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Abstract

Recently, a lot of research has been conducted to bring Automatic Speech Recognition
(ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation
and training, monitoring live operators for with the aim of safety improvements, air traffic
controller workload measurement and conducting analysis on large quantities controller-
pilot speech. However, due to the high accuracy requirements of the ATC context and its
unique challenges such as call sign detection, the problem of poor input signal quality, the
problem of ambiguity, the use of non-standard phraseology and the problem of dialects,
accents and multiple languages, ASR has not been widely adopted in this field. In this
thesis, in order to take advantage of the availability of linguistic knowledge, particularly
syntactic and semantic knowledge, in the ATC domain, I aim at using different levels of
linguistic knowledge to improve the accuracy of ASR systems via three steps: language
modeling, n-best list re-ranking using syntactic knowledge and n-best list re-ranking using
semantic knowledge.

Firstly, I propose a context-dependent class n-gram language model by combining the
hybrid class n-gram and context-dependent language modeling approaches to address the
two main challenges of language modeling in ATC, which are the lack of ATC-related
corpora for training and the location-based data problem. Secondly, I use the first level of
linguistic knowledge, syntactic knowledge to perform n-best list re-ranking. To facilitate
this, I propose a novel feature called syntactic score and a WER-Sensitive Pairwise Per-
ceptron algorithm. I use the perceptron algorithm to combine the proposed feature with
the speech decoder’s confidence score feature to re-rank the n-best list. Thirdly, I com-
bine syntactic knowledge with the next level of linguistc knowledge, semantic knowledge
to re-rank the n-best list. To do this, I propose a feature called semantic relatedness. I
use the WER-Sensitive Pairwise Perceptron algorithm to combine the proposed feature
with the syntactic score and speech decoder’s confidence score features perform n-best list
re-ranking. Finally, I build a baseline ASR system based on the Pocketsphinx recognizer
from the CMU Sphinx framework, the CMUSphinx US English generic acoustic model and
the generic cmudict SPHINX 40 pronunciation dictionary and the three above-mentioned
approaches.

I evaluate the baseline ASR system in terms of Word Error Rate (WER) on the well
known ATCOSIM Corpus of Non-prompted Clean Air Traffic Control Speech (ATCOSIM)
and my own Air Traffic Control Speech Corpus (ATCSC). The evaluation results show
that the combination of the three proposed approaches reduces the WER of the baseline
ASR system by 20.95% compared with traditional n-gram language models in recognizing
general clearances from the ATCSC corpus.
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This thesis makes three main contributions. Firstly, It addresses the two main chal-
lenges of language modeling in ATC, which are the lack of ATC-related corpora for train-
ing and the problem of location-based data, by proposing a novel language model called
context-dependent class n-gram language model. The second contribution is the use of
linguistic knowledge in post-processing, particularly n-best list re-ranking using syntac-
tic and semantic knowledge, to improve the accuracy of ASR systems in ATC. Finally,
it demonstrates that linguistic knowledge has great potential in addressing the existing
challenges of ASR in ATC and facilitating the integration of ASR technologies into the
ATC domain.

Keywords: Language Modeling, N-gram, Class N-gram, N-best List Re-ranking, Syntac-
tic Knowledge, Semantic Knowledge, Automatic Speech Recognition, Air Traffic Control.
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Chapter 1

Introduction

1.1 Background and motivation

In the past few years, the steadily increasing levels of air traffic world wide poses corre-
sponding capacity challenges for air traffic control (ATC) services [45]. According to the
“Outlook for Air Transport to the Year 2025” report [47] of International Civil Aviation
Organization (ICAO), passenger traffic on the major international route group and air-
craft movements in terms of aircraft departures and aircraft kilometers flown are expected
to increase at average annual rates of 3 to 6 per cent and 3.6 to 4.1 per cent respectively
through to the year 2025. Thus, ATC operations have to be investigated, reviewed and
improved in order to be able to meet with the increasing demands

In ATC operations, most of the tasks of air traffic controllers involve verbal commu-
nications with pilots. This means that, the safety and performance of ATC operations
depend heavily on the quality of these communications. Recently, with the aim of im-
proving both safety and performance of ATC operations, many attempts have been made
to integrate Automatic Speech Recognition (ASR) technologies into the ATC domain to
facilitate applications such as air traffic control simulation and training, air traffic control
workload measurement and balancing, analysis on large quantities control-pilot speech.

However, ASR technologies have not been successfully adopted in the ATC domain
because of it high accuracy requirements and unique challenges. In my previous work
[45], I pointed out that there are five major challenges to overcome in order to success-
fully apply ASR in ATC. The challenges are call sign detection, the problem of poor
input signal quality, the problem of ambiguity, the use of non-standard phraseology and
the problem of dialects, accents and multiple languages. I also identified four main ap-
proaches which can be used to improve the accuracy of ASR systems in the ATC domain.
The approaches are syntactic analysis, semantic analysis, pragmatic analysis and dialects,
accents and languages detection. While the first three approaches focus on integrating
linguistic knowledge into ASR systems via language modeling or post-processing, the last
approach adapts ASR systems based on speakers accent, dialect and language. In this
thesis, in order to take advantage of the availability of linguistic knowledge in ATC, I aim
at using linguistic knowledge, particularly syntactic and semantic knowledge, to improve
the accuracy of ASR systems by performing language modeling and post-processing.

1



2 Chapter 1. Introduction

1.2 Research statement and method

1.2.1 Research questions

As stated above, the primary goal of this thesis is to use linguistic knowledge to improve
the accuracy of ASR systems in ATC. To achieve this goal, I first carefully study the use
of linguistic knowledge in the ATC domain and language modeling approaches. Thus,
having a general view and good understanding of the possibilities of linguistic knowledge
in ASR in ATC. I then address the existing challenges of ASR in ATC and improve the
accuracy of ASR systems by integrating linguistic knowledge, particularly syntactic and
semantic knowledge into language modeling and post-processing. Basically, at the end of
this thesis, I need to answer following research questions:

RQ How can linguistic knowledge be used to improve automatic speech recognition ac-
curacy in air traffic control?
Secondary relevant research questions are:

RQ1.1 Which type of language model is well suited for use in automatic speech
recognition system in air traffic control domain?

RQ1.2 To what extent can syntactic analysis improve the accuracy of speech recog-
nition in air traffic control domain?

RQ1.3 To what extent can semantic analysis improve the accuracy of speech recog-
nition in air traffic control domain?

The research questions I introduce here are aimed for facilitating the integration of
ASR technologies into the ATC field in general. However, since the special case of this
project is to develop an ASR system for ATC simulation and training, I narrow down the
scope of this project to take advantage of the opportunities offered by the ATC simulation
and training context. More details about the special case can be found in Chapter 4. In
Chapter 6 I will revisit these research questions and discuss how can the findings from this
project be adapted for use in both ATC live operations and ATC simulation and training.

1.2.2 Method

To answer the research questions, following steps are needed to be followed. While the
first four steps are for addressing the three secondary research questions, RQ1.1, RQ1.2
and RQ1.3, the last step is for tackling the main research question, RQ1.

• Select an ASR framework and an ATC-related corpus for training - I first review
ten well-known ASR open source frameworks including Bavieca, CMU Sphinx, Hid-
den Markov Model Toolkit (HTK), Julius, Kaldi, RWTH ASR, SPRAAK, CSLU
Toolkit, The transLectures-UPV toolkit (TLK) and iATROS in order to select a
framework for developing a baseline ASR system. I then review five existing ATC-
related corpora including ATCOSIM, LDC94S14A, HIWIRE, Air Traffic Control
Communication Speech Corpus and Air Traffic Control Communication corpus in
order to select a corpus for training. More details about the frameworks and the
corpora can be found in Chapter 3.
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• Utilize linguistic knowledge in language modeling in ATC (RQ1.1) - I first evalu-
ate different language models (n-gram, class n-gram) in terms of Word Error Rate
(WER) and Real Time Factor (RTF) on the baseline ASR system in order to select
a well-suited language model for use in ATC. I then improve the selected language
model by integrating linguistic knowledge into the language modeling process. Fi-
nally, I use the baseline ASR system to evaluate the language model on the well
known ATCOSIM Corpus of Non-prompted Clean Air Traffic Control Speech (AT-
COSIM) and my own Air Traffic Control Speech Corpus (ATCSC).

• Integrate syntactic knowledge into post-processing (RQ1.2) - I first study different
approaches (e.g., language modeling, post-processing) for using syntactic knowledge
in improving the accuracy of ASR systems in general. I then analyze the use of
syntactic knowledge in the ATC domain in order to select a well-suited approach
for facilitating the integration of syntactic knowledge into post-processing. Finally,
I use the baseline ASR system to evaluate the selected approach on the ATCOSIM
and ATCSC corpora.

• Integrate semantic knowledge into post-processing (RQ1.3) - I first look into different
approaches (e.g., language modeling, post-processing) for combining syntactic and
semantic knowledge in post-processing to improve the accuracy of ASR systems in
general. I then analyze the use of syntactic and semantic knowledge in the ATC
domain in order to select a well-suited approach for facilitating the integration of
semantic knowledge into post-processing. Finally, I use the baseline ASR system to
evaluate the selected approach on the ATCOSIM and ATCSC corpora.

• Discuss the possibilities and challenges of linguistic knowledge in improving the ac-
curacy ASR systems in ATC (RQ1). Firstly, I build a Proof-of-Concept (POC) ASR
system based on the selected framework and the above-mentioned three approaches.
Secondly, I evaluate the system in terms of WER on the ATCOSIM and ATCSC
corpora. Finally, I conduct a detailed analysis of the evaluation results and discuss
the possibilities and challenges of linguistic knowledge in ASR in ATC to answer
the main research question of this thesis “How can linguistic knowledge be used to
improve automatic speech recognition accuracy in air traffic control?”.

More details about the research questions and their corresponding methods can be
found in Chapter 5, as well as the three included papers in Appendix A, Appendix B and
Appendix C.

1.3 Report Outline

The remainder of this thesis is structured as follows: Chapter 2 presents background
knowledge covering the ATC field in general, ASR technologies, as well as relevant re-
lated work, before I present a brief review of ten ASR open source frameworks and five
existing ATC-related corpora in Chapter 3. In Chapter 4, I describe the special case that
forms the basic of this project, four experiments designed to address the above-mentioned
research questions, together with a brief summary of how the case affects the design of
the experiments. The end of the chapter contains a description of my own Air Traffic
Control Speech Corpus (ATCSC) which is recorded with the aim of simulating a train-
ing and simulation setting. Chapter 5 summarizes the research findings from each of the
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three included papers. In Chapter 6 and Chapter 7, I discuss and conclude my work, as
well as present suggestions for further work. Following that, the three paper included in
thesis, my previous work and a full list of ICAO standard phraseologies can be found as
appendices.



Chapter 2

Theory and Related Work

This chapter has three main purposes. Firstly, it presents a brief description of the Air
Traffic Control (ATC) field in general, with special attention paid to cover standard phrase-
ology recommend by International Civil Aviation Organization (ICAO), ATC control units
and sources of knowledge in speech in ATC. The second purpose of this chapter is to de-
scribe the structure of an Automatic Speech Recognition (ASR) system and its modules,
together with methods for measuring ASR systems performance, as well as language mod-
eling approaches. The end of this chapter contains a summary of relevant related work
covering ASR in ATC.

2.1 Air Traffic Control (ATC)

According to the Oxford English Dictionary [61], Air Traffic Control (ATC) is “the ground-
based personnel and equipment concerned with controlling and monitoring air traffic
within a particular area”. The main purpose of ATC systems is to prevent collisions,
provide safety, organize aircraft operating in the system and expedite air traffic [1]. With
the steady increase in air traffic over the past few years, ATC has become more and more
important. This increase has also resulted in more complex procedures, regulations and
technical systems [54]. Thus, ATC systems have to be continuously improved to meet the
evolving demands in air traffic.

In ATC, air traffic controller have an incredibly large responsibility for maintaining
the safe, orderly and expeditious conduct of air traffic. Given the important roles of air
traffic control and air traffic controllers, there is an ongoing need to strengthen training
and testing of the operators. Further, being able to simulate the working environment
of controllers enables increased safety through the use of support systems that can assist
controllers and improve procedures, and by analyzing controller-pilot communications [45].

2.1.1 ICAO Standard Phraseologies

In ATC, air traffic controllers and pilots are usually recommended to use ICAO standard
phraseologies in their communications. However, when the circumstances differ, air traffic
controllers and pilots will be expected to use plain language. In order to avoid possible
confusion and misunderstandings in communication, the plain language should be clear
and concise as possible [29][26]. The phraseologies recommended by ICAO can be grouped
based on types of air traffic control services as follows:

5



6 Chapter 2. Theory and Related Work

• ATC Phraseologies

– General

– Area control services

– Approach control services

– Phraseologies for us on and in the vicinity of the aerodrome

– Coordination between ATS units

– Phraseologies to be used related to CPDLC

• ATS Surveillance Service Phraseologies

– General ATS surveillance service phraseologies

– Radar in approach control service

– Secondary surveillance radar (SSR) and ADS-B phraseologies

• Automatic Dependent Surveillance - Contract (ADS-C) Phraseologies

• Alerting Phraseologies

• Ground Crew/Flight Crew Phraseologies

Examples of the ICAO standard phraseologies in three different circumstances, descrip-
tion of levels, level changes and vectoring instructions, as well as how air traffic controllers
and pilots use the phraseologies in their communication are shown in Table 2.1.

Table 2.1: Examples of ICAO standrad phraseologies

Circumstancs Phraseologies Examples

Description of
levels

FLIGHT LEVEL (number); or
(number) METERS; or
(number) FEET.

FLIGHT LEVEL 120
3000 METERS
6000 FEET

Level changes
(callsign) CLIMB (or DESCEND);
followed as necessary by:
TO (level);

CLIMB TO 6000 FEET

Vectoring
instructions

FLY HEADING (three digits);
TURN LEFT HEADING (three digits)

FLY HEADING 120
TURN LEFT HEADING 120

In ATC operations, word spelling and pronouncing numbers are very common tasks.
However, the pronunciation of letters in the alphabet and numbers may vary according to
the language habit, accent and dialect of the speakers. Thus, these tasks frequently cause
misunderstandings in communication between controllers and pilots. In order to eliminate
wide variations in pronunciation and avoid the misunderstandings, ICAO recommends
new ways of pronouncing numbers and letters in the alphabet [26]. Table 2.2 and Table
2.3 contain pronunciations of the aviation alphabet and numbers which are provided by
ICAO. The syllables printed in capital letters in the tables are the indications of word
stresses. For example, in the word ECKO (Eck oh), the primary emphasis is ECK. By
using the pronunciation tables, “WTO 98.54” can be pronounced as “WISSkey TANGgo
OSScar NINer AIT DAYSEEMAL FIFE FOWer”.
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Table 2.2: Aviation spelling alphabet

Word Pronunciation Word Pronunciation

A - ALFA AL fah N - NOVEMBER no VEM ber

B - BRAVO BRAH voh O - OSCAR OSS car

C - CHARLIE CHAR lee OR SHAR lee P - PAPA pah PAH

D - DELTA DELL tah Q - QUEBEC keh BECK

E - ECHO ECK oh R - ROMEO ROW me oh

F - FOXTROT FOKS trot S - SIERRA see AIR rah

G - GOLF golf T - TANGO TANG go

H - HOTEL hoh TEL U - UNIFORM
YOU nee form OR
OO nee form

I - INDIA IN dee ah V - VICTOR VIK tah

J - JULIET JEW lee ETT W - WHISKEY WISS key

K - KILO KEY loh X - X-RAY ECKS ray

L - LIMA LEE mah Y - YANKEE YANG key

M - MIKE mike Z - ZULU ZOO loo

Table 2.3: Aviation numbers
Term Pronunciation Term Pronunciation

0 ZE RO 7 SEV en

1 WUN 8 AIT

2 TOO 9 NIN er

3 THREE decimal DAY SEE MAL

4 FOW er hundred HUN dred

5 FIFE thousand TOU SAND

6 SIX

In order to conduct a detailed analysis of ICAO standard phraseologies, I extract a full
list of phraseologies from “Chapter 12 - Phraseologies, Doc 4444/510: Procedures for Air
Navigation Services - Air Traffic Management 15th Edition” [29]. The list can be found in
Appendix E. The number of phraseologies without call signs, unit names and navigational
aids/fixes is 538 words. Thus, the size of vocabulary used in the ATC domain including
the aviation spelling alphabet and aviation numbers is about 577 words.

With the advances in modern ASR technologies, recognizing 577 words is not a difficult
task. However, in ATC live operations, the number of phraseologies used by controllers
and pilots is much larger than 577 words. For example, in the ATCOSIM corpus [33] the
total number of words used by controllers and pilots is more than 850 words. In live ATC
operations, with the large number of call signs (about 6000) [28], as well as a huge number
of unit names and navigational aids/fixes, the size of vocabulary will be dramatically
increased.

2.1.2 Air Traffic Control Units

ATC units are designed to give one or more of the following services [27]:

• Air traffic control service, which is to prevent collisions, provide safety, organize
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aircraft and expedite air traffic. Based on the control areas where air traffic control
services are provided, the services can be categorized into three groups as follows:

– Aerodrome control service, which is responsible for preventing collisions and
organizing air traffic on taxiways, runways and in Control Zone (CTR).

– Approach control service, which is to prevent collisions and organize air traffic
between arriving and departing aircraft in Terminal Control Area (TMA).

– Area control service, which is responsible for preventing collisions and orga-
nizing air traffic between en-route aircraft in Control Areas (CTA) and along
Airways (AWY).

• Flight information service, which provides useful information (e.g., status of navi-
gation ads, weather information, closed airfields, status of airports) for conducting
safe and efficient flights.

• Alerting service, which provides services to all known aircraft. The main responsi-
bility of alerting service is to assist aircraft in difficulties, for example, by initiating
Search and Rescue (SAR) when accidents occur.

ATC units can be classified based on their responsibilities as follows:

• Aerodrome Tower Control (TWR) unit, which provides aerodrome control services.
This unit usually has three different positions:

– Delivery or clearance delivery, which is responsible for two main tasks: Give
IFR departure clearances prior to start-up and push-back and give special IFR
instructions in cooperation with approach controller. This position only gives
air traffic control service and alerting service if the airfield is closed.

– Ground control, which is responsible for four main tasks: Give VFR flight plan
clearances, give push-back clearances, give taxi clearance to departure runways
and give taxi clearance to the terminal gate. In addition to air traffic control
service, the ground control position also gives traffic information service (e.g.,
traffic information on ground to prevent collisions) and alerting service if the
airfield is closed.

– Tower control, which is responsible for five main tasks: Give take-off clear-
ances, give landing clearances, give runway crossing and back-track clearances,
give VFR integration clearances in circuit and give VFR orbit clearances to
delay the integration clearance. This position gives all three types of services:
Air traffic control service (e.g., landing and take-off clearances, entering run-
way clearances), traffic information service (e.g., traffic information between
VFR/VFR and IFR/VFR) and alerting service (e.g., in the control zone).

• Approach Control (APP) unit, which provides approach control services. This unit
usually has two different positions:

– Approach control, which is responsible for five main tasks: Give IFR initial,
intermediate and final approach clearances, give radar vectoring and separate
traffic using altitude, heading and speed parameters, make regulation clear-
ances, assure adequate separation between all traffic and give VFR transit
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clearances. This position gives all three types of services: air traffic control ser-
vice (e.g., IFR clearances and instructions), traffic information services (traffic
information between VFR/VFR and IFR/VFR) and alerting services (e.g., in
the terminal area).

– Departure control, which is responsible for four main tasks: Give IFR clear-
ances, give radar vectoring using altitude, heading and speed parameters, make
departure regulation clearances and assure adequate separation between all
traffic. This position gives all three types of services: Air traffic control service
(e.g., IFR clearances and instructions), traffic information service (e.g., traffic
information between VFR/VFR and IFR/VFR) and alerting services (e.g., in
the terminal area).

• En-route, Center, Or Area Control Center (ACC) unit, which provides area control
services. This unit is responsible for four main tasks: Give STAR/arrival route
clearances, give directs and regulation clearances, give radar vectoring using altitude,
heading and speed parameters and assure adequate separation between all traffic.
This unit gives all three types of services: Air traffic control service (e.g., en-route
clearances, give IFR clearance and instructions), traffic information service (e.g.,
traffic information between VFR/VFR and IFR/VFR, traffic information between
VFR/IFR and IFR/IFR) and alerting service (e.g., in the FIR Area).

In ATC operations, all the ATC units are needed to be continuously improved to meet
the evolving demands in air traffic. However, there are three main reasons why ASR tech-
nologies should be integrated into either en-route control or approach control units first.
Firstly, en-route and approach controllers usually use more standardized phraseologies in
their communications with pilots than tower and ground controllers. This happens be-
cause the en-route and approach control positions usually involve more standardized tasks
such as give radar vectoring, give STAR/arrival route clearances and give approach/de-
parture clearances. On the other hand, tower and ground control positions usually have
to deal with less standardized tasks, for example, control vehicles on the maneuvering
area at the airport, receive and provide weather information and status of the airport,
answer questions and requests from pilots about parking of aircraft. The use of standard-
ized phraseologies and limited vocabulary of en-route and approach controllers facilitates
the integration of post-processing approaches, particularly syntactic analysis and semantic
analysis, into ASR systems. Secondly, air traffic in en-route and terminal control areas,
which are controlled by en-route and approach controllers, are usually less variety in gen-
eral compared with other control areas. The less variability in air traffic of the en-route
and approach control areas leads to the less variability in speech of the controllers, which
offers a great opportunity for ASR systems to archive higher accuracy. Finally, most of
existing ATC-related corpora have been recorded either from en-route control or approach
control units (e.g., ATCOSIM [33], Air Traffic Control Complete LDC94S14A [20]). In
the development of ASR systems, selecting a corpus for training and testing is a very im-
portant task. Because both performance and accuracy of the ASR systems depend heavily
on the quality of the training corpus.
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2.1.3 Sources of Knowledge in Speech in ATC

Speech recognition comes naturally to human being. We can easily listen to others and
understand them even with people we never met before. In some cases, we can understand
speech even when we mishear some words. We can also understand ungrammatical utter-
ances or new expressions. These happens because we use not only acoustic information
but also linguistic and contextual information to interpret speech.

On the other hand, speech recognition has been considered a difficult task for machines.
Because unlike humans, machines typically use only acoustic information to perform speech
recognition. In addition, ASR systems have to deal with tremendous amount of variability
present in a speech signal (e.g., speaker properties, co-articulation, allophonic variants and
phoneme variations, environment) [5]. In order to improve the accuracy of ASR systems,
many attempts have been made to use linguistic knowledge in assisting the recognition
process of the systems [67, 3, 40, 55, 16]. According to [30], there are seven levels of
linguistic knowledge which can be used by speech recognizers to resolve the uncertainties
and ambiguities resulted from the speech recognition process:

1. Acoustic analysis, which extracts features from speech input signal.

2. Phonetic analysis, which identifies basic units of speech (e.g., vowels, consonants,
phonemes).

3. Prosodic analysis, which identifies linguistic structures by using intonation, rhythm,
or stress.

4. Lexical analysis, which compares extracted features with reference templates to
match words.

5. Syntactic analysis, which tests the grammatically correctness of sentences.

6. Semantic analysis, which tests the meaningfulness of sentences.

7. Pragmatic analysis, which predicts future words based on the previous words and
the state of the system.

While the first four steps are the basis of general ASR systems, the last three steps can
be found in domain-specific ASR systems such as call centers and voice-based navigation
systems.

Syntactic Knowledge

In general, syntactic knowledge is the knowledge about how words combine to form
phrases, phrases combine to form clauses and clauses join to make sentences. In other
words, syntactic knowledge is the knowledge which can be used to test if a sentence is
grammatically correct.

However, in ATC, the language used by controllers and pilots in their communications
is based on the ICAO standard phraseologies instead of natural language. Thus, syntactic
knowledge in ATC is the knowledge about how words combine to form a valid ATC
clearance. In other words, syntactic knowledge in ATC is the knowledge which can be
used to test if an ATC clearance is well formatted. Some examples of syntactic knowledge
in ATC can be found in Table 2.4.
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Table 2.4: Examples of syntactic knowledge in ATC

Type of Clearance Phraseology

Vectoring Clearance <Callsign>, TURN LEFT (or RIGHT) HEADING (three digits)

Taxi Procedures <Callsign>, TAXI VIA RUNWAY (runway code)

Descend Clearance <Callsign>, DESCEND TO FLIGHT LEVEL <FL>

Semantic Knowledge

In general, semantic knowledge is the knowledge about words and sentences that are
meaningful in a specific domain. In other words, semantic knowledge is the knowledge
which can be used to test if a sentence is meaningful.

Scene controllers and pilots use ICAO standard phraseologies in their communications
instead of natural language, semantic knowledge in ATC is slightly different from general
semantic knowledge. In ATC, semantic knowledge is the knowledge which can be used to
test if an ATC clearance is meaningful without contextual information (e.g., valid runway
codes, flight levels). Some examples of semantic knowledge in ATC are:

• According to [65], runways are named by a number between 01 and 36, which is
generally the magnetic azimuth of the runway’s heading in decadegrees. If there
are more than one runway pointing in the same direction (parallel runways), each
runway is identified by appending Left (L), Center (C) and Right (R) to the number
to identify its position (when facing its direction). Thus, valid runway codes are
01[L|C|R], 02[L|C|R],...,36[L|C|R], for example:

<Callsign>, TAXI VIA RUNWAY <01[L|C|R], 02[L|C|R],...,36[L|C|R]>

• IFR Flight levels with magnetic route figure of merit (FOM) from 180 degrees to
359 degrees are in steps of 20 from FL 020 to FL 280, and in steps of 40 from FL
310 to FL 51, for example:

<Callsign>, DESCEND TO FLIGHT LEVEL <020|040|060|...|280|310|350|...|510>

Pragmatic Knowledge

Pragmatic knowledge is the knowledge about context and state of the system. In ATC,
pragmatic knowledge is the knowledge which can be used to test if a clearance is meaningful
in a specific context or a specific state of the system, for example:

• If the present airport is Oslo Airport, Gardermoen, the valid runway codes are only
01L/19R and 01R/19L. Because the Oslo Airport, Gardermoen has only two parallel
runways:

– 01L/19R: 11,811 x 148 ft (3,600 x 45 m);

– 01R/19L: 9,678 x 148 ft (2,950 x 45 m).

An example of a taxi procedure:
<Callsign>, TAXI VIA RUNWAY <01L/19R | 01R/19L>)
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• If the present airport is Oslo Airport, Gardermoen, the valid units and radio fre-
quencies are limited to the following list:

– TWR (Gardermoen Tower): 118.300, 118.700, 120.100, 123.325, 257.800, 121.500,
243.000 (MHZ);

– CLR (Gardermoen Delivery): 121.675, 121.925 (MHZ);

– SMC (Gardermoen Ground): 121.600, 121.900, 121.725 (MHZ);

– ATIS (Gardermoen Arrival Information): 126.125 (MHZ);

– ATIS (Gardermoen Departure Information): 127.150 (MHZ);

– ARO (Gardermoen Briefing/Handling): 134.175 (MHZ).

When a unit call sign is detected, the number of valid frequencies can be limited to
the unit’s frequencies. For example, if the unit call sign is “Gardermoen Delivery”,
valid frequencies are only: 121.675 MHz and 121.925 (MHz).

An example of a transfer of control and/or frequency change clearance:
<Callsign>, CONTACT Gardermoen Delivery < 121.675 | 121.925 > [NOW]

• If the present flight level is 150, descends are valid to only flight levels which are
lower than 150 (e.g., 100, 110, 120, 130, 140), for example:

<Callsign>, DESCEND TO FLIGHT LEVEL <100|110|120|130|140>

I have presented a detailed introduction to the ATC field in general. In the following
section, I focus on describing the general structure of an Automatic Speech Recognition
(ASR) system and its modules, as well as summarize some of the well-known language
modeling approaches.

2.2 Automatic Speech Recognition (ASR)

According to [45], “speech recognition is the process of converting a speech signal into
a sequence of words. It also called Automatic Speech Recognition (ASR) or Speech-to-
Text (STT)”. In recent years, the technology and performance of ASR systems have been
improving steadily. This has resulted in their successful use in many application areas
such as in-car systems or environments in which users are busy with their hands (e.g.,
voice user interfaces), hospital-based health care applications (e.g., systems for dictation
into patient records, speech-based interactive voice response systems, systems to control
medical equipment and language interpretation systems), home automation (e.g., voice
command recognition systems), speech-to-text processing (e.g., word processors or emails),
and personal assistants on mobile phones (e.g., Siri on iOS, Cortana on Window Phone,
Google Now on Android) [45].

The general goal of speech recognition can be described as follows: Given an acoustic
observation X = X1, X2, ..., Xn, find the corresponding word sequence W = W1,W2, ...,Wn

that has the maximum posterior probability P (W | X) [24], expressed using Bayes theorem
in Equation 2.1.

W = argmax
w

P (W | X) = argmax
w

P (W )P (X |W )

P (X)
(2.1)
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Since the observation X is fixed and P(X) is independent of W, the maximization is
equivalent to maximization of the following equation:

W = argmax
w

P (W | X) = argmax
w

P (W )P (X |W ) (2.2)

Figure 2.1: Structure of speech recognition system

Figure 2.1 shows the general structure of a speech recognition system. The general
process of a speech recognition system can be briefly described as follows: A speaker utters
an original word sequences W ′ = W ′1,W

′
2, ...,W

′
n and produces a corresponding speech sig-

nal I. The Speech Signal Acquisition module obtains the speech signal I, for example by
using a microphone, before the Feature Extraction module converts the signal to a feature
vector X = X1, X2, ..., Xn. Finally, the Recognition module solves the maximization de-
scribed in Equation 2.2 based on the feature vector X, acoustic model P (X |W ), language
model P (W ) and lexical model in order to find a word sequence W = W1,W2, ...,Wn that
perfectly approximates the original word sequence W ′.

2.2.1 Modules of Speech Recognition Systems

ASR systems typically contain six main modules: Speech Signal Acquisition, Feature
Extraction, Acoustic Model, Language Model, Lexical Model and Recognition.

1. Speech Signal Acquisition, which is responsible for acquiring speech signal from
speakers, for example by using microphones. In ATC, the speech signal acquisition
module is typically advantaged by a special device called “push to talk (PTT)”
button. Thus, besides acquiring speech signal from speakers, the module is also
responsible for detecting boundaries of the input clearances.

2. Feature Extraction, which is the process of converting a speech signal into a feature
vector in order to reduce the dimensionality of the input vector while maintaining
relevant information of the signal. In addition, the feature extraction process also
eliminates unwanted variability from different sources (e.g., speaker variations, pro-
nunciation variations and environment variations) and noise in speech signal [58].
Many feature extraction techniques have been proposed. Some examples are Prin-
cipal Component Analysis (PCA), Mel Frequency Cepstral Coefficients (MFCC),
Independent Component Analysis (ICA), Linear Predictive Coding (LPC), Autocor-
relation Mel Frequency Cepstral Coefficients (AMFCCs), Relative Autocorrelation
Sequence (RAS), Perceptual Linear Predictive Analysis (PLP) and a new scope of
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this field, Hybrid Features (HF). Studies have shown that MFCC, PLP and LPC
are techniques that have been used extensively in speech recognition [12, 14]. Re-
cently, Hybrid Features are overcoming the existing features and becoming an active
research area in ASR [14].

3. Acoustic Model, which is responsible for representing the relationship between au-
dio signals and linguistic units that make up speech such as words, syllables and
phonemes. Acoustic models are usually trained by using audio recordings and their
corresponding transcripts. In Equation. 2.2, P (X | W ) represents the acoustic
model, which is the probability of acoustic observation X given that the word se-
quence W is uttered. Many types of acoustic models have been proposed, for ex-
ample, Hidden Markov Model (HMM), Dynamic Time Warping (DTW), Artificial
Neural Networks (ANNs). Studies have shown that HMM is the most successful
method for acoustic modeling [24].

4. Language Model, which is responsible for assigning probability to a given word se-
quence W = W1,W2, ...,Wn. The probability assigned to a specific word sequence W
is the indication of how likely the word sequence occurs as a sentence in the language
that described by the language model. With the ability to assign probability to word
sequences, language models narrow down the search space of ASR systems to only
valid word sequences and bias the outputs of the systems toward “grammatical”
word sequences based on the grammars defined by the language model [24].

5. Lexical Model, which is also known as pronunciation dictionary, is responsible for
representing the relationships between acoustic-level representations and the word
sequences output by the speech recognizer. Lexical models are developed to provide
pronunciations of words or short phrases in a given language. The development
process of lexical models typically includes two main steps: First, word list develop-
ment, which is a process of defining and selecting the basis units of written language
- the recognition vocabulary (the word list). While the word list is usually obtained
from training corpora in large-vocabulary speech recognition, it can be determined
manually by the word occurrences in small-vocabulary and domain-specific speech
recognition. Second, pronunciation development, which includes phone set defini-
tion and pronunciation generation. Typically, the pronunciations may be taken from
existing pronunciation dictionaries. However, if the word list includes words that fea-
ture unusual spelling, the pronunciations can be created manually or generated by
automatic grapheme to phoneme (g2p) conversion softwares such as Phonetisaurus
and sequitur-g2p.

6. Recognition Module, which is also known as speech decoder or search module, is re-
sponsible for recognizing which words were spoken based on inputs from the feature
extraction module, acoustic model, language model and lexical model. The recog-
nition process of a speech recognizer is usually referred to as a search process with
the main goal is to find a word sequence W = W1,W2, ...,Wn that has maximum
posterior probability P (W | X) as represented in Equation 2.2. Studies have shown
that Viterbi and A* stack decoders are the two most accurate decoders for perform-
ing the search in speech recognition. Recently, with the help of efficient pruning
techniques, Viterbi beam search has becoming the predominant search method for
speech recognition [24].
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2.2.2 Performance of Speech Recognition Systems

In ASR, accuracy and speed are the two most common metrics that have been used
for measuring system performance. While speed is usually rated with Real Time Factor
(RTF), Word Error Rate (WER) is usually used for measuring accuracy [45]. WER can
be computed by using Equation 2.3:

WER =
S + D + I

N
(2.3)

where S is the number of substitutions, D is the number of deletions, I is the number of
insertions and N is the number of words in the reference.

If I is the duration of an input and P is the time required to process the input. RTF
can be computed by using Equation 2.4:

RTF =
P

I
(2.4)

WER is usually used for measuring the accuracy of ASR systems in general. On the
other hand, Concept Error Rate (CER) and Command Success Rate (CSR) are usually
used for measuring the accuracy of domain-specific ASR systems such as command and
control ASR systems. If M is the number of misrecognized concepts and N is the total
number of concepts, CER can be computed by using Equation 2.5:

CER =
M

N
(2.5)

In ATC, it is not important that ASR systems can recognize every single word, but
it is important that the conveyed concepts are correctly detected [45]. Therefore, CER is
usually used for measuring the accuracy of ASR systems in ATC instead of WER.

2.2.3 Language Model

Language models play a critical role in ASR because they describe the language that the
system recognize and bias the outputs of the system toward “grammatical” sentences based
on the grammars defined by the language models. This means that, the accuracy of an ASR
system depends heavily on the quality of its language model. In Equation 2.2, P(W) rep-
resents the language model, which is the probability of word sequence W = W1,W2, ...,Wn

uttered. Many types of language models have been proposed. Some well-known exam-
ples are grammars (e.g., regular grammar, context-free grammar) and stochastic language
models (e.g., n-gram language model, class n-gram language model, adaptive language
model).

Grammars

According to the Chomsky hierarchy (also known as Chomsky-Schützenberger hierarchy)
[8, 24], there are four types of formal grammars:

• Type 0 - Phrase structure grammars, which are unrestricted grammars that include
all formal grammars. The phrase structure grammars generate languages which can
be recognized by Turing machines.
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• Type 1 - Context-sensitive grammars, which is a subset of phrase structure gram-
mars. The Context-sensitive grammars generate languages which can be recognized
by Linear Bounded Automaton (LBA).

• Type 2 - Context-free grammars (CFGs), which is a subset of context-sensitive gram-
mars. The context-free grammars generate languages which can be recognized by
non-deterministic pushdown automaton, which is also known as Recursive Transition
Network (RTN).

• Type 3 - Regular grammars, which is a subset of context-free grammars. The regular
grammars generate languages which can be recognized by Finite State Machines
(FSMs).

Context-free grammars have been widely use in Natural Language Processing (NLP)
and domain-independent ASR systems because of its compromise between parsing effi-
ciency and power in representing the structure of languages. On the other hand, regular
grammars are commonly found in more restricted and domain-specific ASR systems [24].
This happens because of the limited power in representing the structures of languages of
regular grammars.

In ATC, grammars can be created by hand or by generating from codes with the
JSpeech Grammar Format (JSGF) [25]. Below is an example of grammars which are
written in the JSGF format:

#JSGF V1.0;

/**

* JSGF Grammars for description of flight levels

*/

grammar level;

public <Levels> = FLIGHT LEVEL <Number>+ | <Number>+ METERS | <Number>+ FEET

Stochastic Language Models

The main idea of stochastic language models is to estimate the probability of word se-
quences W = W1,W2, ...,Wn occur as sentences based on training corpora. The main goal
of stochastic language models is to assign higher probability to the likely word sequences.
There are four main types of stochastic language models, Probabilistic Context-Free Gram-
mars (PCFGs), n-gram language model, class n-gram language model and adaptive lan-
guage model.

Probabilistic Context-Free Grammars (PCFGs) , which extend the context-free gram-
mars by augmenting each production rule with probability. Because of the aug-
mented probability in production rules, the training process requires one extra step
compared with the context-free grammars training process. In addition to determine
a set of rules for grammar G based on a training corpus, estimating the probability
of each rule in G based on the corpus is also required. The recognition process of
PCFGs is similar to other stochastic language models (e.g., n-gram language model,
class n-gram language model), which involves the computation of the probability
P(W) of word sequences W = W1,W2, ...,Wn generated by the start symbol S. Un-
like context-free grammar parser which produces a list of all possible parses for an
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input, PCFGs parser produces the most probable parse or a ranking of possible
parses based on the probability P(W).

N-gram Language Models , which are responsible for representing the probability of
word sequences W = W1,W2, ...,Wn occur as sentences in a given language. For
example, for a language model describing the language that air traffic controllers
and pilots use in their communications, we might have P (REPORTSPEED) =
0.0001, which means that one out of every ten thousands clearances a controller
may say “REPORT SPEED”. On the other hand, P (Ilovedogs) = 0, because it
is very unlikely that controllers or pilots would utter such a strange clearance or
respond. However, it is impractical to calculate the probability of every possible
word sequences W (see Equation 2.6).

P (W ) = P (w1)P (w2 | w1)P (w3 | w1w2)...P (wn | w2, ..., wn − 1) (2.6)

Because even with moderate values of n there are a huge number of different word
sequences W which have size n. To deal with this problem, we assume that the
probability of the ith word wi depends only on its n-1 previous words. With that
assumption, we have n-gram language model. If n = 1, 2 and 3 we have unigram
language model: P (wi), bigram language model: P (wi|wi−1) and trigram language
model: P (wi|wi−2, wi−1) respectively. Although n-gram language models typically
require very big training corpora (e.g., millions of words corpora) for training, they
have been widely used for many domain-independent speech recognition systems
because of their high accuracy and performance [49, 51, 2, 35].

Class N-gram Language Models , which extend n-gram language models by grouping
words that exhibit similar semantic or grammatical behavior. For example, different
call signs such as Speedbird, Swissair, Jetblue, Norstar can be grouped into a broad
class [CALLSIGN], different airports names such as Gardermoen, Frankfurt am Main
International, Hartsfield Jackson Atlanta International can be grouped into a broad
class [AIRPORT]. According to [24], if we assume that a word wi can be uniquely
mapped to only one class ci, then the class n-gram model can be computed based
on the previous n-1 classes as follow:

P (wi | ci−n+1...ci−1) = P (wi | ci)P (ci|ci−n+1...ci−1) (2.7)

where P (wi | ci) is the probability of word wi given class ci in the current position,
and P (ci|ci−n+1...ci−1) denotes the probability of class ci given n-1 previous classes.
Typically, there are two main types of class n-gram language models:

• Rule-based class n-gram, which is based on syntactic and semantic information
that exist in the given language to cluster words together, for example, class
[DIGIT] which includes ten words,“zero, one, two, three, four, five, six, seven,
eight, nine”.

• Data-driven class n-gram, which is based on data-driven clustering algorithms
to generalize the concept of word similarities. Output of clustering algorithms
are different clusters which are equivalent with manually defined classes in Rule-
based class n-gram.
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Since the classes in class n-gram language models have the ability to encode syntactic
and semantic information, class n-gram language models have been widely used for
many domain-specific ASR systems [43, 66, 42].

Adaptive Language Model focuses on using knowledge about the topic of conversation
to dynamically adjust the language model parameters (e.g., n-gram probabilities,
vocabulary size) to improve the quality of the model [13, 37, 34, 52]. Many adaptive
language models have been proposed, for example, cache language models, topic
adaptive models and maximum entropy models.

N-Gram Smoothing

N-gram language models suffer from a very well-known problem called zero probability,
P (W ) = 0, which is also known as “dealing with unseen data”. This problem occurs when
the training corpus is not big enough. Sentences which occur in test corpus but do not
occur in training corpus will be given zero probabilities by the n-gram language model,
P (W ) = 0. When P (W ) is zero, no matter how unambiguous the acoustic signal is, the
word sequence W will never be considered as a possible transcription, thus an error will
be made.

In order to deal with the zero probability problem many n-gram smoothing techniques
have been applying to the n-gram modeling process. The main purpose of n-gram smooth-
ing is to assign all word sequences non-zero probabilities by adjusting low probabilities
such as zero probabilities upward, and high probabilities downward in order to prevent
errors in the recognition process.

Many n-gram smoothing techniques have been proposed, for example, Additive smooth-
ing (Laplace smoothing), Deleted interpolation smoothing, Backoff smoothing, Good-
Turing Estimates, Katz smoothing and Kneser-Ney smoothing. According to [24], Kneser-
Ney smoothing, Katz smoothing and Deleted interpolation smoothing slightly outperform
Additive smoothing, Backoff smoothing and Good-Turing Estimates.

Complexity Measurement of Language Models

In general, a good language model “prefers” grammatical sentences than ungrammatical
sentences. There are two main metrics that have been using for evaluating language model
performance [24]:

• Word Error Rate (WER), which requires the integration of the language model into
an ASR system and measurement of WER on test sets. Language model A is better
than language model B, if the ASR system that uses the language model A produces
lower WER than the one that uses the language model B.

• Perplexity, which is the probability of the test set, normalized by the number of
words. Perplexity can also be roughly interpreted as the average branching factor of
the text [24]. For example, the perplexity of the task of recognizing digits ”0, 1, 2,
3, 4, 5, 6, 7, 8, 9” is 10. Language model A is better than language model B, if the
language model A can assign lower perplexity to the test corpus then the language
model B. Perplexity can be computed by using Equation 2.8 as follows:

PP (W ) = P̂ (w1, w2, . . . , wN )−
1
N (2.8)
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where P̂ (w1, w2, . . . , wN ) is the probability estimate assigned to the word sequence
(w1, w2, . . . , wN ) by a language model and N is the number of words of the sequence.

I have presented a detailed introduction to the ATC field in general and ASR tech-
nologies. In the next section, I review some related work covering ASR in ATC, as well
as different approaches for improving the accuracy of ASR systems in the ATC domain.

2.3 Related Work

Since the 80s (or earlier), researchers have started to introduce ASR technologies into
ATC [62, 23, 21]. Since then, continuous efforts have been made to improve the accuracy
of ASR systems in order to facilitate applications such as ATC workload measurement
and balancing [10, 11], analysis of ATC speech [48, 17], speech interfaces [18], and ATC
simulation and training [22, 36, 15]. In addition, continuous attempts have also been made
to apply ASR technologies in reducing ATC communication errors. One example is the
work of Geacăr Claudiu-Mihai [19], who converted spoken clearances into machine-usable
data for text clearances broadcast which is considered as a backup channel for the verbal
communications.

However, due to the high accuracy requirements of the ATC context and its unique
challenges such as call sign detection, poor input signal quality, the problem of ambiguity,
the use of non-standard phraseology, and the problem of dialects, accents and multiple
languages [45], ASR technologies have not been widely adopted in this field.

In order to address the above-mentioned challenges and improve the accuracy of ASR
systems in ATC, a few efforts have been made to integrate higher levels of knowledge
sources, which are usually not available for standard ASR systems, such as linguistic
knowledge, situation knowledge and dialog contextual information into ASR systems. For
example, Karen Ward et al. [64] proposed a speech act model of ATC speech in order
to improve the accuracy of speech recognition and understanding in ATC. The main idea
of the model is to focus on using two dialog models, speech act and the collaborative
view of conversation, to predict the form and content of the next utterance in order to
reduce the size of grammar and vocabulary that the system has to deal with. Another
example is the work of D. Schaefer [55], who proposed a cognitive model of air traffic
controller in order to use situation knowledge as a mean to improve the accuracy of
ASR systems. According to the author, the model can continuously observe the present
situation and generate a prediction of the next clearances that the controller is most likely
to say. In addition, studies have shown that the acquisition and processing of higher levels
of knowledge sources is a very promising approach for improving the accuracy of ASR
systems in ATC [31]. Unfortunately, none of the above-mentioned approaches can address
completely the existing challenges of ASR in ATC.

In this thesis, in order to take advantage of the availability of linguistic knowledge in
the ATC domain, I aim at using linguistic knowledge to address the existing challenges
of ASR in ATC. The approaches which facilitate the integration linguistic knowledge into
ASR systems can be categorized into three groups: language modeling, N-best filtering
and re-ranking, and word lattice filtering and re-ranking.

The main idea of the language modeling approach is to integrate linguistic knowledge
into decoding to guide the search process. The main advantage of this approach is that it
can reduce the search space in decoding which increases both accuracy and performance of
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the system. For example, L. Miller et al. used context-free grammars as language model
to integrate linguistic knowledge in to ASR systems [40].

N-best list re-ranking have been widely used for improving ASR systems accuracy. The
main ideal of this approach is to re-score N-best hypotheses and then use the scores to
perform re-ranking. The hypothesis that ranked highest will be the output of the system.
There are many different methods that can be used to perform N-best list re-ranking.
For example, Z. Zhou et al. conducted a comparative study of discriminative methods:
perceptron, boosting, ranking support vector machine (SVM) and minimum sample risk
(MSR) for N-best list re-ranking in both domain adapting and generalizing tasks [68].
Another example is the work of T. Oba et al [46]. The authors compared three methods;
Reranking Boosting (ReBst), Minimum Error Rate Training (MERT) and the Weighted
Global Log-Linear Model (W-GCLM) for training discriminative n-gram language models
for a large vocabulary speech recognition task. With regard to N-best filtering, the main
idea is to verify the list of N-best hypotheses which are already sorted by score with a
verifier. The first hypothesis accepted by the verifier will be the output of the system.
One approach that have been widely used to perform N-best filtering is using a natural
language processing (NLP) module as a verifier [69].

Lattices is a directed graph which represents a set of hypothesized words with different
starting and ending positions in the input signal. Lattices are typically used to represent
search results and served as intermediate format between recognition passes. The main
idea of lattices filtering and re-ranking is to first generate lattices and then use post-
processing parser to filter or re-rank the lattices [5]. One example is the work of Ariya
Rastrow et al [50]. The authors proposed an approach for re-scoring speech lattices based
on hill climbing via edit-distance based neighborhoods.



Chapter 3

ASR Frameworks and Existing
ATC-Related Corpora

This chapter focuses two main purposes. First, it presents a detailed review of ten well-
known open source Automatic Speech Recognition (ASR) frameworks which are selected
based on their popularity and community size, documentation, supported features and cus-
tomers reviews. For the sake of completeness, a list of other relevant frameworks/projects
is also included.

Second, it describes five main existing ATC-related corpora. In the development of
ASR systems, selecting a good speech corpus for training is a crucial task because both
accuracy and performance of the ASR systems depend heavily on the quality of the corpus.

3.1 ASR Frameworks

In this section, I first review ten well-known open source ASR frameworks including
Bavieca, CMU Sphinx, Hidden Markov Model Toolkit (HTK), Julius, Kaldi, RWTH ASR,
SPRAAK, CSLU Toolkit, The transLectures-UPV toolkit (TLK) and iATROS. I then se-
lect a framework for developing a baseline ASR system.

3.1.1 Bavieca

Bavieca is a very well-known open source framework for speech recognition which is dis-
tributed under the Apache 2.0 license. With the core technology is Continuous Density
Hidden Markov Models (CD-HMMs), Bavieca supports acoustic modeling, adaption tech-
niques and also discriminative training. The framework is written in C++ programming
language, however, in addition to C++ native APIs, the framework also supports Java
APIs (a wrapper of the native APIs), which makes incorporating speech recognition ca-
pabilities to Java applications become easier. Bavieca is a well-documented framework
which provides many examples, tutorials and API references. The framework was evalu-
ated using the WSJ Nov’92 database [6], the result was quite impressive at 2.8% Word
Error Rate (WER), which is achieved by using trigram language model on a 5000-words
corpus.

Bavieca’s website: http://www.bavieca.org/index.html
Bavieca’s source code: http://sourceforge.net/projects/bavieca/
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3.1.2 CMU Sphinx

CMU Sphinx is a collection of speech recognition systems developed by Carnegie Mellon
University (CMU) research group, which also collects over 20 years of the CMU research.
The systems are distributed under the BSD-like license which allows commercial distribu-
tion. CMU Sphinx has a very large and active community with more than 400 users, active
development and release schedule. According to [60], the CMU Sphinx toolkit includes a
number of packages for different task and applications:

• Pocketsphinx - speech recognizer library written in C;

• Sphinxtrain - acoustic model training tools;

• Sphinxbase - support library required by Pocketsphinx and Sphinxtrain;

• Sphinx4 - adjustable, modifiable recognizer written in Java.

In addition to C library, CMU Sphinx also supports Java library (Sphinx4) which
makes incorporating speech recognition capabilities to Java applications become easier.
The main technology of the CMU Sphinx framework is Hidden Markov Models (HMMs).
In addition to English, CMU Sphinx also supports many other languages such as French,
German, Dutch and Russian.

CMU Sphinix’s website: http://cmusphinx.sourceforge.net/
CMU Sphinix’s source code: http://sourceforge.net/projects/cmusphinx/

3.1.3 Hidden Markov Model Toolkit (HTK)

The Hidden Markov Model Toolkit (HTK), which is written in C programming language,
is a toolkit for building and manipulating hidden Markov models. HTK has been using
for both speech recognition and speech synthesis research (mainly for speech recognition).
The toolkit is distributed under their own license (HTK End User License Agreement),
which does not allow to distribute or sub-license to any third party to any form. Al-
though this project has been inactive since April 2009, it has still been used extensively
because of its sophisticated tools for HMM training, testing and results analysis, as well
as its extensive documentation, tutorials and examples. The toolkit was evaluated using
the well-known WSJ Nov’92 database [6], the result was quite impressive at 3.2% WER,
which is achieved by using trigram language model on a 5000-words corpus.

HTK’s website (including HTK’s source code and book): http://htk.eng.cam.ac.uk/

3.1.4 Julius

Julius, which is written in C programming language, is an open source, large vocabu-
lary, continuous speech recognition framework. The framework is distributed under the
BSD-like license, which allows commercial distribution. The main technologies of Julius
are n-gram language models and context-dependent HMMs. Julius is a well-documented
framework, which provides many sample programs, full source code documentation and
manual. Unfortunately, most of the documents are in Japanese. Julius has a large and
active community. Currently, Julius provides free language models for both Japanese and

http://cmusphinx.sourceforge.net/
http://sourceforge.net/projects/cmusphinx/
http://htk.eng.cam.ac.uk/
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English. However, the English language model cannot be used in any commercial product
or for any commercial purpose.

Julius’s website: http://julius.sourceforge.jp/en_index.php
Julius’ source code: http://sourceforge.jp/cvs/view/julius/

3.1.5 Kaldi

Kaldi, which is written in C++ programming language, is a toolkit for speech recognition
distributed under the Apache License v2.0. Kaldi is a very well-documented toolkit, which
provides many tutorials, examples, API references, as well as descriptions of its modules,
namespaces, classes and files. Kaldi supports many advanced technologies such as Deep
Neural Network (the latest hot topic in speech recognition), Hidden Markov Models and
a set of sophisticated tools (e.g., estimate LDA, train decision trees) and libraries (e.g.,
matrix library). Kaldi was evaluated using the well-known WSJ Nov’92 database [6], the
evaluation result on a 20000-words corpus using bigram language model was 11.8% WER.

Kaldi’s webpage: http://kaldi.sourceforge.net/index.html
Kaldi’s source code : https://svn.code.sf.net/p/kaldi/code/

3.1.6 RWTH ASR

RWTH ASR, which is written in C++ programming language, is a set of tools and libraries
for speech recognition decoding and developing of acoustic models. RWTH ASR is dis-
tributed under their own license (RWTH ASR License), which allows for non-commercial
use only. Although RWTH ASR is not a well-documented toolkit, it has still been used
widely because of its advanced technologies and sophisticated tools such as neural net-
works (deep feed-forward networks), speaker adaption, HMMs and Gaussian mixture
model (GMM) for acoustic modeling, Mel-frequency cepstral coefficients (MFCCs) and
Perceptual Linear Predictive Analysis (PLP) for feature extraction. The RWTH ASR
community is quite small, however, there is a RWTH ASR System Support forum where
we can discuss and ask for help from RWTH ASR’s developers and active users. In addi-
tion, RWTH ASR provides a demonstration of large vocabulary speech recognition system
which includes triphones acoustic model and 4-gram language model. The demo models
can be downloaded directly from their website.

RWTH ASR website : http://www-i6.informatik.rwth-aachen.de/rwth-asr/manual/
index.php/Main_Page

3.1.7 SPRAAK

SPRAAK, which is written in C and Python programming languages, is a speech recog-
nition toolkit distributed under an academic license, which is free for academic usage and
at moderate cost for commercial usage. The main technology of the toolkit is HMMs.
SPRAAK is a quite well-documented toolkit which provides many examples, tutorials and
API references. Unfortunately, SPRAAK has been inactive since 2010 (the latest version
is V1.0 released on December 7, 2010).

http://julius.sourceforge.jp/en_index.php
http://sourceforge.jp/cvs/view/julius/
http://kaldi.sourceforge.net/index.html
https://svn.code.sf.net/p/kaldi/code/
http://www-i6.informatik.rwth-aachen.de/rwth-asr/manual/index.php/Main_Page
http://www-i6.informatik.rwth-aachen.de/rwth-asr/manual/index.php/Main_Page
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SPRAAK’s website: http://www.spraak.org/

3.1.8 CSLU Toolkit

CSLU Toolkit, which is written in C/C++ programming languages, is a comprehensive
suite of tools for speech recognition and human-computer interaction research. The toolkit
is distributed under OHSU CSLU Toolkit Non-commercial license. However, there are
also several options for evaluating and licensing CSLU Toolkit for commercial use . CSLU
Toolkit is a very well-known toolkit because of its advanced technologies (e.g., HMMs
and hybrid HMM/Artificial Neural Networks (ANN)), full and detailed documentation
for users, developers and researchers. Unfortunately, this project has been inactive since
2010.

CSLU Tookit’s website: http://www.cslu.ogi.edu/toolkit/

3.1.9 The transLectures-UPV toolkit (TLK)

The transLectures-UPV toolkit (TLK) , which is written in C programming language,
is a toolkit for automatic speech recognition distributed under the Apache License 2.0.
The main technology of toolkit is HMMs. The transLectures-UPV toolkit is a very well-
documented toolkit which provides many examples and tutorials. Currently, TLK only
supports Linux and Mac OS X.

TLL’s website: https://www.translectures.eu//doctools/manpages/tlk.1.html
TLK source code: http://bazaar.launchpad.net/~translectures/tlk/trunk/files

3.1.10 iATROS

iATROS, which is written in C programming language, is a framework for both speech
recognition and handwritten text recognition distributed under the the GNU General Pub-
lic License v3.0. Although iATROS lacks of documentation and has been inactive since
2006, it has still been a quite popular framework because of its advanced technologies such
as HMMs, MFCC),LDA and Viterbi-like search.

iATROS’s website: https://www.prhlt.upv.es/page/projects/multimodal/idoc/iatros

3.1.11 Summary

Among the reviewed frameworks, the CMU Sphinix framework is the best option for this
project because of the following reasons: Firstly, CMU Sphinix is a cross-platform frame-
work which supports both desktop operating systems (e.g., Windows, Linux, Mac OS) and
mobile operating systems (e.g., Android, iOS, Window Phone). Secondly, CMU Sphinix
provides toolkit for training acoustic and language models, as well as toolkits which can
facilitate post-processing approaches (e.g., syntactic analysis, semantic analysis). Thirdly,
CMU Sphinix has a very large and active community, as well as active development and
release schedule. Finally, CMU Sphinix is distributed under the BSD-like license which
allows both academic and commercial distributions.

http://www.spraak.org/
http://www.cslu.ogi.edu/toolkit/
https://www.translectures.eu//doctools/manpages/tlk.1.html
http://bazaar.launchpad.net/~translectures/tlk/trunk/files
https://www.prhlt.upv.es/page/projects/multimodal/idoc/iatros
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3.1.12 Other Frameworks/Projects

For the sake of completeness, I also include a list of other relevant frameworks/projects.
Although some of these frameworks/projects are quite small compared with the reviewed
frameworks/projects, they are still worth mentioned because of their interesting technolo-
gies and applications.

ID Frameworks/Projects Descriptions

1 AaltoASR https://github.com/aalto-speech/AaltoASR

2
Palaver
speech recognition

https://github.com/JamezQ/Palaver

3 SCARF http://research.microsoft.com/en-us/projects/scarf/

4
SHoUT speech
recognition toolkit

http://shout-toolkit.sourceforge.net/

5 Barista https://github.com/usc-sail/barista

6 Juicer https://github.com/idiap/juicer

7 OpenDcd http://opendcd.org/

8 SailAlign https://github.com/nassosoassos/sail_align

9 SRTk https://bitbucket.org/yotaro/srtk

10 Speechlogger https://speechlogger.appspot.com/en/

11
The Edinburgh
Speech Tools Library

http://www.cstr.ed.ac.uk/projects/speech_tools/

12 FreeSpeech http://thenerdshow.com/freespeech.html

13 OpenEars http://www.politepix.com/openears/

14 Simon https://simon.kde.org/

15 Xvoice http://xvoice.sourceforge.net/

16 SphinxKeys https://code.google.com/p/sphinxkeys/

17 Platypus http://thenerdshow.com/platypus.html

Table 3.1: ASR open source frameworks/projects

I have reviewed ten well-known open source ASR frameworks and selected the CMU
Sphinx framework for developing the baseline ASR system. In the next section, I review
five existing ATC-related corpora in order to select a corpus for training and testing.

3.2 Existing ATC-Related Corpora

In the last few years, many speech corpora have been created by using Web crawling and
TV recording technologies. Unfortunately, very few of the corpora are related to ATC. In
the this section, with the aim of selecting a speech corpus for training and testing ASR
systems in ATC, I review five well-known ATC-related corpora including The ATCOSIM
Corpus of Non-Prompted Clean Air Traffic Control Speech, Air Traffic Control Complete
LDC94S14A corpus, HIWIRE corpus, Air Traffic Control Communication Speech Corpus
and Air Traffic Control Communication corpus.

https://github.com/aalto-speech/AaltoASR
https://github.com/JamezQ/Palaver
http://research.microsoft.com/en-us/projects/scarf/
http://shout-toolkit.sourceforge.net/
https://github.com/usc-sail/barista
https://github.com/idiap/juicer
http://opendcd.org/
https://github.com/nassosoassos/sail_align
https://bitbucket.org/yotaro/srtk
https://speechlogger.appspot.com/en/
http://www.cstr.ed.ac.uk/projects/speech_tools/
http://thenerdshow.com/freespeech.html
http://www.politepix.com/openears/
https://simon.kde.org/
http://xvoice.sourceforge.net/
https://code.google.com/p/sphinxkeys/
http://thenerdshow.com/platypus.html
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3.2.1 The ATCOSIM Corpus of Non-Prompted Clean Air Traffic Con-
trol Speech

The ATCOSIM Corpus of Non-Prompted Clean Air Traffic Control Speech (ATCOSIM)
[33] is a speech database of ATC operators speech. The ATCOSIM corpus consists of
recordings of en-route controllers speech recorded in typical ATC control room condition
during ATC real-time simulations. The ATCOSIM corpus contains ten hours of speech
data, which were recorded from six male and four female controllers who were either
German or Swiss nationality. Their native languages are German, Swiss German or Swiss
French. The ATCOSIM corpus is available online to public and can be obtained for free
of charge at https://www.spsc.tugraz.at/tools/atcosim

3.2.2 Air Traffic Control Complete LDC94S14A

The Air Traffic Control Complete LDC94S14A corpus [20] is a speech database of voice
communications between various controllers and pilots in approach control unit. The
speech data was recorded from three different airports in the United States: Dallas Fort
Worth (DFW), Logan International (BOS) and Washington National (DCA). The corpus
contains approximately 70 hours of both male and female controllers and pilots speech.
Most of the controllers and pilots are native English speakers. The corpus was published
in 1994 and only available for commercial. However, a sample version of the corpus can
be obtained for free of charge at https://catalog.ldc.upenn.edu/LDC94S14A.

3.2.3 HIWIRE

The HIWIRE database [57] is a noisy and non-native English speech corpus of commu-
nications between controllers and pilots in military air traffic control. According to [57],
the database contains a total of 8099 English utterances which were recorded from 81
non-native English speakers (31 French, 20 Greek, 20 Italian, and 10 Spanish speakers).
The HIWIRE database has no usage restrictions. However, it is only available on request
at http://catalog.elra.info/product_info.php?products_id=1088.

3.2.4 Air Traffic Control Communication Speech Corpus

The Air Traffic Control Communication Speech corpus [63] is a speech database of voice
communications between controllers and pilots at four different control units:

• GRP (ground control) - 19.2 hours of data;

• TWR (tower control) - 22.5 hours of data;

• APP (approach control) - 25.5 hours of data;

• ACC (area control) - 71.3 hours of data.

The speech data was recorded mostly from the Air Navigation Services of the Czech Re-
public in Jeneč. The rest of the speech data was recorded from Lithuania and Philippines
airspace.

https://www.spsc.tugraz.at/tools/atcosim
https://catalog.ldc.upenn.edu/LDC94S14A
http://catalog.elra.info/product_info.php?products_id=1088
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3.2.5 Air Traffic Control Communication

According to [59], the Air Traffic Control Communication corpus contains 20 hours of
recordings of communications between air traffic controllers and pilots. The corpus is
publicly available and licensed under the “Attribution-NonCommercial-NoDerivs 3.0 Un-
ported (CC BY-NC-ND 3.0)” license.

3.2.6 Other ATC-related Corpora

For the sake of completeness, I also include other small relevant ATC-related corpora:

• English TTS speech corpus of air traffic (pilot) messages - Serbian accent [38];

• English TTS speech corpus of air traffic (pilot) messages - Taiwanese accent [39].

3.2.7 Summary

Among the five reviewed ATC-related speech corpora, which are summarized in Table 3.2,
the ATCOSIM corpus is the best option for this project because of the following reasons.
Firstly, the ATCOSIM corpus consists of recordings of en-route controllers speech which
perfectly matches with the scope of this thesis. Secondly, the ATCOSIM corpus contain
only air traffic controllers speech without silence periods which is a good fit for training
and testing ASR systems in ATC. Finally, the corpus is publicly available for free of charge
with no usage restrictions.

Table 3.2: Summary of features of ATC-related corpora

ATCOSIM LDC94S14A HIWIRE
ATCC

Speech Corpus
ATCC

Control Unit en-route approach N/A mixed mixed

Number of
Speakers

10 unknown (large) 81 unknown (large) unknown (large)

Gender mixed mixed mixed mixed mixed

Level of English non-native mostly native non-native non-native non-native

Native Language
German

Swiss German
Swiss French

English

French
Greek
Italian
Spanish

N/A N/A

Duration
10 hours

10078 utterances
70 hours 8099 utterances

GRP: 19.2 hours
TWR: 22.5 hours
APP: 25.5 hours
ACC: 71.3 hours

20 hours

Free of Charge yes no no no(?) yes

In addition to the ATCOSIM corpus that I chose, I also create a corpus for further
testing called Air Traffic Control Speech Corpus (ATCSC). More details about the corpus
can be found in Section 4.3.





Chapter 4

Case and Experimental Settings

This chapter serves three main purposes. First, it describes the special case that forms
the basic of this project, which is developing an “automated pilot” system for Air Traffic
Control (ATC) simulation and training. Second, It presents four experiments designed to
answer the research questions introduced in Chapter 1, together with a brief summary of
how the case affects the design of the experiments. The end of the chapter contains a short
description of my own Air Traffic Control Speech Corpus (ATCSC) which is recorded with
the aim of simulating an ATC simulation and training setting.

4.1 Case

This project is in collaboration with Edda systems AS and Institute for Energy Technology
(IFE). The primary goal of this project is to develop an “automated pilot” system for ATC
simulation and training.

ATC simulation provides facilities for testing and evaluation of new systems and con-
cepts, and training of air traffic controller students to handle realistic scenarios. Current
ATC simulation systems typically require “pseudo-pilots” who will act as real pilots in the
simulation of controller-pilot communications with air traffic controller students. The use
of “pseudo-pilots” makes ATC simulators less flexible and comes at a relatively high cost.

The main goal of this project is to introduce Automated Speech Recognition (ASR)
technologies into ATC simulation and training in order to replace the “pseudo pilots” by
so-called “automated pilots”. The “automated pilot”, which is showed in Figure 4.1, will
interpret and process air traffic controllers speech using a combination of an ASR module
and a Natural Language Processing (NLP) module, and generate responses that are sent
back to the controllers using a Speech Synthesis (SS) module. The use of “automated
pilots” instead of “pseudo-pilots” can dramatically reduce the cost of ATC simulation
systems and make the systems more flexible.

In this thesis, I focus on the first step which is developing an ASR module for ATC
simulation and training. The natural language processing and speech synthesis modules
will be considered in future work.

Although the primary goal of this project is to develop an “automated pilot” system
for ATC simulation and training, I aim at developing the ASR module in a way that it
can be easily adapted for use in other types of ATC-related applications. Some exam-
ples are air traffic controllers workload measurement, controller-pilot speech analysis and
transcription, and backup controller, which is a system that combines an ASR module
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Figure 4.1: Automated pilot system for air traffic control simulation and training

with other information sources in the ATC context (e.g., radar information, minimum
safe altitudes, restricted zones, and weather information) to catch potentially dangerous
situations that might be missed by the controller as well as provide suggestions and safety
information to the controller in real time.

In addition, since the ASR module is a command-and-control-like speech recognition
module, the approaches and algorithms proposed in this thesis can also be easily adapted
for use in other command-and-control-like ASR systems. Some examples are in-car ASR
systems, ASR for smart homes, call centers and voice-controlled robots.

4.2 Experimental Settings

To answer the research questions introduced in Chapter 1, I design four experiments. The
first three experiments, which can be found in Section 4.2.1, Section 4.2.2 and Section
4.2.3, are for addressing the three secondary research questions. Experiment concerning
the main research question is presented in Section 4.2.4.

Although evaluating the ASR module in a real training and simulation setting is not
in the scope of this thesis, my understanding of the setting together with Edda Systems
AS and IFE have affected my choice of method in designing the experiments. In training
and simulation, air traffic controller students are usually required to use ICAO standard
phraseologies. Thus, the amount of linguistic knowledge, particularly syntactic and se-
mantic knowledge, in their communications with pilots is relatively high which is a good
fit for syntactic and semantic analysis. In addition, since signal quality in training and
simulation setting is typically higher than in ATC live operations, existing acoustic mod-
els, for example, the CMU Sphinx US English generic acoustic model provided by CMU,
can be reused with a very little effort in adaptation.

4.2.1 Language Modeling

To answer the first secondary research question, I design an experiment as follows: Firstly,
I build a baseline ASR system based on the Pocketsphinx recognizer from the CMU
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Sphinx framework, the CMUSphinx US English generic acoustic model and the generic
cmudict SPHINX 40 pronunciation dictionary. Secondly, I evaluate different language
models (n-gram, class n-gram) in terms of Word Error Rate (WER) and Real Time Fac-
tor (RTF) on the baseline system in order to select a well-suited language model for use
in ASR systems in ATC. Thirdly, I improve the selected language model by integrating
linguistic knowledge into the language modeling process. To facilitate this, I propose a
context-dependent class n-gram language model by combining the hybrid class n-gram
language modeling and context-dependent language modeling approaches. Fourthly, I use
the baseline system to evaluate the proposed model on the well known ATCOSIM Corpus
of Non-prompted Clean Air Traffic Control Speech (ATCOSIM) and my own Air Traffic
Control Speech Corpus (ATCSC). I use 85% of the data from the ATCOSIM corpus for
training and the renaming 15% of the data for evaluations. In order to evaluate the ability
of the proposed model in recognizing general ATC clearances, I also evaluate the proposed
model on the ATCSC corpus. I use k-fold cross-validation to increase the reliability of
the evaluations. Finally, I compare the evaluation results of the proposed model with
traditional n-gram models (unigram, bigram and trigram).

4.2.2 N-best List Re-ranking Using Syntactic Knowledge

To address the second secondary research question, I design an experiment as follows:
Firstly, I integrate syntactic knowledge into the baseline ASR system by performing n-
best list re-ranking. To do this, I propose a novel feature called syntactic score. I compute
the syntactic score using syntactic rules which are created by replacing expansions of
word classes with their corresponding class labels. I propose a WER-Sensitive Pairwise
Perceptron algorithm and use the perceptron to combine the proposed feature with the
speech decoder’s confidence score feature. Secondly, I evaluate the proposed approach on
the ATCOSIM and ATCSC corpora. I use 85% of the data from the ATCOSIM corpus
for training and the renaming 15% of the data for evaluations. In order to evaluate the
ability of the proposed approach in recognizing general ATC clearances, I also evaluate
the proposed approach on the ATCSC corpus. I use k-fold cross-validation to increase
the reliability of the evaluations. Finally, I compare the evaluation results of the proposed
approach with traditional n-gram language models (unigram, bigram and trigram) and the
model proposed in the previous experiment which is the context-dependent class n-gram
language model.

4.2.3 N-best List Re-ranking Using Semantic Knowledge

To tackle the third secondary research question, I design an experiment as follows: Firstly,
I combine syntactic and semantic knowledge to re-rank the n-best list. To facilitate this,
I propose a feature called semantic relatedness. I measure the semantic relatedness using
the Pointwise Mutual Information approach. I use the WER-Sensitive Pairwise Perceptron
algorithm to combine the proposed feature with the syntactic score and speech decoder’s
confidence score features. Secondly, I evaluate the proposed approach on the ATCOSIM
and ATCSC corpora. I use 85% of the data from the ATCOSIM corpus for training and
the renaming 15% of the data for evaluations. In order to evaluate the ability of the
proposed approach in recognizing general ATC clearances, I also evaluate the proposed
approach on the ATCSC corpus. I use k-fold cross-validation to increase the reliability of
the evaluations. Finally, I compare the evaluation results of the proposed approach with
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the context-dependent class n-gram language model, traditional n-gram language models
(unigram, bigram and trigram) and the approach proposed in the previous experiment
which is n-best list re-ranking using syntactic score and speech decoder’s confidence score
features.

4.2.4 The Proof-of-Concept Automatic Speech Recognition System

To answer the main research question, I design an experiment as follows: I first build a
Poof-of-Concept (POC) ASR system by combing the baseline ASR system, the context-
dependent class n-gram language model and n-best list re-ranking using semantic related-
ness, syntactic score and speech decoder’s confidence score features. I then evaluate the
system on the ATCOSIM and ATCSC corpora. Finally, I conduct a detailed analysis of
the evaluation results, and discuss the possibilities and challenges of linguistic knowledge
in improving the accuracy of ASR systems in ATC.

4.3 Air Traffic Control Speech Corpus (ATCSC)

In order to simulate an ATC simulation and training setting for evaluating the proposed
approaches, I create a corpus called Air Traffic Control Speech Corpus (ATCSC) based
on the following criteria:

• High signal quality;

• Low level background noise;

• ICAO standardized clearances;

• High quality transcriptions.

I first generate 4800 ICAO standardized clearances using 28 most frequently used
templates extracted from “Doc 4444/510: Procedures for Air Navigation Services Air
Traffic Management” [29]. In order to evaluate the ability of the proposed approaches
in recognizing general clearances, I use a different set of location-based data (e.g., call
signs, units name and navigational aids/fixes) with the ATCOSIM corpus’s. I then use
the generated clearances to record 4800 clearances from 12 speakers (11 male, 1 female)
of three nationalities Norwegian, Swedish and Vietnamese, each reading 400 clearances.
The speakers speech were picked up by the Zoom H2n Handy Recorder in a quiet room.
The signals were recorded onto Waveform Audio File Format (WAV) with a sampling
frequency of 44.1 kHz and a resolution 16 bit. Since the speakers were asked to read from
pre-generated clearances, it is guaranteed that the quality of the corpus transcriptions is
high.



Chapter 5

Research Findings

This chapter summarizes the research findings of the three included papers which can be
found in Appendix A, Appendix B and Appendix C. The papers are presented together
with the research questions that they answer. The first paper focuses on analyzing the
use of linguistic knowledge in Air Traffic Control (ATC) and different language modeling
approaches in order to propose a language model that is well suited for use in Automatic
Speech Recognition (ASR) systems in ATC. The second and the third papers look in to the
possibilities of using linguistic knowledge, particularly syntactic and semantic knowledge,
in n-best list re-ranking to improve the accuracy of ASR systems.

The three included papers partly represent my journey of using linguistic knowledge to
improve the accuracy of ASR systems in the ATC domain via three major steps: language
modeling, n-best list re-ranking using syntactic knowledge and n-best list re-ranking using
semantic knowledge.

5.1 Language Modeling

5.1.1 Research question

RQ 1.1 Which type of language model is well suited for use in automatic speech recog-
nition system in air traffic control domain?

5.1.2 Abstract

This paper, which can be found in Appendix A, describes my first step in using linguistic
knowledge to improve the accuracy of ASR systems in ATC. To facilitate this, I integrate
linguistic knowledge into the language modeling process, with special attention paid to
address the two main challenges of language modeling in ATC, which are the lack of
ATC-related corpora for training and the location-based data problem.

I propose a hybrid class n-gram language model by combining a rule-based class n-gram
language model proposed by Brown et al. [7] with a n-gram language model. In order to
deal with the above-mentioned two challenges, I improve the hybrid class n-gram language
model by utilizing the context-dependent language modeling approach to propose a novel
language model called context-dependent class n-gram. I train the proposed model via
three steps: I first identify ten word classes (CALLSIGN, UNIT-NAME, FIX, NUMBER,
LETTER, GREETING, NON-VERBAL-ARTICULATIONS, DIRECTION, POSITION
and UNIT) based on my analysis of the ICAO standard phraseologies and the ATCOSIM
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corpus. I then generate a class-based training corpus by replacing words in the ATCOSIM
training corpus with their corresponding class labels using the SRI Language Modeling
Toolkit. Finally, I train the context-dependent class n-gram language model as a normal
n-gram language model with the class-based training corpus using The CMU Statistical
Language Modeling (SLM) Toolkit.

I build a baseline ASR system based on the Pocketsphinx recognizer from the CMU
Sphinx framework, the CMUSphinx US English generic acoustic model and the generic
cmudict SPHINX 40 pronunciation dictionary. I integrate the proposed context-dependent
class n-gram language model into the baseline system and evaluate the model in terms of
Word Error Rate (WER) on the well known ATCOSIM Corpus of Non-prompted Clean
Air Traffic Control Speech (ATCOSIM) and my own Air Traffic Control Speech Cor-
pus (ATCSC). The proposed model outperforms traditional n-gram language models and
shows 17.19% improvement in terms of WER on the ATCSC corpus.

Three main findings are presented in this paper. Firstly, the proposed model can
address the lack of ATC-related corpora for training by adopting the hybrid class n-
gram language modeling approach. Words are replaced by their corresponding class labels
before training in order to reduce the amount of data required for training a high quality
language model. Secondly, the proposed model can tackle the location-based data problem
by enabling the integration of external data into the language model. In the training
phase, location-based data (e.g., call signs, unit names and navigational aids/fixes) are
replaced by their corresponding class labels in order to increase the generality of the
model. In the running phase, the class members are loaded into the trained model via
a class definition file, which is a file that contains class labels and their corresponding
class members. The use of class labels in the training phrase and class definition file in the
running phase has a great potential in addressing the location-based data problem because
it facilitates the update of location-based data (class members) at run time. Finally, the
significant improvement in terms of WER (17.19%) compared with traditional n-gram
language models and the ability to address the two main challenges of language modeling
in ATC demonstrate that the context-dependent class n-gram language model is a well
suited model for use in ASR systems ATC.

5.2 N-best List Re-ranking Using Syntactic Knowledge

5.2.1 Research question

RQ1.2 To what extent can syntactic analysis improve the accuracy of speech recognition
in air traffic control domain?

5.2.2 Abstract

This paper, which can be found in Appendix B, summarizes my second step in using
linguistic knowledge to improve the accuracy of ASR systems in ATC. To do this, I inte-
grate the first level of linguistic knowledge, syntactic knowledge into post-processing by
performing n-best list re-ranking.

I propose a novel feature called syntactic score. I compute the syntactic score by us-
ing syntactic rules which are created by replacing expansions of word classes with their
corresponding class labels. I improve the syntactic score computation process by intro-
ducing context-dependent syntactic rules. First, different rule sets for different contexts
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are generated. Then, at the running phase, a corresponding rule set is selected based on
contextual information of the system. By using different context-dependent syntactic rule
sets for different contexts, the number of rules that are needed to compute syntactic score
can be dramatically reduced, which can improve both accuracy and performance of the
syntactic score computation process.

I propose a WER-Sensitive Pairwise Perceptron algorithm by improving the Average
Perceptron algorithm in three ways: Firstly, I adopt the idea of the WER-Sensitive Per-
ceptron algorithm presented in [53] to incorporate WER metric into the training of the
perceptron. Secondly, I improve the algorithm by utilizing the pairwise ranking approach.
Finally, I adopt the mini-batch gradient descent, momentum and the Bold Driver learning
rate adaptation [4] approaches to optimize the perceptron training process.

I use the perceptron to combine the proposed feature with the speech decoder’s con-
fidence score feature. I use the baseline ASR system to evaluate the proposed approach
in terms of WER on the ATCOSIM and ATCSC corpora. The evaluation results shows
that the proposed approach reduces the WER by 1.21% and 0.21% compared with the
context-dependent class n-gram language model on the ATCSC and ATCOSIM corpora
respectively. In addition, the proposed approach together with the context-dependent
class n-gram language model shows 18.40% improvement in terms of WER compared with
traditional n-gram models on the ATCSC corpus.

This paper presents two main findings. First, the use of context-dependent syntactic
rules allows the proposed approach to be easily adapted for use in new contexts without re-
training, which makes the proposed approach a practical approach. Second, the difference
in the evaluation results of the proposed approach on the ATCSC and ATCOSIM corpora
demonstrates that the performance of n-best list re-ranking using syntactic knowledge on
a corpus depends heavily on the amount of syntactic knowledge available in the corpus.

5.3 N-best List Re-ranking Using Semantic Knowledge

5.3.1 Research question

RQ1.3 To what extent can semantic analysis improve the accuracy of speech recognition
in air traffic control domain?

5.3.2 Abstract

This paper, which can be found in Appendix C, describes my third step in using linguistic
knowledge to improve the accuracy of ASR systems in ATC. To facilitate this, I combine
syntactic and semantic knowledge to re-rank the n-best list.

I propose a feature called semantic relatedness. I adopt the Pointwise Mutual Informa-
tion (PMI) approach proposed in [9] to measure the semantic relatedness. The main reason
that I choose the PMI approach is that it can capture long-span semantic relationships
between words in ATC clearances, which are typically overlooked by n-gram language
models. To address the lack of ATC-related corpora for training and the location-based
data problem, I improve the PMI approach by estimating the association ratio on syntactic
rules instead of original transcriptions from ATC-related corpora. I use the WER-Sensitive
Pairwise Perceptron algorithm to combine the semantic relatedness, syntactic score and
speech decoder’s confidence score features to perform n-best list re-ranking.
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I evaluate the proposed approach in terms of WER on the ATCOSIM and ATCSC
corpora. The evaluations results show that the proposed approach reduces the WER by
0.31% and 1.53% compared with n-best list re-ranking using syntactic score and speech
decoder’s confidence score features on the ATCOSIM and ATCSC corpora respectively.
In addition, the proposed approach together with the context-dependent class n-gram
language model shows 20.95% improvement in terms of WER compared with traditional
n-gram models on the ATCSC corpus.

This paper makes three main contributions. First, it demonstrates how can differ-
ent levels of linguistic knowledge, particularly syntactic and semantic knowledge, be used
together in post-processing to assist the recognition process of ASR systems in ATC.
Second, it shows that the performance of n-best list re-ranking using syntactic and se-
mantic knowledge on a corpus depends heavily on the amount of syntactic and semantic
knowledge available in the corpus. Third, it reveals that the combination of the context-
dependent class n-gram language model and n-best list re-ranking using syntactic and
semantic knowledge has great potential in improving the accuracy of ASR systems in
ATC.

5.4 Findings in summary

In this thesis, I take advantage of the availability of linguistic knowledge in the ATC do-
main to improve the accuracy of ASR systems via three steps: Firstly, I propose a hybrid
language model called context-dependent class n-gram to address the two main challenges
of language modeling in ATC, which are the lack of ATC-related corpora for training and
the location-based data problem. Secondly, I integrate the first level of linguistic knowl-
edge, syntactic knowledge into post-processing to improve the accuracy of ASR systems
by performing n-best list re-ranking using syntactic knowledge. I propose a novel feature
called syntactic score and a perceptron algorithm called WER-Sensitive Pairwise Percep-
tron. I use the perceptron algorithm to combine the syntactic score and speech decoder’s
confidence score features to re-rank the n-best list. Finally, I take this further by looking
in to combining the next level of linguistic knowledge, semantic knowledge with syntactic
knowledge in re-ranking the n-best list. I propose a feature called semantic relatedness.
I use the WER-Sensitive Pairwise Perceptron algorithm to combine the semantic relat-
edness feature with the syntactic score and speech decoder’s confidence score features to
perform n-best list re-ranking.

The combination of the proposed approaches proposed reduces the WER by 20.95%
compared with traditional n-gram language models in recognizing general clearances from
the ATCSC corpus. The significant improvement in terms of WER of the proposed ap-
proaches indicates that language modeling and post-processing using linguistic knowledge
have great potential in improving the accuracy of ASR systems in ATC. In addition, the
difference in the evaluation results of the proposed approaches on the ATCOSIM and
ATCSC corpora reveals that the performance of the proposed approaches on a corpus
depends heavily on the amount of linguistic knowledge available in the corpus.



Chapter 6

Discussion

In this chapter, I focus on three main purposes. I first revisit the research questions
introduced in Chapter 1, and point to where the relevant discussions can be found. For
more details, see Chapter 5 and the three included papers which can be found in Appendix
A, Appendix B and Appendix C. I then address the main research question by using the
findings and contributions from the three included papers together with my understanding
of Automatic Speech Recognition (ATC) technologies and the Air Traffic Control (ATC)
field to discuss the possibilities of linguistic knowledge in ASR in ATC. Finally, I review
five major challenges of ASR in ATC and reflect how the approaches proposed in this thesis
may help to address the challenges in both ATC simulation and ATC live operations.

6.1 Research Questions

In the following sections, I present the research questions together with a brief summary
of where the relevant findings and contributions can be found.

6.1.1 RQ1.1

Which type of language model is well suited for use in automatic speech recognition
system in air traffic control domain?

This research question is addressed primarily in the first paper which can be found
in Appendix A. This paper presents a context-dependent class n-gram language model
proposed to address the two main challenges of language modeling in ATC, which are
the lack of ATC-related corpora for training and the location-based data problem. A
summary of this paper can be found in Section 5.1. For more background knowledge
covering language models and motivation for this research question, see Section 2.2.3 and
Chapter 1.

6.1.2 RQ1.2

To what extent can syntactic analysis improve the accuracy of speech recognition in
air traffic control domain?

Background knowledge and related work relevant to this research question including
syntactic knowledge in ATC and different approaches for performing syntactic analysis

37



38 Chapter 6. Discussion

can be found in Section 2.1.3 and Section 2.3. This research question is tackled mainly
in the second paper which can be found in Appendix B. This paper aims at performing
n-best list re-ranking using syntactic knowledge. To facilitate this, a novel feature called
syntactic score and a WER-Sensitive Pairwise Perceptron algorithm are proposed. The
proposed feature is then combined with the speech decoder’s confidence score feature using
the perceptron algorithm to re-rank the n-best list. The findings and contributions of this
paper are summarized in Section 5.2.

6.1.3 RQ1.3

To what extent can semantic analysis improve the accuracy of speech recognition in
air traffic control domain?

This research question is addressed primarily in the third paper which can be found in
Appendix C. This paper looks into combining syntactic and semantic knowledge to re-
rank the n-best list. To do this, a feature called semantic relatedness is proposed. The
feature is then combined with the syntactic score and the speech decoder’s confidence score
features using the WER-Sensitive Pairwise Perceptron algorithm to re-rank the n-best list.
A summary of this paper can be found in Section 5.3. For more background knowledge
covering semantic knowledge and different approaches for performing semantic analysis,
see Section 2.1.3, Section 2.3.

6.1.4 RQ1

How can linguistic knowledge be used to improve automatic speech recognition ac-
curacy in air traffic control?

I have revisited the three secondary research questions, and pointed to where the
relevant findings and contributions can be found. In the following sections, I focus on
answering this main research question by discussing the possibilities of linguistic knowledge
in ASR in ATC, and arguing how the approaches proposed in this thesis may help to
address the existing challenges of ASR in both ATC simulation and ATC live operations.
The findings and contributions relevant to this research question can be found in Chapter
5 and the three included papers in Appendix A, Appendix B and Appendix C.

6.2 Possibilities of Linguistic Knowledge in ASR in ATC

Using linguistic knowledge in language modeling and post-processing is a potential ap-
proach for improving the accuracy of ASR systems in general. However, this approach has
not been successfully applied in ASR because it is very challenging to obtain a significant
amount of linguistic knowledge including syntactic, semantic and pragmatic knowledge
from general speech. Fortunately, the ATC domain offers many great possibilities that
can facilitate this approach.

Firstly, in order to avoid possible confusion and misunderstandings, air traffic con-
trollers and pilots are usually required to use standard phraseologies in their communica-
tions. In addition, most of the standard procedures for air navigation services used by air
traffic controllers are predefined by ICAO [29]. This means that, the amount of linguistic
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knowledge available in the controller-pilot communications is large which is a good fit for
the above-mentioned approach.

Secondly, since air traffic controllers usually use standard pheaseologies in their com-
munications with pilots, and follow the standard procedures provided by ICAO in most of
their tasks, it is typically easy to obtain a significant amount of linguistic knowledge, par-
ticularly syntactic and semantic knowledge, in the ATC domain. For example, syntactic
and semantic knowledge can be either obtained from ICAO Docs such as “Doc 4444/510:
Procedures for Air Navigation Services - Air Traffic Management 15th Edition” [29] or
extracted from ATC-related speech corpora. With ten word classes presented in the first
paper, which can be found in Appendix A, syntactic knowledge can be extracted from a
speech corpus by replacing words in the corpus with their corresponding class labels. In
this thesis, with the aim of developing an ASR system that can be easily adapted for use
in different contexts, I first utilize the later approach which is using the ten word classes to
extract syntactic and semantic knowledge from the ATCOSIM speech corpus to generate
syntactic rules. I then use the syntactic rules to compute the syntactic score and semantic
relatedness features to re-rank the n-best list.

Finally, the findings presented in Chapter 5 and the three included papers reveal
that pragmatic knowledge is a potential candidate for assisting syntactic and semantic
knowledge in addressing the challenges of ASR in ATC. One of the main applications
of pragmatic knowledge is that it can be used to limit the search space of ASR systems
which can improve both systems accuracy and performance. In ASR in general, pragmatic
knowledge has not been used widely because obtaining a significant amount of pragmatic
knowledge is a very challenging task. Fortunately, pragmatic knowledge is typically easy
to obtain in ATC. For example, location information of aircrafts can be obtained from
radar information and flight plans. One possible solution to combine pragmatic knowledge
with syntactic and semantic knowledge in ATC is to combine either the speech act model
proposed by Karen Ward et al[64] or the cognitive model proposed by D. Schaefer [55]
with syntactic and semantic analysis.

The findings presented in Chapter 5 and the three included papers show that using
linguistic knowledge in language modeling reduces the WER of the baseline ASR system by
18.21% compared with traditional n-gram language models. Using linguistic knowledge in
post-processing, particularly n-best list re-ranking using syntactic and semantic knowledge,
reduces the WER of the system further by 2.74%. The above-mentioned possibilities and
the significant improvements in terms of WER of the proposed approaches demonstrate
that linguistic knowledge has great potential in addressing the two main challenges of
language modeling in ATC and improving the accuracy of ASR systems in both ATC
simulation and ATC live operations.

I have discussed the possibilities of linguistic knowledge in improving the accuracy of
ASR systems in ATC. In the following section, I focus on arguing how the findings and
contributions from the three included papers may help to address the existing challenges
of ASR in both ATC simulation and ATC live operations.

6.3 Linguistic Knowledge and Challenges of ASR in ATC

In my previous work [45], I identified five major challenges to overcome in order to suc-
cessfully apply ASR in ATC. Although the work is not a part of this thesis, I include it
as Appendix D for convenience. The five major challenges are:
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1. The problem of poor input signal quality;

2. Call sign detection;

3. The use of non-standard phraseology;

4. The problem of dialects, accents and multiple languages;

5. The problem of ambiguity.

The first challenge which is the problem of poor input signal quality and the fifth challenge
which is the problem of ambiguity have been defined as out of the scope of this thesis. More
details about the challenges can be found in Chapter 4 and Appendix D. The first challenge
can be addressed by either using high quality microphones or adapting existing acoustic
models. The fifth challenge can be tackled to some degree by the Natural Language
Processing (NLP) module in the automated pilot system presented in Chapter 4. On the
other hand, the remaining three challenges have not been successful addressed in ATC. In
the following two sections, I discuss how can the approaches proposed in this thesis be used
to tackle the three above-mentioned challenges, as well as how the proposed approaches
facilitate the integration of ASR technologies into ATC.

6.3.1 Call Sign Detection

In ATC simulation and training, recognizing aircraft call signs is not a challenging task
for ASR systems since the number of call signs used in a specific simulation and training
session is quite small. On the other hand, because of the variety of ways to refer to the
same flight call sign and the use of airline aliases, there are more than 6000 call signs that
have been used in ATC live operations [28]. In addition, the call signs are usually not
standard English, for instance, Speedbird, Norstar and Germanwings. This means that,
call sign detection is an extremely challenging task of ASR systems in ATC live operations.

Fortunately, this challenge can be addressed to some degree by using the proposed
context-dependent class n-gram language model together with n-best list re-ranking using
syntactic and semantic knowledge. In the training phrase, call signs are replaced by a class
label named [CALLSIGN]. In the running phrase, the class members of the [CALLSIGN]
class are loaded into the trained model via a class definition file, which is a file that
contains class labels and their corresponding class members. The use of the [CALLSIGN]
class together with pragmatic knowledge, particularly location information of the system
and aircrafts, can reduce the number of call signs that the system has to recognize. For
example, radar information and flight plans could be used to reduce the list of likely
aircraft call signs that a controller may refer to in a sector to only those in the sector
or about to enter the sector. This means that, the proposed approaches together with
pragmatic knowledge can address the call sign detection challenge of ASR in ATC live
operations to some degree.

6.3.2 The Use of Non-Standard Phraseologies and Multiple Languages

In ATC simulation and training, air traffic controller are usually required to use standard
pharesologies, thus the problems of non-standard phraseologies and multiple languages
hardly occur. On the other hand, in ATC live operations, air traffic controllers frequently
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use non-standard phraseologies and multiple languages in their communications with pi-
lots. For example, a controller may say:

CL1: Guten morgen Lufthansa one two three descend level one two zero
CL2: Good morning Speedbird one three three turn left to Oslo
CL3: Lufthansa ah one two three turn right to hm Paris

In the first clearance (CL1), the control uses two languages, German (“Guten morgen” is
good morning in German) and English. In the second and the third clearances (CL2 and
CL3), the controller uses non-standard phraseologies, which are “good morning”, “ah”
and “hm”.

The two above-mentioned problems can be addressed to some degree by using the
proposed context-dependent class n-gram language model together with n-best list re-
ranking using syntactic and semantic knowledge. In the training phrase, non-standard
phraseologies are replaced class labels. For example, “Guten morgen” and “Good morning”
are replaced by a class label named [GREETINGS], ‘ah” and “hm” are replaced by a class
label named [NON-VERBAL-ARTICULATIONS]. By using class labels in training instead
of words, non-standard phraseologies including foreign words can be eliminated. In the
running phrase, pragmatic knowledge can be used to identify which class members should
be loaded into the trained model via a class definition file. For example, if the system
is deployed in a center in Norway, it is likely that Norwegian controllers will use both
Norwegian and English in their communications with pilots. Thus, Norwegian and English
greeting phrases such as hallo, hei, god morgen, hello and good morning should be loaded
into the [GREETINGS] class. By doing this, trained language models can be easily adapt
to recognize non-standard phraseologies and foreign words. In other words, the proposed
approaches have great potential in addressing the use of non-standard phraseologies and
multiples languages challenges of ASR in ATC live operations.





Chapter 7

Conclusion and Further Work

7.1 Conclusion

In this thesis I have presented my work in using linguistic knowledge to improve the ac-
curacy of Automatic Speech Recognition (ASR) systems in Air Traffic Control (ATC). In
order to take advantage of the opportunities offered by the ATC domain such as the avail-
ability of linguistic knowledge, particularly syntactic, semantic and pragmatic knowledge,
my aim has been to improve the accuracy of the ASR systems via three steps: language
modeling, n-best list re-ranking using syntactic knowledge and n-best list re-ranking us-
ing semantic knowledge. The three above-mentioned steps are also the main steps that
I use the address the main research question of this thesis, which is “ How can linguistic
knowledge be used to improve automatic speech recognition accuracy in air traffic control?”.

The main research question was addressed primarily in Chapter 5 and Chapter 6. The
three secondary research questions were addressed mainly in Chapter 5, as well as in the
three included papers which can be found in Appendix A, Appendix B and Appendix
C. To answer the research questions, I first build a baseline ASR system based on the
Pocketsphinx recognizer from the CMU Sphinx framework, the CMUSphinx US English
generic acoustic model and the generic cmudict SPHINX 40 pronunciation dictionary. I
then improve the system by performing the above-mentioned three steps. Next, I evaluate
the system in terms of Word Error Rate (WER) on the well known ATCOSIM Corpus of
Non-prompted Clean Air Traffic Control Speech and my own Air Traffic Control Speech
Corpus (ATCSC). Finally, I discuss the possibilities of using linguistic knowledge in im-
proving the accuracy of ASR systems in ATC, and argue how the approaches proposed
this thesis may help to address the existing challenges of ASR in both ATC simulation
and ATC live operations.

This thesis makes four main contributions. Firstly, it proposes a novel language model
called context-dependent class n-gram language model to address the two main challenges
of language modeling in ATC, which are the lack of ATC-related corpora for training
and the problem of location-based data. The second contribution is the use of the first
level of linguistic knowledge, syntactic knowledge in post-processing to improve the accu-
racy of ASR systems. To facilitate this, I propose a novel feature called syntactic score
and a WER-Sensitive Pairwise Perceptron algorithm. I use the algorithm to combine the
proposed feature with the speech decoder’s confidence score feature to perform n-best
list re-ranking. Thirdly, it combines syntactic knowledge with the next level of linguis-
tic knowledge, semantic knowledge to further improve the accuracy of the ASR systems.
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To do this, I propose a feature called semantic relatedness. I combine the proposed fea-
ture with the syntactic score and speech decoder’s confidence score features using the
WER-Sensitive Pairwise Perceptron algorithm to re-rank the n-best list. The proposed
approaches reduce the WER of the baseline ASR system by 20.95% compared with tra-
ditional n-gram language models in recognizing general ATC clearances from the ATCSC
corpus. Finally, it demonstrates that linguistic knowledge has great potential in addressing
the existing challenges of ASR in ATC and facilitating the integration of ASR technologies
into the ATC domain.

7.2 Further Work

For further improvements, I suggest these following directions. First of all, I combine
the last level of linguistic knowledge, pragmatic knowledge with syntactic and semantic
knowledge to re-rank the n-best list. In ATC live operations, air traffic controllers are
responsible for one or a very few specific sectors. Thus, the amount of pragmatic knowledge
used by the controllers in their communications with pilots is relatively high. The use
of pragmatic knowledge in post-processing not only can assist syntactic and semantic
knowledge in addressing the existing challenges of ASR in ATC but aslo can improve both
perfornmance and accuracy of the ASR systems. Secondly, I deploy and evaluate the
proof-of-concept (POC) speech recognition system in terms of Word Error Rate (WER),
as well as training and simulation quality in a real ATC training and simulation setting.
Since ASR technologies have not been widely used in ATC, I aim at evaluating not only
the accuracy of the POC speech recognition system but also how it affects the quality of
ATC training and simulation. Finally, I take this further by adapting the POC speech
recognition system for use in live ATC operations. Because of the special case of this
project, in this thesis, I aim at developing an ASR system for ATC simulation and training.
However, my final goal is to use ASR technologies to improve the performance of controller-
pilot communications and increase the automation of ATC systems.
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[19] Claudiu-Mihai Geacăr. Reducing pilot/atc communication errors using voice recog-
nition. In Proceedings of ICAS, volume 2010, 2010.

[20] John Godfrey. Air traffic control complete ldc94s14a. web download. Philadelphia:
Linguistic Data Consortium, 1994.

[21] Robert F Hall. Voice recognition and artificial intelligence in an air traffic control
environment. Technical report, DTIC Document, 1988.

[22] H Hering. Stif interface (speech techniques for simulation facilities). Signal, 1(100p):2,
December 1 1996.

[23] H Hering. Comparative experiments with speech recognizers for atc simulations.
Technical report, EUROCONTROL, 1998.

[24] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, and Raj Foreword By-Reddy. Spoken
language processing: A guide to theory, algorithm, and system development. Prentice
Hall PTR, 2001.

[25] Andrew Hunt and Andrew Hunt. Jspeech grammar format. W3C Note, June, 2000.



BIBLIOGRAPHY 47

[26] ICAO. Annex 10: Aeronautical telecommunications. volume ii - communication pro-
cedures including those with pans status. International Civil Aviation Organization,
2001.

[27] ICAO. Annex 11: Air traffic services. air traffic control service, flight information
service, alerting service. International Civil Aviation Organization, 2001.

[28] ICAO. Doc 8585/155: Designators for aircraft operating agencies, aeronautical au-
thorities and services. International Civil Aviation Organization, 2001.

[29] ICAO. Doc 4444/510: Procedures for air navigation services air traffic management.
International Civil Aviation Organization, 2007.

[30] Karlsson Joakim. The integration of automatic speech recognition into the air traffic
control system. Technical report, Cambridge, Mass.: Flight Transportation Labo-
ratory, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technol-
ogy,[1990], 1990.

[31] Karlsson Joakim. The integration of automatic speech recognition into the air traffic
control system. Technical report, Cambridge, Mass.: Flight Transportation Labo-
ratory, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technol-
ogy,[1990], 1990.

[32] Daniel Jurafsky, Chuck Wooters, Jonathan Segal, Andreas Stolcke, Eric Fosler,
G Tajchaman, and Nelson Morgan. Using a stochastic context-free grammar as a
language model for speech recognition. In Acoustics, Speech, and Signal Process-
ing, 1995. ICASSP-95., 1995 International Conference on, volume 1, pages 189–192.
IEEE, 1995.

[33] Stefan Petrik Konrad Hofbauer and Horst Hering. The atcosim corpus of non-
prompted clean air traffic control speech. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco,
may 2008. European Language Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2008/.

[34] Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Adaptive language modeling
using the maximum entropy principle. In Proceedings of the workshop on Human Lan-
guage Technology, pages 108–113. Association for Computational Linguistics, 1993.

[35] Christian Mandery. Distributed N-Gram Language Models: Application of Large Mod-
els to Automatic Speech Recognition. PhD thesis, Informatics Institute, 2011.

[36] F Marque, SK Bennacef, F Neel, and S Trinh. Parole: a vocal dialogue system for
air traffic control training. In Applications of Speech Technology, 1993.

[37] Sven C Martin, Jörg Liermann, and Hermann Ney. Adaptive topic-dependent lan-
guage modelling using word-based varigrams. In In Proc. Eurospeech’97. Citeseer,
1997.
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ABSTRACT

Recently, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various
areas of Air Traffic Control (ATC). Due to the high accuracy requirements of the ATC context and its
unique challenges, ASR has not been widely adopted in this field. One of the main challenges of integrating
ASR in ATC is language modeling. With the lack of ATC-related corpora for training, and the problem of
location-based data, it is very difficult to train a robust language model for ATC. In this paper, we propose
a context-dependent class n-gram language model. We integrate the model into the Pocketsphinx speech
recognizer and evaluate the model in terms of Word Error Rate (WER) on the well known ATCOSIM and
our own ATCSC corpora. Our proposed model outperforms the n-gram model and shows 18.21% WER
relative improvement on the ATCSC corpus.

1 INTRODUCTION

Steadily increasing levels of air traffic world wide poses corresponding capacity challenges for air traffic
control services. According to the “Outlook for Air Transport to the Year 2025” report of International Civil
Aviation Organization (ICAO) (Organisation de l’aviation civile internationale 2007), passenger traffic on
the major international routes is expected to grow about 3 to 6 percent each year through to the year 2025.
Thus, ATC operations has to investigate, review and improve in order to be able to meet the increasing
demands (Cordero, Dorado, and de Pablo 2012). In ATC operations, communication between controllers
and pilots is one of the key components. The quality of this communication significantly affects the
performance as well as the safety of ATC operations.

Integration of automatic speech recognition (ASR) technologies in the ATC domain has been investigated
in order to improve the performance of controller-pilot communications and to increase the automation of ATC
systems. The introduction of automatic speech recognition to ATC and the steadily improvement in accuracy
and performance of ASR technologies have opened many potential opportunities to investigate, review and
improve ATC operations. For example, facilitating applications such as simulating the work environment
of controllers for testing and training, controller workload measurement and balancing, operational support
systems for controllers which help to detect dangerous situations, and providing suggestions as well as
safety information to the operators.

However, due to the high accuracy requirements of the ATC context and its unique challenges such as
call sign detection, poor input signal quality, the problem of ambiguity, the use of non-standard phraseology,
and the problem of dialects, accents and multiple languages (Nguyen and Holone 2015), automatic speech
recognition has not been widely adopted in this field.

Therefore, in this paper, in order to take advantage of the opportunities offered by the ATC context
to improve recognition accuracy of ASR systems, we aim at using different levels of linguistic knowledge
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to assist the recognition process of ASR systems. Our primary research question is “how can linguistic
knowledge be used to improve automatic speech recognition accuracy?”.

In ASR systems, there are many components that can be improved by using linguistic knowledge such
as language models, speech decoders and post-processing modules. However, we decide to start with the
language model since it is a fundamental component of ASR systems. The language model plays a critical
role in ASR systems because it describes the language that the system recognizes, and biases the outputs
of the system toward “grammatical” sentences based on the grammars defined by the model. Thus, the
accuracy of ASR systems depends heavily on the quality of its language model.

However, creating a language model for the ATC domain is a very challenging task because of the
lack of ATC-related corpora for training, and the problem of location-based data which exists in most
existing ATC-related corpora. Example corpora are ATCOSIM (Konrad Hofbauer and Hering 2008), Air
Traffic Control Complete LDC94S14A (Godfrey 1994), The HIWIRE database (Segura et al. 2007), and
Air Traffic Control Communication (ATCC) corpus (Šmı́dl 2011). Since most of the existing ATC-related
corpora are recorded from either only one or very few centers, the corpora typically contain a lot of
location-based data such as callsigns, units name and navigational aids/fixes. The use of location-based
data in training language models makes the models less general and less accurate when they are used for
recognizing clearances which contain new location-based data (e.g., callsigns, unit names and navigational
aids/fixes).

Therefore, in this paper, we focus on a secondary research question “which type of language model is
well suited for use in automatic speech recognition system?”. In order to answer the question and address the
above-mentioned problems, we first analyze ATC context as well as different language modeling approaches.
Secondly, we propose a context-dependent class n-gram language model by combining a hybrid language
model and a context-dependent model. Finally, we build a baseline speech recognition system based on the
Pocketsphinx recognizer from the CMU Sphinx framework (Sphinx 2011) and use the system for evaluating
different types of language models in terms of Word Error Rate (WER).

Our proposed model offers two main features: Firstly, the context-dependent class n-gram language
model which enables the integration of external data at run time, that can be used to solve the location-based
data problem. Secondly, the proposed model can be trained using generalized data (class labels), which can
address the problem of lack of ATC-related corpora for training to some degree. Since words are replaced
by their corresponding class labels before training, we can train higher quality language models even with
smaller corpora.

The remainder of the paper is structured as follows: Section 2 presents background and related work
about n-gram and class n-gram language models, including and their existing problems, before we present
descriptions about our proposed language mode in Section 3. In Section 4, we present our methodology
for identifying classes, language modeling and evaluations. The evaluation results are presented in Section
5. Finally, in Section 6 and Section 7 we discuss about the properties of the proposed model and conclude
the paper with a summary and further work.

2 BACKGROUND AND RELATED WORK

Speech recognition is the process of converting a speech signal into a sequence of words. It also called
Automatic Speech Recognition (ASR) or Speech-to-Text (STT).

The general speech recognition approach can be described in two steps. 1) Given an acoustic observation,
identify a feature vector sequence X = X1,X2, ...,Xn using a feature extraction module. 2) Given this vector,
find the corresponding word sequence W = W1,W2, ...,Wn that has the maximum posterior probability
P(W | X) (Huang et al. 2001), expressed using Bayes theorem in (1).

W = argmax
w

P(W | X) = argmax
w

P(W )P(X |W )

P(X)
. (1)
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In equation (1), P(W) represents the language model, which is the probability of word sequence W =
W1,W2, ...,Wn uttered. For example, for a language model describing the language that air traffic controllers
and pilots use in their communication, we might have P(report speed) = 0.0001, which means that one out
of every ten thousands clearances a controller may say “report speed”. On the other hand, P(I love dogs)
≈ 0, because it is very unlikely controllers or pilots would utter such a strange clearance or response.

In ASR, there are many types of models which can used to describe language to recognize such as
grammars, decision tree models and stochastic language models.

Grammars (e.g., regular grammar, context-free grammar) is a very basic approach for modeling language
for ASR systems. Grammars have been widely used for modeling language for domain-dependent speech
recognition systems such as call centers and command and control systems (Chomsky 1956). One example
of using grammars for language modeling is the work of Jurafsky et al. (1995). The authors used a stochastic
context-free grammar (SCFG). They claim that the SCFG improved the WER from 34.6% (bigram) to
29.6% (SCFG) and 28.8% (mix between bigram and SCFGLMs).

Decision tree models are binary decision trees designed to estimate the probability that a given word
will be the next word uttered. According to Bahl et al. (1989), “at each node of the tree there is a yes/no
question relating to the words already spoken, and at each leaf there is a probability distribution over
the allowable vocabulary”. Bahl et al. (1989) used a tree-based statistical language model for natural
language speech recognition. The authors claim that the tree is comparable to an equivalent trigram model
on 5000-word vocabulary and is shown to be superior.

Stochastic language models (e.g., probabilistic context-free grammars, n-gram language model, class
n-gram language model, adaptive language model) take a probabilistic viewpoint of language modeling
(Huang et al. 2001). The main goal of stochastic language models is to assign higher probability to
likely word sequences. Stochastic languages models have been widely used in modeling languages for
domain-independent systems. Paeseler and Ney (1989) described the design of a stochastic language model
and its integration into a continuous-speech recognition system. The authors claim that the WER was
improved from 21.8% (without language model) to 9.1% (with the bigram model).

Among the above-mentioned approaches, n-gram models, especially trigram models have been used for
modeling languages for state-of-the-art ASR systems (Xu and Jelinek 2007). However, n-gram language
modeling typically suffered from the data sparseness problem, which is the exponential growth of the
number of parameters in n-gram models as the order n increases. So, with the lack of ATC-related corpora,
training a robust n-gram language model for ASR systems in the ATC domain is a very challenging task.

Fortunately, a few approaches have been proposed to deal with the problem of data sparseness. According
to Xu and Jelinek (2007), smoothing is an approach which can be used to partially solve the data sparseness
problem. The main idea of the smoothing approach is to assign nonzero probabilities to any word string.
Studies have shown that Kneser-Ney is the best smoothing algorithm (Chen and Goodman 1996). Further
improvement, class n-gram (Brown et al. 1992), which is also known as clusters of words, have recently
been proved to be better than the Kneser-Ney smoothing under many test conditions in dealing with the
data sparseness problem in language modeling (Xu and Jelinek 2007).

However, the class n-gram language model comes with a big challenge in searching the number of
classes (clusters). Typically, experimentation is required to identify the number of classes (Xu and Jelinek
2007). In addition, using the class n-gram approach to model languages for ASR systems in the ATC
domain comes with even bigger challenges. The lack of ATC-related corpora for training, and the problem
of location-based data (e.g., callsigns, unit names and navigational aids/fixes) typically leads to the problem
of ”unseen data” in language modeling.

In summary, we have described the general structure of an ASR system and its components. We have
also presented in detail three main approaches for modeling languages for ASR systems in ATC: grammars,
decision tree models and stochastic language models. Unfortunately, none of the presented approaches are
well suited for use in ATC because of the unique challenges of the field which are the lack of ATC-related
corpora for training and the problem of location-based data. Therefore, in this paper, we aim at addressing
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the challenges by combining a hybrid language model and a context-dependent model to propose a novel
language modeling approach called ”context-dependent class n-gram language model”.

3 OUR APPROACH

With inspiration from the work of Rudnicky et al. (2000), we propose a hybrid class n-gram language
model which is a combination of rule-based class n-gram language models proposed by Brown et al. (1992)
and n-gram language models. In order to deal with the problem of lack of ATC-related corpora for training
and location-based data in ASR systems, we improve the hybrid class n-gram language model by utilizing
the ”context-dependent” language modeling approach. To facilitate this, we define three types of word
classes:

• Open class - classes which are used to integrate external data into the language model (e.g., class
“[CALLSIGN]” which includes airline telephony designators, and class “[FIX]” which includes
navigational aids/fixes, class [UNIT] which includes air traffic control units name).

• Fixed class - classes which have fixed class members (e.g., [NUMBER], [LETTER])
• Simple class - classes which contain only one word.

While open classes and closed classes are manually defined in a class definition file based on the
similarity in syntactic and semantic information of words, simple classes are identified from training
corpora during the training process. A Simple class can be considered as a single word in word-based
n-gram language model. (See Section 4.2 for more details about the language modeling process)

In our proposed model, we assume that a word wi can be uniquely mapped to only one class ci. With
that assumption, according to Huang et al. (2001), the class n-gram model can be computed based on the
previous n-1 classes as follow:

P(wi | ci−n+1...ci−1) = P(wi | ci)P(ci|ci−n+1...ci−1). (2)

Where P(wi | ci) is the probability of word wi given class ci in the current position, and P(ci|ci−n+1...ci−1)
denotes the probability of class ci given n-1 previous classes.

In context-dependent class n-gram language model, the probability P(wi | ci−n+1 for Open classes and
Fixed classes are computed by using equation (2). However, with simple classes, since the classes always
contain only one word, P(wi | ci) is always equal one. The equation (2) can be simplified as follow:

P(wi | ci−n+1...ci−1) = P(ci|ci−n+1...ci−1).

The two main goals of the proposed model are: Firstly, address the problem of lack of ATC-related
corpora for training by adopting a hybrid class n-gram approach. Words are replaced by their corresponding
class labels before training in order to reduce the amount of data required for training a high quality language
model. Secondly, enable the integration of external data into the language model in order to address the
problem of location-based data. In the training phase, location-based data (e.g., callsigns, unit names and
navigational aids/fixes) are replaced by their corresponding class labels in order to increase the generality of
the model. In the running phase, the class members are loaded into the trained model via a class definition
file, which is the file that contains class labels and their corresponding class members. The use of class
labels during training and a class definition file in the running phase has a great potential for solving the
location-based data problem because it facilitates the update of location-based data (class members) at run
time.

Currently, the process of switching among different class definition files are performed manually.
However, with the contextual information from pragmatic analysis which is an approach that we are going
to integrate into our system in the near future, the ASR system will be able to automatically choose the
class definition file corresponding to the current context, state and configuration of the system (e.g., training
scenario in ATC simulation and training).
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In the following section, we describe how we implement the proposed approaches via three main steps:
identifying classes, language modeling and evaluating with a baseline speech recognition system.

4 METHODOLOGY

In this section, we describe the implementation of our proposed context-dependent class n-gram language
model. First of all, we identify 10 word classes based on our analysis of the ICAO standard phraseologies
and ATCOSIM corpus (Konrad Hofbauer and Hering 2008). Secondly, we train our proposed language
model with the identified classes using The CMU Statistical Language Modeling (SLM) Toolkit (Rosenfeld
1995) and SRILM - The SRI Language Modeling Toolkit (Stolcke et al. 2002). Finally, we build a baseline
speech recognition system based on the Pocketsphinx recognizer from the CMU Sphinx framework (Sphinx
2011) and use the system for evaluating the proposed model in terms of Word Error Rate (WER).

4.1 Identifying Classes

Based on our analysis of the ICAO standard phraseologies (ICAO 2007), we found out that the general
format of ATC clearances typically includes three main parts: Callsign (e.g., Speedbird, NordStar), Goal
action (e.g., Climb, Descend, Turn left, Contact) and Goal value (e.g., radio frequency, time, flight level,
name of unit). While the total number of goal actions are quite small and can be fully covered by the ICAO
standard phraseologies, the number of callsigns, which is about 6000 (ICAO 2011), and goal values are very
large. Thus, callsigns and goal values are the main contributors to the problem of location-based data and
”unseen data” in most of ATC-related corpora for modeling language for ASR systems. However, thanks to
the ability to include syntactic and semantic knowledge to language models, the problem of location-based
data and “unseen data” caused by callsigns and goal values can be resolved to some degree by manually
obtaining the missing data and integrate into language models via predefined classes. Following are the 7
major classes and minor classes that we identified based on our analysis of the ICAO standard phraseologies
and ATCOSIM corpus (Konrad Hofbauer and Hering 2008).

• [CALLSIGN] - ICAO airline designators/callsigns.
• [UNIT-NAME] - air traffic control units name.
• [FIX] - navigational aids/fixes.
• [NUMBER] - digits and keywords “hundred”, “thousand”.
• [LETTER] - ICAO phonetic spelling (e.g., alfa, bravo, charlie, delta, echo, foxtrot, golf).
• [GREETING] - greetings phrases (e.g., hello, good bye, good morning).
• [NON-VERBAL-ARTICULATIONS] - non-verbal articulations (e.g., ah, hm, ahm, yeah, aha,

nah, ohh).
• Minor classes: [DIRECTION] (e.g., left right), [POSITION] (e.g., above, below), [UNIT] (e.g.,

feet, meters).

The class [CALLSIGN] can be used to handle the large diversity of callsigns. Most of the following goal
values, flight level, time, speed, ratio frequency, unit names and navigational aids/fixes can be covered by
classes: [UNIT-NAME], [FIX], [NUMBER] and [LETTER]. In addition, we also added the [GREETING]
and [NON-VERBAL-ARTICULATIONS] classes in order to cover nonstandard phraseologies used by
controllers.

However, not all identified classes are valuable for the context-dependent class n-gram model. The
[NUMBER], [LETTER] and Minor Classes ([DIRECTION], [POSITION] and [UNIT]) contain only words
that can be found in the ICAO standard phraseologies, so ATC-related corpora (e.g., ATCOSIM) mostly
covers the words. [GREETING] and [NON-VERBAL-ARTICULATIONS] classes contains words that
occur in ATC clearances with a very low frequency.

In contrast, the [CALLSIGN], [UNIT-NAME] and [FIX] classes contain words that can not be found
in the ATC standard phraseologies and occur with a very high frequency in ATC clearances. In addition,
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based on our observations of the outputs of our ASR system, most of the callsigns, units name and nav-
igational aids/fixes are not English and hard to recognize, which can lead to a very high misrecognition
rate. Following are examples of reference clearances and hypothesis clearances output by our baseline
ASR system. In these clearances, Callsign (e.g., aero lloyd) and navigational aids/fixes (e.g., bilsa, gotil
and fribourg) are the two parts that misrecognized by the ASR system at a very high frequency.

Reference: aero lloyd five six zero cleared direct bilsa
Hypothesis: hello five six zero cleared direct to fusse

Reference: sabena seven eight one six turn left to gotil
Hypothesis: sabena seven eight one six turn left to go two

Reference: giant one four four proceed to danko
Hypothesis: seven one four four proceed to tango

Therefore, in this paper, we focus only on training the context-dependent class n-gram models with
three main classes: [CALLSIGN], [UNIT-NAME] and [FIX].

4.2 Language Modeling

We trained the context-dependent class n-gram language model using The CMU Statistical Language
Modeling (SLM) Toolkit (Rosenfeld 1995) and SRILM - The SRI Language Modeling Toolkit (Stolcke
et al. 2002). We used 85% of data from the ATCOSIM corpus for training the language model and the
remaining 15% data of the corpus for evaluating the model. The training process includes three main
steps: First, we created a class definition file for the above-mentioned classes. The class definition file is
a file which contains class labels and lists of class members associated with the class labels. Secondly,
we generated a class-based training corpus by replacing words in the ATCOSIM training corpus with
their corresponding class labels by using the SRI Language Modeling Toolkit. Finally, we trained the
context-dependent class n-gram language model as a normal n-gram model with the class-based training
corpus using The CMU Statistical Language Modeling (SLM) Toolkit.

4.3 Evaluating with Baseline Speech Recognition System

We built a baseline speech recognition system based on the Pocketsphinx recognizer from the CMU Sphinx
framework (Sphinx 2011) and used the system for evaluating the language models in term of Word Error
Rate (WER). We also used K fold cross-validation to increase the reliability of the evaluations.

In addition, we recorded a dataset (called ATCSC - Air Traffic Control Speech Corpus) which contains
4800 ATC clearances generated from ICAO standard phraseology to evaluate the ability of the proposed
model in recognizing general ATC clearances. The clearances in the corpus contain a different set of
callsigns, unit names and navigational aids/fixes compared with the ATCOSIM corpus, which is the corpus
used for training the language models. Thus, performance of a language model on this corpus can reflect
its performance on recognizing general ATC clearances.

Based on a recommendation from the CMU Sphix framework authors, we used 20% of the data from
the ATCSC corpus for acoustic adaptation and the remaining 80% of the data for evaluating the models.
We also used K fold cross-validation to increase the reliability of the evaluations.

We performed the evaluations on seven different language models (US English Generic Language
Model Version 5.0, ATC n-gram models (unigram, bigram and trigram) and context-dependent class-ngram
models (unigram, bigram and trigram)).
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In addition, in order to improve the accuracy of the baseline system, we also performed acoustic
adaptation based on the training data from the ATCOSIM corpus and ATCSC corpus and pronunciation
dictionary extension by adding Out-of-Vocabulary (OOV) words from the identified classes to the system’s
dictionary using the LOGIOS Lexicon Tool. We know that we can achieve even lower WER by using
more data for acoustic adaptation, however, in order simulate a real-life setting and avoid overfitting, we
performed acoustic adaptation with only 20% of the data which is also the recommended amount of data
for acoustic adaptation according to the CMU Sphinx framework authors.

5 RESULTS

Below are the evaluation results of seven language models in terms of Word Error Rate (WER). We
integrated the model into the Pocketsphinx recognizer and evaluated the model on the ATCOSIM and
ATCSC corpora. Tables 1 and 2 show the average results from 3-fold cross-validation of the models on
the ATCOSIM and ATCSC corpora respectively.

Table 1: The evaluation results of US English Generic Language Model 5.0 (US EGLM 5.0), ATC n-gram
and context-dependent class n-gram language models on the ATCOSIM corpus in term of Word Error Rate
(WER)

Language Model Word Error Rate (WER)
US EGLM 5.0 50.69%
Unigram 21.59%
Bigram 11.34%
Trigram 9.69%
Context-dependent class unigram 23.57%
Context-dependent class bigram 15.67%
Context-dependent class trigram 14.20%

Table 2: The evaluation results of US English Generic Language Model 5.0 (US EGLM 5.0), ATC n-gram
and context-dependent class n-gram language models on the ATCSC corpus in term of Word Error Rate
(WER)

Language Model Word Error Rate (WER)
US EGLM 5.0 52.71%
Unigram 36.49%
Bigram 31.69%
Trigram 31.58%
Context-dependent class unigram 21.52%
Context-dependent class bigram 13.37%
Context-dependent class trigram 14.23%

The evaluation results in Table 1 show that the generic n-gram language model is slightly better than our
proposed model in recognizing ATC clearances from the ATCOSIM corpus with 9.69% WER. However, the
evaluation results in Table 2 show that our proposed model outperforms the n-gram model in recognizing
general ATC clearances from the ATCSC corpus with 13.37% WER.

5.1 Some Notes about Performance

Although it is not the main focus of the paper, we include some performance results, namely Real Time
Factor (RTF) and the performance distribution of the baseline system among three main tasks: data pre-



Nguyen and Holone

processing, feature extraction and search.

Hardware configurations for the performance evaluations:

• PC: Dell Optiplex 9020
• CPU: Intel Core i5-4690 Processor (Quad Core, 6MB, 3.50GHz w/HD4600 Graphics)
• RAM: 16 GB
• HDD: 256 GB SSD

Table 3 shows the RTF and the average time for recognizing an ATC clearance for the same seven
models on the Pocketsphinx speech recognizer and their performance distribution among the three main
tasks of ASR systems: data pre-processing, feature extraction and search.

Table 3: The evaluation results of performance distribution and Real Time Factor (RTF) of the baseline
system with US English Generic Language Model 5.0 (US EGLM 5.0), ATC n-gram and context-dependent
class n-gram language model

Language Model Performance Distribution Recognition Time
(second) RTFData

Preprocessing
Feature

Extraction Search

US EGLM 5.0 28.59% 0.17% 71.24% 6.3 1.76
Unigram 30.44% 0.35% 69.21% 3.33 0.87
Bigram 22.56% 0.42% 77.40% 2.71 0.74
Trigram 20.47% 0.44% 79.09% 2.58 0.70
Context-dependent class unigram 28.12% 0.33% 71.55% 3.37 0.92
Context-dependent class bigram 25.69% 0.35% 73.96% 3.24 0.88
Context-dependent class trigram 25.01% 0.36% 74.63% 3.16 0.86

The results show that, the trigram language model is the model that requires the least amount of time
for recognizing ATC clearances. Search and and data pre-processing are the tasks that require the most
processing time among the three evaluated tasks with average about 75% and 24.5% respectively.

6 DISCUSSION

In order to answer the research question “which type of language model is well suited for use in automatic
speech recognition system?”, we first evaluated different state-of-the-art language models. Then, we
proposed a context-dependent class n-gram language model by combining a hybrid language model and a
context-dependent language model. Finally, we compared our proposed model with state-of-the-art language
models to identify the language model which is well suited for use in ASR in ATC.

The evaluation results in Table 1 show that n-gram language models are slightly better than our proposed
models in recognizing ATC clearances from the ATCOSIM corpus. The best n-gram model is the trigram
model with 9.69% WER, while the best of our proposed models is the context-dependent class trigram
model with 14.20% WER.

The reason why n-gram models are very good at recognizing the ATC clearances from the ATCOSIM
corpus is that the ATCOSIM corpus is the corpus used for training the n-gram models. Although, the
corpus was split into two different parts for training and testing, and k-fold cross-validation was used to
increase the reliability of the evaluations, both training and testing data still contain a lot of repetitions
of location-based data (e.g., callsigns, units name, navigational aids/fixes, radio frequency) because all
clearances of the corpus were recorded from the same control room of the EUROCONTROL Experimental
Centre (EEC).
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For example, in the ATCOSIM corpus, in 1500 times that the callsign “lufthansa” occurs, it is followed
by the word sequence “three five” 243 times, “eight two” 151 times. The repetition of callsigns at high
frequency leads to the high probability of corresponding sequence of words in the n-gram model, which
can cause a problem called “overfitting”. When a n-gram model overfits, it tends to remember the training
data, for example, “lufthansa” should be followed either by “three five” or “eight two”. So, when the
testing data contains the same repetitions, the n-gram model can typically achieve a very low WER.

Therefore, in order to evaluate the ability of the proposed models in recognizing general ATC clearances,
we recorded 4800 general ATC clearances (ATCSC corpus) which contain different location-based data
(e.g., callsigns, units name, navigational aids/fixes) compared with the ATCOSIM corpus. The evaluation
results in Table 2 show that our proposed model outperforms the n-gram models in recognizing general
ATC clearances. The context-dependent class bigram (13.37% WER) shows 18.21% WER improvement
compared with trigram model (31.58% WER), which is the best of the n-gram models.

The improvements in WER of the context-dependent class n-gram model on the new ATCSC corpus
(not used for training the model) shows that our proposed model is better than the traditional n-gram models
in recognizing general ATC clearances which contain different location-based data (e.g., callsigns, units
name, navigational aids/fixes). The proposed model also demonstrates how linguistic knowledge can be
used to improve automatic speech recognition accuracy in air traffic control via language modeling.

7 CONCLUSION AND FURTHER WORK

In this paper, we proposed a context-dependent class n-gram language model which enables the integration
of external data into language model at run time and the use of class labels for training instead of words
to address the problem of location-based data, and the lack of ATC-related corpora for training language
models for ASR systems in ATC.

We evaluated the language models in terms of Word Error Rate (WER) on the ATCOSIM corpus. We
used 85% of data from the corpus for training and the remaining 15% data for evaluations. We also used
K fold cross-validation to increase the reliability of the evaluations.

In addition, we recorded a dataset called “ATCSC - Air Traffic Control Speech Corpus” which contains
4800 ATC clearances generated from ICAO standard phraseology to evaluate the ability of the proposed
model in recognizing general ATC clearances. The clearances in the corpus contain a different set of
callsigns, units name and navigational aids/fixes compared with clearances in the ATCOSIM corpus which
is the corpus used for training the language models. Thus, performance of the model on this corpus can
reflect its performance when recognizing general ATC clearances. We used 20% of the data from the
ATCSC corpus for acoustic adaptation and the remaining 80% of the data for evaluations. In order to
increase the reliability of the evaluations, we also used K fold cross-validation.

We compared the evaluation results of the proposed context-dependent class n-gram language models
(unigram, bigram, trigram) with traditional n-gram language models (unigram, bigram, trigram) and the
US English Generic Language Model 5.0 provided by CMU.

The evaluation results show that the context-dependent class n-gram models outperform the n-gram
models in recognizing general ATC clearances from the ATCSC corpus. The context-dependent class
bigram (13.37% WER) shows 18.21% WER improvement compared with trigram model (31.58% WER),
which is the best of the n-gram models. It is possible to achieve lower WER by using more data for
acoustic adaptation. For example, we can achieve 9.44% WER by performing acoustic adaptation with
85% of the data. However, in order to simulate a real-life setting and avoid overfitting, we only use 20% of
the data, which is the recommended amount of data for acoustic adaptation according to the CMU Sphinx
framework authors.

We now intend to take this further by integrating higher level linguistic knowledge, syntactic, semantic
and pragmatic knowledge in post-processing to improve our systems accuracy. One possible approach is
to use the linguistic knowledge to assist a widely used post-processing process called n-best list reranking.
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Abstract: Recently, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various
areas of Air Traffic Control (ATC), such as ATC simulation and training, monitoring live operators for with the aim of
safety improvements, ATC workload measurement and conducting analysis on large quantities of controller-pilot speech.
Due to the high accuracy requirements of the ATC context and its unique challenges, ASR has not been widely adopted
in this field. In this paper, in order take advantage of the opportunities offered by the ATC context such as standardized
phraseology and small vocabulary size to reduce the Word Error Rate (WER) of ASR in ATC, we perform n-best list
re-ranking using syntactic knowledge. We propose a novel feature called syntactic score which is computed using syntactic
rules. We also propose a WER-Sensitive Pairwise Perceptron algorithm and use the perceptron to combine the proposed
feature with the speech decoder’s confidence score. We integrate the model into the Pocketsphinx speech recognizer and
evaluate the model in terms of WER on the well known ATCOSIM and our own ATCSC corpora. The results shows that
our proposed approach reduces 1.21% and 0.21% WER on the ATCSC and ATCOSIM corpora respectively.

Keywords: N-best List Re-ranking, Syntactic Knowledge, Automatic Speech Recognition, Air Traffic Control.

1. INTRODUCTION
The steady increase in levels of air traffic world

wide creates an urgent need to investigate, review and
improve Air Traffic Control (ATC) operations [1]. In
ATC operations, communication between controllers and
pilots is one of the key components. The quality of this
communication significantly affects the performance as
well as the safety of ATC operations. So, in the past
few years, many attempts have been made to integrate
Automatic Speech Recognition (ASR) technologies into
ATC to improve the performance of controller-pilot
communications and to increase the automation of ATC
systems [2].

However, this technology has not been successfully
adopted in this field because of its high accuracy
requirements and unique challenges. For example, call
sign detection, poor input signal quality, the problem of
ambiguity, the use of non-standard phraseology and the
problem of dialects, accents and multiple languages [3].

Fortunately, ATC domain offers many great opportunities
to address the above-mentioned challenges such as
small vocabulary size, standardized phraseology and the
availability of linguistic knowledge such as syntactic,
semantic and pragmatic knowledge.

The work presented in this paper is a part of
an ongoing work involves taking advantage of the
above-mentioned opportunities to integrate linguistic
knowledge into ASR systems to improve recognition
accuracy. In our previous work [4], we proposed a
context-dependent class n-gram language model and
built a baseline speech recognition system based on

the Pocketsphinx recognizer from the CMU Sphinx
framework [5]. Our proposed model outperformed
the traditional n-gram model and showed 18.21%
improvement in terms of Word Error Rate (WER) on our
own Air Traffic Control Speech Corpus (ATCSC).

In this paper, we take this further by integrating
syntactic knowledge into post-processing to assist ASR
systems recognition process and improve recognition
accuracy. Other linguistic knowledge such as semantic
and pragmatic knowledge will be considered in our future
work.

To facilitate the integration of syntactic knowledge
into post-processing, we utilize the well known n-best list
re-ranking approach. We propose a novel feature called
syntactic score which is computed using syntactic rules.
We also propose a WER-Sensitive Pairwise Perceptron
algorithm and use the perceptron to combine the
proposed feature with the speech decoder’s confidence
score to perform n-best list re-ranking.

We evaluate the proposed approach on the well known
ATCOSIM Corpus of Non-prompted Clean Air Traffic
Control Speech [6] and our own ATCSC corpus. The
ATCSC corpus is a 4800 clearances corpus recorded
using clearances generated from ICAO standardized
phraseologies. We use K-fold cross-validation to increase
the reliability of the evaluations.

The remainder of the paper is structured as follows:
Section 2 presents background and related work covering
different approaches for integrating syntactic knowledge
into ASR systems, before we present the results of our
preliminary tests in Section 3. In Section 4, we describe



our proposed syntactic score feature and show how it is
computed using syntactic rules. Section 5 describes our
proposed WER-Sensitive Pairwise Perceptron algorithm.
The evaluating settings and results are presented in
Section 6. Finally, in Section 7 and Section 8 we discuss
the properties of the proposed approach and conclude the
paper with a summary and future work.

2. BACKGROUND AND RELATED
WORKS

Speech recognition comes naturally to human being.
We can easily listen to others and understand them even
with people we never met before. In some cases, we can
understand speech even when we mishear some words.
We can also understand ungrammatical utterances or new
expressions. These happens because we use not only
acoustic information but also linguistic and contextual
information to interpret speech.

On the other hand, speech recognition has been
considered a difficult task for machines. Because
unlike humans, machines typically use only acoustic
information to perform speech recognition.

Over the past few years, many attempts has been
made to integrate linguistic and contextual information
into ASR systems to improve recognition accuracy.
Typically, there are three main approaches that can be
used to facilitate the integration of linguistic knowledge,
particularly syntactic knowledge, into ASR systems:
language modeling, N-best filtering and re-ranking, and
word lattice filtering and re-ranking.

In our previous work, we covered the language
modeling approach by proposing a context-dependent
class n-gram language model [4]. We now take this
further by utilizing the n-best list re-ranking approach.

2.1 Language Modeling
The main idea of this approach is to integrate syntactic

knowledge into decoding to guide the search process.
The main advantage of this approach is that it can
reduce the search space in decoding which increases both
accuracy and performance of the system.

Syntactic knowledge can be integrated into ASR
systems via language modeling. Grammars is one
of the most popular approach for integrating syntactic
knowledge into language models. For example, L. Miller
et al. used context-free grammars as the language model
for a large vocabulary speech recognition [7].

In our previous work, we proposed a context-dependent
class n-gram language model which enables the
integration of external data into language models at run
time and the use of class labels for training instead
of words to solve the problem of lack of ATC-related
corpora for training and location-based data in modeling
language for ASR systems in ATC domain [4].

The language modeling process can be summarized
as follows: Firstly, we proposed a hybrid class n-gram

language model which is a combination of rule-based
class n-gram language models and n-gram language
models to address the problem of lack of ATC-related
corpora for training. Secondly, in order to address
the problem of location-based data, we improved the
hybrid class n-gram language model by utilizing the
context-dependent language modeling approach.

We implemented our proposed context-dependent
class n-gram language model via three steps: First of
all, we identified 10 word classes based on our analysis
of the ICAO standard phraseologies and the ATCOSIM
corpus. Secondly, we generated a class-based training
corpus by replacing words in the ATCOSIM training
corpus with their corresponding class labels. Finally,
we trained the context-dependent class n-gram language
model as a normal n-gram model with the class-based
training corpus.

2.2 N-best Filtering and Reranking
N-best list re-ranking have been widely used for

improving ASR systems accuracy. The main ideal of
this approach is to re-score N-best hypotheses and then
use the scores to perform re-ranking. The hypothesis that
ranked highest will be the output of the system.

There are many different methods that can be used
to perform N-best list re-ranking. For example,
Z. Zhou et al. conducted a comparative study of
discriminative methods: perceptron, boosting, ranking
support vector machine (SVM) and minimum sample
risk (MSR) for N-best list re-ranking in both domain
adapting and generalizing task [8]. Another example
is the work of T. Oba et al [9]. The authors
compared three methods, Reranking Boosting (ReBst),
Minimum Error Rate Training (MERT) and the Weighted
Global Log-Linear Model (W-GCLM) for training
discriminative n-gram language models for a large
vocabulary speech recognition task.

With regard to N-best filtering, the main idea is to
verify the list of N-best hypotheses which are already
sorted by score with a verifier. The first hypothesis
accepted by the verifier will be the output of the system.
One approach that have been widely used to perform
N-best filtering is using a natural language processing
(NLP) module as a verifier [10].

2.3 Lattice Filtering and Re-raking
Lattices is a directed graph which represents a set of

hypothesized words with different starting and ending
positions in the input signal. Lattices are typically used to
represent search results and served as intermediate format
between recognition passes.

The main idea of lattices filtering and re-ranking is to
first generate lattices and then use post-processing parser
to filter or re-rank the lattices [11]. One example is the
work of Ariya Rastrow et al [12]. The authors proposed
an approach for re-scoring speech lattices based on hill
climbing via edit-distance based neighborhoods.



3. PRELIMINARY TESTS

In this section, we investigate whether our selected
n-best list re-ranking approach has potential to facilitate
the integration syntactic knowledge in to ASR systems in
ATC by performing preliminary tests. The main goal of
the tests are to test our hypothesis: “N-best list re-ranking
can be used to improve ASR systems accuracy in ATC”
and identify n-best hypotheses list size.

The tests are performed in three steps: Firstly, we
use our baseline ASR system to generate N n-best
hypotheses. Secondly, we filter the hypotheses by
removing duplications, and then sort them by speech
decoder’s confidence score. Finally, we choose M
topmost ranked hypotheses, which is also called ”N-best
hypotheses list size”, and calculate WER of each
hypothesis with its corresponding reference hypothesis in
order to get the oracle WER.
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Fig. 1 Oracle Word Error Rate (WER) with different
n-best hypothesis list size.

The testing results in Figure 1 shows that the oracle
WER stops dropping at M = 500. The results also show
that choosing the best hypothesis from the 500 topmost
ranked hypotheses gives 4.24% WER improvement over
the baseline ASR system. So our hypothesis ‘N-best list
re-ranking can be used to improve ASR systems accuracy
in ATC” is confirmed.

We have established that n-best list re-ranking is a
valid approach for improving ASR systems accuracy
in ATC. In the next two sections, we take this further
by identifying features and proposing algorithms to
implement the approach.

4. FEATURES FOR N-BEST LIST
RE-RANKINNG

To implement the n-best list re-ranking approach,
we propose a feature called syntactic score to take
advantage of the availability of syntactic knowledge in
ATC. The syntactic score is computed by using syntactic

rules which are created by replacing expansions of word
classes with their corresponding class labels.

We use 10 classes, which is identified based on our
analysis of the ICAO standard phraseologies and the
ATCOSIM corpus in our previous work [4], to create the
syntactic rules.
• [CALLSIGN] - ICAO airline designators/callsigns.
• [UNIT-NAME] - air traffic control units name.
• [FIX] - navigational aids/fixes.
• [NUMBER] - digits and keywords “hundred”,
“thousand”.
• [LETTER] - ICAO phonetic spelling (e.g., alfa,
bravo).
• [GREETING] - greetings phrases (e.g., hello).
• [NON-VERBAL-ARTICULATIONS] - non-verbal
articulations (e.g., ah, hm, ahm, yeah, aha, nah, ohh).
• Minor classes: [DIRECTION] (e.g., left, right),
[POSITION] (e.g., above, below), [UNIT] (e.g., feet).

Below are some sample clearances and their corresponding
syntactic rules:

speedbird one two nine turn left to london
[CALLSIGN] turn [DIRECTION] to [CITY]

lot three six one fly heading three two zero
[CALLSIGN] fly heading [NUMBER] [NUMBER] [NUMBER]

We use Word Error Rate (WER) as the metric for
computing syntactic score for all hypotheses. The
computing process can be briefly described as follows:
First, We generate n-best hypotheses h = (h1, h2, ...hn)
by using the speech decoder. After that, with each
hypothesis hi, we search among the syntactic rules r =
(r1, r2, ...rn) to find a syntactic rule rj in which the
pair (hi, rj) has the lowest WER. The WER of the
pair (hi, rj) is used as the syntactic score S(hi) for the
hypothesis hi. Basically, the syntactic score computing
process can be defined as follows:

S(hi) = argmin
r′∈r

(WER(hi, r
′)), where hi ∈ h.

In order to improve the accuracy of the n-best list
re-ranking approach, we combine the syntactic score
feature with the well known speech decoder’s confidence
score feature.

4.1 Context-dependent Syntactic Rules
We improve the syntactic score computation process

by introducing context-dependent syntactic rules. We
first generate different rule sets for different contexts
and then during run time, the corresponding rules set is
selected based on current contextual information.

By using different context-dependent syntactic rules
sets for different contexts, we can reduce the number
of rules that are needed to compute the syntactic score,
which can improve both accuracy and performance of the
syntactic score computation process.

The main benefit of using context-dependent syntactic
rules is that the system can be easily adapted to a new



context without re-training, which makes our proposed
approach a practical approach.

Currently, the selection of rule sets is performed
manually, however, with the availability of pragmatic
knowledge and contextual information from pragmatic
analysis the rule sets selection process can be performed
automatically. We are planing to implement this in our
future work.

5. N-BEST LIST RE-RANKING WITH
PERCEPTRON

In machine learning, the perceptron is a linear
classifier. The main goal of the peceptron algorithm is
to learn a weight vector that minimizes the number of
misclassifications [13]. In the field of speech recognition,
the variants of the perceptron algorithm have been proved
to be very successful in re-ranking n-best list [8][14].

In this paper, we improve the Average Perceptron
algorithm presented in [15] to combine the two following
features for re-ranking the n-best list:
• D1: Syntactic score
• D2: Speech decoder’s confidence score

We use the following definitions and notions adapted
from [8][14] to describe the perceptron algorithm:
• With each utterance xi in a training set which includes
n utterances, define xi,j as the j-th hypothesis and yi as
the oracle hypothesis of the utterance xi.
• Define D+1 features fd(h), d = 0...D, h is a
hypothesis.
• Define a function f(h) = (f0(h), f1(h), ..., fD(h))
which can map each hypothesis hi to a feature vector
f(hi) = (f0(hi), f1(hi), ..., fD(hi)).
• Define ∆(xij , yi) as the difference in WER of xij
(the j-th hypothesis of the utterance xi) and yi (the
oracle hypothesis of utterance xi) with the reference
transcription of utterance xi.
• Define 0 < α < 1 as the momentum constant.
• Define adapt lr(η, w, w̄) as a version of the Bold
Driver learning rate adaptation function. The function
is simple: after each utterance xi, compare perceptron’s
loss L(wt(i)) to its previous value, L(wt(i − 1)). If
the error has increased by more than a tiny proportion
(say, 10−10), undo the last weight change, and decrease
the learning rate η sharply - typically by 50%. If
the error has decreased, increase the learning rate η
by a small proportion (typically 1%-5%). In order to
improve the training performance, we make two minor
modifications to the original Bold Driver learning rate
adaptation algorithm. We increase the learning rate η
even when the error remained unchanged and reset the
learning rate η to its initial value after each iteration.

5.1 The WER-Sensitive Pairwise Perceptron Algorithm
We improve the Average Perceptron algorithm

(Algorithm 1) in three ways:

Algorithm 1 The average perceptron algorithm
input set of training examples (xi, yi) : 1 ≤ i ≤ n
Input number of iterations T
w = 0, w̄ = 0
for t = 1...T , i = 1...n do

Choose the xij with the largest f(xij) · w
if xij 6= yi then

w = w + η(f(yi)− f(xij))
end if
w̄ = w̄ + w

end for
return w̄/(nT )

First, we adopt the idea of the WER-Sensitive
Perceptron algorithm presented in [14] to incorporate
WER metric into the training of the perceptron.
Secondly, we improve the algorithm by utilizing the
pairwise ranking approach. We define a better word error
rate sensitive pairwise loss function as follows:

L(w) =

n∑

i=1

m∑

j=1

∆(xij , yi)J(w · f(xij)− w · f(yi)K

Where JxK = 0 if x < 0 and 1 otherwise. Finally, we
adopt the mini-batch gradient descent, momentum and
the Bold Driver learning rate adaptation [16] approaches
to optimize the perceptron training process. In addition,
in order to improve the quality of the perceptron training
process, we also adopt the practical tricks presented in
[17] for shuffling the examples, normalizing the inputs
and initializing the weights. The full version of our
perceptron algorithm is described in Algorithm 2.

Algorithm 2 The WER-sensitive pairwise perceptron
input set of training examples (xi, yi) : 1 ≤ i ≤ n
Input n-best hypotheses list size m
Input number of iterations T
w = 0, w̄ = 0
for t = 1...T , i = 1...n do

∆wt(i) = 0
for j = 1...m do

if f(xij) · w > f(yi) · w then
∆wt(i) = ∆wt(i) + ∆(xij , yi)(f(yi) −

f(xij))
end if

end for
∆wt(i) = ∆wt(i)/m
w = w + η∆wt(i) + α∆wt(i− 1)
w̄ = w̄ + w
adapt lr(η, w, w̄)

end for
return w̄/(nT )

Given a training set size n, define m as the
n-best hypotheses list size and T as the number of
iterations. The complexity of the WER-Sensitive
Pairwise Perceptron algorithm without learning rate



adaptation is the same as the Average Perceptron
algorithm, O(nmT ). With learning rate adaptation, the
complexity of our proposed approach is O(n2mT ). This
is not a big problem because the learning rate adaptation
can speed up the training process by reducing the number
of iterations T that is needed for the perceptron to
converge.

6. EVALUATING SETTINGS AND
RESULTS

6.1 Evaluating Settings

First, we use the Pocketsphinx recognizer, the
CMUSphinx US English generic acoustic model, the
generic cmudict SPHINX 40 pronunciation dictionary
and the context-dependent class n-gram language model
proposed in our previous work [4] to build a baseline
speech recognition system.

Then, we use the baseline system to evaluate our
proposed approach on the ATCOSIM and ATCSC
corpora. We use 85% of the data from the corpora for
training language models and adapting acoustic models,
we use the remaining 15% of the data for evaluations. We
also use k-fold cross-validation to increase to reliability
of the evaluations.

6.2 Results

Table 1 The evaluation results of traditional n-gram,
context-dependent class n-gram (C-DC n-gram) models,
and the WER-Sensitive Pairwise Perceptron (WER-SPP)
algorithm on the ATCOSIM and ATCSC corpora.

Models -Algorithms Speech Corpora
ATCOSIM ATCSC

N-gram 9.69% 31.58%
C-DC n-gram 500-best oracle 8.51% 8.45%
C-DC n-gram 1-best 12.62% 14.39%
WER-SPP Algorithm
+ Syntactic score
+ Decoder’s confidence score

12.41% 13.18%

The evaluations results in Table 1 show that our
proposed approach reduces the WER by 0.21% and
1.21% compared with the context-dependent class
n-gram model on the ATCOSIM and ATCSC corpora
respectively. Our proposed approach also shows 18.40%
improvement in terms of WER compared with traditional
n-gram model on the ATCSC corpus.

As explained in our previous work [4], the evaluation
result of the n-gram model on the ATCOSIM corpus
(9.69% WER) is not relevant for comparison because
the model was trained and evaluated using data from
the same corpus which contains a lot of repetitions of
location-based data.

7. DISCUSSION
The evaluations results show that our proposed

approach reduces the WER by 0.21% and 1.21%
compared with the context-dependent class n-gram
model on the ATCOSIM and ATCSC corpora respectively.

The main reason that the proposed approach shows
a very small improvement in term of WER on the
ATCOSIM corpus is that it contains a large number of
non-standard phraseologies and clearances. Since the
syntactic score of a hypothesis reflects how well the
hypothesis matches its closest standardized clearance,
the performance of the n-best list re-ranking process
using syntactic score on a corpus depends heavily on the
proportion of the standardized clearances in the corpus.

The ATCSC corpus, on the other hand, is recorded
using ICAO standardized clearances, so the proportion
of the standardized clearances in the corpus is relatively
high. Thus, the performance of the n-best hypotheses
re-ranking process using the syntactic score feature on
the corpus is higher. This resulted in 1.21% improvement
in terms of WER.

The evaluation results demonstrates that if we use
more syntactic knowledge in the n-best list re-ranking
process, the recognition accuracy can be improved
significantly.

The work described in this paper is first aimed at
integrating speech technologies into air traffic control
simulation and training environment in which air traffic
controller students are usually required to use ICAO
standard phraseology. This means that the proportion
of standardized clearances is a good fit for our proposed
approach.

8. CONCLUSION AND FURTHER WORK
In this paper, in order take advantage of the

opportunities offered by the ATC context such as
standardized phraseology and small vocabulary size to
improve the accuracy of ASR in ATC, we perform n-best
list re-ranking using syntactic knowledge.

To facilitate the re-ranking process, we propose a
novel feature called syntactic score. We compute the
syntactic score using syntactic rules which are generated
by a syntactic rules generator by replacing expansions
of word classes with their corresponding class labels.
We also propose a WER-sensitive pairwise perceptron
algorithm and use the perceptron to combine the
proposed feature with the speech decoder’s confidence
score.

We use the baseline system proposed in our previous
work to evaluate our proposed approach in terms of Word
Error Rate (WER) on the well known ATCOSIM and
our own ATCSC corpora. We compare the evaluation
results of the proposed approach with traditional n-gram
and context-dependent class n-gram models.

The evaluations results show that our proposed



approach reduces the WER by 0.21% and 1.21%
compared with the context-dependent class n-gram
model on the ATCOSIM and ATCSC corpora respectively.
Our proposed approach also shows 18.40% WER
improvement compared with traditional n-gram model on
the ATCSC corpus.

We now intend to take this further by integrating
higher level linguistic knowledge such as semantic and
pragmatic knowledge into post-processing to assist the
recognition process.
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Abstract: In this paper, with the aim of bringing Automatic Speech Recognition (ASR) technologies into Air Traffic
Control (ATC), we investigate how we can take advantage of the availability of linguistic knowledge in the ATC context to
reduce the Word Error Rate (WER) of ASR systems by performing n-best list re-ranking. We first propose a feature called
semantic relatedness. We then use a WER-Sensitive Pairwise Perceptron algorithm which is proposed in our previous
work to combine the semantic relatedness, syntactic score and speech decoder’s confidence score features to perform
n-best list re-ranking. We evaluate the proposed approach in terms of WER on the well known ATCOSIM Corpus of
Non-prompted Clean Air Traffic Control Speech (ATCOSIM) and our own Air Traffic Control Speech Corpus (ATCSC).
The evaluations results show that our proposed approach reduces the WER by 0.31% and 1.53% on the ATCOSIM and
ATCSC corpora respectively. Our proposed approach also shows 19.93% WER improvement compared with traditional
n-gram model on the ATCSC corpus.
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1. INTRODUCTION
In the past few years, many attempts have been made

to integrate Automatic Speech Recognition (ASR) into
Air Traffic Control (ATC) to increase the automation
of ATC systems. However, this technology has not
been successfully adopted in this field because of its
high accuracy requirements and unique challenges. For
example, call sign detection, poor input signal quality,
the problem of ambiguity, the use of non-standard
phraseology and the problem of dialects, accents and
multiple languages [1].

With the aim of bringing ASR technologies into ATC,
we have been investigating how we can take advantage
of the availability of linguistic knowledge in the ATC
context to address the above-mentioned challenges.

The work presented in this paper is a part of an
ongoing work involves using linguistic knowledge to
improve the accuracy ASR systems in ATC. In our
previous work [2], we proposed a context-dependent
class n-gram language model and built a baseline speech
recognition system based on the Pocketsphinx recognizer
from the CMU Sphinx framework [3]. We also integrated
syntactic knowledge into post-processing to assist ASR
systems recognition process by performing n-best list
re-ranking with syntactic knowledge [5]. We proposed
a novel feature call syntactic score and a WER-Sensitive
Pairwise Peceptron algorithm to combine the proposed
feature with the speech decoder’s confidence score. Our
proposed approach outperformed tradition n-gram model
and showed 18.4% improvement in terms of Word Error
Rate (WER) on our own Air Traffic Control Speech
Corpus (ATCSC).

In this paper, we take this further by looking
into combining syntactic and semantic knowledge in
re-ranking the n-best list to improve the accuracy of ASR
systems in ATC.

In order to take advantage of the availability of
syntactic and semantic knowledge in the ATC context,
we first propose a feature called semantic relatedness.
We then use the WER-Sensitive Pairwise Peceptron
algorithm to combine the proposed feature with the
syntactic score and speech decoder’s confidence score
features to perform n-best list re-ranking.

We evaluate the proposed approach on the well known
ATCOSIM Corpus of Non-prompted Clean Air Traffic
Control Speech [4] and our own ATCSC corpus. The
ATCSC corpus is a 4800 clearances corpus recorded
using clearances generated from ICAO standardized
phraseologies. We use K-fold cross-validation to increase
the reliability of the evaluations.

The remainder of the paper is structured as follows:
Section 2 presents background and related work covering
the n-best list re-ranking approach, and semantic
relatedness and semantic similarity, before we present our
proposed feature, semantic relatedness in Section 3. In
section 4, we describe the perceptron algorithm proposed
in our previous work for combining features for n-best
list re-ranking. The evaluating settings and results are
presented in Section 5. Finally, in Section 6 and Section
7, we discuss the properties of the proposed approach and
conclude the paper with a summary and further work.



2. BACKGROUND AND RELATED
WORK

In our previous work [5], we investigated how we
can use the first level of linguistic knowledge, syntactic
knowledge to improve the accuracy of ASR systems
in ATC by performing n-best list re-ranking. We now
take this further by looking into how can the syntactic
knowledge be used together with the next level of
linguistic knowledge, semantic knowledge in re-ranking
the n-best list.

2.1 N-best Re-ranking
N-best list re-ranking have been widely used for

improving ASR systems accuracy. The main ideal of
this approach is to re-score N-best hypotheses and then
use the scores to perform re-ranking. The hypothesis that
ranked highest will be the output of the system.

There are many different methods that can be used
to perform N-best list re-ranking. For example,
Z. Zhou et al. conducted a comparative study of
discriminative methods: perceptron, boosting, ranking
support vector machine (SVM) and minimum sample
risk (MSR) for N-best list re-ranking in both domain
adapting and generalizing task [6]. Another example
is the work of T. Oba et al [7]. The authors
compared three methods, Reranking Boosting (ReBst),
Minimum Error Rate Training (MERT) and the Weighted
Global Log-Linear Model (W-GCLM) for training
discriminative n-gram language models for a large
vocabulary speech recognition task.

2.2 Semantic Relatedness and Semantic Similarity
Semantic relatedness is the degree of any semantic

relation (e.g., antonym, meronymy) between two words,
terms or documents whereas semantic similarity is a
special case of semantic relatedness which only includes
“is a” relations. For example “apple” is similar to
“orange”, but is only related to “juice” and “pie”.
Both semantic relatedness and semantic similarity are
fundamental and widely used concepts for measuring
semantic relations.

In this paper, in order to capture all semantic
relations between ATC standardized phraseologies, we
use semantic relatedness as a feature for performing
n-best list re-ranking instead of semantic similarity.

There are many semantic relatedness measures have
been proposed, and they can be generally categorized
into two categories: knowledge-based measures and
corpus-based measures. While knowledge-based measures
employ information extracted from lexical resources
such as dictionaries [8] (e.g., Longman Dictionary
of Contemporary English), thesaurus [9] (e.g., Rogets
Thesaurus), WordNet and other semantic networks [10],
corpus-based measures utilize probabilistic approaches
to extract semantics relations between words, terms
or documents from text corpora, for examples, Latent

Semantic Analysis (LSA) [11], Pointwise Mutual
Information (PMI) [12], Second Order Co-occurrence
PMI (SOC-PMI) [13], Distributional Similarity [14] and
Salient Semantic Analysis [15].

In the following section, we show how we turn
the semantic relatedness measure into a feature for
re-ranking the n-best list.

3. SEMANTIC RELATEDNESS FEATURE
In order to take advantage of the availability of

linguistic knowledge in the ATC context, we utilize the
well known n-best list re-ranking approach to integrate
linguistic knowledge into post-processing to improve the
accuracy of ASR systems. In our previous work [5],
we started with the first level of linguistic knowledge,
syntactic knowledge by proposing a featured called
syntactic score to perform n-best list re-ranking. We now
take this further by looking in to combining the syntactic
knowledge with the next level of linguistic knowledge,
semantic knowledge. The last level of linguistic
knowledge, pragmatic knowledge will be considered in
our future work.

To combine the syntactic and semantic knowledge in
re-ranking the n-best list, we propose a feature called
semantic relatedness. We adopt the Pointwise Mutual
Information (PMI) approach proposed in [12] to measure
the semantic relatedness. The main reason that we
choose the PMI approach is that it can capture long-span
semantic relationships between words in ATC clearances,
which typically overlooked by n-gram language models.

To address the problem of lack of training corpora and
“location-based” data, which occur in most of exiting
ATC-related corpora, we improve the PMI approach by
estimating the association ratio on syntactic rules instead
of original ATC-related speech corpora. In addition, we
also make three assumptions about semantic relatedness
that we believe to be reasonable:
• Assumption 1: If x is followed by y in the syntactic
rules in R, x and y is semantic related.
• Assumption 2: If either x or y does not occur in the R
or x is not followed by y in any syntactic rules in R, x and
y is not semantic related.
• Assumption 3: Let d(x,y) be the distance from x to y.
If x is not followed by y with exact distance d(x,y) in any
syntactic rules in R, x and y is not semantic related.

Based on the above-mentioned assumptions, the
process of calculating semantic relatedness using
pointwise mutual information is described as follows:
With C = c1, c2, ..., cm denotes an ATC-related speech
corpus. Let R = r1, r2, ..., rm be a set of syntactic
rules generated by replacing expansions of word classes
with their corresponding class labels. We use 10 classes,
which is identified based on our analysis of the ICAO
standard phraseologies and the ATCOSIM corpus in our
previous work [2], to create the syntactic rules.
• [CALLSIGN] - ICAO airline designators/callsigns.



• [UNIT-NAME] - air traffic control units name.
• [FIX] - navigational aids/fixes.
• [NUMBER] - digits and keywords “hundred”,
“thousand”.
• [LETTER] - ICAO phonetic spelling (e.g., alfa, golf).
• [GREETING] - greetings phrases (e.g., hello).
• [NON-VERBAL-ARTICULATIONS] - non-verbal
articulations (e.g., ah, hm, ahm, yeah, aha, nah, ohh).
• Minor classes: [DIRECTION] (e.g., left, right),
[POSITION] (e.g., above, below), [UNIT] (e.g., feet).

Let P (x), P (y) be the probabilities of word x and y,
P (x, y) be the probability of x is followed by y in the
syntactic rules in R, d(x,y) is the distance from x to y and
P (d(x, y)) is the probability of x is followed by y with
exact distance d(x,y) in R. The mutual information I(x,y)
[12], which is also the semantic relatedness between x
and y, is defined as follow:

I(x, y) =

{
log2

(
P (x,y)P (d(x,y))

P (x)P (y) + α
)
, if P (d(x, y)) > 0,

0, otherwise

Where α is a smoothing constant used to guarantee
that the mutual information I(x,y) between x and y is
always greater than zero if x and y are semantic related.
The word probabilities P(x) and P(y) are estimated by
counting the number of observations of x and y in the
syntactic rules set R , and normalizing by N, the size of
the syntactic rules set. The joint probabilities P (x, y),
are estimated by counting the number of times that x is
followed by y in the syntactic rules inR, and normalizing
by N. d(x,y) is calculated by counting the number of
words between x and y plus one. P (d(x, y)) is calculated
by dividing the distance d(x, y) by the number of x is
followed by y in R.

With the above-mentioned assumptions, the accumulated
semantic relatedness of a clearance X = x1, x2, ..., xn is
defined as follow:

I(X) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i

I(xi, xj)

Where n is the size of the clearance.
We have demonstrated how we turn the semantic

relatedness measure into a feature for re-ranking
the n-best list. In the next section, we describe
how we use a perceptron algorithm to combine
the semantic relatedness, syntactic score and speech
decoder’s confidence score features to perform n-best list
re-ranking.

4. N-BEST LIST RE-RANKING USING
PERCEPTRON

To perform n-best list re-reanking, we use the
WER-Sensitive Pairwise Perceptron, which proposed in
our previous work [5], to combine the three following
features:

• D1: Syntactic score
• D2: Speech decoder’s confidence score
• D3: Semantic Relatedness

The algorithm is described using definitions and
notions adapted from [6][16] as follows:
• With each utterance xi in a training set which includes
n utterances, define xi,j as the j-th hypothesis and yi as
the oracle hypothesis of the utterance xi.
• Define D+1 features fd(h), d = 0...D, h is a
hypothesis.
• Define a function f(h) = (f0(h), f1(h), ..., fD(h))
which can map each hypothesis hi to a feature vector
f(hi) = (f0(hi), f1(hi), ..., fD(hi)).
• Define ∆(xij , yi) as the difference in WER of xij
(the j-th hypothesis of the utterance xi) and yi (the
oracle hypothesis of utterance xi) with the reference
transcription of utterance xi.
• Define 0 < α < 1 as the momentum constant.
• Define adapt lr(η, w, w̄) as a version of the Bold
Driver learning rate adaptation function [17]. The
function is simple: after each utterance xi, compare
perceptron’s lossL(wt(i)) to its previous value, L(wt(i−
1)). If the error has increased by more than a tiny
proportion (say, 10−10), undo the last weight change, and
decrease the learning rate η sharply - typically by 50%.
If the error has decreased, increase the learning rate η
by a small proportion (typically 1%-5%). In order to
improve the training performance, we make two minor
modifications to the original Bold Driver learning rate
adaptation algorithm. We increase the learning rate η
even when the error remained unchanged and reset the
learning rate η to its initial value after each iteration.

Algorithm 1 The WER-Sensitive Pairwise Perceptron
input set of training examples (xi, yi) : 1 ≤ i ≤ n
Input n-best hypotheses list size m
Input number of iterations T
w = 0, w̄ = 0
for t = 1...T , i = 1...n do

∆wt(i) = 0
for j = 1...m do

if f(xij) · w > f(yi) · w then
∆wt(i) = ∆wt(i) + ∆(xij , yi)(f(yi) −

f(xij))
end if

end for
∆wt(i) = ∆wt(i)/m
w = w + η∆wt(i) + α∆wt(i− 1)
w̄ = w̄ + w
adapt lr(η, w, w̄)

end for
return w̄/(nT )

We have demonstrated how we combine the semantic
relatedness, syntactic score and speech decoder’s
confidence score features using the WER-Sensitive
Pairwise Perceptron algorithm. In the following section,



we show how the approach is evaluated with the
ATCOSIM and ATCSC corpora.

5. EVALUATING SETTINGS AND
RESULTS

5.1 Evaluating Settings
First, we use the Pocketsphinx recognizer, the

CMUSphinx US English generic acoustic model, the
generic cmudict SPHINX 40 pronunciation dictionary
and the context-dependent class n-gram language model
proposed in our previous work [2] to build a baseline
speech recognition system.

Then, we use the baseline system to evaluate our
proposed approach on the ATCOSIM and ATCSC
corpora. We compare our proposed approach with
traditional n-gram and context-dependent class n-gram
models, and the WER-Sensitive Pairwise Perceptron
algorithm with two features, syntactic score and
decoder’s confidence score. We use 85% of the data from
the corpora for training language models and adapting
acoustic models, we use the remaining 15% of the
data for evaluations. We use k-fold cross-validation to
increase to reliability of the evaluations.

5.2 Results

Table 1 The evaluation results of traditional n-gram and
context-dependent class n-gram (C-DC n-gram) models,
and the WER-Sensitive Pairwise Perceptron (WER-SPP)
algorithm with three features, syntactic score, decoder’s
confidence score and semantic relatedness on the
ATCOSIM and ATCSC corpora.

Models -Algorithms Speech Corpora
ATCOSIM ATCSC

N-gram 9.69% 31.58%
C-DC n-gram 500-best oracle 8.51% 8.45%
C-DC n-gram 1-best 12.62% 14.39%
WER-SPP algorithm
+ Syntactic score
+ Decoder’s confidence score

12.41% 13.18%

WER-SPP algorithm
+ Syntactic score
+ Decoder’s confidence score
+ Semantic Relatedness

12.10% 11.65%

The results show that using our proposed semantic
relatedness feature in n-best list re-ranking reduces the
WER by 0.31% and 1.53% on the ATCOSIM and ATCSC
corpora respectively.

As explained in our previous work [2], the evaluation
result of the n-gram model on the ATCOSIM corpus
(9.69% WER) is not relevant for comparison because
the model was trained and evaluated using data from
the same corpus which contains a lot of repetitions of
location-based data. The repetitions of location-based
data in both training and testing data led to a

problem called overfitting, which resulted in a very
high WER (31.58%) when the models were used for
recognizing general ATC clearances from the ATCSC
corpus. Fortunately, our approach demonstrates that
the combination of a context-dependent class n-gram
language model and n-best list re-ranking using semantic
relatedness and syntactic score can overcome the
overfitting problem and improve the WER by 19.93% on
the ATCSC corpus.

6. DISCUSSION
The evaluations results show that our proposed

approach reduces the WER by 0.31% and 1.53%
compared with the context-dependent class n-gram
model on the ATCOSIM and ATCSC corpora respectively.

The significant difference between the evaluation
results of the proposed approach on the ATCOSIM and
ATCSC corpora indicates that the performance of the
n-best list re-ranking process using linguistic knowledge
on a corpus depends heavily on the amount of linguistic
knowledge available in the corpus. This demonstrates
that linguistic knowledge has great potential in solving
the existing challenges of ASR in contexts which have
significant amount of linguistic knowledge.

The work described in this paper is first aimed
at integrating ASR into ATC simulation and training
environment in which air traffic controller students are
usually required to use standardized phraseologies. This
means that the amount of linguistic knowledge available
is relatively high, which is a good fit for our proposed
approach.

The 19.93% improvement in terms of WER on the
ATCSC corpus, which is not the corpus used for training,
reveals that the combination of a context-dependent class
n-gram language models, and n-best list re-ranking using
linguistic knowledge (semantic relatedness and syntactic
score), can be easily adapted to recognize general ATC
clearances. This makes our proposed approach a practical
approach because the models can be easily adapted to
new contexts without re-training.

7. CONCLUSION AND FURTHER WORK
In this paper, in order take advantage of the availability

of linguistic knowledge in the ATC context to improve the
accuracy of ASR, we perform n-best list re-ranking using
semantic knowledge.

To facilitate the re-ranking process, we first propose
a feature called semantic relatedness which is measured
using the Pointwise Mutual Information approach.
We then use the WER-Sensitive Pairwise Perceptron
algorithm proposed in our previous work to combine the
semantic relatedness feature with the syntactic score and
speech decoder’s confidence score features.

We use our baseline ASR system to evaluate our
proposed approach in terms of Word Error Rate (WER)



on the well known ATCOSIM and our own ATCSC
corpora. We compare our proposed approach with
traditional n-gram and context-dependent class n-gram
language models, and the WER-Sensitive Pairwise
Perceptron algorithm with two features, syntactic score
and decoder’s confidence score

The evaluations results show that our proposed
approach reduces the WER by 0.31% and 1.53%
on the ATCOSIM and ATCSC corpora respectively.
Our proposed approach also shows 19.93% WER
improvement compared with traditional n-gram model on
the ATCSC corpus.

We now intend to take this further by integrating the
last level of linguistic knowledge, pragmatic knowledge
into post-processing to improve the accuracy of ASR
systems in ATC.
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Possibilities, Challenges and the State of the Art
of Automatic Speech Recognition

in Air Traffic Control
Van Nhan Nguyen, Harald Holone

Abstract—Over the past few years, a lot of research has been
conducted to bring Automatic Speech Recognition (ASR) into various
areas of Air Traffic Control (ATC), such as air traffic control
simulation and training, monitoring live operators for with the aim
of safety improvements, air traffic controller workload measurement
and conducting analysis on large quantities controller-pilot speech.
Due to the high accuracy requirements of the ATC context and its
unique challenges, automatic speech recognition has not been widely
adopted in this field. With the aim of providing a good starting
point for researchers who are interested bringing automatic speech
recognition into ATC, this paper gives an overview of possibilities
and challenges of applying automatic speech recognition in air traffic
control. To provide this overview, we present an updated literature
review of speech recognition technologies in general, as well as
specific approaches relevant to the ATC context. Based on this
literature review, criteria for selecting speech recognition approaches
for the ATC domain are presented, and remaining challenges and
possible solutions are discussed.

Keywords—Automatic Speech Recognition, ASR, Air Traffic
Control, ATC.

I. INTRODUCTION

STEADILY increasing levels of air traffic world wide poses
corresponding capacity challenges for air traffic control

services. According to the “Outlook for Air Transport to the
Year 2025” report of International Civil Aviation Organization
(ICAO) [55], passenger traffic on the major international routes
is expected to grow about 3 to 6 percent each year through
to the year 2025. Thus, ATC operations has to investigate,
review and improve in order to be able to meet with the
increasing demands [9]. In ATC operations, communication
between controllers and pilots is one of the key components.
The quality of this communication significantly affects the
performance as well as the safety of ATC operations.

Integration of automatic speech recognition (ASR)
technologies in the ATC domain has been investigated
in order to improve the performance of controller-pilot
communications and to increase the automation of ATC
systems. The introduction of automatic speech recognition
to ATC and the steadily improvement in accuracy and
performance of ASR technologies have opened many
potential opportunities to investigate, review and improve
ATC operations. For example, facilitating applications such
as simulating the work environment of controllers for testing
and training, controller workload measurement and balancing,

Authors are with Faculty of Computer Science, Østfold University
College, PO Box 700, 1757 Halden, Norway, emails: nhan.v.nguyen@hiof.no,
h@hiof.no.

assistant systems that support controllers in operational
environment by catching potential dangerous situations that
might be missed by the controllers, and providing suggestions
as well as safety information to the operators.

Automatic speech recognition (ASR) technology, which
is capable of translating human speech into sequences of
words, has advanced significantly over the past decades.
By 2015, ASR technologies has been successfully used
in many applications like dictation, command and control,
voice user interfaces such as voice dialing or call routing,
medical applications, personal assistants on mobile phones,
home automation, and automatic voice translation into foreign
languages [52].

However, integrating ASR technologies into the ATC
domain comes with many challenges such as call sign
detection, poor input signal quality, the problem of ambiguity
and the use of non-standard phraseology which dramatically
reduce the recognition rate and the performance of speech
recognition systems. Although the integration of ASR
technologies into the ATC domain was introduced in the early
90s (or earlier) [30], it still has not been able to provide
acceptable results in terms of recognition rate and overall
performance.

With the aim of providing a comprehensive overview
of current state-of-the-art speech recognition technologies,
challenges as well as possibilities for applying ASR in the
ATC domain, we have conducted a thorough literature review.

Based on the literature we identify five major existing
challenges which make the integration of ASR technologies
to the ATC domain difficult, and suggest possible approaches
to address the challenges and improve the recognition rate of
ASR systems in the ATC domain. Criteria for selecting ASR
systems which well suited for use in ATC domain were also
identified. The main contribution of this paper is to provide a
fundamental starting point for researchers who are interested
in integrating ASR systems in the ATC domain for both
operational and simulation environments.

The remainder of the paper is structured as follows: Section
II describes the methodology for conducting the literature
review, before we present general introduction to automatic
speech recognition, classification of ASR approaches as well
as history of the field in section III. In Section IV we presents a
brief introduction to air traffic control, possible applications of
ASR in the ATC domain, criteria for selecting ASR approaches
for the ATC domain, and an extended literature review of ASR
research relevant to ATC. Finally, in Section V and Section
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VI we identify remaining challenges for ASR in ATC, discuss
possible solutions to these challenges, and conclude the paper
with a summary and outlook for this field.

II. METHODOLOGY

The literature review was conducted using the following
keyword phrases: “Speech Recognition in Air Traffic
Control OR Voice Recognition in Air Traffic Control”,
“Speech Command Recognition OR Voice Command
Recognition”, and “Medium Vocabulary AND Continuous
Speech Recognition AND Speaker Independent”. Searches
were performed in ACM Digital Library, IEEEXplore Digital
Library, Google Scholar and Google Search. From the search
results we identified and reviewed 60 papers that focus on
speech command recognition systems, the use of medium sized
vocabularies, continuous speech, and speaker independent
recognition, as well as speech recognition specifically in the
context of air traffic control.

The purpose of including the last keyword phrase “Medium
Vocabulary AND Continuous Speech Recognition AND
Speaker Independent” is to capture articles about speech
recognition techniques well suited for use in air traffic control
(See Section IV for more details).

TABLE I
SEARCH RESULTS SUMMARY. KEYWORD PHRASE 1: “SPEECH

RECOGNITION IN AIR TRAFFIC CONTROL OR VOICE RECOGNITION IN
AIR TRAFFIC CONTROL”, KEYWORD PHRASE 2: “SPEECH COMMAND

RECOGNITION OR VOICE COMMAND RECOGNITION”, KEYWORD
PHRASE 3: “MEDIUM VOCABULARY AND CONTINUOUS SPEECH

RECOGNITION AND SPEAKER INDEPENDENT”

�������������Keyword Phrase
Search Engine

ACM IEEE Google
Scholar Google

Keyword Phrase 1 2 4 12 9
Keyword Phrase 2 1 7 10 9
Keyword Phrase 3 4 6 13 10

The literature review provides background for identification
of suitable speech recognition systems for air traffic control,
as well as a discussion of remaining challenges and possible
solutions for these types of applications.

III. AUTOMATIC SPEECH RECOGNITION (ASR)

Speech recognition is the process of converting a speech
signal into a sequence of words. It also called Automatic
Speech Recognition (ASR) or Speech-to-Text (STT). In
recent years, the technology and performance of speech
recognition systems have been improving steadily. This has
resulted in their successful use in many application areas
such as in-car systems or environment in which users
are busy with their hands (e.g., “voice user interfaces”)
[34], hospital-based healthcare applications (e.g., systems
for dictation into patient records, speech-based interactive
voice response systems, systems to control medical equipment
and language interpretation systems) [15], home automation
(e.g., voice command recognition systems) [1], speech-to-text
processing (e.g., word processors or emails), and personal
assistants on mobile phones (e.g., Apple’s Siri on iOS,
Microsoft’s Cortana on Window Phone, Google Now on

Fig. 1. General structure of speech recognition system

Android). Speech recognition has also been widely used in
air traffic control for many applications such as air traffic
controllers’ work load measurement [10], speech interface
for air traffic control terminals [20], automated analysis and
transcription of ATC voice communications [9], replacing the
“pseudo-pilot” in air traffic control simulation and training
by “automated pilot” which can recognize and understand the
controller’s speech using speech recognition modules [45].

A. Modules of Speech Recognition Systems

The general speech recognition approach can be described
in two steps. 1) Given an acoustic observation, identify a
feature vector sequence X = X1, X2, ..., Xn using a feature
extraction module. 2) Given this vector, find the corresponding
word sequence W = W1,W2, ...,Wn that has the maximum
posterior probability P (W | X) [35], expressed using Bayes
theorem in (1).

W = argmax
w

P (W | X) = argmax
w

P (W )P (X | W )

P (X)
(1)

Fig. 1 shows the general structure of a speech recognition
system. The system consist of six main modules: Speech
Signal Acquisition, Feature Extraction, Acoustic Modeling,
Language Modeling, Lexical Modeling, and Recognition.

1. Signal Acquisition: The signal acquisition module is
responsible for obtaining the speech signal to be analyzed,
for example by using microphones.

2. Feature Extraction: The feature extraction module
is responsible for converting the speech signal into a
feature vector. The performance of the ASR system depends
heavily on this process. There are many feature extraction
techniques such as Principal Component Analysis (PCA),
Mel Frequency Cepstral Coefficients (MFCC), Independent
Component Analysis (ICA), Linear Predictive Coding
(LPC), Autocorrelation Mel Frequency Cepstral Coefficients
(AMFCCs), Relative Autocorrelation Sequence (RAS), and
Perceptual Linear Predictive Analysis (PLP). [23], [28], [57].
Studies have shown that Mel Frequency Cepstral Coefficients
(MFCC) and Linear Predictive Coding (LPC) are techniques
extensively used in speech recognition [52].

3. Acoustic Models: The acoustic model plays a critical
role in improving accuracy of the ASR system by linking the
input features with the expected phonetics of the hypothesis
sentence [28] [35]. In (1), P(X | W ) represents the acoustic
model, which is is the probability of acoustic observation of
X when the word W is uttered.
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4. Language Models: The main task of a language model
is detecting connections between the words in a sentences
with the help of lexical models. ASR systems usually use an
n−gram language model to provide context for distinguishing
words and phrases that sound similar. The use of a language
model not only makes speech recognition more accurate but
also helps to reduce the search space for recognition [35].
In (1), P (W ) represents the language model, which is the
probability of word W uttered.

5. Lexical Models: A lexical model is also known
as a pronunciation dictionary. It is developed to provide
pronunciations of words in a given language. The lexical
model links the acoustic-level representation with the word
sequence which is output by the speech recognizer [7].

6. Recognition: The recognition module takes input from
the feature extraction module and then uses acoustic models,
language models and lexical models to recognize which words
were spoken.

B. Classification of Speech Recognition Systems

Speech recognition systems can be classified by type
of speech utterance, type of speaker model and type of
vocabulary that the systems can recognize [52].

1. Types of Speech Utterance: In ASR, an utterance is the
smallest unit of speech and it is the sound of a word or set of
words. Types of utterance can be classified into four classes
as follows:

• Isolated Words - according to Radha et al., “isolated word
recognizers usually require each utterance to have quiet
on both sides of the sample window. It doesn’t mean that
it accepts single words, but does require a single utterance
at a time” [52]. It is also known as “Isolated Utterance”.
This type of speech recognizer is comparatively simple
and easy to develop because word boundaries are obvious.

• Connected Words - connected word recognizers are quite
similar to isolated word recognizers, but require smaller
pauses between utterances. It also known as “connected
utterances”.

• Continuous Speech - continuous speech recognizers
require special techniques for determining utterance
boundaries, and allow speakers to speak almost naturally
[52]. Although this kind of system is very difficult to
develop, it has been widely used in many applications
because of its flexibility.

• Spontaneous Speech - spontaneous speech recognizers
are capable of recognizing unrehearsed speech, words
being run together, “ums” and “ahs”, and even slight
stutters [52]. Because of the large linguistic variation
of spontaneous speech, recognition is extremely difficult.
However, it has been shown that acoustic and language
models with very large training data sets are able to
overcome the problem of variation to some degree. This
has resulted in increased recognition rates in spontaneous
speech recognition systems [22].

Speech recognition systems for isolated words and
connected words are considered relatively easy to develop
because word boundaries are easy to find and the

pronunciation of a word tends not to affect others. In contrast,
continuous speech and spontaneous speech is more difficult to
handle for a number of reasons. Challenging aspects of this
type of ASR includes word boundary detection, the problem
of coarticulation, and varying speech rates.

2. Types of Speaker Models: Because of the uniqueness
physical bodies and personalities among people, speakers
usually have distinct voice characteristics. ASR speaker
models can be divided into two classes depending on how
they handle these differences; speaker dependent and speaker
independent models. [52].

• Speaker Dependent Models - speaker dependent systems
depends on knowledge of a specific speaker’s voice
characteristics. This kind of system must usually be
trained for a specific user before it can recognize the
speech of the user. Although these systems are easy to
develop and achieve high accuracy, they are not used
widely because they are usually not as flexible as speaker
adaptive or speaker independent systems.

• Speaker Independent Models - speaker independent
systems does not require knowledge of specific speakers,
and can recognize speech from practically any people
speaking a given language. Apple’s Siri assistant is an
example of a system using a speaker independent model.
Compared with speaker dependent systems, these systems
are more flexible, however they offer less accuracy and
are more difficult to develop.

Speaker dependent systems are commonly used for
speech-to-text software (e.g., word processors, emails and
dictation applications), while speaker independent systems
are more commonly found in telephone applications (e.g.,
call centers). There is a third type of speaker model called
a speaker adaptive model. These systems are developed to
adapt its operation to the characteristics of new speakers.
Implementing speaker adaptive systems is more complex than
speaker dependent systems, but easier than the use of speaker
independent models.

3. Types of Vocabulary: Another distinguishing factor of
ASR systems is the size of the vocabulary they are able
to recognize. The size of vocabulary affects the complexity,
performance and the accuracy of the system [52]. In the
literature, these vocabularies are usually classified into five
classes as follows:

• Small vocabulary - tens of words
• Medium vocabulary - hundreds of words
• Large vocabulary - thousands of words
• Very-large vocabulary - tens of thousands of words
• Unlimited vocabulary - the system is able to suggest

recognized words based on the phonems even when the
word is not found in the (very large) vocabulary.

Generally, the smaller the vocabulary the easier it is to
implement the ASR system.

C. Performance of Speech Recognition Systems

Accuracy and speed are the two most common metrics
for measuring speech recognition system performance. Word
Error Rate (WER) is usually used for measuring accuracy,
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whereas speed is usually rated with Real Time Factor (RTF)
[52]. WER can be computed by using (2):

WER =
S +D + I

N
(2)

Where S is the number of substitutions, D is the number of
deletions, I is the number of insertions and N is the number
of words in the reference.

If the input of duration I requires time P to process,
RTF can be computed by using (3):

RTF =
P

I
(3)

Other measures of performance include Concept Error
Rate (CER), Single Word Error Rate (SWER) and Command
Success Rate (CSR).

D. History of Automatic Speech Recognition

The history of ASR started in 1952 with an isolated digit
recognition system for a single speaker. It was built by
Davis, Biddulph, and Balashek of Bell Laboratories [11].
Over the last 60 years, technology development has led to
a dramatic improvement of speech recognition systems. Juang
and Rabiner [39] describes the development during the first
four decades:

• 1960’s - speech recognition systems were able to
recognize small vocabularies (10 - 100 words) of isolated
words with the help of filter-bank analyses and simple
time normalization methods.

• 1970’s - by using simple template-based, pattern
recognition methods, researchers were able to build
connected words, speaker independent speech recognition
systems which can recognize medium vocabularies (100
- 1000 words).

• 1980’s - large vocabulary (1000 - unlimited number of
words) further advances in speech recognition problem
was addressed using Hidden Markow Models (HMM) and
stochastic language models.

• 1990’s - with the helps of stochastic language
understanding, statistical learning of acoustic and
language models, and finite state transducer framework
(and the FSM Library), researchers were able to
build large vocabulary systems for continuous speech
recognition and understanding.

In beginning of the new millennium, speech recognition
systems were expanded to recognize very large vocabularies
[52] [51]. Spontaneous speech recognition has started
to receive attention from many researchers. In addition,
researchers have started to use multimodal speech recognition,
in which visual face information, particularly lip information is
utilized. Results from multimodal speech recognition research
show that performance can be improved compared with using
audio only [21].

Currently (2015), we are able to build unlimited vocabulary
speech recognition systems which can solve a large number
of tasks, including the multiple languages problem [36],

[51], [52]. Although artificial neural networks has been
explored since the 1980’s, they have so far not been able to
compete with the Gaussian Mixture Model/Hidden Markov
Model (GMM-HMM) approaches, which continues to be the
dominating approach [13]. Nowadays, the introduction of deep
learning [14], [32] and hybrid approaches [29], [67], [68] has
overcome most of these difficulties and significantly increased
the recognition rate of ASR systems.

IV. AIR TRAFFIC CONTROL (ATC)
A. Introduction to Air Traffic Control

According to the Oxford English Dictionary, Air Traffic
Control (ATC) is “the ground-based personnel and equipment
concerned with controlling and monitoring air traffic within a
particular area” [60]. The main purpose of ATC systems is to
prevent collisions, provide safety, organize aircraft operating
in the system and expedite air traffic [18]. With the steady
increase in air traffic, ATC has become more and more
important. This increase has also resulted in more complex
procedures, regulations and technical systems [54].Thus, air
traffic control systems have to be continuously improved to
meet the evolving demands in air traffic.

In ATC, air traffic controller (ATCO) have an incredibly
large responsibility for maintaining the safe, orderly and
expeditious conduct of air traffic. Given the important roles of
air traffic control and air traffic controllers, there is an ongoing
need to strengthen training and testing of the operators.
Further, being able to simulate the working environment of
controllers enables increased safety through the use of support
systems that can assist controllers and improve procedures, and
by analyzing controller-pilot communications. In the past few
years, the advances in technology and performance of ASR
systems has offered many promising ways to deal with these
needs.

B. Applications of ASR in ATC
Because voice communication plays a critical role in ATC,

many researchers have been interested in using automatic
speech recognition technology for various applications in ATC
operations as well as for simulation environments [41].

1. Air Traffic Control Simulation and Training: Air traffic
control simulation provides facilities for testing and evaluation
of new systems and concepts, and training of traffic controller
students to handle realistic scenarios. Current air traffic control
simulation typically requires “pseudo-pilots” who will act as
real pilots in the simulation of controller-pilot communications
with air traffic controller students. The use of “pseudo-pilots”
make air traffic control simulators less flexible and comes at
a relatively high cost.

By introducing speech technologies in ATC simulation and
training the “pseudo pilots” can be replaced with so-called
“automated pilots”. The “automated pilot” will understand
and process air traffic controllers’ speech using a speech
recognition module and generate responses that is sent back
to the controllers using a speech synthesis module. The use of
“automated pilot” instead of “pseudo-pilot” can dramatically
reduce the cost of ATC systems and make the systems more
flexible [61].
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2. Air Traffic Controllers Workload Measurement and
Balancing: In ATC systems, air traffic controller workload
is the key factor that limit the capacity of the whole system.
With the increase in air traffic, measuring and balancing air
traffic controller workload becomes important.

However, measuring controller workload is currently not an
easy task because workload is difficult to measure directly.
It is a costly process that requires manual observation and
analysis of spoken communication. With the help of ASR
systems, detecting spoken control events that the controller
has to perform becomes easier, thus facilitating more direct
measurements of controller workload. The detected events can
be used for automated controller workload balancing [9], [10].

3. Controller-pilot Speech Analysis and Transcription:
With the help of ASR systems in transcribing controller-pilot
communications, it is possible to analyze large quantities of
voice data for ATC research and analysis [41]. This analysis
can be used for investigating and improving procedures
and regulations, detecting air traffic controllers’ events for
workload measurement and balancing of controller workloads.

4. Backup Controller: An ASR system combined with
other information sources in the ATC context (e.g., radar
information, minimum safe altitudes, restricted zones, and
weather information) could be used as input for a system
called a “backup controller” to catch potentially dangerous
situations that might be missed by the controller. It can also
provide suggestions and safety information to the controllers
in real time [41], [65].

C. Criteria for Selecting ASR Systems for ATC

Applying automatic speech recognition in the ATC domain
comes with many challenges and opportunities because
of the unique characteristics of communication between
controllers and pilots, such as small vocabulary sizes, high
accuracy requirements, close to real time demands, and
standardized formats for communication [41]. Based on these
characteristics, studies has suggested that an ASR system
that is suitable for ATC should be a speaker independent
system which can recognize medium sized vocabularies and
continuous speech [54], [65].

1. Speaker Dependence: Although Air Traffic Control
Command Recognition (ATCCR) applications require only
one controller at the same time, there are situations
where multiple controllers are required in the operational
environment.

Additionally, in the context of simulation and training, the
system has to be able to recognize many air traffic controller
students without the requirement to retrain or reconfigure the
system. Thus, speaker independent systems are best suited for
these applications, despite the reduced recognition accuracy of
such systems [37], [65].

2. Continuous Speech Recognition: Although isolated
words and connected words recognition systems usually
have higher accuracy than continuous speech recognition
systems, they are not well suited in the context of ATC.
This is because they require the controllers to pause between
each word when giving commands. Isolated words and

connected words recognition systems will therefore cause
delay in pilot-controller communication. A continuous speech
recognition system, which permits the controller to speak in a
natural way without pauses [54], is the system of choice when
applying ASR in ATC [37].

3. Vocabulary Size: In the ATC domain, vocabularies
used in communication between controllers and pilots follows
International Civil Aviation Organization (ICAO) Standard
Phraseology. The entire vocabulary of words (excluding names
of specific places and call signs) is only about a few hundred
words [65] [37] [17]. Thus, a medium sized vocabulary speech
recognition system is adequate in the context of air traffic
control.

4. Performance: In ATC, it is not important that ASR
systems can recognize every single word, but it is important
that the conveyed concepts are correctly detected. For example,
the ASR system is not required to recognize all of the words
in the following sentence: “Good morning Lufthansa one zero
one descend level one two three”, however it has to be able
to extract the concept “DLH101 DESCEND FL 123”.

The Concept Error Rate (CER) metric is used to measure the
systems ability to extract the concepts from speech [30]. The
CER of an ASR system which can be applied in ATC should
not exceed those of pilots or pseudo pilots, which is 0.73%
[54]. In addition, the system should be able to recognize and
understand the concepts in real time without causing delays
in communication between controllers and pilots or pseudo
pilots.

D. State-of-the-art of ASR suitable for use in ATC

Based on the previously mentioned criteria for selecting
ASR system for the ATC domain, the number of suitable
systems is limited. In this section, we highlight progress
made so far for ASR systems that match these criteria.
Although some of the systems were not developed for ATC
or the English language, the approaches and technologies
of the systems are still applicable to the ATC domain. The
research presented in this section are grouped into three: The
Hidden Markov Model approach, hybrid approaches and other
approaches.

1. The Hidden Markov Model (HMM): In ASR, HMM has
been the dominant approach over the last two decades.

Although the method has it’s own weaknesses, it is still
popular because it can be trained automatically, it is simple
and computationally feasible.

In 1994, Daniel Jurafsky et al. used HMM combined with
a Viterbi decoder, a bigram language model and a phonetic
likelihood estimator to develop the Berkeley Restaurant Project
(BeRP), which is a medium-vocabulary, speaker-independent,
spontaneous continuous speech recognition system which
functions as a knowledge consultant [40]. The recognition
error rate and understanding error rate were quite high at
32.1% and 34% respectively.

Three years later, Jones et al. developed a continuous
speech recognition system using syllable-based HMMs [38].
The authors concluded that the introduction of syllable-level
bigram probabilities, word- and syllable-level insertion
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penalties, and the investigation of different model topologies
can improve the recognizer performance. Compared with 35%
of the baseline accuracy for monophone recognition, the
proposed system achieved over 60% recognition accuracy.

Recognition of non-English languages have also been
investigated by many ASR researchers, including Arabic,
Tamil, Estonian, Amharic and Malayalam.

An acoustic training system for building acoustic models for
a medium vocabulary speaker independent continuous speech
recognition system for the Arabic language was developed
Nofal et al. [47]. Cross-word triphones HMMs were used
for acoustic modeling, and the models were trained using
maximum likelihood estimation. The best word error rate was
0.19%.

A continuous speech recognition system for the Tamil
language using a monophone-based HMM was developed by
Radha et al. in 2012 [53]. The system used Mel Frequency
Cepstral Coefficients (MFCC) for feature extraction. The
results were relatively good, with the system yielding 92%
word recognition accuracy and 81% sentence accuracy.

Thangarajan et al. built a small vocabulary word based
and a medium vocabulary triphone based continuous speech
recognizers for the Tamil language using HMM based word
and triphone acoustic models [62]. 92.06% and 70.08%
accuracy were achieved with new speakers on test sentences
for the word-model and triphone-model respectively.

Thangarajan et al. used syllable modeling for developing a
continuous speech recognition system for the Tamil language
[63]. A small vocabulary context independent word model
and medium vocabulary context dependent phone model were
developed. The models were trained using SphinxTrain, a
HMM-based acoustic model trainer from Carnegie Mellon
University (CMU) [58]. The Word Error Rate of the proposed
system was 10.63%.

A limited-vocabulary Estonian continuous speech
recognition system using HMM was proposed by Alumäe et
al [2]. Clustered triphones with multiple Gaussian mixture
components were used to model words. The recognizer
yielded 82.9% accuracy with a medium-sized vocabulary.
If the real-time requirement was discarded, the correctness
increased to 90.6%.

Although HMM has been the dominant technique for
acoustic modeling in speech recognition for over two decades,
it has two main weaknesses: it discards information about
time dependencies, which creates problems for recognizing
speech with varying speeds, and is prone to overgeneralization.
De Wachter et. al (2007) [12] attempted to overcome these
problems by relying on straightforward template matching.
The authors extended the Dynamic Time Warping (DTW)
framework with a flexible subword unit mechanism and a
class sensitive distance measure. This resulted in an error rate
reduction of 17% compared to the HMM results.

Gebremedhin et al (2013) built a syllable based, medium
vocabulary size, continuous Amharic speech recognition for
weather forecast and business report applications based on
HMM [27]. To do this, they introduced a new approach for
reducing the number of acoustic models that are required
to build a syllable based Amharic ASR by combining

similarly pronounced syllables. Finite state transducers were
also explored to specify the grammar rules. The recognition
accuracy of 93.6% was achieved on a 4000 words test set.

Kurian and Balakriahnan developed a continuous speech
recognition system for the Malayalam language using PLP
(Perceptual Linear Predictive) Cepstral Coefficient [42]. The
developed system was evaluated with different number of
states of HMM, Gaussian mixtures, and tied states. The word
recognition accuracy and sentence recognition accuracy were
89% and 83% respectively.

Edward C. Lin implemented a 1000-word vocabulary,
speaker independent, continuous live-mode speech recognizer
in a single FPGA (A field-programmable gate array) [44]. A
4-state HMM is used to represent triphones in the implemented
system. Although the implementation is extraordinarily small,
it can still achieve almost the same accuracy as the
state-of-the-art software recognizer at 10.9% Word Error Rate.

In order to address the problem of automatic speech
recognition in the presence of interfering noise, Gales et
al. developed a robust continuous speech recognition system
using parallel model combination [24]. The model used in the
system is a standard HMM with Gaussian output probability
distributions.

Novotnỳ et al. developed a speech command recognition
system using hidden Markov models of context dependent
phones (triphones) and mel-frequency cepstral coefficients
analysis of speech (MFCC) [48].

Although HMM-based ASR systems have not achieved the
required accuracy in the ATC domain (0.73% CER), the steady
improvement in term of accuracy and performance makes
HMM-based ASR systems potential candidates for use in
ATC. Approaches facilitated by the characteristics of the ATC
domain can be applied to improve the accuracy of the systems
in order to achieve the required results.

2. Hybrid Approaches: Although HMM is the dominant
method for speech recognition over the last two decades, it
still has it’s weaknesses. Many research initiatives have been
conducted to overcome those weaknesses, for instance by
proposing hybrid approaches. Combining HMM and Artificial
Neural Networks (ANN) is a new research area that has
received focus from many researchers. A survey of hybrid
ANN/HMM models for automatic speech recognition was
conducted by Edmondo Trentin et al. [64].

Hussien Seid et al. developed an Amharic speaker
independent continuous speech recognizer based on an
HMM/ANN hybrid approach [56]. With the help of the
CSLU Toolkit [33], the model was constructed at a sub-word
level using context dependent phonemes. This resulted in
the achievement of 74.28% word and 39.70% sentence
recognition.

Shantanu Chakrabartty et al (2000) proposed a hybrid
Support Vector Machine (SVM), Hidden Markov Model
approach for continuous speech recognition [6]. The
architecture of the proposed system is based on the MAP
(maximum a posteriori) framework [25].

Wroniszewska et al developed a voice command recognition
system based on the combination of genetic algorithms (GAs)
and K-nearest neighbor classifier (KNN). 94.2% recognition

World Academy of Science, Engineering and Technology
International Journal of Computer, Electrical, Automation, Control and Information Engineering Vol:9, No:8, 2015 

1866International Scholarly and Scientific Research & Innovation 9(8) 2015 scholar.waset.org/1999.4/10002245

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r 

an
d 

In
fo

rm
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
8,

 2
01

5 
w

as
et

.o
rg

/P
ub

lic
at

io
n/

10
00

22
45



rate was achieved [67].
The ability to overcome the existing weaknesses of HMM

and the improvement in terms of accuracy and performance
with hybrid speech recognition systems makes this a good
candidate for applications in environments like ATC.

3. Other Approaches: Although it has been proven that
Support Vector Machines (SVM) have problems which make
them difficult to apply to speech recognition, Padrell-Sendra et
al. proposed a pure SVM-based continuous speech recognizer,
using the SVM to make decisions at frame level, and a Token
Passing algorithm to obtain the chain of recognized words
[49]. The proposed system achieved a better recognition rate
than traditional HMM-based systems (96.96% vs 96.47%).

Pellom et al. proposed fast likelihood computation
techniques in nearest-neighbor based search for continuous
speech recognition systems [50]. The authors concluded that
the combination of the two techniques with partial distance
elimination (PDE) reduced the computational complexity
for likelihood computation by 29.8% over straightforward
likelihood computation.

Leung et al. proposed a neural fuzzy network and
genetic algorithm approach for Cantonese speech command
recognition [43].

Beritelli et al. (2006) proposed a noise robust,
low-complexity algorithm for voice command recognition
using Vector Quantization-Weighted Hit Rate (VQWHR)
and Dynamic Time Warping (DTW). The authors concluded
that the proposed algorithm was robust to various types of
background noise [4].

Although HMM and hybrid approaches have been used
very widely for speech recognition, they are still facing
challenges like computational complexity and background
noise. Approaches such as Support Vector Machines or
combinations of Vector Quantization-Weighted Hit Rate
(VQWHR) and Dynamic Time Warping can deal with those
challenges to some degree, and is still being explored by many
researchers.

The following discussion is based on the state-of-the-art of
ASR presented in section III and the specifics of the ATC
context presented in section IV.

V. DISCUSSION

The discussion is divided in two. First, we identify
challenges of applying automatic speech recognition (ASR) in
the ATC domain, and second we suggests possible approaches
which can be used to address the challenges and improve the
recognition rate of ASR systems in general.

A. Challenges of ASR in ATC
There are five major challenges to overcome in order

to successfully apply ASR in ATC. While some challenges
are unique to the ATC domain, such as call sign detection
and the use of non-standard phraseology, others are general
challenges of ASR systems such as poor input signal quality,
the problem of ambiguity, and the use of dialects, accents and
multiple languages. The latter challenges becomes even more
pronounced when ASR is introduced to a high-risk domain
such as ATC.

1. Call Sign Detection: Because of the variety of ways
to refer to the same flight call sign and the use of airline
aliases (e.g., “Speedbird” for British Airways Plc (United
Kingdom), “Norstar” for Norwegian Long Haul (Norway),
“Pacific” for Jetstar Pacific Airlines (Vietnam)), call sign
detection is an extremely challenging task of ASR in ATC
domain. It especially increases the CER (Concept Error Rate),
but also affects WER (Word Error Rate) because of the
requirement to identify all airline aliases, and then train the
system for these alternative names.

2. Poor Input Signal Quality: The input signal quality
can be affected by both technological and human factors.
While technological problems such as background noise in
cockpits and communication via radio links physically reduce
the quality of input signal, human related problems such as
spontaneous speed, high speed and/or slurred speech increase
ambiguity in the ASR process. Both factors lead to increased
misrecognition rates. The above-mentioned technological
problems can to a certain degree be resolved by using noise
canceling microphones and high quality radio links. However,
solving human related problems would be very challenging
because it is not likely that we can force controllers and pilots
to significantly change the way they speak in order to adapt
to ASR systems.

3. The Problem of Ambiguity: In the ATC domain, the
problem of ambiguity (e.g., the number two-four-five can
refer to a speed, heading or flight level) and references to
confusable entities such as call signs or flight levels is one
of the main factors which contribute to the reduction in the
speech recognition rate of ASR systems [41], especially with
regards to CER.

4. The Use of Non-Standard Phraseology: The use of
non-standard phraseology leads to errors in controller-pilot
radio messages. Studies have shown that about 80% of all pilot
radio messages contain at least one error [26]. In addition, only
a small number (less than 30%) of the examined utterances
fully conform to the ICAO recommended phraseology [31].
This starting point adds to the difficulty of introduction of
ASR in ATC.

5. Dialects, Accents and Multiple Languages: Because Air
Traffic Control services are global services, ASR systems
must be able to recognize foreign accents, different dialects
and commands with a combination of multiple languages.
For example, German controllers may say “Guten morgen
Lufthansa one two three descend level one two zero”, where
“Guten morgen” is good morning in German.

B. Approaches that can be used to improve the accuracy of
ASR in ATC

Although the ATC context poses many challenges to
ASR systems, it also offers many distinct opportunities such
as the use of context knowledge, the structured format
of controller-pilot communications, and small vocabulary
sizes. The use of post-processing approaches to reduce the
uncertainties and ambiguities which resulted from the speech
recognition process in order to improve recognition accuracy
is a very well-known approach in ASR. There are three main
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post-processing approaches that are well suited for the ATC
domain; syntactic analysis, semantic analysis and pragmatic
analysis.

1. Syntactic Analysis: Syntactic analysis is the process of
representing the language domain of the speech recognition
system by a grammar, and then parsing inputs to eliminate
invalid words or sentences [46]. Finite State Networks,
Augmented Transition Networks (ATNs) and heuristics are the
three methods that can be used to implement syntax in ASR
[37].

In the ATC domain, syntactic analysis can be performed
with the help of grammar files, which is made easier because
of the structured format of controller-pilot communications
and the predefined vocabularies. These grammar files define
structure of sentences used in the operation. By using these
grammar files, improved recognition can be achieved by
focusing on the words likely to be spoken next in a sentence.

The ASR system use the grammar files to compile lexical
trees which will be used recognize a statement by parsing
the tree. For example, the simplest form of an ATC command
consists of a call sign (e.g., SpeedBird, Norstar) followed by a
goal action (e.g., descent, heading, fly direct) and a goal value
(e.g., FL 90, 260 (degrees)) [17]. After a call sign is detected,
the speech recognition system should expect to find a goal
action. Thus, words which are not goal actions (e.g.,“Ahs”,
‘Ums”) can be eliminated through the syntactic analysis.

The ability to eliminate invalid words and sentences of
syntax analysis offers great potential to address the poor
quality input signal challenge. In addition, syntax analysis can
be used to deal with the problem of ambiguity.

With the help of the list of known ATC vocabularies, syntax
analysis is able to correct misrecognized words, for example
due to the problem of ambiguity, by replacing them with valid
words with similar pronunciation.

2. Semantic Analysis: Semantic analysis is the process
of testing the meaningfulness of sentences recognized by a
speech recognition system. The method has been used to
improve speech recognition performance by many researchers
[8], [16], [69]. In the ATC domain, semantic analysis can be
performed with the help of grammar files. Semantic knowledge
is static, so it can be obtained and implemented into the syntax.

One possible method of using context knowledge is N-best
list. The speech recognizer first analyzes the input signal and
transforms it into a N-best list, and the list is then reduced by
eliminating word sequences that parse syntactically, but are
not actually meaningful [30] [37].

Because semantic analysis have the ability to eliminate
words and sentences which are not meaningful even when
they are parsed syntactically, it can be used to assist syntax
analysis in dealing with the problem of ambiguity, poor input
signal quality, and even the use of non-standard phraseology.

3. Pragmatic Analysis: Pragmatic analysis is the process
of predicting likely future words based on the previously
recognized words and the state of the system [37] [59].

A few methods exist that can be used to perform pragmatic
analysis in the ATC domain with the help of context
knowledge. One example is work by Schaefer, who developed
a context-sensitive speech recognition system for air traffic

control simulation using a cognitive model of the ATC
controller. The model can continuously observe the present
situation and generate a prediction of sentences the controller
is most likely to say next [54].

Further, by using a so-called “Dialog Model” combined with
context knowledge, the ASR system is able to predict the
form and content of the next utterance from the previously
recognized utterances [66]. The dialog models allow the
system to consider only a subset of the application’s full
grammar and vocabulary, so both performance and accuracy
of the ASR system can be improved.

In addition, radar information and flight plans could be used
to reduce the list of likely aircraft call signs that a controller
may refer to in a sector to only those in the sector or about
to enter the sector [41]. With the ability to reduce the list of
likely aircraft call signs, pragmatic analysis can be used to
mitigate the challenge in call sign detection.

Finally, knowledge based rules, Finite State Networks, and
knowledge state databases can also be used to implement
pragmatic analysis in the ATC domain.

4. Other Approaches: Although, the three suggested
post-processing approaches cannot address all the ATC
challenges completely, they offer great potential to improve
the recognition rate of ASR systems in the ATC domain.

Issues related to the use of dialects, accents, and multiple
languages remain difficult to address. One possible way
forward is to use detector modules for identifying which
dialects, accents and languages which are spoken. This
approach has been demonstrated by Fernandez et al. [19],
who devised an ATC speech understanding system which
can understand both English and Spanish. They achieved
this by using a language detection module, which is capable
of detecting the languages spoken by air traffic controllers.
Detecting dialects and accents for tuning of a speech
recognition system has been investigated by other researchers
(see for example [3] and [5]).

VI. CONCLUSION

In this paper, we have presented a thorough review of the
Automatic Speech Recognition literature, including a look at
the research history, and a presentation of the state-of-the-art
of ASR approaches.

Further, we have presented possible applications of ASR
in air traffic control, and identified central criteria for ASR
approaches applicable to the ATC domain.

Following a detailed review of current ASR research
approaches, we identified existing challenges applications
of ASR in ATC, and discussed possible solutions to these
challenges.

Because of the operation critical nature of systems in the
ATC domain, there are still challenges that remain before ASR
systems can be applied fully both in training, testing and ATC
operations. However, as we have pointed out in this paper,
research is steadily providing better results, both in terms of
accuracy and speed.

Combining state-of-the art ASR approaches with contextual
information to include syntactic, semantic and pragmatic
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analysis in the recognition process, and the identification of
dialects, accents and languages holds great promise for the
application of automatic speech recognition in the air traffic
control domain.
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[59] Georg Stemmer, Elmar Nöth, and Heinrich Niemann. The utility
of semantic-pragmatic information and dialogue-state for speech
recognition in spoken dialogue systems. In Text, Speech and Dialogue,
pages 439–444. Springer, 2000.

[60] Stevenson. Oxford dictionary of english.
[61] Glenn Taylor, J Miller, and Jeff Maddox. Automating simulation-based

air traffic control. In Interservice/Industry Training, Simulation, and
Education Conference, volume 2193, 2005.

[62] R. Thangarajan, A. M. Natarajan, and M. Selvam. Word and triphone
based approaches in continuous speech recognition for tamil language.
WSEAS Trans. Sig. Proc., 4(3):76–85, March 2008.

[63] R Thangarajan, AM Natarajan, and M Selvam. Syllable modeling in
continuous speech recognition for tamil language. International Journal
of Speech Technology, 12(1):47–57, 2009.

[64] Edmondo Trentin and Marco Gori. A survey of hybrid ann/hmm models
for automatic speech recognition. Neurocomputing, 37(1):91–126, 2001.

[65] Thanassis Trikas. Automated speech recognition in air traffic
control. Technical report, Cambridge, Mass.: Massachusetts Institute
of Technology, Dept. of Aeronautics and Astronautics, Flight
Transportation Laboratory, 1987, 1987.

[66] Karen Ward. A speech act model of air traffic control dialogue. 1992.
[67] MARTA WRONISZEWSKA and JACEK DZIEDZIC. Voice command

recognition using hybrid genetic algorithm. TASK QUARTERLY,
14(4):377–396, 2010.

[68] Dong Yu and Li Deng. Deep neural network-hidden markov model
hybrid systems. In Automatic Speech Recognition, pages 99–116.
Springer, 2015.
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Appendix E

ATC Phraseology

A ABEAM ABLE ABOVE
ACCELERATION ACCEPT ACKNOWLEDGE ACROSS
ACTION ADDITIONAL ADJACENT ADJUST
ADS-B ADS-C ADS-CONTRACT ADVISE
ADVISED AERODROME AFFIRM AFTER
AGAIN AGREED AHEAD AILERONS
AIR AIRBORNE AIRCRAFT AIRSPACE
AIR-TAXI AIR-TAXIING ALERT ALL
ALTERNATIVE ALTIMETER ALTITUDE AND
ANOTHER APPEAR APPEARS APPROACH
APPROACHING APPROVAL APPROVED ARC
ARE AREA AROUND ARRIVAL
ARRIVING AS AT ATC
ATIS ATTENTION AVAILABLE AVIATION
AVOID BACK BACKTRACK BALLOON(S)
BASE BASIC BAY BE
BEFORE BELOW BETWEEN BLAST
BLOCK BOTH BOUND BRAKES
BRAKING BREAK BY CALL
CANCEL CANCELLED CAPABILITY CASE
CATEGORY CAUTION CAVOK CENTRE
CHANGE CHARLIE CHECK CIRCLE
CIRCLING CIRCUIT CLEAN CLEAR
CLEARANCE CLEARED CLEARS CLIMB
CLIMBING CLOSING CLOUD CODE
COEFFICIENT COMING COMMAND COMMENCE
COMMENCING COMPACTED COMPLETED CONDITION
CONDITIONS CONFIRM CONFLICT CONSTRUCTION
CONTACT CONTINUE CONTROL CONTROLLED
CONVENIENT CORRECT COURSE COVERED
CPDLC CROSS CROSSED CROSSING
CRUISE CURRENT DAMP DECELERATION
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DECISION DEGREE DEGREES DELAY
DEPARTING DEPARTURE DESCEND DESCENDING
DESCENT DETAILED DETAILS DETERMINED
DEVIATING DEWPOINT DIRECT DIRECTION
DISCONNECT DISCONNECTING DISCRETION DISREGARD
DISTANCE DME DO DOES
DOWN DOWNWIND DRY DUE
EIGHT ELEMENT ELEVATION EMERGENCY
ENTER EQUIPMENT ESTABLISH ESTABLISHED
ESTIMATE ESTIMATED ESTIMATING EXCEED
EXEMPTED EXPECT EXPECTED EXPEDITE
EXPEDITING EXTEND EXTENDED FAILURE
FAMILIAR FAST FEET FIELD
FINAL FIR FIRST FIX
FLASHING FLIGHT FLOODED FLY
FOLLOW FOLLOWED FOR FREE
FREQUENCY FROM FROZEN FULL
FURTHER GATE GBAS GEAR
GENERAL GIVE GIVING GLIDE
GNSS GO GOING GOOD
GREATER GROUND HALF HAND
HANDOVER HAVE HEADING HEIGHT
HELICOPTER HIGH HOLD HOLDING
HOUR I ICE ICING
IDENT IDENTIFICATION IDENTIFIED IF
ILS IMMEDIATE IMMEDIATELY IN
INBOUND INCREASE INDICATION INFORMATION
INSTRUCTIONS INTENTIONS INTERCEPT INTERCEPTION
INTERFERENCE INTO IS ISSUE
JET JOIN KILOMETRES KNOTS
LAND LANDING LATER LEAST
LEAVE LEAVING LEFT LESS
LEVEL(S) LIGHTING LIGHTS LINE
LINING LOCALIZER LOCKED LONG
LOOKING LOSE LOSS LOST
LOW MACH MAGNETIC MAINTAIN
MAKE MAY MAYDAY MEDIUM
MESSAGE METRES MILES MILLIMETRES
MINIMA MINIMUM MINUS MINUTE
MINUTES MLS MODE MONITOR
MONITORING MOVING NAVIGATION NEGATIVE
NEXT NO NORMAL NOSE
NOT NOTICE NOW NUMBER
OBSERVED OBSERVES OBSTACLE OBSTRUCTION
OCLOCK OF OFF OFFSET
OMIT ON ONE ONLY
OPERATIONS OPPOSITE OR ORBIT
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OUT OUTBOUND OVER OVERTAKING
OWN PARALLEL PARKING PASS
PASSING PATCHES PATH PATTERN
PER PILOT PLAN PLANNED
POINT POOR POSITION POSSIBLE
PRECEDING PRECISION PREPARE PRESENT
PRIMARY PROCEDURE PROCEED PROCEEDING
PROGRESS PUBLISHED PUSHBACK QFE
QNH QUICKLY RA RADAR
RADIAL RADIO RAIM RANGE
RATE REACH REACHING READ
READY RECEIVED RECEIVER RECLEARED
REDUCE RE-ENTER RELEASE RELEASED
REMAIN REMARKS REMOVED REPLY
REPORT REPORTED REPORTING REPORTS
REQUEST REQUESTS REQUIRED REQUIREMENT
RESET RESETTING REST RESTRICTION(S)
RESUME RESUMED RETURN RETURNING
REVERT REVISED REVISION RIDGES
RIGHT RNAV RNP ROCKING
ROGER ROUTE RUDDER RUNWAY
RUTS RVR RVSM S
SAME SAY SBAS SECOND
SECONDARY SECONDS SENDING SEPARATION
SERVICE SET SETTING SEVEN-SEVEN-ZERO-ZERO
SHORT SHORTLY SHOULD SHOW
SID SIDES SIGHT SIGN
SIXTY SKY SLIGHTLY SLIPSTREAM
SLOW SLOWER SLOWING SLOWLY
SLUSH SNOW SNOWDRIFTS SPEED
SQUAWK SQUAWKING SSR STAND
STANDBY STAR START STARTING
STATIONS STILL STOP STOPPING
STRAIGHT STRAIGHT-IN SURFACE SURVEILLANCE
TAKE TAKE-OFF TAKING TAS
TAXI TAXIWAY TCAS TEMPERATURE
TERMINAL TERMINATED TERMINATING TERRAIN
THAT THE THIS THREE
THRESHOLD THROUGH TIME TO
TOO TOUCH TOUCHDOWN TOW
TOWER TRACK TRAFFIC TRANSMISSION
TRANSMISSIONS TRANSMIT TRANSMITTER TRANSPONDER
TREATED TRUE TURBULENCE TURN
TURNS UHF UNABLE UNAVAILABLE
UNCHANGED UNDERNEATH UNIDENTIFIED UNKNOWN
UNMANNED UNRELIABLE UNSERVICEABLE UNTIL
UP VACATE VACATED VACATING



91

VECTOR VECTORING VECTORS VIA
VICINITY VISIBILITY VISUAL VISUALLY
VMC VOR WAIT WAKE
WANT WARNING WAS WATER
WAY WE WEATHER WELL
WET WHEEL WHEELS WHEN
WHILE WILL WIND WINGS
WITH WORK WRONG YOU
YOUR ZONE
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