optimise and reduce the

risk of re-processing the same data several times, some of these activities store information to disc

when the process is finished. For instance, the Nasa Worldwind software is storing the image and

height data downloaded via the internet to local disc, to avoid doing this time-consuming process

several times. It is more optimal to have them availiable for rapid access on local disc.

The rapid advance of computer hardware opens up for possibilites of using less specialised and

optimised methods for building virtual terrains, and yet having a high rendering throughput. Using

a more high-level API, such as Java3D4, can provide abstractions from the low level details, and

can facilitate and speed up the development process speed by making more complex programming

simpler.

Java3D has the ability to store parts or entire virtual universes as binary objects on disc. This

opens up for the possibility to store completely processed geometry to disc. One could assume

that by storing completely processed geometry to disc, and by having the ability to avoid the entire

recalculation process by rapidly reading the already processed geometry directly into software will

have an effect on performance.

This work will also be an contribution to an already existing software platform developed at the

Institute for Energy Technology (IFE)5 that is capable of scenario management and simulation

combined with hazard visualisation. A number of interesting applications are made possible by

the combination of geo-data and terrain handling, especially in combination with scenario manage-

ment and simulation functionality.

If we consider the area around a nuclear site, a wide-area model can i.e be used to plan new

construction and other operations around the existing plant, checking access routes for personnel

and vehicles, or in extreme cases, like Chernobyl, to aid in the site clean-up and remediation. In

particular, emergency plans can be visualised and simulated, and used to brief emergency services,

4http://java.sun.com/javase/technologies/desktop/java3d/
5www.ife.no
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such as fire fighters (e.g. [10]) and other personnel that are not as familiar with the plant than the

permanent staff. Simulation features for planning [14][12] and training [23] [10] [24] could

include risk visualisation, contamination and radiation distribution (e.g. in an accident scenario),

fire and smoke, evacuation of personnel, and so forth. For planning, training, or even for emergency

support, 3D software could be used to rapidly identify optimal routes for vehicles and personnel to

achieve specific goals.

The ability to combine techniques demonstrated by virtual terrain software, with the VR sim-

ulation and scenario planning [12], collaboration [2], radiation visualisation [9] [13], and other

capabilities, e.g. [11] [10] in the software platform at IFE, will enable us to create more dynamic

simulations than is possible using tools like Google Earth directly.

1.2 Research Objectives

The work in this thesis focusses on measuring the overall software performance on a textured and

non-textured multi-resolution terrain rendering system when using serialised Java3D binary files

compared to more traditional file-formats. In this context the traditional file-formats are the formats

that are available from the Nasa Worldwind Server.

The software performance will be measured by looking at quantitative measures from the ren-

dering output. In order to achieve this, a software testbed of a virtual terrain system has been

implemented using Java6 and Java3D7. The thesis also gives a description on how we can build

a virtual terrain rendering system by undertaking a novel approach using the high-level Java and

Java3D API (Application Programmers Interface).

The design and implementation of the developed testbed has favored simplicity, and have utilised

many of the inbuilt high-level mechanisms in the APIs in order to build a complete virtual terrain

rendering system. The testbed is using satellite imagery from a Nasa Worldwind geodetic server,

and is coupled with parts of the Nasa Worldwind Java implementation in order to retrieve the data

necessary to build realistic virtual terrains. The software has been implemented with the capability

to store the rendered virtual terrain to serialised Java3D binary formats and reading them again.

Through research and prototyping the following research question will be focussed on, In visu-

alisation of a simulated real world with virtual terrains.

• What is the overall impact on performance on multiresolution virtual terrains when utilising

6http://java.sun.com/
7http://java.sun.com/javase/technologies/desktop/java3d/
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Java3D serialised binary files compared to utilising files from a Nasa Worldwind Server?

– Will serialising different portions and levels of a Java3D scenegraph have impact on

performance?

– What differences will serialising a textured terrain compared to a non-textured terrain

have on performance?

The results and findings are to be backed up with the following deliverables:

• A software testbed capable of rendering virtual terrains using Java3D with automated test

data collection.

• The results from the automated test data collection.

A secondary objective will be to see if a novel approach, using a high level graphics API, can

be undertaken in order to build virtual terrain rendering software with high rendering throughput.

1.3 Method

1.3.1 Literature and Domain Study

In the initiation and preparation phase of this work, the most fundamental concepts and algorithms

for generating large terrain models were studied, and in some cases tested. A brief description

on virtual terrain rendering techniques, and how some systems have successfully utilised them are

described in Chapter 2. The chapter also describes how we can go from a limited data set, to a

distributed technique that in theory can visualise gigabytes of data.

1.3.2 Testbed design and implementation

The design and implementation of the testbed is presented in Chapter 3 and 4, and is based on the

concepts outlined in Chapter 2. The design has favoured simplicity, and is utilising many inbuilt

features of the high-level graphics API Java3D.

A virtual terrain system consists of many different parts that need to work together in order to

create a high rendering throughput. To predict the consequences of using different file-formats as

the basis for building a terrain is not a trivial task. The work with this thesis has for this reason

prioritised to build a working testbed of a virtual terrain rendering system in order to study the
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overall software performance effects of different file input formats. By having many of the vital

parts in place, one can extract more data from the tests and hence get a better understanding of the

eventual advantages or bottlenecks for the different file-formats.

Methodology

The implementation of the testbed is considered to be a research effort, and will need a software

methodology that is flexible and can handle late changes during the implementation. This leaves out

predictive methodologies like i.e. the Waterfall methodology, and opens up for Agile development

methodologies.

Many consider Agile methodologies as a modern practice but its applications dates back to the

mid-1950s [19]. There are a number of agile software development methods, but all of them have

some common denominators and are written down in the agile manifesto.8 The following points is

taken from this manifesto, and is the most important ones for this project.

1. Software is developed using many iterations, and not only one.

2. Emphasise realtime communication, preferably face-to-face communication over written doc-

umentation

3. Working software is the measure for success.

The biggest difference from predictive methodologies is the amount of time used on a iteration.

It emphasises that one time period is measured in weeks and not months, this also fits the scope

of this project better. Each iteration is handled as a small project, hence having it’s own life cycle

containing analysis, design, implementation and testing. There is still a need for analysis, design,

implementation and testing activities, but these activities are carried out in a more flexible way than

in the waterfall process.

An agile software software methodology fits the requirements of a research software develop-

ment project, because we are not able to predict and document all requirements before the imple-

mentation period starts.

There are a number of agile development methods and perhaps the most popular is Extreme

Programming9, I will use a method called Iterative and Incremental programming, which many of

the other agile methodologies is based on.
8http://www.agilemanifesto.org/
9www.extremeprogramming.org
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1.3.3 Data collection

The test data is collected either by the implemented testbed or by third party applications. The

implemented testbed have inbuilt mechanisms for counting the number of tiles rendered in a scene,

the number of attempts to render tiles and the accumulated time to render a tile. This data, collected

from the actual rendered data, is used to evaluate the file-formats ability to deliver high resolution

data. By having quantitative measures collected from the rendering output, one has a better basis for

discussion, because the data has been through all the vital parts of a virtual terrain rendering system.

The data is collected when running simulated user test from predefined flight-paths that simulates

normal user operations in order to approach the problem as realistically as possible.

1.3.4 Data Analysis

Human modellers are often using visual criteria to decide the visual quality of a 3D-model. This is

in many ways an excellent way of evaluating the effectiveness of a 3D-models, because it uses the

human visual system. However, in many applications this method is not desirable because it is too

work-intensive, and can not be measured in a quantitative way.

In response to this, there are implemented several methods for automatic quantitative measures

for the quality of virtual terrain models. These are often referred to as error measurement . Error

measurement is important in order to know the quality of the results, and to be able to compare them

to other algorithms. There are published several algorithms concerning error measuring, and is by

many considered to be a work field in its own. The LOD book [17] gives a good introduction to

the field, and is explaining the key elements of the error metrics and explains some of the published

algorithms. This approach is considered to be out of scope for this study, and we will undertake an

approach where we are looking at the entirety of a virtual terrain application.

Many applications uses the Frame Per Second (FPS) tests in order to measure the performance

in 3D applications. In this application it would not be fair to use this as primary test data input for

discussion. Due to the unknown fact that different file-formats have the ability to deliver the equal

amount of rendered data during the simulated tests, one would not be sure if the the comparisons

would be reliable due to the different amount of rendered data. The amount of rendered data can

have a huge impact on rendering performance. For this reason, the fps tests are used as a measure

to tell if a test has passed or fail, and to give indications concerning the rendering performance.
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1.4 Scope

The implemented software is intended to be used as a testbed to answer the research objectives, and

will not be tested as thoroughly as a commercial software product. Important aspects in the field of

virtual terrain rendering such as spherical textures, cracks and t-junctions between adjacent tiles and

supporting of different data-sources and formats is not implemented nor considered. This is both

due to a limited timeframe for the project, and the fact that it is not considered important in order to

answer the research objective.

The performance investigation and findings are undertaken by an exploratory study, rather than

using formal statistical methods.

1.5 Outline

Background
Chapter 2 gives a brief introduction to the most fundamental concepts when generating large ter-

rain models, and describes the most commonly used optimalisation techniques for terrain rendering.

It also describes the most popular virtual globe systems used today, and presents some of it’s ad-

vantages and disadvantages. Having this in mind, it describes the motivation of implementing this

thesis.

Testbed Design
Chapter 3 gives a detailed explanation of the design and the development as well as the design pro-

cess. It uses pseudo-code, figures, UML (Unified Modeling Language) sequence and class diagrams

to support the explanation of the design.

Testbed Implementation
Chapter 4 gives a detailed description of the motivation and implementation of the design described

in Chapter 3.

Performance Investigation
Chapter 5 explains the designing of the tests used to answer the research objective together with the

test results.



1.5. Outline 9

Discussion and clarifying tests
Chapter 6 presents the findings from the execution of the tests defined in Chapter 5, and performs

further testing to clarify the indications from the performance investigation.

Conclusion and Future Research
Chapter 7 Discusses the suitability and the viability of using Java3D binary as file format for virtual

terrains. Finally some recommendations for further research are offered.





Chapter 2

Background

From the last quarter of the 20th century it have been developed several methods for visualising

large terrains on a computer. Visualising large terrain models requires powerful graphics hardware

and even high-end modern graphical cards are not capable of generating a high resolution virtual

terrain covering a large geographical area. To visualise 3D-models as large as the entire planet we

need techniques to be able to render data-sets that is larger than the available main memory on the

computer we are running on, or that can be handled in real-time by the 3D graphics hardware. This

capability is referred to as operating out-of-core. To give an example of the amount of information

required to render the entire planet in 1-cm resolution, the color imagery alone requires 1 Petabyte

of storage [5].

2.1 Related Applications

Many tools have been developed to solve the problems of discovering, modeling, and visualising

global geospatial data and associated data. In the section below a number of related applications are

oulined shortly, however it should be noted that the applications that had the biggest impact on the

implemented testbed is Google Earth and Nasa Worldwind.

2.1.1 Google Earth

Google Earth is a well known virtual globe geospatial browser available for Macintosh, Windows,

and Linux. Google Earth is commercial product and is available in different versions at different

11
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cost. Google is also distributing a free version which has a limited feature set and slower perfor-

mance compared to the non-free versions1. The free version is licensed for home/personal use, and

can not be used in a work environment. In a work setting the Pro version that costs 400 dollars per

year2 is necessary.

The release of Google Earth in mid 2006 increased the number of references to virtual globes

in online news media between 2006 and 2007 with about ten times3. Based on a lexical analysis

of crawled Web data, Google Earth had about 83 percent of this coverage, so it is fair to say that

Google Earth has been the primary driver behind the observable increase in popularity of geospatial

platforms.

One of the key factors for Google Earth’s success is that they have opened up some of their

API’s for public access. This has resulted in several interesting applications and mash-ups, which

again has resulted in even more interest in Google Earth.

2.1.2 SINTEF - Virtual Globe

Virtual Globe 4 is an Internet based client-server application for visualisation, out of core, global

scale terrain models. From the homepage, many different versions can be downloaded, and the

application is capable of visualising several different datasets, such as SRTM5, SRTM 30+, GLOBE
6and GTOP030 7, as well as using VRML8 models as additional 3D content.

The application uses highly optimized datastructures both on the client and the server-side in or-

der to achieve a high rendering throughput. The mutual computations increases the complexity and

computational cost of the software. The main bottleneck seems to be the client, and the authors [3]

suggests to replace the Java platform with C++, due to the limitations of optimising the algorithm

furher, especially regarding memory handling.

In 2006 the Globe project was obtained by Norkart9 for further development.

1http://earth.google.com/enterprise/earth pro.html
2http://www.bullsworld.net/2006/01/18/google-earth-is-not-free/
3http://www.geospatialweb.com/figure-4
4http://www.virtual-globe.info
5http://www2.jpl.nasa.gov/srtm/
6http://www.ngdc.noaa.gov/mgg/topo/globe.html
7http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
8http://www.web3d.org/x3d/specifications/vrml/VRML1.0/index.html
9http://www.norkart.no/
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2.1.3 Microsoft Virtual Earth

Microsoft Virtual Earth 3D is built as an extension to Internet Microsoft Internet Explorer or Mozilla

Firefox, and enables the end user to view a Virtual Globe within any of the two Internet browsers.

It is a 3D user interface for Live Search Maps that can only be run on the Windows platform.

The advantage of using a software extension, is that the user does not need to download an entire

application, but can use the Virtual Globe inside an already installed browser.

Microsoft Virtual Earth has an extensive, free Software Development Kit(SDK) which enables

developers to integrate their own content or modifying the user interface or interaction.

2.1.4 Nasa Worldwind

Nasa Worldwind is another popular virtual globe geospatial browser, and differs from Google Earth

in that it is open source and only available for Windows. A free, cross-platform Java version is

under development, and was planned to be released in spring 2007, but a the beginning of 2009 it is

still in version 0.5.0.

Nasa Worldwind differs from Google Earth in philosophy as all parts of the software are dis-

tributed for free. While Google Earth has copyrighted all maps under United States Copyright law,

one may freely modify, re-distribute and use maps used in Nasa Worldwind . NASA have collected

their own geospatial data from satellites, and are distributing terabytes of this geodetic-data for free.

They are distributing the most complete high-resolution digital topographic database of Earth, cov-

ering approx. 80 percent of the world. The satellite imagery used for this testbed, is fetched from a

Nasa Worldwind server, but is however restricted to Landsat710 imagery set, which is the most high

resolution dataset freely available today.

2.1.5 Other important technologies and applications

On the sections above, one could also list GeoVRML and Terravision11, but these are handled

separately in own sections later in this chapter.

10http://landsat.gsfc.nasa.gov/
11http://www.ai.sri.com/tvgeo/
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2.2 Terrain Rendering Simplification Concepts

Because of the amount of data needed to render a large virtual terrain, or even the entire globe, it

would be an impossible task to build this off-line or by hand. Virtual Terrains are therefore often

built up by satellite imagery combined with DEMs (Digital Elevation Model). A DEM is a high-

quality picture that is used to represent the earth’s ground surface topology, and is often used to

retrieve the elevation of the ground. By combining information from these images, we have enough

information to build a virtual terrain from a mesh of triangles or quads.

A DEM can be represented as a Regular Grid (a grid of squares) or as a triangular irregular

network (TIN).

Figure 2.1: To the left we can see a regular grid, to the right we see a Tin representation

As we can see from Figure 2.1 from [25], regular grids are usually less optimal because the

method uses the same resolution for the entire region. However, the advantage of this is that regular

grids are simpler to map to datasets, as the mesh is represented in the same way as the data. This

makes it easier to implement and to create real-time solutions for generating these meshes, as we

do not need as much computer power when generating geometry. They are also easier to divide into

smaller pieces because of the inherent regularity.

The regular grid makes it easier to implement features like terrain following and collision de-

tection because we can easily retrieve the height value directly from the dataset. By evaluating the
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height value we can adjust the viewpoint based on this value.

However, TINs are more flexible and can result in fewer polygons because the method uses

fewer polygons for flat terrain areas, while using higher resolution height fields for areas that require

more detail. The difficulty with TINs is that they require more processing because the meshes are

represented very differently from the typical dataset. This make TINs less suitable for real-time and

online solutions. They also require a more complex dataset, as they require x, y and z data during

mesh creation.

2.3 Level of Detail(LOD)

The first applications to visualize and use terrain data was flight-simulators and Geographic Infor-

mation Systems (GIS). Because of the large amount of data and that was needed to render a large

virtual terrain, Schachter [27] discusses the necessity of decreasing the number of polygons in the

scene, and states that a common way of solving this problem is to render objects with lower resolu-

tion as they appear far way. He is here describing main purpose behind a LOD, simplify complex

objects to achieve better rendering performance.

2.3.1 Discrete LOD

The main concept behind LOD is here basically summed up in the Figure 2.2. Use a less detailed

model for small, distant or unimportant parts of the scene when rendering [7]. With the use of a

LOD we typically have several versions of the same object in the scene, each duplicate version with

less polygons than the previous, and hence quicker to render on screen. With an example like the

one illustrated, we create the different versions of 3D model by hand, and utilise a static or discrete

LOD technique. With a discrete LOD, we choose which version we will render based on the distance

from the viewpoint to the model. When viewing an object from a far distance, we will choose a less

detailed version, and switch to more detailed ones when we navigate closer to the model. These

types can be created offline at fixed resolutions. One of the advantages with discrete LODs is that

they are easy to implement, in fact many modern 3D Application Programmer Interface(API) has

this mechanism already implemented and ready to use. Another advantage with a discrete LOD, is

that they are very cost effective for the run time system. It only has to pick the LOD, no continuous

calculation is necessary.
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Figure 2.2: Traditional LOD In a nutshell, taken from D. Luebke, Introduction Presentation for course, Level
Of Detail Management for Games

2.3.2 Hierarchical LOD

To perform simplification on a virtual terrain, we must be able to represent parts of the grid at

different resolutions. Lindstrom created techniques that enabled us to add extra detail gradually at

runtime rather than choosing between predetermined discrete detail levels. This technique was a

huge improvement, and made it possible to view larger terrains at a higher resolution. Lindstrom

used a hierarchical datastructure for his algorithm. Most of the more recent algorithms developed for

virtual terrains have adopted a similar concept, with hierarchical data structures, but supplemented

it with other enhancements.

With a hierarchical LOD structure, we can represent different parts of a grid at different resolu-

tions. In that way a large object is represented from subdivided, gradually refined smaller objects,

this is shown in 2.3. The structure is reffered to as a multiresolution representation, this results in

better scalability for large models, because we can exclude parts of the scene that cannot be seen,

or use larger polygons at greater distances. This is visually illustrated in figure 2.4, taken from [6].

These meshes are referred to as continuous level of detail meshes or LOD meshes. This approach is

considered the most suitable for terrain applications [20] [18], however it is not without problems.

This LOD technique is optimised for traversing a virtual terrain. Because the optimalisations

are based on reducing the detail of distant parts of the scene, we may have multiple resolutions of a

relatively large area when viewing a terrain from above.
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Figure 2.3: Hierarchical LOD structure

2.3.3 Quadtree

A quadtree is a tree data structure where each internal node has up to four children. When used to

implement terrain LODs, a rectangular area is typically divided into four uniform parts, and those

parts are then recursively divided into to sub-parts until the desired resolution is achieved. The term

quadtree refers to the representation and not the geometric primitive, so triangles can still be used

as primitives.

Quadtrees are simple and efficient, and are therefore appropriate for rendering terrain data that

exceeds the size of the available main memory on the computer we are running on. This capability

is referred to as operating out-of-core. To achieve this, we can load datasets dynamically and page

terrain in and out of the main memory. While most terrain algorithms page terrain data from a local

disc, a desirable feature of a terrain rendering system is loading data over a network such as the

Internet. Due to the typical lag when loading data over a network connection, when compared to

loading from local persistent storage, we are dependent on rapid processing on the client so that

the user does not experience lag. Because of the simplicity of the data representation, quadtrees are

preferred over other tree structures for out of core operations, as they do not require much processing

on the client and are therefore relatively insensitive to network lag.
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Figure 2.4: A Quadtree representation

2.4 From local to distributed data - TerraVision

TerraVision is an open source visualisation system which was developed in response to the limi-

tiations from other software that can only browse terrain data from local persistent storage. The

amount of data needed to represent the entire globe is to large to store on persistent storage on one

single machine, it was necessary to load datasets distributed across multiple servers on the web.

In addition to the ability to visualise huge datasets at an impressive framerate, Terravision has an

extensive feature set,

TerraVision is utilising a quadtree structure, where they split large data into a grid of 128 x 128

pixels. In addition images at different resolutions are split into power of 2 sizes (e.g. 2048x2048,

1024x1024, 512x512, 128x128). By using power of 2 images, we can reduce the amount of memory

used on the graphics card heavily. By having the images at different resolution represented in a

hierarchy, makes it possible to directly access any part of the image at any desired resolution, in

addition to the ability to only streaming the parts of the images they need for the current view.

Another advantage with a distributed approach, is that it enables the distribution of load on

a machine when fetching a data tile, to several machines. This can result in better performance

if many users are getting data from the same area. Having distributed sets is also facilitating the

updating of data, because it enables for local or national updates of parts of the terrain data. It is

usually easier for Norwegians to update data from Norway, than someone in the USA.

This software and the vision that everyone should have access, and be able to interactively

browsing the entire earth, lead up to the GeoVRML standard, which is an added as an amendment
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to the VRML97 specification.

2.5 VRML

VRML is a standard text file format used to represent 3D worlds, designed specifically for the use on

Internet. The first version of VRML was designed in November 1994, and resembled the API and

file format of the Open Inventor software component designed by SGI. The current and functionally

complete version is called VRML97 and has become an ISO standard.

Although VRML is often used as an geometry interchange format for 3D models, it is also

possible to create interactive 3D content. Animations, sounds, lighting, and other aspects of the

virtual world can interact with the user or may be triggered by external events such as timers. A

special Script Node allows to add program code to a VRML file. This code is often written in Java

or JavaScript (ECMAScript).

2.5.1 Using VRML97 for terrains

One could imagine using standard VRML97 for terrain rendering, but we would face some chal-

lenges. M. Reddy is presenting all these problems with solutions in his publication Modelling the

Digital Earth in VRML[19]. The biggest challenges he mentions are:

• Lack of precision; VRML97 have only floating points support making it possible to model

the entire earth with better precision than one meter

• VRML97 loads entire models during startup, visualising huge models would require loading

tiles dynamically from different locations and organise them in a multiresolution terrain

• The default navigation in VRML does not consider the viewpoints position above the terrain.

We need faster movement when viewing the model 10.000km from above, compared to 100m

• VRML97 uses a right-handed Cartesian coordinate system, most georeferenced data are in or

geodetic (geographic) coordinate system.

Martin Reddy’s work on these issues led up to the GeoVRML extension to VRML.
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2.6 GeoVRML

GeoVRML is an extension to VRML, and is used as a building block on top of VRML. This

means that GeoVRML has to be used in combination with VRML and cannot operate on its own.

GeoVRML is suffering from one of the same problems as VRML. X3D have included it in the

specification as one of its extensions to VRML. This has resulted in that GeoVRML is not widely

supported by VRML renderers, because there was anticipation that X3D would take over for VRML.

Morten Granlund [15] have tested eight different VRML plugins to check for GeoVRML sup-

port. The plugins he tested was Blaxxun Contact 5.104, BS Contact, Cortona VRML Client 4.2,

Cosmo Player, Flux, Octagon, Free Player, Open Worlds and Vcom 3D Venues. Unfortunately he

reported that the only plugin that supports GeoVRML is the Cortona client. He also reports that

this plugin loads an entire model into memory before displaying it, making it unsuitable for viewing

large 3d models.

The latest implemented version is 1.1, which was finished in 2002. There has not been any

developments on the GeoVRML standard or implementation since the 1.1 version, but it should be

mentioned that a 2.0 version is listed on the official GeoVRML site, but that is more a wishlist than

an an actual specification.

The work of the GeoVRML consortium has been taken over by X3D-earth working group,

which shares many of the same visions and goals as the GeoVRML working group.

2.6.1 GeoLOD

The node that controls the terrain resolution in GeoVRML is called GeoLOD. This LOD algorithm

is based on Martin Reddy’s ambitious work on TerraVision. TerraVision had an ultimate goal of

visualising huge datasets real time, in the order of terabytes. This amount of data must be distributed,

making it necessary for GeoVRML to load datasets from multiple servers across the web. The

GeoLOD node can specify inline nodes, which it can load runtime. The main focus on distributed

datasets is making GeoVRML differ from the other algorithms described.

The GeoLOD node is a quadtree LOD where up to four different scenes are dynamically loaded.

Images or elevation bitmaps are recursively divided to produce a multiresolution pyramid. As we

can see from Figure 2.5, each level of this pyramid is divided into a grid with equally sized regular

grids e.g. 128x128 pixels. This is done to reduce the amount of texture memory used. A tile in the

pyramid maps directly onto 4 tiles on the higher resolution level. In this way we can display areas

around the viewpoint at a higher resolution whilst other not so interesting areas will be displayed at
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Figure 2.5: Image illustrating GeoLOD pyramid representation. The right picture shows how we can have
different resolutions in a model at different regions (from [4])

a higher resolution.

Using a discrete LOD to select different levels in the LOD, is very difficult, and may produce

visual popping when switching from one resolution level to another. Selecting the optimal distance

is difficult as it may vary due to terrain complexity or the users field of view. The specification does

not say anything on how we should calculate this value.

The specification does not either specify any mechanism to smooth LOD between adjacent tiles,

producing a high risk to create cracks in the terrain. In fact it does not even specify if we should use

triangles or quads as geometry in our mesh. The other algorithms described are much more precise

concerning these issues.

2.6.2 Elevation and GeoElevationGrid

The GeoLod node is often used together with GeoElevationGrids. VRML97 provides an Elevation

Grid node which all values are offset from a single flat plane. Elevation Grids can define the geom-

etry by using an array of height values that specify the height above the surface above each point.

This property makes elevation grids suitable for distributed solutions as this limits the amount of

data needed to be sent over the network and thus limits the download time. Elevation Grids will be

more thoroughly outlined in 4.0.2.
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The GeoElevationGrid node, which is a part of the GeoVRML specification, provides the capa-

bility to define a grid of height values offset from the ellipsoid or geoid used to model the planet. It

supports the specification of height fields in latitude/longitude or UTM coordinate systems.

2.7 Java3D

Java3D is a high level object-oriented 3D scenegraph graphics programming API for the java lan-

guage. It is built on top of either DirectX or OpenGL to achieve hardware acceleration, and to

ensure proper multi platform independency.

Developing with Java3D is done using a scenegraph structure that is independent of the under-

lying hardware implementation. When working with the scene-graph, the rendering process is left

to Java and not the developer. The API provides scenegraph compilation and other optimization

techniques towards the requirements of realtime 3D rendering. The scene-graph structure and the

event-model in Java3D is heavily inspired by VRML97. However Java3D offer greater flexibility

due to being a programming API.

By developoing with the Java platform together with the Java3D extension, one also have the

possibility to write applets that can be included in an HTML page. This means that by writing an

application once, one could rapidly create a virtual terrain testbed that runs a standalone application

(such as Google Earth, Nasa Worldwind) or that resides in a browser (such as Microsoft Virtual

Earth).

2.7.1 Serializing

Serialization is the process of saving an object’s state to a sequence of bytes in a structured way, as

well as the process of rebuilding those bytes into a live object at some future time. Even if serialized

objects can be stored to persistent storage, perhaps the most common approach is to transmit the

current state of an object using a stream, and restoring an equivalent object from that stream. This

approach would fit the client server client mode, that is similiar to Google Earth or Nasa Worldwind.

As we will se described in chapter 3 and 4, this is not the way the implemented testbed will be using

the serializing capabilities of Java. It will store parts of a Java3D scene to persistent storage, and

will be using it as a local caching mechanism.

There are several mechanisms for achieving object persistence such as object databases and disk

files. Similarly, there are many ways to share objects such as writing data to a socket or implement-

ing CORBA- or SOM-compliant models. The advantage with using the inbuilt java serializing API
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is that it requires no additional library files, it provides a standard mechanism for developers to

handle object serialization. The API is small and easy to use and it is well documented and tested.

2.8 Texture Mapping

Texture mapping is the process of adding an image onto a surface in a 3D scene. In the context of

virtual terrain rendering, it will often be used for applying ground textures(satellite/aerial texture)

onto 3D geometry. Supporting paging of texture imagery can be considered equally important as

paging of geometry, due to the large memory print of an image in a graphics card memory, and the

limited texture memory available.

One solution to this problem is to cut the image into tiles with sizes that are power of 2 (i.e

128x128 pixels, 256 x 256, 512 x 512 ), due to the fact that the texture memory is always power of 2

(i.e 2,048 by 2,048 pixels). The cutting of images into smaller equal sizes also enables the graphics

API to perform viewpoint culling on parts of the virtual terrain, and hence paging the texture out of

memory. One problem with this approach is that it can create visible seams between adjacent tiles.

Much of this can be repaired by utilising texture- clamping feature in the underlying graphics API.

As described in Chapter 1, the implemented testbed will connect to Nasa Worldwind geodetic

server, and utilise the Landsat7 satellite imagery. A big advantage with this approach is that it

enables the testbed to fetch pre-cut, ready-to-use, texture files in .png or .jpg format at the size of

512 x 512 pixels. By utilising already processed imagery, we also reduce the processing on the

client side, as it can be utilised directly after it is fetched from the server.

2.9 Summary

This chapter has outlined related applications and datastructures which has had impact on the design

of the testbed. Based on the outlined success stories, it seems like a viable approach to utilise the

flexibility of Java3D and combine it with many of the same ideas Terravision and GeoVRML use

for LOD simplification. The high level Java3D scenegraph, which is inspired by VRML97, can ease

the building of datastructures similiar to TerraVision or GeoLOD, because one could utilise inbuilt

natural features of the API.
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Testbed Design

This chapter will present the design of important functionality of the testbed software. To provide

the necessary understanding of the testbed, important parts of the system are both described at a

high level with pseudo code as well as UML software diagrams.

The design of the testbed has favoured simplicity, and is utilising many of the inbuilt features of

the Java3D API in order to rapidly create a virtual terrain rendering testbed with many of the same

features known in commercial virtual terrain applications. This is done in order to be able to answer

the research questions, through collecting of empirical data, by using ”real world” examples.

In the initiation and analysis phase of the project, both user and software requirements, and a

scenario for the testbed was written. This was done to increase the awareness of the requirements of

the software. This chapter starts off by describing the user scenario which covers the typical usage

of the testbed.

In section 3.2 the main thoughts and motivation behind the resulting design is explained.

In section 3.3 a more thorough description of important parts of the the design is given, before

the entirety of the design is explained at the end of the chapter.

3.1 Scenario

The user must download a Java Network Launch Protocol (JNLP) file specific for this application

using an ordinary web-browser. After double-clicking the downloaded file, the installation process

begins. If the user accepts the security warnings, the installation continues. The user is prompted

on whether she wants a shortcut on the desktop to ease application start-up at a later time.

When the application has started up, a frame with a black area and a toolbar at the bottom of the
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frame becomes visible for the user. After a short while a flat view of a part of the world is visualised.

From the bottom toolbar the user can see a drop-down box and three different buttons. Using

these GUI elements different settings for the benchmark test can be set. From the left drop-down

the list, the user can choose which caching strategy the application should use. The strategies the

user can choose from is

• no cache

• original file formats

• binary tile

• binary quad tree

The three different buttons can be used to run three different benchmark tests. They are labelled

”test1”, ”test2” and ”test3”. By clicking one of these buttons the application will automatically

move the viewpoint at various speeds to various places. During these tests, the application software

collects test data in the background, when the test-run is finished, the collected data is shown to the

user.

3.2 Design

As we can read from the previous chapter, an adequate terrain application consist of many parts.

An important aspect of the design of the testbed has been to modularise these parts into software

packages in order to reduce the complexity and support change of requirements. Considering that

the testbed will be used as a research framework, it is important to have the possibility to replace

parts of the system, without rewriting the entire application.

The resulting LOD simplification criteria are based on previous research outlined in chapter 2.

The implemented testbed will use a Quad-tree simplification algorithm. Because of similarities in

the VRML97 specification and Java3D specification, the design of the testbed is influenced by the

GeoLOD node in the GeoVRML specification. The Java3D scene-graph is based on VRML97,

meaning that by implementing a GeoLOD node we can utilise several inbuilt mechanisms in the

Java3D language, making the implementation task easier.

Listed below are some aspects that were all considered important in order to successfully im-

plement a working testbed within the time-limit and scope for this thesis.
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• The GeoLOD node is already well-documented

• The algorithm is proved to function well in both TerraVision and GeoVRML.

• The algorithm and data-structure fit well to Nasa Worldwinds Landsat 7 geo-database

However some modifications and changes are done to adjust the implementation to fit Nasa

Worldwinds geo-database. Care has also been taken to handle loading and deletion of tiles. This

is done to avoid the memory problems that the different GeoVRML implementations struggle with

[15].

3.3 Algorithm and data-structure outline

This section will explain the outline of the implemented algorithm used to render virtual terrains

with Java3D. In order to be able to create an adequate virtual terrain rendering system within the

scope of the project, the software utilises many of the high-level inbuilt features of the Java3D

language to reduce the amount of programming.

3.3.1 Base- and sub-tiles

To clarify and explain the concept behind the algorithm and data-structure of the testbed better, we

have introduced two definitions, base- and sub-tiles. They are created solely for the purpose of the

pseudo code explanations in this chapter. The definitions are created in order to better explain the

adding and removing of data to the data-structure.

The definitions are illustrated in Figure 3.1

• A base-tile is the topmost level of a sub-tile and always has two levels.

– A base-tile has only 1 sub-level with 4 children

• A sub-tile can be any level below a base tile, and can be a terminating (the last level).

– A sub-tile can have 1 level with 0 or 4 children

As already stated in chapter 2, we can use proximity to control the resolution of the terrain by

using a discrete LOD. We can also imagine to use proximity to decide how many tiles we have

loaded into the scene at a time.
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Figure 3.1: Visual explanation of base- and sub-tiles
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Controlling Loading and unloading of tiles

Figure 3.2: To the left a base-tile with scheduling bounds visualised from a far distance. To the right a
base-tile with scheduling bounds for all levels visualised

The loading and unloading of tiles in the testbed are controlled by using the distance from a

tiles centre to the users viewpoint. To illustrate this we can imagine having a visual bounding

sphere around each tile, as illustrated in Figure 3.2. The visual bounding sphere is defined as a tiles

scheduling bounds.

Whenever the user’s viewpoint is intersecting with this bounding sphere we need to take some

decisions. The testbed distinguishes between when the user is entering and exiting a tile’s schedul-

ing bounds.

when ( v i e w p o i n t e n t e r a t i l e s s c h e d u l i n g bounds )

i f ( base− t i l e s c h e d u l i n g bounds i n t e r s e c t e d e n t r y )

a . check i f n e i g h b o u r i n g t i l e s a r e m i s s i n g

i f ( m i s s i n g )

i . l o a d m i s s i n g n e i g h b o u r i n g t i l e s

i i . add m i s s i n g n e i g h b o u r i n g t i l e s

Each time the user is exiting a tile’s scheduling bounds, the following check is performed.

when ( v i e w p o i n t e x i t a t i l e s s c h e d u l i n g bounds )

i f ( base− t i l e s c h e d u l i n g bounds i n t e r s e c t e d e x i t )

a . D e l e t e e x i t e d base− t i l e w i th a l l sub− t i l e s
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The deletion of tiles is necessary in order to reduce the amount of rendered tiles in scene, and to

reduce the amount of used memory. By removing the tiles tiles furthest away from the user’s view-

point, we will increase the rendering performance, as we reduce the amount of rendered geometry.

This can be also considered as a very simple approach to out of core rendering, where we page the

not so important tiles out of memory.

Increasing the level of detail

To load new LOD levels, and to enable the testbed to increase the level of detail around the users

viewpoint, the same technique is used. When the users viewpoint is intersecting with a sub-tile’s

scheduling bounds, some decisions need to be taken.

i f ( sub− t i l e s c h e d u l i n g bounds e n t r y )

a . check i f i n t e r s e c t e d t i l e i s t e r m i n a t i n g

i . l o a d n e x t t i l e

i i . add new t i l e

Switching between LOD levels

An important feature of the testbed, is that sub-tiles are never deleted and paged out of memory.

The algorithm uses Discrete LODS to switch between LOD levels. Sub-tiles are never paged out of

memory before the topmost base-tile is deleted from the scene. To switch between between different

LOD levels, each base and sub-tile are connected with a Discrete LOD. This makes sure that the

tile with the highest resolution is always closest to the users viewpoint. This feature is shown in

Figure 3.3.
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Figure 3.3: Resolution controlled by discrete LODs
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3.4 Coupling with Nasa Worldwind Server

For the testbed to be of any practical use, and to be able to answer the Research objective : ”What

is the overall impact on performance on multiresolution virtual terrains when utilising Java3D se-

rialised binary files compared to utilising files from a Nasa Worldwind Server”. The implemented

testbed must be able to use the data from Nasa Worldwind servers.

3.4.1 Imagery

The satellite imagery used in the testbed is the same as used in Nasa Worldwind, but is restricted

to Landsat7 imagery set. Nasa Worldwind stores all imagery on a server using Plate Carrèe or

Equirectangular projection. The Plate Carre is a simple projection method, which converts the globe

into a grid of perfect squares. The horizontal coordinate is longitude, and the vertical coordinate is

latitude, with no transformation or scaling applied. To request a specific image on a Nasa Worldwind

server, we need to send a request to the NWW server with the Plate Carrèe coordinates and which

detail level that is desired.

As described earlier the detail level is dependent on the viewers viewpoint above the ground,

this is also the case with the imagery data.

3.4.2 Elevation Data

To give a realistic impression of the virtual terrain we need to combine the satellite imagery with

elevation data. There are several approaches to retrieve elevation data from a NWW server. The

approach that will be used in the testbed is to utilise the NWW Java open source code-base and

couple this with the implemented testbed. The NWW codebase can give an elevation value for any

given latitude and longitude value. This will enable the testbed to look up and use the same elevation

values as NWW. To combine these two properties the testbed will need to able to convert from any

point on a tile to a correct Latitude and Longitude value, in order to visualise the terrain naturally.

How this is solved, is outlined in Chapter 4.
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Figure 3.4: fetching data from Nasa Worldwind Server
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3.5 Design Limitations

A limititation in the current design is the handling of the movement of the user’s viewpoint at

high altitudes. When the viewpoint is moved at altitudes above a base-tiles scheduling bounds,

the outermost base-tiles from the viewpoint does not get the notificiation that the viewpoint has

exited their scheduling bounds. This is because the implementetation utilise predictive loading

when loading new base-tiles. In practise this may result in adding base-tiles with scheduling bounds

outside the user’s viewpoint.

This limitation can avoided in several ways. A simple improvement to the implemented testbed

would be to check the users altitude and add more base-tiles when the user is moving upwards, and

delete them again when she is moving closerto the ground.

The simplest solution would be to turn off the predictive loading, and make sure that all base-

tiles scheduling bounds can be intersected. This is however not very satisfactory in implementations

that only support one dataset, as this would decrease the performance of the systems. In systems

that supports other datasets at lower resolutions (i.e. Blue Marble), one could avoid this limitation

by having tiles at lower resolutions loaded instead of the outermost base-tiles.

3.5.1 Handling high travel speeds

The predictive loading of base-tiles occurs when the viewpoint intersects a base-tile. If the user

is traversing at a higher speed than the implementation manages to load the neighbouring tiles, a

situation can arise, where no further base-tiles are loaded. The implemented testbed avoids this

shortcoming by not letting the user move at very high speeds.

3.6 Design Strengths

One of the design strengths in the testbed is the progressive adding of meshes as we move closer to

the ground. A dynamic top-down building of the quad tree scene-graph structure has the advantage

that it maps very well to the image file-structure on the NWW server. All images in the NWW

Landsat7 database are pre-loded and can placed directly in a Quad-tree algorithm after they are

downloaded.

Another advantage compared to a bottom-up approach is that the testbed does not need to have

the highest resolution data available before start-up. This property gives us several advantages.

• Progressive memory usage, do not load tiles into memory before they are needed.
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• Uses less initial time, because it is not necessary to process the highest resolution data during

start-up.

• Requires less processing on the client side.

The solution with progressive memory usage solves the problem many GeoVRML implemen-

tations struggle with [22], because they load the entire scene into memory during startup.

However, top down approaches is not without problems. A common problem with top-down ap-

proaches is that they often produce cracks between adjacent tiles. This problem is not addressed in

the work with this thesis, as it is considered out of scope for a project of this size.
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3.7 Model Description

As a part of the initial design of the testbed, both user and software requirements where created(See

appendix A,B). This was done to augment the understanding of the implementation. Further logical

models were created to depict the software requirements. The models are based on object-oriented

UML diagrams. All requirements and the UML-models were created before the actual implemen-

tation started in order to increase the awareness of the different problems that could arise, and to

create an initial overview of the development-priorities of the different parts of the software. This

documentation was considered to be used only as initial input to the actual development process,

this means that they are not synchronised with the resulting software. The UML-diagrams are not

updated continuously with the development of the software, as working software is the measure for

success and not documentation.

The class diagram shows a simplified description of the system, it identifies the main com-

ponents and the classes of the system. Class diagrams also show the inter-relationships and the

operations between the classes. The main components are represented as packages. The objects

residing in the packages are related to each other and solve a common task. Please note that the

classes in the diagrams are just representations of objects, hence a class diagram is implementation

independent, and can represent any object-oriented programming language.

All classes that are related in functionality are put into packages for better maintenance and

organising of files. Some packages also have a subpackage named j3d, all functionality related to

Java3D and hence 3D graphics are put here. This is done to separate the 3D graphics functionality

from other functionality. This results in better flexibility in the design because we will not be as

tied up to one 3D graphics library. By using this structure, and as long as we have clearly defined

interfaces between packages, we will be able to replace parts of the system easier, and i.e. replace

mesh geometry without affecting other parts of the system.

To supplement and clarify the static class diagrams, we have used a sequence diagram to repre-

sent the dynamic behaviour of the system. A sequence diagram depicts the sequence of actions that

occur in a system. The diagram is made up of objects and messages; the objects are represented

on the same way as in the class diagram. The sequence diagram shows the the execution of the

implementation as described in the scenario.
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3.7.1 Component Description

In order to be able to support rapid changes of requirements, the software is divided into software

modules. The components were identified during the logical model description phase. The compo-

nent description was written in order to get further insight of each component.The initial component

description is added in appendix C.

The component description is used to describe the main function of each component and the

relations between each component. This is all valuable input before the actual development starts.





Chapter 4

Testbed Implementation

This chapter presents the most important and challenging parts of the implementation of the de-

signed testbed.

4.1 Elevation Grids

The implemented module uses regular elevation grids as building blocks for the geometry. Elevation

Grids are well known from both VRML97 and the ISO GeoVRML standard, and have proven to be

successful for virtual terrain rendering [20] [18]

As we can see from Figure 4.1, an Elevation Grid can easily be modified in both X and Z-

directions, which simplifies the creation of rectangular grids at different resolutions. The geometry

is described by an array of height values that specify the height above the surface for each point

in the grid. This property makes elevation grids suitable for distributed solutions as this limits the

amount of data needed to be sent over the network and thus limits the download time. The example

in Figure 4.1 needs only an array of 4x4 = 16 elevation values in order to describe a terrain mesh.

4.1.1 Separate height values

Because of the inherent structure of virtual terrains, where the elevation data (DEM files) are sep-

arated from the imagery, it would be an advantage to reflect this property in the implementation of

the testbed. As we can see from Figure 4.1, the use of elevation grids fulfils this task, as elevation

grids make it possible to separate the elevation values from the resolution of the data. This adds

flexibility to the design and implementation of the virtual terrain application as we can easily switch

39
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Figure 4.1: Basic Elements of a Elevation Grid

sources for retrieving elevation data. This is an important property for applications that should be

capable of visualising geo-referenced data, as the data sources can be diverse.

4.2 Getting height data - using the NASA Worldwind Server

The geodetic data residing on NASA Servers are organised using a Plate Carrèe projection or

equirectangular projection. This projection handles the spherical Earth as a flat map, and is of-

ten used in virtual terrain applications because of the direct mapping of X and Y axis to latitude and

longitude.

For the module to be able to render a specific geographic region, it requires a valid latitude and

longitude pair of values. When these are supplied, the module can connect to the NASA Worldwind

server and retrieve the necessary data in order to handle the visualisation of the requested geographic

area. A conceptual figure explaining the data-flow and connection between the testbed and the Nasa

Worldwind server is illustrated in the figure 4.2.

To get the correct geodetic data from the NASA worldwind server, the module must be able to

understand how NASA has organised the geodetic data. The following explanation is taken from[28]

“World Wind uses what is defined as Level Zero Tile Size to determine how large (in

decimal degrees) each tile is in width and height (all tiles are square). A standardized

level zero tile size is under consideration but is not yet implemented, but it must divide
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Figure 4.2: Getting data from NWW server and store processed data to Java3D Serialize
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into 180 evenly. The level zero tile size (herein referred to as lzts) is simply the distance

traveled in degrees from one side of a tile to the next side. In the NLT Landsat 7

datasets, the lzts is normally set as 2.25 degrees. For each increase in level, the lzts

calculated using this formula:

lzts ∗ 0.5level

What this does effectively is decreases the tile size by one half for each increase in level.

Where their was one tile, there is now four”

This projection mapping scheme fits very well to our module’s design, as we can directly fetch

data from a NWW server, and place it progressively into a multi-resolution quadtree structure.

To find the geographic area in Plate Care projection covered by any valid latitude and longitude

values, the following equations must be performed. The first equation converts from latitude and

longitude values to Plate Carrè projection, where n = level or amount of detail.

x = 180 +
longitudeMOD(360)× 2n

2.25

x = 90 +
latitudeMOD(180)× 2n

2.25

The result of this equation gives us the Plate Carrèe x, and y values, describing a geographic area

around any given latitude and longitude. By using these x and y values, we can extract elevation

values for a geographic area by using any given latitude and longitude using the following equations.

To do this we first need to find the lowest (minimum) latitude and longitude for a tile in Plate Carrèe.

The minimum longitude is given by:

2.25 +
x

2n
− 180

The minimum latitude is given by:

2.25 +
y

2n
− 90

When having calculated the minimum values, we can easily find the maximum latitude and

longitude for this tile, by adding the Level Zero Tile Size(lzts) for this tile’s level.
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Figure 4.3: Visual Explanation of Tile Structure on NWW server
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4.3 Resolution

The implemented testbed is adjusted to utilise the highest resolution data available from NASAs

geodetic database, producing elevation grids with an x- and z-spacing of 32m at the highest resolu-

tion level in the LOD structure. The x- and z-spacing for the following lower resolution levels are

calculated using the 2 logarithm of 32, giving X and Z spacing values of 64m for the next level,

128m for the next level after that and so on.

NASA Worldwind uses DEM raster files that contain 150x150 elevation samples per tile. To

fetch elevation values on a tile, we need to sample 150 times in the x and y direction between the

minimum and maximum latitude and longitude.

4.4 Programmatic LOD in implemented testbed

One of the advantages by utilising a regular elevation grids as building blocks in a quad-tree struc-

ture, is that we can easily adjust the resolution to different tiles at different levels. This can be done

by increasing the x and z-spacing, and reducing the x and z-dimensions. The example in table 4.1

would produce two different tiles at different resolution but would represent the same geographic

area.

Table 4.1: Example that show how to represent same geographic area at different resolutions
x-spacing (m) z-spacing (m) x-dimension (m) z-dimension (m) area in x,z-dimension

32 32 150 150 32 * 150 = 4800m
64 64 75 75 64 * 75 = 4800m

As described in chapter 2, a desirable feature in a terrain rendering system, is to be able to reduce

detail of distant parts of the scene. In the implemented testbed a simple detail reducing system is

implemented to reduce detail on far distant parts of the virtual terrain. The reducing system in the

implemented testbed is a simple table where it is possible to get a reducing factor number for any

given level in the hierarchical LOD.

The decision of using elevation grids with a size that corresponds to the NWW SRTM30+ bil-

files in the implemented testbed, which stores data in a raster of 150x150, can in this context be

considered as a design flaw. By not using tile-sizes that is power of two, we have only a limited

set of integers to reduce the tile resolution. In this case it is possible to reduce the tile spacing with

4 ( 150 / 4 = 37.5 ), because we are not returning an integer. Considering the very flexible NWW
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elevation data retrieving system the implemented testbed is utilising, it would be a fairly easy task

to fix this design flaw, but it was not considered important in order to get the necessary test data.

The integers used for each level in the testbed are as indicated in Table 4.2

Table 4.2: Reducing integer factors at different quad-levels
Level Reducing Factor

0 6
1 5
2 3
3 3
4 2
5 1

By using a reducing factor of 1, we assure that we are always showing the highest available data

at the lowest level in the quad-tree.

One can imagine utilising this feature more dynamically, as these values can be adjusted real-

time in software. If i.e. a user is travelling at high speeds, the same detail level is not required as

slower speeds. This could dynamically be adjusted real-time in software by increasing the reducing

factor in the programmatic LOD algorithm. The same feature can also be taken advantage of to

control the frame-rates, by increasing or decreasing the frame-rate runtime, we can adjust the detail

in scene dependent on the available computing power.
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Figure 4.4: The Java3D quadtree scenegraph representation in the implemented testbed

4.5 Quadtree Java3D Scene-Graph representation

The scene-graph is divided into to main parts, the content part and the view part. This is done to

cleanly separate the geometry from the part that controls the viewpoint.

To better understand the structure of the scene-graph, and the Figure 4.4, it is necessary to very

briefly explain the differences between basic-group types in Java3D.

TransformGroup (TG): Group type that is used to set rotation and translation

BranchGroup (BG): Connector node, the only node in Java3D that can be connected to a live

scenegraph.



4.5. Quadtree Java3D Scene-Graph representation 47

ElevationGrid (EG): A Java3D Shape that can render textured height maps

Distance LOD (DLOD): A discrete LOD that uses distance as selection criteria for different tiles

at different resolution

4.5.1 View Part

The view part is visualised in the left side on the Figure 4.1. This part is contains all necessary parts

needed in rendering a three dimensional scene from one viewpoint.

The viewpoint is controlled by a TransformGroup node, that is used to control the translation and

rotation of the view. This node is for running flight-path animations and for the mouse-navigation

that is implemented.

4.5.2 Content Part

The content part is visualised in the right side on the figure below. It is utilised a Quad-Tree struc-

ture, where Java3D nodes is used to construct the correct hierarchy.

The upper rectangle shows the Java3D representation of a base-tile. One of the most important

feature to notice is that higher resolution Elevation Grids at are added to the scenegraph using

Java3D distance LOD nodes. This feature assures that the highest available resolution tile always is

displayed closest to the users viewpoint.
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Figure 4.5: Screenshot from implemented module visualising a high resolution terrain illustrating the mul-
tiresolution capabilities, note that the higher resolution tiles are closest to the viewers position

4.6 Java3D Binary Serialisation

The implemented testbed is developed with support of storing parts of the virtual terrain by using

serialisation. The process of serializing java objects is done by converting an object into a sequence

of bits so that it can be stored to persistent storage or transmitted across a network with a stream.

The serialized java object can be re-read according to a serialization format, and can be used to

build up an identical clone of the original java object.

The Java3D API has inbuilt serializing mechanisms that supports this method of storing Java3D

scene objects. Java3D provides an interface for saving and restoring scene-graphs both from a Java

Stream and/or for storing in Random Access Files. The implemented testbed uses the provided

feature-set to read and write branch-graphs to persistent storage in order to rebuild the already

processed virtual terrain

By reading already processed tiles, the chain of processes that build up the quad-tree structure

change significantly. The table below lists the differences of “main-events” when using the different

file-formats. The listed events are the ones that are assumed to have an potential effect on software

performance.
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For textured virtual terrains:

Original File Format Binary Tile Binary Quad-tile

- Read Binary File Read Binary File

Read Texture File - -

Generate Texture - -

Generate Texture MipMapping - -

Read Height Data File - -

Parse and process elevation values - -

Render Render Render

For non-textured virtual terrains:

Original File Format Binary Tile Binary Quad-tile

- Read Binary File Read Binary File

Read Height data file - -

Parse and process elevation values - -

Render Render Render

4.6.1 Binary Tiles, Binary Quad-Tiles

When looking at the tables above that lists the differences in processes, one can see that the com-

putational cost for the binary formats are smaller. This is due to the fact that we can load already

processed tiles directly into the correct position in the quad-tree structure. Because of this, one can

assume that this will have an impact on performance when rendering large virtual terrains.

To investigate and try to understand the performance effect of binary Java3D serialising further,

the testbed stores different quantities of the virtual terrain. The testbed fulfils this task by storing

either one tile in a quadtree-level or all tiles in a quadtree-level to persistent storage. In order to be

able to differentiate when one of the two are used, we have introduced two new definitions; Java3D

Binary Tile and Java3d Binary Quad-Tiles. These definitions are used throughout the rest of the

document, it is however important to note that these definitions are only used within this work, and

are not a general terms in the field of virtual terrain rendering,

Original File-formats The tile information is the same as retrieved from a NWW Server.
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Figure 4.6: Visual Explanation of Binary Tiles and Binary Quad-Tiles

Java3D Binary tile One binary serialised Java3D elevation grid with parent BranchGroup for any

given LOD level

Java3D Binary Quad-Tile All binary serialised Java3D elevation grids for this LOD level with

parent BranchGroup

As we can see from the Figure 4.6, the Java3D Binary-Quad-Tile stores 4 times the amount of

ready processed data as Java3D Binary Tile. This is done in order to understand if there can be a

performance gain by reading larger chunks of ready-processed data compared to smaller chunks of

ready processed data. However, one should have in mind that these files will grow to be approxi-

mately 4 times larger in size.

4.6.2 File IO

The different file formats are written to disc by using elements from the Plate Carrèe projection

information. This guarantees that each tile is described by an unique identifier, and we can easily

read/write tiles because we are already using this information to deploy tiles in the software. To

assure that the software has read and write access to the disc, all application data are stored on the

users home directory.
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Figure 4.7: The files are stored using the Plate Carrèe projection information

4.7 Threading

The software is developed using the iterative and incremental development method, this method is

suitable where it is difficult to know all requirements before the development starts. This was also

the case with threading.

When developing software with so many parts that should work together, it is very hard, if not

impossible to predict which parts should be threaded or not. For this reason the software was ini-

tially developed single-threaded, and then analysed which parts would benefit the most of becoming

threaded.

The initial testing proved that reading much data from disc sequentially and process data after-

wards was a bottleneck for the software. This task was then threaded asynchronously, which gave

the software a boost in performance.

This approach could not be kept because of Java3D issue 4340607. (see appendix H for descrip-

tion) Java3D has issues with setting the geometry component on two Shape3D nodes under same

branch concurrently. This issue makes development of Multithreaded applications with Java3D

more difficult.

This forced the application to load an entire sub-tile simultaneously, and synchronise the set-

ting of geometry components. Making this change avoided the problem with setting the geometry

component concurrently.

Each subtile is loaded and set using the core java ExecutorService threadmanager. Using a
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thread manager has several advantages in a multiresolution terrain rendering system, perhaps the

largest advantage is that it is possible to terminate ongoing asynchrounous tasks and reuse them

quickly. Using threads can produce much memory overhead, and having the oppurtunity to reuse

threads can reduce the total amount of memory used.

4.8 Summary

The implementation of the testbed is using a hieararchial quadtree structure, which is heavily in-

spired by the design of the GeoLOD node, for LOD simplification. It is integrated with the NWW

Java codebase, to be able to render a specic geographic region.

For caching of the rendered virtual terrain, the testbed is capable of storing different quantity of

a Java3D scenegraph as binary serialized files. These files are very important for the performance

investigation of the testbed.



Chapter 5

Performance Investigation

5.1 Test Plan Overview

The main focus during the performance investigation is measuring the overall software performance

on a textured and non-textured multi-resolution terrain rendering system when using pre-processed

Java3D binary files compared to original file formats. In this context the original file formats are the

formats that are available from the Nasa Worldwind Server.

As explained in Chapter 4, a terrain rendering system consists of many different independent

parts. To predict how the different parts affect each other when using pre-prossessed or unprocessed

files is not a trivial task, and for that reason, the test plan will focus on the overall performance of

the software when using different file formats, and not on specific parts of the implemented testbed.

The testing will favour the file format’s ability to deliver high resolution data

The software performance effect will be measured by comparing the quantity of data that is

processed when running predefined viewpoint animations when using different file formats. The

accumulated number of tile levels displayed on screen during a flighpath animation will be used

as one of the measures for effectiveness. To be able to differentiate the results, the implemented

testbed uses timing mechanisms to measure how long time a LOD level takes to load, until it is

displayed on screen.

In addition Frame Per Second (FPS) tests are run to monitor the rendering performance. The

FPS will not be used as primary measure for software performance effects, but will be used as a

measure to determine if a test has passed or failed, and to give indications concerning rendering

performance.

53
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5.2 Features to be tested

The tests are run using predefined flight-paths running in the 3D-view that simulate normal user

operations in virtual terrain software. As we can see from Figure 5.1, several testing tasks are per-

formed simultaneously during the entire data collecting process. This is done to precisely measure

the software performance effect of using different file formats.

During execution of the flight-path, the following data are collected.

• The accumulated number of quadtree levels loaded during the entire flight-path animation

• Time to load an entire quadtree-LOD level

• The number of loading attempts to load an entire quadtree LOD level

• The Frame Per Second

The rendering framework of the implemented testbed takes a naive approach to rendering, and

is always trying to render as many quadtree LOD-levels as possible, without considering aspects

as such FPS, CPU load, memory usage etc. Rendering high resolution data affects the rendering

performance and hence the FPS. If a test situation should occur where we are trying to load too

much data, the rendering frame-rate will drop to an unacceptable level. This limitation must be

assigned to the rendering framework and not to the file format used in the test. For this reason FPS-

tests are not used alone as a measure for software performance, however FPS tests will be used as a

test pass/failed criteria.
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Figure 5.1: Test data collected during an execution of a test

The implemented testbed measures the accumulated number of quad-tiles loaded into the ren-

dering framework, and uses it as one of the measures for effectiveness when loading new data. It

also collects the number of loading attempts to load an entire LOD level. This measurement can be

used to track the number of missed attempts of loading tiles, giving an indication of the file format’s

ability to provide the rendering frameworks with data. A high number of missed attempts indicates

that the loading process may be too time-consuming.

In addition to this, the software uses Java timing to measure the time elapsed from when a new
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level is requested for loading until it is displayed on screen. This measurement is performed to be

able to differentiate the measurements better.

Figure 5.2: Two users at different positions at the moment when a tile is displayed on screen

The rendering framework can produce results as shown in Figure 5.2. The Figure illustrates

the moment a tile is displayed on screen, but with two different user positions. If only accumulated

number of tiles were used, both situations would have been added to the accumulated number of

tiles, and would have counted the same. As we can see, the “yellow-user” has a longer remaining

traversal time on the same LOD level compared to the “red-user” To assess this weakness, the

software calculates the time from when the LOD-level starts loading until it has finished. With this

data available, one can also easily calculate which file format enables the rendering framework to

display a quad-lod level quickest on the screen.
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5.3 Test Data

The implemented testbed is capable of reading and writing all necessary data from several different

file formats. All file formats are based on, and contain, data that can be retrieved from the Nasa

World Wind server. The test data is collected by running the predefined flight paths and writing the

test data to disk. All test data is collected and stored to disk before the actual test is run.

The implemented testbed measures and compares 3 different strategies for rendering a LOD-tile.

Figure 5.3: Visual Explanation of differences in file formats

1. Based on Nasa Worldwind image and elevation data

2. A Java3D binary serialised elevation tile which is created from Nasa Worldwind image and

elevation data

3. Four Java3D binary serialised elevation tiles, which are created from Nasa Worldwind image

and elevation data, with LOD capabilities

The serialised Java3D file formats are created by using the original data from Nasa Worldwind

and rendering them in the implemented testbed. When all data for a tile is collected and ready to be

rendered on screen, they are stored to disk using the Java3D serialising mechanisms. The binary file

formats used in the implemented testbed are stored using the inbuilt Java3D serialising mechanisms.
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The texture data is limited to the Landsat7 image data set from the Nasa Worldwind server, and

all texture data is downloaded from the NWW server in 512x512 pixels.

The data collection is an automated process that starts immediately as a test run is started. There

are implemented mechanisms within the testbed to automatically start and stop the frame per second

test data collection from the third party application Fraps.

5.3.1 File Sizes

The binary Java3D serialising stores all data uncompressed. Considering the amount of video tex-

ture memory an image can consume, the filesizes can grow large compared to the NWW original

data. The expression

(512 ∗ 512 ∗ 3) ∗ 1.333 = 1023.7

shows roughly in kilobytes how much graphics memory one texture in the implemented testbed will

consume on disk with pixel size of 512x512 in the graphics card memory.

Since there is no need for transparency. The virtual terrain generates textures without alpha

channels, making it necessary to only multiply with the Red, Green and Blue (RGB) colors, and not

include the alpha channel (RGBA) when generating a texture. Being able only to multiplying with

3 (RGB) and not 4 (RGBA) decreases the use of video texture memory by approximately 1/4 in this

case.

To increase the rendering speed and the level of detail, the software generates mip-map textures

for each texture. This results a memory overhead factor of about 1.333. This shows that storing

only one texture to disk, takes about 1 megabyte of space, in addition we are storing the geometry

and group structure information.

It is important to note that the size of binary tiles will vary depending on which level that is

used. This is because of the programmatic geometry Level of Detail simplification algorithm that is

used within the software, the simplification algorithm is explained in section 4.1. Tiles with more

detail, will take up more space on disk compared to tiles with less detail, however this is not the

case for original file formats which have a constant size for height data of 44 kilobytes.

To assess the problem with large binary files, Java3D has added the possibility to compress

textures to JPEG format by setting a property “j3d.io.ImageCompression” to JPEG. Compressing

textures with lossy compression formats, such as JPEG, would not be a fair comparison, because

we would not compare identical data when running the tests. By using lossy compression formats

in terrain rendering software one would also run the risk of generation loss; repeatedly compressing
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and decompressing files will cause files to progressively lose quality, however this would not be a

problem in the implemented testbed since it is only storing data once.

Due to the large differences in file-size, and to create reliable comparisons of performance. The

test are run both with and without textures in order to better understand the impact of large file sizes.

5.4 Environmental Needs

To create reliable comparisons of performance, a test sequence is executed on a single computer

representing a typical end-user hardware configuration.

All necessary data needs to be pre-processed and loaded onto the machines hard-drive, so that

during testing no connection to the Internet is required.

Although the implemented testbed runs on all platforms that supports the Java 5 platform with

Java3D 1.6, the test is performed on a Windows XP computer with Service Pack 2 installed. Figure

5.4 shows the hardware configuration used for the tests.

Test tools

In order to accurately benchmark the applications frame per second performance, third party appli-

cations is used. The Fraps software is used to test FPS graphics performance under Windows.

Test pass/fail criteria

The Fraps software is used to monitor the frame per second during a test. An average frame rate

above 15 fps on all tests is necessary to pass the test. Research has shown that users working in a

low frame rate virtual environment substantially degrade their ability to perform tasks both in terms

of accuracy and speed. M. Reddy [26] found in his research that with frame rate above 15 the rate

of improvement in user performance is much less dramatic, and recommends in his work that a

frame rate around 15 Hz should be taken as a minimum requirements for VR applications. It should

be noted that higher frame rates will continue to improve performance and should be strived for in

performance critical applications.

In addition a test-run that results in a complete set of valid output results is considered to pass

the test. A successful completion of all test-runs is a requirement to pass a test session.
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Figure 5.4: Hardware and software configuration used when running tests

5.5 Test Procedures

The testing tasks consist of 3 different tests that simulate different typical user operations performed

in virtual terrain software. Each test is repeated 5 times for each file format. The test data are logged

for each successful completion of a test and put in a table.

The application is shut down after a test is finished for a file format. Between each test of a file

format, a reboot of the computer is performed to make sure that all memory is cleaned and that the

tests are started with the computer in a equivalent state.
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5.5.1 Testbed User Interface

The following test procedures are performed when running the different tests

Figure 5.5: Overview of test-features on implemented testbed

1. Start the command prompt

2. Start the implemented testbed.

3. Start up FRAPS and make sure it has enabled the benchmarking capabilities.



62 Chapter 5. Performance Investigation

4. Choose the desired file format to test

5. Type in the Latitude and Longitude used as geographic start-point for test, the latitude 60 and

the longitude 10 is used consistently in all tests.

6. Press one of the test-buttons to perform the desired test (all tests are described in the next

section.)

7. The test session starts, the implemented testbed collects all data during the test and the results

are output when the test run is finished.

5.6 Test Descriptions

There are created 3 different test-cases with the purpose of simulating different typical user opera-

tions. All tests are defined using a metric, right-handed Cartesian coordinate system.

5.6.1 Test 1 - Quick Traversal

The purpose of this test is to simulate a user that zooms closer to the ground, then navigates quickly

over a large area and back again. The purpose of the quick traversal test is to check the file format’s

ability to provide the rendering framework with high resolution tile-data when a user traverses

quickly over a geographic area.

This predefined flightpath has defined 4 different destination points.

Position Travel Length Time

Travel point 1 -1000.0 10000.0 -5000.0 190068.40m 2000 ms

Travel point 2 -500000. 10000.0 99 499026m 20000 ms

Travel point 3 50000.0 1000.0 -990 550074.70m 17000 ms

Travel point 3 -5000.0 30000.0 99 62186.70m 13000 ms

5.6.2 Test 2 - Zoom In and Out (and in again)

The purpose of this test is to simulate a user that zooms from a point high above the ground, closer to

the ground and back again. This test has defined 3 predefined flightpath-positions that differ mostly

in the y-direction.
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Position Travel Length Time

Travel point 1 -1000 800, 99 1284.4 m 7000 ms

Travel point 2 -1000 40000 -99 39200.5m 3000 ms

Travel point 3 -1000 400 99 39600.5m 1500 ms

5.6.3 Test 3 - Large Geographic Area Traversal

The purpose of this test is to simulate a user that traverses a terrain over a very large area. An

important purpose for this test is to test differences in the out of core functionality between the

different file formats. For this test, it is necessary to enable the out of core functionality in the

implemented testbed.

The start travel-point moves the viewpoint fairly close to the ground to make sure we load high

resolution data. The viewpoint is then moved fairly close to the ground over a large geographic area.

Position Travel Length Time

Travel point 1 -99.0 5000.0 50000.0 201308.25 m 8000 ms

Travel point 2 99, 10000 -4000000.0 4050003.10 m 640000 ms
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5.7 Test Results

All results that are shown in this section are averaged from all 5 test-runs. The average load times

are calculated by the average load times for all test runs on a specific load level divided by the

average number of tiles loaded. Output from all tests are added in Appendix E and F.

Note that level O and 1 are always loaded simultaneously, this can be considered as a very

simple pre-fetching technique. If it is necessary to load a new tile at level 0, we are adding level 1

automatically, because there is a good chance that you are moving in that tiles direction. This is also

implemented as a time-buffer, to give the framework a small amount of time until the next level is

loaded. For these reasons LOD level 0 and 1 are merged in the test result data.

5.8 Test 1, Quick Traversal with textures

The table 5.1 shows that the average frame-rate during the test-run conforms. All test-runs are above

the limit of 15 fps, and are fulfilling the test pass criteria.

Table 5.1: Average Frame Per Seconds
Original file formats Java3D Binary tiles Java3D Binary Quad-Tiles

258.2 1463.3 1171.2

We can see from Figure 5.6 that the average load times vary significantly, and that the original

file formats load much faster, at all LOD-levels, compared to both Java3D binary file formats. The

faster load time can be explained by the large differences in file size.

Figure 5.7 shows that the number of attempts correlates to the total number of quad-tiles loaded,

the more attempts, the more quad-tiles are loaded. We can also see that the original file format has

managed to create several more attempts compared to the other file formats. This indicates that the

tiles are appearing quicker on the screen, and that the user is experiencing longer traversal times on

each tile.

An interesting observation is the number of load attempts on level 5. The binary file formats

have over 90 attempts to load level 5 tiles, but manage to render only 5. Because of the shortage of

time, and hence the failing of loading, this implies that there can be a lag at all levels in the quad-tree

making it hard to manage to load level 5 in time. This reason, together with the much higher load

times, implies that the user has traversed for a smaller amount of time on each quad-tree tile.

These indications become even stronger when looking at the total number of tiles loaded in
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Figure 5.8: Total Loaded Quad Tiles Loaded Test 1

Figure 5.8. The total amount of tiles loaded on all levels correlates directly to the loading time. A

smaller loading time enables the implemented testbed to load more tiles.
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5.8.1 Test 1, Quick Traversal without textures

When running the same test without textures we can see that the average frame rate increases. This

is probably due to less computational cost needed to render a texture. The biggest increase in frame

rate is with the original file format. This can be due to the fact that the implemented testbed only

need to access the disk once when only visualising geometry, compared to twice when using textures

in addition.

Table 5.2: Average Frame Per Seconds
Original file formats Java3D Binary tiles Java3D Binary Quad-Tiles

777.3 1512.0 1445.1

When not rendering the textures, we can also see that the average load times for the different

formats decreases considerably for all levels. The reason for this can be due to the smaller file-sizes,

because we are not including the texture information in the Java3D binary serialised files.
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Figure 5.9: The average load time on geometry quad tiles during geometry test 1

When running the tests without the use of textures we can see that there is less difference in

the test results between the original file formats and the Java3D binary serialised tiles, compared

to running the test with textures. An interesting observation is that the Java3D serialised binary

tile format performs slightly better than original file formats on level 5 on both total processed

tiles(Figure 5.10) and average load time (Figure 5.9). This indicates that pre-proccesed tiles can
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have performance effect on higher resolution data due to the lesser computational cost. Since there

are lesser computation cost on lower quadtree LOD-levels, this indicates that it is more effective to

use Java3D serialised tiles for higher resolution data, because that we are able to put pre-prossed

data directly into the Java3D scene-graph.
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In addition to be able to load more tiles, we can also see an almost doubling of frame-rate on

both Java3D binary formats. This indicate that these formats require less processing on the client

side.

The Binary Quad-tiles format is performing inferior to the other formats even though it should

require less processing on the the client side compared to the binary tile format. From figure 5.9, we

can see that the load times are much higher on level 0-4 when using the Java3D binary Quadtree-

tiles. This has probably reduced this file format’s ability to feed the testbed with as much data as the

other file formats. The average load time on level 5 are fairly equal, which shows that it is possible

to load geometry with higher density with higher frame-rate when using Java3D binary file formats.
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Figure 5.11: The total geometry quad tiles load attempts during geometry test 1

5.9 Zoom in and out test - Test 2 with textures

The table below shows that this test has generally higher or equal frame-rates compared to Test 1.

This is probably due to less tile data and LOD levels are processed for this test.

Table 5.3: Average Frame Per Seconds
Original file formats Java3D Binary tiles Java3D Binary Quad-Tiles

1598.1 1623.9 1648.8

The average load times are surprisingly showing a different pattern than test 1, quick traversal.

The highest average times are spent on tiles with least data. A partial explanation for this, is that its

can be due to a performance hit on Java3D binary tiles on first run after reboot. This feature will be

further outlined in chapter 6.

One interesting observation is that Java3D tiles are performing slightly better on high-resolution

tiles, and inferior on level 0-4. This undermines the findings in test 1, that Java3D binary files, can

have a positive performance effect on higher resolution data.

As we can see on figure 5.13 the amount of processed quad-tiles does not vary greatly, but the

slight difference in total number of processed tiles could also partly be explained by the performance
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Figure 5.12: The average load times on quad-tiles during test 2

hit on first run after reboot, which was the only run on both binary file formats that did not manage

to load the equal amount of data on the highest resolution tiles.

The total number of load attempts are equal for all the different file format. This can be due to

the small amount of data loaded into the testbed, and that the testbed is able to load all data that is

asked for.
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5.9.1 Zoom in and out test - geometry testing

Table 5.4: Average Frame Per Seconds
Original file formats Java3D Binary tiles Java3D Binary Quad-Tiles

1923.0 1957.0 1929.7

The total number of loaded quad-tiles are the same for all formats, shown in Figure 5.18, mean-

ing that the testbed is able to deliver an equal amount of data for each file format for this particular

test.
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Figure 5.15: The average load times on geometry loading - test 2

As we can see from figure 5.17, the number of load attempts are also equal for all file formats,

indicating that all attempted geometry for the viewpoint animation was loaded, and that there is no

significant difference in the quality of the output to the user. Having in mind that this test moves

the viewpoint over the same geographic area twice, there is a chance that high resolution tiles were

added the second time the viewpoint moved over the same area.

Load times are longer for the binary formats on high resolution tiles, compared to test 1. This

can be due to the smaller amount of processed data, and hence less computational cost in general

for this test. The total amount of loaded tiles on level 2-5 is only 4.
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5.10 Test 3 - Large Geographic area traversal

The purpose of this test is to investigate the testbed’s rendering performance over a longer period of

time, and to investigate the differences in the different file formats ability to handle a large amount

of terrain data. This is done by simulating a user that is traversing a virtual terrain for over 12

minutes. For this test, the out of core capabilities in the software must be turned on.

As we can see from table 5.5, the frame per seconds vary. The Java3D binary files are perform-

ing better compared to the original file formats. This is probably due to the less number of tiles

rendered on screen with these two formats.

Table 5.5: Average Frame Per Seconds
Original file formats Java3D Binary tiles Java3D Binary Quad-Tiles

1048.2 1752.9 1446.0

We can see from figure 5.18 that both Java3D binary formats are performing inferior to the

original file formats, and are not able to deliver the same amount of data to the testbed. The total

processed quad tiles correlates to the average load times, shown in Figure 5.17, meaning that the

lowest average load-times are capable of loading more data.

The original file formats are not only able to provide the testbed with more data, but are also

capable of creating more attempts, especially on higher resolution data. This indicates that the user

has had longer traversal time on each tile.

During this test, it is necessary for the testbed to page data from memory to disk. Considering

the large differences in file-sizes between the different file formats, this can have an impact in

performance. Writing to as hard-drive that is already under heavy load can decrease the overall

performance.
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Figure 5.18: The average load times during test 3
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Figure 5.20: The total processed quad tiles load attempts during test 3

5.10.1 Large Geographic area traversal - geometry testing

When running the same tests without textures, the frame rate is more equal between formats, how-

ever the same pattern as the tests with textures indicates that both the Java3D binary formats are

performing inferior to the original file formats.

Table 5.6: Average Frame Per Seconds
Original file formats Java3D Binary tiles Java3D Binary Quad-Tiles

1429.6 1664.7 1659.1

The average load time differs greatly, where the Java3D binary formats are performing poorer

than the original file formats. The average load time corresponds to the number of total Quad-tiles

loaded, so the big differences in results can explained by the testbed’s need to page memory to an

already overloaded disk.

The fairly equal number of load attempts can be explained by this test is moving the viewpoint

slower compared to the other tests, giving enough time for lower resolution tiles to load. Even if the

number of attempts are fairly equal, we can see that there is a significant difference in the ability to

deliver high-resolution tiles to the rendering framework.



5.10. Test 3 - Large Geographic area traversal 77

Sheet1

Page 1

0,1  2 3 4 5

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Average Load Times 

Original File-
formats

Binary Tiles

Binary 
Quad-Tiles

T
im

e
 I
n
 m

s

Figure 5.21: The average load time on geometry tiles during test 3
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Figure 5.22: The total processed geometry quad tiles during test 3
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5.11 Findings

The testing shows that the use of “real-life” test-runs has produced useful data. The results for each

test-case differ greatly .

During test 1, the testbed’s ability to handle data under high pressure was tested. When using

Java3D binary tiles without textures, the test shows that this can be a good strategy when handling

higher resolution geometry sets. All data for this test was handled in-core.

Another interesting observation that indicates that Java3D binary files can perform better com-

pared to original file formats, is when performing a visual inspection of the test runs for the Binary

Tile format. This shows that the 4 last test-runs on the Java3D binary tile format load quicker com-

pared to original file formats and binary quad-tile. The first test run weakens the average load time

excessively for LOD level 5, this can mean that the testbed has not loaded this LOD level at the first

flightpath animation, and added it on the return, hence making the load time for that run very long.

During test 3 the Java3D binary file formats performed worst on all criteria. This test investi-

gated the file format’s ability to handle large, out-of-core, datasets. The inferior results for this test,

indicate that when using larger files, the paging of memory to disk can decrease the overall soft-

ware performance of a virtual terrain application. This indication is supported by the even larger

differences in results for test 3 with textures, which have even larger files.
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5.12 Summary

The testing has shown that it has been very useful to have a testbed consisting of many of the

vital parts of a virtual terrain application, because it has been possible to extract and differentiate

the test-results better. By running more isolated tests, we would not have been able to look at the

totality of a virtual terrain application, and would have been produce data with the same quality.

An example of this can be the differences in software performance when running tests with in-core

datasets compared to out-of-core datasets. When running the out-of-core test, the Java3D binary file

formats performed inferior on all criteria, while the Java3D binary file formats performed better on

high-resolution data in the in-core test 1.

To further answer and investigate the research question “What is the overall impact on perfor-

mance on multiresolution virtual terrains when utilising Java3D serialised binary files compared

to utilising files from a Nasa Worldwind Server?” Further tests was undertaken to investigate the

indication that Java3D binary tiles can perform better on higher resolution data.





Chapter 6

Discussion and clarifying tests

In this chapter, we review the test results and findings in relation to the research objective, and also

gives some suggestions on the situations in which the different file-formats should be used.

The research objectives to be answered were as following:

• What is the overall impact on performance on multiresolution virtual terrains when util-
ising Java3D serialized binary files compared to utilising files from a Nasa Worldwind
Server

6.1 The suitability of Java3D binary file formats for terrain rendering
software

As explained in section 5.3.1, the serialized Java3D binary files can grow large in size. On a tex-

tured tile, the texture alone will result in an increase in file size of approximately 1 megabyte in size

when using 512 x 512 pixel sized images for a Java3D binary tile. This makes the Java3D binary

format unsuitable for transferring over the Internet, compared to the smaller sized existing file for-

mats. However it is important to note that it is not in this context this testing has been performed.

The Java3D binary files have been serialized after the NWW files have been added to the Java3D

rendering framework, and the software performance effects have been analysed when loading data

from a local disk.
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6.2 The impact of large file sizes on terrain rendering software

The testing described in chapter 5, shows that textured Java3D binary files are not able to provide

the rendering framework with as many quad-tiles as the original file-formats in a given timeframe.

The situation is especially bad when using binary quad tiles in out-of-core situations. Knowing that

Java3D binary quad tiles take up approximately 4 times more space on disk, and perform inferior

to the other formats, the large file sizes was suspected to be one of the key factors for the poor

performance.

In response to this, and in order to investigate and understand the software performance effects

of using Java3D binary files better, a new large geographical area travel test ( test 3) was run together

with the performance monitoring application Perfmon. This specific test was made because of the

significant differences in software performance on this test. The diversity was suspected to be due to

the necessity of using out-of-core capabilities. When running a new test, a clearer, better explanation

for the performance difference was hoped for.

The same test routines, as described in section 5.5, were performed but with Perfmon running

simultaneously. The Perfmon application was setup to monitor the distribution in percent between

processor time, disk activity time and disk idle time. This distribution between hardware resources

was hoped to give us a clearer understanding of the diversity of results, and the distribution between

hardware components when running the testbed. The output from Perfmon from test 3 using original

file formats are shown in Figure 6.1

• The blue line shows the disk activity time in percent

• The red line shows the processor time in percent

• The yellow line shows the disk idle time

From figure 6.1 we can see that most of the time, the disk activity is below 15% while the

processor time is mostly above 80%. Due to the low disk activity, the disk idle time is very high,

emphazising the fact that the disk does not need to work hard to feed the rendering framework

with data. This test shows that when using the original file formats, the rendering framework has

no problems with getting the data it needs from the disk. When using the original file formats the

rendering is CPU-bound, meaning that the bottleneck in the rendering framework is the capacity of

the CPU and not the disk.

Figure 6.2 shows the Perfmon output from the same test with Java3D binary tiles. During the

same test, the disk activity is always 100%. This clearly shows that when using Java3D binary tiles,
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Figure 6.1: The distribution of resources on original file-formats

Figure 6.2: The distribution of resources on binary tiles
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the software becomes disk-bound. The ability to render tiles is limited by the capability of the disk

to provide the rendering framework with data. This can be one of the reasons why both binary file

formats performed so much inferior in the large geographical test ( test 3), as we are loading more

data from disk into the rendering framework on this test compared to the previous two tests. The

same trend was shown when running the test with binary quad tile file-format.

Having a situation where a hardware resource is tied up 100% is seldom desirable. Having no

available resources from a hardware device makes the software vulnerable to impact from other

processes or applications. Knowing that test 3 is the only test where the out-of-core functionality

was used, can explain the much poorer result from Java3D binary formats for this test. When loading

so much data in and out of memory as done with textured geometry tiles over a period of time like

test 3, a situation where the Java Virtual Machine needs to swap some portion of the JVM heap to

disk is likely to occur. A disk-write in a situation where the disk is already running at 100% can

have a severe impact on system performance. In this case it would have created a latency in the

entire chain of loading files from disk to rendering the data on screen.

6.3 Diversity in Test Results

During the analysis of test result data, there was especially one interesting finding concerning the

Java3D Binary file formats, namely the better results on geometry loading during test 1 on higher

resolution tiles ( level 5).

To further investigate the reason for the boost in performance during geometry test 1, the test

data was thourougly investigated for the different test runs. One can see a performance hit on the

first run compared to the 4 following tests on test 1 and test 2. In most cases the first run is inferior

to the latter 4 test runs. This is shown in Figure 6.3

Due to the performance hit on the first test-run, the actual difference in results is even larger.

The Java3D binary file formats have performed better than average in 4 out of 5 runs, supporting

our findings even stronger.

To give a precise explanation for the diversity between test-runs is not straightforward, but the

fact that the test-machine was rebooted between each file-format test, can indicate that some sort

of caching mechanisms are running behind the scenes. Most modern operating systems (OS) have

inbuilt file caching mechanisms. These caching mechanisms are not only caching files physically

[21], but are in addition storing large file pointers to recently used files. The purpose of the file-

pointer cache is to reduce the seek time, and hence make the total delay of reading/writing data to
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disk smaller.

6.4 High resolution geometry test

A final test was run to investigate why Java3D binary tiles perform better compared to original file

formats on level 5 tiles. The chosen test for this purpose was test 1, since this tests the testbed’s

ability to deliver high resolution data, at high travel speeds, in non out-of-core mode. For reasons

explained in 6.2, the out-of-core test was omitted.

This test was run without the programmatic LOD feature explained in section 5.2, hence making

the tiles on every LOD level the same resolution as the high resolution level 5, 150 x 150. The test

is only run once, but with a reboot between each test run. The framerate from the tests are output in

the tables 6.1 and 6.2.

Table 6.1: Output from fraps on Original File Format 150 x 150 test
Frames Time (ms) Min Max Avg
10329 57230 0 1268 180.482

Table 6.2: Output from fraps on Binary Tiles 150 x 150 test
Frames Time (ms) Min Max Avg
34298 54645 1 1463 627.651

From the output from the Fraps application, we can see that the binary tiles have a significantly

better average frame rate. We can see from table 6.1, that the original file-format has an average of

180.5, and from Table 6.2, that the binary tiles averaged 627.6. This is a total difference of 247.8%

in frame-rate increase.

Table 6.3: Original File Format 150 x 150 test
Level Total Tiles Procesed Total Quad-tile Attempts Acc. Time used on Quad-Tile in ms
0,1 38 38 146829
2 18 56 59018
3 28 86 162150
4 11 128 96767
5 2 135 906



6.4. High resolution geometry test 87

Table 6.4: Binary Tile 150 x 150 test
Level Total Tiles Procesed Total Quad-tile Attempts Acc. Time used on Quad-Tile in ms
0,1 33 33 73445
2 16 49 36277
3 22 75 8781
4 35 111 304848
5 17 150 36420

From the tables 6.3 and 6.4, that show the output from the testbed, we can see that when using

the Java3D binary tile format, we are able to render a higher number of tiles compared to original

file-formats. The original file formats managed to load a total of 97 tiles, and the binary tiles

file format managed to load a total of 123 tiles. This is a difference of approximate 26.8% in

performance.

This tells us that using binary file formats on regularly gridded tiles with high density can give

us a performance gain, both in frame rate and in the capability to load non out-of-core data into the

rendering framework.





Chapter 7

Future Research and Conclusion

In future work, looking into more efficient ways of representing binary data for virtual terrains, as

well as finding ways to reduce the disk activity when using binary formats should be central.

7.1 Future Research and recommendations

The X3D binary encoding work 1 would be of special interest. A draft X3D Binary Encoding spec-

ification was approved by the Web3D Consortium [1], and was later approved for advancement to

International Standard, ISO 19775. Sun Microsystems Inc. has provided royalty-free contribution

of several advanced compression technologies that will help X3D to be a more compact and ef-

ficient 3D format. Some of this royalty free contributions is derived from the Java3D geometric

compression algorithms.

Both lossy and lossless compression is possible with this approach. According to the specifi-

cation the lossless compression should make it possible to maintain an identical dataset, compared

to original fileformats, and compress the files in size. This attribute is desirable in 3D software that

requires a high rendering throughput such as virtual terrain software.

In the specification, two basic kinds of size-reduction techniques are used in combination.:

information-theoretic compression and geometry based compression. The information-theoretic

aims to minimise duplication of data, similar to the zip and gzip compression format. The geometry

compression compresses, rearranges, and combines polygons, colors, interpolators and so on to

reduce the geometry in size.

1http://www.web3d.org/x3d/binary/

89



90 Chapter 7. Future Research and Conclusion

According to the X3D: Extensible 3D Graphics for Web Authors book [8] typical file-size reduc-

tions range from 10-25% of the original, consistently beating gzip reduction. Parsing speed when

reading data at run-time, is typically, run 5-10 times faster. Of course this can make a significant

improvement for large virtual terrain software.

To test the X3D binary compression format, one could utilise the Xj3D2 software. Xj3D is an

open source (LGPL) project of the Web3D Consortium Source Working Group focused on creating

a toolkit for VRML97 and X3D content written completely in Java. It serves as a testbed for testing

the X3D specification. The implementation of Xj3D supports several different renderers, OpenGL3,

Aviatrix4, Java3D and a mobile renderer. Since the Xj3D software supports the Java3D renderer, it

should be possible to test the X3D binary compression format directly in the software implemented

for this thesis.

7.1.1 Memory Caching

One way to reduce the disk activity for the implemented prototype, is to introduce a memory cache.

To store the binary data in memory that is likely to be used again, will prevent the software from

re-fetching the same data from disk several times, and hence reduce the disc activity.

In the paper “modeling the digital earth” [4] a LRU (Least Recently Used)caching algorithm is

used. Considering the similarities between the implemented prototype and the geovrml implemen-

tation, this seems like a viable option for further work. LRU caching discards the least recently used

items first, keeping only the frequently used items in memory.

7.1.2 Prefetching

Another optimization technique that can potentially increase the rendering throughtput of virtual

terrain software, is predictive pre-fetching. By predicting future values of the viewpoint move-

ment, and loading them into the memeory cache, one can reduce the latency of loading tile data,

and thus improve rendering throughput. Although this technique is especially interesting for imple-

mentations that loads tiles over a network, it can be used in the implemented prototype to perform

predictive pre-fetching of tiles into a memory cache for quicker access.

The Terravision software utilises predictive tile prefetching based on a linear extrapolation of

the users viewpoint, so that tiles are immediately available for rendering [18].

2http://www.xj3d.org
3http://www.opengl.org
4http://aviatrix.j3d.org
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7.2 Conclusion

Much of the work on this thesis has presented ways of building a testbed for studying the per-

formance impact of Java3D binary serialized files on multiresolution terrains. In the initiation and

preparation phase, the most fundamental concepts and algorithms for generating large virtual terrain

models were studied. Based on the output from this phase, a virtual terrain testbed was implemented.

The testbed was implemented in order to be able to study, and understand, the performance impact

of Java3D binary serialized files by looking at the totality of a virtual terrain rendering system. Be-

ing able to study the entirety was an advantage when running the tests, as it made it possible to

retrieve more information from the different test runs than tests of more limited scope. By running

more isolated tests, and not look at the totality, one would running the risk of not retrieving the same

amount of information, hence weakening the findings.

In 2001, R. Aasgaard and T. Sevalrud [3] suggested to replace the Java platform with C++ due

to the limitations of performing optimisations in the Java Language in order to achieve a higher

rendering throughput. Due to the rapid advance in graphics hardware, and the utilisation of a new

level-of-detail structure for rendering terrains. F. Losasso, H. Hoppe [16] claims in 2004, that the

rendering throughput has reached a level that enables a novel approach to level-of-detail (LOD)

control in terrain rendering.

The work with this thesis has shown that in 2009, it is technically possible to achieve a high

rendering throughput, with out of core functionality, by using a novel approach to LOD control

with a high level graphics API like Java3D. The results from the testing also shows that it is tech-

nically possible to use Java3D serialized branches as a file format for terrain rendering, but it is not

always the best choice. When using Java3D binary file-formats on a textured terrain, the software

performance is always poorer compared to the original file-formats.

When testing the implemented testbed without textures and using only the geometry. The testing

shows that using Java3D Binary tiles is an advantage only when having regular gridded tiles at

higher resolutions in non out-of-core mode. For the computer used for this testing, when looking

totality of the implemented prototype, the Java3D binary geometry tiles performed inferior on lower

resolution tiles. This might be due to the cost of processing data being too small on data-sets of this

size, as serializing is only efficient for more complex or higher resolution geometry. When running

the geometry tiles test with resolution at 150 x 150 at all LOD levels, the geometry tiles managed to

increase the number of loaded tiles by 26.8% in addition to increase the frame rates with 247.8%.

The increased frame rate and computational power when using Java3D binary tiles, may be
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especially important when the software is integrated into the existing software platform developed

at the Institute for Energy Technology for scenario management and simulation combined with

hazard visualisation. This software framework is using complex real-time calculations, restricting

the terrain visualisation module to run with limited hardware resources.
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Appendix A

User Requirements

User requirements fall into two categories:

• Capabilities needed by users to solve a problem or achieve an objective

• Constraints placed by users on how the problem is to be solved

The categories above are displayed in a tabular format

1. Identifier is a unique identifier listed in the format:UR- <Unique identifier that reflects a

hierarchical structure>

2. Description is a natural language statement of the requirement. It should be clear and verifi-

able.

3. Source is a reference to an external document (e.g. a system requirement document), or the

name of the user or user group, that provided the requirement.

4. Need indicates whether the requirement is essential (ESS) or desirable (DES). Essential re-

quirements are those that are non-negotiable, others are considered less important and subject

to negotiation.

5. Rank is the level of desirability, where 1 is highest. Essential needs should always be ranked

as level 1.

6. Stability indicates the likelihood that a requirement will change. Some user requirements may

be known to be stable over the expected life of the software while others may be dependent on
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feedback from the Software Requirement, Architectural Design and Detailed Design phases,

or later. Unstable requirements are flagged TBC (to be confirmed).
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A.1 Specific Requirements

Table A.1: Geometry

UR Description Source Need Rank Stability
UR-1.1.1 A 3D Virtual Terrain with height fields should be

visible
Analysis ESS 1 Stable

UR-1.1.2 The geometry may use textures (images) to en-
hance performance and the visual appearance of
the virtual terrain.

Analysis ESS 1 Stable

UR-1.1.3 The geometry meshes should be organised in such
a way that the meshes with the highest resolution
should be closest to the viewers viewpoint

Analysis ESS 1 Stable

UR-1.1.4 The Virtual Terrain should be created from geo-
referenced data

Analysis ESS 1 Stable

UR-1.1.5 A caching mechanism of data will be used to im-
prove the performance of the application

Analysis ESS 1 Stable

UR-1.1.6 The caching of data will be able to turn on/off Analysis ESS 1 Stable
UR-1.1.7 The size of the virtual terrain should be larger than

the view frustums far clip-plane in all directions
Analysis ESS 1 Stable

UR-1.1.8 It should be possible to load geometry from files,
and put the loaded geometry on top of the 3D Vir-
tual Terrain to get a better perspective of the actual
size of the rendered terrain

Analysis DES 2 TBC
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Table A.2: Viewer

UR Description Source Need Rank Stability
UR-1.2.1 The application should be possible to start by

double-clicking an icon or by command prompt
with input parameters

Analysis ESS 1 Stable

UR-1.2.2 The user will be able to freely navigate in a virtual
terrain environment to view geometry from any
angle

Analysis ESS 1 Stable

UR-1.2.3 Predefined user viewpoints will be provided to
perform viewpoint transitions.

Analysis ESS 1 Stable

UR-1.2.4 It should be possible to retrieve the current frame-
rate from the application

Analysis ESS 1 Stable

UR-1.2.5 It should be possible to retrieve the average frame-
rate from the application

Analysis ESS 1 Stable

UR-1.2.6 It should be possible to retrieve the stability of
frame-rates over some time

Analysis ESS 1 Stable

UR-1.2.7 It should be possible to time essential parts of the
implemented prototype

Analysis ESS 1 Stable

UR-1.2.8 The speed of the users viewpoint should be rela-
tive to the height over ground

Analysis DES 2 Stable

UR-1.2.9 Snapshots in the form of raster images of the 3D
environment can be taken at, at least, full-screen
resolution and stored to the local file system

Analysis DES 2 Stable
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A.2 Constraint requirements

Table A.3: User Interfaces

UR Description Source Need Rank Stability
UR-2.1.1 The primary input devices supported shall be a

keyboard and a mouse
Analysis ESS 1 Stable

UR-2.1.2 2D menus and dialogs shall be used as the primary
user interface for selecting data files and control-
ling visualisation options

Analysis ESS 1 Stable

UR-2.1.3 The language used to display information to the
user shall be English

Analysis ESS 1 Stable

Table A.4: Portability

UR Description Source Need Rank Stability
UR-2.2.1 The software shall be platform independent, and

run on most popular operating systems, including
Windows 2000/XP, Mac OSX and Linux x86

Analysis ESS 1 Stable

Table A.5: Standards

UR Description Source Need Rank Stability
UR-2.3.1 The georeferenced data used to build up the Vir-

tual Terrain should be the same as used in Nasa
Worldwind

Analysis ESS 1 Stable
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Software Requirements

B.1 Specific Requirements

Each software requirement is listed in a table, and contains fields for the following information.

• Identifier

• Description

• Source

• Need

• Rank

• Stability

• Type

B.1.1 Identifier

Uniquely identifies each software requirement. Each identifier will start with SR, which is an ab-

breviation for Software Requirement, followed by a unique number. The numbers will start with

000 and increase for each new requirement. The number does not imply the importance of the

requirement.
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B.1.2 Description

Describes what the requirement should do, it is intended that the description should be simple and

clear.

B.1.3 Source

Identifies the origin of the requirement. Sources are given in respect of the applicable and reference

documents list. When referenced to the User Requirement, please note when the user requirement

document states the source Analysis, we consider the source for being the found by the developer

under the initial analysis phase of the implementation.

B.1.4 Need

Identifies whether a requirement is essential for the operation of the system or desirable (and con-

sequently negotiable). Each field is marked as essential (ESS) or desirable (DES).

B.1.5 Rank

Positions the requirement within a fixed hierarchy from 1 to 3, where one refers to the highest

priority. Normally the requirements marked as ESS are of rank 1, whereas DES requirements are of

rank 2 or more.

B.1.6 Stability

Identifies the perceived status of the source information at the time of publication. It takes the values

STABLE or TBC.

B.1.7 Type

Each table refers to the requirement category. The functional requirements are divided into Colum-

bus Geometry, 3D Viewer and Radiation Visualisation. This is done to reflect the User Requirement

document better. Functional requirements The functional requirements will be divided into Colum-

bus geometry, 3D Viewer and radiation visualisation.
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Table B.1: Geometry

SR Description Source Need Rank Stability type
SR-1.1.1 A Java3D class creating elevation grids will be de-

veloped to generate a virtual terrain. DEM files
will be used to retrieve the height data

UR-1.1.1 Analysis ESS 1 Stable

SR-1.1.2 Sufficient information (Texture Coordinates) will
be provided from the elevation grid class to make
it possible to place images on top of created ge-
ometry

UR-1.1.2 Analysis ESS 1 Stable

SR-1.1.3 A Quadtree multiresolution structure together
with Java3Ds inbuilt DistanceLOD feature, will
be utilised to make sure we have the highest reso-
lution meshes closest to the users viewpoint

UR-1.1.3 Analysis ESS 1 Stable

SR-1.1.4 The implemented prototype will use the same data
as Nasa Worldwind. The data will be fetched
through WMS and HTTP

UR-1.1.4 Analysis ESS 1 Stable

SR-1.1.5 The design of the prototype will support strategies
for caching of data through pluggable Java inter-
faces

UR-1.1.5 Analysis ESS 1 Stable

SR-1.1.6 The design of the prototype will support strategies
for enabling/disabling caching of tiles through
pluggable Java interfaces

UR-1.1.5 Analysis ESS 1 Stable

SR-1.1.7 Paging of tiles with textures from and to persistent
hardware will be used to render a terrain larger
than the view frustum in all directions

UR-1.1.6 Analysis ESS 1 Stable

SR-1.1.8 By using the VRML loader for Java3D, we can
load VRML files from disk and put them on top
of other Java3D geometry

UR-1.1.6 Analysis DES 2 Stable
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Table B.2: Viewer

SR Description Source Need Rank Stability type
SR-1.2.1 The application should be deployed from Java

Web Start and/or shell script
UR-1.2.1 Analysis ESS 1 Stable

SR-1.2.2 The already implemented navigation code from
Halden Virtual Reality Centre will be utilised as
navigation

UR-1.2.2 Analysis ESS 1 Stable

SR-1.2.3 The already implemented viewpoint transition
code from Halden Virtual Reality Centre will be
utilised to perform viewpoint transition anima-
tions

UR-1.2.3 Analysis ESS 1 Stable

SR-1.2.4 A Java3D behaviour will be developed that counts
the current frame rate

UR-1.2.4 Analysis ESS 1 Stable

SR-1.2.5 A Java3D behaviour will be developed that calcu-
lates the average framerate

UR-1.2.5 Analysis ESS 1 Stable

SR-1.2.6 A Java3D behaviour will be developed that shows
the stability of the framerate

UR-1.2.6 Analysis ESS 1 Stable

SR-1.2.7 A static java class using the system clock in mil-
liseconds will be used to calculate the time essen-
tial parts of the system

UR-1.2.7 Analysis ESS 1 Stable

SR-1.2.8 The already implemented navigation from Halden
Virtual Reality Centre will be extended to change
the navigation speed relative to the users view-
point over the ground

UR-1.2.8 Analysis DES 2 Stable

SR-1.2.9 Snapshots in the form of raster images of the 3D
environment can be taken at, at least, full-screen
resolution and stored to the local file system. Ren-
dering an off screen image of the scene, and save
that to a JPG file format will handle this.

UR-1.2.9 Analysis ESS 1 Stable
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Table B.3: User Interfaces

SR Description Source Need Rank Stability type
SR-2.1.1 The primary input devices supported shall be a

keyboard and a mouse.
UR-2.1.1 Analysis ESS 1 Stable

SR-2.1.2 2D menus and dialogs shall be used as the primary
user interface for selecting data files and control-
ling visualisation options. Utilising the java swing
system will solve this..

UR-2.1.2 Analysis ESS 1 Stable

SR-2.1.3 The language used to display information to the
user shall be English

UR-2.1.3 Analysis ESS 1 Stable

Table B.4: Portability

SR Description Source Need Rank Stability type
SR-2.2.1 The software shall be platform independent, and

run on most popular operating systems, including
Windows 2000/XP, Mac OS X and Linux x86.
When software written in the Java programming
language is compiled with Java technology, byte
code results. The Java virtual machine, can ex-
plain (interpret) that byte code to any platform on
which the Java virtual machine is installed. A
Java virtual machine exists on most popular op-
erating systems, including the ones that are men-
tioned above.

UR-2.2.1 Analysis ESS 1 Stable

Table B.5: Standards

SR Description Source Need Rank Stability type
SR-2.3.1 The georeferenced data used to build up the Vir-

tual Terrain should be the same as in Nasa World-
wind. The images used as textures will probably
be fetched from the Web Mapping Server. Digital
Elevation Models will be retrieved over the HTTP
protocol

UR-2.3.1 Analysis ESS 1 TBC
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Class Diagram
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Figure C.1: The initial logical class diagram design
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Sequence Diagram
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Figure D.1: The initial sequence diagram to support the logical class diagram
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Component Description

E.1 Component Description

To give a better understanding of components in the logical models, the main components of this

model are described below. The components of this systems are described as packages in the class

diagram.

Function

The root and start uppackage for the prototype, the package contains the objects J3DTerrain and

QuadTreeEngine. The objective of the J3DTerrain object is to start the tool, and create and initiliase

the QuadTreeEngine object, which is a very important object in the prototype. It is responsible to

• Construct the objects that provides the application with the necessary data

• Construct the viewer that handle the 3D viewer part of the system

• Connect main parts of the system, so all necessary data is communicated within the prototype

• Defines the main functionality concerning the organising and paging of the tiles through pub-

lic or abstract methods.

Interface

The QuadTreeEngine receives callbacks from the viewer each time the viewer moves the viewpoint,

and connects the two parts together via the ViewTransformListener.
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Processing

Based on the position and rotation received from the viewer, the QuadTreeEngine process this in-

formation and communicates with the TileDateFactory if new data should be loaded.

E.1.1 Viewer

Function

The viewer is responsible for creating and setting up the 3D part of the system. The 3D part is setup

by reading Java3D confugiration file. By defining the functionality of the viewer in a configuration

file, we will achieve better scalability for different viewing environments.

The viewer is also responsible for creating and initialising the navigation code. The component

is also responsible for adding and replacing of loaded geometry within the prototype.

Depends

The viewer needs a java3d configuration file to be set up correctly, if not a proper configuration file

is used, the prototype will not be able to start up.

The component is dependent on a navigation software library already developed at HVRC.

Processing

The viewer is responsible for processing the navigation inside the Virtual Terrain.

E.1.2 lodsegment

Function

The lodsegment package main responsibility is to create the geometry at various resolutions and

setting up the level-of-detail optimisation. All 3D related parts are put into its own Java3D package

for better de-coupling in the software.

Interface

The lodsegment component receives data via the TileProvider interface. When a new lodsegment

created, it is communicated to all SegmentCreatedListeners via its interface.
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Depends

The lodsegment depends on data from a TileProvider to be able to construct geometry

Processing

When TileData is received, the QuadTreeBuilder starts creating and setting up a quadtree structure

with level-of-detail optimisation.

The QuadLodBranch extends a Java3D branchgroup, so we can detach and attach the entire

branch runtime.

Data

The data that is needed is defined in the TileData interface inside the tileprovider package.

E.1.3 tileprovider

Function

The tileprovider package is responsible to provide all TileProvider listeners with data. The format

of the data is defined in the TileData interface.

Depends

The component is controlled by the QuadTreeEngine, and needs a message when to load new data

Depends on WMS?

Processing

When a message is received that a tile must be loaded, the tileprovider receives a callback from

QuadTreeEngineClass, connects to a WMS server, or cache????, parses the data and puts it into the

form that is defined in the TileData interface

Data

The component is using Nasa Worldwind Specific Data loaded through WMS. It fetches the data

over WMS. The specific dataset used for this prototype is SRTM30?



122 Chapter E. Component Description

Resources

Will use JCS ( Java Caching System)?(not decided yet...)

E.1.4 timing

Function

The timing component is used to time essential parts of the virtual terrain implementation. There ex-

ists external software to perform measurement in java software, but for better control and platform-

indepence two java classes are implemented for this purpose.

Processing

The FPSBehaviour class is a Java3D specific behaviour that ”wakes up” every time a new frame is

rendered to the screen, this feature is used to count the current framerate.

The Timing class utilises the current time in milliseconds to calculate the time an event has

performed, the timing is only used for analysis of different implementations of parts, and has no

effect on the actual viretual terrain rendering.
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Test Results

F.1 Test 1 - Quick Traversal

F.1.1 Averaged Test Results - Test 1

Average Frame Rate measured from FRAPS over all 5 test runs: 258.2

Table F.1: Average Times Original File-formats

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 38.8 38.8 40176.8
2 17.2 56.8 13990.8
3 30.2 87 19616.6
4 48.4 136.6 31034.6
5 33.6 188.8 131442.4

Average Frame Rate on Binary Tiles test measured from FRAPS over all 5 test runs:
1463.2506

Average Frame Rate on Binary Quad-Tiles test measured from FRAPS over all 5 test runs:
1171.213
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Table F.2: Average Times Binary Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 37.2 37.2 232862.4
2 16.2 55.2 119609
3 15.2 80 83304.4
4 11 92.6 192207.6
5 1.4 94.4 41394.8

Table F.3: Average Times Binary Quad-Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0, 1 39.6 39.6 72772.4
2 16.8 58.8 64233.6
3 17.2 87.2 123716
4 16.6 113 181858.6
5 2.4 94.4 62403.8

F.2 Test 1, Quick Traversal - Original Fileformats

Table F.4: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
20346 54413 0 1262 373.918
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Table F.5: Test Run 1

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 61105
2 18 58 21341
3 30 88 27578
4 49 137 44197
5 22 189 192379

Table F.6: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
12210 54465 0 1653 224.181

Table F.7: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 38 38 32915
2 16 56 8827
3 31 87 22514
4 48 135 28885
5 39 188 175210

Table F.8: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
13190 55854 0 1647 236.151

Table F.9: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 38 38 40669
2 17 56 11156
3 30 86 19361
4 49 137 31046
5 32 189 70452
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Table F.10: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
15040 58649 0 1632 256.441

Table F.11: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 39 39 30789
2 17 57 8451
3 30 87 13956
4 48 137 26813
5 36 189 130419

Table F.12: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
11480 56922 0 1633 201.679

Table F.13: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 39 39 35406
2 18 57 9639
3 30 87 14674
4 48 137 24232
5 39 189 88752
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F.3 Test 1 - Binary Tiles

Table F.14: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
103127 54146 1357 2257 1904.610

Table F.15: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 34 34 318637
2 15 52 230729
3 8 68 81854
4 1 69 2074
5 0 69 0

Table F.16: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
62963 54113 8 1867 1163.547
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Table F.17: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 37 37 96896
2 16 55 3214
3 26 85 144256
4 20 109 431475
5 0 111 69041

Table F.18: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
86660 54104 1 2134 1601.730

Table F.19: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 38 38 326125
2 18 56 182273
3 12 82 110810
4 3 89 6468
5 0 89 0

Table F.20: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
57427 54265 10 1909 1058.270

Table F.21: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 38 38 115354
2 16 56 55151
3 18 82 3545
4 28 110 457462
5 7 117 197763
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Table F.22: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
85808 54032 3 2185 1588.096

Table F.23: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 39 39 307300
2 16 57 126678
3 12 83 76057
4 3 86 6186
5 0 86 0

F.4 Test 1 -Binary Quad-Tiles

Table F.24: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
88323 54188 0 2126 1629.937



130 Chapter F. Test Results

Table F.25: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 248459
2 18 60 124484
3 16 92 204824
4 5 107 53797
5 0 107 0

Table F.26: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
34490 63391 0 1861 544.084

Table F.27: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 149573
2 14 58 2573
3 25 85 23236
4 34 124 437125
5 1 155 9211

Table F.28: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
71506 54098 0 2150 1321.786

Table F.29: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 225626
2 19 60 95785
3 18 90 200902
4 3 110 9633
5 0 110 0
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Table F.30: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
50903 66182 0 1882 769.137

Table F.31: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 38 38 148084
2 14 56 20575
3 22 78 4199
4 36 114 375207
5 11 141 302808

Table F.32: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
86051 54082 0 2076 1591.121

Table F.33: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 215778
2 19 60 109023
3 20 91 185419
4 5 110 33531
5 0 110 0
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F.5 Test 2 -Original File-formats

F.6 Averaged Test Results - Test 2

Average Frame Rate on Original File-formats test measured from FRAPS over all 5 test runs:
1598.122

Table F.34: Average Times Original File-formats

Level Total Tiles Processes Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 21 21 12883
2 4 25 1023,4
3 4 29 1144,8
4 4 33 1764,8
5 4 37 2485,2

Average Frame Rate on Binary-Tiles test measured from FRAPS over all 5 test runs:
1623.8856

Table F.35: Average Times Binary Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 19.8 19.8 34143
2 4 26.2 5971,6
3 4 27.8 4690,4
4 3.6 31.4 2009,6
5 3.2 34.6 1664,2

Average Frame Rate on Binary Quad-Tiles test measured from FRAPS over all 5 test runs:
1648.7886
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Table F.36: Average Times Binary Quad-Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 21 19.8 51086.2
2 4 25 4314,6
3 4 29 3458,6
4 4 33 3134
5 3.8 36.8 3811,8

Table F.37: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29618 18595 366 2167 1592.794

Table F.38: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 20955
2 4 25 1854
3 4 29 2462
4 4 33 2462
5 4 37 2850
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Table F.39: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
30172 18597 306 2180 1622.412

Table F.40: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 10587
2 4 25 810
3 4 29 826
4 4 33 1011
5 4 37 2321

Table F.41: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29549 18584 140 2152 1590.024

Table F.42: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 11078
2 4 25 827
3 4 29 810
4 4 33 1963
5 4 37 2011

Table F.43: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29657 18726 224 2163 1583.734



F.6. Averaged Test Results - Test 2 135

Table F.44: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 10554
2 4 25 829
3 4 29 938
4 4 33 1046
5 4 37 3231

Table F.45: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29773 18589 99 2156 1601.646

Table F.46: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 11241
2 4 25 797
3 4 29 686
4 4 33 2342
5 4 37 2013
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F.7 Test 2 - Binary Tiles

Table F.47: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
34881 18552 1618 2063 1880.175

Table F.48: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 15 15 102947
2 4 19 24740
3 4 23 19827
4 2 25 5256
5 0 25 0

Table F.49: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
28984 18724 82 2165 1547.960
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Table F.50: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 27185
2 4 25 1701
3 4 29 954
4 4 33 1686
5 4 37 1951

Table F.51: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29192 18616 23 2177 1568.113

Table F.52: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 14568
2 4 25 796
3 4 29 952
4 4 33 936
5 4 37 2169

Table F.53: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29049 18574 158 2151 1563.960

Table F.54: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 13163
2 4 25 1123
3 4 29 892
4 4 33 1108
5 4 37 2062



138 Chapter F. Test Results

Table F.55: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29120 18676 155 2139 1559.220

Table F.56: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 12854
2 4 25 1498
3 4 29 827
4 4 33 1062
5 4 37 2139

F.8 Test 2 - Binary Quad Tiles

Table F.57: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
32956 18545 1435 2080 1777.083
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Table F.58: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 122984
2 4 25 17934
3 4 29 13512
4 4 33 10530
5 3 36 10577

Table F.59: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
32956 18545 1435 2080 1777.083

Table F.60: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 34514
2 4 25 954
3 4 29 812
4 4 33 1002
5 4 37 2109

Table F.61: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
30508 18712 68 2182 1630.398

Table F.62: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 33680
2 4 25 858
3 4 29 672
4 4 33 2248
5 4 37 1967
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Table F.63: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
30467 18791 149 2172 1621.361

Table F.64: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 32213
2 4 25 874
3 4 29 1140
4 4 33 905
5 4 37 2406

Table F.65: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
29990 18683 299 2156 1605.203

Table F.66: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 32040
2 4 25 953
3 4 29 1156
4 4 33 1030
5 4 37 2000
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F.9 Test 3 - Original Fileformats

F.10 Averaged Test Results - Large Geographic area traversal - Test
3

Average Frame Rate on Original File-formats test measured from FRAPS over all 5 test runs:
1048.2038

Table F.67: Average Times Original Fileformats

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 296.2 301 194760.8
2 102.6 403.6 57311.4
3 195.6 599.8 85485.4
4 354.4 956.8 193339.4
5 466.4 1436.2 330865.6

Average Frame Rate on Binary Tiles test measured from FRAPS over all 5 test runs:
1752.9192

Table F.68: Average Times Binary tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 192.4 259.2 640338
2 90 381.2 598244.6
3 164.6 513.8 911979.8
4 138.2 798.2 697905.6
5 15.2 837.4 24651

Average Frame Rate on Binary Tiles test measured from FRAPS over all 5 test runs:
1445.9676
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Table F.69: Average Times Binary Quad-Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 208 314.6 970763.6
2 110 424.6 567943.4
3 213.6 638.2 961899.6
4 319.8 1048.6 1468871.4
5 3.6 1221.4 10210.4

Table F.70: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 483964 0 2325 1033.135

Table F.71: Test Run 1

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 295 300 206288
2 103 403 55566
3 199 602 108316
4 357 962 204147
5 467 1444 352330
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Table F.72: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 499948 0 2122 1000.104

Table F.73: Test Run 2

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 304 310 209981
2 106 416 71978
3 200 616 87746
4 360 980 195582
5 473 1467 346836

Table F.74: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 468651 0 2285 1066.892

Table F.75: Test Run 3

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 300 302 203969
2 103 405 62162
3 198 603 80387
4 360 965 189192
5 473 1451 339642

Table F.76: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 464179 0 2245 1077.171



144 Chapter F. Test Results

Table F.77: Test Run 4

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 291 295 173135
2 100 395 48887
3 190 585 69161
4 343 931 181400
5 457 1397 315517

Table F.78: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 470050 0 2280 1063.717

Table F.79: Test Run 5

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 291 298 180431
2 101 399 47964
3 194 593 81817
4 352 946 196376
5 462 1422 300003
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F.11 Test 3 - Binary Tiles

Table F.80: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 400015 0 2235 1249.953

Table F.81: Test Run 1

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 198 271 736329
2 93 364 662354
3 173 537 990693
4 132 834 692851
5 6 856 8157

Table F.82: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 410543 0 2170 1217.899
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Table F.83: Test Run 2

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 206 269 598233
2 90 359 563523
3 164 523 859902
4 165 808 791986
5 28 870 41317

Table F.84: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 197383 737 2565 2533.146

Table F.85: Test Run 3

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 191 256 578076
2 85 341 563741
3 152 493 833485
4 121 759 623855
5 21 797 39529

Table F.86: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 392412 0 2212 1274.171

Table F.87: Test Run 4

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 179 249 658138
2 95 344 640824
3 174 518 953593
4 143 816 739877
5 6 848 10750
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Table F.88: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
94583 37857 2377 2547 2498.428

Table F.89: Test Run 5

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 188 251 630914
2 87 338 560781
3 160 498 922226
4 130 774 640959
5 15 816 23502

F.12 Test 3 - Binary Quad-Tiles

Table F.90: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 292908 0 2188 1707.021
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Table F.91: Test Run 1

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 209 317 1098103
2 110 427 579157
3 213 640 995547
4 308 1054 1442166
5 4 1195 11223

Table F.92: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 373046 0 2143 1340.317

Table F.93: Test Run 2

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 210 317 1231272
2 110 427 613391
3 214 641 1005508
4 289 1044 1351799
5 2 1188 3451

Table F.94: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 399661 0 2127 1251.060

Table F.95: Test Run 3

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 203 313 838033
2 110 423 533234
3 214 637 936896
4 344 1048 1597936
5 2 1238 4688
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Table F.96: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 406521 0 2093 1229.949

Table F.97: Test Run 4

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 209 313 834200
2 110 423 563427
3 213 636 934420
4 341 1048 1522489
5 5 1242 13969

Table F.98: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 293860 785 2105 1701.491

Table F.99: Test Run 5

Level Total Tiles Processes Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 209 313 852210
2 110 423 550508
3 214 637 937127
4 317 1051 1429967
5 5 12442 17721
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G.1 Testing with geometry - Test 1

Average Frame Rate on Original File-formats test measured from FRAPS over all 5 test runs:
777.3332

Table G.1: Average Times Original Fileformats

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 40 40 8206.6
2 20 60 6612
3 32 92 11750.4
4 60.6 153.8 28460.4
5 74.8 264.2 207963.2

Average Frame Rate on Binary Tiles test measured from FRAPS over all 5 test runs:
1511.9608

Table G.2: Average Times Binary Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 40 40 10765
2 20 60 7182,6
3 32 92 12059.6
4 60.4 154 32594.2
5 81 265 212854.6

Average Frame Rate on Binary Tiles test measured from FRAPS over all 5 test runs:
1445.0612

Table G.3: Average Times Binary Quad-Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 39.8 39.8 33837
2 20 59.8 30914.4
3 32 91.8 40566.2
4 55 149.8 382614.4
5 46.6 239.4 658250
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G.2 Test 1 - Original Fileformats

Table G.4: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
44912 56487 0 1869 795.086

Table G.5: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 6322
2 20 60 4049
3 32 92 10123
4 60 153 31942
5 74 263 262074

Table G.6: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
40463 58202 0 1746 695.217
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Table G.7: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 10327
2 20 60 7674
3 32 92 11733
4 60 154 24009
5 76 261 161018

Table G.8: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
46557 55394 0 1897 840.470

Table G.9: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 7059
2 20 60 5856
3 32 92 12755
4 62 154 28367
5 76 265 198540

Table G.10: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
40543 55224 0 1923 734.155

Table G.11: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 9201
2 20 60 8202
3 32 92 12644
4 60 154 24918
5 77 268 240041



154 Chapter G. Test Results Geometry

Table G.12: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
44696 54392 0 1939 821.738

Table G.13: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0 40 40 8124
2 20 60 7279
3 32 92 11497
4 61 154 32066
5 71 264 178143

G.3 Test 1 - Binary Tiles

Table G.14: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
97266 54667 1283 2161 1779.245
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Table G.15: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 8624
2 20 60 8775
3 32 92 14554
4 60 154 33250
5 82 264 295468

Table G.16: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
75490 54257 561 1877 1391.341

Table G.17: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 6923
2 20 60 5147
3 32 92 15338
4 62 154 35449
5 78 265 177889

Table G.18: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
78923 54251 399 2040 1454.775

Table G.19: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 15588
2 20 60 6958
3 32 92 9191
4 60 154 26591
5 84 266 202318
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Table G.20: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
83788 54265 33 2066 1544.052

Table G.21: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 15588
2 20 60 6958
3 32 92 9191
4 60 154 26591
5 84 266 202318

Table G.22: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
75241 54115 0 2055 1390.391

Table G.23: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 7102
2 20 60 8075
3 32 92 12024
4 60 154 41090
5 77 264 186280



G.4. Test 1 - Binary Quad-Tiles 157

G.4 Test 1 - Binary Quad-Tiles

Table G.24: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
86947 54718 765 1962 1589.002

Table G.25: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 39 39 47180
2 20 59 46949
3 32 91 56335
4 49 146 557630
5 5 174 123485

Table G.26: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
74015 54056 378 1867 1369.228
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Table G.27: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 27926
2 20 60 21107
3 32 92 33462
4 56 151 109196
5 62 254 174288

Table G.28: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
77442 54040 449 1927 1433.050

Table G.29: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 22742
2 20 60 20325
3 32 92 29838
4 57 151 343105
5 77 260 122899

Table G.30: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
77371 54040 501 1940 1431.736

Table G.31: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 33321
2 20 60 30558
3 32 92 38341
4 58 150 436841
5 54 252 118495
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Table G.32: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
75676 53966 4 1874 1402.290

Table G.33: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 40 40 38016
2 20 60 35633
3 32 92 44855
4 55 151 466300
5 50 257 119083

G.5 Test 2 - Zoom In And Out Test

Average Frame Rate on Original File-formats test measured from FRAPS over all 5 test runs:
1922.9364

Table G.34: Average Times Original Fileformats

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 21 21 1466,4
2 4 25 331.22
3 4 29 281.4
4 4 33 506.4
5 4 37 1847.6

Average Frame Rate on Binary Tiles test measured from FRAPS over all 5 test runs:
1956.9636

Average Frame Rate on Binary Quad-Tiles test measured from FRAPS over all 5 test runs:
1929.715
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Table G.35: Average Times Binary Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 21 21 8413,4
2 4 25 1490.8
3 4 29 1033.6
4 4 33 1204.2
5 4 37 3952.8

Table G.36: Average Times Binary Tiles

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 21 21 3523,2
2 4 25 486.96
3 4 29 543.8
4 4 33 1052.8
5 4 37 3567

Table G.37: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
35577 18498 1079 2337 1923.289
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Table G.38: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1296
2 4 25 266
3 4 29 219
4 4 33 392
5 4 37 1625

Table G.39: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
34377 18505 757 2274 1857.714

Table G.40: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1467
2 4 25 266
3 4 29 390
4 4 33 390
5 4 37 1844

Table G.41: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
35906 18495 951 2328 1941.390

Table G.42: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1740
2 4 25 390
3 4 29 187
4 4 33 452
5 4 37 1986
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Table G.43: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
35722 18494 853 2322 1931.545

Table G.44: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1328
2 4 25 423
3 4 29 330
4 4 33 672
5 4 37 1860

Table G.45: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
36262 18494 963 2309 1960.744

Table G.46: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1501
2 4 25 311
3 4 29 281
4 4 33 626
5 4 37 1923
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G.6 Test 2 - Binary Tiles

Table G.47: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
36852 18730 1603 2263 1967.539

Table G.48: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 37521
2 4 25 6865
3 4 29 4515
4 4 33 5162
5 4 37 15878

Table G.49: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
36942 18739 1186 2342 1971.397
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Table G.50: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1251
2 4 25 139
3 4 29 171
4 4 33 187
5 4 37 1050

Table G.51: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
36889 18724 1205 2315 1970.145

Table G.52: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1031
2 4 25 186
3 4 29 218
4 4 33 262
5 4 37 1052

Table G.53: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
36318 18718 1192 2330 1940.271

Table G.54: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1272
2 4 25 110
3 4 29 154
4 4 33 246
5 4 37 928
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Table G.55: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
35988 18593 1211 2286 1935.567

Table G.56: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 992
2 4 25 154
3 4 29 110
4 4 33 264
5 4 37 856

G.7 Test 2 - Binary Quad-Tiles

Table G.57: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
35943 18708 1596 2285 1921.264
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Table G.58: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 12718
2 4 25 1748
3 4 29 2228
4 4 33 4284
5 4 37 14181

Table G.59: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
36285 18693 1181 2289 1941.101

Table G.60: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1177
2 4 25 170
3 4 29 139
4 4 33 246
5 4 37 992

Table G.61: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
35807 18627 1207 2254 1922.317

Table G.62: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1043
2 4 25 173
3 4 29 172
4 4 33 250
5 4 37 902
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Table G.63: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
36260 18588 1215 2296 1950.721

Table G.64: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1460
2 4 25 158
3 4 29 60
4 4 33 234
5 4 37 872

Table G.65: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
35585 18600 1140 2254 1913.172

Table G.66: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 21 21 1218
2 4 25 186
3 4 29 60
4 4 33 250
5 4 37 888
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G.8 Test 3 - Large Geographic Area Travel - Original File-formats

Average Frame Rate on Binary Quad-Tiles test measured from FRAPS over all 5 test runs:
1429.6442

Table G.67: Average Times Original Fileformats

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 314 314 47508.2
2 110 424 14984.2
3 214 638 10201.6
4 426 1064 9714.6
5 846 1910 407989

Average Frame Rate on Binary Quad-Tiles test measured from FRAPS over all 5 test runs:
1664.6934

Table G.68: Average Times Binary Files

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 301.6 314 189879.6
2 110 424 167993.22
3 214 638 328433.8
4 417.4 1062 927001.2
5 342.4 1779.6 534183

Average Frame Rate on Binary Quad-Tiles test measured from FRAPS over all 5 test runs:
1659.1369

Table G.69: Average Times Binary Files

Level Total Tiles Processed Total Quad-Tile Attempts Acc. Time used on Quad-Tile in ms
0,1 313 314 136224.8
2 110 424 140694.2
3 214 638 259155
4 426 1064 811324.6
5 257.8 1904.8 694559.4
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Table G.70: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 355932 4 2250 1404.763

Table G.71: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 314 314 42853
2 110 424 14536
3 214 638 10105
4 426 1064 114266
5 846 1910 433892

Table G.72: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 350678 96 2280 1425.809
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Table G.73: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 314 314 55962
2 110 424 14480
3 214 638 9597
4 426 1064 101473
5 846 1910 404095

Table G.74: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 347845 5 2253 1437.422

Table G.75: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 314 314 47904
2 110 424 16815
3 214 638 9685
4 426 1064 105109
5 846 1910 404432

Table G.76: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 343889 15 2240 1453.958

Table G.77: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 314 314 45543
2 110 424 12754
3 214 638 10319
4 426 1064 95690
5 846 1910 387166
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Table G.78: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 350565 5 2278 1426.269

Table G.79: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 314 314 45279
2 110 424 16336
3 214 638 8867
4 426 1064 102365
5 846 1910 410360

G.9 Test 3 - Binary Tiles

Table G.80: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 283207 1090 2236 1765.493



172 Chapter G. Test Results Geometry

Table G.81: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 272 314 240221
2 110 424 277707
3 214 638 512532
4 411 1061 1234993
5 158 1672 265847

Table G.82: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 302750 724 2279 1651.528

Table G.83: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 309 314 193260
2 110 424 160020
3 214 638 297850
4 418 1063 882522
5 353 1794 596188

Table G.84: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 304736 8 2289 1640.764

Table G.85: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 308 314 172359
2 110 424 134164
3 214 638 266448
4 422 1063 869694
5 405 1808 632672
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Table G.86: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 305937 76 2259 1634.323

Table G.87: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 310 314 169418
2 110 424 137136
3 214 638 275304
4 420 1062 848143
5 404 1816 600844

Table G.88: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 306493 0 2284 1631.359

Table G.89: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 309 314 174140
2 110 424 130939
3 214 638 290035
4 416 1061 799654
5 392 1808 575364
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G.10 Test 3 - Binary Quad-Tiles

Table G.90: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 291307 685 2295 1716.402

Table G.91: Test Run 1

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 313 314 207063
2 110 424 181041
3 214 638 359922
4 426 1064 1007726
5 117 1894 334975

Table G.92: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 303036 703 2265 1649.969
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Table G.93: Test Run 2

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 314 314 131170
2 110 424 133779
3 214 638 235945
4 426 1064 769958
5 270 1908 790243

Table G.94: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 297194 273 2289 1682.403

Table G.95: Test Run 3

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 312 314 111257
2 110 424 133735
3 214 638 236336
4 426 1064 765648
5 297 1909 808827

Table G.96: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 310495 3 2258 1610.332

Table G.97: Test Run 4

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 313 314 107689
2 110 424 121513
3 214 638 225080
4 426 1064 749293
5 330 1909 832965
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Table G.98: Output from FRAPS to test run in table below
Frames Time (ms) Min Max Avg
500000 305516 214 2264 1636.575

Table G.99: Test Run 5

Level Total Tiles Processed Total Quad-Tile Attempts Accumulated Time used on Quad-Tile
0,1 313 314 123945
2 110 424 133403
3 214 638 238492
4 426 1064 763998
5 275 1904 705787
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