
MASTER THESIS

A Concept for Improving ICT Tools as Support for 
Morning Meetings in the Oil and Gas Industry

Amund Lågbu

01.10.2015

Master in Applied Computer Science
Faculty of Computer Sciences







Foreword and
Acknowledgements

This project started as an idea promoted by senior research scientist at Insti-
tute for Energy Technology (IFE), Sizarta Sarshar. Sarshar’s suggestion was to
examine current software used in morning meetings in the oil and gas industry,
and propose changes for better supporting the decision-making process. The
thesis is the embodiment of this idea.

IFE has been an important collaborator during the whole study. Different
personnel from the organization have participated during the requirement def-
inition phase and in several tests of the developed concept - just to mention a
few.

First and foremost I want to thank the project’s supervisor and contracting
authority, Sizarta Sarshar, for his contributions to the project. He has been
involved in all stages of the work, and have guided the development in the
right direction. He was also willing to continue this work, although the project
stretched out in time, and the right for guidance lapsed.

Both Sarshar and principal scientist at IFE, Grete Rindahl, have also taken
part in writing a research article during the project. I am grateful for their help,
without it the article wouldn’t be realized. Sarshar was also willing to present
this work at the ESREL 2015 conference in Zürich, when I did not have the
opportunity to participate, something I am highly grateful for.

Further I want to thank my better half, Ann-Helen Ottum, for her limitless
patience by looking after our three children in weekends and afternoons while
the work was in progress.

Lastly, but not least, I want to thank my brother, Yngve Lågbu, for impor-
tant guidance during the process of writing the thesis.

4



Abstract

The main goal of this thesis is to find if software tools may better support deci-
sions in morning meetings, and how. Additionally the thesis aims for studying
how such software may promote important elements in the Integrated Opera-
tions concept, which is fundamental in modern oil and gas industry.

The need for conducting such a study was also defined in a research article
written during the project work. "Improving ICT Tools as Support for Morning
Meetings in the Oil and Gas Industry" by Lågbu et al. [18] was published at the
ESREL 2015 conference in Zürich. The article describes an early concept based
on requirements defined in a workshop, and evaluations of currently available
systems and prototypes. The research article is presented in Appendix A.

The process of experimenting and gathering results for answering the re-
search questions, defined in the thesis, have been twofold. The first part of this
project revolved around gathering requirements for a future morning meeting
system, and to evaluate current solutions based on these findings. The goal of
this process was to define some ideal requirements for a software to be used in
future morning meetings, and to find if there is a need for such software.

It was concluded that the evaluated systems did not satisfy all the require-
ments. Therefore a concept was developed in nine iterations. This concept was
tested with different techniques, to find if the proposed solution could be used to
support decision making in morning meetings. It was also tested if the solution
could promote elements in the integrated operations concept.

The results are however ambiguous. While the evaluation of current solutions
pointed towards a need for new software, the developed concept is perhaps not
the ideal solution. Tests performed of the concept gave inconclusive results,
whether required features were at place, or not. But a final usability inspection
concluded that the development of software, designed for supporting a work
practice for meetings, is unique - making the tool better adapted to current
collaboration meetings. The proposed design was therefore considered a step
in the right direction for supporting decision making in today’s oil and gas
industry.

5



Table of Contents

1 Introduction 13
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 A Brief Introduction . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Risk and Cost Challenges . . . . . . . . . . . . . . . . . . 13
1.1.3 Integrated Operations . . . . . . . . . . . . . . . . . . . . 14
1.1.4 Meetings in Onshore/Offshore Organizations . . . . . . . 15
1.1.5 Collaboration Technology in IO Meetings . . . . . . . . . 15

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 The Research Questions’ Words and Phrases . . . . . . . 16
1.2.3 Scope and Limitations . . . . . . . . . . . . . . . . . . . . 17
1.2.4 Brief Overview of Research Method . . . . . . . . . . . . 17
1.2.5 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Morning Meetings in an IO context . . . . . . . . . . . . . 21
1.5.2 The Structure and Scope of Collaboration Sessions . . . . 23

2 Theory 26
2.1 Decision Support Tools in IO organizations . . . . . . . . . . . . 26

2.1.1 A Study of an Email Platform and Other Decision Tools
in the Oil and Gas Industry . . . . . . . . . . . . . . . . . 26

2.2 Systems Designed for Meetings in the Oil and Gas industry . . . 28
2.2.1 Epsis Teambox . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 ARKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Protosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Email platform . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 IO-MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.6 Wisio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 System Development Methodology . . . . . . . . . . . . . . . . . 31
2.3.1 Traditional methods . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Rapid Application Development . . . . . . . . . . . . . . 33
2.3.3 Agile methods . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Requirement Methodologies . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Requirement Definition Methodology . . . . . . . . . . . . 37
2.4.2 MoSCoW Prioritization of Requirements . . . . . . . . . . 38

2.5 Prototyping Techniques . . . . . . . . . . . . . . . . . . . . . . . 39

6



2.5.1 Offline and Online Prototypes . . . . . . . . . . . . . . . . 39
2.5.2 Protoyping Strategies . . . . . . . . . . . . . . . . . . . . 39

2.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.1 Usability Testing . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.2 Experts Reviews . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.1 Map Visualizations . . . . . . . . . . . . . . . . . . . . . . 43

2.8 User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8.1 The Eight Golden Rules of Interface Design . . . . . . . . 45
2.8.2 Interaction Styles - Advantages and Disadvantages . . . . 46

3 Method 47
3.1 Methodology Selection . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Development Methodology . . . . . . . . . . . . . . . . . 47
3.1.2 Requirement Definition Methodology . . . . . . . . . . . . 49
3.1.3 Complete Project Methodology . . . . . . . . . . . . . . . 49

3.2 The initial phase - the analysis . . . . . . . . . . . . . . . . . . . 52
3.2.1 MoSCoW Ranking of Requirements . . . . . . . . . . . . 52
3.2.2 Evaluation of Current Systems . . . . . . . . . . . . . . . 52

3.3 Quick design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Prototyping Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Prototype Fundamentals . . . . . . . . . . . . . . . . . . . 54
3.4.2 Iterative Development . . . . . . . . . . . . . . . . . . . . 55

3.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Observations and Experiments Prior to Concept Development 57
4.1 The Studied Email Platform . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Findings from Studying an Email Platform Document . . 58
4.2 Defining Requirements for Future Software Supporting Morning

Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Defining Key Functionality . . . . . . . . . . . . . . . . . 61
4.2.2 Importance of Functionality in the Future System . . . . 63
4.2.3 Requirements the Reviewers Defined as Important . . . . 64

4.3 Evaluation of Existing Software’s Functions . . . . . . . . . . . . 65
4.3.1 Current Implementations of Key Functions . . . . . . . . 65
4.3.2 Functionality Based on Other Systems’ Solutions . . . . . 66

5 Concept Development 70
5.1 Quick Design - Paper Prototyping . . . . . . . . . . . . . . . . . 72
5.2 Prototyping Cycles - Horizontal Prototyping . . . . . . . . . . . . 73

5.2.1 Iteration I . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Iteration II . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Iteration III . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Prototyping Cycles - Vertical Prototyping . . . . . . . . . . . . . 87
5.3.1 Iteration IV . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Iteration V . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Iteration VI . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.4 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Prototyping Cycles - Adjustments to the Horizontal Prototype . 96
5.4.1 Iteration VII . . . . . . . . . . . . . . . . . . . . . . . . . 96

7



5.4.2 Iteration VIII . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.3 Iteration IX - Final Changes . . . . . . . . . . . . . . . . 101

5.5 Requirements and Features Thought Implemented when Devel-
oping the Horizontal and Vertical Prototypes . . . . . . . . . . . 103

6 Concept Evaluation Results 105
6.1 Testing of the Developed Concept . . . . . . . . . . . . . . . . . . 105
6.2 Cognitive Walk-through . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Pre-meeting tasks . . . . . . . . . . . . . . . . . . . . . . 107
6.2.2 In-meeting tasks . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.3 Post-meeting tasks . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Heuristic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.1 Evaluation of the Concept Based on the Requirements . . 110
6.3.2 An Evaluation Based on the Eight Golden Rules of Inter-

face Design . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3 Comparison of the Reviewers Ratings . . . . . . . . . . . 113
6.3.4 Usability Inspection . . . . . . . . . . . . . . . . . . . . . 113

7 Discussion 117
7.1 How May Software Promote Overall Decision Support in the Oil

and Gas Industry? . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Defining Requirements for Decision Support in Morning Meetings 120
7.3 Testing Current Solutions . . . . . . . . . . . . . . . . . . . . . . 123
7.4 A Concept Made for Promoting Decision Support in Morning

Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.1 Using Features Discovered in Other Software . . . . . . . 125
7.4.2 Major Changes to the Design . . . . . . . . . . . . . . . . 126
7.4.3 Removing Functionality . . . . . . . . . . . . . . . . . . . 128
7.4.4 Features not Tested . . . . . . . . . . . . . . . . . . . . . 129

7.5 Testing of the Developed Concept . . . . . . . . . . . . . . . . . . 130
7.5.1 Cognitive Walk-Through . . . . . . . . . . . . . . . . . . . 130
7.5.2 Heuristic Evaluation . . . . . . . . . . . . . . . . . . . . . 131
7.5.3 The Design’s Ability to Provide Decision Support with

Respect to the Test Results . . . . . . . . . . . . . . . . . 134

8 Conclusion 136

References 137

A Research Article Written During the Project Work 140

B Requirements 150
B.1 Requirements Defined for the Project . . . . . . . . . . . . . . . . 150
B.2 Requirements Based on a Company’s Guidelines . . . . . . . . . 177

C Design 186

D Test of Developed Concept 194

E Test of Current Systems’ Features 231

8



F XML DTD Schemas 239
F.1 Menu DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
F.2 Map DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9



List of Figures

1.1 A redrawn version of the DCS model described by Skjerve et al. [34] 24
1.2 A simplified model of distributed collaboration structures, de-

scribed by Skjerve et al. [34] . . . . . . . . . . . . . . . . . . . . . 25
1.3 A simplified model made of the main collaboration sessions, de-

scribed by Skjerve et al. [34] . . . . . . . . . . . . . . . . . . . . . 25

2.1 This illustration shows how a software development methodol-
ogy may be selected, on the basis of a project’s complexity and
uncertainty [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 An illustration of the RAD development process, as described by
Mediapshere [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 An illustration of the combination of the customized requirement
definition and the RAD methodology used in this project. [20]. . 51

5.1 The concept was changed in nine iterations. The gradually evo-
lution of the design is illustrated in this figure. The design in the
fourth, fifth and sixth iterations were developed in code. . . . . . 70

5.2 A screen made for the initial paper prototype. . . . . . . . . . . . 72
5.3 The initial digital prototype’s main screen. . . . . . . . . . . . . 73
5.4 Selection of topics in the initial prototype. . . . . . . . . . . . . . 74
5.5 A pop-p window containing participants in a collaboration session. 74
5.6 A pop-up window containing notifications in a collaboration session. 75
5.7 A pop-p window containing a whiteboard. . . . . . . . . . . . . . 75
5.8 The second prototype - alternative 1. . . . . . . . . . . . . . . . . 77
5.9 The second prototype - alternative 2. . . . . . . . . . . . . . . . . 78
5.10 The second prototype - alternative 3. . . . . . . . . . . . . . . . . 78
5.11 The second prototype. . . . . . . . . . . . . . . . . . . . . . . . . 78
5.12 The second prototype - collapsed. . . . . . . . . . . . . . . . . . . 79
5.13 Magnifying glasses to compensate for lack of readability control. 79
5.14 Notifications alert symbol. . . . . . . . . . . . . . . . . . . . . . . 80
5.15 A pop-up window displaying system settings. . . . . . . . . . . . 80
5.16 A menu organized as a schedule used during a morning meeting. 81
5.17 Adding documents/whiteboards to specific item in menu. . . . . 81
5.18 Functionality for "playing" through a meeting’s topics. . . . . . . 82
5.19 A simple map displaying an oil platform, with tasks connected to

several topics. Notice that the tasks that are not directly relevant
are gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.20 Comparison of visualization techniques. . . . . . . . . . . . . . . 85

10



5.21 The initial prototype version’s user interface. . . . . . . . . . . . 87
5.22 The interactable menu - version I. . . . . . . . . . . . . . . . . . 88
5.23 The first version of the functional map visualization. . . . . . . . 89
5.24 Adding an installation background to the map surface. . . . . . . 93
5.25 Adding images of other software systems. . . . . . . . . . . . . . 93
5.26 Interaction with a map surface in the last, vertical prototype. . . 94
5.27 The overall prototype was changed during vertical work with spe-

cific system parts. A collapsible comments window was firstly
added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.28 A new comment option was added to the prototype developed
vertically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.29 This is a slide illustrating how the outer part of the system could
be made, for handling several meetings. . . . . . . . . . . . . . . 98

5.30 This illustration presents the design generated for the meeting
application during the eighth prototyping iteration. . . . . . . . . 100

5.31 An excerpt of the design displaying the new buttons replacing the
previous tools menu. In Figure 5.30 this menu is mostly hidden
below the "New action"-window. . . . . . . . . . . . . . . . . . . 100

5.32 A slide presenting the report with action and decisions shown
without the need of scrolling. . . . . . . . . . . . . . . . . . . . . 101

5.33 An excerpt of a design slide presenting possibilitied for adding a
deadline to actions and decisions. . . . . . . . . . . . . . . . . . . 102

5.34 An excerpt of a slide presenting information about reports, with-
out the yellow warning sign used in the previous iteration. . . . . 102

6.1 A bar diagram presenting how the reviewers scored the require-
ments thought to be implemented in the design. . . . . . . . . . . 114

6.2 The percentage of points given by each of the reviewers, with re-
gard to the total number of points given in the heuristic evaluation.114

6.3 Composition of points given by reviewer 1. . . . . . . . . . . . . . 115
6.4 Composition of points given by reviewer 2. . . . . . . . . . . . . . 115
6.5 Average scores given in the different parts of the heuristics. . . . 116

11



List of Tables

4.1 Main requirement categories . . . . . . . . . . . . . . . . . . . . . 63
4.2 Implementation of requirement categories in evaluated systems. . 67
4.3 This table presents functionality found in evaluated prototypes

and systems, which could be implemented into the future meeting
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Function Suggestions for External Software . . . . . . . . . . . . 86
5.2 A table presenting functionality thought implemented in the pro-

totypes of the future system. . . . . . . . . . . . . . . . . . . . . 104

6.1 A table presenting the results of the heuristic evaluation. The re-
viewers individual answers are shown in the columns to the right.
The fulfillment of requirements are ranked on a scale from 1-5,
where 1 means not fulfilled, and 5 stands for fulfilled. Additional
comments are written in the same table cells. . . . . . . . . . . . 112

6.2 A table presenting the results of the heuristic evaluation in ac-
cordance to fulfillment of the Eight Golden Rules of Interface
Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12



Chapter 1

Introduction

1.1 Background

1.1.1 A Brief Introduction
Oil production on the Norwegian continental shelf origins from the finding of
the Ekofisk reservoir in the autumn of 1969. This was a major breakthrough
for the country’s oil business, and could be considered the starting point of the
Norwegian offshore industry1.

Oil and gas production in the North Sea has since then continued unin-
terruptedly. Today it is a major industry by Norwegian standards. In 2012
oil exports alone accounted for more than 50 percent of the country’s total ex-
ports. The industry’s revenues have also been saved in a fund worth 5.000 billion
NOK (in 2014)2. These large impacts on Norwegian economy have nicknamed
the offshore industry "the Norwegian oil adventure".

But despite the well-sounding wording, the oil and gas production has not
only been a fairy-tale story.

1.1.2 Risk and Cost Challenges
The business has been plagued with several minor accidents and precursors,
and some major incidents with several fatalities. The most extensive of these
(on the Norwegian continental shelf) happened on 27 of Mars 1980, when the
Alexander L. Kielland platform capsized, claiming the lives of 123 people [22].

Precursors and minor accidents, on the other hand, happen on a yearly
basis. Vinnem et al. [40] mapped the causes of precursors and accidents in the
Norwegian offshore petroleum industry in the period 2003-2008. They found
that the most frequent incidents involved vessels on collision course, on average
33 incidents each year. The second most frequent were not ignited hydrocarbon
leaks, annually half as many as the most frequent precursor category.

Another challenging aspect regarding the industry has been, and still is, the
cost development. This is illustrated in an article published by McKinsey &
Company [19] - describing the offshore cost development in the North Sea in

1https://www.regjeringen.no/en/topics/energy/oil-and-gas/norways-oil-history-in-5-
minutes/id440538/

2https://snl.no/Norsk_oljehistorie

13



the period from 2003 to 2013. The authors point out that the annual inflation
rates increased much more for the oil and gas industry than the average rise of
the consumer price index (CPI) in both Norway and the United Kingdom. They
found that annual inflation rates for operational costs, and business expenses,
associated with future operations, yearly rose with 10% and 16%, respectively.
In comparison CPI increased on average with 1.8% in Norway and 2.7% in the
United Kingdom.

According to Bjørnland [6] the increased cost level have made the industry
vulnerable to market fluctuations. This has been noticeable since the steep
reduction in oil prices following the summer of 2014. At the time of writing the
value of European crude oil has declined with more than 50% since then. This
development could according to Bjørnland result in further reduced activity in
the petroleum industry.

1.1.3 Integrated Operations
For more than a decade a concept called Integrated Operations (IO) have grad-
ually been implemented in the offshore industry. Some of the main goals of IO
is to meet the challenges mentioned in Section 1.1.2. This may be supported by
the article "Benefits of Integrated Operations"3, published on the Kongsberg
Groups’s websites. According to the company the introduction of IO has sev-
eral benefits; reduced operating costs, increased oil and gas recovery, accelerated
production, longer life-spans, extended field-life and higher safety levels.

Generally speaking IO may be described as a concept for integrating people,
organizations, work processes and information and communication technology
(ICT). However, it depends on global access to real time data and collaboration
technology - making it possible for all involved parties to communicate across
disciplines, organizations and geographical borders.

In the oil and gas industry IO typically entails cooperation between reservoir
management, drilling, production optimization, operation and maintenance, lo-
gistics and health safety and environment (HSE). In such an organization IO
also implies cooperation between organizational parts situated at various ge-
ographical locations. Examples may include virtual communication between
offshore and onshore personnel, and communication between the oil company
and external vendors4.

Oil and gas IO organization is therefore a network of offshore installations
and onshore support centers communicating with each other and external ven-
dors with the use of collaboration technology.

Norwegian Oil and Gas (NOG)5, formerly known as the Norwegian Oil In-
dustry Association (OLF), distinguishes between first and second generation of
integrated operations. While the first generation focused on real time collabo-
ration in virtual rooms, and inter alia the establishment of onshore operation
centers - supporting offshore operation, the second generation of IO will be more
profound. According to NOG this generation will entail much more automation
of processes in the IO organization. NOG also foresees that the offshore facilities

3http://www.kongsberg.com/en/kog/news/featurestories/benefitsofintegratedoperations/
4http://www.iocenter.no/info/what-integrated-operations
5http://www.norskoljeoggass.no/PageFiles/14295/070919%20IO%20and%20Ontology%20-

%20Brosjyre.pdf?epslanguage=no

14



themselves will be radically changed - the traditional offshore platforms will be
replaced by intelligent and more self-propelled facilities.

1.1.4 Meetings in Onshore/Offshore Organizations
One of the important components of an IO-environment is plans and meetings
to discuss plans. Sarshar et al [30] point out that since the introduction of
IO, several planning tasks have been reorganized, and moved to the main land
- hence increasing the need for communication between offshore and onshore
personnel. Several forms of meetings are therefore conducted to discuss plans,
stretching from several years to 24 hours plans.

One kind of meeting, specifically studied in this project, is morning meetings.
Ose and Steiro [26] describe these meetings as activities which are held every
day and involve both onshore and offshore personnel at individual rigs. All the
personnel supporting the rigs are attending the meetings, and communicate by
phone or video conferencing.

Usually topics as upcoming work and changes involving already planned
work may be discussed in morning meetings. Wahl et al. [41] describe a concrete
example where a plan had to updated in real-time during such a meeting. For
this task several decision support tools had to be accessed and used. These tools
may therefore be essential as support in morning meetings.

1.1.5 Collaboration Technology in IO Meetings
In a modern IO organization, where meetings have to take place between ge-
ographically dispersed personnel, collaboration technology plays an important
role. This is emphasized by Albrechtsen [2], who has described the necessary
steps to implement IO in an organization, meanwhile achieving a high degree of
value creation. The steps are parts of an IO stack containing elements as data
capture, communication infrastructure, information access and, among others,
information visualization.

Both how and what data that is presented to a meeting’s team members
could therefore be considered important.

15



1.2 Problem Statement
This project was given as a task by Institute for Energy technology (IFE) in
Halden, and investigates the demands for creating new software specifically
designed for activities as morning meetings. Some studies indicate that there
may exist needs for such software, or a review of the current solutions. Such
findings are mentioned in Section 1.5.

The studied meeting type will involve collaboration between offshore and
onshore personnel in virtual rooms. It is important that the prototype system
is adapted to this context.

Further the system should be customized for the relevant IO concept. Sec-
ondary goals should therefore imply the prototype being made in accordance to
important IO elements. Solutions for minimizing risks of accidents and precur-
sors, as well as cost effective choices, should be taken when possible.

The following research questions have been selected:

1.2.1 Research Questions
1. Can software tools better support decisions in morning meetings in oil and

gas organizations, and how?
2. How may software, supporting morning meetings, promote important ele-

ments of the Integrated Operations concept?

1.2.2 The Research Questions’ Words and Phrases
• Concept : A concept is a logical, and not mental, entity 6.
• Decision support : According to Kaarstad and Rindahl [16] decision sup-

port helps people making decisions. Decision systems and decision theo-
ries are components of decision support. The decision systems are software
made for helping users achieving decision making and to solve problems.

• Integrated Operations: According to the Center for Integrated Operations
in the Petroleum Industry7 Integrated Operations may be summarized as
an integration of people, organizations, work processes and ICT to make
better decisions.

• Morning meetings: In this context morning meetings refers to a specific
kind of meeting type held in the oil and gas industry. This activity is
described by Ose and Steiro [26] as meetings that are held every day, and
involve onshore and offshore personnel at individual rigs - communicating
by phone or video conferencing.

• Oil and gas organizations: Oil and gas companies may be defined as busi-
nesses involving production, exploration, refinement and/or distribution
of oil and gas8. But in this project’s context the phrase is limited to
companies directly engaged in the offshore oil and gas production.

• Software: Software may be defined as programs that are used by comput-
ers and similar products containing logic circuitry9.

6http://global.britannica.com/topic/concept
7http://www.iocenter.no/info/what-integrated-operations
8http://www.investopedia.com/terms/i/integrated-oil-gas-company.asp
9http://www.linfo.org/software.html

16



1.2.3 Scope and Limitations
The scope of this thesis is not to analyze how all types of meetings are conducted
offshore. This would have been an enormous task, demanding much more time
and resources than available. The thesis has therefore been limited to one kind
of meetings - daily morning meetings between offshore and onshore personnel.

Development and design of a prototype of a support-tool could be consid-
ered a timely process. The requirement analysis was therefore formed without
observations and interviews with offshore and onshore personnel in an oil com-
pany. This would be a task requiring too much time. Instead a concept was
developed in close cooperation with available expertise at IFE in Halden. These
experts were also interviewed during the development process. Further the stu-
dent decided to analyze meeting transcripts, and existing meeting systems and
prototypes.

The goal of this thesis is to develop a software concept suited for morning
meeting participant. The software should support decision making in an IO
context. But the creation of a fully developed computer system was never a
goal of the thesis. It would be unrealistic to have such expectations. Instead
small proof of concept modules was made for test purposes only.

1.2.4 Brief Overview of Research Method
The work with the thesis has been done in two, major stages. The first part
consisted of mapping requirements for a future meeting system, and an evalua-
tion of existing solutions on whether they fulfill these requirements, or not. The
second part consisted of the actual development and testing stage.

The project could be considered as two logical parts since the development
stage was solely dependent on the initial design of requirements and testing of
other systems. If the tests concluded that current systems had implemented
a sufficient amount of functionality, satisfying requirement needs, there would
have been no reason for developing a prototype system. But needs were discov-
ered, and these will be described later in this document.

However, since the project contained two, major stages it was considered
if it was appropriate to let each state have it’s own research methodology. It
was also seen as important that these methodologies could be linked together.
Deciding upon which to choose was therefore done in an early stage of the thesis
work, to prevent incompatible selections later on.

The methodology selected for the work with the requirements in the first
stage was a requirement definition methodology. A procedure for selecting a
suitable software methodology, Burns and Dennis’ [8] matrix (presented in Sec-
tion 2.3), was used for finding the second methodology. The choice fell on RAD
(Rapid Application Development). This could be combined with the initially
selected methodology, and was also considered appropriate with regard to Burn
and Dennis’ matrix. The selection of methodology is however firmly described
in Chapter 3.

To ensure that the requirements for the meeting system were of high quality,
experts in the current research field at IFE were invited to take part in the
creation of software requirements. They also played an important role when
selecting and ranking these requirements.

17



Employees at IFE were also highly involved with the creation of the pro-
totype system, especially in the early stage of this process, and involved in
evaluation of it.

1.2.5 Hypothesis
It was difficult to foresee the outcome of this project, and if a new meeting
system should be developed. As mentioned in Section 1.2.4 the project could
logically be divided into two parts - the initial study of needs, and how existing
software fulfill those needs, plus the development of a software concept support-
ing IO meetings. The second phase was however dependent on the outcome of
the first phase. If there were no need for new software, the work with the second
phase could have ceased.

But there were indications pointing in the direction of needs for concept
development. Researchers in several studies found weaknesses while studying
current software implementations in the oil and gas sector - such as solutions
threatening information integrity, and causing unnecessary use of resources.
Other studies indicated that currently implemented and complex solutions were
exaggerated, and doesn’t have to work as well as the simpler ones. Such research
is presented in Section 1.5.

If there were weaknesses connected to the meeting software evaluated in this
project, could not be told before the analysis was conducted. However, studies
have proved that current software have a potential for improvement.

Another indication of needs for new morning meeting software is the con-
tinuing implementation of IO in the oil and gas sector. As mentioned earlier
in the introduction, in Section 1.1.3, IO is gradually changing the oil and gas
business. After implementing the first generation of IO, companies may evalu-
ate the needs for integration of the second generation. If experts are to define
requirements for a meeting software, for a business in transition, it is possible
that currently implemented software and suggested prototypes are obsolete in
some ways. In that case a new concept, supporting decision making in morning
meetings, could be needed.

Large parts of this project has been conducted in close cooperation with
some of IFE’s experts on software development for oil and gas organizations.
Cooperating with researchers, possessing extensive knowledge about the field,
may also increase the changes of fulfilling the second research question - to
promote important elements of the IO concept. They may also suggest needs,
later formulated as requirements, for decision support based on their firsthand
knowledge about the industry.

18



1.3 Project Structure
The project is divided into several chapters, each with more specific sections and
sub sections. The following list briefly describes the project’s chapters, without
detailed depth information about underlying sections:

1. Introduction: In the introductory chapter a brief background of the se-
lected topic is presented, before the research questions and the problem
area is described. The last part of the chapter is mainly devoted to related
literature.

2. Theory: The theory chapter includes relevant background theory for the
rest of the thesis.

3. Method: In this chapter the methods for the preparatory studies, the
development of the concept and testing are presented. The two, major
methods used for concept development are included in a custom model.
Each step in the model is firmly described. Additionally a method for
ranking requirements, the MoSCoW prioritization method is mentioned.

4. Observations and Experiments Prior to Concept Development: The chap-
ter contains observations and experiments done during the project. Firstly
a morning meeting agenda, used in actual meeting activities in the oil and
gas industry, is presented. Then information gathered during the require-
ment generation phase is presented, followed by evaluations of currently
available meeting software and prototypes, according to these require-
ments. Lastly the chapter presents functions found in other software,
possibly suited for the prototype developed in this project.

5. Concept Development: This chapter presents a review of how the concept
was generated, and the choices made during the development iterations.
The prototype was firstly developed following a horizontal strategy - de-
signing lightweight slides of the future system. Then a vertical strategy
was used for creating a part of the prototype in code. Lastly the find-
ings made, during the vertical stage, resulted in several alterations in the
overall design. Lastly the chapter contains information about how the
prototype was tested.

6. Concept Evaluation Results: This chapter presents the results of the tests.
Three test styles were used - a cognitive walk-through, heuristic evaluation,
and a formal usability inspection.

7. Discussion: Here the results are discussed with regard to the research
questions.

8. Conclusion: Finally the last chapter contains a conclusion, aiming for
answering the projects research questions.

19



1.4 List of Abbreviations
• ASD : Agile Software Development.
• CASE : Computer-Aided Software Engineering.
• CSS : Cascading Style Sheets.
• CTI : Consumer Price Index.
• DCS : Distributed Collaboration Structures.
• DTD : Document Type Definition.
• ESREL: European Safety and Reliability Conference.
• HSE : Health, Safety and Environment.
• HTML: Hyper Text Markup Language.
• ICT : Information and Communications Technology.
• IFE : Institute for Energy Technology.
• IPL: Integrated Planning.
• IO : Integrated Operations.
• IO-MAP : The Integrated Operations Maintenance and Modification Plan-

ner.
• JS : JavaScript.
• MCS : Main Collaboration Session.
• MoSCoW : Must (o) Should Could (o) Would (prioritization).
• MVC : Model View Controller.
• MVVM : Model View ViewModel.
• NCS : Norwegian Continental Shelf.
• NOG : Norwegian Oil and Gas.
• OLF : The Norwegian Oil Industry Association.
• PHP : PHP: Hypertext Preprocessor.
• PSA: Petroleum Safety Authority Norway.
• RAD : Rapid Application Development.
• RDM : Requirement Definition Methodology.
• RGM : Requirement Generation Model.
• XML: Extensible Markup Language.
• XSD : XML Schema Definition.

20



1.5 Related Literature
The goals of the master thesis is to study if a new software tool could better
support decision making in morning meetings than already developed software
and prototypes. Such a tool should fit into the industry’s setting, promoting
the Integrated Operations concept.

However, it has been hard to find studies of software made specifically for
the chosen meeting type. On the other hand, several studies have been made of
software usage in the particular industry.

This part of the thesis firstly presents studies found of how morning meetings
are conducted, and how they are related to the IO context. This hopefully
elucidates some of the software needs in such an IO meeting, as requested in
the second requirement question (Section 1.2.1).

Secondly the section presents a study which aims for setting collaboration
sessions in oil and gas organizations into a broader perspective. The term
distributed collaboration structures widens the meeting concept, and includes
phases both before, during and after the actual sessions. This study relates to
both the research questions, enlightening the scope of the meeting concept with
regard to the current IO context.

Further the section examines studies of how decision support already works
in the industry, and how decision support systems affect the quality of virtual
collaboration. Such studies may be related to the first of the two research
questions in Section 1.2.1.

1.5.1 Morning Meetings in an IO context
Ose and Steiro [26] emphasize that morning meetings are important in modern
oil and gas organizations. Such meetings are held every day between individual
oil rigs and the onshore office. All personnel supporting each rig are present in
the meetings and communicate with their offshore colleagues either by phone
or by using videoconferencing tools.

In a document [9], published by the Australian part of the oil and gas or-
ganization ConocoPhillips, important topics discussed in morning meetings are
mentioned. Although this organization has another name for the meeting type -
"pre-start meetings". In the document it is emphasized that planned work tasks
offshore, permits for conducting jobs and inter alia HSE matters are commonly
discussed.

IPL and Morning Meetings

Since planned tasks and jobs are discussed, morning meetings may be seen as
the last stance of a long and comprehensive range of planning activities leading
down to the final execution of tasks. The planning process in IO organizations
is called integrated planning (IPL).

Ramstad et al. [28] have studied IPL and describes the process as more
transparent than traditional planning. According to the researchers it should
be possible for different actors to share planned activities during the whole
process in IPL. They mention the following bullet points as essential:

• Interplay between planning levels.

21



• Interplay between organizations, groups, units and professions involved in
planning and the execution of planned work.

• Inter-dependencies that have significant consequences for operational per-
formance.

• A feedback loop for continuous improvement of the IPL-process.

Ramstad et al. point out that the transparency of IPL should work both hor-
izontally and vertically in an organization. By vertically it means that planned
work should be visible for actors responsible for both long-term, mid-term and
short-term planning. On the other hand, the current organization of the oil and
gas industry, formulating plans in the same time-span, consist of a long range
of geographically spread domains. By integrating IPL horizontally, plans with
the same kind of time-span should be more transparent across domains.

The article authors mentions ICT tools as one of the main parts of the IPL
implementation. They have identified the following important aspects related
to such technology:

• Availability of real-time information. This aspect is seen as especially
important for short-term planning, as in morning meetings.

• Aggregation of data, information processing and data sharing.
• Visualization of dependencies in the planning process, and consequences

of altering plans.
• Collaboration surfaces. Such tools could make communication and collab-

oration across organizational, professional and geographical borders pos-
sible.

However, the study performed by Ramstad et al. indicate that there may
exist several challenges related to today’s implementation of ICT tools in the oil
and gas industry. The researchers studied three companies and found problems
caused by an extensive use of different planning tools. These tools rarely sup-
ported automatic data sharing. Spokespersons from two of the companies also
admitted that the lack of harmonizing tools threatened information integrity
and led to unnecessary use of resources.

Further all companies stated that they were in need of ICT tools which could
make real-time information accessible and available for all involved parties. The
requested solution should also contain a shared collaborative surface.

HSE and Morning Meetings

As mentioned in the initial part of Section 1.5.1, health, safety and environmen-
tal (HSE) matters are discussed in morning meetings. Activities affecting safety
on board installations are therefore relevant topics.

Traditionally the oil and gas business has been viewed as a high-risk envi-
ronment, prone to accidents and precursors. An apposite example on the NCS
is the major accident at the Alexsander L. Kielland rig, earlier mentioned in
Section 1.1.2.

But since the implementation of IO it is questionable if the industry still
should be defined as a high-risk business. Vinnem [39] has studied offshore
accidents occurring within two decades - a period stretching from 1987 to 2009.
He claims that, although accidents still happen, the frequency seems to be
decreasing.

22



In Vinnem’s article "Evaluation of offshore emergency preparedness in view
of rare accidents" the number of fatalities per 100 million work hours are com-
pared with respect to the years 1987, 1997 and 2009. For mobile units the
frequency of accidents shrunk from more than 50 in the period around 1987 to
less than ten in 1997. Similarly the frequency further decreased from 1997 to
2009 - where less than five fatal accidents were registered. The trend is almost
the same for production installations, but in a smaller scale and with less dif-
ference between the years 1987 and 1997. In the article Vinnem points out that
the huge decrease in fatal accidents from 1987 to 1997 may be a result of the
work done in the aftermath of the Alexander L. Kielland incident.

Okstad et al. [24] explains that the Petroleum Safety Authority Norway
(PSA) today is supervising emergency preparedness, safety and the working
environment in the modern offshore business. PSA establishes investigations
of major incidents in the North Sea, and is putting pressure on companies
to record, examine and investigate accidents through management regulations.
Their work may contribute to the decreasing rate of accidents.

But there are exceptions.
One, prime example is the Deepwater Horizon accident where an oil rig sank

in the gulf of Mexico as late as in 2010. 11 people were killed in an explosion and
a following fire on board the installation. The oil spill caused by the incident
has been considered the biggest environmental disaster in US history.

Another more relevant incident, possibly connected to morning meetings,
happened on the 16th of November 2012 in the same part of the world - the gulf
of Mexico. Then multiple explosions, followed by a fire occurred on the WD 32E
offshore platform. Three workers died in the incident, and others were seriously
injured. The direct cause; welding work on an oil tank igniting hydrocarbon
vapor 10.

An investigation [23] performed by the Bureau of Safety and Environmental
Enforcement (BSEE) found that the operator, authorized to approve the welding
work, was not present in the morning meeting prior to the incident. He was
occupied in another meeting conducted at the same time. The task was therefore
approved by a C operator – a role which normally does not possess knowledge
and experience to evaluate dangerous activities.

If the incident could have been avoided by restricting the C operator from
approving the fatal task is questionable. But BSEE’s report states that a pos-
sible contributing factor to the accident was the work permission given in the
morning meeting.

These examples, both occurring after the accidents studied by Vinnem, may
prove that safety still is an important matter that has to be taken seriously, also
in short-term activities such as morning meetings.

1.5.2 The Structure and Scope of Collaboration Sessions
From the outside oil and gas organizations could be viewed as overall unities.
Such view is called an organizational perspective. But organizations could also
be viewed from the inside and seen as a collection of individuals. This focus is
called the individual perspective.

10http://www.offshoreenergytoday.com/bsee-black-elk-contractors-to-blame-for-wd-32-e-
platform-explosion/

23



Skjerve et al. [34] have studied collaboration activities in modern oil and
gas organizations, implementing the IO concept - and have introduced a new
perspective, in addition to the ones mentioned above. They have named it
the distributed collaboration structures (DCS) perspective. This perspective
describes the collaboration activities taking place inside the organizations, in-
volving individuals. It may therefore be viewed as a linkage between the overall,
organizational and the individual perspective.

Figure 1.1: A redrawn version of the DCS model described by Skjerve et al. [34]

A model describing how a DCS may be built is presented in Figure 1.1.
This is a redrawn version of Skjerve et al.’s model, which could seem fairly
complicated. For the sake of simplicity the model has been redrawn for this
project. Several of the stages were merged into three, main parts. Figure 1.2
contains a simpler version of the model described in Figure 1.1.

The simplified model contains three stages, involving individuals. The prepa-
ration stage includes work to be done before a main collaboration session (MCS)
could start. For an interactive morning meeting such work may include tasks
as planning, information gathering and the design of a meeting agenda.

The MCS is the main event in the structure, and frequently involves dis-
cussing proposed plans. Morning meeting sessions could be viewed as such an
activity. However, given the nature of the modern oil and gas organizations,
the meetings may involve geographically dispersed individuals and teams, with
highly different backgrounds, collaborating in the same sessions. A model il-
lustrating a MCS may be viewed in Figure 1.3. In the presented model several

24



Figure 1.2: A simplified model of distributed collaboration structures, described
by Skjerve et al. [34]

Figure 1.3: A simplified model made of the main collaboration sessions, de-
scribed by Skjerve et al. [34]

individuals, located on different places, are involved.
The last stage contains the outcome of the MCS. This stage could include

execution of plans discussed, for possibly accomplish some sort of goal achieve-
ment. Lastly activities for adjusting both the DCS as a whole and the structure
of the main collaboration sessions could be performed, based on newly acquired
knowledge of the process.

After conducting the last stage, the process starts from the beginning again
in an iterative manner.

Skjerve et al. have not made a perspective specifically illustrating how morn-
ing meeting structures are performed in today’s oil and gas organizations. How-
ever, the model may be seen as important for understanding how collaboration
activities, including such sessions, are performed.

25



Chapter 2

Theory

2.1 Decision Support Tools in IO organizations
As mentioned in the initial chapter, the thesis’ main research question asks
if software tools can support decision meeting in morning meetings, and how.
According to Kaarstad and Rindahl (2012) decision support implies supporting
people making decisions. Decision systems are components of decision support,
which also consists of decision theories. Decision support systems are software
which help their users solving problems and to accomplish complex decision
making.

2.1.1 A Study of an Email Platform and Other Decision
Tools in the Oil and Gas Industry

One software platform used for decision-support in morning meetings was a
platform, descried by Sarshar and Rindahl [31]. This was a simple platform
based solely on emails and the SAP software environment. The platform was
used both before, during and after meetings in the following way:

• Before the meeting: The management prepared a handover and a status
report interacting with an existing email template containing predefined
headers and information points. This document was sent to the operation
manager before the meeting started, and made it possible for this leader
to be familiar with the information given.

• During the meeting: During the meeting the same email was used as a
shared surface and was then updated with new information generated i
the meeting.

• After the meeting: When a given meeting finished, the email acted as a
status report. The document was at that point sent to all of the meeting’s
participants and stakeholders.

Sarshar and Rindahl concluded that this approach was the best solution
they had seen during their five years of studying IO collaboration technologies
in the business. But the platform was dependent on experienced and skilled
leadership.

26



However, further in their study the researcher found several examples of
issues connected to the use of more advanced state-of-the-art decision tools,
although these tools were much more complicated than the simpler email plat-
form. Some of them were, according to Sarshar and Rindahl, both prone to
errors and had a low degree of user friendliness.

One described example was a collaboration system implementing a "shut
down"-button in it’s interface. This button ended however not the current
collaboration session, but only shut down the monitors used. It was observed
that personnel misinterpreted the use of this interface element.

Other example involved 3D technology producing dual images, that could be
viewed as blurry and unclear images if the correct adjustments were not initiated
by the personnel. Meetings were also often canceled due to common, technical
failures. Lastly it was also observed installed cameras in video conferencing
rooms not capable of showing the faces of the participants involved in a virtual
conversation.

One crucial advice, supported by the observations conducted, was that
"new technology should enable a desired work practice, and not the other way
around". The poorly functional software and equipment could, according to Sar-
shar and Rindahl, have been implemented due to vendors unable of seeing the
users’ actual needs and habits. Another cause could be linked to the ICT and
procurement departments. These groups had often a low degree of contact with
the operative groups, leading to difficulties with defining system requirements.
System orders were therefore often over- or undersized.

This study may emphasize that decision support systems in activities, such
as morning meetings, do not have to be the most expensive and state-of-the-
art solutions. Simpler, but effective tools, may be more user friendly. It also
pointed out that requirements for implementing software should be formed in
closer collaboration with the operating groups.

27



2.2 Systems Designed for Meetings in the Oil and
Gas industry

There are several software systems which could be used during morning meetings
in the oil and gas industry. In this section current software have been described.
These systems are later analyzed further to find solutions to implement in a new
meeting system.

2.2.1 Epsis Teambox
Epsis Teambox1 is a collaboration solution, designed especially for activities
such as meetings. The Epsis Teambox is delivered on a single workstation,
which manages the entire system. A new version of the solution has however
been created since it was tested in early Spring 2015.

The system makes the user able of managing screen setups with several
windows presenting video conferencing, meeting information, documents, etc.
The screen layout may also be edited, and saved as templates.

Epsis Teambox is designed for collaboration in small, medium or large orga-
nizations, as well as enterprises. Outside meetings, the system makes it possible
for the users to collaborate and share information through the platform.

According to a document by Epsis [10], describing the solution, one of the
major advantages of Epsis is that it is not only a software, but also a hardware
solution. Both software and hardware are delivered in a single tower, or in a
rack.

A part of the software is, according to the same document, referred to as an
engine. this engine is capable of tailoring the display environment, to mange
external sources, executing meetings, creating layouts, share screen content, and
call for collaborative meetings.

2.2.2 ARKit
ARKit [12] is a software system developed by the company Ark Platforms. The
tool is built around a map interface. The map is zoom-able and may display
information according to the selected magnification. The oil companies vendors,
work sites, personnel, etc are visible in the map. Item-specific information is
shown when these objects are clicked.

Further the software displays activities as projects or jobs performed in a
company as geographical information on the map.

Additionally the interface has an activity stream - a column containing
project updates, added documents, and other news.

2.2.3 Protosphere
Protosphere [14] is a 3D tool built for meeting activity. The software lets the
user navigate a 3D environment by taking control of a personalized, human
avatar.

The virtual environment may be edited by the user and generally looks like
a huge meeting space with monitors hanging on the walls. These monitors may

1http://www.epsis.no/epsis-teambox/

28



be used for presenting meeting agendas, document cooperation, displaying real-
time information, etc. The avatars may also interact with gestures and voice
over IP communication.

Implementing a set of extensions enables further functionality. With Poly-
com [13] the monitors in the Protosphere environment may present video con-
ferencing. Lync [27] presents the user with a contact list, to start collaboration
sessions. Other extensions are also available.

Protosphere may be taken into use from both ordinary computers and mobile
devices [15].

2.2.4 Email platform
The origin of the email platform has not been made public. But the con-
cept is similar to the one described by Sarshar and Rindahl [31] in the article
"Integrated Operation Collaboration Technologies - Remaining Challenges and
Opportunities". Here the authors mention an email platform used as both a
status report, an agenda and as a minutes document before, during and after
meetings.

The aforementioned email surface was not designed as a groupware solution,
nor was it particularly sophisticated. However, the solution was found to be
one of the most successful by Sarshar and Rindahl. They emphasize that the
simplicity of the system was one of it’s major advantages.

The work flow was as follows: The onshore manager firstly received a status
and handover report from the offshore part of the organization as in email before
a meeting. This email was then used as a meeting platform during the meeting,
and updated with new information. After the meeting the email was forwarded
to participants and stakeholders with the newly added changes.

Sarshar and Rindahl point out that high performance may be achieved with
simple tools as the email surface. They also state that technically sophisticated
tools were observed to perform less efficient than this simple one.

2.2.5 IO-MAP
IO-MAP is an abbreviation for "the Integrated Operations Maintenance and
Modification Planner". As the name of the tool indicates, IO-MAP was devel-
oped to support users planning offshore modifications and maintenance. The
prototype is, as mentioned by Skjerve et al. [35], part of a project called "Fu-
ture Collaboration Environments" at the IO CENTER. The tool’s testbed has
however been developed at IFE.

Skjerve et al. [35] emphasize that the developers focused on visualization of
risks when creating the system, and found ways to promote risk of decision-
making in a map surface displaying the current working environment. Risk
understanding was tried to be increased by highlighting hazards, prohibits, con-
nectors and work tasks on the map.

The tool provide the users a map area of an installation showing planned
jobs, requiring work permits. Here new tasks also may be added by planners.
The visualization of the installation may be zoomed, panned, and the users may
also decide to navigate through different decks [36].

Elements as hazards, prohibits and connectors may be added to the map
area. Hazards represents safety issues related to specific tasks. Prohibits are

29



mandatory initiatives needed, like wearing safety helmets in certain areas of the
installation. Connectors are represented as lines between tasks, and visualize
hazards associated with connected tasks [29].

In addition to jobs the map visualization may show areas where there may
be certain hazards - as the risk of falling objects (implemented in the second
version of the tool), zones with danger of explosions, etc [7].

In addition to the map the tool also show the user information about e.g.
weather conditions, a calendar to select interval for showing jobs, workload in
specific time intervals and possibilities for accepting or rejecting work permits

The process of planning modification and maintenance tasks offshore/onshore
in a petroleum organization may be a complex business. However, the IO CEN-
TER2 has, according to [29, 32, 35] using tools as IO-MAP may be a mean to
overcome cultural and skill related differences. The tool itself is meant to be a
groupware available for planners across a restricted network. Taylor et al. [38]
also argues that the tool may be useful for management purposes in the oil and
gas industry.

Skjerve et al. [35] inform that the first version of IO-MAP went through
testing with several participants from the onshore oil industry. The outcome of
the tests indicated that lack of local knowledge of offshore installations among
onshore personnel could to a degree be compensated by a tool as IO-MAP. It
could therefore make onshore planners more familiar with offshore installations,
since they could get more knowledge of such systems’ characteristics. In addi-
tion the test indicated, according to Taylor et al. [38], that the software’s user
interface could promote the personnel’s ability to visualize safety hazards.

2.2.6 Wisio
Olsen et al. [25] have created a prototype of a collaboration surface displaying
activities on an offshore installation. The project was partly inspired by IO-
MAP.

The authors stressed the importance of usability and design when developing
the software. The final product is a prototype of a shared platform where
users may register activities and extract information from them by clicking
an interactive map. The activities are also displayed in a timeline, making it
possible for the users to compare activities in time perspective.

Additionally the design includes weather forecasts, transportation and inter
alia help information. The overall user interface is beyond this much like IO-
MAP.

2http://www.iocenter.no/

30



2.3 System Development Methodology

2.3.1 Traditional methods
Traditional software development methodologies have well-defined documenta-
tion and plans. This subsection mentions several of these, and what type of
development method to select with respect to a specific project.

The code-and-fix method

This is one of the earliest software methodologies. It is a simple method with
only two stages. In the first stage code is written, then in the next the problems
with the previously written code are fixed. This simple methodology lacks
however recognition of requirements, planning and other design stages [21].

The stagewise method

The stagewise-method was designed in the 1950s. Unlike the code-and-fix-
method, the stage-wise method has several stages. These are creation of an oper-
ational plan, coding specifications, coding parameter testing, assembly testing,
shakedown and finally system evaluation. The method has however not included
possibilities for improving previously finished stages, although new experience
may demand such changes [21].

The waterfall method

This method has, like the stagewise-method, several stages. It has also imple-
mented prototyping as a separate stage. Unlike the stagewise-method, the wa-
terfall method has implemented feedback-loops for changing previously finished
stages. A previous stage may then be changed in the same fashion salmon is
using a salmon staircase - changes has to reset the project to an earlier stage [21].

The waterfall method has traditionally been used for large-scale projects,
like development of compilers and operative systems [21].

Evolutionary software development

In this method the operational experience of users is included in the software
development. It is the users of a future application who specifies the functional
characteristics of it.

The transform method

In the transform method all later modifications to code are only made in the
specification, and not in the design, testing and implementation stages. It there-
fore must include options for transforming specification to code. This method
has proved to be effective for reducing development time and cost [21].

The spiral method

The spiral method is first and foremost a further development of the waterfall
method. Unlike the water method’s sequential nature, this method implements
iterativity. The life cycle of a project is formed like a spiral, and small parts

31



of a planned project are iteratively created for each turn of the spiral including
different stages [21].

Prototyping

Burns and Dennis [8] presents a traditional set of development methods in the
paper "Selecting the Appropriate Application Development Methodology" writ-
ten in 1985. Unlike Misra they also mention prototyping as a software develop-
ment method. Prototyping is compared with other, sequential methods, which
are summarized as life cycle methods.

Prototyping is more loosely defined. The method requests collection of in-
formation about what the users don’t like with an existing system, or missing
features. The developer then creates and presents the user with a prototype
- instead of comprehensive design specifications. From this prototype the user
may clarify system requirements. These requirements may later be included in
a future prototype. The iterative process ends when the user is satisfied with
the created software [8].

The advantages of the method may be lower development cost, and high user
satisfaction. The negative sides may be creation of less effective systems than
with sequential methods, since prototyping lacks analysis and design stages [8].

Mixed methodology

Burns and Dennis [8] also propose a mixed methodology, including parts from
system life cycle models and prototyping. Such method may propose sequential
development of subsystems. But the complete system is first designed coarsely.
Then each of the subsystems are refined and shown for the user. If the software
part is approved, the subsystem is designed and developed sequentially and in
detail [8].

But this is only one sort of mixed methodology. Several other forms exist.
Common to all such methodologies is that they consist of both a life cycle and
a prototype part [8].

How to decide upon which method to incorporate

Burns and Dennis [8] state that the level of project complexity and project un-
certainty should be used to determine the selection of development methodology.
They have created a matrix for this purpose. The matrix has been reproduced
and is shown in Figure 2.1.

According to Burns and Dennis [8], a system life cycle method should be
chosen if a project is complex and the uncertainty is low, the mixed methodology
should be chosen if the complexity is high and the uncertainty is high. At last
the prototyping methodology should be preferable if the complexity is low, and
the uncertainty is either low or high.

The following bullet points may be used to determine uncertainty [8]:

• The degree of structure. If it should be a fixed system, not subject to
change, the uncertainty is low. If for example the inputs and outputs are
clearly defined, the uncertainty is also lower than if the opposite is the
case.

32



Figure 2.1: This illustration shows how a software development methodology
may be selected, on the basis of a project’s complexity and uncertainty [8].

• User task comprehension. The degree of the users’ understanding of the
future systems’ tasks, and how to perform them.

• Developer task proficiency. if the developer will be able to understand the
system’s requirements exactly, may have consequences for the uncertainty.
The developer’s familiarity with the tools needed in the development pro-
cess and the users’ environment is also included in this point.

And this bullet list contains points affecting complexity [8]:

• Project size. Usually measured in man-hours, may give an indication of
size. Projects which have long development time are often more complex
than others.

• Number of users. It is stated that a system with many users is in general
more complex than a system with few.

• Volume of new information. A system may be more complex if the volume
of new information generated is high.

• Complexity of new information production. If the processes used for cre-
ating new information are complex, the system also gets more complex.

Criticism of traditional methods

Critics have been promoted against the traditional software development meth-
ods. The critics argue that such methodologies are not flexible enough, difficult
to learn, labor intensive, slowing down the development process, poorly defines,
and so on. The more recently developed agile methods is however a counterpart
of the traditional ones [21].

2.3.2 Rapid Application Development
There is no universal definition of the Rapid Application Development (RAD)
methodology. But RADmay however be characterized in two ways; as a method-
ology with a set of phases and as a class of tools making it possible to develop
software in a speedy fashion [1].

33



RAD is normally implemented - with the following possible phases - re-
quirement planning, user design, construction and cut over. As agile methods,
described in Section 2.3.3, RAD also require customer involvement. But the
methodology is also associated with the use of prototyping and incremental
development [1].

RAD may be described as a methodology deploying tools, guidelines and
techniques for a short period of time for developing a part of a software system.
Such a part are defined as a "time box", a module developed in close cooperation
with the customers. Software is delivered in pieces, and the most important
parts are delivered first [1].

RAD teams consist of small groups of highly skilled individuals. These
members cooperate to finish the software product before an end date, and the
product delivery cycle is more concerned about deadlines than traditional appli-
cation development. But the development team has to keep a form of memory
of the structure of the process while working inside a time box [1].

The Australian company Mediasphere [20] has created a document briefly
describing the RAD development process, and it’s stages. A reproduced model
of a figure presented in the company’s document is shown in Figure 2.2.

Figure 2.2: An illustration of the RAD development process, as described by
Mediapshere [20].

In the presented model RAD is divided into six stages; analysis and quick de-
sign, build, demonstrate, refine, testing and implementation. The build, demon-
strate and refine stages are all part of an iterative loop called prototyping cy-
cles. The other stages are sequential in nature. Each of the stages are briefly

34



explained in the text below [20].

Analysis and quick design

In this stage one of the main goals is to perform a software analysis gather re-
quirements for the upcoming development. Meetings between the key customers
and the planning team should also be conducted to establish communication be-
tween the involved personnel [20].

The quick design part aims for presenting the detailed requirements from the
analysis phase - developing a required data model. The concrete results should
be screen flows and layouts of essential parts of the system. These may be used
in the process to find core requirements for the entire, future system. The use
of CASE-tools are common in this stage [20].

Ganesh Krishnamurthy 3 describes CASE-tools (CASE: Computer-Aided
Software Engineering) as technologies used to provide an automated assistance
in the software development process. Special RAD tools are freely available
for for example the Visual Studio development environment. Such a tool is for
example "RAD Studio Code Generation Toolkit" 4, which is especially made
for supporting software development following the RAD development life cycle.

Prototype cycles - build, demonstrate & Refine

During the prototyping cycles the three stages build, demonstrate and refine
are repeated iteratively. The software is gradually developed, tested and the
requirements are progressively formed. Functionality is added during each iter-
ation, and afterwards new functionality is scheduled for development [20].

Several documents are maintained and updated during the cycles. For all
iterations the core and secondary requirements are designed or redesigned. The
data model, test scripts and project plan are also updated. For each cycle an
iteration plan is created, and handed to the customer [20].

After the final iteration the development team updates the software docu-
mentation, performs user acceptance tests and prepare the steps necessary for
the upcoming implementation process [20].

Testing

In this stage the finished application is tested. The tests are performed by the
technical team, and also the software users [20].

Implementation

Here the software is converted to a live system. The development team is
responsible for the transfer and migration of the system [20].

2.3.3 Agile methods
Software developers have in recent years adopted to new development methodol-
ogy. Agile software development (ASD) is a popular set of methods, which aim

3http://www.umsl.edu/ sauterv/analysis/F08papers/View.html
4http://radstudio.codeplex.com/releases/view/66805

35



for simplifying development and making it more adopted to later requirement
changes [21].

Such methodologies relies on frequent contact between developers and cus-
tomers - preferably face-to-face communication. The techniques implement iter-
ative software deliveries of finished system parts - instead of complete software
systems [21].

According to the manifesto made for agile software development, the follow-
ing bullet list illustrates the methodologies’ main values [21]:

• Individuals and interactions should be prioritized over processes and tools.
• One goal of a project should be to create working software, and give less

priority to comprehensive documentation.
• Customer collaboration should be sought instead of contract negotiation.
• The development process should respond to change, instead of just follow-

ing the plan in such situations.

Although the techniques have been praised by parts of the development
community, critics to the methods have also been raised. According to Misra
[21] the critics have mostly been promoted by large private, governmental and
bureaucratic organizations. The critics argue that ASD is over-hyped, reduces
quality due to the lack of rigor, has limited support for distributed environments
and has inter alia limited support for development involving large teams.

36



2.4 Requirement Methodologies

2.4.1 Requirement Definition Methodology
Arthur and Gröner [3] present a model for requirement generation - the Re-
quirement Generation Model (RGM). The method divides the activity into
sub-phases, which may be repeated iteratively until a final set of system re-
quirements are defined. According to studies performed by the authors this
procedure improves the quality of produced software.

The method described in the paper "An operational model for structur-
ing the requirements generation process" begins with a indoctrination phase.
Then three sub-phases are repeated in a loop in a phase called the requirement
capturing phase until the requirements have been defined. They may then be
implemented into the requirement analysis. These three sub-phases are; the
preparation, the elicitation and the evaluation [3].

The Indoctrination Phase

One of this phase’s goals is to introduce the customer (involved in the process)
to how RGM works. It also aims for providing the requirement engineer with
information about the domain and customer needs. The participants’ responsi-
bilities and tasks should be described at this stage [3].

The Requirement Capturing Phase

As earlier mentioned, this phase contains three sub-phases. It is an iterative
process repeating the phases below in the order they are mentioned in this
section. The process continues until all system requirements have been set [3].

Preparation In this sub-phase there should be a meeting where the roles
should include the customer, the requirement engineer and possibly also the user
of the future system. If this meeting takes place after finishing a requirement
iteration, issues revealed in earlier discussions should be reviewed. Otherwise
the meeting takes place after completing the indoctrination phase [3].

The purpose of this phase is to review any open issues discovered in ear-
lier phases. Then work has to be done to arrange the next meeting between
the requirement engineer and all the other stakeholders. In the preparation
phase it could be decided that such a meeting should be a declarative meeting
- about communication of needs. Other forms of meetings may be explorative
(aiming for discussing and finding new issues) or for example elicitive (focus-
ing on identifying individual requirements). Common to all such meetings is
that the requirement engineer is taking lead role, but is actively consulting the
customers [3].

Elicitation This focuses on capturing of system requirements. In this phase
the customers convey the information needed, while the requirement engineer
captures the needs [3].

Evaluation In this phase it should be determined if the objectives of the
previous elicitation meeting were met. The identified requirements should also

37



be examined, as independent artifacts and in relation to the previously identified
requirements. Lastly it should be determined if a new iteration is needed [3].

2.4.2 MoSCoW Prioritization of Requirements
The MoSCoW method is a technique for prioritizing system requirements. Ac-
cording to Project Smart’s Duncan Haughey 5 MoSCoW is used for ranking a
selection of defined requirements - whether they should be implemented or not,
in what order functionality should be developed and for defining crucial system
parts.

MoSCoW is an abbreviation for the phrases "must have", "should have",
"could have" and "would like to have". When reviewing a list of system re-
quirements these phrases are used for defining the need for implementing each
of them.

According to Haughey the requirements defined as "must have" parts of a
system are crucial for the system’s success. If they are not present, a developed
system may be viewed as a failure.

"Should have" requirements are not as important as the type mentioned
above, and a project’s success is therefore not depending on the implementation
of them. However, as many of these requirements as possible should be added
to a new system.

"Could have" requirements are nice to have, but they don’t have to be
added - only if there are available resources. It is however important that
implementation of such requirements is not negatively affecting requirements
having a higher priority.

"Would like to have" (or "won’t") requirements is the fourth an last category
of the MoSCoW prioritization method. These requirement would not be added
to the version of the system that is to be developed. Instead they may be
implemented later.

The DSDM CONSORTiUM6 points out that using MoSCoW as prioritiza-
tion technique has benefits. According to DSDM this prioritization technique
makes it easy for the stakeholders to get a grasp of how implementation of sys-
tem functionality will affect the end-result. Ranking requirements as "high",
"medium" or "low", on the other hand, would not specify the need of imple-
mentation.

But there are also critics with an opposite opinion about usage of the tech-
nique. Kukreja et al. [17] claim that the method is not truly value-centric.
Instead MoSCoW is seen as a technique assuming that the stakeholders instinc-
tively know the correct value of each requirement priority, something that may
seem quite utopian. Further they state that MoSCoW may not work well when
system changes are promoted. It could then be hard to incorporate the priority
value of the newly desired functionality with the current release.

5https://www.projectsmart.co.uk/moscow-method.php
6http://www.dsdm.org/content/10-moscow-prioritisation

38



2.5 Prototyping Techniques
Beaudouin-Lafon and Mackay [5] describe how prototypes of future software
could be made. According to the authors such representations of interactive
systems could be developed both offline and online during the design process.

2.5.1 Offline and Online Prototypes
Offline prototypes, also called paper prototypes, do not have to run on comput-
ers when reviewed. These representations are often easy and quick to develop.
They are commonly designed early in the development process, and are usually
thrown away after serving their purpose.

Online prototypes, on the other hand, require a computer for presentation.
Such representations may be designed in digital interface builders, or for exam-
ple as programs written in code. The cost of developing these prototypes are
commonly higher than for the above category. They are therefore better suited
for being implemented later in the process, when a design strategy has been
defined.

However, Beaudouin-Lafon and Mackay do not recommend selecting only
one of the two, overall techniques when designing a new system. They argue
that the prototyping process should start with developing simple, offline system
representations.

According to the authors there are several benefits of producing paper pro-
totypes. Firstly these representations do not have to constrain the thinking of
the designers - limiting creativity. By creating such prototypes the number of
ideas discussed could be wider than by spending much more time on creating
advanced representations.

Secondly Beaudouin-Lafon and Mackay state that creating design offline, as
mentioned above, is inexpensive and may entail more rapid prototyping itera-
tion. Different solutions may therefore be tried, instead of binding the developers
to first, but possibly not best, working solutions.

Lastly another benefit of producing paper prototypes is that they easily may
involve other parties than programmers in the process of producing them. They
may therefore lead to increased collaboration in the design process.

Online prototypes are however better suited for evaluating more particular
design ideas, where offline prototyping may prove to be insufficient. Complex,
dynamic visualizations and advanced interactions may require online prototyp-
ing.

2.5.2 Protoyping Strategies
Further Beaudouin-Lafon and Mackay present four strategies for developing
prototypes. These may be used for creating:

1. Horizontal prototypes.
2. Vertical prototypes.
3. Task-oriented prototypes.
4. Scenario-based prototypes.

39



Horizontal Prototypes

Horizontal prototypes include the whole system in the designing process. They
may therefore present the reviewers with a overall perspective of how the future
system will work.

Such prototypes may begin with rapid, offline techniques, and gradually ex-
pand to working design. They may therefore be built with interface builders,
without making use of underlying functionality. However, since simulations
of the future application may require some sort of simulation of the underly-
ing functionality and data, the prototyping process tends to be evolutionary -
gradually expanding the prototype into a working system. In that process the
prototyping may need the whole development team to produce them.

Vertical Prototypes

Vertical prototyping strategies may be made when the designers should test if
working functionality is implementable. In that process layout algorithms and
performance could be tested, in addition to interaction techniques. Such pro-
totypes have therefore in general a high precision, and are suited for validating
specific ideas.

Task-oriented Prototypes

Designers may choose this approach when they start off with a task analysis,
identifying user needs. Such analyzes may require functionality, which is devel-
oped in task-oriented prototypes. These prototypes are generally organized as
tools sets, allowing each set test specific tasks. When following this strategy
the system is therefore systematically created by implementing functionality to
accomplish tasks.

Scenario-based Prototypes

These prototypes are much like task-oriented prototypes, but do not limit the
prototyping process to tasks. Instead the representations should be developed
for more realistic scenarios, used in real-world.

40



2.6 Testing
Shneiderman and Plaisant [33] have described a selection of testing techniques.
Two, overall techniques are describe in detail - usability testing and the heuristic
expert reviews approach.

According to the researchers the conduction of testing may take place both
in the beginning, the middle and the late stage of the development process.
The following aspects regarding a project are mentioned by Shneiderman and
Plaisant as important before settling with a specific technique:

• Stage: The current state of the development, if it is early, middle or late
in the process.

• Novelty : If the project is unique or new.
• Number of users: How many users the future project will have.
• Criticality : How critical the functionality of the interface will be.
• Costs: Resources available for conducting testing.
• Time: The time available for testing.
• Experience: The experience level of the design and evaluation team.

2.6.1 Usability Testing
Shneiderman and Plaisant have described usability testing as a method involving
the future users, or a representative selection of users, in tests. The experiments
may take place in controlled environments as usability labs to find flaws in
developed software.

Such experiments may involve as few as three participants. These partici-
pants should possess the future users’ knowledge of computing, experience with
the task domain and represent the users’ education level and background.

2.6.2 Experts Reviews
Experts reviews, on the other hand, do not involve the future users of a system
in the testing phase. Shneiderman and Plaisant emphasize that such tests may
be conducted in both a formal and an informal manner.

Informal experiments may be carried out by presenting an interface of a
system, or a part of it, for colleagues or users and then ask for their opinion.
This approach may produce some useful feedback. More formal experiments
may involve experts, and the conduction of tests resulting in a test report.
According to Shneiderman and Plaisant, the latter approach has proved to be
the most effective.

Experts reviews may be conducted during any stage of the development
process. However, involving domain experts in the experiments may be crucial
for producing better results. It may also be useful to choose both reviewers
earlier involved in the development process and fresh reviewers in such tests.

Shneiderman and Plaisant suggest several techniques for conducting experts
reviews. The following bullet list mentions some of them:

• Heuristic evaluation: This technique asks the experts to review an inter-
face and to compare implemented elements with a list of heuristics, as for
example the Eight Golden Rules of interface design. It is then important

41



that the experts are familiar with the heuristics selected, and that they
are able to apply them.

• Guidelines review : This approach requests the experts to review the in-
terface with a guidelines document.

• Cognitive walk-through: The experts are asked to perform a walk-through
of selected parts of the interface, to carry out tasks.

• Formal usability inspection: The interface’s weaknesses and strengths are
discussed in a formal courtroom-styled meeting.

Experiences with the Use of Usability Inspection Methods

Holligsed and Novick [11] have studied the use of usability inspection methods
as heuristic evaluation, cognitive walk-through and formal usability inspections
- all mentioned earlier in the bullet list in Section 2.6.2.

According to the authors both the cognitive walk-through and the formal
usability testing techniques were more popular tools among usability profes-
sionals earlier than they are today. Cognitive walk-throughs, while still in use,
are implemented less frequently in today’s projects than earlier. The formal
usability testing technique was popular in the mid 90’s, but is now less used.

Heuristic evaluation, on the other hand, is still in frequent use. Half of ten
intranets winning a competition in 2005 reported that they had used heuristic
evaluation while testing their software.

According to Holligsed and Novick cognitive walk-through and Novick are
methods easy to deploy in a project’s development stage. These techniques are
both cost-effective and may be conducted rapidly.

Additionally the authors claim that such testing techniques should be com-
bined to achieve better results while experimenting, than with the use of solely
an individual technique. Further Holligsed and Novick advise the use of several
participant groups - both domain experts and end-users.

42



2.7 Visualization
This master thesis is aiming for creating a tool which may present relevant
information to participants in morning meetings in the oil and gas industry.
The tool have to have some kind of visualization of data to make this goal
possible.

Visual Representation

The purpose of a good visual representation is to guide the users and help them
to understand a visualization. The designer may choose among several viewing
formats [37]:

• Color. Color is commonly used to visualize large data sets. It is less
useful for smaller data sets, or data sets which contains a small range of
differentiation. People may identify many gradients and shades of color,
which makes color ideal for representing big-picture trends.

• Size. People tend to judge quickly between sizes, but this representation
is widely used, and perhaps overused.

• Location. This technique my be used to attach data to a map or an other
element corresponding to a real or virtual place. This kind of representa-
tion may be a good solution if the viewers are familiar with the visualized
location.

• Networks. Networks may be used to for example show social connections
between people. Networks may contain data points and the links between
them. However, this technique should be used with caution, since it may
be hard to understand a messy network.

• Time. Time animations may be used as a technique to represent data
changing over time.

• Multiple methods. The representation techniques mentioned in the list of
bullet points above may be combined in some visualizations. An example
on a visualization technique which uses both the size and the time dimen-
sion is a stacked time series. This representation of data may be a chart
containing elements with different sizes - changing over an animated time.

2.7.1 Map Visualizations
Steele and Iliinsky [37] has created a digitally available map for the New subway
system. In the book "Beautiful Visualization" they present the solution and
argue for choices done in the process of making the digital map. The purpose
of the map is not to describe the subway system in unnecessary details, but
to show the viewers a simplified and understandable image of the New York
subway system. Several advice are presented. Some are mentioned below:

• Include essentials. According to Steele and Iliinsky only the essentials of
complex geography must be drawn. Extra, unnecessary details may only
cause visual noise for the viewer.

• Avoid disorientation when a map contains several layers. Iliinsky and
Steele state that it is important to avoid disorientation when creating a

43



map. In the subway system map both the places on the surface and un-
derground had to be drawn, simplified - but not too simple. The audience
had to recognize the environment in both layers [37].

• Create a recognizable environment. Steele and Iliinsky state that it is
important to create a map which mirrors the viewers relationship to the
environment. The subway map was divided into several neighborhoods,
since the people of New York (according to the authors) look upon their
city as a collection of neighborhoods. nm jk bvb

• Create possibilities for zooming The authors implemented possibilities for
zooming in their digital map, which made it possible to get more detailed
sub-maps.

• Change map if context is change. Iliinsky and Steele presents a map which
changes from day- to night-time. Sine fewer routes are active at night, the
map mirrors the changed context.

• Create situational maps. Iliinsky and Steele point out that maps don’t
have to be the same in all situations. According to the authors maps
should be slightly different in for example on the walls in train cars, in
digital form or on big posters at underground train stations. The maps
should be optimized for their specific environment.

44



2.8 User Interface Design
Shneiderman and Plaisant [33] state that gathered evidence and theories applied
for designing user interfaces may be organized into three, main categories:

• Guidelines.
• Principles.
• Theories and models.

According to Shneiderman and Plaisant [33] theories and models belong to
the highest and most overall level of these three. Principles are more specific,
and may be used to analyze and compare design alternatives. Guidelines are
the most specific, and are often platform specific.

In this thesis design principles are used. The section below concerns design
principles, especially the the Eight Golden Rules of interface design, but also
principles for implementing interaction styles.

2.8.1 The Eight Golden Rules of Interface Design
Shneiderman and Plaisant [33] claim that the Eight Golden Rules of interface
design may be seen as a good starting point for mobile, desktop and web devel-
opment. They also point out that this set of underlying rules could be refined
and extended with regard to the specific solution. Below follow each of the eight
rules, with accompanying explanations.

1. Strive for consistency. This involves consistent sequences of actions,
colors, textual information, etc.

2. Cater to universal usability. The user interface should be adapted to
different users such as experts and novices, different age,ranges, users with
disabilities and different level of technological knowledge.

3. Offer informative feedback. For every user action there should be some
sort of system feedback. But frequent or minor actions should however
result in modest sorts of feedback.

4. Design dialogs to yield closure. Sequences of actions should all have
a beginning, a middle and an end.

5. Prevent errors. The developers should strive for reducing errors. The
user interface should therefore be designed for error reduction by for ex-
ample graying out not appropriate items in menus, etc.
If errors occur the user interface should notify the user about the error.
The user interface should remain consistent if an error occurs, or give the
user instructions on how to regain consistency.

6. Permit easy reversal of action. All actions should easily be reversible,
supporting user exploration.

7. Support internal locus of control. The user interface should be de-
signed for experts. When operating a UI such users usually don’t want
surprises, they like to stick to familiar patterns, don’t like tedious data-
entries and demand systems capable of rapidly produce desired results.

8. Reduce short-term memory load. Solutions where the users have to
remember chunks of information from one screen to another should be
avoided.

45



2.8.2 Interaction Styles - Advantages and Disadvantages
Shneiderman and Plaisants [33] mention principles for implementing interaction
styles in a user interface, and have listed both advantages and disadvantages
connected to each of them.

Direct Manipulation

Advantages: Presents concepts visually, allows easy learning and retention,
allows errors to be avoided, encourages exploration and lastly leads to higher,
subjective satisfaction.
Disadvantages: May be hard to develop and may require graphics display and
pointing devices.

Menu Selection

Advantages: Shortens learning, reduces keystrokes, structures decision-making,
permits use of dialog management tools and allows easy support of error-handling.
Disadvantages: Presents danger of many menus, may slow down frequent
users, consumes screen space and requires rapid display rate.

Form Fill-in

Advantages: Simplifies data-entry, requires modes training, gives assistance
and permits use of form management tools.
Disadvantages: Consumes screen-space.

Command Language

Advantages: Flexible, appeals to frequent expert users, supports user initiative
and may support macro creation.
Disadvantages: Poor error handling and training and memorization needed.

Natural Language

Advantages: Not necessary to learn syntax.
Disadvantages: Unpredictable, may require many keystrokes, may hide con-
text and may require clarification dialog.

46



Chapter 3

Method

3.1 Methodology Selection

3.1.1 Development Methodology
Before a new system could be proposed, and possibly designed, based on the
current platform, methodologies for the development process had to be selected.

There are several methodologies existing, each with specific weaknesses and
strengths. But the major challenge when selecting a methodology was the lim-
ited possibility to communicate with the project’s "customers" - the petroleum
organization offshore and onshore participating in morning meetings. This
project is instead taking place at IFE, and the student is communicating with
personnel there, rather than directly with the personnel in the oil and gas in-
dustry.

At first an agile methodology for the development of the new software was
considered. But as mentioned in Section 2.3.3, agile methods involve users to a
high degree in the development process, and two of four points in the manifesto
for agile software methodologies stress that individuals and interactions should
be prioritized before processes and tools, and that customer collaboration should
be sought. It therefore seemed impossible to select an agile methodology for
investigating and producing the new software.

Another option could be to still implement an agile and modern methodol-
ogy, but redefine who the users are. Until now the users have been defined as
personnel participating in morning meetings in the oil and gas industry. But
since this is a research project, without a commission from the industry, it is
likely that the results may only be used for a research purpose. The users may
therefore be redefined to the personnel working at IFE, who may be interested
in the future solution. But the target audience may still be the personnel in the
oil and gas sector, since IFE is a research facility partly working with projects
for this type of industry. Selection of an agile method may still require a lot of
user collaboration, but with reachable users at IFE instead of users from the oil
and gas sector.

A downside to this approach is the nature of agile development. According
to the manifesto the goal of such methodologies should be to create working
software, rather than creating comprehensive documentation. Since this project
is a research into the selected topic, paying little attention to the documentation,

47



could be undesirable.
A traditional method could therefore be the best suited for this project.

Dennis and Burns’ matrix, presented in Figure 2.1, was used to decide if a
traditional system life cycle method, as for example the waterfall method, should
be chosen. But making this selection demanded a further investigation of the
project’s nature - the degree of complexity and uncertainty.

Firstly it was hard to predict if the current project was to be complex, or not.
According to Dennis and Burns the complexity could partly be determined by
evaluating the man-hours needed. On one side this project could be considered
small and not complex, since the development needed for fulfilling the thesis
would be nearly as much as for a large project. However, the student was to
develop a prototype of a part of a bigger system. The man hours needed for
completing the whole system could justify a complex definition.

Further the number of users could be fairly high, to make it possible for the
users to decide an arbitrary number of participants. This could increase system
complexity.

The complexity and the amount of generated information was on the other
hand difficult to foresee, since there were no system requirements made before
the project started.

It was easier to define the project’s degree of uncertainty. There were no
defined inputs and outputs. And it was also impossible to determine if the users
understood a system not yet planned or requested, and if the developer would
be familiar with not yet selected software tools. This project is all in all not an
assignment commissioned by the oil and gas sector.

To summarize, a high degree of uncertainty was associated with the future
system. But if it would be complex, or not, was harder to define at this point.
According to Dennis and Burns, either a prototype methodology or a mixed
methodology should be chosen for the development process on this basis. And
since prototyping lacks analysis and design stages, the methodology could be
less suited for the task than a mixed methodology - this is a research project
where such stages likely would be important.

The mixed methodology proposed by Burns and Dennis could be suited for
this project, but a drawback with this technique is the lack of implementations
by the development community. It seemed to be a proposal promoted in the
1980s, which was not used as much as other methods.

Finally the student settled with creating the software by using the RAD
methodology. The methodology has several similarities with Burns and Dennis’
method. Like Burns and Dennis’ methodology RAD has an initial stage where
the system is designed coarsely. Then the following stages are overall simi-
lar, since RAD also implements iterative development of software. Additionally
RAD also is an established methodology with available toolkits supporting de-
velopers who would like to implement this way of work.

As stated in Section 2.3.2, there is no universal definition of how RAD de-
velopment should take place. The methodology was therefore customized for
this student project.

The users were firstly defined as to be the personnel at IFE, rather than
offshore/onshore personnel in the oil and gas industry. As mentioned earlier
in this section, the lack of possibilities for frequent communication with off-
shore/onshore personnel is the background for this choice.

In the initial design and analysis stage system requirements and prototypes

48



were developed. This process was done in cooperation with the contracting
authority at IFE. Since this is a relatively small scale student project, it was
not possible to establish persistent communication with several of IFE’s research
personnel. Instead the contracting authority primarily represented the users.

In the later prototype cycles, modules were developed iteratively in cooper-
ation with the contracting authority. An iteration plan was developed for each
iteration and delivered by email. Deadlines for the deliveries were introduced,
in accordance with the RAD methodology.

When the student finished the project, and it was ready for testing, this
was done in collaboration with IFE’s research personnel, as later described in
Section 3.5. The tests also aimed for investigating how well the system could
fit into the oil and gas sector, and if it could be a good replacement for current
meeting platforms and suggested prototypes.

3.1.2 Requirement Definition Methodology
Although the RAD methodology includes a phase containing shaping of require-
ments, the RAD templates found don’t specify the process of defining require-
ments specifically. Since the requirements promoted for the new system was
essential for how the software would be designed, an own methodology was
selected for creating requirements - the Requirement Definition Methodology
(RDM). This process was determined to be completed before the initiation of
the project’s RAD methodology - and the task of developing a requirement
analysis.

It was decided that the requirement definition would be accomplished al-
most as described in the methodology. The student was to take the role of the
requirement engineer, while researchers at IFE described the needs of a future
meeting software. Since the personnel at IFE has extensive knowledge of the oil
and gas sector, they were defined as expert customers - shaping such a system’s
needs.

In addition to requirements promoted by the researchers, requirements were
also made by studying a major oil and gas company’s internal guidelines for
establishing collaboration and support rooms. Requirements gathered from the
guidelines are presented in Appendix B.2. These requirements were in an early
stage merged with the list of requirements based on the needs promoted by IFE’s
researchers, and later changed. Proposals for ranking them were therefore only
promoted by the student himself at their time of writing.

It was not practically feasible to arrange several meetings for both preparing
and eliciting requirements. Instead these meetings were merged together.

3.1.3 Complete Project Methodology
The project methodology may be seen as a combination of a customized require-
ment definition and the RAD methodology. Figure 3.1 illustrates the model
described in Section 3.1.1 and 3.1.2.

The first package illustrated is the use of the requirement definition method-
ology, containing an initial indoctrination phase, where the methodology is to be
described. This is followed by an iterative process for producing requirements.

After finishing the requirement definition the result was implemented into
the requirement analysis document. This was the first encounter with the RAD

49



methodology. When the requirement analysis document had been produced,
the first paper prototypes were developed. The next stage involved the iterative
prototyping cycles, aiming for gradually producing software. These stages will
be described more specific later in this chapter.

According to the described model the software produced should lastly be
tested and implemented. But since this is a student project, the last implemen-
tation phase was never initiated. Below follows more specific descriptions of the
conduction of the RAD methodology.

50



Figure 3.1: An illustration of the combination of the customized requirement definition and the RAD methodology used in this project. [20].

51



3.2 The initial phase - the analysis
In the analysis phase the current system and the system to be developed was
analyzed. A requirement analysis document was written. The document is
partly made according to a template used for RAD analysis 1. The analysis
is closely related to theory about usability, visualization, integrated operations,
etc.

However, the template used didn’t specify prioritization of the requirements
defined. An analysis was conducted for ranking the requirements, whether func-
tionality should be implemented or not in the future system. The MoSCoW
method was chosen for this analysis.

3.2.1 MoSCoW Ranking of Requirements
Two researchers at IFE carried out the prioritization of requirements defined in
an earlier project phase. This work was done individually by each researcher,
resulting in two, independent analyzes. By considering the priorities given a
final list of "must have" requirements was formed. The technique used was
fairly similar to the MoSCoW technique, but with custom phrases.

The reason why not one, but two reviewers analyzed the requirements was to
hopefully decrease the possible downsides promoted by critics as Kukreja et al.
[17] in Section 2.4.2. By letting more than one researchers conduct their analyzes
independently, the risk of creating priorities based on instinctive and wrong
judgments would probably decrease. The requirements ranked as very important
were therefore not added to that distinct category if not both researchers had
ranked the same requirement as a crucial functionality.

3.2.2 Evaluation of Current Systems
Before ending the thesis’ requirement analysis phase, currently developed pro-
totypes and systems’ functionality was evaluated and compared with the list of
requirements. This work was conducted by studying available system documen-
tation found online.

When this study was conducted, it also became clear that several functions,
implemented in the evaluated systems, also could be implemented in the future
application. A table containing solutions considered desirable in the future
meeting system has been added to this part of the project. It is also mentioned
in the table if the functions found have been implemented in the prototype
concept.

1http://wwwbruegge.informatik.tu-muenchen.de/twiki/bin/view/OOSE/RequirementsAnalysisDocumentTemplate

52



3.3 Quick design
After conducting the requirement analysis, prototyping was conducted. How-
ever, it was decided to implement both offline and online prototyping techniques,
as described by Beaudouin-Lafon and Mackay in Section 2.5. The authors ar-
gues for creating offline prototypes in an early stage, for later continuing with
online prototypes, for example developed in code.

The prototyping in the quick design part therefore proceeded by producing
simple, paper prototypes of the future system. These were designed as horizontal
prototypes, covering as much of the system’s functionality as possible.

This in accordance to Beaudouin-Lafon and Mackay’s recommendations,
since simple and rapid to develop representations should, according to the au-
thors, take place in a project’s initial stage. The later, online and more func-
tional prototype was therefore developed in the prototype cycles, described in
Section 3.4.

The initial prototypes were however made in close cooperation with the
contracting authority at IFE. The prototype was changed several times during
the stage, to make the result as good as possible.

Simultaneously while new design was developed and specified, work with the
data model was conducted, to prepare the prototype for actual development.

Both this work and the design of prototypes are in compliance with the
selected project development model.

53



3.4 Prototyping Cycles

3.4.1 Prototype Fundamentals
After developing a paper prototype the process continued by migrating the pro-
totype to a digital tool where simple, not-interactive design was implemented.
Since this also was easy to conduct, without any need of coding, the process
of creating a horizontal system prototype continued. The tool selected for the
digital prototyping was the free JustInMind2 prototyping toolkit, resembling a
CASE tool, but without options for exporting projects for further development.

While producing this digital, but simple prototype, changes were made in
the project’s path. Particularly one choice, inspired by the existing software
Epsis Teambox3 (described in Section 2.2.1), affected the overall system design.
This choice consisted of abandoning the idea of developing internal functionality
to display data. Instead the system was decided to be sort of an overlay to other
systems, making it possible to conveniently interact with them during a meeting.

After several iterations in the prototyping the tool, a deep dive producing a
functional prototype was conducted, before continuing with the overall design.
An online prototype technique was chosen, but only some parts of the system
was included in the process. The strategy for producing the representation went
therefore temporarily from a horizontal to a vertical prototyping strategy.

The reason why the strategy was changed at this stage was the resources
available for producing the system. A horizontal strategy may often lead to
gradually expanding the representation into a full, working system, making use
of the entire design and development team. Such resources were not available
in this project. Instead a vertical strategy could prove if certain parts of the
design could be implemented in the future system. The work revolved around
making the main user interface, only of the system’s meeting module, to work.
It was also developed more complex functionality as changing a map view of an
oil installation and capabilities for drawing and writing on digital whiteboards.
These part of the horizontal design were therefore tested, before the overall
design process could continue.

This part of the prototyping was conducted by creating a web site containing
JS and PHP scripts, XML, CSS and HTML. This approach was chosen to make
the project available online to the supervisor and other stakeholders at IFE.
Frameworks as ExtJS4 could have been selected to make it easier to develop
following recognized standards as MVC5 or MVVM6, and to make the website
project fully object oriented. But since frameworks as ExtJS may have a steep
learning curve, these suggestions were abandoned. Instead the project only
made use of the JQuery 7 and Bootstrap8 libraries (Bootstrap was abandoned
in the second version of the functional prototype).

One of the drawbacks of abandoning ExtJS, and later Bootstrap, implied
possibly making it harder to achieve cross-browser compatibility. The project

2http://www.justinmind.com/
3http://www.epsis.no/product/
4https://www.sencha.com/products/extjs/#overview
5https://msdn.microsoft.com/en-us/library/ff649643.aspx
6https://msdn.microsoft.com/en-us/library/hh848246.aspx
7https://jquery.com/
8http://getbootstrap.com/

54



has however only been tested in the Google Chrome9 browser, where it works
as intended.

Implementation of a server-side database was omitted to make the project
more transferable, if the later users don’t possess the required database system.
XML was instead chosen for storing data server-side. Such documents are cre-
ated by PHP-scripts. The XML is also accompanied by XSD-schemes to make
it easy for later users to know which attributes and elements they are allowed to
remove or add, as well as to understand the structure of each XML document.

3.4.2 Iterative Development
According to the RAD methodology, described in Section 2.3.2, the prototyping
cycles are closed in a loop producing new software for each iteration. This
consists of three, embedded stages - build, demonstrate and refine. In the first
stage software is developed, before demonstration is conducted in the second
stage. If the development process should continue after the demonstration, the
loop continues with the refinement stage before a new iteration is initiated.
Otherwise the loop breaks after the second stage.

This method fitted well with the current prototyping, since demonstrations
were conducted in collaboration with the project’s supervisor. Any changes
suggested during supervisions were later refined in the third stage before new
functionality was implemented in the next iteration.

During the prototyping cycles, producing the functional prototype, modules
of the user interface were produced. All suggested functionality was however not
implemented. As mentioned above, a test bed consisting of a window containing
a menu with a toolkit, an interact-able map surface and a whiteboard was
developed - solely for testing purposes.

Several finding were made, during the vertical prototyping, which resulted
in a need to redraw the overall, horizontal prototype. the last iterations were
therefore conducted with a horizontal strategy - aiming for the implementation
of missing features.

9https://www.google.com/chrome/browser/desktop/index.html

55



3.5 Testing
Shneiderman and Plaisant describe the use of both usability testing and experts
reviews in Section 2.6. In this project the usability testing was excluded since
it has not been possible to find relevant participants for such experiments. The
end-users of the system are thought to be onshore and offshore personnel working
in an IO oil and gas organization. Without possibilities for contacting this user
group, it was decided early on to focus more on experts in the current domain.

The available expertise could however be considered highly adapted for the
tests following the experts reviews methodology. These are researchers at IFE
who are daily involved in projects linked to the domain, and who have con-
ducted several studies of usability of software systems in the oil and gas sector.
Shneiderman and Plainsant’s requests for involving expertise with knowledge of
the domain and the selected heuristics.

However, the use of tests during the system development differs slightly from
the model presented in Figure 3.1. Although a major test was conducted after
finishing a sufficient amount of development cycles, small and informal tests
have been conducted both during the development cycles, and the earlier quick
design stage. The project’s supervisor is currently employed at IFE, and has
extensive knowledge about both system development and oil and gas organi-
zations. Experts reviews have therefore been conducted frequently during the
design and development stages. But since these tests have been of a more in-
formal nature, they were conducted by asking the supervisor about his opinion
about implementations. As Shneiderman and Plaisant point out, such infor-
mal experts reviews may provide useful feedback, although more formal tests
produce even better results.

After ending the prototyping cycles a major test was therefore conducted
in collaboration with two researchers at IFE. As Shneiderman and Plaisant
recommend, one of the participants had less experience with the project work
conducted than the other.

According to Holligsed and Novick, it could be beneficial to conduct tests
with a combined use of usability inspection methods, as described in sub Section
2.6.2. The major test was therefore including both the use of heuristic evalu-
ation, guidelines review, cognitive walk-throughs and a more formal usability
inspection. But since cognitive walk-throughs and formal usability inspections
seem to be less frequent in use by usability professionals today, than earlier,
these parts of the test were prioritized less than the heuristic evaluation.

The test started with presenting the developed concept for the participants
who were asked to perform a cognitive walk-through of central parts. Then
a part containing both the heuristic evaluation and the evaluation of guide-
lines was conducted. This part consisted of reviewing the current solution with
respect to the Eight Golden Rules of Interface Design and the project’s require-
ments. Lastly a formal usability inspection was conducted by letting the experts
suggest functionality to change, exclude or implement in the future.

56



Chapter 4

Observations and
Experiments Prior to Concept
Development

This chapter firstly contains observations done during the project and descrip-
tions of executed experiments before the software development was conducted.
Lastly suggested functionality to implement in a future application, based on
the study of other systems, has been added.

The chapter does not contain information about the prototype development
process, although the activity could be considered as experiments. Since this
was both a lengthy and a major process, an own chapter has been dedicated to
prototyping. Chapter 5 firmly describes both the paper, digital and functional
prototypes developed in iterations.

The current chapter’s sections are organized as follows:

• The Studied Email Platform: This section contains gathered information
about an email platform earlier used for morning meetings at an operating
company in the oil and gas industry. A specific meeting document has been
studied, and each part of the document is firmly described.

• Defining Requirements for Future Software Supporting Morning Meetings:
The section contains information about the requirement definition process,
including a table displaying groups of the requirements. Requirements
found crucial in the new system, by use of the MoSCoW method, are also
described.

• Evaluation of Existing Software’s Functions: Here an evaluation of ex-
isting systems is presented. The evaluation was conducted by comparing
these systems with the defined requirements.

57



4.1 The Studied Email Platform

4.1.1 Findings from Studying an Email Platform Docu-
ment

This thesis is investigating if information flow in offshore/onshore morning meet-
ings may be handled differently than today. An email sent internally in an oil
and gas organization, containing meeting information, may contribute to the
design of the meeting software. This email has more concretely been used as an
agenda, and a shared platform during such a meeting back in 2008.

The organization of morning meetings in other companies have not been
considered, although an agenda used in a second company was swiftly examined.
This agenda was quite similar to the studied one.

Since the studied morning meeting document is confidential, it has not been
possible to present the actual content in this thesis. But permissions have been
granted for reproducing some of the presented information - in an anonymous
manner.

The document is a static email containing information written directly into
it and screen dumps obtained from different types of software. The document
is divided into eight sections. These are:

1. HSE (Health Safety Environment).
2. Production.
3. New notifications and work orders.
4. A review of the operational plan, including logistics.
5. Drilling.
6. New actions from a handover meeting, earlier the same day.
7. Focus points before a well meeting, later the same day.
8. Status of ongoing actions.

The next sub sections will briefly describe the content in each of these eight
parts.

HSE

This section begins with a general description of new events affecting HSE. This
information is written directly into the email.

Then a screen dump of a software presenting current cases with deviations is
shown. These cases are mostly physical deviations, as cracks and leaks in objects
or structures, but also notifications about upcoming events having impact on
HSE, as a mentioned hygiene inspection.

After the screen dump a new section with written information follows. This
includes a list of the different platform teams’ focus on HSE in upcoming work.
Then a list describing lift activities is presented. The written part ends with
information about the operation, and mentions interruptions too.

Production

This section presents a screen dump from an EXCEL document containing an
overview of the oil production at the offshore installation in table form.

58



Notifications and Work Orders

This section has an own walk-through in SAP1 (this is described at the beginning
of the part). Then a screen dump of notifications and work orders are presented
in the email. The screen dump is of a SAP table. The columns describe inter
alia notification IDs, functional location and descriptions.

Review of Operational Plan

This contains an excerpt of a SAP table as a screen dump (a text above the
table describes when such screen dumps are normally taken - on Mondays or
Fridays). The table contains a listing of work to be done. The listed work in
the table are mainly modifications and repairs.

The table is then followed by an activity description. This is also on table
form and contains information about activities to be done, priorities, responsi-
bilities and start and finish time.

The tables are followed by a weather forecast, which is also a static screen
dump. This illustration contains a long term plot of the weather at the installa-
tion. It informs about announced swell periods, wind-wave periods, swell height,
wave height, wind speed and swell as well as wind and wind-wave direction.

Lastly the section contains information about helicopter and boat traffic to
the installation. A screen dump from a software used to show such traffic is
included in the document. This is also on table form informing the meeting
participants about the helicopter’s flight number, the time of flight, call sign,
type and the number of vacant seats to and from the platform.

Since there is no reported boat traffic, only a message of this is written
directly into the document.

Drilling

This section contains both a screen dump from a software used for drilling, and
information written into the document. The written information is about the
status of the current drilling operation, and new events. It also contains a part
about planned work.

The illustration is a colorful overview of a drilling pipe and its location in
the ground below sea level.

New Actions from Handover

The part contains only written information. An explanation is given at the
beginning, which says that the section also includes information about coordi-
nation meetings the same day. It is also specified that critical operations are
written with red color, and clarified operations in green.

The section further contains information written in blue. This information
is about some tools that will be transported with the helicopter flight later that
day, and the time of a meeting.

1http://go.sap.com/index.html

59



Focus Points Before Well Meeting

Nothing is mentioned here, besides information about a meeting between differ-
ent parts of the organization.

Status of Ongoing Actions

Like the section above, this only contains information written directly into the
document. A lot of internal abbreviations are used. As the meeting part de-
scribed in Section 4.1.1, text in this section is also colored red or green based
on priority and clarification.

The section describes the status of the current operations and who are re-
sponsible for completing them.

60



4.2 Defining Requirements for Future Software
Supporting Morning Meetings

This section contains an analysis of requirements defined in the project. The
goal of this analysis was to define a number of key requirements for comparison
with the systems they should be compared with in Section 4.3. These efforts
are described in Section 4.2.1. In addition the section contains a review of the
conducted MoSCoW method for ranking requirements.

4.2.1 Defining Key Functionality
The requirements build upon needs forwarded by researchers at IFE in a work-
shop early in the project. In addition some requirements were formulated on the
basis of a study of guidelines for establishing collaboration and support rooms.

In Appendix B requirements for a future system are defined. Some of the
requirements describe specific functions in detail. But it is irrelevant if cur-
rent software have identical functionality to the defined requirements, if only
insignificant elements are compared.

To cope with this possible pitfall the requirements were put into main cate-
gories. The current software and prototypes’ implementation of these categories
are described in Section 4.3.1.

The below Table 4.1 contains the main categories and their accompanying
requirements.

Id Title Requirements
1 Two-way communication with users operating exter-

nal mobile devices during collaboration sessions.
0002, 1000, 1001,
1002, 1003, 1004,
1005, 1006, 1007,
1010, 1011, 9001,
9002, 9003, 9004,
9007, 9008, 9009,
9010

2 Sharing of view with mobile devices during collabo-
ration sessions.

1008, 1009, 9005,
9006

3 Possibilities for registering information as for exam-
ple keywords during meetings.

1100, 1101

4 Must take the existing meeting roles into account by
being designed for both meeting participants, meet-
ing leaders, etc.

1200, 1201

5 Multiple modes for varying system flow based on cur-
rent state in the meeting process. Examples include
an editor, a meeting mode and a report mode.

1300,

6 Possibilities for editing and prepare a future meet-
ing’s setup.

1301, 1302, 130,
1304, 1305, 1306,
1307, 1308, 1309

7 Implementing options for presenting real-time data. 1310
8 Implementing possibilities for presenting fixed data. 1311

61



9 Implementing an own mode active during meetings,
especially designed for such a stage in the planning
process.

1312, 1313

10 Implementing an own mode active after meetings,
able of producing minutes or other kinds of reports.

1314, 1315

11 Implementing modes for different types of devices
to make the interface user friendly, regardless of de-
vice/monitor used.

1316, 1317, 1318,
1320

12 Collaboration participants should see the same plat-
form view regardless of physical location or monitors
in use.

1319

13 Sharing of cursor. 1400, 1401, 1402,
1403, 1404, 1405

14 Agents for decision-support 1500, 1501, 1502,
1503, 1504, 1505

15 Page hierarchy with maximum of two levels. 1600, 1601, 1604,
1605

16 Register and time meeting attendance 1602, 1603
17 Functionality for open other systems. 1606
18 Present clear navigation information during interac-

tion with system, as well as when other systems are
active inside the software’s context.

1607, 1608, 1801

19 Having an overview of personnel competence, and
possibly also use the competence as decision-support

1700, 1701, 1702

20 Easy to use system stripped of unnecessary function-
ality.

1800, 1802, 1803,
1804, 1809, 1813

21 Understandable and intuitive automation. 1805
22 Clear system feedback, including graphical feedback. 1806, 1807, 1808,

1810
23 Measures for focus as warm and cold colors for inter

alia setting priority.
1811, 1812

24 Implementing functionality capable of giving read-
ability feedback based on the current adjustments.

1814, 1815

25 Readability test 1816
26 Implementing possibilities for readability adjust-

ments.
1817, 1818

27 Pre-selection of options when possible, to make it
easier for users to follow ordinary system flow.

1819

28 Support for display reduction. 1820, 1821
29 Different complexity levels enabling both expert and

novice use.
1900

30 Notifications about important news. 2200
31 Local display settings, as brightness, color and con-

trast
2300, 2301, 2302

32 A system capable of taking available hardware in cur-
rent meeting rooms into account.

2400

33 A system capable of sharing the required information
in morning meetings.

2500

62



34 Whiteboard functionality. 2600

Table 4.1: Main requirement categories

4.2.2 Importance of Functionality in the Future System
When reviewing requirements two IFE’s researchers went through a list of such
needs. The researchers are anonymously presented as "reviewer 1" and "reviewer
2". During the review the researchers gave feedback on requirement formulation,
and rated each of them based on importance. Although they didn’t made use of
the phrases "must have", "should have", "could have" and "would like to have",
as in the MoSCoW method, they used quite similar phrases: "Important",
"should implement" and "nice to have". The following sections present their
opinion about the requirements for the future meeting system:

Communication with mobile devices

Communication with mobile devices was rated as important in a future system.
However, according to the document, the scientists had different opinion about
how such a solution should be designed in details.

Reviewer 1 emphasized the importance of being able to notify third-part
mobile device users, and receive messages from them, and rated these functions
as mandatory. But the reviewer gave lower priority to functionality making it
possible for meeting attendees to communicate with third-party mobile users,
by rating this as a "nice-to-have" need.

Reviewer 2, on the other hand, rated all the mentioned functions as some-
thing that should be implemented in a future system, but not as mandatory
system-parts.

Implementation of Agents

Reviewer 1 and reviewer 2 slightly disagreed on how important it is to integrate
agents in the future system. Reviewer 2 meant that agents, including what-if-
agents, should be implemented in the system, but defined it not as mandatory.
Reviewer 2 meant that such functionality was nice to have, but that other parts
were much more important.

However, both scientists thought that if agents should be implemented, it is
important to ensure that the expert system is user friendly. They emphasized
that such a system must have to be intuitive, and that it is important to easily
add and understand information. Lastly the system must explain to the user
how reliable the information output is.

Overview of Competence

None of the scientists ranked this functionality as mandatory. Reviewer 1
thought it sounded ambitious to make the system able to control if required
competence is present in meetings, when tasks are discussed. Reviewer 2 stated
that if such functionality is to be implemented, the system must be able to
store data about competence requirements in information points that should be

63



discussed during meetings. If so reviewer 2 meant that this functionality should
be implemented, but not as a mandatory system part.

Readability Feedback and Tests

Both scientists pointed out that text must be readable for participants when
using the future system. They also thought that manual readability adjustments
must be implemented, to in compliance with rules regarding universally usable.

The readability test, however, was thought to be a good idea, but was not
rated mandatory. However, both reviewer 1 and reviewer 2 stated that the test
should be implemented in the future system.

Automatic readability adjustments, based on distance to the monitors in
the meeting rooms, was not rated as important. Reviewer 1 thought that such
functionality was too ambitious. Reviewer 2 noted that this functionality pos-
sibly could be in conflict with other, automatic adjustments, if they were to be
implemented.

4.2.3 Requirements the Reviewers Defined as Important
Although the reviewers had different opinions about some requirements, both
defined several requirements as important for the future system. To summa-
rize the experts unanimously gave top-priority to the following functionality
(complete descriptions are presented in Table 4.1):

• Id 1 : Functionality for contacting users operating on mobile devices.
• Id 3 : Possibilities for registering information during meetings.
• Id 9 : Functionality for displaying the same platform to all users.
• Id 10 : Functionality for producing reports.
• Id 16 : Functionality for registering meeting attendance.
• Id 20 : An easy to use system.
• Id 21 : Understandable automation.
• Id 22 : Clear feedback.
• Id 26 : Possibilities for setting readability adjustments manually.
• Id 32 : The system must take available hardware into account.
• Id 33 : The system must be capable of sharing the required meeting infor-

mation.

64



4.3 Evaluation of Existing Software’s Functions
In Section 4.2 requirements for a future meeting system were gathered. But
to find the actual needs for developing such software, existing systems and
prototypes was decided to be evaluated. This work is presented in Section
4.3.1.

The same section contains a table presenting a list of key functions, and
columns describing implementations of these functions in existing systems.The
table also includes a review of the systems’ functions, since some of the discov-
ered functionality was also found to be useful in this project’s prototype. A list
of these elements were therefore added.

4.3.1 Current Implementations of Key Functions
In this section current software systems’ fulfillment of the list of defined re-
quirement categories presented in Table 4.1 has been evaluated. However, the
available information about the software systems has been varying, making it
hard to tell if some functions are implemented or not. The evaluation should
therefore not be viewed as a complete evaluation of systems. The data could
instead be considered as indications of areas supported or not by currently avail-
able software.

The findings are presented in Table 4.2. Below follows a brief explanation
to the table’s organization:

• Ids: The data used in the leftmost table column is IDs representing re-
quirement groups evaluated. These are not described in this table. De-
scriptions are however presented in Table 4.1.

• Systems/prototypes: Systems and prototypes are mentioned as headers
above each column, except the first. Information in each of the cells in
these columns explains if a requirement is implemented or not.

• "?" : Question marks are used in cells to tell the viewer that either doc-
umentation was found to be unclear, or if implementation of the current
requirement may be discussed.

• "-" : The dash symbol is used when a requirement is found evaluated as
not relevant.

Below follows descriptions about the sources used for gathering information
about the evaluated systems and prototypes:

• ARKit: Information was gathered from Ark Platform’s homepage 2 , and
by ordering a pdf document containing functionality (the pdf was ordered
from the same site).

• Epsis Teambox: Epsis AS’s homepage 3 was used for information gath-
ering by watching video tutorials and reading published descriptions of
functionality. Particularly the user manual [4] was a helpful document in
the evaluation.

• IO-MAP: A report [35] about the system has been used for the evaluation.
2http://www.arkplatforms.com/
3http://www.epsis.no/

65



• ProtoSphere: Information was gathered from ProtonMedia’s homepage 4

by investigating published documents.
• Wisio: Wisio [25] was evaluated by reading the report published at Østfold

University College’s sites.

4.3.2 Functionality Based on Other Systems’ Solutions
In addition to the proposed functionality, each of the analyzed systems had
implemented functions not included in the requirements list. This section con-
tains a review of the current systems’ functions that could act as a source of
inspiration to the future meeting system.

Teambox

Epsis Teambox [4] has implemented modes adapted to the work process. These
are globally available from the main window, and may be accessed by clicking on
described symbols. By making modes globally accessible, like in Epsis’ solution,
the modes of the future software system could be easy to access.

Further the modes are not linked especially to morning meetings. They are
instead customized to a more general use. The following modes are accessible;
"Workflows", "Environment", "Conference", "Collaboration", "Publisher" and
"Sources". By creating a more general set of modes, the future system could be
used by a broader user base.

It should also be noted that Epsis’ "Workflows" and "Environment" modes
could be useful for organizing future collaboration sessions. The "Workflows"
mode is used for adding information, such as documents, to different steps of
for example a collaboration session. The "Environment" mode could later be
used for storing changes to the layout of this session.

Another functionality that Epsis Teambox has implemented, which could be
transferred to a future application, is the ability to present various information
in windows. By doing so the interaction with other systems is left to the user
to decide.

ProtoSphere

It could be argued that ProtoSphere 5 is not fitted for ordinary collaboration
sessions. The application lets individual users control avatars in virtual meeting
environments. How this approach could be integrated in a meeting setting, is
not further discussed.

However, the solution has some major advantages. The participants in vir-
tual meetings may for example easily change between meetings they are partic-
ipating in. Managers and other key personnel may therefore be able to easily
switch between several meetings.

Another functionality that could be implemented in the future application
is the use of a contact list, presenting available personnel. This list could be
used for communicating with not-participating personnel on for example mobile
devices. It could also be used for registering attendance.

4http://www.protonmedia.com/
5http://www.protonmedia.com/

66



Id Protosphere Mail surface ARKit Epsis IO-MAP Wisio
1 Yes No No ? No No
2 No No No No No No
3 Yes Yes Yes Yes Yes Yes
4 Yes ? Yes Yes Yes Yes
5 Yes No No Yes No No
6 Yes Yes No Yes No No
7 Yes No Yes Yes Yes Yes
8 Yes Yes Yes Yes Yes Yes
9 Yes No No Yes No No
10 Yes No No Yes No No
11 ? No ? ? ? No
12 ? ? ? Yes ? ?
13 Yes No No ? No No
14 No No No No No No
15 Yes Yes Yes Yes Yes Yes
16 Yes No No No No No
17 ? No No Yes No No
18 Yes - Yes Yes Yes Yes
19 No No No No No No
20 Yes Yes Yes Yes Yes Yes
21 ? No ? ? ? ?
22 Yes ? Yes Yes Yes Yes
23 - Yes Yes - Yes Yes
24 No No No No No No
25 No No No No No No
26 Yes No ? Yes No No
27 ? - ? ? - -
28 No No ? Yes ? No
29 Yes No Yes Yes Yes Yes
30 No No Yes Yes Yes Yes
31 ? No No No No No
32 No Yes Yes Yes Yes ?
33 ? Yes ? ? No No
34 Yes No No No ? No

Table 4.2: Implementation of requirement categories in evaluated systems.

67



IO-MAP

Something that has not been discussed much to this point is how the future
application should look like. IO-MAP’s [35] solution should be considered. Here
tasks on a platform may be visible in a map environment, consisting of graphical
representations of platform decks. This makes the user able of visually get a
grasp of the jobs to be done, conflicts between tasks, etc. by just looking at
the map. This could be a greater challenge if the users had to look at table
presenting task data instead.

The future application could therefore partly or completely adapt a map
environment to present meeting information.

Another property of IO-MAP is that some information is always visible,
like meteorological data. The use of global information should also be further
discussed in the future application.

Wisio

Wisio has the same advantages as IO-MAP, since this is a map solution that
has been inspired by the previously mentioned one. However, there are some
differences.

In addition to the information displayed on the map representations, Wisio
also presents the user with a time line where each of the tasks, as well as
transportation information, is shown. This functionality could be implemented
in the future application when presenting information on upcoming tasks and
means of transports. However, it should also be tested if this information could
fit into a suitable window, and that no important information is hidden from
the users.

Wisio also displays rolling text with important notifications. This is glob-
ally available information. The future application could have this functionality
integrated, or a notification solution more like the one presented in Section 4.3.2.

ARKit

As WISIO and IO-MAP - ARKit also presents the user with map data. The
map is however a real image, with information not only about tasks, but also
available personnel, etc. It is possible for the user to move the location of the
map and to zoom in or out. The users may also edit the map image by adding
graphical information in different colors when for example illustrating an oil
field.

ARKit’s map solution could be integrated into the future application. How-
ever, this zoom-able map could be more suitable for a global view of an onshore
petroleum business than offshore businesses. If both vendors and onshore and
offshore operations should be visible in such a map, a huge map may be imple-
mented. This is a major contrast to the map needed for presenting information
about an oil platform. Further oil platforms has several decks, making this
solution less attractive.

A more suitable functionality to implement is ARKit’s notification system.
The application is capable of displaying newly added documents and comments
in a notification list, which may also be sorted or limited. Such functionality
may be used in the meeting system to access documents of importance and to
display important messages during meetings.

68



Summary of Functionality Discovered in Current Solutions

Table 4.3 summarizes all the functionality discovered in systems and prototypes
which could act as sources of inspiration for the future system.

ID Description
1 Epsis Teambox have several global modes linked to a meeting’s

work process.
2 Epsis Teambox displays external software in windows customized

by the user for each of the meeting’s steps.
3 Epsis Teambox implements a large cursor, if the users need such

object for increased readability.
4 Protosphere implements avatars for each of the meeting partici-

pants.
5 Protosphere may display a meeting’s participants and available

personnel in a contact list.
6 IO-MAP displays tasks in a map environment of the current off-

shore installation.
7 IO-MAP has integrated information which is always visible for the

users.
8 WISIO has a time line presenting tasks on the current installation.
9 WISIO presents important information as rolling text.
10 ARKit displays a zoom-able map of the current organization’s

locations (zoom functionality is also integrated in IO-MAP and
WISIO).

11 ARKit has implemented a list of notifications, which may display
important information and documents. The visible elements in
the list may be sorted or limited.

Table 4.3: This table presents functionality found in evaluated prototypes and
systems, which could be implemented into the future meeting system.

The features discovered in this part of the project could have been added
to the list of requirements for a future meeting system. However, not all of the
solutions were considered favorable. But some were, and these are described in
the upcoming prototyping cycles.

Regardless the number of suggestions, at this point in the project the prepara-
tory work was considered thoroughly enough for commencing the initiation of
the prototyping cycles. These are described in the upcoming Chapter 5.

69



Chapter 5

Concept Development

Figure 5.1: The concept was changed in nine iterations. The gradually evolution
of the design is illustrated in this figure. The design in the fourth, fifth and sixth
iterations were developed in code.

This chapter contains the complete process of developing the project’s pro-
totype. It includes both choices made during the quick design phase and the
later prototyping cycles.

During the prototyping the system requirements defined were tried to be ful-
filled. If some proved to be hard to implement, this is described. Additionally
the evaluation of other systems resulted in producing a list of desired func-
tionality that could be implemented in the future system. These functions are

70



presented in Section 4.3.2. If such functionality is implemented in the prototype,
this is pointed out.

Theory about visualization, mentioned in Section 2.7, and principles for
user interface design (Section 2.8) have been integrated into the prototypes.
Therefore both principles and theory regarding user interface design has been an
important contribution to the development process. Such choices are mentioned
in the parts describing the prototype development.

The actual development took place in several iterations. As mentioned
in Section 3.4.2, this process was conducted as described in the overall RAD
methodology. Demonstrations of developed material were regularly presented
to the supervisor, before possible refinement was conducted, and a new cycle
began. The results of each of these iterations are visible in Figure 5.1.

However, the concept development was conducted according to two proto-
typing strategies. The initial, horizontal strategy creating a global design, and
the later vertical strategy implementing a subset of the future system’s functions
and design. Since the outcomes were produced on the basis of highly different
strategies, both results were implemented in the final test, described in Section
6.1.

71



5.1 Quick Design - Paper Prototyping
Before creating the initial paper prototype overall functionality and screen types
to be implemented were listed. Here the functionality considered global was
separated from internal functions.

The following functionality was considered to be globally reachable:

• A list of participants and possibilities for changing the list.
• A clock to clearly display time for participants.
• Notifications.
• Settings.
• Help.
• A whiteboard.

The reason why this list of functionality was decided to be globally reachable
was that the users could have a need for taking benefits of the functionality at
any time. The list of participants should be changed if some was to leave a
meeting. This could happen at any point during a meeting. The clock could
help the participants keep track of time. Notifications could possibly appear
at any time, also during a meeting. Settings should be changed if needed. A
help view should be accessible at any time, if help was required. A whiteboard
functionality should also be accessible at any to make the meeting leader capable
to sketch explanations, etc., related to the presented information.

Figure 5.2: A screen made for the initial paper prototype.

The paper prototype was made by drawing screens to present the system
flow during a morning meeting. An example of such a screen is shown in Figure
5.2.

When designing all sites of the paper prototype the list of topics presented
in the email platform, described in Section 4.1.1, was used for determining the
content of each site. A problem with this approach was that it was hard to fit
all the required information into single sites for each topic. The idea of creating
sites for topics was therefore abandoned in favor of splitting the topics into
user-defined sites. This solution was implemented in the first digital prototype,
presented in Section 5.2.

72



5.2 Prototyping Cycles - Horizontal Prototyping
As mentioned in Chapter 5 and Chapter 3, the concept development was ulti-
mately divided into three stages - based on their underlying prototyping strat-
egy. Each contained several iterations. The first followed a horizontal approach,
designing overall prototyping functionality. This stage is described in this sec-
tion. The second, following a vertical strategy, is described in Section 5.3. Then
a new state, refining the horizontal prototype, was added. This last stage is
described in Section 5.4.

Further in this section the prototyping iterations are mentioned as sub sec-
tions. Choices made and argumentation for those selections are described for
each of the iterations.

5.2.1 Iteration I

Figure 5.3: The initial digital prototype’s main screen.

The first prototype was partly inspired by Epsis Teambox, a software briefly
described in Section 2.2.1. The major similarities were the use of links to exter-
nal software and a huge mouse cursor - for increased visibility in a collaboration
session. The main page of the initial prototype is shown in Figure 5.3.

The prototype was thought to support an arbitrary number of documents
and internal/external software in each of the sites. The requirements mentioned
may however specify more than the selected groups in Table 4.1. A complete
set of requirements is however presented in Appendix B.1.

Fulfilling requirements

The requirements set to the project were important. Several of the main cate-
gories, earlier listed in Table 4.1, were thought of in this process.

As Figure 5.3 shows, the prototype’s page hierarchy was fairly shallow with
a drop down menu to navigate between topics. Each topic contains large, square
buttons for reaching individual sites, documents, etc. The requirement set for
restricting the page hierarchy to two levels could therefore be accomplished.

Further the prototype could implement readability tests by adding these as
sites to topics pages, also shown in Figure 5.3.

The requirements state that the future system should be stripped of unnec-
essary functionality, and be able of sharing the required information in morning

73



Figure 5.4: Selection of topics in the initial prototype.

meetings. As Figure 5.4 displays, accessing the drop-down menu could present
users with topics used in today’s morning meetings. These would be displayed as
accessible pages, possibly fulfilling the goal of presenting required information.
Further the top bar was thought to be stripped of unnecessary functionality,
making inexperienced users capable of navigating between sites by only access-
ing the drop-down menu and the subsequent sites below.

The bottom bar contained several choices. These choices were thought to
be global, and accessible from all parts of the application. One of these options
could present the users with a list of participants in the current session. Figure
5.5 shows the participants, their current collaboration group (offshore, onshore,
or another group), how they are joining, etc.

Figure 5.5: A pop-p window containing participants in a collaboration session.

The main purpose of the participants window was to make the application’s
users capable of registering and time meeting attendance - which are also system
requirements. This was thought to be done by selecting the drop-down menu to
the right of each user. The meeting leader could then be capable of deselecting
participants if someone leaved the group meeting, or to set participants as active
users.

Although communication with mobile devices was not prioritized in the de-
sign of this initial prototype, the participants window was thought to be capable
of displaying information of how personnel were communicating with each other.
The symbol to the right of the participants’ title and name was thought to be

74



visualizing a tablet if the current person was operating such device during the
collaboration, or similar for other kinds of devices.

The requirement for having an overview of the personnel’s competence, and
possibly use the competence for decision-support, was only partially met. It was
thought that the titles below the participants’ names in the participant window
could serve the purpose of displaying competence to participating personnel.

Figure 5.6: A pop-up window containing notifications in a collaboration session.

Another selectable option in the bottom bar was the notification option. This
choice could make the users capable of reading notifications, as shown in Figure
5.6. An exclamation mark was also thought to be displayed on the bottom
bar if new notifications had arrived, whether the bar was collapsed or not.
These notifications features could help fulfilling the requirement of displaying
important news - as notifications.

Figure 5.7: A pop-p window containing a whiteboard.

Lastly the prototype attempted to fulfill the requirements connected to the
whiteboard functionality. A whiteboard should be globally accessible from all
parts of the application, as shown in Figure 5.7.

The whiteboard could let users either draw or write directly onto the surface.
Several whiteboards could also be added by pressing the plus-symbol. The
whiteboards were then thought to be added as tabs. However, none could be
deleted during a session. This choice was made for preventing any information
from being lost.

75



Design principles used when creating the digital prototype

The interaction styles thought of when designing the initial prototype was
mostly one-dimensional menu selection, although direct manipulation was con-
sidered for the editor. But since no editor was designed at this stage, the direct
manipulation alternative was shelved.

As for the golden rules of interface design several were considered.
For example the first rule, strive for consistency, was thought of when de-

signing the up- and down-symbols for expanding or minimizing actions. A
cross-symbol was for example considered, but not implemented, for closing the
global pop-up windows. A down-symbol was used instead, perhaps making it
easier for users to understand that changes could be saved after minimizing
the window. The up- and down-buttons were also commonly used other places
in the application’s design, and could therefore be considered as well-known
symbols.

Further the second golden rule was thought of when designing the interface.
Text was intentionally large and the mouse pointer’s size was also increased to
cater for universal usability. Adjustments to these settings could be done in a
globally accessible setup window. A help site was also designed for being globally
accessible, if users had problems during their interaction with the system.

Review of the initial prototype

The design of the first prototype was discussed during a guidance meeting with
the contracting authority. Several remarks were made to the initial design.
Additionally the contracting authority drew possible design solutions adding to
or changing the proposed design.

One remark to the design was that it could be undesirable to gather all
topics into one drop-down menu. If the topics to discuss instead were visible at
all times, the participants could better prepare for upcoming topics.

Although the design of the window displaying participants appealed to the
contracting authority, some remarks were made about the size of such pop-
up windows in general. If the window’s content didn’t have to be visible for
other personnel than the meeting’s leader, the window itself should possibly not
cover the whole screen. Instead the size could be decreased, for still displaying
underlying and important information.

The mouse cursor, and possibilities for adjusting size, appealed to the con-
tracting authority.

Further the contracting authority proposed an own tool menu for selecting
options - as adding whiteboards to specific software elements or other types of
manipulation.

The contracting authority proposed an own map surface to be made for sup-
porting some kinds of morning meeting topics. This surface was later abandoned
in favor of using external software for fulfilling this purpose. The application’s
possibilities for displaying external software could therefore be the software’s
only focus, instead of creating such internal modules. But requirements for
other software to be used by the system could still be clearly defined.

76



5.2.2 Iteration II
Before the final version of the second prototype was made, three alternative
solutions were designed. These were all further developments of the prototype
described in Section 5.2.1, and tried to solve the contracting authority’s remark
about the visibility of the meeting’s schedule.

However, all solutions were fairly different from the initial one. They were
all made as overlays managing different forms of external software. A column
containing the morning meeting schedule, with clickable options and tools, was
the main part of all prototype alternatives. But the alternatives had differ-
ent solutions regarding if the schedule column should be fixed, collapsible or
divisible.

Figure 5.8: The second prototype - alternative 1.

The alternatives were considered in a second guidance meeting. A final
proposition to the second prototype was then made on the basis of the three
alternatives and meeting propositions, and is presented in Section 5.2.2.

Figure 5.8 displays the first alternative - where the main column was fixed.
The idea behind the design was to always make the schedule visible on the same
part of the screen, independent of meetings. This could perhaps make the users
familiar with the schedule and the interaction routine.

One immediate disadvantage with this design could be that a fixed column
decreases the software surface, making the available screen space left for other
programs smaller. This could again contribute to poorer readability, since other
programs could be designed for being viewed on the whole surface.

The second prototype alternative, presented in Figure 5.9, had menus that
could be moved around the screen, and locked into the original, fixed position -
if necessary.

The second alternative permitted the use of the whole screen, and all, un-
derlying information could be visible by moving the menus around. However,
the external software’s use of the surface could be disturbed if it was covered
by an overlaying menu.

The third alternative was then made to solve both disadvantages of the ear-
lier presented solutions. This design is visible in Figure 5.10. It had two menus
presenting the tools and the schedule, which could individually be collapsed if
the users needed more space.

77



Figure 5.9: The second prototype - alternative 2.

Figure 5.10: The second prototype - alternative 3.

The second prototype version

The contracting authority’s immediate reaction to the alternatives was that the
menu should not be divided into two parts. Further the idea of collapsing menus
could be interesting, especially when presenting information on smaller devices
with limited screen space. The contracting authority also mentioned that it
could be advisable to present the user with the current topic on screen if the
menu was collapsed, to prevent confusion.

Figure 5.11: The second prototype.

78



On the basis of the feedback a new version was made. In this design, pre-
sented in Figure 5.11, the menu was a single column - containing both tools and
the schedule. The surface space available for presenting external software was
positioned to the right of this menu. However, if the user needed to present the
external software on a larger part of the screen, the menu could be collapsed,
leaving more room for the external software. If so, the current topic could be
visible on an expandable tag in the top bar. A view of this event is visible in
Figure 5.12.

Figure 5.12: The second prototype - collapsed.

However, it has not been considered whether expanding or decreasing of
window size could affect the external software’s view. A possible disadvantage
of the approach is only increasing the views width, while the height remained
the same for the collapsed version.

Fulfilling requirements

By creating a surface for viewing external software, the system could become
less capable of controlling readability requirements, since most, displayed text
was to be presented by other software. However, by implementing options for
zooming, the size of the text could be increased to fulfill the users’ needs. Figure
5.13 presents these options.

Figure 5.13: Magnifying glasses to compensate for lack of readability control.

As for prototype 1, the second, digital prototype displayed solutions for how
notifications and whiteboards could be implemented. These functions could be
activated by tapping/clicking buttons in the bottom of the menu, displayed in
Figure 5.11.

79



As for prototype 1, the system could also alert users of new notifications
by displaying an exclamation mark above the specific button, as displayed in
Figure 5.14.

Figure 5.14: Notifications alert symbol.

information about notifications, whiteboards, settings, help and partici-
pants were considered internal pop-up windows that could be visible by click-
ing/tapping options in the bottom of the internal menu. Figure 5.15 presents
an example of implementation of pop-up windows - the settings window.

Figure 5.15: A pop-up window displaying system settings.

It was both discussed and considered if the participants option should not be
part of the bottom menu, and that the option instead should be visible for all
participants before a meeting started. However, since one of the requirements
for the system’s states is that the software should be intuitively made, it was
decided that all internal and global functionality could be placed in the bottom
of the menu - perhaps preventing confusion.

The pop-up windows were further thought to be fairly similar to the ones
described for prototype 1, and the requirements fulfilled could therefore be quite
similar.

However, the use of colors were more thought out than for the initial proto-
type. Neutral black, white and grayish were chosen for the system interface to
avoid taking too much attention. This could perhaps move the users focus to the
presented information, or important notifications, as displayed in Figure 5.14.
These choices could fulfill requirements set for using colors for manipulating
how users interpret the interface.

Further the new prototype had integrated an own schedule for displaying
information. Figure 5.16 displays this system part. The schedule was now a

80



Figure 5.16: A menu organized as a schedule used during a morning meeting.

more important component than in prototype 1, where it was a mostly hidden
menu for navigating between internal and external documents, software, and
other information sources. Now the menu also served other purposes. Firstly
it was a visible overview of the current meeting’s schedule. But it was also
a module-based component, since it contained pre-meeting, post-meeting and
meeting options.

With respect to the requirement analysis the menu now could satisfy the
requirements for implementing a module-based solution, as well as creating a
system based on the current organization of meetings offshore.

Figure 5.17: Adding documents/whiteboards to specific item in menu.

In the new menu, documents and whiteboards could be added to each step in
the schedule, by right-tapping or clicking an item in the menu, or by clicking the
whiteboard functionality in the bottom bar. Figure 5.17 presents symbols used
for displaying attached documents and whiteboards, as well as how these objects
may be added by right-clicking. These functions could fulfill requirements for
the whiteboard functionality and requirements for information-sharing in meet-
ings, since the documents could contain important information not accessible
in external software. If more than one document was to be presented, when
accessing a menu item, the number of documents available was thought to be
presented above the symbol, as shown above the topmost document item in

81



Figure 5.17.
Some of these documents could also be generated internally in the solution

and linked to the specific step in the schedule. By implementing an internal
text editor it could be easier to save information generated during the meeting,
and to add choices made in a report document generated in a later stage.

Figure 5.18: Functionality for "playing" through a meeting’s topics.

Lastly, it was also considered to implement options for "playing" a meeting.
But since the functionality introduced a whole new concept of accessing meeting
information, it was decided to discuss this feature with the supervisor before
introducing it in a prototype design.

The media-player in Figure 5.18 presents this functionality. It is thought
that by playing a meeting, the user could easily navigate between each step in
the schedule’s menu by clicking the forward- or back-buttons. The menu was
also thought to be accessible when the system was in this meeting-state.

Design principles used when creating the digital prototype

As for the first prototype the interactions styles were mostly limited to menu
selection.

The Eight Golden Rules of interface design were also tried fulfilled mostly in
the same fashion as for the initial prototype design. Adding participants as an
option to the buttons in the bottom bar was an attempt to cater for consistency.

Universal usability, on the other hand, may have been reduced by supporting
external software tools, in a larger degree.

However, the forth rule could be strengthened by adding functionality as the
proposed media player for controlling a meeting’s flow. The forth rule elaborates
that actions should have a beginning, middle and an end. Adding the media
player functionality could make it easier for users to separate the editor phase
from the meeting phase.

Adding the schedule menu, on the other hand, could reduce short-time mem-
ory load, since participants did not have to remember previous or upcoming
meeting phases. These were visible in the menu. This could strengthen the
fulfillment of the eight rule - "reduce short-time memory load".

Review

In the supervision of the second iteration the contracting authority emphasized
the need for specifying guidelines for external software. This software was to
be displayed inside the prototype’s view. Since external software, until this
point, had been thought of as sort of black boxes, displaying information in
various ways, there could be needs for specification. The contracting authority
recommended performing an analysis of an actual morning meeting’s agenda,

82



and to suggest how such information may be displayed with the use of the future
system.

Additionally the contracting authority advised not to implement the sug-
gested media player for navigation between meeting topics. It was argued that
clicks on a menu could be easier to follow by a meeting’s participants than the
suggested solution.

5.2.3 Iteration III
In the review of the second iteration the contracting authority emphasized the
need for creating suggestions for external software. This iteration dealt with pro-
ducing such information. However, it could be discussed if this work should be
considered a part of the prototyping. But since these visualization propositions
were made during the prototyping phase, and indirectly effected the system’s
design, the work was included in the iteration.

During this iteration the different meeting topics were analyzed, based on
the topics presented in the mail platform (Section 4.1.1). Such topics could be
visible in the system’s menu. Function suggestions for each topic have also been
made.

The studied document has been used for conducting morning meetings in
the oil and gas industry. It has not been proposed a changes to this list of topics,
since we did not possess knowledge to do so, and this would also be outside this
thesis’ scope. Instead new visualization techniques were proposed to present the
information described in the email platform.

All information in the studied document is static. It is either written in
the document or presented as screen shots from external software. Much of the
information is also shown in table form without the use of extensive visualization
techniques.

Map Visualization

"HSE", "Notifications and Work Orders" and "Review of Operational Plan" are
all topics that visualize data in table form in the studied document. Common to
this data is that it may contain information about position, and may therefore
be placed on a map.

Steele and Illiinsky (ref. 2.7) claim that map visualization may be a good
technique for presenting data when viewers are familiar with the visualized lo-
cation. In morning meetings detailed information about installation repairs,
production, etc. is shared. It is therefore reasonable to believe that the partic-
ipants have detailed knowledge about the current platform. Map visualization
is therefore proposed to visualize data at least in the three, mentioned topics.

According to Steele and Illiinsky several aspects are important when de-
signing map visualizations. Essentials should be included, the environment
should be recognizable, disorientation should be avoided, possibilities for zoom-
ing should be included, and lastly maps could be changed with respect to the
current situation.

However, these guidelines are somewhat general, and may be open for discus-
sion. For example restricting information to essentials could entail visualizing
only topic-specific data in the map for each of the three topics. But by doing so,

83



information about overlapping work in some areas could get lost. It can there-
fore be argued that tasks linked to different topics may be visible in the map
at the same time, possibly creating situational awareness among participants in
the meeting. Color, as a visualization technique, may be used to focus on the
currently discussed tasks.

By implementing more than one kind of information in a map for each of the
topics may also be in accordance to The Eight Golden Rules of interface design,
since this design choice may reduce the short-time memory load. With several
items included in the map the participants do not have to remember tasks from
one map to the next, if they wonder if tasks are overlapping in the same area.
A visualization proposition has been developed to display such map design. It
is presented in Figure 5.19.

Figure 5.19: A simple map displaying an oil platform, with tasks connected to
several topics. Notice that the tasks that are not directly relevant are gray.

Further the software presenting map visualizations should be recognizable
for the morning meeting participants, although different decks of a platform
is visible. This is in accordance to Steele and Illiinsky’s suggestions, but have
not been implemented in the displayed figure. One solution to overcome this
possible confusing pit-fall is to implement elements that the users may relate
to, in the same fashion as neighborhoods for American subway passengers.

Current software solutions implementing the proposed software demands
may be both IO-MAP, presented in Section 4.3.2 and WISIO, mentioned in
Section 4.3.2. Both solutions implement possibilities for visualizing tasks in
maps, they present simplified visualizations of offshore installations, and have
possibilities for both zooming and jumping between different platform decks.

Written information

Most topics, described in the mail solutions, have written information connected
to them. This information may be written both prior to or during a meeting.

The second prototype, presented in Section 5.2.2, implements both possibil-
ities for connecting documents and whiteboards to items in topics. The white-
board is an internal functionality, while the documents are external. However,
if external documents should be presented during a meeting, there could be set
some requirements to the editor used for displaying them.

84



Common to the written information in the email is that some of the text
has been modified to highlight information. An editor should therefore have
functionality to change text emphasis. It may also be argued that the internal
whiteboards also should implement functionality for altering text - to emphasize
information.

Other Visualizations

In the mail platform there are some other kinds of visualizations that should be
mentioned.

The "Drilling" topic is for example a screen dump of an external software
with a colorful animation of a drilling sequence. This software visualization
could be continued in the new application, perhaps as a live drilling demonstra-
tion, if needed.

Further the topic "Review of Operational Plan" has a static weather forecast.
External software could implement a real-time weather forecast.

If this weather information should be accessible in more visualizations than
a single weather forecast, may also be discussed. The mail platform is for
example containing information about lifting tasks to be done on the platform.
The weather may affect such operations. It is therefore arguable that weather
forecasts should be presented together with described tasks. This is also in
accordance to The Eight Rules of interface design, since the users do not have
to remember information about weather when discussing tasks to be done on
the offshore installation.

External software presenting tables, with no position data, may be continued
in the new application. However, some suggestions for visualization techniques
for visualizing comparable information have been proposed.

In for example the production-topic, a table presents an overview of current
production levels. External software which have possibilities for easily change
visualization of such data may be favored. Steele and Illiinsky argues that for
example color may be used to visualize differences in huge data sets, while size,
as a visualization technique, may help morning meeting participants to easily
compare small sets of data.

Figure 5.20: Comparison of visualization techniques.

The example in Figure 5.20 builds on a visualization presented by Steele and
Illiinsky, and presents how table data may be changed to a size visualization, for
increasing the viewers understanding. The data in the table is a fictive version
of data presented in the mail platform, which is a small data set. Such concrete
visualizations may perhaps make the users capable of easily compare numbers
currently presented in tables.

85



Such visualizations may also be used for illustrating other kinds of infor-
mation, as for example the amount of oil torched. Large deviations for such
data are currently highlighted in the mail platform. By automatically creating
visualizations the highlighting process may be abandoned, and deviations may
be easier to discover.

Summary of Proposed Function Suggestions for the Meeting Topics

Table 5.1 presents suggestions for function implemented in external software
used for each of the morning meeting’s topics, included in the menu in the
prototype system. The full titles of the topics are presented in Section 4.1.1.

Table 5.1: Function Suggestions for External Software

Topic Functions

HSE Text editor, map solution
Production Table (size visualization)

Notifications & Work Orders Map solution
Operational Plan Review Map solution, text editor, (weather visualization)

Drilling Own software
Actions from Handover Text Editor

Focus Points Text editor
Action Status Text editor

This table presents function suggestions for external software used in combination
with the future system proposed in this thesis.

86



5.3 Prototyping Cycles - Vertical Prototyping
After conducting the design of the meeting system, by following a horizontal
strategy, it was decided to narrow the approach. The development of function-
ality, presented in this section, took much longer time than design of the user
interface with drawing tools and paper prototyping. This part was on the other
hand developed as a traditional online prototype - with code. Therefore only a
handful functions were gradually implemented in a proof on concept prototype
for the active part in meeting sessions.

5.3.1 Iteration IV

Figure 5.21: The initial prototype version’s user interface.

The initial prototype was thought to implement only two, major functions:

1. An interactable schedule menu: As in the prototype design, described in
Section 5.2.2. The schedule should represent a meeting’s content and make
the user capable of navigating between topics and related documents and
software.

2. Map visualization: Since the software could be used for displaying a map
view of installations, an interactable map functionality was proposed to
be implemented.

Additionally it was decided that the prototype could implement minor func-
tionality, as a clock displaying time globally, a help menu, and some settings, if
there was time to spare.

A screen shot of the first online prototype is presented in Figure 5.21.
The menu in the left part of the view let the users cycle through a meeting.

External software and information could be presented in the right part of the
view. Figure 5.22 presents a view of this initial and simple implementation of
the menu.

This version of the prototype differed from the previously presented ones. It
was simpler and contained less functionality than for example the design shown
in Figure 5.15. The reason for these differences is that it was quicker to design
features than to actually implement them in code. A lot of features earlier
presented where therefore not included in this initial, functional prototype.

87



A Menu Inspired by Working Solutions

Figure 5.22: The interactable menu - version I.

The setup for the menu itself was retrieved from the server as an XML
document. It was thought that this document could have been set in an editor
on a previous stage. The below excerpt of a DTD1 scheme shows the layout of
the XML, used for structuring the menu:

<!ELEMENT menu (schedule, tools)>
<!ELEMENT schedule (meeting_stage*)>
<!ELEMENT meeting_stage (topic*)>
<!ELEMENT topic (item*)>
<!ELEMENT item (heading?)>
<!ELEMENT heading (#PCDATA)>

<!ATTLIST item type (participants | external |
whiteboard | txt | map) #REQUIRED>
<!ATTLIST item url CDATA #IMPLIED>
<!ATTLIST topic n CDATA #IMPLIED>
<!ATTLIST meeting_stage n CDATA #IMPLIED>

The menu was built as a tree structure. At an overall level the structure of
the XML resembled the meeting structure mentioned in Section 2.1.1, imple-
menting the "before", "during" and "after" meeting parts. In the XML such
elements were added below a singleton schedule element, and each had to be
of the type "meeting_element", as described in the DTD above. But to make
the schedule more flexible, and to support other kinds of meeting structures,
an arbitrary number of meeting stages could be added below the schedule. In
the currently displayed menu these elements’ values were "Pre-meeting", "In-
meeting" and "Post-meeting".

1http://www.w3schools.com/xml/xml_dtd_intro.asp

88



On a lower level, the menu was inspired by a previously used morning meet-
ing agenda, described in Section 4.1. This agenda contained eight topics with
underlying sub topics presenting information. The menu imitated this structure
by letting the users add a custom number of meeting topics for each of the meet-
ing stages. But in the initial prototype, only one topic had been added to the
displayed menu for the "In-meeting" stage. This was called "meeting topic",
but could have been named both "HSE", "Production", "Drilling", etc. - as in
the meeting agenda.

The item elements in the DTD resembled each of the actual agenda’s subtopics.
For example the "review of the operational plan" topic in the agenda displays
information gathered from SAP, some descriptions, a weather forecast and trans-
portation. All such sub topics were called items in the DTD, and are shown in
the menu as colored text. In the currently displayed example "SAP", "White-
board", "External Map Program" and "Doc 1" are such items. Clicking on one
of them could display the underlying information in the window to the right of
the menu.

Map Visualization Inspired by Prototype Software

Figure 5.23: The first version of the functional map visualization.

The window to the right of the menu, displayed in Figure 5.21, was meant to
present information to the users during meetings. Currently a map visualization
was displayed, as shown in Figure 5.23. Other kinds of software were in this
prototype only implemented as screen shots of external programs.

The map functionality was highly inspired by existing prototypes with a
similar purpose - to display hazards and tasks on a map surface. Especially
the prototypes IO-MAP and Wisio (described in Section 2.2.5 and 2.2.6, re-
spectively) were sources of inspiration for the developed prototype’s initial and
simple map surface.

As for the menu, the map surface also made use of XML to display informa-
tion, and to store information about maps created by the users. The following
tags are excerpts of the DTD-file describing these XMLs’ structures (the com-
plete content of the file has been added to Appendix F.1):

89



<!ELEMENT map (item*)>
<!ELEMENT item (id, title, description, start,
finish, modified, xcord, ycord)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT start (#PCDATA)>
<!ELEMENT finish (#PCDATA)>
<!ELEMENT modified (#PCDATA)>
<!ELEMENT xcord (#PCDATA)>
<!ELEMENT ycord (#PCDATA)>

<!ATTLIST map src CDATA #REQUIRED>
<!ATTLIST map created CDATA #REQUIRED>
...

Similar to IO-MAP and Wisio the interface displayed tasks and hazards on
a map surface. Although the mentioned prototype systems implement more
functionality, like weather forecasts and upcoming transportation possibilities,
the presented interface only displayed a simplified map surface. The reason
why this approach was selected was a recognized need for displaying external
map data. Table 5.1 in Section 5.2.3 summaries that such visualization could
be used for presenting information about HSE, notifications, work orders and
review of the operational plan in morning meetings. Each of these topics were
earlier defined with respect to the evaluated meeting agenda described in Section
4.1.1.

The structure of the XML, linked to the map surface, was however simple.
Each XML had a root element - a map, with a file path to the background surface
image, stored as an attribute. The map node could contain several items. These
items were the individual objects to be displayed on the map surface. In this
prototype version the id, title, description and the objects’ x- and y-coordinates
were used.

Fulfilling Requirements

Since this prototype was the first to be developed in the project following a
more vertical strategy, all requirements were not met. The requirements were
set to a complete system, while this prototype only implemented small parts
of the future application. However, some requirements were taken into account
during the development.

With regard to the list of important system requirements, presented in Sec-
tion 4.2.3, three needs were partly or completely fulfilled. These are as follows:

Requirement group 3: The requirements state that it should be possible
to register information during a meeting. This was partly fulfilled by letting
the users access and manipulate information in the displayed map surface. The
initial prototype had implemented functionality to create map items, to store
the complete map, including these items, and to retrieve the information with
an Ajax proxy to a server side PHP script - reading generated XMLs.

90



Requirement group 20: According to the requirement the future system
should be easy to use and understand. By creating a menu based on an agenda
for morning meetings, it could be possible that users working in the oil and gas
industry, could already be known to the menu’s structure. If some companies
execute meetings differently, or implement other agendas, the underlying XML
may be changed - possibly in a future editor.

Requirement group 33 : The last of the implemented list of important re-
quirements state that the system must be capable of displaying required meet-
ing specific information. By creating the menu based on an agenda, the topics
mirrored actual meeting specific information. In the initial prototype this in-
formation was shown on a map surface, although the data was fictive and not
gathered from actual sources.
In addition to the important requirements, the prototype was also made to fulfill
some of the other groups mentioned in Table 4.1.

Requirement group 4: The prototype took partly existing meeting roles
into account. The displayed information resembled an actual meeting agenda,
and could be changed with respect to the users’ needs.

Requirement group 5: Although the prototype was made for meeting
sessions, the underlying XML structure could be changed in an editor, and
information could be retrieved in a later report state.

Requirement group 6: The use of XML could also be handy when editing
a future meeting’s setup, although the setup could only be changed directly in
the XML document, at this point.

Requirement group 7/8: The future application should display both fixed
and real-time data. These requirements could be fulfilled by displaying external
software, if the process of doing so permitted it.

Requirement group 9: The system should have an own mode active during
meetings. This was currently implemented as the meeting’s schedule.

Requirement group 15: The page hierarchy of the prototype had only two
levels, although the menu had several levels of topics.

Requirement group 17: The requirements connected to displaying other
system’s data was imitated by displaying the map surface in the window where
external systems could be presented.

Requirement group 18: Clear navigational information was visible in the
menu when interactions were made. The bar above the external window also
informed the user about the current navigation.

91



Requirement group 20: Unnecessary functionality was considered not im-
plemented. The main parts of the initial prototype were simple - only the map
surface and the schedule were implemented.

Design Principles Followed

Few design principles were fulfilled in the initial prototype. The user interface
was simple and contained test information, as the use of colors for element types
in the schedule menu.

Review

The initial prototype was reviewed in collaboration with the contracting au-
thority after completing the first cycle. The contracting authority thought that
the map surface had room for several refinements. Adding items to the map
currently showed some input fields, buttons and a combo box below the surface.
Alert pop ups also informed the user about changes made and illegal actions.
Such information could instead be presented inside the ’external’ window, pro-
viding the user the experience of accessing an external application.

The contracting authority also emphasized that the background image in
the map surface should be changed to present the user with an overview of an
offshore installation.

In addition the menu was considered too simple, and bewildering. The initial
schedule menu had no indents, making it hard for the user to separate topics
from items. The contracting authority also emphasized that the menu should
link to more information, making the user capable of viewing images of external
software, while interacting with the menu.

A last implementation possibility, according to the contracting authority, was
to add opportunities for displaying which topics that had been viewed. Thus the
users should be capable of separating between already displayed information,
and information that was yet to be viewed.

5.3.2 Iteration V
The fifth prototype cycle was much less comprehensive than the fourth. It was
decided early in this cycle that an upcoming, and extensive version should be
made without the use of external design tools - as bootstrap. Instead the design
was to be made from scratch, preventing additional functionality as dynami-
cal shrinking of panels, etc, included in the design tool. Thus the student was
thought to be provided with more control of the design process. The fifth pro-
totype was therefore not considered a new version, but as a product containing
minor changes to the first version.

Changes made

The biggest changes made in the second cycle was to implement a view of the
map surface, and to include some extra images of other, thought to be external,
systems. These changes are presented in Figure 5.24 and Figure 5.25.

The image of the installation, used when presenting information in the map,
was retrieved from a screen shot of the working IO-MAP prototype.

92



Figure 5.24: Adding an installation background to the map surface.

Figure 5.25: Adding images of other software systems.

The second figure, displaying the external software SAP, was also a screen
shot of the working system.

Requirements, design principles and review of the changes

The minor changes made had little effect, if any, on the prototype’s fulfillment
of requirements and design principles beyond what is mentioned for the ini-
tial, vertical product in Section 5.3.1. The contracting authority, reviewing the
changes, was therefore notified about what was done. Most of the sought needs
were to be fulfilled in the sixth cycle, mentioned in Section 5.3.3.

5.3.3 Iteration VI
In the sixth iteration the vertical prototype was redesigned. The menu was
made collapsible, to add possibilities for displaying a larger view of inter alia
external software. Possibilities for performing simple draw and write operations
on whiteboards were added. The external map surface was also improved, mak-
ing it possible to add new map elements by clicking the surface and writing
information in input fields in a div - designed as part of the map software. Ad-
ditionally the map got functions for displaying information about each of the
elements by accessing the tools menu, and selecting a help cursor icon.

93



Figure 5.26: Interaction with a map surface in the last, vertical prototype.

Further the xml for the tools menu was implemented into the prototype.
The tools were made mutable or final, separating them into categories of tools
displayed for specific sites, or available globally. A small part of the DTD file
(available in Appendix F.1), with this functionality described on a lower level,
is presented below.

...
<!ELEMENT tools (tool*)>
<!ELEMENT tool (heading?, img?, func, id?)>
...
<!ATTLIST tool type (final | mutable) #REQUIRED>
...

In the script the attribute "type" is introduced in the DTD. This is a required
attribute, making the tools either mutable or final.

Lastly, the information shown in the prototype was closely linked to the
discoveries made in Section 5.2.3 - the third design iteration. Both the map
view, the textual parts, tables and size and weather visualizations were added.

Fulfilling Requirements

By implementing the described changes it was thought that the prototype could
fulfill more of the defined requirements. The newly added whiteboard function-
ality could satisfy requirement 34 in Table 4.1, defining the need for such a
system part.

Further, adding different types of tools, both global and more specific, could
increase the fulfilling of both requirement 20 and 21. Since only the needed
tools could be presented, the automation of the system would perhaps be more
understandable, since tools not applicable for an external system would be hid-
den. This could also strip the system for showing an unnecessary amount of
different types of tools at all times.

But a major discovery made, during this vertical prototyping stage, was that
the current design had problems fulfilling important functions. It could be hard
to implement possibilities for alteration of the menu, if the system had to be
operated from the menu itself. It was further noted that it could be hard to

94



share the required information in morning meetings. The current prototype
design, both on this narrowed, vertical level and a higher, horizontal level, did
not contain possibilities for simply assign decisions made and comments during
a meeting.

5.3.4 Review
The current prototype was reviewed by the contracting authority. It was decided
to end the vertical development - implementing functionality in code. Instead
it was decided that the horizontal prototyping could continue, to implement
missing, important functionality. With this, a seventh iteration cycle could
commence.

95



5.4 Prototyping Cycles - Adjustments to the Hor-
izontal Prototype

5.4.1 Iteration VII
The work with the prototype following the vertical strategy spanned over several
weeks. During this immersion into more specific functionality, new ideas came
up and was added to the horizontal part of the prototype, although they were not
included in the vertical, timeconsuming prototype. Since both prototypes were
to be tested, the horizontal prototype was changed after the vertical prototype
was finished.

All these ideas were reviewed with the contracting authority before finishing
the cycle, prior to the initiation of the first testing stage, which also forced a
last design iteration.

The Comments Window

Figure 5.27: The overall prototype was changed during vertical work with spe-
cific system parts. A collapsible comments window was firstly added.

One of the perhaps most important functions added to the horizontal design
was a collapsible comment-field, reachable during the meeting. This comment
field had been added to the horizontal prototype, and is presented in the right-
most part of Figure 5.28.

In the earlier developed prototype text documents were to be added with
external software and stored. This process could however be timeconsuming,
and was meant for altering earlier written documents. However, if new infor-
mation came up during a meeting, and this information could not link directly
to a written text document, problems could occur.

In the email solution, described in Section 4.1, the meeting participants
were able to write information and comments directly into a displayed document
during meetings. Such changes could however not be possible if the participants
instead were working with an external application or a map surface during
meetings.

96



Figure 5.28: A new comment option was added to the prototype developed
vertically.

Therefore the horizontal design was supplemented with a collapsible com-
ments field as shown in Figure 5.28. This comments field was meant to be
globally accessible during meetings, and could be expanded or collapsed based
on the users’ needs. If the users wanted to write comments, based on the dis-
played information, they now could add this to the comments window while still
viewing a part of the underlying information.

Requirements Thought Fulfilled by Implementing Comments Adding
functionality for writing comments, and possibly attaching documents and screen
shots to them, could strengthen fulfillment of requirements.

Some requirements defined as highly important, presented in the bullet list
in Section 4.2.3, were assumed to be strengthened by adding such a window.
The background for the alterations, based on the requirements, are presented
in the bullet list below.

• Id 3 : The possibilities for registering information during meetings was
thought to be increased. By implementing the comments window the
users could have the ability to easily access a menu and enter information.

• Id 10 : After a meeting it was thought that the leaders could have to
produce reports, and share them. By implementing an internal comments
tool, it could be easier to fetch produced data when a meeting had finished,
without establishing communication with external tools.

• Id 20 : It could be easier to use the system, since the users would have
easy access to a window made for writing meeting specific information.

97



Meeting Handler

Figure 5.29: This is a slide illustrating how the outer part of the system could
be made, for handling several meetings.

While creating the vertical prototype problems were discovered with the
current design. It seemed difficult to alter the meeting’s setup from within an
already existing meeting menu. The overall handling of different meetings, reuse
of meeting elements and importing new ones also seemed difficult to commit
with the current design. Lastly, creating reports seemed hard in the vertical
prototype, if they had to be sent after the meeting had finished.

This paved the way for the implementation of a design handling all meetings,
with possibilities for editing, creating, starting and reporting such sessions.

A part of the design, displaying how meetings could be created, is presented
in Figure 5.29. The other slides are available in the later concept evaluation -
added to Appendix D.

This part of the design was thought to implement a similar XML structure,
as the one developed during the work with the functional prototypes in earlier
iterations. The vertical prototype had therefore already shown that implemen-
tation of a menu, built on XML, could work in practice.

The new design took however the implementation of the XML a step fur-
ther, and based the layout on more functionality than the ones designed into
the functional prototypes. It contained, among others, functionality for creat-
ing both meetings and meeting structures. Structures were thought to be the
meeting skeletons, without the information needed to be displayed in meetings.
Meetings, on the other hand, could contain files, links and references to external
software to be displayed.

Additionally the design had implemented possibilities for inviting personnel
to morning meetings. The lists of personnel were to be built on an XML-like
structure, with team elements containing children elements describing each of
the actual persons.

Created meetings were listed in a menu containing two, sub-menus display-
ing both upcoming and conducted meetings. The upcoming meetings, in the
first list, could be accessed for altering meeting setup, as adding files and ex-
ternal software to the structures, inviting personnel and commence sessions.

98



The meetings in the list with performed sessions could be accessed for sending
reports to participants and other stakeholders.

A fundamental idea behind the design of the meeting handler was to re-
duce the time the users had to spend creating and altering meetings before
the meetings could be commenced. The design had therefore implemented a
lot of possibilities for reusing earlier information, as preset lists of participants,
meeting structures and meeting content.

Requirements Fulfilled Implementing a part of the system handling all the
meetings could strengthen the fulfillment of several requirements. One of them,
considered highly important, is that the system should be capable of sharing
the required meeting information. Meetings could however be viewed as a part
of a bigger whole, the distributed collaboration structure, described by Skjerve
et al. in Section 1.5.2.

According to Skjerve et al. the process of conducting a meeting, or a main
collaboration session, is closely linked to stages involving both the preparations,
and the outcome, execution and adjustments made in the aftermath.

The new system design could perhaps make the future system more con-
nected to the model by implementing functions for performing each of the three
stages. Preparations could be conducted by inviting personnel, attaching meet-
ing content and editing the meeting’s setup. The main collaboration session, on
the other hand, could be performed with the earlier designed main part of the
future system. Lastly the activities needed after the meeting could be supported
by making it possible to send a meeting report and adjusting the structure of
future meetings.

Review

The design was not reviewed with a minor expert review, as for the earlier itera-
tions. At the current time the design was considered finished, and was therefore
reviewed with a more comprehensive test - the cognitive walk-through described
in Section 6.2. However, the test’s results revealed numerous weaknesses, forcing
another design iteration, described below.

5.4.2 Iteration VIII
In this iteration several changes were conducted in accordance to feedback given
during the cognitive walk-through. Both the system part designed for handling
meetings, and the part active in sessions, were redesigned. The new slides have
been added to Appendix C.

In the part of the system handling performed and upcoming meetings, a new
window was added for starting sessions, displaying meeting specific information.
The functions used for adding files, links and references to external software
were also changed. The list containing the meeting skeleton now includes the
content, such as the specific files. Lastly roles were added to the invitations
setup, making it possible to contact the active roles before the meeting, instead
of only specific personnel, who may rotate with other personnel.

The biggest changes were however not done with meeting handler part of
the design, but with the in-meeting part, visible in Figure 5.30. The tool box
was replaced with a row of new buttons, making it possible to add both actions,

99



Figure 5.30: This illustration presents the design generated for the meeting
application during the eighth prototyping iteration.

Figure 5.31: An excerpt of the design displaying the new buttons replacing the
previous tools menu. In Figure 5.30 this menu is mostly hidden below the "New
action"-window.

decisions and comments during a meeting, plus capturing screen shots of the
displayed content. This menu is presented in Figure 5.31.

Clicking on either the comments, decisions or actions buttons could further
lead to displaying a custom form window, accepting user input. An example is
presented in Figure 5.30. If created, the information was thought to be available
as either a comment, decision or action item inside the schedule menu.

The schedule menu was also altered further. In previous versions cross-
and tick-symbols were used to inform if topics had been viewed, or not. In
this version a new approach, inspired by email readers, was implemented. The
menu items were now displayed as bold text if they had not been viewed yet.
Otherwise they were displayed with regular text formatting.

Another functionality added was a more advanced report window, accessible
in the end of a meeting. The report displayed all information gathered during
the meeting, as comments, decisions and actions added, and for example screen
dumps captured. This information was however not thought to be fixed, and
could be edited if needed, before the report could be sent.

Several tools as whiteboards, notifications, help and settings were omitted
from the prototype. The testers argued that interacting with such functionality
could be too time-consuming. The prototype was therefore simplified, for saving
time.

The visual presentation of the design was lastly transformed. In the visual-
ization of the outer part of the system, the use of the color red was switched with

100



yellow, for not triggering perceptions of alerts. More comprehensive changes
were undertaken with the inner meeting-specific part of the design. Here the
layout, previously using a lot of borders, was replaced with a cleaner, coher-
ent design, as displayed in Figure 5.30. Space-demanding borders, surrounding
menu items and the window displaying external information, were all removed.
Instead the grayish background color itself, separating the external information
from the rest of the design, was used as a window border.

Review and Guidelines Followed

The eighth iteration of the design was tested with a heuristic evaluation, and a
usability inspection - aiming to uncover if the future system could fit into today’s
oil and gas organizations. The heuristic evaluation included a questionnaire to
test in what degree the requirement groups were implemented into the current
design. A second questionnaire aimed for examining if interface design guidelines
could be considered satisfied. These tests are presented in Section6.1.

Since the tests reviewed the interface design, the separate evaluation of the
requirements has been excluded from this sub section.

5.4.3 Iteration IX - Final Changes

Figure 5.32: A slide presenting the report with action and decisions shown
without the need of scrolling.

After conducting the heuristic evaluation and the usability inspection, the
testers still felt that changes could improve the system. The feedback revolved
around changes to the part active during meetings, and minor changes to the
outer subsystem, managing meetings.

According to the testers the yellow warning triangles, symbolizing missing
input, should be changed, since no real hazards could be connected to them. Ex-
ecution dates were requested for actions and decisions in the in-meeting subsys-
tem. Here the report was requested changed, to display all relevant information
on a single site, not demanding scrolling.

Although these changes have not been reviewed, the testers suggestions have
been designed as a couple of prototype slides. Figure 5.32 displays a proposal

101



Figure 5.33: An excerpt of a design slide presenting possibilitied for adding a
deadline to actions and decisions.

for the design of the report slide. Figure 5.33 presents how a deadline could
be added to actions and decisions. And lastly Figure 5.34 presents an excerpt
of a slide representing the outer part of the application, with circles added for
telling the users that reports had not yet been sent.

Figure 5.34: An excerpt of a slide presenting information about reports, without
the yellow warning sign used in the previous iteration.

102



5.5 Requirements and Features Thought Imple-
mented when Developing the Horizontal and
Vertical Prototypes

The requirements set to the system, and inspiration from current systems and
prototype solutions, form the basis of the future system’s functions. During the
work with the prototypes several functions were implemented, and some were
omitted along the way. Table 5.2 in this section sums up all requirements and
other features that was tried implemented in each prototype version. The 34
requirement groups, as described in Table 4.1, are presented. Further the table
presents which of the features, discovered in other systems, that were tried
implemented into the prototypes. These features are listed in Table 4.3. In
Table 5.2 all IDs are prefixed to separate requirements from discovered features.
Requirements are prefixed with the letter "R", while other features are prefixed
with "F".

Requirements or features which are designed, but not tested, are marked as
implemented, but are surrounded by parenthesis. The reason for this choice is
that the design contains a lot of complicated functionality. It is not possible to
test all by prototyping vertically in a project of this size.

103



ID v1 v2 v3 v4 v5 v6 v7 v8 v9
R1 No No No No No No No No No
R2 No No No No No No No No No
R3 No (Yes) (Yes) No No No (Yes) (Yes) (Yes)
R4 Yes Yes Yes Yes Yes Yes Yes Yes Yes
R5 No No No No No No Yes Yes Yes
R6 No No No Yes Yes Yes Yes Yes Yes
R7 (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes)
R8 (Yes) (Yes) (Yes) Yes Yes Yes (Yes) (Yes) (Yes)
R9 Yes Yes Yes Yes Yes Yes Yes Yes Yes
R10 No No No No No No Yes Yes Yes
R11 No No No No No No No No No
R12 No No No No No No No No No
R13 No No No No No No No No No
R14 No No No No No No No No No
R15 Yes Yes Yes Yes Yes Yes Yes Yes Yes
R16 (Yes) No No No No (Yes) (Yes) (Yes) (Yes)
R17 (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes)
R18 Yes Yes Yes Yes Yes Yes Yes Yes Yes
R19 (Yes) No No No No (Yes) (Yes) No No
R20 Yes Yes Yes Yes Yes Yes No Yes Yes
R21 No No No No No No Yes Yes Yes
R22 No No No No No Yes Yes Yes Yes
R23 Yes Yes Yes No No No No Yes Yes
R24 (Yes) No No No No No No No No
R25 (Yes) No No No No No No No No
R26 (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes) (Yes)
R27 No No No No No No Yes Yes Yes
R28 No No No No No No No No No
R29 Yes No No No No No Yes Yes Yes
R30 Yes Yes Yes No No No Yes No No
R31 No No No No No No No No No
R32 Yes Yes Yes Yes Yes Yes Yes Yes Yes
R33 No No No No No No Yes Yes Yes
R34 (Yes) (Yes) (Yes) (Yes) (Yes) Yes (Yes) No No
F1 No No No No No No Yes Yes Yes
F2 No Yes Yes Yes Yes Yes Yes Yes Yes
F3 (Yes) (Yes) (Yes) No No No (Yes) No No
F4 No No No No No No No No No
F5 Yes No No No No Yes Yes No No
F6 No No No Yes Yes Yes Yes Yes Yes
F7 No Yes Yes Yes Yes Yes Yes Yes Yes
F8 No No No No No No No No No
F9 No No No No No No No No No
F10 No (Yes) (Yes) Yes Yes Yes (Yes) (Yes) (Yes)
F11 Yes Yes Yes No No No Yes No No

Table 5.2: A table presenting functionality thought implemented in the proto-
types of the future system.

104



Chapter 6

Concept Evaluation Results

6.1 Testing of the Developed Concept
During the development of the prototype there were conducted several minor
tests in collaboration with the contracting authority. These were minor experts
reviews, and are not described in this chapter. Instead they are shortly described
for each iteration made for developing the concept.

The tests described in this section were on the other hand more extensive,
and of a more formal nature. They were activities where two test individu-
als at IFE, with depth knowledge about software development in the oil and
gas industry, were involved. These individuals were asked to perform a cog-
nitive walkthorugh of the prototype design, fill out a questionnaire linked to
the project’s requirements and design guidelines, and finally perform a usability
inspection.

Initially the tests were meant to be performed in one, single session. How-
ever, the results of the first test activity, the cognitive walk-through, forced an-
other prototype iteration. The tests were therefore performed in two separate
parts. And so, further improvements to the prototyping design were developed
before the design lastly was tested with a heuristic evaluation and the usability
inspection.

The tests were otherwise performed as described in the methodology in Sec-
tion 3.5. All tested slides are available in this document. The eight design
iteration, conducted after the cognitive walk-through and the smaller, ninth
iteration are however described in Section 5.4.2 and 5.4.3.

The cognitive walk-through was performed as mentioned in the test docu-
ment, presented in Appendix D. The subjects were handed a document de-
scribing several walk-throughs and were asked to use the design to navigate
within the user interfaces. They were told that the application was designed in
two layers - an outer part of the system, letting personnel create, start, design
and report meetings, and an inner part containing the design available in the
meeting sessions.

The heuristic evaluation was meant to follow the cognitive walk-through in
the same testing session. But since several implications with the design were
discovered in the first test session, both the heuristic evaluation and the usability
inspection were postponed.

105



However, when the heuristic evaluation finally was performed, the same ex-
perts were asked to fill out questionnaires to evaluate the system based on the
initial requirements and interface design guidelines.

Lastly the usability inspection was performed to investigate how well the
currently developed prototype could fit into the morning meeting context in the
oil and gas industry.

The results of the tests are presented in in this chapter. The complete test
document is available in Appendix D.

106



6.2 Cognitive Walk-through
During the cognitive walk-through several remarks were made, not only to de-
sign elements, but also the logical structure of the design concept. The prototype
parts discussed was the outer system, managing meetings and reports, and the
inner system active during meetings. Implications discovered during the re-
view of the outer system are listed in "pre-meeting" and "post-meeting tasks".
Feedback regarding the actual meeting system design is listed in "in-meeting
tasks".

Mainly the implications discovered are mentioned, since these disturbed the
cognitive walk-through, leading to functional feedback. Later tests presents
more subtle reviews.

6.2.1 Pre-meeting tasks
Some of the feedback given affected minor elements in the design. But no matter
if they where small, their impact could have been negative in a future system.

The first regarded the use of color. In the prototype the color red was shown
to tell the users that reports and meeting invitations not yet had been sent.
According to one of the reviewers red is considered an alarm color, and should
not be used for such purposes.

Further the button designed for accessing a meeting’s setup contained a
sprocket symbol. Both reviewers meant that such a symbol should not be
connected with harmless adjustments to a meeting’s setup. They stated that
sprockets should instead be used when performing deeper and more advanced
system changes.

Two, structural implications were discovered - connected to a meeting’s setup
and to meeting invitations.

Firstly one of the reviewers noted that files, links and references to external
software were not visible in the structure of the meeting, when adding content
to an upcoming session. If the users could not see the relationship between the
structure and the content, they could easily get confused.

Further a reviewer noticed that it could be unnecessary to invite specific
personnel to meetings. By instead inviting roles, personnel in rotating shifts
could be invited. On the other hand, when inviting specific personnel, one of
the reviewers meant that the system should take more into account invitation of
guests. It was therefore argued that the invitation structure should be changed.

The reviewers also noticed, when discussing the organization of files, etc.,
that the content to be displayed should be better explained. The current proto-
type informed the users about each of the files’ sizes, creation dates and, among
others, types. Instead this information was requested to be more closely linked
to the users needs. By displaying read or write permissions the users could for
example know in advance if they were able to alter the content to be displayed.
Last edit date and a preview of the content were also desired information, partly
available in the current design.

Lastly the testers found the pre-meeting prototype to provide the users with
too little feedback when a meeting was to be started. One of the reviewers
requested an own window displaying a summary of meeting related information,
connected to the upcoming session.

107



6.2.2 In-meeting tasks
After conducting the walk-through, describing the pre-meeting functionality, the
testers were presented a set of slides with functionality available in the actual
meetings. The first implication was noticed early on. No welcome message had
been included at the beginning of the meeting slides. Such text was requested.

When being displayed the different versions of participant registration, the
reviewers found the current design to be cumbersome. Instead they requested a
simple checkpoint list on the welcome site, enabling easy and fast registration.

They also noticed that the tools menu, available below the schedule, was
providing the users with perhaps unnecessary and time-consuming functionality.
They therefore argued for omitting the functions, and move specific tools to the
top bar above the window displaying the meeting content.

One reviewer added that available functionality in morning meetings should
be timesaving to reduce costs.

The testers argued that the previously mentioned tools menu could be re-
placed with a button group. These buttons could be used during the session for
attaching actions, comments and decision descriptions to the content displayed
in a meeting. One button could also be used for adding screen dumps as clarifi-
cations of decisions made. When creating such information one of the reviewers
claimed that it should be attached to the schedule menu, and be available in
a later report, displayed at the end of the meeting. Especially actions and de-
cisions were considered as highly valuable meeting information, requiring more
focus.

Both the reviewers agreed that the schedule should be presented more as an
agenda, and be more striking than the current solution. One reviewer claimed
that other functionality, as the use of tools, could steal too much attention from
the schedule.

The schedule’s display of files, links and external software were also con-
sidered too space consuming. Such information was requested to instead be
displayed in a single line in the schedule, making space for more important
information - such as attached actions, decisions and comments.

Further the schedule’s use of symbols, for informing users of topics viewed,
was considered misleading. Especially the "X"-symbol could be mixed with a
symbol for closing something.

The whiteboard functionality, meant for replacing physical meeting white-
boards, was considered unimportant. Although many physical whiteboards are
available in today’s collaboration rooms, they are, according to the testers,
rarely used.

Further the help menu and settings were considered unnecessary. According
to one of the reviewers, the meeting participants didn’t have time to access such
features during a meeting.

It was thought that the report should only be available for viewing at the
end of a morning meeting. But the testers stated that reports usually are sent
at the end of the session. More functionality was therefore requested.

The testers also claimed that a meeting report should have possibilities for
listing all the actions, decisions and comments made, plus screen dumps taken,
during a meeting. Such information should have editing possibilities. The report
could therefore be changed before it was sent. Then, in the next morning
meeting, the actions and decisions made in the previous meeting should finally

108



be listed, according to the testers.
One remark was also given to the visual design of the future system. A re-

viewer thought that the interface design should be simpler, without unnecessary
elements as borders or colored frames, stealing attention.

6.2.3 Post-meeting tasks
After conducting the review of the meeting design, the outer part of the system,
handling the reports was evaluated. Although most reports should be send in
the morning meetings, the testers could see the advantages of being able to send
reports after the sessions. Such incidents could occur if the meeting leaders were
to check something before information could be written in an unfinished report.
But the current design only implemented thought functionality for viewing the
reports. The testers requested functionality for also changing report content.

109



6.3 Heuristic Evaluation
The heuristic evaluation was divided into two parts. The first aimed for evaluat-
ing the prototype against the requirements made in the beginning of the project.
In the other part the reviewers were asked to evaluate the prototype based on
the Eight Golden Rules of Interface Design. Although the main focus for this
prototype has been to adapt it to modern oil and gas industry, the student has
also tried to design with established guidelines in mind.

To complete their task the reviewers were to rank the fulfillment of require-
ments and guidelines with regard to the developed concept. This scale was
limited to five, possible selections. Additionally the reviewers were encouraged
to append comments if they were unsure if requirements had been implemented,
or the meaning of them.

The two reviewers participating in the test were the same individuals who
evaluated the system by performing the cognitive walk-through.

6.3.1 Evaluation of the Concept Based on the Require-
ments

The testers ranked the system based on the 34 requirement groups, presented
in Section 4.2. Table 6.1 shows their answers per requirement group.

ID Requirement group Reviewer 1 Reviewer 2
1 Two-way communication with

users operating external mobile
devices during collaboration ses-
sions.

1, Design allows it,
not demonstrated.

1, not relevant.

2 Sharing of view with mobile de-
vices during collaboration ses-
sions.

1, Design allows it,
not demonstrated.

1, not relevant.

3 Possibilities for registering infor-
mation as for example keywords
during meetings.

5 4

4 Must take the existing meeting
roles into account by being de-
signed for both meeting partici-
pants, meeting leaders, etc.

4 4

5 Multiple modes for varying sys-
tem flow based on current state
in the meeting process. Exam-
ples include an editor, a meeting
mode and a report mode.

4 4

6 Possibilities for editing and pre-
pare a future meeting’s setup.

5 4

7 Implementing options for pre-
senting real-time data.

1, Design allows it,
not demonstrated.

1, hard to rate.

8 Implementing possibilities for
presenting fixed data.

1, Design allows it,
not demonstrated.

1, hard to rate.

110



9 Implementing an own mode ac-
tive during meetings, especially
designed for such a stage in the
planning process.

3 ?

10 Implementing an own mode ac-
tive after meetings, able of pro-
ducing minutes or other kinds of
reports.

4 ?

11 Implementing modes for differ-
ent types of devices to make the
interface user friendly, regardless
of device/monitor used.

1, not demon-
strated.

1

12 Collaboration participants
should see the same platform
view regardless of physical
location or monitors in use.

1, not demon-
strated.

1

13 Sharing of cursor. 1, not demon-
strated.

1

14 Agents for decision-support. 1, not demon-
strated.

1

15 Page hierarchy with maximum of
two levels.

3 3

16 Register and time meeting atten-
dance.

4 3

17 Functionality for open other sys-
tems.

5 1, theoretically.

18 Present clear navigation infor-
mation during interaction with
system, as well as when other
systems are active inside the soft-
ware’s context.

4 1

19 Having an overview of personnel
competence, and possibly also
use the competence as decision-
support.

2 1

20 Easy to use system stripped of
unnecessary functionality.

3, getting there -
but a bit to go.

3

21 Understandable and intuitive au-
tomation.

4

22 Clear system feedback, including
graphical feedback.

4 3

23 Measures for focus as warm and
cold colors for inter alia setting
priority.

3, hazard sign. 1

24 Implementing functionality ca-
pable of giving readability feed-
back based on the current adjust-
ments.

1, not demon-
strated.

1

25 Readability test. 1, not demon-
strated.

1

111



26 Implementing possibilities for
readability adjustments.

3 1

27 Pre-selection of options when
possible, to make it easier for
users to follow ordinary system
flow.

4 2,3

28 Support for display reduction. 3, unclear if it is in
place.

1/2

29 Different complexity levels en-
abling both expert and novice
use.

3 3

30 Notifications about important
news.

4

31 Local display settings, as bright-
ness, color and contrast.

3, unclear if it is in
place.

1

32 A system capable of taking avail-
able hardware in current meeting
rooms into account.

3, unclear if it is in
place.

1

33 A system capable of sharing the
required information in morning
meetings.

4 3

34 Whiteboard functionality. 3, not so important
for morning meet-
ings.

2/3

Table 6.1: A table presenting the results of the heuristic evaluation. The review-
ers individual answers are shown in the columns to the right. The fulfillment of
requirements are ranked on a scale from 1-5, where 1 means not fulfilled, and 5
stands for fulfilled. Additional comments are written in the same table cells.

While the table presents the review of the system, not all requirements were
implemented, or possible to implement, in the prototype. Some functionality,
as whiteboards, help, settings and notifications, were omitted after the review
produced in the cognitive walk-through. At the same time the system’s imple-
mentation of the overview of personnel’s competence, was omitted based on the
review. Figure 6.1 presents review scores in a diagram displaying requirements
thought to be present in the design. The x-axis shows the requirements by id
and the y-axis shows the score. The two types of bars in the diagram presents
the reviewers ratings.

6.3.2 An Evaluation Based on the Eight Golden Rules of
Interface Design

The system design was further rated in accordance to the Eight Golden Rules
of Interface Design, as presented in Section 2.8.1. Table 6.2 shows the reviewers
scores, given in a similar fashion as for Table 6.1.

ID Golden Rule Reviewer 1 Reviewer 2
1 Strive for consistency. 4 3
2 Cater to universal usability. ?, unclear 1

112



3 Offer informative feedback. 4 3
4 Design dialogs to yield closure. 4 3
5 Prevent errors. ?, unclear 1
6 Permit easy reversal of action. ?, unclear 1
7 Support internal locus of control. 4 4
8 Reduce short-term memory load. 4 2/3/4, external

tools are not
controlled.

Table 6.2: A table presenting the results of the heuristic evaluation in accordance
to fulfillment of the Eight Golden Rules of Interface Design.

6.3.3 Comparison of the Reviewers Ratings
The heuristic evaluation of the design seemed to result in hugely diverging scores.
It seemed that reviewer 1 tended to give the design more points for fulfillment
of requirement groups and design rules, than reviewer 2. Therefore a quick
comparison of the sum of the points given by the reviewers was conducted.

The pie chart in Figure 6.2 presents each reviewers percentage of the sum of
all points given in the test. As the diagram displays, more than 60 percent of the
summed points were given by reviewer 1. A further look into the composition
of points given was therefore conducted for each reviewer.

The diagrams displayed in Figure 6.3 and 6.4 show the composition of re-
quirement groups and guidelines scores given for each of the reviewers. The
score designated as 0 in the diagrams were not rated guidelines or requirements
in the questionnaire. The first reviewer didn’t rate 7.1 percent, while reviewer
2 didn’t rate 9.5 percent, which are fairly equal numbers.

However, there the similarities stop, according to the charts. While reviewer
1 rated 7.1 percent of the requirements or guidelines as 5 (fulfilled), and 35.7
percent as 4 (partly fulfilled), reviewer 2 had a different opinion. This reviewer
didn’t rate any of the requirement or guidelines as fulfilled. 11.9 percent were
however rated as partly fulfilled.

Further the second reviewer gave the score of 1 (not fulfilled) to 47.6 percent
of all requirements or guidelines, while reviewer 1 gave 23.8 percent the same
score.

Scores presented as decimal numbers are however average scores given when
more than one square were checked in the questionnaire.

As the presented pie charts show, the reviewers had different opinion about
the concept. A final chart was made to find the average score for each of the
test’s parts; all requirements to the future system, the requirements thought
to be implemented in the current solution, all of the Eight Golden Rules of
Interface Design and the golden rules which were checked in the questionnaire
by the reviewers. The findings are presented in the bar chart in Figure 6.5.

6.3.4 Usability Inspection
The testers performed a usability inspection, to discuss if the future system
could be fitting in the oil and gas industry. According to the testers the current
solution have several advantages.

113



Figure 6.1: A bar diagram presenting how the reviewers scored the requirements
thought to be implemented in the design.

Figure 6.2: The percentage of points given by each of the reviewers, with regard
to the total number of points given in the heuristic evaluation.

It was stated that well functioning work surfaces are necessary for successful
implementation of the IO concept. The prototype was considered a step in the
right direction.

It was also stated that the developed prototype tries to support a work

114



Figure 6.3: Composition of points given by reviewer 1.

Figure 6.4: Composition of points given by reviewer 2.

practice for meetings. This is unique for such systems. The tool should therefore
be adapted well to today’s collaboration meetings.

Further one of the testers said that the tool now stores and presents ac-
tions made during meetings. By implementing such functionality the chances
of an agreed job succeeding increases, alongside with an increase of situational
awareness.

However, there are challenges connected to the current prototype. It was
pointed out that existing tools are shown in meetings, and those, external tools
may still be hard to use.

115



Figure 6.5: Average scores given in the different parts of the heuristics.

116



Chapter 7

Discussion

In this project several experiments have been conducted to try to answer the re-
search questions, and to find whether software tools may be used for supporting
decision making in morning meetings, and how. Additionally such a software
solution should be adapted to the current Integrated Operations concept.

To find answers to these questions a set of requirements for a future morning
meeting system was formed in collaboration with experts on the field. Current
solutions were tested on the basis of these requirements. A new concept was
partly designed as a proposal for a new solution, built on many of the require-
ments. Additionally the concept was based on information given in a meeting
schedule, previously used in morning meetings. Finally the developed solution
was tested on the basis of the requirements, guidelines and how well it could fit
into the today’s oil and gas industry.

In this chapter these experiments and results are discussed with regard to
the research questions.

117



7.1 How May Software Promote Overall Decision
Support in the Oil and Gas Industry?

Decision support implies, according to Kaarstad and Rindahl [16], supporting
people making decisions. Software tools is a part of the decision making concept,
aiding the users to solve problems and accomplish decision making.

However decision support tools may not implement the most advanced and
state-of-the-art functionality to work well in practice. On the contrary, re-
searchers as Sarshar and Rindahl [31] have studied collaboration technologies
and found problems often connected to such solutions. According to their re-
search modern and complex tools, implementing advanced functionality, tended
to be prone to errors and to have a low degree of user-friendliness.

The same researchers observed the use of a simple solution, and found it to
be the one working best in practice. This was a platform based on email and the
SAP environment1. The meeting leaders used the solution for conducting work
both prior to, during and after collaboration meetings. The platform presented
the users with fixed screen shots and email text.

Further the researchers gave the following advice to avoid implications when
designing new decision support tools: "New technology should enable a desired
work practice, and not the other way around."

How software could promote decision making in the oil and gas industry
may therefore be linked to how well these tools are designed for supporting the
current work practices.

However, collaboration meetings contain a range of activities - constantly
reviewed and changed. The work practice may therefore be rather complex.
According to Skjerve et al. [34], the actual meetings, called main collaboration
sessions, are only parts in a bigger picture. Processes involving individuals and
resources take place both before and after meetings. Preparations are made, the
meetings outcome is analyzed and activities, determined in the meeting, may
be executed and registered in the aftermath. The whole meeting process could
also be changed and tuned for each iteration.

A software supporting such a work practice may therefore not only be made
for actual meetings. It should also support the phases prior to and after the
meetings.

The email solution, described by Sarshar and Rindahl, had embedded fea-
tures for supporting such a process. The meeting leaders could send the email
document to the participants before a meeting, use the same document as sup-
port in the actual meeting, and send it as a report when the meeting had
finished. Such an approach may therefore be seen as supporting some of the
work practices connected to meetings.

The continuous implementation of the Integrated Operations concept may
however make solutions, as the email platform, obsolete over time. According
to Ramstad et al. [28] the planning processes in current IO organizations, re-
quests technology able to share real-time information. This is seen as especially
important in short-term planning.

The software supporting decision making in meetings should therefore be
able to display real-time information - and not only fixed screen dumps as in
the email platform.

1http://go.sap.com/index.html?source=contentsynd-mrr-sap.co

118



Further goals of the IO concept is, among others, reducing operational costs
and increasing safety levels, according to the Kongsberg Group2. A decision
support tool should for that reasons mirror these goals by for example effectively
serve the users needs, avoiding time-consuming and costly delays.

Functionality decreasing risks of accidents could also be included. A recent
event, exemplifying the dangers connected to the oil and gas industry, is the
explosions and fire on board the C32E platform in the Gulf of Mexico in 2012,
where three people were killed. The reason for the accident was welding work
igniting hydrocarbon vapor. Decisions made in the morning meeting, prior to
the incident, could however have contributed to the accident. According to
BSEE’s report the operator authorized to approve the fatal welding work, was
not present in the morning meeting. Instead another operator, without enough
authority, made the decision of conducting the work.

2http://www.kongsberg.com/nb-no/

119



7.2 Defining Requirements for Decision Support
in Morning Meetings

Following Sarshar and Rindahl’s [31] advice for designing a future collaboration
surface, presented in Section 2.1.1, more knowledge had to be obtained about
the work-practices in morning meetings.

At IFE in Halden some researchers are currently studying how software tools
may be designed for the oil and gas industry. They have conducted studies of
personnel collaborating virtually, and observed their use of the available software
tools. At the beginning of the project it was envisaged that personnel, working
in collaborative environments in the oil and gas sector, could be observed or
interviewed for studying the work process in morning meetings. This approach
was however not possible to conduct, and two experts were instead interviewed
for mapping the ideal features of a software supporting such meetings. Addi-
tionally a major oil company’s guidelines for establishing collaboration rooms,
and a morning meeting schedule, containing actual information, was handed out
to the student.

If the student would have obtained more or better data about the work
process and decision-making by observing morning meetings is unsure. It is
possible that such an approach could have lead to better understanding of the
work practices in the industry. But on the other hand, the interviewed experts
had already obtained extensive knowledge about how morning meetings are
conducted.

Therefore the experts were asked to suggest improvements and needs to a
meeting system, designed as a collaborative platform for future morning meet-
ings. The needs were not to be fundamented on already existing software.
Instead the researchers were asked to promote all features they could think of
being important in a future application. All the needs were then collected and
written as individual requirements. This was done with the use of the Require-
ment Definition Methodology (RDM), presented in Section 3.1.2. The student
took the role of the requirement engineer, and interviewed IFE’s experts.

Additionally, guidelines for establishing collaboration rooms, written as an
internal document in an oil company, was studied for adding requirements to the
list. The guidelines were evaluated for associating the needs to today’s standards
for establishing collaboration rooms. Such requirements included the software
not to play any sound effects that could disturb ongoing conversations, or for
example to support different screen resolutions on the basis of the standard
definitions.

A major pitfall with this approach was that, although the requirements were
captured from polite sources and guidelines, the definitions were written by the
student himself. Misunderstandings could lead to badly written requirements,
ultimately undermining the process of defining needs for software supporting
decisions in morning meetings. Therefore the list of requirements was reviewed
by the experts at IFE. In this process some requirements were added, some were
changed, and other removed. A final list containing about 100 requirements was
ultimately produced.

At this point several requirements to a software supporting morning meetings
had been formed. However, this list didn’t specify if any of the requirements were
more important than others, or in what order they could be implemented in a

120



new system. If the list was taken literally, when designing a new software, much
resources could be used to implement unnecessary, or in worst case, unwanted
features.

To minimize these risks a method, much like the MoSCoW prioritization
technique, was used for rating each requirement to determine their importance.
This approach lead to the creation of a prioritized list of requirements, based
on each of the reviewing experts’ ratings.

The MoSCoW technique has been applauded for it’s simplicity - making it
easy for stakeholders to get a grasp of how system functionality could affect the
end-result. However, there are also critics. Kukreja et al. [17] argue that the
method makes it hard to change prioritization if new functionality was to be
added to the list. Additionally Kukreja et al. claim that it is not certain that
the stakeholders are able to instinctively know the value of each requirement
priority.

The advantages of choosing the technique were considered more valuable
than the disadvantages. And since the experts were to define a set of ideal
needs for systems, and not a specific or existing system, the list should not have
to be changed. Therefore the disadvantages connected to future changes, could
be minimized.

The other disadvantage, that the reviewers instinctively should know the
prioritization of requirements, were not handled. It was thought that their
knowledge about software development and the domain was enough for priori-
tizing requirements satisfactory with regard to the users’ needs. It was however
hard to overrule the prioritization, since the student did not possess the same
knowledge about work practices in morning meetings.

However, a third problem occurred while conducting the MoSCoW priori-
tization technique. The reviewers ratings seemed to vary, making it hard to
determine whether requirements should be rated as important or not. These
variations could also indicate that the reviewers didn’t instinctively knew correct
requirement prioritization, as mentioned in Kukreja’s critics.

Further, the requirement list was fairly long, and contained detailed infor-
mation. Some requirements were also almost similar to others. Most of them
were therefore grouped together, forming a new list of 34 requirement groups.
It was thought that this measure could simplify the evaluation of current proto-
types and software. However, the groups were more generally written, without
specific and highly detailed information.

Some requirement groups’ features were rated as important to implement by
the experts at IFE. A prerequisite for finally ranking these priorities as impor-
tant was that both reviewers had agreed upon the importance of the current
group. This approach was chosen to minimize the possibilities for producing a
list of badly prioritized requirements validated as important.

11 requirement groups were finally defined as important. The list is pre-
sented in Section 4.2.3. Common to many of these requirements were that they
seemed closely linked to the current work practice in morning meetings. They
included possibilities for registering information, displaying the same platform to
all users, producing reports, registering attendance, sharing the required meet-
ing information, and taking the available hardware into account. Formed in this
fashion the requirements would be designed to support a current work practice,
hence following Sarshar and Rindahl’s advice for designing collaboration tools.

Further an important requirement revolved around contacting users operat-

121



ing mobile devices. This could improve communication and collaboration with
people not present in a meeting. The requirement could therefore be in accor-
dance to important aspects of ICT tools in IPL, promoted by Ramstad et al.
They claim that collaboration surfaces should make cooperation possible across
organizational, professional and geographical borders. By extending the limits
of a meeting to people not present in collaboration rooms, the collaboration
could also be improved.

Lastly the set of important requirements defined several demands which
could be in accordance to more general guidelines of interface design. These
included an easy to use system, understandable automation, clear feedback and
possibilities for adjusting readability options manually.

122



7.3 Testing Current Solutions
The main research question asks if software tools could better support decision-
making in morning meetings, and how. One way to find if there were poten-
tials for improvement in today’s solutions, was to evaluate current software and
prototypes based on the defined list of requirements. Such an evaluation was
conducted, and the results of this activity is presented in Table 4.2 in Section
4.3.1.

The selected systems were however not tested, but evaluated based on online
documentation and reports. It was considered to post questionnaires to all
selected companies, and an online test was made for this purpose. A compressed
pdf version of the test has been added to Appendix E.

The second approach, handing out questionnaires to companies, could have
produced better results than by evaluating the systems with regard to perhaps
incomplete documentation online. But this would have been a timely process,
and the results obtained from the companies could also be incorrect by letting
the companies decide if requirements were fulfilled or not. If one or more of
the companies for example wanted to set their products in favorable light, this
could undermine the evaluation.

Instead the evaluation was conducted by the student himself for all of the
selected companies. This approach reduced the time spent on the evaluation,
and provided perhaps more neutral results, than with the alternative approach,
since all the evaluations were performed by the same person. But a disadvantage
with this approach was the possibilities for not identifying all software features.
More features could have been discovered if the student was able to study depth
documentation, or to test the systems.

The systems and prototypes evaluated in the test was:

1. An email platform, previously used in morning meetings.
2. The prototype system IO-MAP, developed at IFE.
3. Wisio, a continuation of IO-MAP, developed at Østfold University College,

in collaboration with IFE.
4. Protosphere, a meeting application where participants may control avatars

in online meetings.
5. ARKit, a tool built around a map interface.
6. Epsis Teambox, a collaboration solution using windows to display video-

conferencing and meeting information.

The systems were selected on the basis of their highly different nature, with
one, major exception. Wisio and IO-MAP are designed relatively similar, and
were both included in the test. This choice was made since the current project
takes place at Østfold University college, in collaboration with IFE. IO-MAP
was developed at IFE, while Wisio were a former project at Østfold University
college.

The results of the evaluation is presented in Table 4.2 in Section 4.3.1. As the
table shows, none of the prototypes or systems fulfilled all requirements defined
earlier in the project. But it is important to point out that only implemented
functionality has been evaluated. Software, as for example ARKit, could have
fulfilled more requirements if an email solution was added to the current one, by
sharing such a document on the system’s activity stream. If so, ARKit would
have scored better.

123



Another important remark is that some of the systems are designed for off-
shore meeting activity, others are not. Epsis Teambox, Wisio, the email solution
and IO-MAP are examples on systems which are designed especially for the off-
shore oil and gas industry. ARKit and Protosphere are not. It may therefore
seem unfair to compare these systems with the others, and score them. How-
ever, the solutions promoted by ARKit and Protosphere were considered both
creative and innovative, and the systems were therefore added to the software
list.

Further it is also important to notice that some functionality may be hard to
implement in systems not designed for very specific tasks. Agents for decision
support may for example not be fitted for systems such as Epsis Teambox,
ARKit and ProtoSphere, since these systems may support a range of industries
with a lot of different data and sources involved. Designing agents for such a
huge span of businesses may be an overwhelming task.

Lastly the readability requirements may lead to overwhelming changes to
some of the systems’ design philosophies. Epsis Teambox is for example a system
publishing all kinds of information in virtual screens, and that functionality may
be seen as one of the system’s main advantages. Readability tests, etc. may be
more fitted for systems presenting integrated text.

With all this in mind, it appears that some areas in Table 4.2 are just
partly supported, or not supported at all, by any of the analyzed systems.
This applies especially to functions associated with communication with mobile
devices, implementation of agents, integration of an overview of competence,
and lastly readability feedback and test.

Further the fulfillment of the requirement groups defined as the most im-
portant, varied among the systems and prototypes. Epsis Teambox and Pro-
totsphere stood however out as the systems fulfilling the most of these. But
both systems were found to implement limited functionality when communicat-
ing with users operating external devices. Epsis Teambox neither implemented
embedded functionality to time meeting attendance. This was found to be at
place in Protosphere with the use of an extension. But Protosphere was perhaps
less fitted when it came to taking the available hardware in meeting rooms into
account. Prototsphere have implemented avatars for conducting meetings by
individual participants. But morning meetings in the oil and gas sector are not
organized in that way.

124



7.4 A Concept Made for Promoting Decision Sup-
port in Morning Meetings

On the basis of the evaluation of current systems and prototypes, it was found
that neither of the systems fulfilled all the requirements defined. It was therefore
considered naturally to try to implement most of these features in a concept
illustrating a future meeting system.

The concept was developed in several iterations with a RAD-like method.
New functionality was added by the student from the beginning of each iteration.
Later the created functionality was demonstrated for the contracting authority.
Lastly refinements were made in cooperation with the contracting authority
before a new iteration could commence. This last activity could also be viewed
as a minor expert review.

The actual prototypes, created in the iterations, followed on the other hand
both horizontal and vertical strategies. If this choice was beneficial may be
discussed. Since when deciding to create a vertical prototype, much time was
spent coding features, that may have been easy to implement with a simpler
technique - saving time, and allowing more iterations.

On the other hand, the use of vertical prototyping lead to discovering several
weaknesses in the former system. The severity of the weaknesses triggered new,
overall design iterations.

If these weaknesses also would have been detected, by only developing over-
all, light-weight prototypes, is not certain. The product of the vertical proto-
typing itself, on the other hand, may therefore be seen as an important part
of the development design process, and a mean to test features to find new to
implement in the overall design.

How the prototyping was commenced is described in Chapter 5. In addition
to the requirements defined, some functionality discovered in other systems were
also implemented as parts of the prototyping design, when they could contribute
to the overall goal - to strengthen meeting decision support.

7.4.1 Using Features Discovered in Other Software
Seven of the eleven alternatives, presented in the list in Section 4.3.2, were at
some point implemented in the project.

From Epsis Teambox the global modes (linked to the work process), the pre-
sentation of external software in windows, and the large cursor were all sources
of inspiration during the prototyping development.

The prototyping design implemented in stage seven an outer subsystem con-
taining the pre-meeting and post-meeting activities. This software part was
inspired by the work processes in a DCS structure, as described by Skjerve et
al. [34]. But it was also inspired by Epsis Teambox, and the solution’s use of
global modes.

Further the current prototype design implemented capabilities for displaying
meeting information in a single window inside the application. Here external
systems, documents and web sites could be presented in a future system. By
implementing a window, capable of displaying live information, it was thought
that the system could better support decision making. Further IO is, accord-

125



ing to NOG3, in constant development. By locking the system to integrated
functionality it could perhaps be less suited to the changing IO-environment.

Epsis Teambox was however the main source of inspiration for including the
window in the prototype. Epsis have implemented a design capable of displaying
numerous windows. But in this prototype functionality for displaying several
windows was not implemented, to avoid confusion among the participants in
the meeting.

Further Epsis Teambox’ implementation of a large cursor was also used in
early versions of the current prototype. The background for including the large
cursor was to make it easy for meeting participants to view the object on the
screen. This feature was however omitted after conducting the cognitive-walk-
through - narrowing the system design.

A single feature was also obtained from Protosphere when developing the
design. Protosphere has possibilities for displaying a contact list displaying per-
sonnel’s contact information, and a portrait images of them. A similar feature
was implemented in the first prototype iteration, and later removed in after the
cognitive walk-through.

The reason for implementing the contact list was to inform users about per-
sonalia and each of the participants’ work titles. This was thought to strength-
ening the fulfillment of requirement group 19 in Table 4.1, emphasizing the
need for displaying competence and possibly use this as decision support. It
was thought that displaying work titles could indirectly inform users about the
current participants’ authority to make decisions during meetings.

One feature was implemented from IO-MAP. The map environment, as the
one in IO-MAP, was included in the design, and was also created in code in the
vertical prototypes. Although the final prototype depend on showing such fea-
ture as an external software, the importance of presenting information on a map
was highlighted. This was especially pointed out during the third prototyping
iteration, described in Section 5.2.3.

Two features, discovered in ARKit was lastly included - zooming and noti-
fications, although notifications also were described in the requirements.

Zooming was implemented as a tool for the window displaying external soft-
ware, if the systems had support for it. Since external software do not neces-
sarily implement features for readability adjustments, the zooming tools were
thought to strengthen fulfillment of requirement 26 - describing needs for such
adjustments.

Further possibilities for displaying notifications were implemented in all ver-
sions of the prototype until version eight.

7.4.2 Major Changes to the Design
During the development of the prototypes several changes were made to the
design. Some of them were however considerably large - completely changing
the prototypes. Especially two events involved such changes - the transition
from prototype one to prototype two, and the transition between prototype six
and seven.

All changes were however committed to strengthen decision support provided
by the future software.

3https://www.norskoljeoggass.no/en/Publica/Guidelines/

126



Transition from Prototype 1 to 2

The initial prototype design, presented in Section 5.2.1, consists of several sites,
accessed by changing selection in a combobox. The sites have large buttons,
illustrating the topics to be discussed in a meeting. If HSE was selected in the
combobox, such topics could include deviations, focus points and new events
affecting HSE. These examples are also mentioned in the actual email document
studied in Section 4.1.

Additionally the initial design have implemented several features thought to
be used globally - as for example notifications, help and settings.

But when undergoing the transition from the initial to the second prototype
design, all functionality previously available in all parts of the design, were
placed together into a single menu, consisting of tools and a schedule imitating
the meeting’s agenda. A large window to the right of the menu was allocated
to displaying meeting specific information.

The reason why a new menu was made, was to make this object visible to the
meeting participants at all times. It was considered utterly important that the
participants knew what information they were viewing, and what information
that remained to be shown during the meeting. The new menu could at some
degree support that. This was also in accordance to requirement 18 (present
clear navigation) and 33 (sharing required information in morning meetings) in
Table 4.1.

Additionally the new menu could be easier to understand by the participants
than the previous, since it was closer linked to schedules used in current morning
meetings, hence supporting current work practices.

The window to the right of the menu was positioned there to make the users
known to the organization of the design. By always displaying meeting specific
information at the same place, the interface could perhaps be more intuitive
and easy to use - supporting requirements 20 and 22 in Table 4.1.

Transition from Prototype 6 to 7

The second, major change to the design was carried out when creating the
seventh prototype. After conducting the functional prototyping it became clear
that it could be hard to create new meeting setups from within an already
existing meeting menu. This could again affect the design’s ability to support
collaboration in an IO-environment, by making it hard for users to perform tasks
before a meeting starts. The model presented by Skjerve et al. [34], emphasizes
the importance of several stages both before and after a meeting.

The design was therefore expanded to offer support for more stages, accord-
ing to the DCS perspective. The seventh prototype therefore included possi-
bilities to create new meetings, alter existing ones, alter the information to be
presented, and for example to send reports when meetings had been conducted.
This was done by implementing a new, outer part of the system - acting as an
editor and a meeting organizer.

Another advantage of this new design was perhaps the possibilities to sup-
port the IPL process. According to Ramstad et al. [28], it is essential that there
exists an interplay between planning levels in IO environments. Such interplay
should involve both organizations, groups, units and professions. The new de-
sign in iteration seven offered possibilities to invite personnel from within the

127



organization and to publish meeting transcripts to both meeting participants
and others, hopefully in accordance with IPL and the IO concept.

During this transition the in-meeting part of the application was also changed.
A new window, where users could add written information, files and screen
dumps, was added. It was thought that the feature could increase decision sup-
port by fulfilling the third requirement in Table 4.1 - supporting possibilities for
registering information during meetings. This could also be in accordance with
requests promoted by Ramstad et al.’s [28]. The authors emphasize the need for
transparency in IO planning, and the need for sharing. By storing comments,
and other written information, discussions in meetings could be more visible
and transparent for third party personnel.

7.4.3 Removing Functionality
The prototype was tested after completing the seventh iteration. A cognitive
walk-through, involving two reviewers, was conducted. Several remarks were
made, and some of them regarded functionality implemented on the basis of
the earlier defined requirements. This lead to a new iteration for changing
the prototype design. During this activity several features were abandoned,
although they fulfilled described requirements. This section tries to explain
those choices.

During the cognitive walk-through the tool box, implemented at first in the
second prototype, was considered unnecessary. The features available inside it
involved both functionality for creating whiteboards, displaying notifications,
altering settings, requesting help and viewing a list of the participants. All
these functions were requested omitted to make the future software quicker to
use, preventing costly and time-consuming detours involving the tools.

The eight prototype iteration therefore didn’t include the tools, other than
the capabilities for zooming - located differently in the design.

But if the act of removing the tools could be in compliance with increasing
support for decision-making is questionable. Some of the tools, as the ones used
for displaying notifications and whiteboards, were defined as requirements for
the future system.

The reviewers, on the other hand, pointed out that participants didn’t have
time to access such functions during a meeting. This is described further in
Section 6.2.2. Such an argument could also be in compliance with the goals of
the IO-concept, as described in Section 7.1. Then it is discussed how systems
could promote overall decision support in oil and gas organizations. It was
suggested that systems should strive for the avoidance of time-consuming and
costly delays.

But if the meeting participants didn’t understand how a function worked, or
something unexpected occurred preventing them from finishing their job, a help
menu could be used for solving their problems. If so, the tool could perhaps
reduce the time spent on figuring out an undocumented feature.

Removing settings may also defy the second of the Eight Golden Rules of
Interface Design; "cater for universal usability", as described by Shneiderman
and Plaisant [33], and may dismiss possibilities for adjusting the interface to
universal usage.

The arguments for removing such tools are that the tools, if available, could
have been accessed too much - causing an unnecessary amount of time spent on

128



such features in meetings. And time is money.
As mentioned in Section 1.1.2, the annual cost inflation in the offshore in-

dustry have been much higher than the CPI in Norway for several years. At
the time of writing the value of European crude oil has sunk and is less than
50% of the value in the summer of 2014 - when this project was about to start.
The recent cost development may therefore have had an impact on the business
and also the reviewers of the project. It is possible that such functionality could
have been more welcome if the economic situation was different.

But this hypothesis may not be accurate. Another argument for removing
the tools is that a meeting software should be simple and highly intuitive (as
described in the requirements) - perhaps reducing needs for such tools as the
help menu.

Further it may be argued that tools could divert the participants’ focus.
If so, their attention could be directed too much against the tools, ultimately
reducing decision support.

Nevertheless, most of the tools were removed in the eight prototype. But if
the choice was correct in regard to support for decision-making is questionable.

7.4.4 Features not Tested
Several features designed in the prototypes have not been tested. It is therefore
hard to determine if they would work in practice, if the features cost a lot to
implement, or if it could be a timely process adding them to the system.

Necessary features not tested included for example the window displaying
external software. How manipulation of software presented in the window would
work has not been taken into account. Such manipulations could include zoom-
ing the window’s content, or for example conducting writing operations.

But since current solutions as Protosphere4 and Epsis Teambox5 already has
implemented quite similar functionality, it was taken for granted that it may be
implemented in a future software.

This is also the reason why the prototype developed vertically, in the itera-
tions 4-6, didn’t include testing of displaying other systems. Instead the vertical
prototype implemented functionality for accessing a crucial part in the design -
the menu displaying the meeting’s schedule.

The menu has been developed in code with zooming functions, whiteboards,
a working map interface and, among others, possibilities for expanding or col-
lapsing the content displayed in the external window.

It may, on the other hand, be argued that the vertical prototype should
not have been concentrated towards developing this menu. The menu could be
considered easy to develop, and therefore not necessary to test.

However, if there had been time to perform more tests it could have been
interesting to figure out if the window displaying meeting specific information
could work in practice. It could also be interesting to try to communicate with
personnel operating other devices - and to find if these devices were capable of
displaying the meeting platform.

4http://www.protonmedia.com/
5http://www.epsis.no/product/

129



7.5 Testing of the Developed Concept
The concept was evaluated in three individual tests - a cognitive walk-through,
a heuristic evaluation and a usability inspection.

Other techniques could have been chosen. But tests involving users were ex-
cluded because of lacking access to this group. The background for the selection
of test methods is described in Section 3.5.

7.5.1 Cognitive Walk-Through
The cognitive walk-through, presented in Section 6.2, resulted in an additional
development iteration, which has been thoroughly described in Section 5.4.2.

As earlier mentioned, the feedback given during the test resulted in several
design changes. It was considered beneficial to implement the proposed changes
into the project before conducting the later tests. The reviewers had extensive
knowledge about software development in oil and gas organizations, and were
therefore considered capable of adjusting the design to the work practices in
morning meetings, hence improving the future system’s decision support.

If the researchers assumptions about the design were correct, may be argued.
But since the student possessed little knowledge of the practical execution of
morning meetings, it was hard to overrule the reviewers’ feedback. The proposed
amendments were therefore implemented into a new design.

The student limited knowledge of the practical execution of morning meet-
ings, beyond available theory, was also expressed in how the system was designed
for delivering reports. The student had thought about implementing a report-
ing feature outside meetings, making it possible for meeting leaders to send the
reports after meetings had ended. But the reviewers noted that reports usually
were sent during morning meetings, and rarely at a later stage - something the
student did not know. The test therefore helped trimming the design to the
practical work situation in morning meetings, perhaps improving the quality of
decision support.

The practical execution of the cognitive walk-through may also be discussed.
To make the reviewers familiar with the design, while still testing the system,
they were given several tasks to accomplish. These tasks are described in Ap-
pendix D and included creating new meetings, editing meeting setup, starting
meetings, navigating in meeting content, and reporting meetings. The tasks
were however numerous to test as many parts of the system design as possible.

But it may be argued that the cognitive walk-through could limit the users’
review of the system only to the tasks given, and that not mentioned parts could
be forgotten.

The feedback given may to a certain extent disprove this. As described
in Section 6.2, the reviewers noticed that symbols used in the interface sent
the wrong signals. Reports not sent, or meetings without invitations, could
be misinterpreted as hazards or alerts. Additionally the reviewers noticed that
the actual design could be simplified by removing borders or limiting the use
of contrasting colors. None of these reviews were part of the tasks given in
the cognitive walk-through. It may therefore be argued that the test found
weaknesses in the design beyond the tasks given, and that the solutions to the
weaknesses could support decision-making, as for example by removing symbols
that could be misinterpreted and taking too much attention.

130



7.5.2 Heuristic Evaluation
As mentioned in Section 3.5, the heuristic evaluation was considered an im-
portant part of the concept test. It was divided into two questionnaires - one
including all the requirements defined for the future system, the other includ-
ing the Eight Golden Rules of Interface Design, as presented by Shneiderman
and Plaisant [33]. The reviewers were then asked to rate the fulfillment of each
requirement or guideline based on their impression of the design.

It may be argued that the scope of this approach was unnecessary wide.
Some of the requirements had not been designed, as for example communi-
cation with mobile devices or implementation of agents to improve decision
support. But it was considered favorable to list all guidelines and requirements
to accentuate the design’s potential for improvements and to find successful
implementations.

Varying Test Feedback

The reviewers feedback varied however a lot, as presented in the test results,
described in Section 6.3.3. By comparing the reviewers’ ratings of requirement
fulfillment, the results showed that reviewer 1 had given more than 60 percent
of the total points for rating the system. Reviewer 1 therefore tended to hand
out higher scores, and to approve more of the system’s design features, than the
second reviewer.

A closer look into the ratings, presented in Figure 6.3 and 6.4, showed that
reviewer 1 had rated more than 40 percent of the requirements and guidelines
as fulfilled, or partly fulfilled. The second reviewer had rated only about 12
percent of the heuristics as partly fulfilled, and none as fulfilled.

Statistics, presented as a bar chart in Figure 6.5, further showed that re-
viewer 1 had given an average score for all the requirements as a little less than
3, which stands for "either fulfilled or not fulfilled". The second reviewer had at
average given the requirements the score of about 1.5, which is between "partly
not fulfilled" and "not fulfilled".

When it came to the guidelines, the second reviewer had omitted answering
several guidelines. All the guidelines that had been rated, were rated as 4 -
"partly fulfilled". The same guidelines were rated approximately as 3, "either
fulfilled or not fulfilled", by the second reviewer.

These results may indicate that the first reviewer thought the system could
be better suited for morning meetings than the second reviewer. Reviewer 1 had
generally given the system higher scores than reviewer 2, therefore approving
more of the implemented features.

On the other hand, it may also be possible that the reviewers’ differing
ratings could be linked to their opinions on how the prototype could work in
practice. The designed prototype is only containing slides presenting future
features. The features themselves are not part of a working system, except the
minor vertical prototype implementation in code. If the first reviewer rated the
system on the basis of a future, working implementation, it could explain the
differences, if the second reviewer did not.

The above assumption may be further strengthened by looking closer into
how the reviewers rated the different requirements. Reviewer 1 rated for example
the design’s intuitive and understandable automation as partly fulfilled, while

131



the second reviewer didn’t answer anything according this need. This may
indicate that reviewer 1 rated the system based on how it could work in practice
in the future, while the second only rated the current design slides.

Nevertheless, the differences between the test results varied a lot, something
that could indicate a need for involving more people as reviewers in the heuris-
tic evaluation. If so, the results could be compared, and hopefully be better
fitted for rating the current design. But when the test was conducted, only two
reviewers had time to perform it. Later tests, involving more people, could have
been favorable, but such tests have not been conducted in this project.

The results of the heuristic evaluation may therefore be viewed as non-
conclusive. However, they may also indicate that the current design has weak-
ness and possibly a large potential for improvement.

Fulfillment of Most Important Requirements

In Section 4.2.3 several requirements defined as especially important in a system
supporting morning meetings are presented. They were not highlighted in the
heuristic evaluation handed out to the reviewers, to avoid special treatment of
these requirements. The reviewers’ ratings of all requirements are presented in
Table 6.1. The requirements considered important were ranked in the following
way:

• Requirement 1 : According to both reviewer 1 and reviewer 2, functionality
for communicating with users operating mobile devices is not existing.
This may also conform to the implementation of the design - where such
features are not present.

• Requirement 3 : Further the possibilities for registering information was
rated as fulfilled by the first reviewer, and partly fulfilled by the second.
This may indicate that the implementation of this feature is mostly satis-
factory in the current design.

• Requirement 9 : Implementation of a meeting-mode was only rated as 3,
either fulfilled or not fulfilled, by the first reviewer. The second one was
unsure if the requirement was fulfilled, or possibly the formulation of the
requirement. It may therefore be hard to consider if the requirement is
satisfied in the system, or the degree of satisfaction.

• Requirement 10 : Reviewer 2 was also unsure on either wording or the
fulfillment of requirement 10, while reviewer 1 rated the implementation
of an after-meeting mode as partly fulfilled. As for requirement 9, this
may indicate that there are uncertainties connected with the current im-
plementation.

• Requirement 16 : The ability to register and time meeting attendance was
rated as partly fulfilled by the first reviewer, and either fulfilled or not
fulfilled by the second. Although the system has integrated possibilities
for registering participants, the functionality may be improved to satisfy
the users’ needs.

• Requirement 20 : Both reviewers rated the requirement, demanding the
creation of a system stripped of unnecessary functionality, as either ful-
filled or not fulfilled - indicating needs for improvement.

• Requirement 21 : Reviewer 2 didn’t answer if the system has understand-
able or intuitive automation. Reviewer 1 meant that this requirement

132



was partly fulfilled. Nevertheless, the inconclusiveness of the result may
indicate that more work is needed to fulfill the requirement.

• Requirement 22 : Reviewer 1 thought that the design partly fulfilled the
need for presenting the viewers with clear system feedback. Reviewer 2
rated this need as partly fulfilled. More work may therefore be needed for
satisfying the requirement.

• Requirement 26 : Since software, that could be displayed in the future
application, may not have possibilities for setting readability adjustments,
zooming tools were added to the design. However, reviewer 1 rated the
current implementation of readability adjustments as either fulfilled or not
fulfilled, while reviewer 2 rated it as not fulfilled.

• Requirement 32 : It may be considered unclear if the current system may
take the available hardware into account. The first reviewer rated this
requirement as either fulfilled or not fulfilled, while the second thought
that this need was not satisfied at all. More work may therefore be needed
for adjusting the design to the current hardware available.

• Requirement 33 : The design’s capabilities for sharing the required infor-
mation in morning meetings was however rated as party fulfilled, by the
first reviewer, and either fulfilled or not, by the second. This indicate that
there may be a need for implementing more features supporting morning
meetings.

According to the MoSCoW method, described in Section 2.4.2, all the must-
requirements have to be fulfilled if a project may be viewed as a success. With
respect to this criteria the current design may be seen as a failure, by compar-
ing the fulfillment of the most important requirements with the results of the
heuristic evaluation.

In the prototype’s defense it may be possible that it is impossible for a meet-
ing software to fully implement all defined requirements. Such a solution could
be a Utopian one. As earlier mentioned in Section 7.2 the experts did not build
their needs on existing solutions when defining demands for a future meeting
system. Combining the requirements in practice may therefore be hard. As
described in Section 7.3 software as Epsis Teambox implements possibilities for
displaying external programs, but lacks, according to the evaluation, readabil-
ity support. However, it may be extremely hard to implement functionality for
adjusting readability when displaying information not embedded in a system.

It may also be argued that the evaluation of the prototype gave mediocre
results, and that there exists software that fulfill more requirements than the
proposed concept, with regard to the earlier evaluation of prototypes and sys-
tems. This may be the case, although it could be difficult to compare results
of evaluations carried out in different ways, and with different reviewers. The
evaluations of the systems were conducted to determine if they had implemented
some sort of functionality similar to the requirement definitions. Such an evalu-
ation was also done by the student himself with all the prototype versions, and
is displayed in Table 5.2.

It is possible that if the same reviewers conducted heuristic evaluations with
the software and prototypes, in the same fashion as for the prototype developed
in this project, the evaluation’s results could have been highly different.

Nevertheless, the design proposed in this project is not ready to be released,
an was never meant to be. It is a concept made for illustrating how a system

133



may be made to fit into a morning meeting context. How suitable the idea of a
future system is for morning meetings may not be clearly enough explained by
only evaluating the results of the heuristic evaluation. These results only rank
the current design, but not how a fully developed and enhanced version of the
design would work in it’s context. The formal usability inspection, meant for
evaluating the concept on a higher level, may answer just that.

Formal Usability Inspection

The reviewers were asked to evaluate if the future system could be adapted to
morning meetings. According to the feedback the prototype system may be
viewed as a step in the right direction for supporting decision-making. The
reviewers found several advantages, which are mentioned in Section 6.3.4. The
idea was considered unique, since it was adapted to a specific work practice
in meetings. Further it was considered useful that the prototype supports and
displays actions and decisions. A disadvantage could on the other hand be linked
to displaying other software, that may perhaps be hard to use.

However, a countermeasure to the the system’s disadvantage, regarding the
lack of control of external systems, have earlier been described in the third
prototyping iteration in Section 5.2.3. Although full control may not be possible
to achieve, proposals for visualization techniques were mentioned in respect to
a meeting’s different topics. Table 5.1 presents an overview of techniques to be
used with the current design. the below proposals were considered important,
replacing the perhaps widespread use of tables, as in the studied email document
described in Section 4.1.

Firstly it could be favorable to include software visualizing maps for sharing
information, perhaps by displaying platform decks. According to Steele and
Illiinsky [37] map visualizations may be a good technique while displaying data
to users familiar with a location. It has therefore been proposed to include such
software.

In the third prototyping iteration it was also noticed that table data could be
converted to other kinds of visualizations. One proposed technique, described in
Section 5.2.3, presented size visualizations of data formerly displayed in tables.
The example was inspired by a visualization by Steele and Illiinsky [37], and
could make it easier for users to compare and separate data just by looking at
their visual representations.

7.5.3 The Design’s Ability to Provide Decision Support
with Respect to the Test Results

The concept produced in this project has been tested in several ways. The cog-
nitive walk-through indicated strongly that a new design iteration was needed.
This was conducted to adjust the design to the reviewers’ feedback. The test
was therefore useful for, among others, trim the design to the current work
practices in the industry - perhaps strengthening support for decision making.

The heuristic evaluation, on the other hand, provided varying results. Al-
though the test may be considered inconclusive, the results indicated needs for
improving the current design.

The results of the heuristic evaluation were however not satisfactory in re-
spect to fulfillment of requirements and the MoSCoW perspective. None of the

134



reviewers rated all important requirements as fulfilled. But the concept is not
meant to be released in the current state.

The formal usability inspection, may on the other hand, indicate that the
concept idea was both unique and adapted to the current IO context in the oil
and gas industry.

135



Chapter 8

Conclusion

This project has been conducted in several phases to answer if there may be
better ways to support decisions in morning meetings than what is available
today. The project also tries to answer how software, supporting such meetings,
may promote important elements of the IO concept.

To answer these questions a list of requirements were made in cooperation
with experts in the field at IFE in Halden. These requirements were to mirror
ideal system goals for improving decision support.

Features available in current solutions and prototypes were compared with
the requirements to find if any satisfied the defined needs. Several weaknesses
were found in this process, paving the way for a new concept adapted to the
requirement list, and the current IO context.

However the tests of the developed prototype indicated that this system was
not fulfilling all needs, and had several weakness, although the outcome of the
heuristic evaluation may be seen as inconclusive.

The current design is therefore not the ideal solution for improving decision
support in morning meetings. But future systems may take lessons from some
aspects of the concept development. The creation of a prototype, based on work
practices in morning meetings, was considered both unique and a well-suited
approach for developing a system adapted to today’s collaborative meetings.

Further the system was considered a step in the right direction in the current
IO context.

Additionally the list of requirements indicate that their is a need for im-
proving decision support with regard to the current use of systems in morning
meetings. Features requested by experts in the business include possibilities for
displaying a static view of a work surface to users in meetings and personnel op-
erating mobile devices. Such functionality was not found in any of the evaluated
systems. By studying the requirement list, provided in this project, both future
and current solutions may improve decision support in collaborative meetings.

136



References

[1] R. Agarwal, J. Prasad, M. Tanniru, and J. Lynch. Risks of rapid application
development. 2000.

[2] E. Albrechtsen. Integrated operations concepts and their impact on major
accident prevention. In E. Albrechtsen and D. Besnard, editors, Oil and
Gas, Technology and Humans: Assessing the Human Factors of Technolog-
ical Change, pages 11–27. Ashgate Publishing Limited, 2013.

[3] J. D. Arthur and M. K. Gröner. An operational model for structuring the
requirements generation process, 2004.

[4] Epsis AS. Epsis Teambox User Manual, 2014.

[5] M. Beaudouin-Lafon and W.E. Mackay. Prototyping Tools and Techniques.
2002.

[6] H.C. Bjørnland. Oljeprisfallet – Økonomiske og politiske utfordringer. 2015.

[7] A.O. Braseth and S. Sarshar. Improving oil & gas installation safety
through visualization of risk factors. 2012.

[8] R. N. Burns and A. R. Dennis. Selecting the appropriate application de-
velopment methodology. 1985.

[9] ConocoPhillips Australia Pty Ltd. ConocoPhillips Australasia Business
Unit, Contractor HSE Management Process – Attachment A1, Health,
Safety and Environmental Requirements for Contracts. http://www.
conocophillips.com.au/Documents/SMID_022_West_HSE_Req.pdf.

[10] Epsis, Norway. Epsis Teambox: The beauty of collaboration - done right.
2015.

[11] T. Hollingsed and D.G Novick. Usability Inspection Methods after 15 Years
of Research and Practice. 2007.

[12] Ark Platforms Inc. The ARKit Feature List 4.3. http://www.
arkplatforms.com/arkit/feature-list.

[13] Polycom Inc. Protosphere Virtual Immersive Environments for Learn-
ing and Collaboration. http://www.protonmedia.com/resourcepage/
protonmedia-partner-playbook-4962-0113-enus.pdf, 2013.

137



[14] ProtonMedia Inc. Protosphere - a Highly Engaging 3D Virtual Workspace.
http://www.protonmedia.com/resourcePage/ProtoSphere_Product_
Datasheet.pdf, 2013.

[15] ProtonMedia Inc. Protosphere for ipad. http://www.protonmedia.com/
resourcePage/ProtoSphere-for-iPad-Data-Sheet.pdf, 2013.

[16] M. Kaarstad and G. Rindahl. Shared collaboration surfaces to support
adequate team decision processes in an integrated operations setting. In
C. Berenguer, A. Grall, and C.G. Soares, editors, Advances in Safety, Re-
liability and Risk Management, pages 241–242. CRC Press, London, 2012.

[17] N. Kukreja, B. Boehm, S. Payyavula, and S. Padmanabhuni. Selecting
an Appropriate Framework for Value-Based Requirements Prioritization.
2012.

[18] A. Lågbu, S. Sarshar, and G. Rindahl. Improving ICT Tools as Support
for Morning Meetings in the Oil and Gas Industry. 2015.

[19] McKinsey & Company. Meeting the challenge of increasing North Sea
costs. 2014.

[20] Mediasphere. Rapid application development method-
ology. http://www.mediasphere.com.au/files/file/
MediasphereRapidApplicationDevelopmentMethodology.pdf.

[21] S. Mira. Agile software development practices: evolution, principles, and
criticisms. 2011.

[22] Norsk Olje og gass. Norway’s petroleum history.

[23] U.S. Department of the Interior Bureau of Safety and Environmental En-
forcement. Investigation of November 16, 2012, Explosion, Fire and Fatal-
ities at West Delta Block 32 Platform E, 2013.

[24] E. Okstad, E. Jersin, and R. Kviseth Tinmannsvik. Accident investiga-
tion in the norwegian petroleum industry - common features and future
challenges. Technical report, SINTEF Technology and Society, 2011.

[25] C. S. Olsen, O. G. Nedrebø, P. J. Berg, J. M. Røsok, and M. Eskerud.
Web based Information Surface for a Petroleum Installation. http://www.
it-stud.hiof.no/h13d28/bachelorReport.pdf, 2013.

[26] G.O. Ose and T.J. Steiro. Introducing IO in a Drilling Company: Towards
a Resilient Organization and Informed Decision-making? In T. Rosendahl
and V. Hepsø, editors, Integrated Operations in the Oil and Gas Indus-
try: Sustainability and Capability Development. Business Science Reference,
Hershey, 2013.

[27] ProtonMedia. Micrsoft Lync - Learning in New Ways, Anytime,
Anywhere. http://www.protonmedia.com/resourcePage/ProtonMedia_
ProtoSphere_Learning_on_Lync.pdf.

138



[28] L. S. Ramstad, K. Halvorsen, and E. A. Holte. Integrated Operations in
the Oil and Gas Industry, chapter Implementing Integrated Planning: Or-
ganizational Enablers and Capabilities, pages 171–188. Business Science
Reference, Hershey, 2013.

[29] S. Sarshar, B.A. Gran, S. Haugen, and A.B. Skjerve. Visualisation of risk
for hydrocarbon leakages in the planning of maintenance and modification
activities on offshore petroleum installations. 2012.

[30] S. Sarshar, S. Haugen, and A.B. Skjerve. Factors in offshore planning
that affect the risk for major accidents. Journal of Loss Prevention in the
Process Industries, 2014.

[31] S. Sarshar and G. Rindahl. Integrated operation collaboration technologies
- remaining challenges and opportunities, 2014.

[32] S. Sarshar, A.B. Skjerve, G. Rindahl, T. Sand, and B. Hermansen. Quality
aspects in planning of maintenance and modification on offshore oil and
gas installations. 2011.

[33] B. Shneiderman and C. Plaisant. Designing the User Interface. Pearson
Higher Education, Boston, 2010.

[34] A. B. Skjerve, E. Nystad, G. Rindahl, and S. Sarshar. Assessing the Quality
of collaboration in an Integrated Operations Organization. 2013.

[35] A. B. Skjerve, S. Sarshar, G. Rindahl, A. O. Braseth, H. O. Randem,
O. Fallmyr, T. Sand, and C. K. Tveiten. The Integrated Operations Main-
tenance and Modification Planner (IO-MAP) - the first usability evaluation
- study and first findings. 2011.

[36] A.B. Skjerve, S. Sarshar, G. Rindahl, A.O. Braseth, H.O. Randem,
O. Fallmyr, T. Sand, and C.K. Tveiten. The integrated operations main-
tenance and modification planner (io-map). 2011.

[37] J. Steele and N. Iliinsky. Beautiful Visualization - Looking at Data Through
the Eyes of Experts. O’Reilly Media Inc., 2010.

[38] C. Taylor, S. Sarshar, and S. Larsen. How io leaders can use technology to
enhance risk perception and communication. 2014.

[39] J.E. Vinnem. Evaluation of offshore emergency preparedness in view of
rare accidents. Technical report, University of Stavanger, 2010.

[40] J.E. Vinnem, J.A Hestad, J.T. Kvaløy, and J.E. Skogdalen. Analysis of root
causes of major hazard precursors (hydrocarbon leaks) in the norwegian
offshore petroleum industry. Technical report, University of Stavanger and
Safetec Nordic AS.

[41] A.M. Wahl, H. Sleire, T. Brurok, and B.E. Asbjørnslett. Agility and Re-
silience in Offshore Operations, 2008.

139



Appendix A

Research Article Written
During the Project Work

140



Improving ICT Tools as Support for Morning Meetings in the Oil and Gas
Industry

A. Lågbu
Østfold University College, Halden, Norway.

S. Sarshar
Østfold University College and Institute for Energy Technology, Halden, Norway.

G. Rindahl
Institute for Energy Technology, Halden, Norway.

ABSTRACT: The petroleum industry in Norway operates their offshore installations with an offshore organi-
zation and an onshore support organization. One of the most important collaboration meetings between these is
the morning meeting. The software tools used in such collaboration meetings have an important role in focusing
and communicating important information to decision makers. Decisions made in morning meetings may im-
pact both production and safety of the installation. This paper reports on an evaluation of existing and research
software tools applicable for morning meetings and how well they support the meeting. Based on this study and
workshops with experts in collaboration surfaces and environments, requirements for an improved tool were
established and a first concept of a new software framework based are developed and presented.

1 INTRODUCTION

The petroleum industry in Norway operates their off-
shore installations with an offshore organization and
an onshore support organization. While the produc-
tion and maintenance work is executed offshore, more
of the administrative work and preparation are man-
aged by the onshore organization. One of the most
important collaboration meetings between these is the
morning meeting.

The overall goal of the meetings is to make sure
that the organization is planning proactively, and is
capable of detecting future, possible conflicts on an
early stage. A typical agenda include HSE (Health,
Safety and Environment), production, new activities,
status of ongoing and planned work, and new actions.

The technologies used to keep these meeting are
videoconferencing for communication and different
software tools which are displayed in a shared sur-
face, e.g. SAP data on maintenance activities.

The software tools used in such collaboration meet-
ings have an important role in focusing and communi-
cation important information to decision makers. De-
cisions made in morning meetings may impact both
production and safety of the installation. Sarshar et
al. (2015) have studied investigation reports and iden-

tified hydrocarbon leakage incidents which can be
traced to misunderstandings and lack of overview of
simultaneous activities when making decisions in the
morning meeting.

This motivates the following research question:
Can software tools better support decision making in
meetings, and how?

This paper reports first on a study of existing and
research software tools applicable for morning meet-
ings and how well they support the meeting. Based
on this study and workshops with experts in collab-
oration surfaces and environments, requirements for
an improved tool were established and a first concept
of a new software framework are developed and pre-
sented. The currently developed prototype only illus-
trates a future system’s concept for research purposes
and is not a fully working system which can be used
during operation.

The paper is structured as follows: Section 2 pro-
vides context and background. In section 3, the re-
search methodology applied in this study is described.
Section 4 presents the main results from the research,
covering the study of existing tools, establishing new
requirements and developing a new concept frame-
work. Section 6 provides conclusions and further
work.

141



2 CONTEXT AND BACKGROUND

2.1 Integrated operations

The oil and gas industry has in recent years started
implementing a concept called integrated operations
(IO)1. In theory IO integrates people, organizations,
work processes and ICT. However, this process de-
pends on a global access to real time data and col-
laboration technology. This latter dependency makes
it possible for all involved parties to communicate
across disciplines, organizations and geographical
borders2.

According to the Kongsberg Group3 the introduc-
tion of IO has several benefits. An article on the com-
pany’s websites states that implementation of IO leads
to reduced operating costs, increased oil and gas re-
covery, accelerated production, longer life-spans, ex-
tended field-life and higher safety levels.

2.2 Morning Meetings in IO

Skjerve et al. (2013) have described how meetings
are organized in an IO context. The actual meeting,
between onshore and offshore personnel, is called a
main collaboration session (MCS). However, this ses-
sion is only a part of a bigger structure - named a
distributed collaboration structure (DCS). This struc-
ture contains steps before, during and after a meeting.
These are activities needed for completing the organi-
zational goal. The steps are repeated after each itera-
tion.

Figure 1 is a simplification of Skjerve et al’s own
illustration of a DCS. In the figure the initial step in-
cludes work to be done before a MCS. More specif-
ically the step contains general meeting preparations
and selection of proposed plans, agendas, etc which
should be presented in the meeting (the MCS).

Figure 1: DCS steps before, during and after a MCS. The illus-
tration is a simplification of a figure presented by Skjerve et al.

The collaboration session itself is an activity in-
volving both offshore and onshore personnel, usually
in the form of geographically dispersed teams. The
personnel participating in such meetings may have a
variety of backgrounds.

The final step after the MCS involves approvement
and adjustment of the meeting’s outcome before ex-
ecution of adopted tasks. This execution may lead to

1http://www.norskoljeoggass.no/
2http://www.iocenter.no/
3http://www.kongsberg.com/

some sort of goal achievement, which again may be
evaluated. Finally the execution of the MCS, or the
DCS, may be adjusted on the basis of the evaluation.

Morning meeting sessions may be seen as exam-
ples on MCSs. These sessions are described by Ose
and Steiro (2013) as meetings which are held every
day. These kind of meetings involve onshore and off-
shore personnel at individual rigs. The onshore per-
sonnel supporting the rigs are attending the meetings,
and they communicate by phone or video conferenc-
ing.

The agenda in such meetings may, according to
Wahl et al. (2008) , include notifications for the last 24
hours prior to the meeting, and clarification and distri-
bution of actions from the onshore operation center to
offshore personnel. The meetings could also concern
changes involving planned work. Wahl et al mention a
concrete example where a plan had to be updated dur-
ing the meeting. For accomplishing this task several
decision support tools had to be accessed and used.
These tools may therefore be important when execut-
ing a morning meeting.

2.3 Decision support tools in IO

According to Kaarstad and Rindahl (2012) decision
support implies supporting people making decisions.
Decision systems are components of decision support,
which also include decision theories. The systems are
software which help their users to solve problems and
to accomplish complex decision making.

Sarshar and Rindahl (2014) have observed the use
of different types of decision systems in the oil and
gas sector over a period of five years, ranging from
2008 to 2013. The purpose of their study was to inter
alia find if the software implemented by the industry
supported meeting agendas and overall organizational
workflow. The researchers found several challenges
related to the studied tools.

Although some of the systems were highly ad-
vanced, personnel had problems using them. One sys-
tem had for example implemented a sophisticated
3D technology, rendering stereographic images. This
functionality was turned off by some of the users,
since they misinterpreted the advanced functionality
as noise.

On the other hand a much simpler system was
found to work extremely well. The researchers ob-
served the meeting leaders’ use of an email as a col-
laboration platform. Although the email only con-
tained fixed data, in the form of written text and screen
dumps of other systems, the meeting leaders managed
to turn the simple surface into a highly useful collab-
oration tool.

Sarshar and Rindahl point out that lessons learned
from the study included that functionality, which
seems nice to have from the vendors’ point of view,
may be unnecessary and turn out cumbersome to
manage for the users. Simple tools may also be just as

142



good collaboration tools as advanced and expensive
solutions, if the team managing them possess suffi-
cient collaboration skills and technology literacy.

2.4 On the consequence of tools for IO meetings

During a study of collaboration technologies (Sarshar
& Rindahl 2014) in meetings between offshore and
onshore personnel, several effects of implementing
tools were observed. These are listed in this section.

In virtual collaboration rooms there usually are
monitors to share and work on information, [the
shared work surface], in addition to inter alia video
conferencing equipment (Hjelle & Monteiro 2011).
In the study performed by Sarshar and Rindahl it was
found that the main surface in a successful IO meeting
is not the video surface, but the shared work surface.
Ideally, this tool should not be meeting specific, but
reflect the work surfaces mainly used by the partici-
pants during their workday. Still, any good work sur-
face is not necessarily fostering collaboration in video
meetings. Below follows several effects of utilizing
work surfaces from (Sarshar & Rindahl 2014).

Positive effects observed:

1. Identifying and clarifying misunderstandings: In
an observed meeting series, issues kept resurfac-
ing after they had apparently been resolved. The
team then started noting down actions, decisions
and key information points on the shared surface
in the meeting. Often such items were corrected
by the participants. Statements as ”No, this con-
cerns the A27, not the A22” or ”No, I am not tak-
ing responsibility for fixing this, I just promised
to talk to a coworker about it” were noted. By
verifying a shared understanding then and there,
recurring discussions were avoided, and actions
could be taken faster and by the right people.

2. Getting information without cluttering up the
meeting: In some cases, people attended morn-
ing meetings to stay informed, and spent much
time waiting for the information points they re-
ally needed. By logging key information then
and there, all necessary information was avail-
able for use in action to those attending and those
not attending at the same time. Only people who
should offer input or counsel on issues discussed
attended the meeting. The people only receiv-
ing information could save time and room in the
video picture and get their information as soon as
the meeting ended all the same. [It would, how-
ever, require high quality agendas and minutes
to facilitate people in identifying whether they
should attend or not].

3. Management showing the way: In an observed
case a manager used a tool in a daily morn-
ing meeting. On purpose, he opened the tool
there and then and navigated to find the right in-
formation. He logged new issues and informa-
tion, and pointedly hit save when a decision was

made or an issue was agreed by the participants
to be correctly described. After a week it was
observed that several colleagues start using the
same technology in and outside meetings, log-
ging the same type of information.

Negative effects observed:

4. Surface not suited for video use: A frequently
used type of collaboration surface is spread
sheets. These are highly useful tools, and of-
ten contain much of the information relevant in
meetings. However, only the most skilled virtual
collaborators (probably 1 out of 50) are able to
use such a surface in a way that makes it easy for
collocated and remote participants to partake in
the shared information. Another favorite is Pow-
erPoint. An excellent tool if you know the truth
and want to share it. But it is not a good tool
when what you need is to have your understand-
ing challenged and updated based on input from
subject matter experts available in virtual 15-30
minute morning meetings.

In addition to the described effects of collaborative
work surfaces, it was observed that time may be saved
if:

• Background information is available in di-
gestible form to all parties prior to a meeting -
without data mining or long time preparation.

• Facts shared in a meeting are clearly presented
both vocally and visually.

• Misunderstandings are discovered and remedi-
ated while experts are still present.

• Decisions are both made and understood at once.
• Only contributors need to spend time in meet-

ings, and recipients get their information as
quickly as if they were in the meeting.

There were finally observed several issues due to
shortcomings in collaboration or information sharing:

• Delay of the restart of a temporarily shut down
well can cost millions a day. Start-up may have
environmental consequences if not done cor-
rectly. Misunderstandings around risk of startup
often causes several days delay.

• Planned jobs that cannot be performed after all is
also a cost and sometimes risk driver. Misunder-
standings can include e.g.:

– Not seeing the whole picture in terms of si-
multaneous activities,

– Double booking of resources (staff, equip-
ment, beds, lifeboat capacity)

– Wrong parts sent out or sent out at the
wrong time

143



3 METHOD

Requirements for the future system have been gath-
ered by interviewing two researchers at Institute
for Energy Technology (IFE) in Halden, Norway.
They are currently studying how software tools may
be used to support planning processes in the IO-
environment. A major oil companys guidelines for es-
tablishing collaboration rooms has also been studied
to identify system needs.

The Requirement Generation Model (RGM), de-
scribed by Arthur and Gröner (2004) , was selected
as methodology for the requirement definition pro-
cess. RGM is an iterative model where the main stage,
the Requirement Capturing Phase, is repeated until a
generated set of system requirements is satisfactory.
This phase contains three sub-phases. In these phases
meetings between customers and requirement engi-
neers are prepared, information is conveyed from the
customers to the engineers and gathered information
is transformed to requirements, and evaluated. When
these phases have been completed it is decided if a
new iteration is needed.

In this project the experts have acted as the cus-
tomers in the description of RGM, and the first au-
thor took the role of a requirement engineer. But since
the experts possessed extensive knowledge about the
specific field and system development, they have also
acted as advisers through the requirement generation
process.

In this respect the experts initialized a MoSCoW
prioritization4 of the generated requirements. This
technique is commonly used for evaluating require-
ments to find if a future system must, should, could
or won’t have the needs for implementing proposed
functionality. If the first category of essential ”must”-
requirements is not fulfilled, the product development
may be viewed as a failure.

3.1 Evaluation of current systems

In parallel with the process of defining requirements,
currently available software and prototypes developed
for research purposes have been evaluated based on
the acquired requirements. Common for all software
were that they were designed (or partly designed) for
conducting meeting activity. The software tools were
selected on the basis of their ability to present a broad
range of meeting topics.

A total of six existing tools and prototypes were se-
lected for the evaluation. The studied systems were
Epsis Teambox, Protosphere, ARKit, IO-MAP, Wisio
and an email platform successfully used for collabo-
ration support in morning meetings.

The whole evaluation was conducted by studying
documentation and other kinds of information online.
None of the systems were actually tested. There may

4http://daily-scrum.com/features/moscow-prioritization

therefore be some degree of uncertainty connected to
the results.

Short descriptions of the systems:

• Protosphere is, according to ProtonMedia
(2013), a system making use of avatars during
meetings. Participants may control their own
avatar when interacting with other participants.
Information may be shared with other users. The
software is commercially available.

• Sarshar and Rindahl (2014) describe the email
platform as a collaboration surface built upon the
email and SAP technologies. The solution was
earlier in use in an oil company.

• ARKit is described by Ark Platforms Inc. as a
tool developed for several kinds of industries,
including the oil and gas industry, and is com-
mercially available. It has not been specialized
for the offshore industry. The software presents
information on maps and makes it possible for
users to communicate and share information.

• Epsis Teambox5 offers access to other kinds of
software during meetings, and to share informa-
tion outside meetings. It is commercially avail-
able for several industries, including the oil and
gas industry.

• IO-MAP is, according to Rindahl et al. (2013),
not commercially available, but instead a proto-
type of a future system. It has been designed as a
collaboration surface presenting meeting specific
information on maps. The software has been spe-
cialized for the oil and gas industry.

• Wisio is, as described by Olsen et al. (2013) , de-
signed in the same fashion as IO-MAP, and is
quite similar to the above system.

4 RESULTS

4.1 System requirements

Several requirements were defined for the future
morning meeting software, but no individual require-
ments are presented in this article. Instead they have
been merged into groups to make it easier for the
reader to keep track of them.

The initial set of requirements were developed af-
ter conversations with experts at IFE. Additionally a
small study was performed of guidelines for design of
collaboration rooms. During the requirement genera-
tion process this selection was changed in consulta-
tion with IFE. The groups are based on the final se-
lection containing about 100 individual requirements,
and are displayed in Table 1.

Requirements have been prioritized with the
MoSCoW method. But since individual requirements
have been merged into groups, and the experts had
varying rating of several of them, specific results are

5http://www.epsis.no/epsis-teambox/

144



not listed in this paper. However, to summarize the ex-
perts unanimously gave top-priority to the following
functionality (complete descriptions are presented in
Table 1):

• Functionality for contacting users operating on
mobile devices (id: 1).

• Possibilities for registering information during
meetings (id: 3).

• Functionality for displaying the same platform to
all users (id: 9).

• Functionality for producing reports (id: 10).
• Functionality for registering meeting attendance

(id: 16).
• An easy to use system (id: 20).
• Understandable automation (id: 21).
• Clear feedback (id: 22).
• Possibilities for setting readability adjustments

manually (id: 26).
• The system must take available hardware into ac-

count (id: 32).
• The system must be capable of sharing the re-

quired meeting information (id: 33).

4.2 Evaluation of current systems and prototypes

Current solutions and prototypes were evaluated by
comparing their functionality with the list of require-
ments generated in the project. The result is presented
in Table 1. All requirement groups, described in Table
1, have IDs matching the IDs of the requirements in
Table 2. Further Table 2 contains words and symbols
in each cell. If ”yes” or ”no” is written the require-
ment is either implemented or not by the analyzed
system, respectively. The question mark is used when
implementation may be discussed, or if the documen-
tation was found to be unclear. The dash symbol is
used when a requirement is not relevant for the current
system. This could be the case when requirements are
not satisfying underlying demands, making them ir-
relevant for the current solution. This is for example
the case for the mail platform and requirement 27:
”Pre-selection of options when possible, to make it
easier for users to follow ordinary system flow” (Table
2). This requirement is considered not relevant since
the surface is not implementing any functionality for
selecting or deselecting options in the first place.

In the evaluation two of the systems fulfilled most
of the requirements. Both Protosphere and Epsis
Teambox implements more requirements than any of
the other software tools. However, it is not certain that
the system with the highest number of fulfilled re-
quirements is the software best adapted to morning
meeting sessions in particular.

For example Protosphere fulfill at least 18 of the
34 requirement groups, but is not designed for be-
ing used in collaboration sessions with several partic-
ipants watching the same monitors. Participants using
Protosphere are mainly avatars in the program, which

possibly makes the software better suited for person-
nel operating individual work stations.

Some of the system requirements could also be
conflicting. This could be the case for inter alia Epsis
Teambox. The software fulfill requirements for dis-
playing external systems, but is not found to imple-
ment a function to give readability feedback. If Epsis
was to display such feedback for the users, it could
have been to analyze other tools’ use of fonts, text
sizes, etc. Such readability requirements may there-
fore not go along with requirements for displaying ex-
ternal software, since the requirements then should be
delegated to the external systems instead of the sys-
tem displaying them.

Further some requirement groups were not found
to be implemented by any of the systems:

• None of the systems were found to be capable
of sharing the same view of the work surface, as
the one displayed in collaboration rooms, with
participants operating mobile devices.

• None had implemented agents, or were keeping
track of personnel’s competence, to use as deci-
sion support when operating the work surface.

• Functions for detecting current readability ad-
justments or readability tests, to find satisfactory
adjustments before sessions.

4.3 Concept proposition

To create a new system capable of fulfilling the re-
quirements mentioned in table 1, a digital prototype
was designed. The prototype illustrates a future de-
sign, but is at this point not a working prototype.

The current platform has therefore not been de-
signed for being accessed by users operating mobile
devices and group collaboration participants. This de-
sign is only a simple prototype, not taking secu-
rity, platform independence, network connections, or
other, possible necessities into account.

Figure 2 shows a screen shot of the current pro-
totype concept, displaying an external window con-
taining the prototype software IO-MAP. In addition
to the requirements the prototype is being developed
on the basis of generally accepted design guidelines.
Existing systems have also affected the design. Es-
pecially Epsis Teambox6, a software solution which
partly uses windows to display external systems. The
prototype solution do not display several windows,
but instead a single, large frame where external soft-
ware systems may be displayed.

Further the email platform has influenced the de-
sign. This system contains of a software surface based
on a morning meeting’s context, producing a status
report, an agenda and a minutes document. The fu-
ture solution is also thought to be designed with the
meeting’s context in mind. Requirements have been
made for the system to implement modes mirroring

6http://www.epsis.no/epsis-teambox/

145



Figure 2: An image of the concept being developed at the time of writing, displaying an excerpt of the external software IO-MAP as
presented by Braseth and Sarshar (2012).

the work process before, during and after meetings,
and the meeting’s agenda.

However, the schedule presented in the email is
static headers in a fixed document. The menu pre-
sented in the left bar of Figure 2 is based on this
agenda, and is a dynamic and accessible menu. It no-
tifies the users if all topics are read or not, and could
be manipulated during several steps of the distributed
collaboration session - both before, during and after a
meeting.

Additionally the menu has a bottom sub-menu with
tools to zoom in and out on the content to increase
readability, create virtual whiteboards, read notifica-
tions among other functions.

4.4 Use of external software in the framework

The framework is meant to make use of existing soft-
ware to provide the necessary information into the
meeting. However, rather than solely be based on e.g.
SAP to display maintenance work, solutions like IO-
MAP and WISIO are recommended when it is impor-
tant to establish a picture of simultaneous activities,
their locations and local area hazards. The main ad-
vantage of such systems is that they position activi-
ties on map surfaces instead of presenting the data in
a perhaps less intuitive table-form.

5 DISCUSSION

Except the email surface, none of the evaluated sys-
tems have been particularly designed for morning
meetings in the oil and gas industry. By creating a
system in close relation to this context, the software
may be well adapted to morning meetings. The sys-
tem could therefore be easier to understand for new

users familiar with the specific meeting activity - pos-
sibly resulting in an increased ability to make deci-
sions.

By designing a future system integrating with other
software, and displaying live data, the system could
also provide the users with an overall view of the cur-
rent situation. If so the system could possibly decrease
the amount of misunderstandings and the needs for
temporarily shut downs, hereby decreasing costs. But
this is not unique for the proposed concept. Already
available software, as for example Epsis Teambox and
Protosphere, may present the users with windows into
external tools.

Another advantage of displaying external software
is in avoiding the system from being meeting specific.
Although it is thought that a future system should be
developed for other kinds of meetings as well, the cur-
rent prototype has only been designed with morning
meetings in mind. By connecting the system to ex-
ternal software, possibly well known by the meeting
participants, the level of meeting specificity should
decrease.

Automatic readability adjustments are difficult to
implement when a framework is based on external
software which one can not control parts of. As a
compromise in the prototype, zoom tools have been
added to the menu to make the user capable of zoom-
ing on certain parts of the displayed software’s view.
But how this should work in practice has not been
tested thoroughly.

What makes the prototype unique at this point is its
close relation to the morning meeting’s context, while
in the idea still being able of presenting the users with
live data from external software.

A future prototype should however add functional-
ity to the existing design, and make the system imple-
ment other kinds of functions.

146



The studied systems were not found to fulfill re-
quirements set for sharing view with mobile devices,
implementing agents for decision support, keeping
track of the personnel’s competence and to perform
readability tests.

According to the requirements the future system
should implement sharing of the view of the sur-
face with mobile users. Such functionality could pro-
mote information, communication and data sharing.
As mentioned by Wahl et al. (2008) it is possible
that work tasks have to be changed during morn-
ing meetings. Implementing possibilities for involv-
ing third-party personnel, and presenting them with
information about upcoming tasks, could ultimately
strengthen the participants capability of making deci-
sions.

None of the systems were nor found to be capable
of fulfilling all requirements with top-priority, as pro-
posed by IFE’s experts in section 4.1. These critical
requirements may be considered mandatory in a fu-
ture meeting application.

6 CONCLUSION AND FURTHER WORK

In this paper, software systems for morning meetings
have been studied and requirements for a new concept
framework have been proposed. Parts of these have
also been implemented in a prototype.

The main findings are that the currently available
systems and prototypes lack several defined require-
ments, and more critically - requirements defined as
mandatory for such a system by experts in the field.
The prototype developed in this project should at best
implement these, and focusing on fulfilling the most
important requirements.+

The prototype is closely linked to morning meet-
ing sessions in the oil and gas industry. It has imple-
mented several stages of the distributed collaboration
structure, including the meeting activity. This would
probably make the system easy to comprehend for the
users. Additionally the prototype has been designed
for making use of external software tools.

Future work could include further development of
the concept and usability studies with real users from
the industry.

REFERENCES

Ark Platforms Inc. The ARKit Feature List 4.3. http://www.
arkplatforms.com/arkit/feature-list.

Arthur, J. D. & M. K. Gröner (2004). An operational model for
structuring the requirements generation process. pp. 1–3.

Braseth, A. & S. Sarshar (2012). Improving Oil & Gas Installa-
tion Safety through Visualization of Risk Factors.

Hjelle, T. & E. Monteiro (2011). Tactics for Producing Action-
able Information. In H. Salmela and A. Sell (Eds.), Nordic
Contributions in IS Research, pp. 72. Springer.

Kaarstad, M. & G. Rindahl (2012). Shared collaboration sur-
faces to support adequate team decision processes in an in-
tegrated operations setting. In C. Berenguer, A. Grall, and

C. Soares (Eds.), Advances in Safety, Reliability and Risk
Management, pp. 241–242. London: CRC Press.

Olsen, C. S., O. G. Nedrebø, P. J. Berg, J. M. Røsok, &
M. Eskerud (2013). Web based Information Surface for a
Petroleum Installation. pp. 2–5.

Ose, G. & T. Steiro (2013). Introducing IO in a Drilling
Company: Towards a Resilient Organization and Informed
Decision-making? In T. Rosendahl and V. Heps (Eds.), Inte-
grated Operations in the Oil and Gas Industry: Sustainabil-
ity and Capability Development, pp. 382. Hershey: Business
Science Reference.

ProtonMedia Inc. (2013). Protosphere - a Highly Engaging 3D
Virtual Workspace. pp. 1–2.

Rindahl, G., A. B. Skjerve, S. Sarshar, & A. O. Braseth (2013).
Promotiong Safer Decisions in Future Collaboration Envi-
ronments - Mapping of Information and Knowledge onto a
Shared Surface to Improve Onshore Planner’s Hazard Iden-
tification. In E. Albrechtsen and D. Besnard (Eds.), Oil and
Gas, Technology and Humans - Assessing the Human Fac-
tors of Technological Change, pp. 172–173. Surrey: Ashgate
Publishing Limited.

Sarshar, S., S. Haugen, & A. Skjerve (2015). Factors in offshore
planning that affect the risk for major accidents. Volume 33,
pp. 188–199. Journal of loss prevention in the process indus-
tries.

Sarshar, S. & G. Rindahl (2014). Integrated Operation Collab-
oration Technologies - Remaining Challenges and Opportu-
nities. pp. 3–4. Institute for Energy Technology, Center for
Integrated Operations in the Petroleum Industry: Society of
Petroleum Engineers.

Skjerve, A., E. Nystad, G. Rindahl, & S. Sarshar (2013). As-
sessing the Quality of Collaboration in an Integrated Opera-
tions Organization. pp. 1–2. Institute for Energy Technology,
Center for Integrated Operations in the Petroleum Industry:
European Safety and Reliability Conference, 2013.

Wahl, A., H. Sleire, T. Brurok, & B. Asbjørnslett (2008). Agility
and Resilience in Offshore Operations. pp. 6.

147



Table 1: System requirements defined after conversations with experts at IFE.

Id Description
1 Two-way communication with users operating external mobile devices during collaboration sessions.
2 Sharing the same view with mobile devices during collaboration sessions.
3 Possibilities for registering information as for example keywords during meetings.
4 Must take the existing meeting roles into account and designed for both meeting participants, leaders, etc.
5 Multiple modes for varying system flow based on current state in the meeting process.
6 Possibilities for editing and prepare a future meeting’s setup.
7 Implementing options for presenting real-time data.
8 Implementing possibilities for presenting fixed data.
9 Implementing an own mode active during meetings, especially designed for this activity.
10 Implementing an own mode active after meetings, able of producing minutes or other kinds of reports.
11 Implementing modes for different devices to make the interface user friendly, regardless of device/monitor.
12 Collaboration participants should see the same platform view regardless of physical location or monitors in use.
13 Sharing of cursor.
14 Agents for decision-support.
15 Page hierarchy with maximum of two levels.
16 Register and time meeting attendance.
17 Functionality for open other systems.
18 Present clear navigation information during interaction with system, and when external systems are displayed.
19 Having an overview of personnel competence, and possibly also use the competence as decision-support.
20 Easy to use system stripped of unnecessary functionality.
21 Understandable and intuitive automation.
22 Clear system feedback, including graphical feedback.
23 Measures for focus as warm and cold colors for inter alia setting priority.
24 Implementing functionality capable of giving readability feedback based on the current adjustments.
25 Readability test.
26 Implementing possibilities for readability adjustments.
27 Pre-selection of options when possible, to make it easier for users to follow ordinary system flow.
28 Support for display reduction.
29 Different complexity levels enabling both expert and novice use.
30 Notifications about important news.
31 Local display settings, as brightness, color and contrast.
32 A system capable of taking available hardware in current meeting rooms into account.
33 A system capable of sharing the required information in morning meetings.
34 Whiteboard functionality.

148



Table 2: Implementation of requirement categories in analyzed systems.

Requirement id Protosphere Mail surface ARKit Epsis IO-MAP Wisio
1 Yes No No ? No No
2 No No No No No No
3 Yes Yes Yes Yes Yes Yes
4 Yes ? Yes Yes Yes Yes
5 Yes No No Yes No No
6 Yes Yes No Yes No No
7 Yes No Yes Yes Yes Yes
8 Yes Yes Yes Yes Yes Yes
9 Yes No No Yes No No
10 Yes No No Yes No No
11 ? No ? ? ? No
12 ? ? ? Yes ? ?
13 Yes No No ? No No
14 No No No No No No
15 Yes Yes Yes Yes Yes Yes
16 Yes No No No No No
17 ? No No Yes No No
18 Yes - Yes Yes Yes Yes
19 No No No No No No
20 Yes Yes Yes Yes Yes Yes
21 ? No ? ? ? ?
22 Yes ? Yes Yes Yes Yes
23 - Yes Yes - Yes Yes
24 No No No No No No
25 No No No No No No
26 Yes No ? Yes No No
27 ? - ? ? - -
28 No No ? Yes ? No
29 Yes No Yes Yes Yes Yes
30 No No Yes Yes Yes Yes
31 ? No No No No No
32 No Yes Yes Yes Yes ?
33 ? Yes ? ? No No
34 Yes No No No ? No

149



Appendix B

Requirements

B.1 Requirements Defined for the Project

150



Meeting System Requirements, version II

Amund L̊agbu

February 4, 2015

1 About

This document contains requirements based on needs promoted at a workshop,
and a study of guidelines defined for collaboration and support rooms.

Each of the requirements in this document have been numerated, given a
title, a description, a purpose and finally possible connections to parent require-
ments.

This is the second version of the description of the requirements. The first
version had a separate list of requirements based on their origins - if they were
promoted in the workshop or based on guidelines. This version, on the other
hand, contains a merged list of all requirements.

Secondly the first list of requirements have been analyzed by the project’s
contracting authority. Some have been removed, others have been added to the
new list. Additionally wording has been changed to make the message of each
requirement easier to understand, if ambiguities were detected during the first
analysis.

A model displaying connections between requirements has been added at the
end of the document.

1

151



2 Requirements

Requirement 0000

Title: Create two systems for morning meetings.
Description: Two systems should be produced for supporting morning
meetings in the oil and gas industry. One system should be used by
meeting participants in sessions in collaboration rooms. The other should
be used by third-party personnel available for contact via their mobile
devices.
Purpose: To support personnel in morning meetings, and to let morning
meeting participants be able of contacting third-party personnel.
Dependencies: NULL.

Requirement 0001

Title: System for collaboration rooms.
Description: A software system should be designed for morning meet-
ings held in collaboration rooms. Such meetings takes place in rooms
with usually two monitors displaying video conferencing and informa-
tion. The software system should be displayed on the monitor not used
by the video conferencing.
Purpose: To create a new system to support participants in morning
meetings.
Dependencies: 0000.

Requirement 0002

Title: Mobile application.
Description: An application should be produced to operate on mobile
devices. This application should be able to communicate with personnel
participating in traditional morning meeting sessions. The communi-
cation should occur between the mobile application and the software
system used in morning meetings.
Purpose: To make third-party personnel able of participating in morn-
ing meetings via their mobile devices.
Dependencies: 0000

2

152



Requirement 1000

Title: Interface to contact personnel not participating in current session.
Description: An interface to contact personnel not participating in a
morning meeting session, but who are available via a mobile application,
should be created. This interface should be global and accessible from
all parts of the software system.
The interface is not supposed to run on the VC application, but to be
an option available in the software running on a secondary screen in the
meeting session.
Purpose: To involve third-party key-personnel in the decision-making
process.
Dependencies: 0001.

Requirement 1001

Title: Select available user of mobile application.
Description: The interface should have functionality to show available
personnel running a mobile application. Information such as names,
titles and portrait images should be presented in such a view.
Purpose: To make it possible to select personnel who may join a meet-
ing session via their mobile devices.
Dependencies: 1000.

Requirement 1002

Title: Send messages to third-party personnel running a mobile appli-
cation.
Description: The main meeting software should have implemented a
function for sending text messages to personnel running a mobile appli-
cation, outside the meeting’s context.
Purpose: To make it possible to contact personnel with messages, if
they are not available at the moment, or if a number of personnel should
be contacted at the same time.
Dependencies: 1000.

Requirement 1003

Title: Receive messages from third-party personnel running a mobile
application.
Description: The interface should have implemented possibilities for
receiving messages from key-personnel. Notifications in the interface
could be used for showing the meeting participants that a message has
been intercepted.
Purpose: To make it possible for third-party personnel to communicate
textually with the software system from their mobile devices, outside a
session.
Dependencies: 1000.

3

153



Requirement 1004

Title: Establish voice communication with personnel running mobile
applications.
Description: The interface should implement possibilities for establish-
ing voice communication with personnel outside a session. Video com-
munication is not considered, since the users outside the session could
be holding their devices in their hands, while simultaneously viewing in-
formation on their devices. The quality of a video call could therefore
be uncontrollable.
Purpose: To make it possible for meeting participants and personnel
using a mobile application to communicate by voice in a meeting session.
Dependencies: 1000.

Requirement 1005

Title: Present image, title and name of personnel participating with a
mobile-device.
Description: An image of the contacted personnel should preferably be
shown in the software system’s interface, and not on the VC screen, if
contact is established. The name and title of the person should also be
visible in the interface as long as the communication lasts.
Purpose: To minimize the notion of distance while the communication
with the mobile device user is active, and to make it clear for all meeting
participants who they are communicating with.
Showing this information on the VC screen is omitted since may be
hard to find a place to put such information on the VC screen without
disturbing an ongoing session.
Dependencies: 1000.

Requirement 1006

Title: Present timer displaying duration of communication with mobile
application.
Description: The participants in a meeting session should be displayed
a timer showing the duration of the communication with a mobile user.
Purpose: The application should strive for time-efficiency. Displaying
a time counter, as for example a stop-watch, could make the participants
eager to make a call time-efficient.
Dependencies: 1000 & 1313.

4

154



Requirement 1007

Title: Clear information about ongoing communication with mobile ap-
plication user.
Description: Clear information with an ongoing session, involving a
mobile device user, should be presented as long as the communication
lasts. If a screen has been shared or not must also be included as such
information.
Purpose: To prevent communication from mistakenly continue after a
session with a mobile device user should have been ended.
Dependencies: 1000.

Requirement 1008

Title: Share surface view with mobile application.
Description: The meeting leader should be able to share the view of
the software system with a mobile application user.
Purpose: To make it possible for a mobile user to view the information
displayed on a screen in the meeting.
Dependencies: 1000.

Requirement 1009

Title: End sharing of interface during session.
Description: It must be possible for the meeting leader to end the shar-
ing of the user interface during communication with a mobile application
user. The sharing must also automatically end if the voice communica-
tion with the mobile application is ended.
Purpose: To make it possible for the meeting leader to end sharing of
the software system’s interface.
Dependencies: 1000.

Requirement 1010

Title: End communication with mobile application.
Description: The meeting leader should have possibilities for ending
ongoing communication with a mobile application.
Purpose: To make the leader of a meeting session capable of ending
communication with a third-party participant during a meeting session.
Dependencies: 1000.

5

155



Requirement 1011

Title: Enable voice communication with third-party personnel.
Description: While the communication with the third-party personnel
is active, the participant on the mobile device should be included in the
ongoing meeting session. He or she should be able to communicate in line
with the others, when it comes to voice communication. All participants
in a meeting should be able to speak with the user of the mobile device.
Purpose: To include third-party personnel in the active meeting session.
Dependencies: 1000.

Requirement 1100

Title: Register key-information during a meeting.
Description: Possibilities for registering actions, decisions and key-
information points. Examples on such interaction tools may be text
boxes for registering information directly into the platform during a
meeting session.
Purpose: Easy registering of information in a meeting.
Dependencies: 0001.

Requirement 1101

Title: Restrict long text strings.
Description: Maximum limits should be implemented to prevent users
from registering long text strings during meetings. A counter presenting
characters left could be implemented for each text area.
Purpose: To force the participants to limit written information.
Dependencies: 1100.

Requirement 1200

Title: Multiple Roles.
Description: It must be taken into account that four different roles
could be using the system; the meeting leader, participants, mobile ap-
plication users and finally non-participating viewers.
Purpose: To support different types of user roles.
Dependencies: 0001.

Requirement 1201

Title: Different views outside meeting mode.
Description: Different views of information may be available for differ-
ent types of users interacting with the application when meeting mode
is not active.
Purpose: To avoid some users from having access to all information.
Dependencies: 1200.

6

156



Requirement 1300

Title: Modes.
Description: The system must have several modes.
Purpose: To make the different types of interactions with the system
more structural - before after and during a meeting, and with different
types of devices.
Dependencies: 0001.

Requirement 1301

Title: Editor mode.
Description: the system should have an editor. The editor should make
it possible to change a meeting’s templates by selecting what to include
in later meeting agendas.
Purpose: To edit meetings’ templates.
Dependencies: 1300.

Requirement 1302

Title: Drag and drop interactions to edit.
Description: Drag and drop interactions should mainly be used for
editing the meetings’ templates in the editor.
Purpose: To make editing as simple as possible.
Dependencies: 1301.

Requirement 1303

Title: Save and load editor meeting templates.
Description: It should be possible to save edited meeting templates
and to load previously stored ones.
Purpose: To make it possible to create several meeting templates.
These may be filled with information based on type of morning meeting
in the later preparation phase.
Dependencies: 1301.

Requirement 1304

Title: Set default meeting template.
Description: One meeting template should at all times be set as the
default template, available in the preparation mode. This template could
be changed if needed.
Purpose: To set a meeting template as default, making it easy for the
user to select a meeting type in preparation mode.
Dependencies: 1301.

7

157



Requirement 1305

Title: Preparation mode.
Description: An own mode should be implemented to handle tasks
needed for preparing the meetings by the meeting leader (meeting
owner).
Purpose: To make it possible to distinguish the preparation of meetings
into an own system mode.
Dependencies: 1300.

Requirement 1306

Title: Rapid preparation.
Description: A meeting leader should be able to generate a morning
meeting rapidly.
Purpose: To prevent unnecessary time spent during preparations.
Dependencies: 1305.

Requirement 1307

Title: Select template.
Description: It should be possible to select a meeting template pro-
duced in the editor. The default one should be selected automatically.
But this may be changed to a different one, if needed.
Purpose: To easily create a meeting, based on produced meeting tem-
plates.
Dependencies: 1305.

Requirement 1308

Title: Add information to meeting template.
Description: Possibilities for adding/removing information to a tem-
plate or previously stored meeting.
Purpose: To create a meeting of a template.
Dependencies: 1305.

Requirement 1309

Title: Save/load meeting.
Description: To save or load a meeting.
Purpose: To save a meeting for later use, or load a meeting for
reuse/further changes.
Dependencies: 1305.

8

158



Requirement 1310

Title: Selection of real-time information display.
Description: Information boxes created in the editor could be set to
contain automatically generated information, based on the current box’
purpose, and the available system data.
Purpose: To make it possible to display real-time information.
Dependencies: 1305.

Requirement 1311

Title: Selection of manual information display.
Description: Boxes created may contain manually selected information.
Purpose: To avoid real-time display, if a fixed data display is preferable.
Dependencies: 1305.

Requirement 1312

Title: Meeting mode.
Description: An own system mode should be active during meetings.
Purpose: To distinguish the meeting activity into an own system mode.
Dependencies: 1300.

Requirement 1313

Title: Designed for fast walk-through.
Description: In oil and gas organizations morning meetings typically
lasts for 15 minutes. The system must support a walk-through designed
for the meeting type - avoiding unnecessary time-consuming actions.
Purpose: To design a mode adjusted to the meeting type’s typical
duration.
Dependencies: 1312.

Requirement 1314

Title: After-meeting mode.
Description: A mode for handling the activities needed after a meeting
has been held.
Purpose: To distinguish the activities needed after a meeting into an
own system mode.
Dependencies: 1300.

9

159



Requirement 1315

Title: Report.
Description: The after-meeting mode should be able to present the user
with a report describing changes made and new actions and decisions.
Examples may be rejections of notifications and movements of jobs.
Purpose: To summarize changes.
Dependencies: 1314.

Requirement 1316

Title: Monitor modes.
Description: The system should implement modes for different types
of monitors/devices.
Purpose: To make the interface of the system user friendly regardless
of used device/monitor.
Dependencies: 1300.

Requirement 1317

Title: Manual selection of monitor mode.
Description: It should be possible to manually select the desired mon-
itor mode.
Purpose: To make it possible for the users to override the system’s
choice of mode.
Dependencies: 1316.

Requirement 1318

Title: Automatic selection of monitor mode.
Description: The selection of monitor mode should at default be done
automatically. If a communication between different devices is taken
place, the adjustments should be set based on the poorest device.
Purpose: To make it possible for all participants to view the same
content, and make the view(s) optimized for the current device(s).
Dependencies: 1316.

Requirement 1319

Title: Same platform view.
Description: The selected monitor mode should make the users able of
seeing the same platform view during a meeting.
Purpose: To prevent misunderstandings, etc. due to users not watching
the same view of information.
Dependencies: 1316.

10

160



Requirement 1320

Title: Optimized for hd resolution.
Description: The system’s interface should be optimized for a frame
size of 1920 x 1024 pixels, which is the minimum required frame size
proposed in the study of the oil company’s guidelines.
Purpose: To ensure that the users’ experience of the interface is as good
as possible. (A zoom (pinch) functionality is proposed for the mobile
application to allow full hd viewing in the main system. See requirement
9008 for more information about the mobile application’s resolution).
Dependencies: 1316.

Requirement 1400

Title: Pointer control.
Description: The system should have possibilities implemented for
sharing of pointer control.
Purpose: To in a greater degree involve participants in meetings, and
to make implementation of a future technology easier.
Dependencies: 0001.

Requirement 1401

Title: Apply for pointer control.
Description: The participants should be able of getting control of a
global mouse pointer.
Purpose: To make the participants a more active part of the meetings.
Dependencies: 1400.

Requirement 1402

Title: Receive pointer control.
Description: Participants may receive control of a global pointer.
Purpose: To make the participants a more active part of the meetings.
Dependencies: 1400.

Requirement 1403

Title: Retrieve pointer control.
Description: The meeting leader should be able to forcefully retrieve
control of the global pointer.
Purpose: To make the leader capable of retrieving pointer control if it
has to be retrieved with force (for example when errors occur, partici-
pants can’t find out how to hand over the pointer, etc).
Dependencies: 1400.

11

161



Requirement 1404

Title: Hand over pointer control.
Description: Functionality should be implemented for the leader (and
the participants) to hand over pointer control.
Purpose: To make the participants a more active part of meetings.
Dependencies: 1400.

Requirement 1405

Title: Present appliances for pointer control.
Description: The display should have notifications and a reachable list
of appliances for pointer control.
Purpose: To make it easier for the meeting leader to hand over pointer
control to participants.
Dependencies: 1400.

Requirement 1500

Title: Agents.
Description: It should be implemented automatic agents for decision
support.
Purpose: Automatic agents may add a new level to the decision-making
process, making it possible to test different options in real-time.
Dependencies: 0001.

Requirement 1501

Title: What-if agents.
Description: A concrete type of agent that should be implemented
is the what-if agent. This type of agent may act as a virtual meeting
participant.
Purpose: Automatic agents may add a new level to the decision-making
process, making it possible to test different options in real-time.
Dependencies: 1500.

Requirement 1502

Title: User friendly expert system interface.
Description: The expert system interface should be intuitive, and easy
to use.
Purpose: To make the interface easy to use and to stimulate for more
use.
Dependencies: 1500.

12

162



Requirement 1503

Title: Reliability of expert system information.
Description: The information output from the agents should be as
reliable as possible, and information about the degree of reliability should
also be returned.
Purpose: To prevent misinterpretation of information.
Dependencies: 1502.

Requirement 1504

Title: Easy to add information into the expert system.
Description: Information input into the expert system should be easy
to perform.
Purpose: Making the agents attractive to use and to prevent misun-
derstandings.
Dependencies: 1502.

Requirement 1505

Title: Easy to understand information.
Description: The output from the agents should be easy to understand.
Purpose: To prevent misinterpretation of information.
Dependencies: 1502.

Requirement 1600

Title: Page hierarchy in the system with a maximum of two levels.
Description: The system should be organized with a main page, and
possibly underlying sub-pages. But too many levels may lead to confu-
sion.
Purpose: To organize the system and make it intuitive to use. It should
therefore not consist of too many hidden levels underneath a main page.
Dependencies: 0001.

Requirement 1601

Title: Main page.
Description: The system must have a main page displaying topics and
possibly sub-pages.
Purpose: To make a page with global information. From here possible
sub-pages may also be reachable.
Dependencies: 1600.

13

163



Requirement 1602

Title: Registration of participants.
Description: The main page should contain possibilities for easy regis-
tration of participants into a list with checkpoints.
Purpose: To register who attended meetings.
Dependencies: 1601.

Requirement 1603

Title: Time meeting attendance.
Description: The meeting attendance should be timed when selecting
participants in the list described in requirement 1602.
Purpose: Registering who were participating, and duration and time
of attendance.
Dependencies: 1602.

Requirement 1604

Title: More than one panel.
Description: The system should consist of more than one global panel.
It should be easy to navigate between panels.
Purpose: To show information in different views, serving different pur-
poses.
Dependencies: 1600.

Requirement 1605

Title: Sup-pages.
Description: Possibilities for implementing sub-pages must be consid-
ered. These kind of pages may contain each of the topics.
Purpose: To make simple overviews of topics, and to organize informa-
tion.
Dependencies: 1600.

Requirement 1606

Title: Open other systems.
Description: It should be possible to open other systems, and to inter-
act with them. If sub-pages are implemented, these should contain such
functionality.
Purpose: To enable interaction with other systems.
Dependencies: 1600, 1605.

14

164



Requirement 1607

Title: Show navigation when interacting with third-party software.
Description: A navigation bar must be visible when interacting with
other systems. This navigation bar must contain a back button, to return
to the main system, and a header describing the currently used software.
Purpose: To prevent confusion due to misunderstandings of navigation.
Dependencies: 1606, 1801.

Requirement 1608

Title: Animation when interacting with other software.
Description: Animation should be implemented to give the users tan-
gible illusions of opening other systems.
Purpose: To prevent user confusion.
Dependencies: 1606.

Requirement 1700

Title: Overview of competence.
Description: The system should have an overview of what competence
is needed to perform different tasks.
Purpose: The system should support the participants in controlling if
the required competence is available in a meeting.
Dependencies: 0001.

Requirement 1701

Title: Hot permit warnings.
Description: The system should be able to give warnings informing of
required competence when a hot permit job is to be approved.
Purpose: To reduce the possibilities of hot permit jobs approved with-
out the required competence available in a meeting.
Dependencies: 1700.

Requirement 1702

Title: Control competence.
Description: The system should have listings containing the main com-
petence of meeting participants. If the required competence to perform
a task is not at place in a meeting, the system should give a warning.
These operations should be performed by an agent.
Purpose: To ensure that the required competence is at place in a meet-
ing.
Dependencies: 1500, 1700.

15

165



Requirement 1800

Title: Easy to use system.
Description: The system should be easy to use and not more difficult
to understand than Facebook.
Purpose: Increase usability and the users’ confidence in the system.
Dependencies: 0001.

Requirement 1801

Title: Display navigation information.
Description: If the implementation contains several pages, the layout
must clearly tell the user about the current navigation. Measures as
back-buttons, page titles, etc. must be implemented in such cases.
Purpose: To inform the user about the current navigation.
Dependencies: 1800.

Requirement 1802

Title: Stripped of unnecessary functionality.
Description: Functionality, which is not necessary for the meeting par-
ticipants to perform their job, should not be implemented. Complex
functions should not be part of the ordinary system flow, but hidden in
for example a drop-down menu.
Purpose: To make the system intuitive and simple.
Dependencies: 1800.

Requirement 1803

Title: Operate without required learning.
Description: The system must be usable, and users should be able to
operate the basics without having read instructions.
Purpose: To ensure system usability, and to make new meeting leaders
capable of operating the basic functions of the system on the fly, in case
of for example illness.
Dependencies: 1800.

Requirement 1804

Title: A layout with minimal distractions.
Description: The system surface should have a clean look, avoiding
unnecessary distractions.
Purpose: To avoid distractions due to a messy layout.
Dependencies: 1800.

16

166



Requirement 1805

Title: Understandable automation.
Description: Automation of functions should be implemented intu-
itively.
Purpose: Automation of some functions should not make the user think
that other, manual functions are automated.
Dependencies: 1800.

Requirement 1806

Title: Clear feedback.
Description: Clear feedback should be given on interactions with the
system’s interface. The feedback should make the viewers aware of op-
tions made.
Purpose: To present the viewers with understandable feedback and
make them aware of their interactions.
Dependencies: 1800.

Requirement 1807

Title: Graphical feedback.
Description: Graphical feedback should be given any time an impor-
tant choice is to be made. Such feedback may be given through a blinking
paperclip or a dialog box. However, it is important that such measures
is used with caution, see requirement 1809.
Purpose: To avoid erroneous choices made.
Dependencies: 1806.

Requirement 1808

Title: Unambiguous naming.
Description: Avoid confusing and hard to understand naming.
Purpose: Prevent misunderstandings.
Dependencies: 1806.

Requirement 1809

Title: Avoid unnecessary disturbing elements.
Description: Unnecessary disturbing elements should be avoided.
Purpose: To avoid unnecessary graphical and other types of noise in
the application.
Dependencies: 1806.

17

167



Requirement 1810

Title: Avoid sound.
Description: Sound should not be used as a feedback effect.
Purpose: In collaboration rooms there may be noise made by for ex-
ample telephones, voices, fans, etc. Sound should therefore not be used
as feedback, since it may add noise and possibly disturb an ongoing
collaboration session.
Dependencies: 1809

Requirement 1811

Title: Measures for focus.
Description: Measures, such as warm and cold colors, should be used
for focusing on information parts. This should be tested thoroughly in
advance of implementation.
Purpose: To make it easy to highlight important information, or tell
the user about navigation.
Dependencies: 1806.

Requirement 1812

Title: Specify priority.
Description: It should be implemented functionality for setting priori-
ties in the tool before and during a meeting. This may include marking
a text in a specific color.
Purpose: To highlight some information, and to disregard other.
Dependencies: 1806, 1811.

Requirement 1813

Title: Intuitive interface.
Description: Information should be found where it could be expected
to be found.
Purpose: Make the system intuitive.
Dependencies: 1800, 1806.

Requirement 1814

Title: Graphical requirements for readability.
Description: Universal usability should be pursued when presenting
text.
Purpose: Prevent text from not being read due to low degree of read-
ability.
Dependencies: 1800.

18

168



Requirement 1815

Title: Readability feedback.
Description: The system should give feedback if the readability is found
to be low. An agent may be implemented for controlling readability. If
the display is showing text in a way that triggers the agent’s algorithm,
the users should be presented with a warning.
Purpose: To contribute to good readability.
Dependencies: 1500, 1814.

Requirement 1816

Title: Implementation of a readability test.
Description: The editor must support implementation of a potential
readability check for meetings.
Purpose: To implement a check which may verify that all partici-
pants, including visitors, can read displayed information. Visitors may
be seated randomly, not following room design plans, making it hard to
automatically decide text sizes.
Dependencies: 1301, 1814.

Requirement 1817

Title: Automatic readability adjustments.
Description: Automatic choices for readability should be implemented.
The system should access information about the meeting rooms, and
display readable text for potential viewers in the farthest seats. The
system should take the room with the poorest readability into account,
when deciding upon displayed text sizes. The text sizes should be found
with an algorithm calculating displayed text size with screen size and
distance to viewers.
Purpose: To automatically make sure that viewers may read the dis-
played text.
Dependencies: 1814.

Requirement 1818

Title: Manual readability adjustments.
Description: The system must support possibilities for manual adjust-
ment of text sizes.
Purpose: To adjust text to support the individual viewer’s needs.
Dependencies: 1814.

19

169



Requirement 1819

Title: Automatic option selection.
Description: When possible options should be selected automatically
in advance of the user’s final choice. Such selections may apply to radio
buttons, check boxes, etc.
Purpose: To make inexperienced users able of using the system without
much training.
Dependencies: 1800.

Requirement 1820

Title: Positioning of important information in the system’s interface.
Description: The important information should not be positioned in
the view in a way that makes it hard to view by the meeting’s par-
ticipants. According to the guidelines of the studied oil company, all
important information should be placed within a 70 degree lateral view-
ing angle, 40 degrees below and 20 degrees above the line of vision in
relation to the front of the video transfer, information and visualization
surfaces.
Purpose: To prevent that information gets difficult to be seen, because
of the meeting room’s design.
Dependencies: 1800.

Requirement 1821

Title: Support for display reduction.
Description: The system must implement possibilities for decreasing
either width or especially height of the displayed visualizations - and still
strive for working optimally.
Purpose: Height from for example floor to ceiling may vary in differ-
ent meeting rooms. This may affect the participants capability to view
the screens. In some occasions the displayed interface may have to be
cropped to ensure that the participants may view the information. In
such cases the system should still strive for working optimally.
Dependencies: 1820.

Requirement 1900

Title: Levels of complexity and details.
Description: The system should have different levels of complexity,
enabling both expert and beginner use. As an example a technical meet-
ing leader may show more detailed information than a beginner, if de-
manded.
Purpose: To adopt the system to the user’s needs.
Dependencies: 0001, 1800.

20

170



Requirement 2000

Title: Ensure that communication works.
Description: It should be tested that the system is able to communicate
properly with mobile devices and other systems.
Purpose: To prevent loss of functionality due to communication prob-
lems.
Dependencies: 0001.

Requirement 2100

Title: Operational before deadline.
Description: The system should be implemented and ready to use be-
fore the specified deadline, if it should be implemented in a company in
the future.
Purpose: If a system is not operational in time, personnel tend to avoid
using it.
Dependencies: 0001.

Requirement 2200

Title: Notifications about news.
Description: If important information has been generated after the
meeting leader has prepared a meeting, and possibly also during a meet-
ing, the system should notify about the new information - if relevant. A
subscription arrangement may be set in preparation mode to ensure that
only relevant notifications are shown.
Purpose: To ensure that important information is displayed.
Dependencies: 0001.

Requirement 2300

Title: Display settings.
Description: The system should implement settings for colors, bright-
ness, white balance, etc.
Purpose: To make customization of the display available, if needed.
Dependencies: 0001.

Requirement 2301

Title: Pre-designed display settings.
Description: Users should be able of adjusting display settings by se-
lecting pre-designed display options. Such options may be adjusted for
meeting rooms with natural light from windows or for example rooms
illuminated by light bulbs, fluorescent lamps, etc.
Purpose: To make the users able of easily adjust display settings to the
meeting room’s lighting conditions.
Dependencies: 2300.

21

171



Requirement 2302

Title: Advanced, manual display settings.
Description: There should be integrated advanced options for changing
display settings. This option should also implement functionality for
resetting the adjustments to default.
Purpose: How a meeting room is illuminated may affect the information
displayed on screen. Possibilities for changing color templates, contrast,
etc. may be implemented to ensure that participants may easily view
the information on screen.
Dependencies: 2300.

Requirement 2400

Title: The system must take available hardware into account.
Description: Collaboration rooms contain audiovisual collaboration
equipment. The participants may view one, common set of dual viewing
surfaces. The system must take this context into account, by for example
not make the system dependent on more screens than the one not used
for video conferencing.
Purpose: To avoid creating a system not usable with today’s groupware
implementations in the oil and gas industry.
Dependencies: 0001.

Requirement 2500

Title: Requirements for information sharing in morning meetings.
Description: The following information has to be shared in morning
meetings to make participants able to solve tasks and decisions: Oper-
ation status, action log, risk management and documents such as SAP-
documents. The meeting systems must at a minimum implement func-
tionality to fulfill these goals.
Purpose: To ensure that the required information is shared in morning
meetings.
Dependencies: 0001.

Requirement 2600

Title: Whiteboard functionality.
Description: In some meeting rooms, whiteboards are used for display-
ing information. The system may implement a whiteboard functionality
which has possibilities to store the drawn screens.
Purpose: To create a substitute functionality for whiteboards used in
some meeting rooms. This functionality may also store the written in-
formation, and ensure that this is not lost after meetings have finished.
Dependencies: 0001.

22

172



Requirement 2601

Title: Easy to access whiteboard.
Description: The whiteboard should be a globally accessible function.
Animation could be used to open and close the whiteboard from any-
where in the application.
Purpose: To make whiteboard as accessible as actual whiteboards in
meeting rooms. A global, virtual whiteboard may then hopefully be
preferred over the actual one.
Dependencies: 2600.

Requirement 2602

Title: Whiteboard tabs, or similar functions.
Description: Whiteboard tabs could be implemented to make the user
able of creating new whiteboards and navigate between existing ones.
All whiteboards should be accessible within the tool.
Another alternative is to make the whiteboard increasingly larger when
the user maneuvers inside it. A mini map may be used to tell the user
where information already has been added.
Purpose: To make sure that the users always have available whiteboard
space.
Dependencies: 2600.

Requirement 9000

Title: Receive messages from meetings.
Description: The mobile application should be able to receive textual
messages from meeting sessions, and to be notified of received messages.
Purpose: To make it possible to communicate with participants in
meetings without having to make voice calls.
Dependencies: 0002.

Requirement 9001

Title: Participate in meeting sessions.
Description: Mobile application users should be able to join meeting
sessions as guests. When they are participating they may communicate
with voice to all reachable participants in the meeting.
Purpose: To make the application users able of communicating with
participants in meeting sessions by voice.
Dependencies: 0002.

23

173



Requirement 9002

Title: Respond to meeting requests with messages.
Description: The mobile users must be able to respond to meeting
requests textually.
Purpose: Answering meeting requests.
Dependencies: 0002.

Requirement 9003

Title: End meeting participation.
Description: The mobile application users should be able to end par-
ticipation with a meeting, if voice communication has been enabled.
Purpose: To make the mobile users able to end their involvement in a
meeting.
Dependencies: 0002.

Requirement 9004

Title: Mute ongoing voice communication.
Description: If the mobile user is in a noisy environment, functionality
should be implemented to mute his/her mobile microphone.
Purpose: To avoid unnecessary noise disturbances for all meeting par-
ticipants, although a hands free set may be preferable means for com-
munication.
Dependencies: 0002.

Requirement 9005

Title: Receive shared version of screen.
Description: The mobile app should implement functionality for re-
ceiving a shared version of a meeting’s displayed view (of the software,
not the video conferencing display).
Purpose: To make the user see what the other meeting participants
see.
Dependencies: 0002.

Requirement 9006

Title: End sharing session.
Description: The user must be able to end the sharing session, and
hereby closing the view of the meeting’s display.
Purpose: To make the user able to end a sharing session.
Dependencies: 0002.

24

174



Requirement 9007

Title: Follow established guidelines.
Description: The mobile application must follow the design guidelines
established for the current platform.
Purpose: To create an application as recommended for the current
platform, hopefully making it more intuitive to understand for the mobile
platform users.
Dependencies: 0002.

Requirement 9008

Title: Zoom shared view.
Description: The mobile application users must be able to zoom the
received shared display used in the meeting session. Pinching movements
on the device is one solution, must this must be platform independent.
Purpose: To make it possible to zoom in on different parts of the screen
used in the meeting sessions, since the monitors in the morning meetings
may support higher resolution than the mobile devices do.
Dependencies: 9007.

Requirement 9009

Title: Sign in and sign out
Description: The user must enter credentials when using the applica-
tion.
Purpose: To prevent other users from participating in communication
with meeting sessions.
Dependencies: 0002.

Requirement 9010

Title: Incoming meeting alarm.
Description: The users must be notified of upcoming meetings, when
the meeting software tries to communicate with the mobile application.
Purpose: To make the users aware of incoming meeting calls.
Dependencies: 0002.

25

175



26

176



B.2 Requirements Based on a Company’s Guide-
lines

177



Requirements Based on Guidelines Defined by Oil

Company

Amund L̊agbu

January 16, 2015

1 About

This paper contains requirements to the meeting system. These have been
obtained from an oil company’s internal guidelines for establishing support and
collaboration rooms. All requirements will later be included in a joint document.
However, the requirements promoted in this document lack references due to
confidentiality.

The id of the requirements start on 4000, which is in compliance with require-
ments promoted earlier in another document. This will make it easy to create
a new document containing all requirements when the ones in this document
have been approved.

After discussions with the project’s supervisor rows containing information
about implementation necessity have been added to each requirement, as men-
tioned in the other document. The first row is called ”student’s proposal”, the
second ”experts’ proposal”. The purpose of these rows are to map the usefulness
of the implementation of each requirement.

Four ratings have been defined for the purpose;” Mandatory”, ”should im-
plement”, ”nice to have” and ”unclear”. ”Mandatory” requirements must be
implemented in the new system. Those that should be implemented are not
mandatory, but should be taken into account, and are to be rated as ”should
implement”. ”Nice to have” requirements are not needed in the new system,
but are nice to have. ”Unclear” requirements are difficult to rate because of
unclear information given, etc.

Lastly a ”comments” field has not been added. Experts may instead write
comments in the margin to the left or the right of each requirement.

1

178



2 Requirements

Requirement 4000

Title: The system must take the available hardware in the meeting room
into account.
Description: Collaboration rooms contain audiovisual collaboration
equipment. The participants may view one, common set of dual viewing
surfaces. The system must take this context into account.
Purpose: To avoid creating a system not usable with today’s groupware
implementations in the oil and gas industry.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4100

Title: Requirements for information sharing in morning meetings.
Description: The following information has to be shared in morning
meetings to make the participants able of solving tasks and make de-
cisions: Operation status, action log, risk management and documents
such as SAP documents.
Purpose: To ensure that the required information is shared in morning
meetings.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X (user-decided)
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

2

179



Requirement 4101

Title: Collaboration purpose of morning meetings.
Description: The system must fulfill the purpose of morning meetings.
In morning meetings all participants have to be updated on the status
of operations, risks and ongoing actions. They must also be capable of
establishing new actions.
Purpose: To fulfill the goals of morning meetings.
Dependencies: 4100.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X (user-decided)
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4200

Title: System designed for fast walk-through.
Description: In oil and gas organizations morning meetings typically
last for about 15 minutes. The system must support a walk-through
designed for the meeting type - avoiding unnecessary time-consuming
actions.
Purpose: To design a system adjusted to the meeting type’s typical
duration.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4300

Title: Readability according to the Human-System Interface Design
Review Guidelines(NUREG 0700, rev. 2).
Description: The Human-System Interface Design Review Guidelines
should be followed to ensure that the system provides readability for all
viewers in a meeting.
Purpose: To display readable information.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

3

180



Requirement 4301

Title: Automatic readability adjustments.
Description: Automatic choices should be made according to the
Human-System Interface Design Review Guidelines(NUREG 0700, rev.
2). The system should access information about the meeting rooms, and
display readable text for potential viewers in the farthest seats. The
system should take the room with the poorest potential viewers into
account.
Purpose: Automatic choices to ensure that viewers may read displayed
information.
Dependencies: 4300.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4302

Title: Implementation of readability test.
Description: The editor must support implementation of a potential
readability check for meetings.
Purpose: To implement a check which may verify that all partici-
pants, including visitors, can read displayed information. Visitors may
be seated randomly, not following room design plans, making it hard to
automatically decide on text sizes.
Dependencies: 4300.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

4

181



Requirement 4303

Title: Manual readability adjustments.
Description: The system must support possibilities for manual adjust-
ment of text sizes.
Purpose: To adjust text to support the individual viewers’ needs.
Dependencies: 4300.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4400

Title: Positioning of important information in the system’s interface.
Description: The important information should not be positioned in
the view in a way that makes it hard to view by the meeting’s par-
ticipants. According to the guidelines of the studied oil company, all
important information should be placed within a 70 degree lateral view-
ing angle, 40 degrees below and 20 degrees above the line of vision in
relation to the front of the video transfer, information and visualization
surfaces.
Purpose:
To prevent that information gets difficult to be seen, because of the
meeting room’s design.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

5

182



Requirement 4401

Title: Support for display reduction.
Description: The system must implement possibilities for decreasing
either width or especially height of the displayed visualizations - and still
strive for working optimally.
Purpose: Height from for example floor to ceiling may vary in differ-
ent meeting rooms. This may affect the participants capability to view
the screens. In some occasions the displayed interface may have to be
cropped to ensure that the participants may view the information. In
such cases the system should still strive for working optimally.
Dependencies: 4400.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4500

Title: Optimized for 1920 x 1024 resolution.
Description: The system’s interface should be optimized for a frame
size of 1920 x 1024 pixels, which is the minimum required frame size
proposed in the studied oil company’s guidelines.
Purpose: To ensure that the users’ experience of the interface is as good
as possible.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

6

183



Requirement 4600

Title: Whiteboard functionality
Description: In some meeting rooms, whiteboards are used for display-
ing information. The system may implement a whiteboard functionality
which has possibilities to store the drawn screens.
Purpose: To create a substitute functionality for whiteboards used in
some meeting rooms. This functionality may also store the written in-
formation, and ensure that this is not lost after meetings have finished.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4700

Title: Feedback on interactions.
Description: Clear feedback should be given on interactions with the
system’s interface, to ensure that the viewers are aware of options made.
Purpose: To make the viewers aware of system interactions.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4701

Title: Prevent sound feedback.
Description: Sound should not be used as an effect to display feedback.
Purpose: In collaboration rooms there may be noise made by for exam-
ple telephones, voices, fans, etc. Sound should not be used as feedback
for interactions, since it may add noise and possibly disturb an ongoing
collaboration session.
Dependencies: 4700.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

7

184



Requirement 4800

Title: Options to change contrast/color of display.
Description: There should be integrated options for quickly changing
the colors or contrast of the display.
Purpose: How a meeting room is illuminated may affect the information
displayed on screen. Possibilities for changing color templates, contrast,
etc. may be implemented to ensure that the participants may easily view
information on screen.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

Requirement 4900

Title: Usability of the system.
Description: The system must be usable, and users should be able to
operate the basics without having read instructions.
Purpose: To ensure system usability, and to make new meeting leaders
capable of operating the basic functions of the system on the fly, in case
of for example illness, etc.
Dependencies: NULL.
Student’s proposal:
Mandatory Should implement Nice to have Unclear

X
Experts’ proposal:
Mandatory Should implement Nice to have Unclear

8

185



Appendix C

Design

186



Design - Iteration VIII

Amund L̊agbu

This document contains six slides of the future meeting system drawn
during the eighth design iteration. Two of them are redrawn versions of the
slides made in iteration VII presenting the meeting’s sub system for handling
several meetings. These are presented first. The last, four slides describe
changes made to the part of the system active in the actual morning meeting
sessions. In addition to overall design changes, these slides have also been
made to support visualization guidelines.

The other slides, presented in the concept test, have not been changed.
Instead they are thought to implement the same, overall changes as the ones
presented in this document. It was not considered necessary to change all
slides, if the current one could describe the overall and desired design.

Below follows short descriptions of each of the slides:

• 1: A design presenting how files, links and external software could be
added and listed.

• 2: This slide shows a new window visible when the user has clicked the
start-button. Meeting related information is presented in this window.

• 3: The slide presents a welcome message, in addition to possibilities
for registering the attendances and important focus points.

• 4: Here an activity is added while an external software is presented.
• 5: A report is presented with actions, decisions, comments and screen

captures, which may be edited.
• 6: The slide shows how a meeting may be sent to both roles and

individual personnel.

1

187



1
M

e
e
ti
n
g
H
a
n
d
le
r:

A
d
d
in
g
F
il
e
s
to

a
M

e
e
ti
n
g

2

188



2
M

e
e
ti
n
g
H
a
n
d
le
r:

In
it
ia
ti
n
g
a
M

o
rn

in
g
M

e
e
ti
n
g

3

189



3
M

e
e
ti
n
g
S
e
ss
io
n
:
W

e
lc
o
m
e
S
cr
e
e
n

4

190



4
M

e
e
ti
n
g
S
e
ss
io
n
:
A
d
d
in
g
A
ct
iv
it
y
D
u
ri
n
g
a
M

e
e
ti
n
g

5

191



5
M

e
e
ti
n
g
S
e
ss
io
n
:
D
is
p
la
y
in
g
th

e
R
e
p
o
rt

6

192



6
M

e
e
ti
n
g
S
e
ss
io
n
:
S
e
n
d
in
g
th

e
R
e
p
o
rt

7

193



Appendix D

Test of Developed Concept

194



Østfold University College
Faculty of Computer Sciences

Halden, Norway

Master in Applied Computer Science

CONCEPT TEST

By Amund L̊agbu

September, 2015
Test of Developed Concept

195



1 Background

This document describes a test of a developed concept during the work with
a master thesis in applied computer science. The concept has been developed
as a mean for answering the thesis’ research questions, which are:

1. Can software tools better support decisions in morning meetings in oil
and gas organizations, and how?

2. How may software, supporting morning meetings, promote important
elements of the Integrated Operations concept?

The developed concept is a non-interactive design of a future system. It
has been developed as a shared software for interactive morning meetings
between personnel located both onshore and offshore. The development and
the study of support for other kinds of meetings was omitted with regard to
the magnitude of such a task.

Further the software is a supplementary platform, and has not been de-
signed to replace existing video conferencing. It is to be shown on a second
monitor, alongside ongoing video streams.

The concept is founded on several system requirements formed in col-
laboration with personnel at IFE, a study of guidelines for establishing col-
laboration rooms and an evaluation of current systems and prototypes. In
addition, more general design principles, as ”the Eight Golden Rules of In-
terface Design”, have been used during this process.

Major sources of inspiration were both the existing system Epsis Team-
box, and a mail platform previously used in morning meetings in an oil
company. Other, important inspiration sources were the prototype system
IO-MAP (and WISIO), ArkIT and Protosphere.

The prototyping process followed a custom method. This method in-
cluded initial stages for establishing requirements for a morning meeting
system and an evaluation of how well current systems and prototypes met
these requirements. After these stages the concept was developed in iterative
cycles, resulting in producing both a horizontal and a functional prototype.
However, the the functional prototype is not to be evaluated, since it does
not differ much from the overall design. It was meant as a mean for testing
design selections. Further design of the overall prototype followed after the
functional prototyping.

1

196



2 Conduction of the Test

The following test will be performed in three stages. Firstly the produced
prototype will be examined during cognitive walkthroughs of central parts.
Secondly a heuristic evaluation of the design will be conducted in respect
to guidelines and some system requirements. Then a usability inspection
is to be performed, with regard to the usefulness of the system in current
IO oil and gas organizations. This part of the test will not be performed
individually, but with a custom method - a plenum session.

The backdrop for selection of test methods is as follows:

1. Cognitive Walkthorugh: The cognitive walkthrough is performed
first to make the participants aware of system functionality and the
design, while still testing the design. The test aims for finding flaws in
the design, and if the current implementations work well.

2. Heuristic Evaluation: By performing the cognitive walkthrough
first, the participants should perhaps be familiar with the interface,
making them better prepared for rating the system in this part.

3. ”Usability Inspection”: The last part of the test is conducted not
only test the current implementation based on defined limits as spe-
cific guidelines and requirements. It aims for analyzing if the current
implementation is fitted for the IO oil and gas industry.

2

197



Consent Form

I have been informed about the nature of this study, and the test
that I am about to participate in. I understand that participation
in the test is fully voluntary, and that I am free to withdraw from
the research at any time, or to refuse to take part in the study.

I have been informed that the gathered material will be handled
anonymously, and that personal information (as my name or age),
will not be published. However, I am also been notified that in-
formation regarding the participants as a group may be published.
This information will include the time and place of the test, and
an overall group description of the participants’ background and
work area.

If I have any enquiries regarding the research I may contact student
at Østfold Univeristy College, Amund L̊agbu, by email or phone.
Contact information is as follows:

• Email: amundlag@hiof.no
• Phone: 922 23 903

By signing below I allow the gathered information during the test
to be published as quotations, to be studied and compared, and
reproduced in statistics.

Signed Date and location

Name (please print)

3

198



3 Cognitive Walkthrough

This test will include different tasks to be performed by thought interaction
with the system interface, which includes two, major parts: The main surface
where meetings are created, updated and sessions are started. The second
part is the actual meeting software, used during collaboration sessions. Each
activity has a described starting point, a specific site. Navigation between
sites will be simulated by navigating between prototype images.

Some functionality has not been designed, but is thought to be included.
Examples include dialogues when a user wants to cancel or overwrite. Other
examples are the help menu and the menu for rearranging the windows in
the outer part of the application design. Additionally keyboard shortcuts
are thought to be implemented in the outer part of the application, but not
during meetings. Error handling should preferably be done automatically,
but understandable messages should be shown for the user if error occurs.
All errors should be logged.

However, the following tasks should be performed in this part of the test:

3.1 Pre-meeting tasks

1. Create a new meeting. Navigate to 3.4.
2. Invite personnel to the new meeting (”Meeting 3”). Navigate to 3.4.
3. Create a new meeting structure for future morning meetings, name it

”morning meeting structure”. Navigate to 3.4.
4. Include a new file in ”Meeting 1”. Navigate to 3.4.
5. Start ”Meeting 1”. Navigate to 3.4.

3.2 In-meeting tasks

1. Perform the pre-meeting tasks. Navigate to 3.14.
2. Now, select the participants from the global tools menu. Navigate to

3.14.
3. If there are pending notifications, select the notification tool. Navigate

to 3.14.
4. Access the settings and increase the size of the mouse pointer, to make

it easier for the users to view selections made than with the default
cursor. Navigate to 3.14.

4

199



5. Watch a map surface of the installation presented as HSE information.
Navigate to 3.14.

6. Now, add a whiteboard describing the map. Navigate to 3.3.
7. Now add a comment to the selected map. Navigate to 3.3.
8. Then consider the alternative comment field. Navigate to 3.24.
9. Now select the production overview from the menu. Navigate to 3.14.

10. Then select the external drilling software by accessing the drilling topic.
Navigate to 3.14.

3.3 Post-meeting tasks

1. Create and send a report for the meeting that has not yet been reported.
Navigate to 3.4

5

200



3
.4

S
T

A
R

T

6

201



3
.5

N
E

W

7

202



3
.6

N
E

W
M

E
E

T
IN

G

8

203



3
.7

IN
V

IT
A

T
IO

N
S
E

L
E

C
T

IO
N

9

204



3
.8

IN
V

IT
A

T
IO

N

10

205



3
.9

S
T

R
U

C
T

U
R

E

11

206



3
.1

0
S
T

A
R

T
S
E

L
E

C
T

IO
N

12

207



3
.1

1
S
T

A
R

T
S
E

T
U

P

13

208



3
.1

2
R

E
P

O
R

T
S
E

L
E

C
T

14

209



3
.1

3
R

E
P

O
R

T

15

210



3
.1

4
M

E
E

T
IN

G
S
T

A
R

T

16

211



3
.1

5
P

R
E

-M
E

E
T

IN
G

S
E

L
E

C
T

IO
N

17

212



3
.1

6
P

R
E

-M
E

E
T

IN
G

P
A

R
T

IC
IP

A
N

T
S

18

213



3
.1

7
T

O
O

L
S

P
A

R
T

IC
IP

A
N

T
S

19

214



3
.1

8
T

O
O

L
S

N
O

T
IF

IC
A

T
IO

N
S

20

215



3
.1

9
T

O
O

L
S

S
E

T
T

IN
G

S

21

216



3
.2

0
M

A
P

M
E

N
U

S
E

L
E

C
T

IO
N

22

217



3
.2

1
M

A
P

S
U

R
F
A

C
E

23

218



3
.2

2
W

H
IT

E
B

O
A

R
D

24

219



3
.2

3
C

O
M

M
E

N
T

25

220



3
.2

4
C

O
M

M
E

N
T

-
A

L
T

E
R

N
A

T
IV

E

26

221



3
.2

5
P

R
O

D
U

C
T

IO
N

27

222



3
.2

6
D

R
IL

L
IN

G

28

223



4 Heuristic Evaluation

In this part of the test several questions should be answered in respect to the
application design, presented in the cognitive walkthrough. The design is to
be evaluated based on guidelines for application design and the requirements
set for the current system. The questionnaire is divided into topics, and each
topic leaves room for further comments.

The symbol used in the tables below are meant for evaluating if the
current design fulfills or not fulfills guidelines or requirements. The symbols
have the following meaning:

• - -: Not fulfilled.
• -: Mostly not fulfilled
• - / +: Neither fulfilled or not fulfilled.
• +: Mostly fulfilled.
• + + Fulfilled

If some guidelines or requirements are considered not relevant, or if other
uncertainties may be connected to the current demand, please leave the box
unchecked and write a short comment. Comments may also be written to
specify why requirements or guidelines are only met, or partly not met.

The Eight Golden Rules of Interface Design were retrieved from the fol-
lowing site: http://faculty.washington.edu/jtenenbg/courses/360/f04/sessions/
schneidermanGoldenRules.html

29

224



4.1 System Requirements Groups

Rule: −− − −/+ + ++ Comment:

Requirement 1. Two-way commu-
nication with users operating external
mobile devices during collaboration ses-
sions.

2 2 2 2 2

Requirement 2. Sharing of view with
mobile devices during collaboration ses-
sions.

2 2 2 2 2

Requirement 3. Possibilities for regis-
tering information, as for example key-
words, during meetings.

2 2 2 2 2

Requirement 4. The software must
take the existing meeting roles into ac-
count by being designed for both meet-
ing participants, meeting leaders, etc.

2 2 2 2 2

Requirement 5. Multiple modes for
varying system flow based on current
state in the meeting process. Examples
include an editor, a meeting mode and
a report mode.

2 2 2 2 2

Requirement 6. Possibilities for edit-
ing and prepare a future meeting’s
setup.

2 2 2 2 2

Requirement 7. Implementing op-
tions for presenting real-time data.

2 2 2 2 2

Requirement 8. Implementing op-
tions for presenting fixed data.

2 2 2 2 2

Requirement 9. Implementing an own
mode active during meetings, especially
designed for such a stage in the planning
process.

2 2 2 2 2

Requirement 10. Implementing an
own mode active after meetings, able of
producing minutes or other kinds of re-
ports.

2 2 2 2 2

Requirement 11. Implementing
modes for different types of devices to
make the interface user friendly, regard-
less of device/monitor used.

2 2 2 2 2

Requirement 12. Collaboration par-
ticipants should see the same platform
view regardless of physical location or
monitors in use.

2 2 2 2 2

30

225



Rule: −− − −/+ + ++ Comment:

Requirement 13. Implementing pos-
sibilities for sharing the cursor during
meetings.

2 2 2 2 2

Requirement 14. Implementing
agents for decision-support.

2 2 2 2 2

Requirement 15. Implementing page
hierarchy with maximum of two levels.

2 2 2 2 2

Requirement 16. Implementing possi-
bilities for registering and timing meet-
ing attendance.

2 2 2 2 2

Requirement 17. Implementing func-
tionality for opening other systems.

2 2 2 2 2

Requirement 18. Present clear nav-
igation information during interaction
with system, as well as when other sys-
tems are active inside the software’s con-
text.

2 2 2 2 2

Requirement 19. Having an overview
of personnel competence, and possibly
also use the competence as decision-
support.

2 2 2 2 2

Requirement 20. Easy to use system
stripped of unnecessary functionality.

2 2 2 2 2

Requirement 21. Understandable and
intuitive automation.

2 2 2 2 2

Requirement 22. Clear system feed-
back, including graphical feedback.

2 2 2 2 2

Requirement 23. Measures for focus
as warm and cold colors for inter alia
setting priority.

2 2 2 2 2

Requirement 24. Implementing func-
tionality capable of giving readability
feedback based on the current adjust-
ments.

2 2 2 2 2

Requirement 25. A readability test to
check if current adjustments satisfies the
users’ needs.

2 2 2 2 2

Requirement 26. Implementing pos-
sibilities for readability adjustments.

2 2 2 2 2

Requirement 27. Pre-selection of op-
tions when possible, to make it easier for
users to follow ordinary system flow.

2 2 2 2 2

31

226



Rule: −− − −/+ + ++ Comment:

Requirement 28. Support for display
reduction, if the current meeting makes
it hard for viewers to see the whole
screen.

2 2 2 2 2

Requirement 29. Different complex-
ity levels enabling both expert and
novice use.

2 2 2 2 2

Requirement 30. Notifications about
important news.

2 2 2 2 2

Requirement 31. Local display set-
tings, as brightness, color and contrast.

2 2 2 2 2

Requirement 32. A system capable
of taking available hardware in current
meeting rooms into account.

2 2 2 2 2

Requirement 33. A system capable
of sharing the required information in
morning meetings.

2 2 2 2 2

Requirement 34. Whiteboard func-
tionality.

2 2 2 2 2

Further comments:

32

227



4.2 The Eight Golden Rules of Interface Design

Rule: −− − −/+ + ++ Comment:

1 Strive for consistency. Consistent
sequences of actions should be required
in similar situations; identical terminol-
ogy should be used in prompts, menus,
and help screens; and consistent com-
mands should be employed throughout.

2 2 2 2 2

2 Enable frequent users to use
shortcuts. As the frequency of use in-
creases, so do the user’s desires to reduce
the number of interactions and to in-
crease the pace of interaction. Abbrevia-
tions, function keys, hidden commands,
and macro facilities are very helpful to
an expert user.

2 2 2 2 2

3 Offer informative feedback. For
every operator action, there should be
some system feedback. For frequent and
minor actions, the response can be mod-
est, while for infrequent and major ac-
tions, the response should be more sub-
stantial.

2 2 2 2 2

4 Design dialog to yield closure. Se-
quences of actions should be organized
into groups with a beginning, middle,
and end. The informative feedback at
the completion of a group of actions
gives the operators the satisfaction of ac-
complishment, a sense of relief, the sig-
nal to drop contingency plans and op-
tions from their minds, and an indica-
tion that the way is clear to prepare for
the next group of actions.

2 2 2 2 2

5 Offer simple error handling. As
much as possible, design the system so
the user cannot make a serious error.
If an error is made, the system should
be able to detect the error and offer
simple, comprehensible mechanisms for
handling the error.

2 2 2 2 2

6 Permit easy reversal of actions.
This feature relieves anxiety, since the
user knows that errors can be undone;
it thus encourages exploration of unfa-
miliar options. The units of reversibility
may be a single action, a data entry, or
a complete group of actions.

2 2 2 2 2

33

228



Rule: −− − −/+ + ++ Comment:

7 Support internal locus of con-
trol. Experienced operators strongly
desire the sense that they are in charge
of the system and that the system re-
sponds to their actions. Design the sys-
tem to make users the initiators of ac-
tions rather than the responders.

2 2 2 2 2

8 Reduce short-term memory load.
The limitation of human information
processing in short-term memory re-
quires that displays be kept simple,
multiple page displays be consolidated,
window-motion frequency be reduced,
and sufficient training time be allotted
for codes, mnemonics, and sequences of
actions.

2 2 2 2 2

Further comments:

34

229



5 ”Usability Inspection”

The future application is designed to fit into the IO context in the oil and
gas industry. Please jointly discuss the advantages and disadvantages of the
current design with regard to a future implementation in an IO context.

35

230



Appendix E

Test of Current Systems’
Features

231



Morning Meetings in the Oil and Gas Industry - a Survey of Existing
Products

Introduction
My name is Amund Lågbu. I am a student at Østfold University College in Halden, Norway. I am currently working on a master's degree
in informatics. My thesis aims for producing a prototype of a system supporting specifically morning meetings in the oil and gas
industry.

This survey is a small part of the master thesis and aims for investigating what functions supporting such meetings that are available in
existing software. A set of loosely defined requirements for a future system have been defined in cooperation with Institute for Energy
Tecnology in Halden, Norway. This survey's questions are based on these requirements.

The results will be published in a table in the thesis. Here systems will be compared based on their implementations of the defined
requirements. The questionnaire will be presented in the thesis' appendix. If you wish that your system's name should be exempted
from public, please let me know.

Answering the questionnaire
This survey contains several questions. Each question may be answered by selecting a ranged score, or selecting the option "NA" if it is
considered not relevant. Additionally proposed functionality may be rated important or not by selecting a scale to the right of the
previously mentioned one. Here "++" stands for highly important, while "--" means not important at all.

Note that most of the questions have a wording best suited for describing a tool speciailized for use in morning meetings.

Page 3
Your software may be used as a platform during a morning meeting session.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 4
Your system is especially designed for being used in collaboration rooms where two large-screen monitors are used for
displaying information.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Your system is able to communicate with personnel outside traditional morning meeting sessions, operating mobile
equipment.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

232



Page 5
Your system has an interface to contact personnel not participating in a particular morning meeting session, but who
are available via a mobile device.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Your system has functionality for sharing the view of the meeting platform used in a collaboration session with external
users operating mobile devices.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 6
Your system has integrated possibilities for registering actions, decisions and key-information points during morning
meetings. Examples on such interaction tools may be text boxes.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 7
If your system has possibilities for registering information in text boxes, these have maximum text limits preventing
users from registering long text strings.

This functionality should prevent users from entering too much text during a meeting.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 8
The system is designed for different user roles as the meeting leader, participants, mobile application users, etc.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

The system has implemented modes or similar functions letting the users prepare for a morning meeting and evaluate
results afterwards.

To make the different types of interactions with the system more structural - before after and during a morning meeting, and with different types of devices.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

233



Page 9
The system has an editor, or similar functionality, to tailor the agenda of an upcoming morning meeting.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

The system has implemented several meeting templates, making it easy for the user to create an agenda for an
upcoming morning meeting.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 10
While being used as a morning meeting platform, your system has possibilities for displaying real-time information
generated by third-party systems.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

While being used as a meeting platform, your system has possibilities for displaying static information generated by
third-party systems.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 11
In oil and gas organizations morning meetings typically lasts for 15 minutes. Your system highly supports walk-throughs
designed for morning meetings - avoiding unnecessary time-consuming actions.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

After a meeting was held, your software is capable of producing a report describing changes made and new actions and
decisions. Examples may be rejections of notifications and movements of jobs.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 12
Your system has modes adapted to different types of monitors/devices

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  
234



During a collaboration session your system makes the participants view the exactly same interface, although they are
located at different places.

To prevent misunderstandings due to differently displayed views during a collaboration session.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 13
Your system makes it possible for participants to share the pointer, or similar objects, during a morning meeting
session.

To make it possible for participants to get directly involved during meeting sessions.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Your system has implemented automatic agents for decision support during meeting sessions.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 14
Your system has implemented an agent that may be used to test different option alternatives during an ongoing
meeting session.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Your system has implemeted possibilities for registering who attended a morning meeting session.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 15
In addition to registering, your system is also capable of timing the participants' attendance during a session.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

It is easy to open other systems, and to interact with them, from your platform during meeting sessions.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  
235



Page 16
When operating other systems during a meeting session, your system clearly displays the current navigation.

Such means may be an own navigational bar above and outside the third-party system's view, displaying the current navigation.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

During a morning meeting session hot permit jobs may be approved. Your system has implemented possibilities for
informing of required competence when a hot permit job is to be approved.

To prevent hot permit jobs to be approved by personnel lacking required competence.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 17
If your system contains several sites, the current navigation is always explained clearly.

Measures as back-buttons, page titles, etc. could be such means.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Functionality, which is not necessary for the meeting participants to perform their job, is not implemented in your
system.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 18
Complex functions are never part of the ordinary system flow during morning meeting sessions.

To prevent inexperenced users from making mistakes, complex functions may be accessible from for example drop-down menus.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

New meeting leaders could operate the system without having read instructions or performed training prior to a meeting
session.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

236



Page 19
Automation of system functions is never leading users to believe that manual functions are automated.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

It is implented functions for setting priorities before and during a meeting. This may include marking a text in a specific
color.

Making it possible for the system users to display text with different priorities during a meeting session. Functions may include marking text in a specific color, or
to gray out displayed text to remove focus.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 20
It is possible for personnel participating in a meeting to adjust text sizes and information layout on the fly by changing
system settings.

To increase readability.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 21
The system is capable of automatically adjusting text sizes to display readable text.

By for example calculating text sizes based on information about distance from the viewers to the monitors in meeting rooms, etc.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

The system displays warnings, etc. if text on screen is found not to be sufficiently readable during a meeting.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 22
The system is capable of displaying a readability test for all users (before a session starts).

If all users share the same view of an interface, during a collaboration session, some may find text hard to read. Such a test may find optimal text sizes.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

237



The system is capable of operating optimally if the displayed view has to be shrinked to fit the users' needs.

Height from for example floor to ceiling may vary in different meeting rooms. This may affect the participants capability to view the screens. In some occasions
the displayed interface may have to be cropped to ensure that the participants may view information.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Page 23
If relevant and important information has been generated after a meeting has been prepared, and possibly also during a
meeting, the system is capable of notifying about it.

If information is generated, affecting a morning meeting, the personnel in the meeting could be notified about the new information. For example subscriptions to
information topics may is thought to be used for such purposes.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

The system has a whiteboard functionality which has possibilities to store the drawn screens.

In some meeting rooms, whiteboards are used for displaying information. A whiteboard functionality may fullfil the same purpose.

 Weighting

 True Partly true Partly not true Not true NA  -- - + ++

Answer:  

Ideas
What do you think?

This survey contained questions linked to some of the requirements found. Please add your remarks or proposals for system improvements in the text area
below.

End
Thank you for your patience!

Yours sincerely,

Amund Lågbu
amundlag@hiof.no

» Redirection to final page of Online Undersøkelse

238



Appendix F

XML DTD Schemas

F.1 Menu DTD
<!DOCTYPE menu
[
<!ELEMENT menu (schedule, tools)>
<!ELEMENT schedule (meeting_stage*)>
<!ELEMENT meeting_stage (topic*)>
<!ELEMENT topic (item*)>
<!ELEMENT item (heading?)>
<!ELEMENT tools (tool*)>
<!ELEMENT tool (heading?, img?, func, id?)>

<!ELEMENT heading (#PCDATA)>
<!ELEMENT img (#PCDATA)>
<!ELEMENT func (#PCDATA)>
<!ELEMENT id (#PCDATA)>

<!ATTLIST item type (participants | external | whiteboard |
txt | map) #REQUIRED>
<!ATTLIST item url CDATA #IMPLIED>
<!ATTLIST tool type (final | mutable) #REQUIRED>
<!ATTLIST topic n CDATA #IMPLIED>
<!ATTLIST tool url CDATA #IMPLIED>
<!ATTLIST meeting_stage n CDATA #IMPLIED>
]
>

F.2 Map DTD
<!ELEMENT map (item*)>
<!ELEMENT item (id, title, description, start, finish,
modified, xcord, ycord)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT title (#PCDATA)>

239



<!ELEMENT description (#PCDATA)>
<!ELEMENT start (#PCDATA)>
<!ELEMENT finish (#PCDATA)>
<!ELEMENT modified (#PCDATA)>
<!ELEMENT xcord (#PCDATA)>
<!ELEMENT ycord (#PCDATA)>

<!ATTLIST map src CDATA #REQUIRED>
<!ATTLIST map created CDATA #REQUIRED>
<!ATTLIST item type (hot_work | entry | work_over_sea |
hydro_carbon_work | equipment | hazard | other) #REQUIRED>

240


