
SAI: A Service Oriented Autonomic
IoT Platform

Master’s Thesis in Computer Science

Author: An Ngoc Lam
Advisor: Prof. Øystein Haugen

May 30, 2017
Halden, Norway

www.hiof.no

Abstract

Recent advances in the Internet of Thing (IoT) provide glimpses into the future of smart
systems which exploit sensors and devices to provide necessary support intelligently. With
the evolution of these IoT systems, the number of devices is also expected to grow consid-
erably; which makes IoT platforms reach the level of complexity where human operational
maintenance is getting out of hand. In order to manage such large scale systems, the
resources will need to become increasingly “autonomous”, capable of managing themselves
and cooperating with each other automatically. Such self-managing ability has been al-
ready introduced early in 2000s under the concept of Autonomic Computing.

By automating operations such as installation, protection or healing, Autonomic Com-
puting envisions intelligent computing system evolution without the need of human inter-
vention. Although there is a fair amount of research working on conceptual architectures
or theoretical designs, Autonomic Computing is still considered as a “hype topic” as very
little of it has been fully implemented. Achieving autonomicity is challenging because
of the fact that computing systems could change their states in a nondeterministic way.
However, as scalability becomes the considerable problem, Autonomic Computing is one
of the potential solutions as it is essential to enable large scaled systems with the abilities
of runtime monitoring and adaptation to protect themselves from quickly dissolving into
non-reliable environment.

In this thesis, we present our solution where we are using Semantic Web Technology as
the core components for achieving self-management properties associated with autonomic
computing. Firstly, an ontology model driven approach based on the autonomic computing
paradigm (MAPE-K) has been proposed as a reference knowledge framework to unify both
the managed data and management procedures. Secondly, Semantic Web Rules (SWRL)
are used as operating policies to modify system behavior with respect to changes in their
operating environment.

This work also provides the implementation of a Service-oriented Autonomic IoT Plat-
form (SAI) as a proof of concept. Given the overall knowledge about the architectures of
all systems in the network, the platform keeps updating the status of each entity in the
systems and querying through the rules to determine how these systems should evolve. The
platform has been validated under two different perspectives: (1) Processing performance
of the platform, (2) Cost of system adaptation during runtime. Experiments shows that
our approach achieves satisfactory results with regard to scalability. Although we have no
substantial test cases for adaptation plans, there is evidence that the deployed applications
also meet the requirements for IoT applications in term of performance metrics.

i

Acknowledgments

My warmest words of gratitude go to my academic supervisor, Professor Øystein Haugen,
for the patient guidance, encouragement and advice he has provided throughout my time
as his student. I have been extremely lucky to have a supervisor who cared so much about
my work, and who responded to my questions and queries so promptly, without him this
work would never have been completed.

I would also like to say thanks to all of my dear friends for your understanding and
interest, for helping me to enjoy my life-besides-work, and for your patience and support
during the time I am living in Norway.

Finally, I would like to thank Østfold University College, not only for providing the
financial support which allowed me to undertake my master study, but also for giving me
the opportunity to attend conferences and meet so many interesting people.

iii

Contents

Abstract i

Acknowledgments iii

List of Figures viii

List of Tables ix

Listings xi

1 Introduction 1
1.1 Motivation . 1
1.2 Towards the solution: the SAI platform . 3
1.3 Problem Statement . 5
1.4 Contribution . 5
1.5 Outline . 6

2 Background 9
2.1 Toward the challenges in IoT . 9
2.2 Autonomic Computing . 15
2.3 Autonomic computing in IoT platforms . 21

3 Related Work 25
3.1 Sarkar et al. approach (DIAT architecture) 25
3.2 Alaya et al. approach (IoT-O ontology) . 27
3.3 Cetina approach (MoRE Engine) . 29
3.4 Dautov approach (EXCLAIM framework) 31
3.5 Toward the technology gaps in autonomic IoT platform development 32

4 SAI platform: A Service-oriented Autonomic IoT Platform 35
4.1 Conceptual design of the SAI platform . 35
4.2 Implementation details of the SAI platform 44

5 The Smart Home Case Study 61

6 Evaluation and Discussion 69
6.1 Evaluating performance of the approach . 69
6.2 Discussing problem statements . 74

v

vi CONTENTS

7 Conclusion 79
7.1 Contributions . 79
7.2 Potential benefits of the approach . 81
7.3 Potential limitations of the approach . 81
7.4 Future Work . 82

Bibliography 88

List of Figures

1.1 Overview of the autonomic manager of SAI platform. 4

2.1 Service-oriented architecture for IoT (Adapted from [36]). 10
2.2 SensorCloud Architecture (Adapted from [9]). 11
2.3 Everyware Architecture (Adapted from [1]). 12
2.4 ThingSquare Architecture (Adapted from [5]). 12
2.5 SOCRADES Architecture (Adapted from [45]). 13
2.6 CEB Architecture (Adapted from [49]). 14
2.7 Arrowhead Local Cloud Architecture (Adapted from [48]). 15
2.8 MAPE-K feedback loops (Adapted from [32]). 18

3.1 DIAT Architecture (Adapted from [43]). 26
3.2 Mapping between various ontologies and layers of DIAT (Adapted from [39]). 26
3.3 functionalities and workflow of a DIAT observer (Adapted from [43]). 27
3.4 IoT-O ontology model (Adapted from [10]). 28
3.5 OM2M platform (Adapted from [10]). 29
3.6 Overview of the runtime reconfiguration of Cetina et al. approach (Adapted

from [27]). 29
3.7 Model-based reconfiguration process. MoRE translates contextual changes

into changes in the activation/deactivation of features. (Adapted from [27]). 30
3.8 Conceptual architecture of the EXCLAIM framework (Adapted from [18]). . 32

4.1 High level overview of the system architecture. 36
4.2 SAI platform architecture. 37
4.3 Conceptual architecture of the Autonomic Manager. 40
4.4 Architecture of a SAI application. 43
4.5 Overview of the communication between the applications and SAI platform. 43
4.6 Protege IDE GUI . 47
4.7 The SAI ontology Model . 48
4.8 An Example Of Devices Ontology Instance 50
4.9 Overview of the data flow of the reconfiguration process. 51

5.1 Overview of physical arrangement in the Smart Home Case Study. 62
5.2 A snapshot of output from the reasoning. 65
5.3 A snapshot of output from the monitoring. 66
5.4 A snapshot of output from an application. 67
5.5 A snapshot of output from the analysis . 68

vii

viii LIST OF FIGURES

6.1 Memory utilization of the SAI Platform with additional instances. 70
6.2 Autonomic performance of the SAI Platform with additional instances. . . . 71

List of Tables

2.1 Comparison of concepts of autonomicity applied to wireless sensor networks. 22

6.1 Cost of reconfiguration in each application. 73

ix

Listings

4.1 An example of a rule used in SAI application. 42
4.2 Sample code to fetch the temperature value from Restful API. 51
4.3 A single temperature value is represented in multiple RDF triples. 52
4.4 Initializing the C-SPARQL Engine and registering a stream. 52
4.5 Registering a C-SPARQL query for the engine. 52
4.6 Multiple RDF triples indicate a sensor has stopped working. 53
4.7 An example of SWRL rule indicating a ServiceDisruption. 53
4.8 Loading and initializing the ontology. 54
4.9 Adding a new service individual into the knowledge base. 54
4.10 Updating status of the devices. 54
4.11 Reasoning whether there are adaptation instances. 55
4.12 Finding corresponding service to upgrade to. 56
4.13 RDF triples represent a ServiceUpgrade Adaptation. 56
4.14 Syntax of the SAI application. 57
4.15 Rule used in the Fire Alarming Application. 58
4.16 RDF triples represent an application update. 59
4.17 Fire Alarming Application after reconfiguration. 59
5.1 Lamp Controlling Application. 62
5.2 Fire Monitoring Application. 63
5.3 Light Controlling Application. 63
5.4 An example of SWRL rule indicating a ServiceUpgrade. 64
5.5 C-SPARQL query for offline actuator. 66
5.6 An example of SWRL rule indicating a ServiceSubstitution. 66
5.7 C-SPARQL query for invalid sensor value. 67

xi

Chapter 1

Introduction

In recent years, the convincing forward steps in the development of Internet of Things
(IoT) has kindled the possibility of a lot of applications. One of the major challenges in the
realization of IoT applications is interoperability among various IoT entities [43], especially
with systems which use numerous, heterogeneous sensors and actuators. As these systems
evolve and mature, they are also expected to grow in size and complexity. Thus, the need for
a new architecture - comprising of smart control and actuation - has been identified by many
researchers. This architecture could not only address heterogeneity of IoT devices and
enable seamless addition of new devices across applications, but also support sophisticated
adaptation scenarios, such as modifying the actual structure or behavior of the applications
at runtime [43, 19]. As an example, consider a situation when several applications are using
the platform’s notification service (e.g, alarm system). At some point this service crashes,
the system should switch to an alternative service (e.g, light system) automatically and
transparently to the users. Such self-management ability was introduced by IBM under the
term autonomic computing [30] in 2001. Autonomic computing aims at an analogous goal
today, seeking to improve complex computing systems by decreasing human intervention
to a minimum [19]. Even though much effort has been put into the development of self-
management mechanisms for IoT, it is as yet immature.

In this thesis, we propose an approach to develop autonomic behaviors for IoT plat-
form by applying the IBM’s MAPE-K (see Figure 2.8) reference model. Our approach
makes intelligent use of existing solution strategies and products (such as Semantic Web
technology stack, IoT Ontologies and SWRL rules) to create a general purpose framework
from physical integration to application development.

1.1 Motivation

The main challenge in IoT is to manage and maintain a large number of devices and
respond to the generated events in a smart way. In connection with the evolution of IoT
infrastructure, increasing the number of sensors and actuators makes the system more
intelligent and highly responsive. Higher amount of sensed information and precise control
could help in achieving sophistication. Furthermore, there must be many devices (to
substitute) to make services fault tolerant and dependable. However, it also increases
the difficulties of maintaining and controlling the devices as well as managing enormous
amount of generated data. As envisaged in [43], we enlist some of the key factors that
dictate the challenges in IoT related research:

1

2 Chapter 1. Introduction

• Heterogeneity : IoT devices are deployed by different persons/authorities/entities.
They also have different communication protocols, functionalities, resolutions, etc.
Thus, enabling seamless integration of these devices is a huge challenge. The degree
of complexity increases when some of these simple devices are connected to form a
complex network.

• Scalability : The rapid growth of embedded technologies is leading to enormous de-
ployment of miniaturized devices (sensors, actuators, etc.). As the number of devices
increases, the data generated by them also become massive. Thus, handling the
growth of number of devices is a big challenge in IoT.

• Interoperability : there are many entities comprising of human and non-human objects
in an IoT application. Seamless interaction amongst the various entities is crucial
to envisage the vision of IoT. The interaction amongst different objects magnifies,
especially when each actor is managed differently.

• Security & Privacy : Due to the large number of actors involved in IoT, ensuring
data authentication, data access control, data consistency and protection of data are
a few core issues. To evolve a holistic system design, information security, privacy
and data protection need to be addressed properly.

The existing limitations in IoT platforms make it necessary to involve developers in
the application life cycle after it has been deployed. That is, they have to monitor the
application at run-time, detect any critical situation, propose and implement corresponding
adaptation by rewriting, recompiling and redeploying the application [19]. Therefore, as the
systems grow into large scale, it is necessary for IoT applications to dynamically adapt their
behaviors at run-time in response to the changes in the surrounding physical environment as
well as the supporting computing infrastructure with minimal human maintenance. Self-
adaptability is emerging as a necessary underlying capability, especially for such highly
dynamic systems [27] as these systems have reached the level of complexity where human
effort required for deployment and maintenance is getting out of hand [27]. With the
increasingly number of digital services added to our surroundings, simplicity is highly
required by users and operators [15, 28].

Autonomic Computing envisions computing environments which evolve without the
need for human intervention [27]. Inspired by biology, autonomic computing has evolved as
a discipline to create software systems and applications that are capable of self-management
- a key feature of complex and dynamic computing system [19]. Although there is a
fair amount of autonomic computing research working on architectures and theoretical
design, very little of it has been fully implemented. There are also fewer work focusing on
developing an autonomic IoT platform, thus there is great challenge to create autonomic
behaviors in IoT context.

The autonomic behavior of a computer system is typically achieved through implement-
ing closed control loops which iteratively observe the systems surrounding environment
and context, and react accordingly [19]. The Monitor-Analyze-Plan-Execute-Knowledge
(MAPE-K) model from IBM is one the fundamental reference model for such closed adap-
tation loop [19]. It consists of four steps - Monitoring, Analyze, Plan, Execute - and a
unifying Knowledge component which conceptually represents all the information needed
to perform these four activities.

1.2. Towards the solution: the SAI platform 3

In this regards, real-time data monitoring and analysis in the IoT context could be
seen as a multi-faceted challenge as they involves following aspects [18]:

• Volume: the sensed data could become extremely large as the system evolves.

• Velocity : requiring on-the-fly data processing as the sensors produce data continu-
ously.

• Variety : the data is generated from different heterogeneous resources and in various
forms and formats.

• Veracity : the data is often uncertain, flawed and rapidly changing.

In addition, Planing and Execution also deal with the same problem as these processes
need to respond to the real-time changes not only within an interval that is acceptable
in a particular IoT context but also with the cost satisfying the physical limitation of the
deploying hardwares. Finally, a unified Knowledge representation which has good coverage
of the IoT aspects also plays an important role in the development of an autonomic IoT
platform.

Taking all these challenges into consideration, we presented our approach which makes
intelligent uses and improvements of the existing solutions and products which deal with
the same situation to develop an autonomic solution for IoT platform towards the afore-
mentioned IoT problems (i.e., heterogeneity, scalability, interoperability, etc.).

1.2 Towards the solution: the SAI platform

Following the MAPE-K model for implementing closed adaptation loops, we develop a
Service-oriented Autonomic IoT (SAI) platform. One of the proposed approach which
applied the MAPE-K model to support self-governance in service-based cloud platform
is the EXCLAIM framework designed by Dautov [18]. This framework exploited existing
technology in Semantic Sensor Web (SSN) and Big Data Processing to overcome the prob-
lem of monitoring and analyzing great scale of data in cloud computing. In order words, it
aims at creating a cloud monitoring and analysis framework, which is very similar to our
goal - achieving a self-management large-scale IoT platform. In fact, in our work, we also
apply the techniques from SSN and corresponding stream processing engines to address
the challenges of monitoring and analyzing.

While the problems associated with timely processing of sensor data have been rela-
tively successfully tackled by the advances in networking and hardware technologies [18],
the problem of carrying out the autonomic adaptation is still pressing. To address these
challenges, , from the perspective of IoT application development, we propose using com-
plex rules to model the applications not only to improve the flexibility in modifying the
application but also to simplify the process of analyzing the applications and updating
knowledge base.

One important aspect of IoT infrastructure is overcoming the heterogeneity of various
hardware and software vendors. However, this lack of a unified data representation has
been addressed in the context of Semantic Sensor Web (SSW) - a promising combination of
two research areas the Semantic Web and the Sensor Web [44]. Therefore, Web Ontology
Language (OWL) from the Semantic Web technology stack could be used to represent
data in a uniform and homogeneous manner in order to facilitate representing meaningful

4 Chapter 1. Introduction

hardware description and situation awareness [18]. Fortunately, in the IoT domain, there
are also existing work on designing ontologies to support semantic interoperability which
can be extended for our purpose.

Figure 1.1: Overview of the autonomic manager of SAI platform.

Figure 1.1 illustrates an overview of the functionalities and technologies used in each
autonomic component in our solution. Following the presented idea, we created a proof-of-
concept prototype and validated it with a Smart Home Case Study. When implementing
the prototype, we reused existing technologies from the SSW and IoT domain:

• Web Ontology Language (OWL) to develop a common knowledge model of managed
elements (IoT applications).

• Resource Description Framework (RDF) and JavaScript Object Notation (JSON) for
representing the semantic data stream as well as SPARQL Protocol and RDF Query
Language (SPARQL) for RDF stream processing engine.

• Semantic Web Rule Language (SWRL) for detecting critical situations and planning
adaptations.

The experiments show that we are able to successfully detect critical situations and
reconfigure the application with acceptable response time. In addition, the results also
indicate noticeable efficiency in physical source consumption at the application level.

1.3. Problem Statement 5

1.3 Problem Statement

With the presented idea, we aim to address the outlined challenges toward the direction
of achieving self-management in IoT system with regard to large amount of heterogeneous
entities. In particular, the problem that this thesis addresses can be stated by means of
the following problem statements:

• Research Question 1. How to design an autonomic IoT platform addressing the
system evolution challenges? Answering this question requires thorough understand-
ing of architecture of the existing IoT platforms as well as identification of the main
supporting features of those platforms toward aforementioned IoT problems (e.g.
heterogeneity, interoperability, scalability). It also refers to applying existing IoT in-
frastructures along with the state-of-the-art autonomic approach into IoT platform
development.

• Research Question 2. How to model the internal architecture of IoT applications
in order to facilitate adaptation process? This question involves modeling IoT appli-
cations to support building ontology and autonomic management with regard to the
challenges of IoT development.

• Research Question 3. How to realize the proposed design for autonomic computing
into executable implementation satisfying reasonable IoT performance requirement?
This refers to designing and implementing the framework following the established
software engineering practices, including support for scalability, processing perfor-
mance under the IoT context.

In order to answer these questions, we also present the implementation of our proposed
layered IoT platform, called SAI (Service-oriented Autonomic IoT platform). We believe
that it has potential to tackle many technical challenges described earlier. It also supports
the desired characteristics of IoT objects and applications. With the help of a composite
case study, we showcase the feasibility of the proposed approach, especially for IoT ap-
plications. We believe that the research related to the above questions can contribute to
push both researchers and practitioners toward a sound and seamless engineering support
for autonomic computing.

1.4 Contribution

The main contribution of this thesis has been developed to answer the research questions
presented above. In summary, the main contributions of our research work are:

1. A software engineering approach for achieving autonomic computing in
IoT platform which combines the MAPE-K reference model and the existing Se-
mantic Sensor Web Technology. This approach exploits the concept of interpreting
each IoT entity (e.g., applications, devices, etc.) as a logical sensor and the autonomic
manager as distributed network of such sensors, and allowing individual application
sensors to be equipped with respective self-governance knowledge (e.g, self-diagnosis,
self-adaptation policies, etc.) to enable decoupled, modular and distributed organi-
zation of the knowledge base.

6 Chapter 1. Introduction

On one hand, once deployed properly, all the entities could operate and communicate
with each other independently from the autonomic manager. On the other hand, the
autonomic manager keeps updating the knowledge base (by integrating new entities
or updating the entities status) and suggesting reorganization plan if there are any.
Thus, minimizing the amount of unnecessary communication while addressing the
heterogeneity of IoT entities.

2. An extension of IoT ontology and application modeling for autonomic man-
agement. We extended the existing IoT ontologies with the concept of application
and rules to support interoperability and autonomic management at semantic level.
Furthermore, we suggest modeling application as a set of rules in order to facilitate
the process of updating the knowledge base and enhance usability.

3. The SAI platform from physical device abstraction to application modeling. As ex-
plained in further detail, SAI platform automatically analyzes the application models,
updates the knowledge base and determines how an application should be reconfig-
ured with respect to the operating environment changes, and then it modifies the
application accordingly. The performance of the whole system has been validated
under the perspectives of IoT platform development from two sides:

• The SAI platform. Since IoT systems involves substantial amount of entities
which could be physical devices, applications or even operators, the platform
should be able to perform at the same efficiency requirements for all entities. We
have evaluated the platform from the point of view of latency of the generated
reconfiguration.

• The SAI Application. IoT applications might be deployed on hardwares
which have limited physical resources while requiring relatively low processing
latency. Therefore, we also evaluated the resource consumption of applications
deployed on our platform as well as the cost of reconfiguration in term of re-
sponse time.

1.5 Outline

This thesis consists of 7 chapters as follows:
Chapter 2: Background. This Chapter presents the main concepts and characteristics

of the approaches related with this thesis. Firstly, it explains the main purpose of the
presented research effort - addressing the challenges in IoT research. The chapter starts
with introducing some well-known IoT platform as well as discussing their solutions toward
the presented challenges. With the evolution of IoT systems, these platform requires the
capabilities for self-governance. Accordingly, the next section of this chapter explains
the main principles of autonomic computing which is also our approach to support self-
governance in IoT platforms. The chapter also introduces the MAPE-K reference model
for creating autonomic systems, which will act as the main reference model to our solution.

Chapter 3: Related Work. This chapter shows an analysis of the current state of the
art approaches to support self-governance. In particular, we present the most important
research that we found relevant to the IoT domain as well as our aim. The chapter
concludes with several observations and identified research gaps to be addressed by our
own research work.

1.5. Outline 7

Chapter 4: SAI platform: A Service-oriented Autonomic IoT Platform. This chapter
firstly introduces conceptual design of our proposed SAI platform. It covers the main build-
ing blocks of the platform as well as the process of executing autonomic capabilities of the
autonomic manager. The second part of this chapter provides lower level implementation
details of the platform. It also brief the reader on the ontologies which was extended in
order to model the managed elements.

Chapter 5: The Smart Home Case Study. This chapter presents the case study of a
Smart Home, which reconfigured its application according to the changes in the physical
environment. This case study is intended to demonstrated how the platform would function
in order to support autonomic behaviors.

Chapter 6: Evaluation and Discussion. This chapter presents approach to evaluate
our platform with respect to its physical performance. The chapter concludes with the
summary and discussion on the research questions raised in the introduction.

Chapter 7: Conclusion. The chapter summaries the whole thesis with an overview of
main research contributions as well as potential benefits and shortcomings associated with
our approach. It also outlines several directions as well as improvements for future work.

Chapter 2

Background

The background in our case consists of the approaches that are related to the objective
of this work: to achieve autonomic computing in IoT platform in order to address IoT
development problems. Therefore, this chapter presents the main concepts and character-
istic of the approach in order to provide a basic background for understanding the overall
thesis work. Specifically, the chapter starts with exploring the various well-known IoT
platforms as well as their approach toward the challenges in IoT development. By listing
and explaining the main characteristics of these platforms, we also bring to the reader’s
attention the existing challenge of insufficient capabilities for self-governance, caused by
the ever-growing complexity and dynamicity of IoT systems. This challenge can be ad-
dressed by applying the principle of Autonomic Computing, whose goal is to reduce the
role of human administrators in run-time operation of complex computing systems, which
is presented in the second part of this chapter. We also explain in detail the fundamental
reference model for implementing autonomic systems, known as MAPE-K, as a baseline for
our work. Finally, the chapter concludes with an overview of autonomic features currently
present in IoT platforms - this is expected to demonstrate the need for more intensive
research efforts to be put into this area.

2.1 Toward the challenges in IoT

In recent years, the Internet of Thing (IoT), a global network of connected devices having
identities and virtual personalities operating in smart spaces and using intelligent inter-
faces to communicate within social, environmental, and user contexts [13], has attracted
considerable research attention. This vision of IoT enables the future of a smart world
which will comprise of trillions of everyday objects and surrounding environments con-
nected and managed through a range of communication networks and cloud-based servers
[8]. However, the heterogeneity of such communications is challenged by the lack of a shared
infrastructure and common standards for the IoT [13]. Therefore, it is necessary to have
a powerful architecture that offers easy integration, control, communications and useful
applications [46]. The ultimate goal is to facilitate and enable the anticipated ubiquitous
communications between things with minimal human interventions [25]. To address this
problem, many research projects have focused on developing communication standards as
well as proposing new software architectures in which Service oriented Architecture (SoA)
is a dominant solution as it ensures the interoperability among the heterogeneous devices
in multiple ways [36]. Figure 2.1 provides a generic SoA consisting of four layers with

9

10 Chapter 2. Background

Figure 2.1: Service-oriented architecture for IoT (Adapted from [36]).

distinguished functionalities.
There have been a number of proposed architectures which are developed based on

SoA. The following section introduces the most common IoT platforms as well as discusses
their proposed solutions towards IoT issues:

1. CitySense [38]
To support the development of wireless system in smart-city, in 2008, Harvard Univer-
sity carried out the CitySense project which deployed about 100 Linuxbased embed-
ded personal computers outfitted with dual 802.11a/b/g radios and various sensors,
mounted on buildings and streetlights. By providing an open infrastructure, City-
Sense can be readily customized to support a wide range of applications. Users can
reprogram and monitor CitySense nodes via the Internet, allowing diverse research
groups to leverage the infrastructure remotely. However, this is an ad-hoc solution
which lacks supports for automatic, end-to-end integration that incorporates devices
of all types and scales [19].

2. Thingworx [6]
This is a commercial platform developed by PTC 1 which provides capabilities to
create IoT applications through cloud services. The ThingWorx Ready Program [6]
allows device vendors to integrate their products with the ThingWorx rapid applica-
tion development platform in order to reduce the time, cost, and risk required to build
innovative Machine-to-Machine (M2M) and IoT applications. Device heterogeneity
is also supported by the platform but assuming that the smart objects are capable
of communication with the platform over Hypertext Transfer Protocol (HTTP).

3. SensorCloud [4]
SensorCloud is “an infrastructure that allows truly pervasive computation using sen-
sors as an interface between physical and cyber worlds, the data-compute clusters as
the cyber backbone and the internet as the communication medium”. SensorCloud
provides the users abilities to gather, access, process, visualize, analyze, store, share,
and search for a large number of sensor data from several types of applications and
by using the computational IT and storage resources of the cloud [9]. By virtualizing

1https://www.ptc.com

https://www.ptc.com

2.1. Toward the challenges in IoT 11

the physical sensors, SensorCloud allows the users not to worry about the status of
their connected physical sensors (i.e., whether a fault free or not), thus improving the
flexibility in application development and addressing problem when increasing size of
the sensor network. However, the infrastructure supports auto-integration solution
to only limited types of devices and lacks support for larger and heterogeneous types
of sensors and devices.

Figure 2.2: SensorCloud Architecture (Adapted from [9]).

4. Everyware [1]
Everyware is a cloud architecture that supports fast development of IoT applications
which can be scaled up to thousands of devices. The solutions are a combination
of hardware, firmware, operating systems, programming frameworks and external
infrastructure that enable customers focus on their core activities. Similar to Sensor-
Cloud, Everyware address the autonomic integration problem by leveraging gateway

12 Chapter 2. Background

nodes to mediate the smart objects and the platforms. However, it supports only
limited devices which use their M2M technology.

Figure 2.3: Everyware Architecture (Adapted from [1]).

5. ThingSquare [5]
ThingSquare provides both firmware and software platform to support development
of IoT applications. Similar to SensorCloud, the platform support autonomic in-
tegration with very limited devices. Autonomy is also introduced in the firmware
platform which automatically creates a self-healing wireless network that automati-
cally detects and heals wireless problems.

Figure 2.4: ThingSquare Architecture (Adapted from [5]).

6. Service-Oriented Cross-layer Infrastructure for Distributed smart Embed-
ded devices (SOCRADES) [45]
SOCRADES is another IOT architecture that supports integrating devices which
use different standards for data and communication through the service-oriented ap-
proach. This is part of the European research project Service-Oriented Cross-layer
infRAstructure for Distributed smart Embedded devices SOCRADES. SOCRADES

2.1. Toward the challenges in IoT 13

implements a device profile for Web services (DPWS) plug-in that can dynamically
discover and integrate any DPWS device. DPWS is fully aligned with Web services
technology and includes numerous extension points allowing for seamless integra-
tion of device-provided services (which is written in the device abstraction layer) in
enterprise-wide application scenarios.

Figure 2.5: SOCRADES Architecture (Adapted from [45]).

7. Xively [7]
Similar to other SOA architectures that provides a Platform as a Service built for
the IoT, Xively includes directory services, data services, a trust engine for security
and web-based management application. The platform also address scaling problem,
however, supports only HTTP devices.

8. EvryThng [2]
EvryThng offers an IoT Platform as a Service that connects consumer products to the
Web and manages real-time data to drive applications. The platform concentrates
on enterprise services which requires end-to-end security and performance at massive
scale. It supports very limited devices which communicate with the platform over
HTTP.

9. IFTTT [3]
IFTTT is an abbreviation of “If This Then That” which is a web-based service that
allows users to create chains of simple conditional statements, called “recipes”, which
are triggered based on changes to other web services. Thus, it does not provide any
programmability but rule-based services. Auto integration is also supported by the
platform but only with HTTP devices.

10. Cloud-Edge-Beneath (CEB) [49]
CEB is a SoA based architecture provided by the Mobile and Pervasive Computing

14 Chapter 2. Background

Laboratory in University of Florida. The framework allows for automatic integration
of heterogeneous devices by using an Atlas Device Integration Platform [34] as a
universal software/hardware adapter to connect a variety of sensor and other devices
into a smart space.

Figure 2.6: CEB Architecture (Adapted from [49]).

11. Arrowhead [48]
Arrowhead is an IoT framework built on the fundamental principles of SOA which
address the interoperability issue by abstracting any IoTs to services, thus, improv-
ing flexibility and scalability. The creation of automation is based on the idea of
local automation clouds which include the devices and systems required to perform
the desired automation tasks (see Figure 2.7). A local Arrowhead Framework cloud
can be compared to global cloud providing real-time data handling, system security,
scalability and automation support. Automation support is achieved through the
presence of three core services: Orchestration system stating which consumers could
exchange services with which producers, Service Registry System keeping track of all
services, Authorization system responsible for devices authentication and authoriza-
tion. At the moment of conducting this survey, Arrowhead framework only supports
devices and systems which follow its authentication solutions.

The above list is not complete as the number of IoT platforms which are either commer-
cial or open-source is increasing with the advent of IoT applications. However, it provides
an insight of current progress of IoT technology as well as motivation for developing re-
search idea in this area. In summary, most of the above platforms separate the device

2.2. Autonomic Computing 15

Figure 2.7: Arrowhead Local Cloud Architecture (Adapted from [48]).

integration from service/application development and support auto integration, which en-
able autonomic device integration stemming from the devices and requiring no engineering
specialties. Among these solutions, SensorCloud, ThingSquare and IFTTT provide a closed
infrastructure that supports auto-integration solutions to only limited types of devices and
lacks support for larger and heterogeneous types of sensors and devices. On the contrary,
other platforms which support device heterogeneity either assume that the smart objects
are capable of communicating with the platform over HTTP or leverage gateway nodes
to mediate the smart objects and the platforms. Some advanced platforms address the
scalability and interoperability by virtualizing the physical devices, providing accesses to
these devices through services, communication between devices is auto managed internally
by the cloud platforms. Autonomic computing is also introduced in some platforms un-
der the level of self-healing or self-configured, however, these solutions are still ad-hoc or
immature.

2.2 Autonomic Computing

In October 2001, IBM released a manifesto [30] describing the vision of Autonomic Com-
puting as a method to countermeasure the complexity of software system by making them
self-managing, however, probably making the systems even more complex. The complexity
is argued to be embedded in the system infrastructure which in turn can be automated.

Autonomic computing is a concept that “brings together many fields of computing with
the purpose of creating systems that self-manage”[35]. Inspired by the biological concept
of autonomic systems, IBM introduced the term autonomic computing to refer to bodily
task which function unconsciously [30]. IBM compared complex computing systems to the
human body, and suggested that such systems should also demonstrate certain autonomic
properties such as independently taking care of regular maintenance and optimization
tasks, thus reducing the workload on system administrators [19]. As stated by Alan Ganek
who is on behalf of Autonomic Computing Research in IBM:

“Autonomic computing is the ability of systems to be more self-managing. The
term autonomic comes from the autonomic nervous system, which controls
many organs and muscles in the human body. Usually, we are unaware of its
workings because it functions in an involuntary, reflexive manner – for example,

16 Chapter 2. Background

we do not notice when our heart beats faster or our blood vessels change size in
response to temperature, posture, food intake, stressful experiences and other
changes to which we’re exposed. And, by the way, our autonomic nervous
system is always working”

An autonomic computing system must be able to configure and reconfigure itself under
varying and even unpredictable conditions [11]. System configuration must occur automat-
ically and dynamic adjustments must be made according to that configuration in order to
best handle changing environments. Depending on the extent to which modern comput-
ing systems support self-management, we can distinguish 5 levels of autonomicity: basic,
managed, predictive, adaptive, fully autonomic level [29]. They are explained as follows:

• Basic Level: At this level, each system components is managed by IT professionals
manually. Their generated data is manually collected, analyzed and transformed into
adaptation actions by IT professionals. Additionally, all the management tasks, such
as system configuration, optimization, healing, protection, are performed manually.
These challenges require the IT staff to be highly experienced and skilled.

• Managed Level: At this level, system monitoring is applied. The data from dif-
ferent system components are automatically collected in on place, providing human
operators with a more holistic view on the current state of the whole system. Most
analysis is done by IT professionals, but it is starting point of automation of IT tasks.

• Predictive Level: At this level, individual components have the ability to moni-
tor themselves, analyze and asses situation and context, and offer adaptation plan.
Therefore, dependency on persons is reduced and decision making is improved.

• Adaptive Level: At this level, the system is equipped with necessary abilities of
detecting and diagnosing potential critical situations and take actions accordingly in
order to perform self-adaptations.

• Autonomic Level: At this level, system operations are solely managed by business
policies established by the administrator at design time. The IT staff is only required
whenever there is a change in the self-management policies.

According to Paul Horn from IBM, who first suggested the systematic scientific ap-
proach of autonomic computing, the four fundamental properties of automatic systems are
[30]:

• Self-configuration: the system configures itself according to high-level goals. This
means it is able to install and set up based on the needs of the platform and the user.

• Self-optimization: the system is able to optimize the use of resources. It could
decide to initiate changes in order to improve performance or quality of the services.

• Self-healing: the system detects and diagnoses a variety of problems automatically
or even attempt to fix the problem if possible.

• Self-protection: the system protects itself from malicious attacks or inadvertent
changes from the users. It could also anticipate security breaches and prevent them
from occurring in the first place.

2.2. Autonomic Computing 17

One of the possible ways of achieving these 4 characteristics is through self-reflection.
A self-reflective system uses causally connected self-representation to support the inspec-
tion and adaptation of that system [16]. Such system is context-aware and self-aware of its
internal structure and able to perform run-time adaptations, so that applied adaptations
dynamically reflect on the state of the system (thus, possibly, triggering another adapta-
tion cycle) [20]. The motivation behind self-reflection stems from the necessity to have
systems which are capable of reacting to various changes in the environment dynamically,
based on the provided knowledge. In such scenarios, the capability of a remote system to
perform automatic adaptations at run-time within a specific time frame is often of a great
importance [19]. The concept of self-reflective system can be summarized in the following
characteristics [40]:

• Self-awareness or Self-Knowledge of an autonomic system is the ability of un-
derstanding its internal structure, relationships between sub-component, available
resources, etc.

• Context Awareness is the ability to observe the execution environment as well as
interpret these observations.

• Openness refers to the ability of an autonomic system to operate in a heterogeneous
environment and must be portable across multiple platforms.

• Behavior Anticipatory is the ability of anticipating the optimal required resources
in order to meet emerging users requirements while hiding from them the complexity.

Achieving these four characteristics for a self-reflective system requires some sort of a
self-representation knowledge repository, which would provide all the necessary information
to enable self-reflection. To facilitate self-awareness and context-awareness, this knowledge
base has to be populated with information about the internal structure and organization
of the autonomic component, as well as its environment and context and possible ways of
perceiving them. To support openness, it has to include information about how to connect
and interact with other elements in various environments. Finally, to anticipate behavior,
it is important to have an extensive set of policies and rules determining the ability of the
system to predict various changes [18]. As explained in the next section, this self-reflective
knowledge component plays an important role in implementing closed feedback loops when
engineering autonomic systems.

2.2.1 MAPE-K Reference Model

Autonomic computing is implemented by an autonomic manager component and a man-
aged resource component using the MAPE-K control loop (Monitor, Analyse, Plan, Exe-
cute, Knowledge) [31]. This MAPE-K control loop is more like a structural arrangement
than a sequential control flow.

IBM’s vision of autonomic computing was influenced by agent theory, and the MAPE-
K model is similar to and was probably inspired by the generic model for intelligent agents
proposed by Russell and Norvig, in which an intelligent agent perceives its environment
through sensors, and uses these percepts to determine actions to execute on the environ-
ment [42]. This process of sensing and acting upon sensed values clearly corresponds to
the closed adaptation loop of the MAPE-K model [19]. Applying the model to the domain
of self-management in IoT platform, we now consider each of its elements in more details.

18 Chapter 2. Background

Figure 2.8: MAPE-K feedback loops (Adapted from [32]).

Managed Element

The managed elements represent any software and hardware resources which are enhanced
with autonomic behavior by coupling with an autonomic manager. Managed elements are
equipped with sensors which are either software or hardware components responsible for
collecting information about the managed elements. Sensors are typically associated with
metrics – certain characteristics of the managed element, which need to be monitored (e.g.,
response time, memory utilization, network bandwidth, etc.) [18]. Managed elements are
also equipped with effectors which are components responsible for carrying out adaptation
actions to the managed elements [11]. Depending on the scale, adaptations can be coarse-
grained (e.g., completely substituting a malfunctioning Web service) or fine-grained (e.g.,
reconfiguring that service to fix it) [18].

Autonomic Manager and Knowledge

The autonomic manager is the core element of the model which is a software component
that implements the whole MAPE-K functionality.The autonomic manager can be con-
figured by human administrators using high-level goals. It uses the monitored data from
sensors and internal knowledge of the system to plan and execute low-level actions that
are necessary to achieve those goals.

The internal knowledge of the system is often an architectural model of the managed
element – a formal representation of its internal organization, subcomponents, and con-
nections between them [27]. Another important component of the knowledge base is a set
of diagnosis and adaptation goals which serve to analyses critical situations and choosing

2.2. Autonomic Computing 19

a relevant adaptation plan among existing alternatives [18]. These goals are usually ex-
pressed using Event Conditional Action (ECA) policies, goal policies or utility function
policies [33]:

• ECA policies take the form “when event occurs and condition holds, then execute
actions”. They have been intensely studied for the management of distributed sys-
tems. However, the difficulty with ECA policies is that conflicts between policies can
arise and be hard to detect [27].

• Goal policies are at higher level. They specify criteria that characterize desirable
states and leave the task of finding how to achieve those states to the system, thus
requiring planing on the part of autonomic manager and are more resource-intensive
than ECA-policies. However, they still suffer from the problem that all states are
classified as either desirable or undesirable; whenever a desirable state can not be
reached, the system can not determine which undesirable state is least bad [27].

• Utility functions solve the above problem by defining a quantitative level of de-
sirability to each state. The major problem with utility functions is that they can
be extremely hard to define because every aspect that influences the decision of the
utility function must be quantified [27].

The knowledge base can also include historical observations, data logs, repositories of
previously detected critical situations and applied adaptation solutions, etc., which implies
that the knowledge base is not designed to be static (i.e., populated once by administrators
at design-time), but rather has to evolve dynamically over time by accumulating new
information at run-time.

Monitoring

The monitoring component of the MAPE-K loop involves gathering information about
the environment which are of significance to the self-management behavior of the systems
[27]. Monitoring could be considered as the process of collecting and reporting relevant
information about the execution and evolution of a computer system, and can be performed
by various mechanisms [18]. The Autonomic Manager requires these appropriate monitored
data to recognize failures or sub-optimal performance of the the Managed Element and
execute appropriate changes to the system [27]. The types of monitored properties, and
the sensors used, will often be application-specific, just as actuators used to execute changes
to the Managed Element are also application-specific [31]. Two types of monitoring are
usually specified in the literature as follows:

• Passive monitoring also known as non-intrusive, does not require any measure-
ment code in the system to be added, but rather observe the actual interaction of
the running system [27]. For example, in order to monitor some metrics of a software
component, in Linux there are special commands (e.g., top or vmstat return CPU
utilization per process) [31]. Linux also provides the /proc directory, which contains
runtime system information, such as current CPU and memory utilization levels for
the whole system and for each process individually, information about mounted de-
vices, hardware configuration, etc [31]. Similar passive monitoring tools exist for
most operating system. The drawback of this approach is that often monitored in-
formation is not enough to unambiguously reason about possible sources of problems
in the system.

20 Chapter 2. Background

• Active monitoring means engineering the software at some level, e.g, modifying
and adding code to the implementation of the application or the operating system,
to capture function or system calls [27]. This can often be automated to some
extend. This kind of monitoring is also known as intrusive, as it inevitably implies
making changes to the Managed Element by instrumenting it with probes to facilitate
inspection of its characteristics. As with code instrumentation, it is essential that this
is done with care, since the instrumentation can itself potentially affect the subject’s
performance, providing a flawed picture of its inherent capabilities [18].

As self-managing systems grow and the number of sensors increases, monitoring activ-
ities may result in a considerable performance overhead [19]. That is, in a system with
thousands of probes constantly generating values, the monitoring component may not be
able to cope with this overwhelming amount of data. To avoid ‘bottlenecks’, system ar-
chitects have to distinguish between values which are relevant to self-managing activities
and so called ‘noise’ data, which can be neglected [18]. Another potential solution to this
problem is performing high-level monitoring first, and then, once an anomaly is localized,
activate additional monitoring resources [24]. Therefore, computational resources are pro-
visioned to the monitoring component on-demand, only when a problem is detected, thus
resulting in a higher efficiency and resource consumption.

Analysis

Analysis component provides mechanisms that model complex situations based on the re-
ceived details. This allows the central authority element to learn about the environment.
This module can also be used to detect failures or sub-optimal behavior of the Managed
Element. For instance, a simplest analysis engine based on ECA rules, simply detects situa-
tions when a single monitored value is exceeding its threshold (e.g., CPU utilization reaches
100%), and immediately sends this diagnosis to the planning component. However, it could
be a challenging task, especially in a distributed environment where the monitored data
is coming from multiple remote sources. Based on the internal knowledge, the Autonomic
Manager should decide whether a particular combination of monitored values represents
or may lead to a failure [18]. One possible solution is utilizing techniques from the area
of Complex Event Processing (CEP) which considers the changes in the environment as
atomic events [17]. Sequences of atomic events build up complex events, which in turn,
may be part of an even more complex event, thus building event hierarchies. For example,
when CPU and memory utilization levels of several VMs running on the same physical
machine reach 100% (i.e., atomic events) within a short period of time, this indicates that
the utilization of the whole physical machine has reached its limit (i.e., the complex event)
[18].

Planning and Execution

Plan component provides mechanisms that guide actions to be effected on the Managed
Element with the help of higher level policies, rules, and regulations. This module plans
further action on the basis of the constraints that have been imposed in the system. The
action is performed to achieve system goals and objectives. For instance, ECA rules directly
produce adaptation plans from specific event combinations. Execute component carries
out the adaptation plan generated at the previous stage to the managed element by means

2.3. Autonomic computing in IoT platforms 21

of effectors. Once changes have been applied to the system, a new adaptation cycle is
triggered, newly generated values are monitored and analyzed, an appropriate adaptation
plan is generated and executed, and so on.

However, applying adaptation plan in a stateless manner where the Autonomic Manager
keeps no information on state of the Managed ELement and relies solely on the current
sensor data could be problematic [27]. Indeed, it is necessary that the autonomic should
keep information about the state of the Manage Element in a context model that can
be updated progressively through sensors[27]. This model can be used to reason about
the Managed Element in order to plan adaptations. The advantage of this model-based
approach is that, under the consumption that the Manged Element is correctly manifested
in the model, the architectural model can be used to verify that the system integrity is
preserved when applying an adaptation, thus guaranteeing that the system will operate
properly after executing the adaption [27]. The use of the model-based approach can result
in the delay of the time when an adaption plan occurs in the Managed Element. In fact,
if the delay is sufficiently high and the system changes frequently, verification step where
the adaption plan applied to the model can be skipped, thus, the plan may be created and
sent for execution under the belief that the actual systems was in a particular state [27].

2.3 Autonomic computing in IoT platforms

From a system-level perspective, IoT could be considered as a highly dynamic and radically
distributed networked system which is comprised of many smart objects producing and
consuming information. The ability to interact with the physical realm is achieved through
the presence of sensors which are able to detect input from the physical environment and
transform them into digital signal as well as through the presence of actuators which
are able to trigger actions onto the physical environment [37]. As scalability is expected
to become a major issue due to the extremely large scale of the resulting system, and
considering also the high level of dynamism in the network (as smart objects can move and
create adhoc connections with nearby ones following unpredictable patterns), the quest for
inclusion of self-management and autonomic capabilities is expected to become a major
driver in the development of IoT solutions [21, 26].

In recent years, achieving atomicity in the IoT has begun to attract much research
attention. In particular, most of the research focus on the practical implementation of
autonomy using self-star (self-*) behavior in IoT devices in order to reduced the need
for manual intervention and management at physical level. Table 2.1 summarizes some
work that has been done in this direction. There are some other work initiating the
self-management concept into IoT platform in order to achieve autonomic behaviors for
the IoT application. For example, Cetina et al. [27] propose leveraging variability models
made at design time to enable the application reconfiguring capabilities at runtime. Sarkar
et al. [43] introduced very simple contextual information about the smart object such as:
current location, operating state, etc. in order to initiate and execute an automated services
intelligently. However, these studies are either targeting at general purpose application or
adhoc solutions.

Besides aforementioned IoT issues (such as heterogeneity, interoperability, interoper-
ability) which are attracting much effort toward self-management approaches, there are
also other aspects in IoT that need more attention. As an example, security is also an
important criterion in IoT development. IoT is extremely vulnerable to attacks for several

22 Chapter 2. Background

No Title Summary
1 Autonomic wireless sensor network

topology control [47]
Method based on interpolation algo-
rithm to maximize devices operational
lifetime by automatically hibernating
and activating in response to data per-
ceived from a dynamic environment.

2 Self-organizing network with decision
engine and method [23]

Encapsulates information (e.g. priority,
number of hops, etc.) and packet han-
dling commands into the data packet
in order to enable the source node ad-
just its operation (e.g. transmitting
power, frequency, bandwidth, etc.) in a
way that allows the network to be self-
organizing, self-configuring, and self-
healing so that data packets are retrans-
mitted from source nodes to destination
nodes with a minimum of hops and de-
lay.

3 Plug-and-play sensors in wireless net-
works [22]

Achieving self-configure network by
proposing a self-identification protocol
that allows the network to configure dy-
namically and describe itself instead of
a network host (Cluster head), which
keeps track of sensors when new ones
are added or which ones are in range
etc. However, keeping the configuration
table updated is difficult. Also the so-
lution is restricted to Bluetooth specific
technology.

4 Autonomic protocol and architecture
for devices in internet of things[12]

Proposed a conceptual architecture
based on MAPE-K framework and an
associated protocol with specific com-
munication procedures for the IoT de-
vices.

5 Auto-configuration system and algo-
rithms for big data-enabled internet-of-
things platforms [41]

Target at self-configuration for M2M
systems and proposes four algorithms
for achieving self-configuring gateway
parameters toward large number of end
devices.

Table 2.1: Comparison of concepts of autonomicity applied to wireless sensor networks.

reasons. First, its components are often unattended and remotely located; which raises
the possibility of physical attacks. Second, IoT uses wireless technology for communication
which is easier to compromise [11]. Regarding this problem, Ashraf et al. [11] conducted
a survey regarding threat mitigation approaches in IoT using an autonomic taxonomy and

2.3. Autonomic computing in IoT platforms 23

finally sets down future directions toward self-security. In summary, these directions to-
ward achieving self-* behaviors in IoT platforms are still immature and promising to be
developing in the future.

In the following chapter, we will explain in more detail some of these work which we
found most important and closely related to the context of our research, followed by a
discussion about their disadvantages and our approach of bridging those technology gaps
toward developing an autonomic IoT platform.

Chapter 3

Related Work

In this chapter, we present the state of the art on the aspect of introducing automation to
IoT platforms as well as autonomic approaches which we found relevant to the objectives of
our work. The goal is to provide the reader with an understanding of existing techniques,
tools and approaches as well as to identify technology gaps in the existing research body and
position our own work respectively. Specifically, the identified gaps will serve to outline the
fundamental requirements for our proposed platform and will help to evaluate the benefits
of the platform with respect to other approaches.

3.1 Sarkar et al. approach (DIAT architecture)

Sarkar et al. [39, 43] proposed a layered and distributed architecture for IoT, called Dis-
tributed Internet-like Architecture for Things (DIAT) which promised to solve many tech-
nical challenges in IoT such as scalability, heterogeneity and heterogeneity (see Figure
3.1). The design principle of the approach is that any physical/real world object in this
world can have a virtual representation through a Virtual Object (VO). A VO includes
a semantic description of the functionality, and hides the heterogeneity of the real world
object. Several VOs can be aggregated to form a Composite Virtual Object (CVO), which
can provide more comprehensive and resilient services. In general, CVOs are composed to
accomplish a specific service request. The functionalities of IoT infrastructure are grouped
into three layers: Virtual Object Layer (VOL), Composite Virtual Object Layer (CVOL)
and Service Layer (SL), which are put together as a stack, called IoT Daemon:

• VO layer: is responsible for semantic modeling of physical objects or entities into
the digital domain as Virtual Object (VO). Through semantic technologies, the VO
layer provides universal methodologies to access all physical objects. Furthermore,
the VOL plays the role of bridging the gap between the physical and the cyber world,
thus, helping to tackle the heterogeneity and ensures interoperability and re-usability
of objects.

• CVO layer: In this layer, VOs are mashed together to address a specific service
request generated by the user or by the system. This layer provides functionality to
semantically search and query specific types of CVOs for service accomplishment.

• Service layer: accepts the request from the users and analyzes the service requests
to determine the types of CVOs required for service accomplishment. This layer also

25

26 Chapter 3. Related Work

handles service composition and orchestration in dynamic environments.

Figure 3.1: DIAT Architecture (Adapted from [43]).

The authors of this work also showed their effort in creating a unified knowledge base
for IoT which extend various common ontologies. They specially focused on modeling
dynamic environments in which IoT entities operate. The ontologies was integrated into
their architecture and serve as a common standard for knowledge representation and com-
munication between layers (see Figure 3.2 for the mappings between various ontologies and
layers of the architecture).

Figure 3.2: Mapping between various ontologies and layers of DIAT (Adapted from [39]).

Autonomic capabilities were not explicitly mentioned in the work. However, a workflow
which is similar to the MAPE-K model was also introduced as a description of the function-
alities of the observer which is responsible for automation of machine-to-machine(M2M)
communication in order to provide a service intelligently (see Figure 3.3). The functional-
ities and the workflow of an observer are spread across the CVOL and SL. The observer
continuously monitors objects and assesses their situation. Based on available knowledge
and current situation, it may decide to initiate a service request and some necessary match-
ing service(s).

3.2. Alaya et al. approach (IoT-O ontology) 27

Figure 3.3: functionalities and workflow of a DIAT observer (Adapted from [43]).

With this regard, Sarkar et al. also applied a closed adaptation loop for their observer
in order to achieve self-governance with the use of ontology for knowledge representation.
However, this approach is relatively simple and still at the state of conceptual design
without detail discussion about the functionalities of the components in the loop. As an
example, there was no description of how the ontologies could be exploited for reasoning
or which techniques were used for motoring and making decision.

Sarkar et al. also presented how their proposed approach could be to support interoper-
ability and intelligent decision making by demonstrating a use case which include multiple
entities (e.g., smart home, smart car, smart car, smart fridge, etc.). However, this is only
a theoretical architecture which is incomplete and lacks details about implementation and
validation.

3.2 Alaya et al. approach (IoT-O ontology)

Aiming at semantic data interoperability for M2M communication, Alaya et al. [10] in-
troduced an ontology for IoT, called IoT-O, which merges to together a set of popular
ontologies and is enriched with new relevant concepts and relationships in the area such
thing, node, actuator and actuation. According to the authors, prior M2M standards only
focus on achieving interoperability at communication level while lacking of interoperability
at semantic level. Therefore, communication between heterogeneous entities (e.g., servers,
devices, applications, etc.) can be achieved seamlessly and independently from the un-
derlying network and vendor-specific device technologies; however, the “meaning” of the
exchanged message is not understood without prior conventions (i.e., data formats, encap-
sulation and semantics). The IoT-O ontologies serves as a unified knowledge-base which
support semantic data for M2M communication.

IoT-O consists of five main parts: sensor, observation, actuator, actuation, and service
models. Figure 3.4 shows how the selected ontologies are merged together to form this
new ontology. The DUL upper ontology represents either physical or social contexts.
The SSN ontology was selected to represent sensors in terms of measurement capability
and properties, observations and other related concept. The SAN ontology was designed
by the authors to describe actuators respectively. The QUDV ontology was selected to

28 Chapter 3. Related Work

represent quantities, units, dimensions, and values. The OWL-TIME ontology was selected
to provide a vocabulary for expressing facts about topological relations among instants and
intervals, together with information about duration, and about date time information. The
MSM ontology was selected to describe relevant aspects about services.

Figure 3.4: IoT-O ontology model (Adapted from [10]).

Alaya et al. also validated their approach by deploying it to their OM2M platform
(see Figure 3.5 for the high level architecture of OM2M platform). The platform includes
different sensors (e.g., temperature, humidity, luminescence, presence, etc.) as well as
actuators such as electric plugs attached to different elements (e.g., lamps, fans, humidifier,
etc.) which all gathered around different gateways that are connected to one central server.

The authors of this work were successful to demonstrate the use case of seamless device
discovery and interaction by using the proposed ontology. In particular, the platform was
able to discover newly plugged devices, browse the exposed attributes and methods, and
finally interact with them by retrieving sensed data or triggering actions. Furthermore, all
exchanged messages are augmented with semantics, thus applications not only have access
to the data but also understand these data by matching them with the defined ontology.

Alaya et al. also introduced the idea of exploiting their ontology together with infer-
ence rules (i.e, SPARQL) to achieve self-configuring M2M resources. The objective here
is to help applications discover relevant devices and exchange data with the correct com-
munication mode based on its description, role and relationship. This use case was not
implemented yet and was also domain specific. However, it showed their very first step
to achieve autonomic computing in IoT after obtaining a relatively complete ontologies
which covers almost necessary IoT aspects. Similar to the DIAT approach, this work is

3.3. Cetina approach (MoRE Engine) 29

Figure 3.5: OM2M platform (Adapted from [10]).

also missing an effective conceptual model for implementing autonomic behavior. However,
IoT-O is an important step to achieve autonomic computing as knowledge representation is
vital in any autonomic system. Currently, the IoT-O ontology is one of the most complete
ontology which covers almost necessary aspects of IoT area. The following chapters will
describe how we extend IoT-O ontology with the concept of application and context to
support semantics at application level.

3.3 Cetina approach (MoRE Engine)

Cetina [27] addressed the approach of reconfiguration by reusing variability models at
runtime to provide a richer semantic base for decision making. In this way, the model
made at design time is used for not only producing the system but also providing a richer
semantic base for autonomic behavior during execution. Specially, his approach has two
aspects:

Figure 3.6: Overview of the runtime reconfiguration of Cetina et al. approach (Adapted from [27]).

30 Chapter 3. Related Work

• Reuse of design knowledge to achieve Autonomic Computing : reusing the knowledge
previously captured in variability models to infer the variants in which a system
can evolve. Therefore, given a context, the system itself can query these models to
determine the necessary modifications to its architecture.

• Reuse of existing model-management technologies at runtime: using the same model
representation - the XML Metadata Interchange standard - at design time and run-
time, thus, making it possible to apply the same technologies used at design time to
manipulate XMI models at runtime.

Figure 3.7: Model-based reconfiguration process. MoRE translates contextual changes into changes
in the activation/deactivation of features. (Adapted from [27]).

The approach was deployed and demonstrated feasibility for smart homes domain,
especially for self-healing and self-configuring capabilities. Figure 3.6 illustrated the overall
reconfiguration steps of the approach which also applied the MAPE-K reference model for
autonomic control. Detail steps of the reconfiguration steps was presented in Figure 3.7,
which is also developed as an Model-Based Reconfiguration Engine (MoRE). A Context
Monitor uses the runtime state as input to check context conditions (step 1). If any
of these conditions is fulfilled (e.g., home becomes empty), MoRE queries the runtime

3.4. Dautov approach (EXCLAIM framework) 31

models about the necessary modifications to the architecture (step 2). The response of
the models is used by the engine to elaborate a Reconfiguration Plan (step 3). This
plan contains a set of Reconfiguration Actions, which modify the system architecture and
maintain the consistency between the models and the architecture (step 4). The execution
of this plan modifies the architecture in order to activate/deactivate the features specified in
the resolution (step 5). In order words, Context events are represented as OWL ontology
and system variability are captured by means of variability models which are used as
policies that drive the system’s autonomic evolution at runtime.

The reconfiguration of the system is performed by executing reconfiguration actions
that deal with the activation/deactivation of components, the creation and destruction of
channels among components and the update of models accordingly to keep them in sync
with the system state. MoRE makes use of the OSGi framework for implementing the
reconfiguration actions. This Framework implements a complete components model that
extends the dynamic capabilities of Java.

MoRE framework is relatively similar to our approach in a way that they apply the
same MAPE-K control loop as the base reference model for autonomic computing. In
fact, as discussed in previous section, MAPE-K model is an effective model for developing
autonomic capabilities. However, while we use rules and IoT ontologies as the policies to
trigger adaptation, Cetina exploited variability model at design time for deciding the re-
configuration plan, which could make their solution limited to specific kinds of applications
since not every system has a complete design model. In addition, using variability models
could make it less flexible to policies changes comparing with using rules where upgrading
adaptation plans could be done by just adding new rules.

3.4 Dautov approach (EXCLAIM framework)

Dautov addressed the problem of scalability in cloud platforms evolution by creating an Ex-
tensible Cloud Monitoring and Analysis (EXCLAIM) framework which utilizes techniques
from the Sensor Web research community [18] to achieve autonomic behavior. Figure 3.8
illustrated the conceptual architecture of the EXCLAIM framework. Similar to MoRe ap-
proach, this framework also employed the MAPE-K model as an underlying reference model
for Autonomic Computing. However, they use different technique from the Semantic Web
Stack (i.e., SWRL rules) to specified the policies for reconfiguration. This approach mainly
focused on monitoring and analyzing continuously flowing data with cloud platforms in a
timely manner.

Within the framework, raw data generated pass through three main processing steps:

• The triplification engine is responsible for consuming and ‘homogenising’ the repre-
sentation of the incoming raw observation values. In order words, the main function
of this component is to transform raw data into information by representing collected
heterogeneous values (e.g., JSON messages, SQL query results, and text files) using
a single uniform format (i.e., Resource Description Framework (RDF) format).

• The continuous SPARQL query engine supports situation assessment by taking as
input the continuous RDF data streams generated by the triplification engine and
evaluating them against pre-registered continuous SPARQL queries.

• The OWL/SWRL reasoning engine is responsible for generating an appropriate adap-
tation plan whenever a critical condition is detected and the identification of multiple

32 Chapter 3. Related Work

Figure 3.8: Conceptual architecture of the EXCLAIM framework (Adapted from [18]).

potential adaptation strategies.

Dautov also introduced a prototype implementation of the EXCLAIM framework in
Java and deployed it on Heroku cloud platform as a proof of concept. Experiments also
showed the potential of this approach in term of performance as well as the analysis ca-
pabilities of the autonomic framework. Although this work only focused on monitoring
and processing real-time stream data, it showed the potential of applying Semantic Sensor
Web and its related techniques in stream processing into autonomic computing, especially
for large scale systems with highly dynamic operating environment. Therefore, in our
work, we extend this approach with a forward step toward planing and execution. In the
next chapter, we will discuss in more detail about this in the implementation of our SAI
platform.

3.5 Toward the technology gaps in autonomic IoT platform
development

In this chapter, we have surveyed existing relevant work which is the state-of-the-art in
the research area of self-governance in IoT in general. Although some of them are still
immature or even not fully implemented yet, these approaches helped us to understand
current research situation in this topic as well as initiate the idea of a general purpose
autonomic IoT platform, which is identified as the technology gap that is addressed by
our proposed approach. Firstly, we found that self-management support in IoT Platform
is either mature or limited to a specific application while it is feasible to enhance these
platform with autonomic capabilities at highly efficient and more general level by reusing
and extending existing solutions in the area of Autonomic Computing. In particular, we
propose using techniques in Semantic Sensor Web into the MAPE-K reference model in
order to implement a powerful engine for large-scale data processing and highly flexible
planing. Secondly, IoT applications require rapid reaction to changes with relative efficient

3.5. Toward the technology gaps in autonomic IoT platform development 33

resource consumption. Therefore, execution mechanism is also important in the design
of autonomic IoT platform. Toward this problem, our proposal makes use of the complex
event processing technique to model the IoT application as a set of complex events which are
triggered under specific changes in the environment. Thus, the analysis and reconfiguring
of applications could be done in a simple and efficient manner. Finally, by extending
existing well-known IoT ontologies, our solution is capable of model fairly enough aspects
of IoT application while achieving relatively quick solution to the problem of knowledge
unification in autonomic computing. These considerations helped us to devise a novel
approach to develop autonomic behaviors in IoT frameworks. With these ideas at hand,
we first designed a conceptual architecture of the SAI platform, and then implemented
a prototype version to demonstrate viability of the proposed hypothesis. In the next
chapters, we will discuss our proposed approach in more details.

Chapter 4

SAI platform: A Service-oriented
Autonomic IoT Platform

This chapter presents the conceptual design of the SAI platform in a top-down manner. To
do so, we first introduce overview of the protocol stack of the SAI platform as well as explain
in detail the role of each component in every layer. Our proposed design is relatively similar
to most well-known IoT platforms presented in Chapter 2 except for the presence of the
autonomic manager which is the key component that supports self-managing. In the second
section, we then discuss our solution of applying the MAPE-K model to the design of the
autonomic manager as well as concrete approach of using existing SSN technologies for each
MAPE-K components, especially application modeling mechanisms which are exploited by
planing and execution steps for reconfiguring applications. The chapter concludes with the
implementation details of the SAI platform, where we describe our usage of the tools and
techniques for realizing the conceptual idea.

4.1 Conceptual design of the SAI platform

SAI framework has adopted the following high-level system architecture which includes
the concept of the M2M device domain and the network and application domain. Figure
4.1 describes the high level architecture of the SAI platform deployment. The architecture
includes physical devices, the SAI platform which could be deployed on a server or any
cloud platform and SAI applications which support cross platform smart devices.

The devices could come from different vendors with heterogeneous communication stan-
dards. It can connect directly to SAI platform via the Access Network or to a M2M Gate-
way via the M2M Area Network. M2M Area Network (e.g., Zigbee, 6lowan, etc.) provides
connectivity between Devices and M2M Gateways. M2M Gateway acts as a proxy be-
tween devices and the network and may provide service to other devices connected to it
that are hidden from platform. As stated in the previous chapters, IoT system may consist
of millions of interconnected devices, providing and consuming information available on
the network and cooperate. As these devices need to interoperate, the service-oriented
approach seems to be a promising solution. Our platform also apply the same service-
oriented infrastructure, which means each devices should offer its functionality as standard
devices. In addition, sophisticated services can be created by the platform and based on
only the provided functionality of other entities that can be provided as a service. This
SOA paradigm promises to improve the reactivity and performance of the system since

35

36 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

Figure 4.1: High level overview of the system architecture.

the information is available in near real-time based on asynchronous events. It also help
to reduce the cost and effort required to realize a given scenario as it will not require any
device drivers or third-party solution [45]. Accordingly, to properly accomplish the task
through the usage of devices, SAI platform provides applications with service accessibility,
whatever in the network, server or gateway. It provides services through a set of open
interfaces to manage subscriptions and notifications pertaining to events, thus simplify-
ing and optimizing application development and deployment through hiding of network
specificities.

4.1.1 SAI architecture

Based on the above discussion, we propose a service-oriented IoT architecture that consists
of fours layers which we refer to as the SAI platform as well as the connection with the ap-
plications and devices. Figure 4.2 depicts overview architecture of the SAI platform. This
architecture hides the heterogeneity of hardware, software, data formats and communica-
tion protocols that is present in today’s embedded systems. It foster open and standardized
communication via web services at all layers. In addition, the platform is also equipped
with the autonomic manager which is developed by exploiting functionalities provided in
each layer of the platform.

Devices: This layer represents heterogeneous devices which are expected to connect
to the platform. These include industrial devices, home devices, or IT systems such as
mobile phones, PDAs, production machines, robots, building automation systems, cars,
sensors and actuators, RFID readers, barcode scanners, or power meters, etc.

Devices Abstraction: This layer carries out the physical devices abstraction. Specif-
ically, devices either offer services directly or their functionality is wrapped into a service
representation which will then be accessed through the framework. In the best case, a

4.1. Conceptual design of the SAI platform 37

Figure 4.2: SAI platform architecture.

device offers discoverable web services on an IP network, then no wrapping is needed be-
cause services are available already. In this case, the application could also interact with
these devices directly through the use of services without the support of the platform, thus
reduce the burden of communication processing on the platform. In fact, similar efficiency
could also be achieved if the device abstraction is deployed on an intermediate node (e.g.,
gateway) or a separate server which is responsible only for communicating with heteroge-
neous devices. Whenever the device does not support service based communication (e.g.,
it might use a message-based or data-centric communication mechanism), the abstraction
into services that offer operations and emit events is required to achieve standardization.
This could be done in the Devices Service Wrapper component by adding to it new
plugin for that specific type of device. Thus the support of new technology or proto-
cols is simply achieved through the implementation of the plugin module. In this way,
any application in the system could access any heterogeneous physical technologies using

38 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

standardize restful operation. This can be done without any knowledge of the underlying
network technology or its low level mechanism. In addition to enabling the communication
with devices, this layer also provides a unified view on remotely installing or updating the
software that runs on devices and enables the devices to communicate natively (i.e. in
their own protocol with back-end devices).

Devices Management: This layer is responsible for dynamically discovering, moni-
toring and updating the status of all devices integrated into the system. Specifically, the
Devices Repository component supports storing information about the devices available
in the system. As discussed in previous section, this repository also contribute to the uni-
fied knowledge based of the autonomic computing and is stored under instances of OWL
ontology. A detail description about the structure of these ontologies will be introduced
later in this chapter. The Devices Monitor component keeps monitoring the devices and
updating their attributes or status into the repository. It is also responsible for detecting
events like failures and triggered corresponding event to the interested components. The
Devices Discovery component is able to find devices present on the network, and retrieve
information about them and their hosted services. This information will then be stored in
the Devices Repository to be used by other components from the architecture.

Service Management: All functionality offered by the physical devices is abstracted
by services. As discussed earlier, either devices offer services directly or their function-
alities are wrapped into service representations. From the perspective of this layer and
all layers above, the notion of devices is abstracted and only visible under services. An
important insight into the service landscape is to have a repository of all currently con-
nected services instances. This is done in the Service Repository component. Similar
to the Devices Repository , this repository also make use of the OWL ontologies tech-
nology. The Service Monitor keeps tracking all the services which are either used by an
application or available for a new connection, and updating the corresponding information
into Service Repository . Flexibility is highly required in this component since the set
of service offered at the device level is dynamic; as devices connect and disconnect or are
re-configured, thus the available service set changes frequently. In addition to motoring
services, the Service Monitor also supports the composition of services in order to ob-
tain highly efficient services and simplify logic at application level. This could be by just
introducing the specification of the complex service to the Service Repository database.

Application Interface: As discussed above, the SAI platform enables applications to
interact and consume data from a wide range of physical devices using high-level abstract
interface that features web services standards. This allows networked devices to directly
participate in the operation without the knowledge about the details of the underlying
hardware. In this layer, the concept of application reconfiguration is also introduced in
the Application Updater component through the communication with the deployed
applications about the new adaptive configuration whenever needed. This component is
also responsible for monitoring the status and attributes of the application and updating
them to the Application Repository .

Applications: This layer represents the applications which are developed based on the
SAI platform. These application could be deployed on various frameworks from computers,
laptops, smart phones to limited resources embedded devices. As will be discussed later in
this chapter, SAI application logics are described as a set of rules which are executed by
an interpreter.

4.1. Conceptual design of the SAI platform 39

In conclusion, this proposed architecture exploit the concept of SOA to allow applica-
tion to be composed by loosely coupled services and provide ecosystem-wide discoverability
for developers to easily wire up services as building blocks into application. By doing this,
the approach also address the heterogeneity in physical devices. Furthermore, the support
of seamlessly discovery and integration of new devices also improves the performance of the
platform toward scalability issue. Interoperability challenge is also addressed by exploiting
techniques in Semantic Web to support semantic understanding of communication data.
In addition to addressing these challenges in IoT platform design, the approach is also
enhanced with the autonomic mechanisms which are achieved by extending the functional-
ities of the components in the first three layers. The following section will discuss in more
detail of how we exploit these components to implement the MAPE-K closed adaptation
loop.

4.1.2 The Autonomic Manager

In this section, we present the conceptual architecture of the Autonomic Manager which
plays as an key component to achieve autonomic behaviors in the SAI platform. This
architecture was designed based on the MAPE-K reference model for implementing the
closed adaptation loop. In addition, the functionality of each component of the loop
was deployed by adopting existing concepts of Semantic Web Technology and facilitating
other components in the SAI platform. See figure 4.3 the illustration of overview of the
Autonomic Manger.

In order to support both self-awareness and context-awareness of the managed elements
(e.g., the IoT applications that was deployed on heterogeneous framework), we need to
employ an architectural model, which would be able to describe the internal organization
as well as operating environment of the IoT application (i.e., devices, services, attributes,
etc.). For this purpose, we propose using OWL ontology which will contain the required
self-reflective knowledge of the system. Inspired by the SSN ontology, such architecture
model represented with OWL will serve as a common vocabulary shared across the whole
SAI platform. In addition, by using OWL ontologies, we could also reuse existing tools and
technology in Semantic Web for processing purpose. In fact, in IoT area, there have been
a lot of effort putting on developing OWL ontologies to support semantic understanding
of exchanged data at application level. Therefore, adapting this OWL technology helps
us not only to reduce effort on defining the IoT ontologies but also to quickly obtain the
knowledge vocabulary reflecting the newly appeared aspects since OWL ontologies are
extensible easily. Later in this chapter, we will describe the ontology which we used to
accomplish autonomic behaviors, which was defined by combining extending existing OWL
ontologies on different IoT aspects.

As can be seen in figure 4.3, apart from the knowledge representation, we distinguish 4
main elements of the Autonomic Manger: RDF Standardization Engine, SPARQL Query
Engine, SWRL Reasoning Engine and Adaption Executer, corresponding to the four ele-
ments of the MAPE-K loops:

• The RDF Standardization Engine is responsible for consuming and “homogenis-
ing” the data generated by the deployed application, services, devices, etc with the
support of the Service Monitor, Device Monitor, Device Discovery and Application
Updater components. As described earlier, these components are responsible for
monitoring every dynamic changes in the system and updating to the knowledge

40 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

Figure 4.3: Conceptual architecture of the Autonomic Manager.

base accordingly. Since the observed IoT entities change their status very frequently,
the corresponding data are generated in real time; thus putting more pressure on the
analysis step. Thanks to the development of stream processing in SSN, we could ex-
ploit their query engines for analyzing the generated data. Therefore, in addition to
monitoring the environment, the RDF Standardization Engine takes as input streams
of data from the monitors and generates streams of RDF triples which manifest the
defined OWL ontologies. As an example, this engine could measure the observed val-
ues of sensors as well as latency of the observation processes and generate respective
stream of RDF triples. Using RDF as a common format for representing streaming
data, and OWL concepts as subjects, predicate and object of the RDF triples allows
us to benefit from human-readability and extensive support of query languages as
explained above.

• In the analysis step, the SPARQL Query Engine takes as input the flowing RDF

4.1. Conceptual design of the SAI platform 41

data stream generated by the RDF Standardization Engine and evaluate preregis-
tered continuous SPARQL queries against them in order to support situation as-
sessment. In the first instance, situation assessment could be distinguish between
usual operational behavior and critical situations by matching them against critical
condition patterns. As an example, this engine could takes as input stream of the
sensor observed values and triggers a malfunctioned indication whenever encounter
values exceeding the operational range. Since different devices could have different
operating conditions, thus varying in diagnosis steps, machine learning techniques
could also be applied to assist with maintaining the list of critical condition patterns.
Adding new detection patterns is just simply registering new SPARQL query into the
engine. This could be done with minimum delay by the support of existing SPARQL
query engine. To some extent, this step can be seen as a filtering stage since the out-
come of this step is just a sub-set of RDF triples, which represent potentially critical
situations. The querying engine will only trigger in response to potentially criti-
cal situations, thus saving the next step from reasoning over numerous non-critical,
‘noisy’ information. ‘On-the-fly’ processing of constantly flowing data, generated by
a great number of sources, as well as employing one of the existing RDF streaming en-
gines, are expected to help us in achieving near real-time behavior of the Autonomic
Manager.

• After recognizing a critical situation, a corresponding confirmation as well as appro-
priate adaptation plan will be generated by the SWRL Reasoning Engine. This
engine is not only checking simple “if-then” statements but also performing even more
complex and sophisticated reasoning for a problem and possibly identify correspond-
ing actions. To address this challenge we propose using SWRL rules which provides
a sufficient level of expressiveness for defining policies as well as exempts us from the
effort of implementing our own analysis engine from scratch. Accordingly, we will rely
on the built-in reasoning capabilities of OWL ontologies and SWRL rules, thus the
routine of reasoning over a set of possible alternatives is done by an existing, tested,
and optimized mechanism. Similar to the analysis step, introducing new policies
could be done by simply registering new SWRL rules in to the engine with minimum
delay and effort, and taking effect immediately. Continuing with previous example
where a malfunctioned sensor is detected, new SWRL rule should be added to the
reasoning engine to check whether there exists any application using this sensor and
generate proper adaptation (e.g., by substituting with an equivalent active sensor).
The outcome of this planning step is a confirmed occurrence of a detected critical
situation as well as the most relevant adaptation actions.

• Once the adaptation has been planned, the corresponding actions has to be carried
out in order to make changes to the relevant components and application. This is
the step where autonomic behaviors are implemented and should be achieved auto-
matically and transparently to the users. The Adaptation Executor is responsible
for executing any planning actions corresponding to the autonomic behaviors sup-
porting by the SWRL Reasoning Engine. From the perspective of SOA architecture
where applications make use of services for implementing their logics, we hypothesize
that self-governance in IoT application could be done by reconfiguration at service
level. Accordingly, the Adaptation Executor will support autonomic behaviors with
new service reconfiguration. This approach helps simplify the process of executing

42 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

adaption while not restricting the autonomic level achieved in IoT platform since
services could be combined into a new form of higher abstraction service in order
with complicated logic, thus supporting to achieve complex autonomic behavior. In
the next section, we will describe how we apply the same perspective to the the IoT
application in order to support reconfiguration at application level. As an example
of the functionality of the Adaptation Executor, whenever there is a need for an
application to substitute its currently used sensor which was reported to be malfunc-
tioning, the Adaption Executor will generate new configuration with an equivalent
sensor, update the Application Repository and communicate the configuration to the
corresponding application through the Application Updater.

4.1.3 The Application Model

After executing the adaption actions from planning step, the Application Updater sends
the new configuration to corresponding application for reconfiguring. This step is also a
part of the execute element in the MAPE-K model and carried out seamlessly at appli-
cation level. As discussed earlier, the new configuration is actually a service adaptation
plan (e.g., service substitution or upgrade, introducing new logic could be done at Service
Management layer by combining multiple services.), thus a mechanism for modeling IoT
application is require in order to not only improve the semantic understanding of the appli-
cation but also helps reduce the cost of reconfiguration. With this respect, we propose to
model the application as a collection of complex rules. As an example, listing 4.1 presents
the rule that specifies the thermostat functions.

Listing 4.1: An example of a rule used in SAI application.

1 /∗∗∗
2 ∗ Rule to observe the temperature measured by the sensor1
3 ∗ and con t r o l the ac tua tor connected to the hea te r acco rd ing l y (on/ o f f)
4 ∗ in order to maintain the temperature around de s i r e d va lue (25 degC)
5 ∗∗∗/
6 begin
7 rule " thermostat_operat ion "
8 use
9 senso r temp_sensor@Sensor1 ;

10 actuator heater_act@Actuator1 ;
11 declare
12 var desire_temp ;
13 action
14 desire_temp = 25 ;
15
16 i f (temp_sensor . Sen1GetTempService () > desire_temp)
17 heater_act . Act1SetPowerService (heater_act . Act1PowerMinValue) ;
18 else
19 heater_act . Act1SetPowerService (heater_act . Act1PowerMaxValue) ;
20 end

Accordingly, SAI application is also equipped with an interpreter to execute those rules
as well as other components necessary for the reconfiguration process. Figure 4.4 described
the overview of components in an application. Overview of the communication flow between
the platform and application is illustrated in figure 4.5. Specifically, an application deployed

4.1. Conceptual design of the SAI platform 43

on SAI platforms comprises of 3 elements: Application Rules, Interpreter and Application
Monitor:

Figure 4.4: Architecture of a SAI application.

• The Application Rules specifies the functionalities of SAI application. Similar to
any scripts, these rules also have specific syntax with predefined keywords. Listing
4.1 shows an example of a rule used in SAI application. Details of the structure of the
rules will be described in the implementation section. Using rules could improve the
human-readability and development effort while also support semantic understanding
of the application, thus helping auto-reconfiguration. Accordingly, reconfiguring a
SAI application is simply re-writing application rules, thus improving the cost of
reconfiguration.

Figure 4.5: Overview of the communication between the applications and SAI platform.

44 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

• The Interpreter executes the scripts described by application rules. Similar to any
interpreter, it analyzes and parses the rules into internal representation in order to
understand the semantic of the rules and support execution. It also collects necessary
information which is specified in the Application Repository for monitoring purposes.
Once an application is deployed onto the platform, the interpreter keeps periodi-
cally checking the conditions and carrying out the actions specified in the rules. As
discussed earlier, the communication between applications and physical devices is
established under the mean of services. Specifically, the interpreter interacts with
devices by using their web services api. These services could be deployed either on
the SAI platform (e.g. through Device Service Wraper) or separate server (e.g. the
devices support hosting their web services). In the latter scenario, the interpreter
could communicates directly with the devices, the SAI platform acts as an monitor
indicating adaptation when needed. In addition to executing applications rules, the
interpreter also helps to changing these rules for reconfiguration purpose whenever
receiving adaptation plan from the SAI platform.

• Application Monitor communicates with the Application Updater in order to up-
date information about the application to the Autonomic Manager for monitoring
purposes. This information could be the status and attributes of application as well
as the used services which are specified in the Application Repository. Additionally,
the Application Monitor also takes part in communicating the adaptation plans from
the SAI platform to the deployed applications.

4.2 Implementation details of the SAI platform

Having introduced the conceptual architecture of the SAI platform in the previous section,
in this section, we continue to discuss the implementation aspect of the the platform.
Specifically, we focused on the main three elements of our work: the SAI Ontology, the
Autonomic Manger, and the SAI Application.

4.2.1 Overview of the technical details

The prototype version of the SAI platform is implemented on Java framework, which was
developed using Eclipse Neon IDE 1 as well as the following external libraries and tools:

• Protege 2 is a free open source ontology editor and knowledge-base framework with
full support for the OWL 2 which is also the latest OWL specification developed
by the W3C OWL Working Group. Protege supports creation and editing of one or
more ontologies as well as their instances. In addition, it also provide simple interface
for inserting SWRL and SPARLQ queries. There are also integrated reasoners for
reasoning and tracking down inconsistencies as well as visualization support. In this
project, we used Protege for importing and extending various IoT ontologies. The
final ontologies was exported as a file loaded by the repository components.

• OWL-API 3 is an open source Java API and reference implementation for creating,
1http://www.eclipse.org/downloads/packages/release/Neon/3
2http://protege.stanford.edu
3http://owlapi.sourceforge.net

http://www.eclipse.org/downloads/packages/release/Neon/3
http://protege.stanford.edu
http://owlapi.sourceforge.net

4.2. Implementation details of the SAI platform 45

manipulating and serializing OWL Ontologies. The latest version of the API is
focused towards OWL 2. The OWL API includes the following components:

– An API for OWL 2 and an efficient in-memory reference implementation.

– RDF/XML parser and writer.

– OWL/XML parser and writer.

– OWL Functional Syntax parser and writer.

– Turtle parser and writer.

– KRSS parser.

– OBO Flat file format parser.

– Reasoner interfaces for working with reasoners such as FaCT++, HermiT, Pellet
and Racer.

In this project, we used the OWL-API for manipulating the ontologies as well as
their instances. It provides methods for creating, modifying and deleting entities in
the ontologies which are necessary for updating the the information stored in the
repository. In addition to that, the library also provide various reasoners’ implemen-
tations which supports reasoning over the knowledge base. In this work, we used the
Pellet reasoner to test the ontologies and implement the SWRL Reasoning Engine as
it works well with SWRL and SPARLQ queries.

• C-SPARQL ReadyToGo Pack 4 is a Java library for C-SPARQL which is a lan-
guage for continuously querying over streams of RDF data developed by the Poly-
technic University of Milan. C-SPARQL queries consider windows, i.e., the most
recent triples of such streams, observed while data is continuously flowing. We used
the library for the analyze phase of the Autonomic Manager to process RDF stream.
C-SPARLQ querying is a designated filtering step before the actual reasoning step
which is quite computational demanding.

• Gson 5 is a Java library that can be used to convert Java Objects into their JSON
representation. It can also be used to convert a JSON string to an equivalent Java
object. Gson can work with arbitrary Java objects including pre-existing objects
that you do not have source-code available. The main supports provided by Gson
are:

– Provide simple toJson() and fromJson() methods to convert Java objects to
JSON and vice-versa.

– Allow pre-existing unmodifiable objects to be converted to and from JSON.

– Extensive support of Java Generics.

– Allow custom representations for objects.

– Support arbitrarily complex objects (with deep inheritance hierarchies and ex-
tensive use of generic types).

4http://streamreasoning.org/resources/c-sparql
5https://github.com/google/gson

http://streamreasoning.org/resources/c-sparql
https://github.com/google/gson

46 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

In this project, we used Gson for converting and exchanging RDF triples within the
platform. Specifically, Gson was used to serializing the RDF data when exchanging
data with the applications.

• Alljoyn Framework 6 is an open source software framework that enables interop-
erability among connected products and software applications across heterogeneous
manufacturers. The framework simplifies the process of developing applications for
devices and applications to discover and communicate with each other. The soft-
ware supports popular platforms such as Linux and Linux-based Android, iOS, and
Windows as well as other lightweight real-time operating systems. It has language
bindings for C++, Java, C, JavaScript, C#(general) and C#(Unity) in development.
In this project, we exploited the framework for the mean of communication between
the SAI platform and applications. Since Alljoyn support various platforms, our im-
plementation of SAI application as well as communication protocol could be reused
later on different smart devices.

• JavaCC 7 is an open source parser generator for use with Java applications, which
is a tool that reads a grammar specification and converts it to a Java program that
can recognize matches to the grammar. In addition to the parser generator itself,
JavaCC provides other standard capabilities related to parser generation such as
tree building, actions, debugging, etc. In this work, we use JavaCC for building the
interpreter at the application side. The generated code is pure java language which
can be reused for implementing the application infrastructure on other framework
which support java (e.g., Android).

4.2.2 The SAI Ontology

Representing the central Knowledge element of the MAPE-K reference model (see Figure
2.8, the SAI ontology is also the core component of the SAI platform. Its vocabulary of
terms is accessed and used at every step of the information processing workflow within the
platform. In this section, we will explain the ontologies in details as well as their usages
in the implementation of our MAPE-K model.

As mentioned above, the SAI ontology was developed using Protege IDE which is is a
free, open-source, feature-rich ontology editing environment with full support for OWL 2,
and integration of several logic reasoners such as HermiT and Pellet. See Figure 4.6 for
overview of the IDE user interface. The IDE serves to create and edit one or more ontologies
in a single workspace via a customizable user interface (i.e., users can arrange instruments
and panels according to their individual preferences). Supported refactoring operations
include ontology merging, moving axioms between ontologies, renaming of multiple entities,
and many others. Visualization tools allow for interactive navigation through ontological
class hierarchies (both explicit and inferred). It also supports debugging features – e.g.,
advanced explanation support aids in tracking down inconsistencies.

As discussed previously, our aim is to design an ontology that sufficiently covers most of
IoT concepts. The ultimate goal is to enable semantic interoperability among IoT entities.
Fortunately, there have been existing several works focusing on defining IOT ontologies
which could be selectively exploited in order to obtain an efficient ontology for our purpose.

6https://allseenalliance.org
7https://javacc.org

https://allseenalliance.org
https://javacc.org

4.2. Implementation details of the SAI platform 47

Figure 4.6: Protege IDE GUI

Specifically, our SAI ontology is developing based on the IoT-O ontology [10] which is also
an extension of various well-defined ontologies representing different IoT aspects (e.g. SSN
ontology for defining every concept related to sensors, SAN ontology for defining concepts
of actuators). Reusing these ontologies helps us to reduce the effort for defining the model
from scratch since each ontology showed to cover almost every concept in its designated
aspect in IoT. In addition, we can always extend these ontologies with required subclasses
or sub-properties in order to describe our intended situation if it has not been specified
before, thus avoiding redundancy and repetitions. In fact, our SAI ontology extends the
IoT-O with Application Model representing the concept of critical situation in Autonomic
Computing which will then be used to reason for a new reconfiguration at application level.

The SAI ontology consists of six main parts: Sensor, Observation, Actuator, Actuation,
Service and Application models which are mainly defined in SSN 8, SAN 9 and MSM 10

ontologies. Figure 4.7 illustrates the simplified SAI ontology and connections of every parts
in the ontology.

The Sensor Model is used to described sensors and their related concepts - that is
entities which are expected to generate data for later monitoring and analysis. This model
can be used to present almost every aspect which is necessary for IoT application such
as SensingCapability (e.g. type of sensors), SensingProperty (e.g. unit of the measuring
value), ResponseTime and MeasurementRange. Together with Sensor Model, Observa-
tion Model is also defined in the SSN ontology, which represents dynamic aspects of
sensor (e.g. the measuring value in real time), which will also be used as the vocabulary
for RDF streams of observed data.

Aligned with the Sensor and Observation Model, Actuator and Actuation Model
8https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
9http://lov.okfn.org/dataset/lov/vocabs/SAN

10http://kmi.github.io/iserve/latest/data-model.html

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://lov.okfn.org/dataset/lov/vocabs/SAN
http://kmi.github.io/iserve/latest/data-model.html

48 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

Actuator

MeasurementCapability

MeasurementProperty

ActuatingRange ActuatingTime

hasActuatingProperty

hasActuatingCapability

Sensor

SensingCapability

SensingProperty

MeasurementRange ResponseTime

hasSensingProperty

hasSensingCapability

Quantity Kind

Unit

Amount

isClassifiedByisClassifiedBy

hasValuehasValue

forPropertyforProperty

observes actsOn

Device

subClassOf

Thing Node
registerOn

authenticatedTo

consistsOf

Location

hasLocation hasLocation

Service

hasService

Opperation

Input

URI Template Method

hasOperation

hasInputhasOutput

hasMethodhasAddress

Sensor Model Actuator Model

Service Model

Context

Application

Application Model

ObservationValue SensorOutput

ObservationInstant

hasValue

contains

observationValue

hasDateTime

Observation Model

ActuationValueActuationInput

Actuation Instant

hasValue

ActuationValue

hasDateTime

Actuation Model

contains

subClassOf

subClassOf

subClassOf subClassOf subClassOf subClassOf

State
hasState hasState

observedBy

controlledBy

ServiceUsage

hasServiceUsage

Output

usedInContext

hasContext
usesService

Adaptation

ServiceUpgrade ServiceSubstitution ServiceDisruption

subClassOf

upgradeTo

substitueTo
disruptedService

Figure 4.7: The SAI ontology Model

are used to represent every aspect of actuators. These two models are defined in the SAN
ontology, which is part of IoT-O ontology, to describe actuators in terms of actuating
capabilities and properties, actuation and related concepts. Along with SSN and SAN
ontology, the QUDV 11 is also used to represent quantities, units, dimensions and values
(e.g. QuantityKind, Unit and State Classes). In addition, the OWL-TIME 12 ontology is
selected to express facts about topological relations among instants and intervals, together
with duration and date time information (e.g. Instant Class). Furthermore, in order to
described the physical location of devices, we extend both Sensor and Actuator Models
with concept of Location which sufficiently specifies all necessary positioning aspects. This
Location class is defined in the DOGONT 13 ontology.

In order to enable seamlessly interactions between application and services, it is im-
portant to represent how these services can be requested without any ambiguity in order

11http://qudt.org/
12https://www.w3.org/TR/owl-time/
13http://iot-ontologies.github.io/dogont/

http://qudt.org/
https://www.w3.org/TR/owl-time/
http://iot-ontologies.github.io/dogont/

4.2. Implementation details of the SAI platform 49

to reduce amount of manual effort required for discovering and using them. The Service
Model is used to provide vocabulary of all necessary aspect of these services. This model
is defined in the MSM ontology that is able to capture the core semantics of both Web
services and Web APIs in a common model, which is really close to our conceptual design
of services. In this model, each service is described using a number of operations that have
address, method, input, and output message contents. Furthermore, we also extend the
Service Model with the concept of Context which represents the exact situation in which
services is being used. Under the observation that physical devices may not be used in
their intended situation (i.e. a bulb can also be used for indicating warnings), this Context
class is used to describe different relevant using contexts of services, thus enhancing the
knowledge base with meaningful facts for further intelligent decision making. In fact, this
property plays an important role in approximating services purpose which will be discussed
shortly in this section.

Figure 4.8 illustrates a concrete example representing a real actuator using the proposed
ontology. The actuator is a digitally dimmable wireless lighting bulb having power ranging
from 0 Watt to 50 Watt. The luminosity level can be dimmed by requesting the required
power value. The light bulb offers a web service to enable remote luminosity control.
The luminosity can be dimmed instantaneously by sending a create request to the address
https://192.168.1.10/LampActuator/Create/[value] with a message body containing the
required power. The ontology instance also specified the location of the actuator (Room1)
as well as the contexts in which the actuator could be used (Notification and Lighting
control)

The Application Model is used to described all concepts of the SAI application which
are necessary for reasoning about the adaptation plan. Specifically, this class is intended
to be used by the SWRL reasoning engine to distinguish between ordinary situation and
situation which are critical and required certain responsive actions to be taken. The main
subclass of the critical situation is Adaptation representing a situation which may threat the
stability of the system or individual deployed application, and therefore has be reported
and acted upon. Accordingly, there are several adaptation plan which represents each
specific critical situations:

• ServiceUpgrade indicates a situation where the currently occupied service should be
replaced with another one which provides the equivalent functionality with higher
“quality” (e.g. low latency, low power consumption).

• ServiceDisruption indicates a situation where services being used by an application
stop working or keep generating invalid values. In this case, the platform commu-
nicates the situation to the application as an exception indication. Further actions
could be handled at the application level.

• ServiceSubstitution also indicates service disruption situation. However, the platform
is able to specify an alternative service which at least approximately provides sim-
ilar functionalities without affecting the logics of the applications. This process of
approximating services is actually an interesting topics in many research works. In
this work, it is primarily done by reasoning over the ontology with the help of SWRL
rules. However, since the ontology could be easily extended and SWRL rules could
be injected in run time, existing practices of other service approximating approaches
may be applied to improve precision of the process.

50 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

LampActuator

DimingOperation

DimingService

DimingOperationURI

https://192.168.1.10/LampActuator/Create/[value]

DimingOperationInput Create

LightingCapability

PowerMinValue PowerMaxValue

Watt

Room1

500

DimingActuatorInput

DimingActuatorValue

25

DimingActuation

Luminosity

Notification

Lighting

PowerRange

controlledProperty

hasDataValue

hasValue

contains

hasValue

hasAddress
hasMethod

usedInContext

hasLocation

hasService
commandBy

actsOn

forProperty

hasActuatingCapability

hasActuatingProperty

hasActuatingMaxValue
hasActuatingMinValue

hasDataValuehasDataValue

isClassifiedByisClassifiedBy

hasInput

ActuatorInput

Figure 4.8: An Example Of Devices Ontology Instance

At the moment, our prototype is developed to support those three adaption plans. How-
ever, the above list of adaptation is not complete and indeed could be extended or en-
hanced with more details of adaption actions as explained previously. Additionally, in
order to model the relation between applications and services, the Application Model is
also equipped with ServiceUsage class. Accordingly, an application could have some Ser-
viceUsage instances which indicate the services being used as well as their respective using
situations specified by the Context instances. This ServiceUsage is also used to communi-
cate with the application about new services for upgrading or substitution whenever there
is adaptation plan through the use of methods such as upgradeTo and substituteTo.

4.2.3 The Autonomic Manager

In this section, we will explain implementation details of the SAI platform, especially
the Autonomic Manager. This explanation is aligned with the main components of the
conceptual architecture presented in the previous section and accompanied by several code
snippets, which are intended to demonstrate how the key functions are implemented within
the platform.

Figure 4.9 presents overview of the data flow in each component of the Autonomic
Manager. The RDF Standardization Engine is the initial step of the data flow within
the Autonomic Manager. As described earlier, this engine is part of the Monitor component
and is responsible for extracting raw data from the managed elements and transforming

4.2. Implementation details of the SAI platform 51

them into semantic RDF triples using the SAI ontology.

Figure 4.9: Overview of the data flow of the reconfiguration process.

Following the non-intrusive principle to data collection, this engine relies on already
existing APIs provisioned by services to gather required metrics. For example, in order
to check the status of a particular sensor, it is necessary to retrieve the current sample
value observed by the sensor periodically by using the provided services specified in the
Service Repository. Furthermore, the sampling rate of the SAI platform for data extraction
should also be configured in accordance with the operating rate of the devices in order to
provide the actual real time data and avoid redundant calls to the services. The following
code snippet, for example, fetch the current temperature value observed by an Grove
Temperature Sensor which supports Restful API call. The response of this service is in
Json format which is then parsed into SensorEntity object that is defined according to
Sensor Model.

Listing 4.2: Sample code to fetch the temperature value from Restful API.

1 Cl i en t c l i e n t = Cl i en t . c r e a t e () ;
2 WebResource webResource = c l i e n t . r e s ou r c e (" https : // us . wio . seeed . i o /v1/node/

GroveBME280I2C0/ temperature ") ;
3 Cl ientResponse response = webResource . accept (" app l i c a t i o n / j son ")
4 . get (Cl ientResponse . class) ;
5 SensorEnt i ty output = response . ge tEnt i ty (SensorEnt i ty . class) ;

An important benefit of monitoring phase of the SAI platform is that there is no intru-
sion to the source code of the monitored services and applications. The framework only
requires user credentials to get access to individual instances of services – an acceptable
requirement given that the platform is assumed to be a trusted entity for the consumers.
Once the raw data is extracted, it then needs to be uniformly represented using the prede-
fined ontology. At the moment, this step is done manually by mapping between the source
raw data and target semantically-annotated triples.

It needs to be explained that a single raw value could be transform into multiple RDF

52 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

triples, which form an RDF graph. Depending on the requirements, additional RDF triples
serve to provide a more unambiguous and context-aware information to the next step. For
example, Listing 4.3 below demonstrates how observed temperature value is translated
into the RDF representation to be further processed by Autonomic Manager. Specifically,
this Listing presents the existence of an instance of Service class which has an Operation
with output value 60 degC.

Listing 4.3: A single temperature value is represented in multiple RDF triples.

sai:service-10 rdf:type msm:Service
sai:service-10 sai:hasId "TempSensingService_1"
sai:service-10 msm:hasOperation sai:operation-10
sai:operation-10 msm:hasOutput sai:output-124
sai:output-124 ssn:hasValue "60"^xsd:int

Accordingly, the newly-generated RDF triples are sent to the stream which is consumed
by the SPARQL Query Engine which is responsible for detecting potentially critical
situations and passing them further to the SWRL Reasoning Engine. This engine
is part of the Analysis component which handles the RDF triple form the Monitoring
component and pushes into the engine stream. An instance of the C-SPARQL engine is
configured as shown in Listing 4.4 below.

Listing 4.4: Initializing the C-SPARQL Engine and registering a stream.

1 // I n i t i a l i z e C−SPARQL Engine
2 CsparqlEngine eng ine = new CsparqlEngineImpl () ;
3 eng ine . i n i t i a l i z e () ;
4
5 // Get t ing the RDF stream from Monitor component
6 CsparqlStream csparqlStream = Monitor . getStream ("http :// myexample . org /

stream1") ;
7 eng ine . r eg i s t e rS t r eam (csparqlStream) ;

In order for the SPARQL Query Engine to function, it is required to assign a data
stream and register a standing C-SPARQL query against this data stream, as illustrated
in Listing 4.5. Using the WHERE clause, the standing C-SPARQL queries serve to fetch
potentially critical values from the incoming data stream. From this perspective, they
can be seen as a filtering element whose responsibility is to let ‘noisy’ data pass through,
keeping only critical triples passing on to the SWRL Reasoning Engine. Once the query
is registered against the stream, the associated listener (i.e., streamFormatter) will start
triggering every time RDF triples observed on the stream within the specified window
frame satisfy the WHERE condition.

Listing 4.5: Registering a C-SPARQL query for the engine.

1 // Reg i s t e r i n g query
2 St r ing query = "REGISTER QUERY inva l id_va lue AS"
3 + "PREFIX ex : <http :// myexample . org/>"
4 + "SELECT ?output ? value "

4.2. Implementation details of the SAI platform 53

5 + "FROM STREAM <http :// myexample . org / stream1> [RANGE 5 s STEP
1 s] "

6 + "WHERE { ? output msm: hasValue ? value "
7 + "? value > 50"
8 + "}" ;
9 CsparqlQueryResultProxy r e s u l t = engine . r eg i s t e rQuery (query) ;

10
11 //Adding l i s t e n e r
12 RDFStreamFormatter streamFormatter = new RDFStreamFormatter (" http ://

myexample . org / stream2") ;
13 proxy . addObserver (streamFormatter) ;

As illustrated in 4.5 which registers a query checking whether the observed value from
sensors is greater than 50 and forwarding the invalid data to the observer, different types
of critical situation check can be dynamically added to the SPARQL Query Engine by
registering new queries. In fact, since the devices can vary in operating attributes, different
techniques and parameters should be applied to the query in order to testing their operating
status, thus resulting in various types of queries. The query results are processed into
RDF triples representing the critical situations which will then be dynamically added
to the Repository as ontology instances, and the reasoning process is initialized. As an
example, after recognizing an abnormal value observed by a sensor from the query result,
the Analysis component will constructing corresponding RDF triples to indicate potentially
critical condition of the sensor, as illustrated in Listing 4.6. These RDF triple will then
be used to update operating status of the corresponding devices. As an example, after
detecting invalid value observed by a service, the Analysis component would constructing
RDF triples to indicate the corresponding sensor is not working properly by changing its
status to OfflineState, as illustrated in Listing 4.10.

Listing 4.6: Multiple RDF triples indicate a sensor has stopped working.

sai:sensor-13 rdf:type ssn:Sensor
sai:sensor-13 sai:hasId "TempSensor_1"
sai:sensor-13 msm:hasState sai:OfflineState

Depending on the set of registered SWRL rules, the application which is related to
the newly-populated individuals may be classified as critical situations, thereby calling
for a corresponding reactive action. As explained in previous section, same application
may be classified into different types of Adaptation (i.e. ServiceUpgrade, ServiceSubstitu-
tion). As an example, Listing 4.7 presents a sample SWRL rules to classify a particular
application into ServiceDisruption type. This rule checks whether the service ser which is
used by application app is belong to a sensor with OfflineState, and updates the app to
ServiceDisruption class as well as specifies the relation between service usage usg and
ser to ServiceDisrupted.

Listing 4.7: An example of SWRL rule indicating a ServiceDisruption.

Application(?app), hasServiceUsage(?app, ?usg), usesService(?usg, ?ser),
Sensor(?dev), 'has service'(?dev, ?ser), 'has state'(?dev, ?state),
SameAs (?state, OfflineState)
-> ServiceDisruption(?app), ServiceDisrupted(?usg, ?ser)

54 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

The following listings below illustrate i) how an ontology is loaded and initiated within
the SAI platform (see Listing 4.8), ii) how to dynamically modify different type of Reposi-
tory (see Listing 4.9 and 4.10) and, finally, iii) how the Pellet reasoner, when queried, can
infer if there are any instances of the class Adaptation (see Listing 4.11).

Listing 4.8: Loading and initializing the ontology.

1 OWLOntologyManager manager = OWLManager . createOWLOntologyManager () ;
2 OWLOntology onto logy = manager . loadOntologyFromOntologyDocument (IRI .

c r e a t e (" f i l e : " + ontologyFileName)) ;
3 OWLReasonerFactory reasonerFactory = Pel l e tReasonerFactory . g e t In s tance () ;
4 OWLReasoner r ea sone r = reasonerFactory . c reateReasoner (ontology , new

SimpleConf igurat ion ()) ;
5 OWLDataFactory f a c t o r y = manager . getOWLDataFactory () ;
6 PrefixDocumentFormat pm = manager . getOntologyFormat (onto logy) .

asPrefixOWLOntologyFormat () ;
7 pm. s e tDe f au l tP r e f i x (BASE_URL + "#") ;

Listing 4.9: Adding a new service individual into the knowledge base.

1 /∗∗
2 ∗ Adding new s e r v i c e i n d i v i d u a l to the knowledge base wi th name
3 ∗ "ServiceName"
4 ∗∗/
5 OWLClass s e r v i c eC l a s s = f a c t o ry . getOWLClass ("MSM: Se rv i c e " , pm) ;
6 OWLNamedIndividual newService = c r e a t e I nd i v i dua l (ontology , pm, manager ,

serviceName) ;
7 manager . addAxiom(ontology , f a c t o r y . getOWLClassAssertionAxiom (s e rv i c eC l a s s

, newService)) ;
8
9 OWLDataProperty hasIdDataProp = fa c t o ry . getOWLDataProperty (" : hasId " , pm) ;

10 manager . addAxiom(ontology , f a c t o ry . getOWLDataPropertyAssertionAxiom (
hasIdDataProp , newService , serviceName)) ;

Listing 4.10: Updating status of the devices.

1 /∗∗
2 ∗ Changing s t a t u s o f the the dev i c e s p e c i f i e d by
3 ∗ the parameter " dev i c e " .
4 ∗ " s ta t eVa lue " i n d i c a t e s the va lue to change
5 ∗ (0 = Of f l i n eS t a t e , 1= Onl ineSta te)
6 ∗∗/
7 public void ChangeStateOfDevice (OWLNamedIndividual device , int s tateVa lue

)
8 {
9

10 OWLNamedIndividual s t a t e ;
11 i f (s tateVa lue == 0)
12 s t a t e = fa c t o ry . getOWLNamedIndividual (" : O f f l i n e S t a t e " , pm) ;
13 else
14 s t a t e = fa c t o ry . getOWLNamedIndividual (" : Onl ineState " , pm) ;
15
16 OWLObjectProperty hasStateProperty= fa c t o ry . getOWLObjectProperty ("

DOGONT: hasState " , pm) ;
17
18 for (OWLNamedIndividual ind : r ea sone r . getObjectPropertyValues (device

, hasStateProperty) . ge tF la t t ened ())

4.2. Implementation details of the SAI platform 55

19 {
20 manager . removeAxiom(ontology , f a c t o r y .

getOWLObjectPropertyAssertionAxiom (hasStateProperty , device ,
ind)) ;

21 }
22
23 manager . addAxiom(ontology , f a c t o r y . getOWLObjectPropertyAssertionAxiom

(hasStateProperty , device , s t a t e)) ;
24 }

Listing 4.11: Reasoning whether there are adaptation instances.

1 //Querying over a l l a p p l i c a t i o n s e x i s t i n g in the p la t form
2 for (OWLNamedIndividual app : r ea sone r . g e t In s t anc e s (app l i c a t i onC la s s ,

fa l se) . ge tF la t t ened ())
3 {
4 St r ing appName = app . toStr ingID () ;
5
6 //Checking whether the a p p l i c a t i o n i s a l s o an adap ta t ion c l a s s (e . g .

need adapt ion)
7 OWLClassAssertionAxiom axiomToExplain = fa c t o ry .

getOWLClassAssertionAxiom (adaptat ionClass , app) ;
8 boolean needAdapting = reasoner . i sEn t a i l e d (axiomToExplain) ;
9

10 // i f t h e r e i s new adap ta t ion
11 i f (needAdapting)
12 {
13 //Checking type o f adap ta t ion
14 OWLClassAssertionAxiom axiomToExplain1 = fa c t o ry .

getOWLClassAssertionAxiom (serv iceUpgradeClass , app) ;
15 OWLClassAssertionAxiom axiomToExplain2 = fa c t o ry .

getOWLClassAssertionAxiom (s e r v i c eSub s t i t u t i onC l a s s , app) ;
16 OWLClassAssertionAxiom axiomToExplain3 = fa c t o ry .

getOWLClassAssertionAxiom (s e rv i c eD i s rup t i onC la s s , app) ;
17
18 // Serv i c e upgrade
19 i f (r ea sone r . i sEn t a i l e d (axiomToExplain1))
20 {
21 //Corresponding proce s s ing f o r s e r v i c e upgrade
22 }
23 // Serv i c e s u b s t i t u t i o n
24 else i f (r ea sone r . i sEn t a i l e d (axiomToExplain2))
25 {
26 //Corresponding proce s s ing f o r s e r v i c e s u b s t i t u t i o n
27 }
28 // Serv i c e d i s r up t i on
29 else i f (r ea sone r . i sEn t a i l e d (axiomToExplain3))
30 {
31 //Corresponding proce s s ing f o r s e r v i c e d i s r up t i on
32 }
33
34 }

The final step of the Autonomic Manager is carried out through the Application
Executer which is part of the Execute component. At the moment, this component is
responsible for collecting all information about the adaptation plan which is necessary
for new reconfiguration, transforming those information into RDF triples, and sending

56 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

them to the corresponding application. For example, whenever the reason specifies an
application as an instance of ServiceUpgrade, the Application Executer will then identified
the service which is being used as well as the respective service which the application should
upgrade to. This process can be implemented in the code snippet presented in Listing 4.12.
Accordingly, the corresponding RDF triples will be constructed based on this information
and communicated to the application for reconfiguration. A simplified list of RDF triples
indicating a ServiceUpgrade adaptation is illustrated in Listing 4.13. Specifically, these
triples notify the application to upgrade from service-10 to service-15 provided by the
sensor with id TempSensor_15.

Listing 4.12: Finding corresponding service to upgrade to.

1
2 //Finding a l l s e r v i c e s used by the a p p l i c a t i o n app
3 for (OWLNamedIndividual usage : r ea sone r . getObjectPropertyValues (app ,

hasServ iceUsageProperty) . ge tF la t t ened ())
4 {
5 OWLNamedIndividual f romService , t oS e rv i c e ;
6
7 //Finding the the cu r r en t l y used s e r v i c e
8 for (OWLNamedIndividual s e r v i c e : r ea sone r . getObjectPropertyValues (

usage , usesToProperty) . ge tF la t t ened ())
9 {

10 f romServ ice = s e r v i c e ;
11 break ;
12 }
13
14 //Finding the new s e r v i c e to upgrade
15 for (OWLNamedIndividual s e r v i c e : r ea sone r . getObjectPropertyValues (

usage , upgradeToProperty) . ge tF la t t ened ())
16 {
17 t oSe rv i c e = s e r v i c e ;
18 break ;
19 }
20
21 }

Listing 4.13: RDF triples represent a ServiceUpgrade Adaptation.

sai:sensor-15 rdf:type ssn:Sensor
sai:sensor-15 sai:hasId "TempSensor_15"
sai:sensor-15 msm:hasService msm:service-15
sai:sensor-15 msm:hasId "TempSensingService_15"
msm:service-15 msm:hasOperation msm:operation-15
msm:service-15 msm:hasAddress "https://localhost:80/TempSensor/Read"
.
.
.
sai:usage-3 sai:useService msm:service-10
sai:usage-3 sai:upgradeTo msm:service-15

4.2. Implementation details of the SAI platform 57

4.2.4 The SAI Application

Once receiving the reconfiguration plan under RDF triples from the Application Executer,
the deployed application starts reconfiguring according to these plan. As discussed from
previous section, SAI application is described as a set of rules in order to simply the process
of semantic analyzing and reconfiguration. At the moment, a SAI application would be
specified according to the syntax illustrated in Listing 4.14.

Listing 4.14: Syntax of the SAI application.

//Application definition
PROGRAM -> "begin" BLOCK "end"

//Application body
BLOCK -> "rule" <STRING_LITERAL>

"use" USE_BL
"declare" DEC_BL
"action" ACT_BL

//Defining sensor or actuator for use
USE_BL -> (USE_SEN)* | (USE_ACT)*
USE_SEN -> "sensor" <ID> "@" <ID> ["for" <ID>] ";"
USE_ACT -> "actuator" <ID> "@" <ID> ["for" <ID>] ";"

//Declaring variable
DEC_BL -> ("var" <ID> ";")*

//Defining rule
ACT_BL -> (STMT)*

//Statement can be assignment, if statement or service call
STMT -> (ASS_ST)* | (IF_ST)* | (SER_CAL ";")*

//Variable can be assigned value of other variable, literal,
//service call and property of devices
ASS_ST -> <ID> "=" EXP ";"
EXP -> <ID> | <LITERAL> | SER_CAL | PROP_ACC
SER_CAL -> <ID> "." <ID> "(" [<ID> | <LITERAL>] ")"
PROP_ACC-> <ID> "." <ID>

//If statement
IF_ST -> "if" "(" CONT ")" "{" ACT_BL "}"

["else" "{" ACT_BL "}"] ";"

CONT -> EXP <OP> EXP

Listing 4.15 presents the Fire Alarming application which observes the value from
a smoke sensor and turns on the speaker whenever fire detected. As illustrated, A SAI
application is typically described with begin and end keywords along with four compulsory
block:

58 Chapter 4. SAI platform: A Service-oriented Autonomic IoT Platform

• The Rule block describes the name of the application. Currently, an application
consists of only one rule. However, the rule may provide multiple functions which
are defined in the Action block.

• The Use block specifies the sensors or actuators which would be used in the appli-
cation along with their ids (e.g. after the @ sign) which were defined and stored in
the Devices Repository. The statements in this block could also be used to defined a
specific usage context of the devices, which as explained earlier will be used for ap-
proximating services. As an example the statement in line 10 of Listing 4.15 declares
the application would use the actuator Speaker1 for NotificationContext.

• The Declare block for declaring variables used inside the Action block.

• The Action block describes the functions of application. Typically, these functions
are presented under conditional statements which trigger actions by service calls.
This block could also contain assignment blocks and device properties access. At
the moment, the names of services or properties are manually mapped to the ids
of corresponding instances existing in the ontology, thus calling services or access-
ing devices properties is actually retrieving the data value of those instances. For
example, in line 16 of Listing 4.15, the value of Speaker1PowerMaxValue instance
related to Speaker1 is assigned to variable speaker_freq. In addition, whenever
encountering line 18, the interpreter actually accesses the URL value of the Service
with id SmokeSensor1GetService in order to make a web service call.

Listing 4.15: Rule used in the Fire Alarming Application.

1 /∗∗
2 ∗ Rule to observe the a i r q u a l i t y va lue measured by the SmokeSensor1
3 ∗ and con t r o l the speaker by s e t t i n g the input f requency to 2000Hz
4 ∗ whenever the observed va lue exceeds the t h r e s h o l d .
5 ∗∗/
6 begin
7 rule " f i re_alarming_operat ion "
8 use
9 senso r smoke_sensor@SmokeSensor1 ;

10 actuator speaker_act@Speaker1 for Not i f i ca t i onContext ;
11 declare
12 var a larming_thereshold ;
13 var speaker_freq ;
14 action
15 alarming_thereshold = smoke_sensor . SmokeSensor1Threshold ;
16 speaker_freq = speaker_act . Speaker1PowerMaxValue ;
17
18 i f (smoke_sensor . SmokeSensor1GetService () > alarming_thereshold)
19 {
20 speaker . Speaker1SetServ i ce (speaker_freq) ;
21 }
22 end

Once deployed, the application would send necessary information to the Autonomic
Manger for monitoring and reasoning purpose. This information should be corresponding
to the Application Model defined in the ontology and transformed into RDF triples. As
an example, Listing 4.16 presents partial information would be sent by the Fire Alarming
application in Listing 4.15.

4.2. Implementation details of the SAI platform 59

Listing 4.16: RDF triples represent an application update.

sai:application-20 rdf:type sai:Application
sai:application-20 sai:hasServiceUsage sai:usage-34
sai:usage-34 sai:usesService sai:service-123
sai:service-123 sai:hasId sai:SpeakerSetService
sai:usage-34 sai:hasContext sai:NoficationContext
....

After receiving information about the newly deployed application, the Monitoring com-
ponent would update the knowledge base accordingly for monitoring and reasoning adap-
tation plan. As discussed in previous section, these adaptations are also transfered under
RDF triples and processed by the ApplicationMonitor in oder to reconfigure the application
by modifying its rules. As an example, Listing 4.17 described the Fire Alarm application
after an ServiceSubstitute adaptation. Specifically, instead of using SpeakerSetService
of the Speaker1 as in Listing 4.15, the application changes to use service provide by the
LampActuator1 which also supports the same NotificationContext.

Listing 4.17: Fire Alarming Application after reconfiguration.

1 /∗∗
2 ∗ Rule to observe the a i r q u a l i t y va lue measured by the SmokeSensor1
3 ∗ and con t r o l the lamp ac tua tor acco rd ing l y (e . g . turn on the lamp)
4 ∗ whenever the observed va lue exceeds the t h r e s h o l d .
5 ∗∗/
6 begin
7 rule " f i re_alarming_operat ion "
8 use
9 senso r smoke_sensor@SmokeSensor1 ;

10 actuator lamp_act@LampActuator1 for Not i f i ca t i onContext ;
11 declare
12 var a larming_thereshold ;
13 var lamp_power ;
14 action
15 alarming_thereshold = smoke_sensor . SmokeSensor1Threshold ;
16 lamp_power = lamp_act . LampAct1PowerMaxValue ;
17
18 i f (smoke_sensor . SmokeSensor1GetService () > alarming_thereshold)
19 {
20 lamp_act . LampAct1SetService (lamp_power) ;
21 }
22 end

At the moment, the prototype support relatively limited features in describing logics
for application. It should be enhanced along with the Application Model in the ontology
in oder to support complicated adaptation situation. We will discuss this direction further
more in Chapter 7.

Chapter 5

The Smart Home Case Study

In previous chapter, we have explained the conceptual architecture and briefed the reader
on technical aspects of the platform, which are also required to understand the case study
and experiments to be described in this chapter. Specifically, the chapter explained how the
main three components of the platform – the SAI ontology, the Autonomic Manger, and the
Application Model – are implemented. In this chapter, we will explain in more detail how
the autonomic mechanism is actually carried out within the platform by demonstrating
a case study focusing on the smart home situations. Specifically, this chapter considers
a case study, which involves multiple applications usually found in a smart home, which
reconfigure their services according to changes in the operating environment. The use
case scenarios are described from two sides of the architecture - namely, the platform and
the application perspectives. With the use case scenario explained, we will be able to
describe each of the autonomic mechanism carried out in each component of the platform.
Accordingly, the use case demonstrates how raw data is first transformed into RDF, then
queried with C-SPARQL queries, reasoned by the SWRL Reasoning Engine, and eventually
sent to applications for reconfiguration.

Overall, the case study involves a house consisting of two rooms where all of the devices
are located. Figure 5.1 presents the architecture of this house which we use to illustrate
the case study. In Room 1, there are a Smoke Sensor, a Speaker and a Lamp connected to
a switch which could be controlled remotely. Room 2 has a Temperature Sensor, a Heater,
a Luminous Sensor which measures the ambient light intensity and a Bulb connected to
a dimmer. In this case study, we assume that all gadgets provide their accesses through
web services hosted on the two gateways which have connection with a server running
our SAI platform. There are also smart devices on which the applications are deployed.
Specifically, there are five applications running on a computer and a smart phone:

• The Lamp Controlling Application which is deployed on the smart phone, is used
to control the lamp in Room 1. Listing 5.1 describes the logic of this application.
Specifically, the application switches the lamp on/off whenever receiving a button
pressed signal.

• The Fire Monitoring Application in Listing 5.2 simply reads value observed by the
smoke sensor and outputs to the console.

• The Light Controlling Application which is running on the computer, is described in
Listing 5.3. This application uses the luminous sensor and bulb in Room 2 in order to

61

62 Chapter 5. The Smart Home Case Study

Figure 5.1: Overview of physical arrangement in the Smart Home Case Study.

maintain the light intensity around desired value. Specifically, the application keeps
comparing the sensor value with the threshold in order to decide whether to increase
or decrease power of dimmer connected to bulb.

• The Thermostat Application operates in a similar way as the Light Controlling Appli-
cation. It measures the temperature of Room 2 and controls the heater accordingly.
The rule describing this application was already presented from previous chapter in
Listing 4.1.

• The Fire Alarm Application in Listing 4.15 observes air quality measured by the
smoke sensor and turn the speaker on whenever encountering value greater than a
threshold.

Listing 5.1: Lamp Controlling Application.

1 /∗∗
2 ∗ Rule to d e t e c t bu t ton pres sed and turn the lamp ac tua tor
3 ∗ acco rd ing l y .
4 ∗∗/
5 begin
6 rule " lamp_control_operation "
7 use

63

8 senso r button@Button1 ;
9 actuator lamp_act@LampActuator1 ;

10 declare
11 var lamp_power ;
12 action
13
14 // turn o f f the l i g h t
15 lamp_power = lamp_act . LampAct1PowerMinValue ;
16 lamp_act . LampAct1SetService (lamp_power) ;
17
18 i f (button . Button1GetService () == "button_pressed ")
19 {
20 // Swi tch ing the ac tua to r
21 i f (lamp_power == lamp_act . LampAct1PowerMinValue)
22 {
23 lamp_power = lamp_act . LampAct1PowerMaxValue ;
24 }
25 else
26 {
27 lamp_power = lamp_act . LampAct1PowerMinValue ;
28 }
29 lamp_act . LampAct1SetService (lamp_power) ;
30 }
31 end

Listing 5.2: Fire Monitoring Application.

1 /∗∗
2 ∗ Rule to read input from smoke sensor , output the va lue to conso l e .
3 ∗∗/
4 begin
5 rule " f i re_monitor ing_operat ion "
6 use
7 senso r smoke_sensor@SmokeSensor1 ;
8 declare
9 var sensor_output ;

10 action
11 sensor_output = smoke_sensor . SmokeSensor1GetService () ;
12 p r i n t sensor_output ;
13 end

Listing 5.3: Light Controlling Application.

1 /∗∗
2 ∗ Rule to d e t e c t the i n t e n s i t y o f the ambient l i g h t and ad j u s t the
3 ∗ luminous ac tua tor acco rd ing l y .
4 ∗∗/
5 begin
6 rule " lam_regulat ing_operat ion "
7 use
8 senso r luminous_sensor@LuxSensor1 ;
9 actuator lumious_act@LuxActuator1 ;

10 declare
11 var dire_lux_thershold ;
12 var lux_input ;
13 var s tep ;
14 action

64 Chapter 5. The Smart Home Case Study

15 dire_lux_thershold = 600 ;
16 lux_input = 600 ;
17 step = 2 ;
18
19 i f (luminous_sensor . LuxSensorGetService () < dire_lux_thershold)
20 {
21 lux_input = lux_input + step ;
22 }
23 else
24 {
25 lux_input = lux_input + step ;
26 }
27
28 luminous_act . LuxActatorSetServ ice (lux_input) ;
29 end

It is necessary to explain that this case study was tested in a simulating manner, which
means we did not work with the real gadgets but simulated them instead. Specifically,
for each device presented above, we created corresponding RESTful APIs which return
our desired values when being called. By doing so, we could not only reduce effort of
collecting raw data at the first stage since the APIs were designed to return their values in
format conforming to the ontology but also simplify the process of making changes to the
operating environment observed by the Autonomic Manager, thus critical situations could
be simulated easily. In particular, we produced the device outputs in a way to generate
the three presented adaptation types, which will be discussed in more details in following
scenarios:

• Upgrading to new luminous sensor:

This scenario involves the Light Controlling Application in Listing 5.3 which controls
the light intensity of Room 2. Specifically, the application was designed to use the
luminous sensor with id LuxSensor1 from the beginning. In order to to generate
a ServiceUpgrade adaptation, we integrated a new luminous sensor with higher
resolution. This could be done by manually inserting new instance of sensor into the
ontology, which means we created new sensor that is acting on the same luminosity
property, locating in Room 2 and having higher range of sensing capabilities. Listing
5.4 presents the SWRL which is used for reasoning about this situation. Specifically,
the rule searches for an application app which is currently using service provided by
a sensor device1 which has upper limit of sensing capability less than another sensor
device2 which has same type property and location loc.

Listing 5.4: An example of SWRL rule indicating a ServiceUpgrade.

Application(?app), hasServiceUsage(?app, ?usg), usesService(?usg, ?ser1),

Sensing_device(?device1), hasLocation(?device1, ?loc),
'has service'(?device1, ?ser1), observes(?device1, ?property),
hasSensingCapability(?device1, ?cap1), hasSensingProperty(?cap1, ?prop1),
hasRegion(?prop1, ?reg1), hasMaxValue(?reg1, ?max1)

Sensing_device(?device2), hasLocation(?device2, ?loc),
'has service'(?device2, ?ser2), observes(?device2, ?property),
hasSensingCapability(?device2, ?cap2), hasSensingProperty(?cap2, ?prop2)

65

hasRegion(?prop2, ?reg2), hasMaxValue(?reg2, ?max2),

swrlb:lessThan(?max1, ?max2)
-> ServiceUpgrade(?app), UpgradeTo(?usg, ?ser2)

Whenever the rule was matched, the SWRL Reasoning Engine would indicate a
ServiceUpgrade plan to the corresponding application for reconfiguration as discussed
in previous section. As an example, Figure 5.2 presents an output from the platform
whenever an application needs adapting.

Figure 5.2: A snapshot of output from the reasoning.

• Substituting lamp for speaker:

This scenario presents an example of approximating services by using SWRL rule.
Particularly, the platform tries to use the lamp in Room 1 as an alternative method
for alarming in case of fire whenever the speaker stops working. As discussed in last
chapter when we explained details of the SAI application, the Fire Alarming Applica-
tion in Listing 4.15 uses the service provided by Speaker1 for NotificationContext.
Whenever, the speaker stops working, the platform keeps searching for other alterna-
tives which support the same context. In order to simulate a case of losing control of
speaker, we provided values indicating a failure whenever the platform called services
provided by the speaker for checking its status. As described earlier, in this case, the
RDF Standardization Engine would generating RDF triples presenting the actuator
with OfflineState. As an example, Figure 5.3 presents sample RDF outputs from
this engine.

As presented, these RDF triples will be served as input to the SPARQL Query
Engine for filtering critical situations. Listing 5.5 described the C-SPARQL used for
selecting triples which containing information about an offline actuator. Specifically,
the query keep analyzing over the RDF stream and selecting only actuators which
have state OfflineState. Upon receiving result from this query, the corresponding

66 Chapter 5. The Smart Home Case Study

Figure 5.3: A snapshot of output from the monitoring.

status update to the respective instances of actuators will be carried out by calling
functions presented in Listing 4.10.

Listing 5.5: C-SPARQL query for offline actuator.

REGISTER QUERY OfflineActuator AS
PREFIX sai: <http://www.sai.org#>
SELECT ?actuator "
FROM STREAM <http://www.sai.org/invalidvaluestream> [RANGE 5s STEP 1s]
WHERE {

?actuator sai:type sai:Actuator .
?actuator sai:hasState sai:OfflineState .

}

Once the actuator status was updated into the ontology, the SWRL Reasoning Engine
would be able to find a new equivalent service. Listing 5.6 describes the SWRL rule
for reasoning ServiceSubstitution adaptation. In particular, whenever an actuator
stops working, the rule keeps searching for another actuator which provides service
with the same context, and indicates the application for substituting to the new
service.

Listing 5.6: An example of SWRL rule indicating a ServiceSubstitution.

Application(?app), hasServiceUsage(?app, ?usg), usesService(?usg, ?ser),
hasContext(?usg, ?context),

Actuator(?dev1), 'has service'(?dev1, ?ser), hasLocation(?dev1, ?loc)
hasState(?dev1, ?state), SameAs (?state, OfflineState),

Actuator(?dev2), 'has service'(?dev2, ?ser2), hasLocation(?dev2, ?loc)
usedInContext(?ser2, ?context)

67

-> ServiceSubstitution(?app), SubstitutionTo(?usage, ?ser2)

Accordingly, the reconfiguration process would be starting at application upon re-
ceiving the adaption plan from the platform. Figure 5.4 shows an example of output
from the application after reconfiguring.

Figure 5.4: A snapshot of output from an application.

• Temperature sensor malfunctioning:

This scenario presents a situation when the platform could not find any suitable
service for application to replace whenever the currently used service disrupted. To
illustrate the scenario, we simulate a temperature sensor which provides invalid value.
Specifically, we provided relatively large value to the calls to retrieve value observed
by the temperature sensor in Room 2. As discussed, this case should be detected
as a critical situation by the Analysis component. To do that, we inserted a query
that detects invalid observed value from the sensor to the SPARQL Query Engine,
as illustrated in Listing 5.7. Specifically, the query keeps analyzing over the RDF
stream, focuses only on value greater than 60 degree, and finally outputs the triple
of sensor, service and value for further investigation. Figure 5.5 present an example
of output of this query from the engine for this case.

Listing 5.7: C-SPARQL query for invalid sensor value.

REGISTER QUERY InvalidSensorValue AS
PREFIX sai: <http://www.sai.org#>
SELECT ?sensor ?service ?value
FROM STREAM <http://www.sai.org/invalidvaluestream> [RANGE 5s STEP 1s]
WHERE {

?sensor sai:type sai:Sensor .
?sensor sai:hasService ?service .
?service sai:hasOperation ?op .
?op sai:hasOutput ?out .
?out sai:hasValue ?value .
FILTER (?value > 60)

}

68 Chapter 5. The Smart Home Case Study

Figure 5.5: A snapshot of output from the analysis

Upon receiving the query results, the Analysis would update the ontology accordingly.
Specifically, the same action as in previous scenario is carried out, which is updating
the sensor status to OfflineState. Since then, the SWRL Query Engine should be
able to detect a ServiceDisruption situation. As explained earlier, this adaptation
is supported by the SWRL rule described in Listing 4.7. Particularly, the rule checks
whether a service which is currently occupied by an application is provided by an
offline device. If so, the application would be classified into ServiceDisruption
class. Accordingly, the Execute component would send this information to the cor-
responding application which is the Thermostat Application in this case for further
action. At the moment, upon receiving this kind of adaptation, the application would
do nothing rather than stop switching the heater on/off in oder to protect it from
damage due to overheating and wait for alternative plan from the platform.

To summarize, in this chapter, we have demonstrated how the SAI platform operates by
presenting a case study of a Smart Home. This case study focuses on the five applications
which were deployed on two smart devices (a laptop and a smart phone) and connected to
different services provided by the gadgets through RESTful APIs. The main goal of the
considered use case scenarios was to demonstrate the analysis and reasoning capabilities
of the platform as well as the reconfiguration mechanisms carried out at the applications.
Additionally, by using code snippets, the chapter demonstrated how the main components
function, and how monitored data is first transformed and then flows within whole system.
These scenarios will also be used for setting up experiments for further evaluation of our
approach. Specifically, in the next chapter, we will continue with the presented scenarios
in order to evaluate the performance of the system from perspectives of the two main
stake-holders: the SAI platform and the SAI applications.

Chapter 6

Evaluation and Discussion

In this chapter, we summarize the main aspects of the presented approach in a more
structured manner. First, we evaluate and discuss our approach under the perspective of
performance capabilities. Next, we continue the discussion with a detailed explanation
about the proposed platform with respect to the problem statements presented in the
introductory chapter.

6.1 Evaluating performance of the approach

In this section, we evaluate the performance of our proposed approach under two per-
spectives: the SAI platform and SAI application. Accordingly, we conducted several ex-
periments aiming at demonstrating the performance of the whole system with respect to
several configurable parameters. As mentioned earlier, our experiments were conducted
based on the Smart Home Case Study presented in Chapter 5. Specifically, we changed
the physical environment of Smart Home by simulating the value observed by the sensors
and actuators in order to trigger the reconfiguration in each scenario and measured several
interesting metrics accordingly in order to assess the performance of both the platform
and the underlying process of applications. Based on the results of each experiment, we
discuss the benefits of employing our solution for achieving autonomic capabilities into
IoT platform. Furthermore, we also present the threats to validation as well as potential
limitations of the approach.

6.1.1 Experimental Setup

All the experiments were performed on a workstation with a CPU Intel Core I5 2.70 GHz
processor and 8 GB memory running Sun J2RE 1.8. We set the JVM maximum allocation
pool to 2 GB, so that virtual memory activity has no influence on the results. As explained
earlier, in order to trigger the adaptation from each scenario in the Smart Home Use Case,
we simulated the physical devices by hosting our own RESTful APIs on a local computer,
thus we were able to take control over the values of sensors or actuators that were read
from the Monitor component and the applications. It is worth explaining that in the
experiments, the Monitor component monitored each physical device periodically, thus the
RDF triples were generated at relatively stable rate. Particularly, throughput of the RDF
stream fed to the SPARQL Query Engine is approximately 20 triples/sec. Accordingly,
we injected critical values into the stream in order to trigger each scenario sequentially

69

70 Chapter 6. Evaluation and Discussion

and measured metrics interesting to the performance evaluations at two sides: the SAI
platform and the applications.

6.1.2 Performance of the SAI platform

The SAI platform was evaluated under the aspect of scalability, which is testing processing
performance of platform on system which involves vast number of devices. Specifically,
for each scenario of the use case, we introduced additional devices into the system by
creating corresponding instances related to them into the knowledge base. Accordingly,
the following metrics were measured for this evaluation:

• Memory Utilization is the maximum RAM memory occupied by the platform
during the runtime of the scenarios. This value was measured by using the YourKit
Java Profiler 1 tool.

• Detection Time of the scenario is the duration from the moment critical values are
injected to the Monitor to the time when adaptation plans are ready to be sent to
the applications.

The experiment was designed as follows. Every scenario was reproduced ten times
and the average value from all runs were used in order to increase the reliability of the
measured data. Additionally, for each scenario, apart from the active gadgets, we generated
(10x|x = 0..4) different devices and measured the metrics of interest from each step.

278 297 327

1020

1578

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4

RA
M
	U
sa
ge
	(M

B)

Ontology	instances	of	device	[10x]

Figure 6.1: Memory utilization of the SAI Platform with additional instances.

Figure 6.1 presents the results of memory utilization from the experiment. As can be
seen from this figure, the memory allocation tends to increase slower than linear trend.

1https://www.yourkit.com

https://www.yourkit.com

6.1. Evaluating performance of the approach 71

Specifically, the number is around 300MB when there are up to 100 devices existing in
the system. This figure is approximately tripped when the number of devices increases
ten times and raises up to 1.5GB with 104 devices. It is worth explaining that in order
to introduce a device into the system, multiples type of instances should be created in
the knowledge base in accordance with the presented SAI ontology (e.g. the services or
properties related to that particular device). Therefore, for one device, probably more than
ten individuals of ontology class are created. Additionally, the numbers presented in Figure
6.1 do not present the memory allocation for only knowledge base but the entire autonomic
platform. Since our approach applies in-memory stream processing and reasoning, this
metric could be critical to the platform whenever the system grows larger. Therefore,
these numbers illustrate that the presented use case can be arguably compared to real-
world IoT systems consisting of thousands of sensors and actuators, thus demonstrating
the efficiency of applying the presented ontology for knowledge representation in term of
physical resource consumption.

0 1 2 3 4
ServiceUpgrade 0.089 0.19 2 37.8 417.9

ServiceSubstitution 0.104 0.207 1.9 34.5 398.6

ServiceDisruption 0.069 0.097 1.5 29.2 319.7

0
50

100
150
200
250
300
350
400
450

De
te
ct
io
n	
tim

e	
(s
)

Ontology	instances	of	device	[10x]

Figure 6.2: Autonomic performance of the SAI Platform with additional instances.

Regarding the detection time metric, as can be seen from Figure 6.2 which presents
the measured values from three different types of adaptation, we can conclude with the
following observation - as the workload is increasing, the platform is facing considerable
challenges, which stem from the volume and variety of the collected data. Specifically,
the numbers in three scenarios have the same increasing tendency, which shows that the
platform was able to detect each critical situation within two seconds when there are up to
100 devices. The reasoning slows down the platform significantly if there are more than 103

devices existing. Additionally, the numbers from ServiceDisruption are relatively smaller
than the other two adaptation plans. This could be intuitively explained by the fact that
the corresponding SWRL rule describing this situation has less predicates than the others,

72 Chapter 6. Evaluation and Discussion

thus taking the engine smaller time for matching the rule. Furthermore, the evaluation
of the ServiceUpgrade took an average of 37.8 seconds for 103 and 417.9 seconds for 104

devices, which are also the biggest number observed from the experiment.
It is important to explain that Figure 6.2 does not illustrate the efficiency of the plat-

form in term of providing services to the consumers. Thus, our proposed platform is
still comparative to other IoT platforms with regard to support for real-time applications.
Specifically, as explained in Chapter 4, once deployed into the system, SAI applications
work directly with the devices through web services, thus, the network latency is the
primary factor in that case. In this experiment, this figure presents performance of the
autonomic mechanism provided by the platform, that is how frequently the platform pro-
duces an adaptation plan to its client, which could be considered as an additional intelligent
service provided by the platform. As discussed from the beginning, autonomic computing
is introduced to support system evolution scenarios which required significant human ef-
fort. In practice, each of the presented adaptations can be carried out by the platform in
minutes compared to hours of working from the system operators. In addition, human ef-
fort required could be increasing with the number of adaptations or applications while they
could be executed by the platform in parallel manner. Therefore, with this perspective, the
performance presented in Figure 6.2 could be acceptable since the autonomic capabilities
could be considered as an extra feature supported by the platform. Furthermore, in real-
world context of IoT system (e.g. smart home, smart city), critical situations may rarely
occur but take longer time to be fixed by the administrator (e.g. user need to report about
a broken fire alarm and wait some days for replacement), thus our autonomic adaptation
could be consider as an efficient alternative in the mean time.

It is worth explaining that the reasoning process of in the SWRL Reasoning Engine is
implemented in a sequential approach. That is, the engine queries over the applications
sequentially, matching rules for each type of adaptations is also done in the same way,
which could affect the detection performance of the engine. Therefore, appropriate actions
have to be taken to address this issue. In fact, this could be done simultaneously for each
application. We will discuss the possibilities of this improvement in more details in next
chapter.

6.1.3 Reconfiguration at the SAI application

As IoT applications could be deployed on different frameworks which have different phys-
ical specifications, it is important to evaluate the SAI applications under the perspective
of resource consumption. In addition, the cost of reconfiguration is also critical to the
performance of the applications. Specifically, the applications are expected to quickly
adapt to changes from their operating environment. Accordingly, under perspective of the
consumer, we assessed the performance of underlying autonomic mechanism of the SAI
application with these two metrics:

• Memory Utilization is the maximum RAM memory occupied by the application
during the runtime of the scenarios. This value was also measured with the YourKit
Java Profiler tool.

• Reconfiguration Time is the duration from receiving adaptation plan to reconfig-
uring completed.

Table 6.1 presents the results of this experiment. As can be seen from the table, every

6.1. Evaluating performance of the approach 73

Application Memory Utilization (MB) Reconfiguration Time (ms)
Light Controlling 61 108
Lamp Controlling 59 -
Thermostat 54 86
Fire Alarming 51 117
Fire Monitoring 57 -

Table 6.1: Cost of reconfiguration in each application.

application allocated relatively low RAM, which is around 60MB. Regarding reconfigura-
tion time, the Light Controlling and FireAlarming executed adaptations in approximately
100 ms, while the respective figure for the Thermostat is about 86 ms. This could be ex-
plained by the fact that the Thermostat simply stops running upon receiving ServiceDis-
rupted plan. In general, these numbers are still within the range acceptable under the
context of IoT application.

It is necessary to remind that our solution to the SAI application is still immature
and does not cover every functionalities required in IoT context, and that currently imple-
mentation of SAI applications is only for demonstrating the presented use case. Therefore,
these numbers may vary when the system fully supports real-world requirements. However,
this figure can still be used to demonstrate the potential of our approach toward modeling
IoT applications that support autonomic behaviors. Additionally, the testing also shows
a smooth cooperation between the platform and the application, which demonstrates the
effectiveness of our method. In next chapter, we will discuss more about improving appli-
cation modeling toward increasing semantic understanding in order to support complicated
adaptation.

6.1.4 Threats to validity

In this section, we discuss possible shortcomings of the process of validation presented
above. Subsequently, we also explain how our results are still arguable representative for
the presented validations as well as discuss possible directions for improvements.

The number of C-SPARQL and SWRL queries is not significant
In the presented use case, we primarily focus on the workload putting on autonomic engine
in form of ontology instances, while there are also other impact factors of the reasoning
process. As an example, additional number of C-SPARQL queries as well as the stream
throughput could slow down the process of analysis. At the moment, we stabilize rate of
the input stream, which could possibly delay the process of detecting potentially critical
situation. In fact, this deficiency in validation was already covered in [18], which mainly
tested the performance of the C-SPARQL engine under high throughput. The experiments
in this work showed positive results on the performance of their approach, which generated
the output within 7 seconds with a stream of 10000 triples/second. Therefore, it is possible
to integrate the engine into our platform with minimum effect.

Regarding the SWRL rules, the use case consists of six SWRL rules corresponding to
the three adaptation plans. In real-world system, this number would be increasing gradu-
ally. Furthermore, SWRL rules could be even more complicated with enormous predicates.
In this case, scalability of the platform would be challenged by the emerging Big Data,

74 Chapter 6. Evaluation and Discussion

and appropriate actions have to be taken to address this issue. As mentioned above, this
could be consider as a trade-off between human effort and autonomic support. In fact, op-
timization in the implementation of SWRL Reasoning Engine could be employed in order
to improve the performance of platform. We will discuss this issue as a future direction in
the next chapter.

Immature implementation of the applications
As discussed in last section, the implementation of underlying autonomic mechanism in
SAI application is simplified to support demonstration of the use case as a proof of concept.
Therefore, the presented figure in this experiment could be changed but expected to not
vary considerably when the system fully satisfies real-world contexts. Regarding this issue,
there are also possible improvements of application modeling toward reflecting real-world
requirements, which will be discussed shortly in the next chapter.

Additionally, it is also necessary to explain that the knowledge base stored centrally in
the platform should be populated to the application side so that developers could choose
the correct service call signature or property name while programing applications. It is also
important to the process of reconfiguration. The reason was already explained earlier in
Chapter 4, which is the interpreter directly uses ids of the instances of services/properties
in the ontology for naming the corresponding services/properties used in the rules; thus,
whenever encountering a service call or property access, it simply retrieves data value
stored in the corresponding instances with the same name in the knowledge base. At the
moment, each application in the use case stores a copy of ontology file which is being used
by the platform. Since the use case involves not many entities, this solution does not affect
the figure found in Table 6.1. However, possible improvements (e.g. storing only necessary
information for each application) could be employed for optimization purpose. We will
discuss this direction later in the next chapter.

6.2 Discussing problem statements

In the presented work we raised the issue of evolution in IoT system, which is becoming
of utmost importance, as IoT platforms compete, striving to deliver even wider selection
of services and accommodate even more user applications. It is our belief that platform
providers should enable their platforms with self-management capabilities since these sys-
tems require enormous human effort for such manual managements as they grow into
large scale. In the first instance, such self-governance capabilities are expected to enable
platforms with more control over their constantly growing software ecosystems to support
platform stability and optimal resource consumption. Furthermore, these capabilities are
intended to exempt operators from implementing this functionality themselves, and provide
more intelligence into how the applications behave and perform. In this light, in the intro-
ductory chapter of this thesis we raised several research questions we aimed to address. We
answered these questions with our proposed approach of the Service-oriented Autonomic
IoT (SAI) Platform. Specifically, by addressing the research questions, our approach con-
tributes to the IoT in particular to enabling IoT platform with autonomic capabilities.
Main contributions include a software engineering for achieving autonomic computing in
IoT platforms, an extension of existing IoT ontology toward supporting modeling applica-
tion for autonomic behaviors and the realization of the SAI platform as well as application
development. The following subsections will discuss these questions in more details.

6.2. Discussing problem statements 75

Research Question 1. How to design an autonomic IoT platform addressing the system
evolution challenges?
The initial step to answer this question is to conduct a study about challenges related to
IoT system evolution as well as existing solutions to address them. Accordingly, with the
evolution of IoT systems, these following factors could challenge IoT platform develop-
ment: heterogeneity indicates the diversity of devices involved into the system, scalability
represents enormous amount of devices continually generating data, and interoperability
signifies abilities of seamless interaction among different entities in the system. As a re-
sult, there are various approaches to tackle these problems as presented in Chapter 2,
which, in general, employed a service-oriented architecture that separates the physical in-
tegration from application development and provide access to physical layer with services
in order to increase the flexibility from application perspective, thus hiding heterogene-
ity of devices from higher layer and improving platform support toward scalability. In
addition, semantic representation of the system could be introduced in order to support
interoperability. There are also works focusing on developing self-managed operations for
those system, which are either ad-hoc or specific to a particular problem. Considering this
limitation as a technological gap in the area, we aim to enhance IoT platforms with auto-
nomic abilities with respect to three aforementioned challenges. As suggested by IBM, in
order to achieve self-governance at high level, it is necessary to employ a reference model
for autonomic control loops [30], which is sometimes called the MAPE-K loop. This model
is being used more and more to communicate the architectural aspects of autonomic sys-
tems [27]. In this thesis, we also employ the model for achieving autonomic computing in
our IoT platform. Particularly, the model is used as a fundamental architecture for the
Autonomic Manager which is the key component for developing autonomic behaviors of
the platform. The Autonomic Manager is introduced into the platform under the modular
concept which enables the reusability of this component for existing IoT platforms. Fur-
thermore, the platform also follows service-oriented paradigm to support heterogeneous
physical devices. OWL ontologies are used as the core knowledge representation of inter-
nal architecture of the whole system, thus improving the semantic understanding of the
system, which is necessary for enable interoperability among the system entities. Finally,
autonomic behaviors are designed under the form of SWRL rules with respect to the sys-
tem administrator’s policies in order to provide the platform with self-managed capabilities
with regard to scalability problem.

As a comparison with other related works, our proposed architecture is one of the initia-
tives which concretely apply Autonomic Computing concept into IoT systems. Compared
with the DIAT architecture [39, 43] presented in Chapter 3, this work explains in more
details the internal mechanisms of each component of the reference loop as well as knowl-
edge representation and policy aspects. In addition, while DIAT architecture supported
relatively limited self-governance capabilities by using simple context representation, our
proposed platform provides autonomic behaviors with higher flexibility and more general
purposes with the use of OWL ontologies and SWRL rules. Compared with the MoRE
engine [27], although our platform employs the same MAPE-K model, the approaches
differ in the representation of reconfiguration policies. Particularly, MoRE engine used
Variabilities Models for generating new reconfiguration plans which are, in our approach,
specified by SWRL rules. Using Variability Models at design time could limit the variety
of autonomic behaviors since not every system has a design model completely reflecting

76 Chapter 6. Evaluation and Discussion

its actual implementation. Additionally, our platform also employs various techniques in
Semantic Web Technology in order to support filtering monitoring data and detecting crit-
ical contexts, which is not addressed in MoRE Engine where these contexts are assumed
to be provided by the administrator.

Research Question 2. How to model the internal architecture of IoT applications in
order to facilitate adaptation process?
As explained earlier, the knowledge base is the core component which facilitates informa-
tion retrieval and communication among the other components of the MAPE-K model. An
efficient knowledge representation could not only increases the flexibility and intelligence
level of autonomic behaviors but also improves the reusability of the autonomic solution. In
this regard, we propose using OWL ontology for representing IoT aspects of our platform.
Firstly, OWL language is a standardized Semantic Web language designed to represent rich
and complex knowledge about things, groups of things, and relations between things; which
is highly suitable for the usage of our case. By using OWL ontologies, we can quickly reuse
existing tools that support tasks related to knowledge processing of the wide Semantic
Web Community. In fact, as presented in previous chapter, we also exploit other facilities
(SPARQL query, SWRL rule) of the Semantic Web Technology along with the OWL on-
tologies to implement different mechanisms related to analysis and reasoning. In addition,
main characteristics of OWL are their public openness and extensibility. Once designed
and published, the ontologies can be imported and immediately reused or extended with
necessary domain-specific concepts by any third parties. This reduces the time and effort
to develop an ontology from scratch, and exempts ontology engineers from ‘reinventing the
wheel’ [18]. Furthermore, by using OWL ontologies, we separate the knowledge base from
the programing code of the platform. As a result, the knowledge base can be modified or
updated seamlessly to the whole platform. In practice, the process of knowledge modifi-
cation could be assigned to third-party add-on providers who are expected to to be more
familiar with critical situations related to the system domain.

Regarding IoT area, there have been a lot of work focusing on defining ontologies for
different domains in IoT. The ultimate goal is improving semantic understanding of IoT
systems, thus helping to improve interoperability of those systems. Since these ontologies
provide sufficient knowledge representation for IoT concepts, we propose to reuse these
ontologies to model the internal architecture of our system in order to quickly obtain an
efficient ontology for our autonomic platform. Specifically, we extend the IoT-O ontology
[10] with IoT application-related concepts in order to support providing autonomic be-
haviors of IoT applications. As a result, we present in this work the SAI ontology which
is used as the common vocabulary for defining knowledge, policies and rules which are
used throughout the whole autonomic process. Accordingly, we also propose the approach
to model the SAI application (as a set of rules) in accordance with the SAI ontology to
support semantically analyzing those applications in order to facilitate the process of au-
tonomic planning.

Research Question 3. How to realize the proposed design for autonomic computing
into executable implementation satisfying reasonable IoT performance requirement?
Regarding this question, we propose to exploit different techniques of the Semantic Web
Technology for implementing the mechanisms of the other components in MAPE-K loop.
Specifically, as present in Chapter 4, the C-SPARQL Query Engine is used for analyzing

6.2. Discussing problem statements 77

real-time streams of monitoring data and filtering only critical situations in respect of
the SPARQL queries specified in the knowledge base. Accordingly, the SWRL Reasoning
Engine takes those query results as the input and reasons over the knowledge base for
any adaptations needed by the applications. Output of this reasoning engine will then
be used to construct the new configuration which is sent to the corresponding application
for reconfiguration. Since the performances of these engines were already evaluated under
scalability perspective, our platform, once employing these technologies, can also handle
large-scaled systems involving enormous number of entities. In fact, in oder to assess pro-
cessing performance of the proposed platform, we also present a Smart Home Case Study
and conduct detailed experiments with respect to IoT requirements. As discussed from
above section, the results from these experiments also show the potential of our solution
toward scalability challenge.

Compared to the EXCLAIM framework [18] presented in Chapter 3, which also ex-
ploited these techniques for the process of monitoring and analysis, our proposed approach
take a further step toward planning and executing adaptation plan. Furthermore, while
EXCLAIM framework address self-governance in cloud based platform, our platform pro-
vides autonomic behaviors for general-purpose IoT systems which could be deployed dis-
tributedly. In next chapter, we will explain more in details about this benefit of our
proposed solution.

Chapter 7

Conclusion

In this thesis, we aimed to address issues related to IoT system evolution by enhancing IoT
platforms with autonomic capabilities. Accordingly, we introduced three problem state-
ments regarding this direction and step-by-step answered these questions by introducing
the three main elements of our approach - the conceptual design of an autonomic platform
called SAI, an extension of IoT ontology toward application modeling and the realization
of the SAI platform, which are also the primary contributions of this work. This chapter
will summarize these main aspects of the thesis in a more structured manner. Specifically,
the chapter starts with a discussion of our contributions. Next, we list possible benefits of
the proposed approach, followed by potential limitations of the platform. The chapter con-
cludes with a discussion about the future improvements in connection with the presented
limitations.

7.1 Contributions

We now summarize the main contributions associated with the presented SAI platform.
These are our findings in accordance with the presented problem statements, and can be
potentially re-used by the wider research community.

1. A software engineering approach for achieving autonomic computing in
IoT platforms

As explained at the very beginning, when IoT systems grow into large scale, chal-
lenges related to heterogeneity, scalability and interoperability could become critical
to the platform development. Furthermore, existing IoT platforms provide various
approaches to those challenges, in which autonomic solution is still immature and
worth exploring. In this light, we proposed our conceptual design of the SAI platform
which is:

• A service-oriented platform, which means its interaction with external entities is
based on services. Particularly, all devices in the system are abstracted to web
services which could be hosted in different location. This paradigm standardizes
the communication with smart devices from the perspective of applications and
support seamless integration of new devices, thus addressing the heterogeneity
problem.

79

80 Chapter 7. Conclusion

• An autonomic platform that follows the established MAPE-K reference model
for self-adaptations. Specifically, the fundamental underpinning of this approach
is interpretation of IoT entities (e.g., applications, services) as ‘software sensors’
which continually emitting raw heterogeneous data to be monitored and ana-
lyzed to support run-time situation assessment. This enabled us to reuse exist-
ing solutions developed by Semantic Web Technology and Big Data processing
which effectively support large-scale systems.

• An ontology based autonomic manager which employs OWL ontology from Se-
mantic Web for representation internal architecture of the system. Accordingly,
every governance-relevant aspect of IoT entities could be semantically repre-
sented by using a common ontological vocabulary, thus enable the interoper-
ability among them.

Following these ideas, we presented a software engineering approach for achieving
autonomic computing in IoT platform - namely, SAI platform. This platform hides
the heterogeneity of hardware, software, data formats and communication proto-
cols by standardizing communication into web services. In addition, the platform is
also equipped with autonomic capabilities to support self-adaptability for large-scale
system.

2. The SAI ontology

The ontology acts as the core element of the underlying knowledge base, used through-
out the whole process of the autonomic manager from monitoring changes to the
environment to executing respective adaptation. Therefore, the SAI platform needs
an ontology covering almost every IoT concepts necessary for the process. Designing
such ontology from scratch requires enormous effort. Instead, we proposed a SAI
ontology which extends existing ontologies in the fields of IoT and sensor network,
and design our own application model to support different adaptation plans from ap-
plication side. The SAI ontology, in fact, could be extended appropriately to model a
particular IoT application which supports even more complicated adaptation. Addi-
tionally, the ontology also plays an important part in enable interoperability among
internal components of platform as well as external entities (e.g., applications, de-
vices).

3. The SAI platform

We have presented implementation details of the SAI platform which employs differ-
ent existing technologies in Semantic Web. In particular, inspired by the Semantic
Sensor Network, we express the heterogeneous sensor values into RDF triples using
the common ontological vocabulary, which later are input to the SPARQL Querying
Engine acting as a critical situations detector and incoming data filter in order to
avoid overwhelming amount of RDF instances into the next stage. For reasoning,
the platform represents adaptation policies in form of SWRL rules in order to exploit
existing SWRL Reasoning Engine for generating reconfigurations which eventually
will be sent to the application as a guideline for self-adapting.

The design and implementation of the platform was done with scalability in mind.
Additionally, it is also validated under different perspectives regarding IoT require-
ment. Specifically, the majority of the specified functionality has been implemented

7.2. Potential benefits of the approach 81

and testing from two sides: processing performance of the SAI platform and cost of
reconfiguration of the SAI applications. The results of the experiments also demon-
strate the efficiency of the platform toward supporting autonomic adaptation for
applications. Although the platform still suffers from scalability issue, it is argued to
be acceptable when compared to manual operation, and that appropriate optimiza-
tions can be employed to improve the performance when the system grows into large
scale.

7.2 Potential benefits of the approach

Apart from enabling IoT systems with self-governance capabilities, the proposed approach
also have following benefits:

Increased opportunity for reuse
The SAI platform was designed in a similar way to existing service-oriented architecture,
which makes our proposal easily to be integrated to existing approach as an extension
supporting autonomic capabilities. In fact, our architecture can act as a high-level concep-
tual model for creating autonomic IoT platform, which is independent of the underlying
technology and implementation (e.g. how the communication between the devices and
the monitoring component takes place). Furthermore, the platform is designed to be a
modular architecture in which each element performs its functionality in an independent
manner, thus increasing the possibility of plugging or replacing new module serving equiv-
alent functions.

Possibility of distributed deployment
Since the platform consists of different modules working independently from each other,
which have data transfered under standardized form (e.g., RDF stream, OWL instances),
it could be implemented distributedly on different computers. As an example, parts of
the architecture could be running in the cloud offering high-performance services (e.g., the
SWRL Reasoning Engine), while parts interacting locally with the devices could run even
on embedded systems located at the device layer. As a result, it not only improves perfor-
mance of the platform on autonomic support but also increases the reliability of provided
services to the application.

Loose coupling between knowledge and platform
Our proposed architecture applies the modularity principle of separating the knowledge
base from the main programing code. Such separation remarkably simplifies modification
of the knowledge base. As a result, the platform provides us with the possibility to declar-
atively define the knowledge base and update it if needed dynamically during run-time,
without recompiling and restarting the whole system. Additionally, critical queries and
adaptation rules can also be added into the platform ‘on the fly’ with no effect on the
operational stability of the platform.

7.3 Potential limitations of the approach

In this section, we summarize associate limitations to the presented approach as well as
the implementations.

82 Chapter 7. Conclusion

Performance issues associated with scalability
In this work, we employed the Pellet Reasoner integrated with the OWL API for reasoning
about the new configuration. This is an in-memory reasoner which shows its high per-
formance toward small knowledge base. However, when the knowledge is growing in size
and complexity, it may result in a considerably heavy-weight ontology (e.g., more than 105

devices existing in the system), and therefore can slow down the reasoning process. One
possible solution to this issue is that breaking down the knowledge base in to several parts,
and enable the engine to pick only the necessary elements for reasoning in oder to avoid
keeping the whole heavy-weight ontology in memory [14]. Another approach provided in
[18] is that transferring all reasoning tasks associated with the problem detection into the
streaming step, thus exploiting existing big data streaming tool for processing input stream
and not requiring any static reasoning component at all. Unfortunately, at the moment,
existing RDF streaming support is not sufficient for representing diagnosis and adaptation
policies with continuous SPARQL queries, thus static SWRL reasoning is still in need.

Immature application modeling
This issue was already mentioned several times in previous sections, which is the current
proposed ontology is not enough for adequately representing all aspects of IoT applica-
tions. Therefore, the possibilities of more complex adaptation plans could be limited from
the platform. However, since the platform is designed to be separated from the knowledge
base, this limitation could be addressed by introducing more concepts of IoT application
into the ontology without affecting operation of the whole system.

7.4 Future Work

In this section, we outline several directions for future activities which we found potential
to improve efficiency of the platform significantly.

Employing machine learning technique for policy inference
In this work, we assume that the knowledge base is manually populated by the platform
administrator. That is, it is required human effort for defining new rules or queries in
accordance with their polices. The same manner applied to the reverse process - once
old services are retired and do not need to be monitored or analyzed, the corresponding
policies should be manually removed from the knowledge base. These processes can be
done automatically with the help of machine learning techniques. Accordingly, since the
data generated by large scale system could be considered sufficient for referring meaningful
information, it is worth exploring possible machine learning techniques into these data
in oder to enable the knowledge base with self-training capabilities so that new policies
would be added and existing ones would be modified with respect to changing observations.

Enriching the ontology with more concepts toward adaptation
The proposed ontology could be improved with multiple concepts beneficial to developing
autonomic behaviors. First of all, as explained earlier, current semantic representation
of the application do not cover all aspects regarding IoT context. At the moment, the
ontology is designed to present only information about services and sensors being used by
the application, thus putting limitation on the variety of adaptation. In fact, improving

7.4. Future Work 83

the semantic understanding of application logics would be beneficial to developing auto-
nomic behaviors of the whole system. Therefore, it is worth putting effort on enhancing
the ontology toward this direction. Another concepts missing from the ontology is complex
service which is a combination of multiple services in order to support more complicated
functionalities. In fact, such service composition could be considered as a special type of
application, which if existed, would simplifies application development as well as improve
the ‘quality’ of adaptation plan. As an example, a smoke sensor could be considered to
be substituted by a combination of a temperature sensor and an air quality sensor, thus
improving the precision of service approximation process.

Bibliography

[1] Everyware. https://www.eurotech.com.

[2] EvryThng. https://evrythng.com.

[3] IFTTT. https://www.ifttt.com.

[4] SensorClould. https://www.sensorcloud.com.

[5] ThingSquare. https://www.thingsquare.com.

[6] ThingWorx. https://www.thingworx.com.

[7] Xively. https://www.xively.com.

[8] Adnan Aijaz and A Hamid Aghvami. Cognitive machine-to-machine communications
for internet-of-things: a protocol stack perspective. IEEE Internet of Things Journal,
2(2):103–112, 2015.

[9] Atif Alamri, Wasai Shadab Ansari, Mohammad Mehedi Hassan, M Shamim Hossain,
Abdulhameed Alelaiwi, and M Anwar Hossain. A survey on sensor-cloud: architecture,
applications, and approaches. International Journal of Distributed Sensor Networks,
2013, 2013.

[10] Mahdi Ben Alaya, Samir Medjiah, Thierry Monteil, and Khalil Drira. Toward semantic
interoperability in onem2m architecture. IEEE Communications Magazine, 53(12):35–
41, 2015.

[11] Qazi Mamoon Ashraf and Mohamed Hadi Habaebi. Autonomic schemes for threat
mitigation in internet of things. Journal of Network and Computer Applications,
49:112–127, 2015.

[12] Qazi Mamoon Ashraf, Mohamed Hadi Habaebi, Gopinath Rao Sinniah, Musse Mo-
hamud Ahmed, Sheroz Khan, and Shihab Hameed. Autonomic protocol and ar-
chitecture for devices in internet of things. In 2014 IEEE Innovative Smart Grid
Technologies-Asia (ISGT ASIA), pages 737–742. IEEE, 2014.

[13] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[14] Carliss Young Baldwin and Kim B Clark. Design rules: The power of modularity,
volume 1. MIT press, 2000.

85

https://www.eurotech.com
https://evrythng.com
https://www.ifttt.com
https://www.sensorcloud.com
https://www.thingsquare.com
https://www.thingworx.com
https://www.xively.com

86 BIBLIOGRAPHY

[15] Victoria Bellotti and Keith Edwards. Intelligibility and accountability: human con-
siderations in context-aware systems. Human–Computer Interaction, 16(2-4):193–212,
2001.

[16] Gordon S Blair, Geoff Coulson, and Paul Grace. Research directions in reflective
middleware: the lancaster experience. In Proceedings of the 3rd workshop on Adaptive
and reflective middleware, pages 262–267. ACM, 2004.

[17] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):15,
2012.

[18] Rustem Dautov. EXCLAIM framework: a monitoring and analysis framework to
support self-governance in Cloud Application Platforms. PhD thesis, University of
Sheffield, 2015.

[19] Rustem Dautov, Dimitrios Kourtesis, Iraklis Paraskakis, and Mike Stannett. Ad-
dressing self-management in cloud platforms: a semantic sensor web approach. In
Proceedings of the 2013 international workshop on Hot topics in cloud services, pages
11–18. ACM, 2013.

[20] Rustem Dautov, Iraklis Paraskakis, and Dimitrios Kourtesis. An ontology-driven
approach to self-management in cloud application platforms. In Proceedings of the
7th South East European Doctoral Student Conference (DSC 2012), pages 539–550,
2012.

[21] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaïti, Erol Gelenbe,
Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco Zambonelli.
A survey of autonomic communications. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 1(2):223–259, 2006.

[22] Michael Dunbar. Plug-and-play sensors in wireless networks. IEEE Instrumentation
& Measurement Magazine, 4(1):19–23, 2001.

[23] Carson P Edwards, David G Leeper, Robert I Foster, Ray OWaddoups, and SamMor-
dachai Daniel. Self-organizing network with decision engine and method, March 22
2005. US Patent 6,870,816.

[24] Jens Ehlers, André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Self-adaptive
software system monitoring for performance anomaly localization. In Proceedings of
the 8th ACM international conference on Autonomic computing, pages 197–200. ACM,
2011.

[25] Mahmoud Elkhodr, Seyed Shahrestani, and Hon Cheung. A smart home application
based on the internet of things management platform. In 2015 IEEE International
Conference on Data Science and Data Intensive Systems, pages 491–496. IEEE, 2015.

[26] Wilfried Elmenreich, Raissa D’Souza, Christian Bettstetter, and Hermann de Meer.
A survey of models and design methods for self-organizing networked systems. In
International Workshop on Self-Organizing Systems, pages 37–49. Springer, 2009.

BIBLIOGRAPHY 87

[27] Carlos Cetina Englada. Achieving autonomic computing through the use of variability
models at run-time. PhD thesis, Universidad Politecnica de Valencia, 2010.

[28] Michael Fahrmair, Bernd Spanfelner, Wassiou Sitou, Klaus-Dieter Althoff, and
M Schaaf. Unwanted behavior and its impact on adaptive systems in ubiquitous
computing. In LWA, pages 36–41, 2006.

[29] Alan G Ganek and Thomas A Corbi. The dawning of the autonomic computing era.
IBM systems Journal, 42(1):5–18, 2003.

[30] Paul Horn. Autonomic computing: Ibm’s perspective on the state of information
technology. 2001.

[31] Markus C Huebscher and Julie A McCann. A survey of autonomic comput-
ing—degrees, models, and applications. ACM Computing Surveys (CSUR), 40(3):7,
2008.

[32] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[33] Jeffrey O Kephart and William E Walsh. An artificial intelligence perspective on
autonomic computing policies. In Policies for Distributed Systems and Networks,
2004. POLICY 2004. Proceedings. Fifth IEEE International Workshop on, pages 3–
12. IEEE, 2004.

[34] Jeffrey King, Raja Bose, Hen-I Yang, Steven Pickles, and Abdelsalam Helal. Atlas: A
service-oriented sensor platform: Hardware and middleware to enable programmable
pervasive spaces. In Proceedings. 2006 31st IEEE Conference on Local Computer
Networks, pages 630–638. IEEE, 2006.

[35] Philippe Lalanda, Julie A McCann, and Ada Diaconescu. Future of autonomic com-
puting and conclusions. In Autonomic Computing, pages 263–278. Springer, 2013.

[36] Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things: a survey. Infor-
mation Systems Frontiers, 17(2):243–259, 2015.

[37] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. In-
ternet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[38] Rohan Narayana Murty, Geoffrey Mainland, Ian Rose, Atanu Roy Chowdhury, Abhi-
manyu Gosain, Josh Bers, and Matt Welsh. Citysense: An urban-scale wireless sensor
network and testbed. In Technologies for Homeland Security, 2008 IEEE Conference
on, pages 583–588. IEEE, 2008.

[39] SN Akshay Uttama Nambi, Chayan Sarkar, R Venkatesha Prasad, and Abdur Rahim.
A unified semantic knowledge base for iot. In Internet of Things (WF-IoT), 2014
IEEE World Forum on, pages 575–580. IEEE, 2014.

[40] Mohammad Reza Nami and Koen Bertels. A survey of autonomic computing sys-
tems. In Autonomic and Autonomous Systems, 2007. ICAS07. Third International
Conference on, pages 26–26. IEEE, 2007.

88 BIBLIOGRAPHY

[41] Apostolos Papageorgiou, Manuel Zahn, and Ernö Kovacs. Auto-configuration sys-
tem and algorithms for big data-enabled internet-of-things platforms. In 2014 IEEE
International Congress on Big Data, pages 490–497. IEEE, 2014.

[42] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Dou-
glas D Edwards. Artificial intelligence: a modern approach, volume 2. Prentice hall
Upper Saddle River, 2003.

[43] Chayan Sarkar, SN Akshay Uttama Nambi, R Venkatesha Prasad, and Abdur Rahim.
A scalable distributed architecture towards unifying iot applications. In Internet of
Things (WF-IoT), 2014 IEEE World Forum on, pages 508–513. IEEE, 2014.

[44] Amit Sheth, Cory Henson, and Satya S Sahoo. Semantic sensor web. IEEE Internet
computing, 12(4), 2008.

[45] Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic Savio, Oliver
Baecker, Luciana Moreira Sá De Souza, and Vlad Trifa. Soa-based integration of
the internet of things in enterprise services. In Web Services, 2009. ICWS 2009. IEEE
International Conference on, pages 968–975. IEEE, 2009.

[46] John A Stankovic. Research directions for the internet of things. IEEE Internet of
Things Journal, 1(1):3–9, 2014.

[47] Richard Tynan, Gregory MP O’Hare, and Antonio Ruzzelli. Autonomic wireless sensor
network topology control. In 2007 IEEE International Conference on Networking,
Sensing and Control, pages 7–13. IEEE, 2007.

[48] Pal Varga, Fredrik Blomstedt, Luis Lino Ferreira, Jens Eliasson, Mats Johansson,
Jerker Delsing, and Iker Martínez de Soria. Making system of systems interoperable–
the core components of the arrowhead framework. Journal of Network and Computer
Applications, 2016.

[49] Yi Xu and Abdelsalam Helal. Scalable cloud–sensor architecture for the internet of
things. IEEE Internet of Things Journal, 3(3):285–298, 2016.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Towards the solution: the SAI platform
	Problem Statement
	Contribution
	Outline

	Background
	Toward the challenges in IoT
	Autonomic Computing
	Autonomic computing in IoT platforms

	Related Work
	Sarkar et al. approach (DIAT architecture)
	Alaya et al. approach (IoT-O ontology)
	Cetina approach (MoRE Engine)
	Dautov approach (EXCLAIM framework)
	Toward the technology gaps in autonomic IoT platform development

	SAI platform: A Service-oriented Autonomic IoT Platform
	Conceptual design of the SAI platform
	Implementation details of the SAI platform

	The Smart Home Case Study
	Evaluation and Discussion
	Evaluating performance of the approach
	Discussing problem statements

	Conclusion
	Contributions
	Potential benefits of the approach
	Potential limitations of the approach
	Future Work

	Bibliography

