
data

Article

T4SS Effector Protein Prediction with Deep Learning

Koray Açıcı 1,*, Tunç Aşuroğlu 1 , Çağatay Berke Erdaş 1 and Hasan Oğul 1,2

1 Department of Computer Engineering, Baskent University, Bağlıca Kampüsü Fatih Sultan Mahallesi
Eskişehir Yolu 18.km, Ankara 06709, Turkey; tuncasuroglu@baskent.edu.tr (T.A.);
berdas@baskent.edu.tr (Ç.B.E.); hogul@baskent.edu.tr (H.O.)

2 Faculty of Computer Science, Østfold University College, P.O. Box 700, 1757 Halden, Norway
* Correspondence: korayacici@baskent.edu.tr; Tel.: +90-312-246-6661

Received: 1 February 2019; Accepted: 22 March 2019; Published: 25 March 2019
����������
�������

Abstract: Extensive research has been carried out on bacterial secretion systems, as they can
pass effector proteins directly into the cytoplasm of host cells. The correct prediction of type IV
protein effectors secreted by T4SS is important, since they are known to play a noteworthy role
in various human pathogens. Studies on predicting T4SS effectors involve traditional machine
learning algorithms. In this work we included a deep learning architecture, i.e., a Convolutional
Neural Network (CNN), to predict IVA and IVB effectors. Three feature extraction methods were
utilized to represent each protein as an image and these images fed the CNN as inputs in our
proposed framework. Pseudo proteins were generated using ADASYN algorithm to overcome
the imbalanced dataset problem. We demonstrated that our framework predicted all IVA effectors
correctly. In addition, the sensitivity performance of 94.2% for IVB effector prediction exhibited our
framework’s ability to discern the effectors in unidentified proteins.

Keywords: T4SS; bacterial effectors; deep learning; convolutional neural network; classification;
protein to image conversion

1. Introduction

Effector proteins are generally critical for bacterial virulence. They are excreted by various
pathogens into host cells through secretion systems. Type IV secretion system (T4SS) is one of the
seven secretion systems in gram-negative bacteria and capable of transporting both proteins and
nucleoprotein complexes (protein–protein and protein–DNA) [1,2]. This ability makes it unique
among other bacterial secretion systems [3]. By using T4SS, effector proteins can be transported into
the cytoplasm of a host cell directly, across the bacterial membrane and the plasmatic membrane of
eukaryotic host cell. This process results in several diseases. For example, Helicobacter pylori uses a
T4SS (Cag) to deliver CagA (cytotoxin-associated gene A) into gastric epithelial cells, which causes
gastritis and peptic ulcer [4]. Bordetella pertussis secretes the pertussis toxin through a T4SS (pertussis
toxin liberation (Ptl)), which causes whooping cough (i.e., pertussis), a contagious bacterial infection
of the lungs and airways [5]. Legionella pneumophila, which causes legionellosis (Legionnaires’ disease),
utilizes a T4SS known as Dot/Icm (defect in organelle trafficking genes/intracellular multiplication) to
transmit numerous effector proteins into its eukaryotic host [6]. Agrobacterium tumefaciens uses VirB
T4SS and causes a crown gall (tumor) in plant host [7]. Bartonella spp. exploits VirB and Trw T4SSs
and effector translocation results in cat-scratch disease and angiomatosis [8,9]. Brucella spp. utilizes
VirB T4SS and causes a bacterial infection called brucellosis that spreads from animals to people via
unpasteurized milk or undercooked meat [10].

There are two different classification schemes for T4SSs [11,12]. In the original one, there are three
major types (classes) called as F, P and I. In the alternative one, types F and P are grouped together and

Data 2019, 4, 45; doi:10.3390/data4010045 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
https://orcid.org/0000-0003-4153-0764
http://www.mdpi.com/2306-5729/4/1/45?type=check_update&version=1
http://dx.doi.org/10.3390/data4010045
http://www.mdpi.com/journal/data

Data 2019, 4, 45 2 of 13

called type IVA while the remaining type I is called type IVB. Additionally, a third group that has a
great genetic distance from the other types is identified and named as type GI [13]. Thus, prediction of
proteins that belong to the same secretion system from different types has become important.

Effector protein prediction has a very important place in biology because it defines the pathogens
that effecting cells [3]. Therefore, prediction of these proteins is crucial to find the pathogens and
identify them. Prediction of effector proteins that are secreted by secretion systems is experimentally
time-consuming and expensive. Therefore, various computational methods have emerged. Machine
learning algorithms are widely used to predict T4SS effector proteins.

Burstein et al. [14] studied Legionella pneumophila to distinguish T4SS effectors from non-effectors
and validate new effectors. They extracted seven features, namely sequence similarity to known
effectors and eukaryotic proteomes, taxonomic distribution, genome organization, G + C content,
C-terminal signal and regulatory elements, to feed machine learning algorithms. In addition, they
combined all features to increase the classification performance. For classification tests, they took
advantage of Naïve Bayes (NB), Support Vector Machines (SVM) and Neural Networks (MLP or
NN). Finally, they applied a voting scheme that considers these three machine learning algorithms.
During the evaluation of classification performance, they used a dataset with a ratio of 1:1 of effectors
and non-effectors. As a result, using taxonomic distribution features outperforms others in terms of
correct rate and Area Under Curve (AUC) measures, but the best performance is achieved by combining
all features. Another success of the study is the prediction and validation of 40 novel effectors.

Zou et al. [15] worked on predicting T4SS effectors from different species. They divided
T4SS effectors as IVA and IVB effectors. Amino acid composition (AAC), dipeptide composition
(DPC), position specific scoring matrix composition (PSSM), auto covariance transformation of PSSM
(PSSM_AC) and several combinations of them are used as feature vectors in classification tasks.
The features are extracted using primary sequence structure of proteins. They chose SVM classifier
to predict whether the test protein is an effector. Leave-one-out tests are implemented on a dataset
with a ratio of 1:4 of IVA and IVB effectors. According to experiments, some of the combined feature
vectors have better results than the single ones. Additionally, four SVMs, fed by four different features,
are organized to predict an unknown protein based on majority voting scheme. They found that an
ensemble classifier using AAC, PSSM and PSSM_AC features has higher performance rates in terms of
sensitivity, specificity, accuracy and MCC.

Wang et al. [16] began their research by identifying the lack of an inter-species tool for predicting
T4SS effectors. C-terminal sequential and position-specific amino acid compositions, secondary
structure, tertiary structure and solvent accessibility information from various bacteria are used for
feeding the SVM classifier. Several models, based on the features, are set up to predict T4SS effectors
on a dataset with a ratio of 1:6 of effectors and non-effectors. A model called T4SEpre_Joint (trained
by using position specific amino acid compositions, secondary structures and solvent accessibility
values) by the authors gives the best performance results. The most remarkable aspect of the study is
the identification of 24 candidate Helicobacter pylori effectors.

Zou and Chen [17] analyzed C-terminal sequence features and used them to predict type IVB
effectors based on several machine learning algorithms including NB, SVM, RBF neural network, SMO
and Hoeffding Tree as well as majority voting. To feed the classifiers C-terminal sequence features
and position-specific amino acid composition features are extracted. They used a dataset with a ratio
of 1:3. The best performance results, in terms of sensitivity, specificity, accuracy, MCC and Ppv, asre
obtained by running tests on SVM and combining both extracted features. The main contribution of
the research is that the proposed method is sensitive to predict IVB effectors in Coxiella burnetii.

Wang et al. [18] developed an ensemble classifier including NB, kNN, Logistic Regression (LR),
Random Forest (RF), MLP and SVM. This ensemble classifier is called Bastion4 and serves as an online
T4SS effector predictor. They used 10 types of feature vectors to feed the classifiers. Final prediction
result of a query protein is given after majority voting process based on the six classifiers. According to
their main findings, RF and SVM outperforms other classifiers in terms of accuracy, F-value and MCC;

Data 2019, 4, 45 3 of 13

the best performance values are obtained when PSSM feature vector is used as input for all classifiers;
combining features increases performance results and majority voting strategy gives more stable and
accurate prediction performance for T4SS effectors. Additionally, they compared their model with
current T4SS predictors [15,16] and revealed that Bastion4 outperforms all of them.

All published studies on predicting T4SS effectors use traditional machine learning algorithms.
To our knowledge, a deep learning method has not yet been used to predict T4SS effector proteins.
We propose a framework that uses a convolutional neural network for classification. To feed the CNN,
all proteins were converted into RGB images according to their amino acid compositions, dipeptide
compositions and position-specific scoring matrix representations.

2. Methods

2.1. General Framework

There are three main phases in our proposed framework. First, since the dataset that we used
in our study have imbalanced classes, ADASYN was utilized to overcome the issue. As a result,
pseudo proteins were generated. After this step, proteins were converted into images to feed the
CNN. Conversions were performed by extracting AAC, DPC and PSSM features. All features were
represented as matrices and several colors were assigned to each of the amino acids. The final phase
was the training part of the CNN. Finally, CNN model was formed to predict whether the query
protein is an effector. The general framework structure is shown in Figure 1.

Data 2019, 4, x FOR PEER REVIEW 3 of 13

input for all classifiers; combining features increases performance results and majority voting
strategy gives more stable and accurate prediction performance for T4SS effectors. Additionally,
they compared their model with current T4SS predictors [15,16] and revealed that Bastion4
outperforms all of them.

All published studies on predicting T4SS effectors use traditional machine learning algorithms.
To our knowledge, a deep learning method has not yet been used to predict T4SS effector proteins.
We propose a framework that uses a convolutional neural network for classification. To feed the
CNN, all proteins were converted into RGB images according to their amino acid compositions,
dipeptide compositions and position-specific scoring matrix representations.

2. Methods

2.1. General Framework

There are three main phases in our proposed framework. First, since the dataset that we used in
our study have imbalanced classes, ADASYN was utilized to overcome the issue. As a result, pseudo
proteins were generated. After this step, proteins were converted into images to feed the CNN.
Conversions were performed by extracting AAC, DPC and PSSM features. All features were
represented as matrices and several colors were assigned to each of the amino acids. The final phase
was the training part of the CNN. Finally, CNN model was formed to predict whether the query
protein is an effector. The general framework structure is shown in Figure 1.

Figure 1. General framework structure.

2.2. ADASYN Algorithm

Imbalanced dataset problem arises in cases where some data distributions are dominant in the
sample space relative to other data distributions. Machine learning models perform learning based
on this predominant data distribution and ignore data distributions of the minority. Thus, models
cannot learn minority distributions properly and perform poorly in prediction process. There are
many ways to deal with this issue. The first approach is to assign weights to classes to solve this
imbalance problem [19,20]. The second approach is creating synthetic samples from minority class

Figure 1. General framework structure.

2.2. ADASYN Algorithm

Imbalanced dataset problem arises in cases where some data distributions are dominant in the
sample space relative to other data distributions. Machine learning models perform learning based
on this predominant data distribution and ignore data distributions of the minority. Thus, models
cannot learn minority distributions properly and perform poorly in prediction process. There are
many ways to deal with this issue. The first approach is to assign weights to classes to solve this
imbalance problem [19,20]. The second approach is creating synthetic samples from minority class

Data 2019, 4, 45 4 of 13

so that majority and minority classes have almost 1:1 ratio. An algorithm belonging to the second
approach called ADASYN has emerged to solve this imbalanced learning problem.

ADASYN is an enhanced version of the SMOTE (Synthetic Minority Over sampling TEchnique)
algorithm to solve imbalanced learning [21]. SMOTE algorithm creates synthetic minority samples to
tilt classifier learning bias towards to minority class [22]. Synthetic minority sample creation process in
SMOTE uses linear interpolation from existing samples.

ADASYN is based on the idea of creating minority data samples dynamically based on their
distribution. More synthetic data are produced for minority class samples that are more difficult to
learn. SMOTE synthetic sample creation process produces equal numbers of synthetic samples for
each minority data sample, whereas in ADASYN different weights are assigned to different minority
samples and therefore the numbers of synthetic samples created are different for every minority
sample. ADASYN algorithm reduces the poor performance introduced by the original imbalance data
distribution and can also change the decision boundary to focus on difficult-to-learn samples [21].
ADASYN algorithm implementation details are described below [21]:

Input: Training dataset with m {xi, yi, i} = 1 . . . m samples is represented as Dtr where xi is an
instance in n dimension space X and yi ∈ Y = {1,−1} is the class label that is associated with xi.
ms and ml are number of minority class examples and majority class examples, respectively. Thus,
ms ≤ ml and ms + ml = m

Process of ADASYN:
(1) Firstly, degree of class imbalance is calculated

d = ms/ml (1)

having d ∈ (0, 1].
(2) If d < dth, then (dth represents a threshold for the maximum tolerated degree of class

imbalance):
(a) Find the number of synthetic data samples for the minority class that need to be generated:

G = (ml −ms) X β (2)

Here, β ∈ [0, 1] represents a parameter that specifies the desired level of balance after synthetic
data generation. β = 1 is the result that a fully balanced dataset is created after the generalization phase.

(b) For each example having the condition xi ∈ minorityclass, Euclidian distance K nearest
neighbors is found in n-dimensional space. Ratio ri is defined as:

ri =
∆i
K

, i = 1, . . . , ms (3)

where ∆i represents the number of samples in the K nearest neighbors of xi that belong to majority
class, thus ri ∈ [0, 1].

(c) Normalize ri regarding r̂i = ri\∑ms
i=1 ri so that r̂i has a density distribution (∑i r̂i = 1).

(d) Calculate the number of synthetic data samples that need to be generated for every minority
sample xi :

gi = r̂i X G (4)

where G represents the total number of synthetic data samples that need to generated for the minority
class defined in Equation (2).

(e) Generate synthetic data samples (gi) for each minority class data sample (xi) according to the
process below:

Loop from 1 to gi
(i) Randomly choose one minority data sample (xzi) from the K nearest neighbors for data (xi).

Data 2019, 4, 45 5 of 13

(ii) Generate synthetic data sample:

si = xi + (xzi − xi) X µ (5)

where (xzi − xi) represents difference vector in n-dimensional space and µ is a random number that
has range µ ∈ [0, 1].

2.3. Feature Extraction for Image Representation

The feature extraction process can be considered as a pre-processing stage to represent proteins
as images and let CNN take these images as inputs. Amino Acid Composition (AAC), Dipeptide
Composition (DPC) and Position-Specific Scoring Matrix (PSSM) composition representation methods
were used to extract features from protein sequences [15]. Thus, each protein can be represented as a
feature vector. Feature extraction methods are described below.

Let P stand for a protein. In nature, there are 20 types of amino acids, thus AAC of a protein
consists of a 20-D vector where each element (aaci) of the feature vector represents the percentage of
each amino acid type in the protein. By using this method, a protein can be represented as follows:

P = {aac1, aac2, aac3, . . . , aac20} (6)

DPC of a protein consists of a 400-D vector where each element (dpci) of the feature vector
represents the percentage of each possible amino acid pairs in the protein. By using this method, a
protein can be represented as follows:

P = {dpc1, dpc2, dpc3, . . . , dpc400} (7)

PSSM composition of a protein consists of a 400-D vector where each element (pssmi) of the
feature vector represents substitution scores of each amino acid type. In the evolutionary process, each
amino acid type is likely to undergo mutation to another amino acid type. Therefore, the substitution
scores are important to demonstrate this evolutionary process. Scores indicate that the given amino
acid substitution occurs more frequently in the alignment than expected by chance, while negative
scores indicate that the substitution occurs less frequently than expected. By using this method, a
protein can be represented as follows:

P = {pssm1, pssm2, pssm3, . . . , pssm400} (8)

where pssm1 symbolizes substitution score of amino acid 1 (Alanine, A) mutating into amino acid 1
(Alanine, A), pssm2 symbolizes substitution score of amino acid 1 (Alanine, A) mutating into amino
acid 2 (Arginine, R), and so on.

By using the above feature extraction methods, each protein becomes suitable to be converted
into a fixed size image.

2.4. Protein to Image Conversion

Since CNN requires all images to be a fixed size, proteins have to be converted to images. Let I
denote a three-dimensional matrix that represents the converted image of a protein. Each dimension
corresponds to a different color channel, R, G, and B for red, green and blue, respectively. For AAC, a
protein can be defined as follows:

I(i, i, 1) =
(

R
255

)
∗ aaci(i, i); I(i, i, 2) =

(
G

255

)
∗ aaci(i, i); I(i, i, 3) =

(
B

255

)
∗ aaci(i, i); (9)

where I = 1, 2, ..., 20. Thus, AAC of a protein is converted into an image that only has values on the
diagonal of the matrix. Other pixels that are not present on the diagonal have no color values.

Data 2019, 4, 45 6 of 13

For DPC and PSSM feature vectors, a protein can be defined as follows:

I(i, j, 1) =
(

R1 + R2

2

)
∗ dpci,j; I(i, j, 2) =

(
G1 + G2

2

)
∗ dpci,j; I(i, j, 3) =

(
B1 + B2

2

)
∗ dpci,j (10)

I(i, j, 1) =
(

R1+R2
2

)
∗ pssmi,j; I(i, j, 2) =

(
G1+G2

2

)
∗ pssmi,j; I(i, j, 3) =

(
B1+B2

2

)
∗ pssmi,j (11)

where i = 1, 2, ..., 20 and j = 1, 2 ,..., 20. Subscript 1 (in R1, G1, and B1) denotes the color value of the
first amino acid, while subscript 2 (in R2, G2, and B2) denotes the color value of the second amino acid.
The final color value is calculated by averaging amino acid pairs. DPC and PSSM have feature vectors
of 400 elements. Each section in the feature vector that has 20 elements corresponds to an amino acid
type and its values related to other amino acid types; therefore, each section can be placed in a row on
the matrix I. All color values assigned to all amino acid types are listed in Supplementary Material
Table S1.

Representations of proteins as images are shown in Figure 2.

Data 2019, 4, x FOR PEER REVIEW 6 of 13

where i = 1, 2, ..., 20 and j = 1, 2 ,..., 20. Subscript 1 (in R1, G1, and B1) denotes the color value of the first
amino acid, while subscript 2 (in R2, G2, and B2) denotes the color value of the second amino acid. The
final color value is calculated by averaging amino acid pairs. DPC and PSSM have feature vectors of
400 elements. Each section in the feature vector that has 20 elements corresponds to an amino acid
type and its values related to other amino acid types; therefore, each section can be placed in a row
on the matrix I. All color values assigned to all amino acid types are listed in supplementary material
Table S1.

Representations of proteins as images are shown in Figure 2.

Figure 2. Representations of proteins according to different feature extraction methods.

2.5. Convolutional Neural Network (CNN)

Unlike other deep learning architectures, artificial neurons in CNNs extract the features of
small areas of input images known as receptive fields. Using the knowledge that visual cortex cells
are sensitive to small regions of the visual field, the feature extraction process of CNNs was formed
[23].

A CNN includes an input, output and multiple hidden layers. Hidden layers generally
comprise convolutional layers, pooling layers and fully connected layers. Convolutional and pooling
layers are two special types of layers in CNNs [24]. In the convolutional layer, the image is processed
by different filters. Filters share the same parameters in every small part of the view. The resulting
images of the filters are called feature maps. The pooling layer reduces the variance by capturing
average, maximum, or other statistical values of the various regions in the feature maps and
captures key features. Fully connected layers work as traditional MLP does, by connecting a neuron
in a layer to all neurons in the next layer. In addition, batch normalization and rectified linear unit
(ReLU) layers can also be found in CNN. Batch normalization is used to normalize the gradients
propagating through the network and it helps accelerate training phase. Batch normalization layer is
followed by a ReLU layer that is simply a nonlinear activation function that keeps positive values
unchanged and makes negative values zero.

CNN, one of the deep learning architectures, is used especially in image recognition problems
and successful results are obtained. If biological structures are represented by images, it becomes
possible to apply the CNN architecture to problems of bioinformatics.

3. Results

3.1. Dataset

We used a dataset that Zou et al. [15] constructed from known effectors and non-effectors. The
reason for selecting this dataset was based on the ease of performing separate tests on both IVA and
IVB effectors. The dataset consists of 30 IVA effectors, 310 IVB effectors and 1132 non-effectors and is

Figure 2. Representations of proteins according to different feature extraction methods.

2.5. Convolutional Neural Network (CNN)

Unlike other deep learning architectures, artificial neurons in CNNs extract the features of small
areas of input images known as receptive fields. Using the knowledge that visual cortex cells are
sensitive to small regions of the visual field, the feature extraction process of CNNs was formed [23].

A CNN includes an input, output and multiple hidden layers. Hidden layers generally comprise
convolutional layers, pooling layers and fully connected layers. Convolutional and pooling layers are
two special types of layers in CNNs [24]. In the convolutional layer, the image is processed by different
filters. Filters share the same parameters in every small part of the view. The resulting images of the
filters are called feature maps. The pooling layer reduces the variance by capturing average, maximum,
or other statistical values of the various regions in the feature maps and captures key features. Fully
connected layers work as traditional MLP does, by connecting a neuron in a layer to all neurons in the
next layer. In addition, batch normalization and rectified linear unit (ReLU) layers can also be found in
CNN. Batch normalization is used to normalize the gradients propagating through the network and it
helps accelerate training phase. Batch normalization layer is followed by a ReLU layer that is simply a
nonlinear activation function that keeps positive values unchanged and makes negative values zero.

CNN, one of the deep learning architectures, is used especially in image recognition problems
and successful results are obtained. If biological structures are represented by images, it becomes
possible to apply the CNN architecture to problems of bioinformatics.

Data 2019, 4, 45 7 of 13

3. Results

3.1. Dataset

We used a dataset that Zou et al. [15] constructed from known effectors and non-effectors.
The reason for selecting this dataset was based on the ease of performing separate tests on both IVA
and IVB effectors. The dataset consists of 30 IVA effectors, 310 IVB effectors and 1132 non-effectors and
is referred to as T4_1472. The non-effector proteins represent proteins that do not have an association
with pathogenicity and are considered as non-effecting in this manner. It has a ratio of 1:4 of IVB
effectors to non-effectors. IVA sequences were collected from nine species and IVB sequences were
collected from two species (Table 1). All selected effectors are known to be experimentally validated.
This datase is biased. It mainly consists of non-effectors. Thus, to make the dataset more balanced and
provide more effective training phase, we applied ADASYN algorithm. Therefore, the biased dataset
problem and class imbalance problem were solved by creating more minority class proteins.

Table 1. Numbers of effector proteins according to species.

Numbers of Effector Proteins

Species IVA IVB

A. marginale 4 -
Anaplasma phagocytophilum 2 -

Bartonella sp. 3 -
H. pylori 1 -

Agrobacterium tumefacien 3 -
Agrobacterium rhizogenes 4 -

Brucella sp. 8 -
B. pertussis 4 -

E. chaffeensis 1 -
L. pneumophila - 258

C. burnetii - 52

TOTAL 30 310

3.2. Experimental Setup

ADASYN was used to increase the ratio to about 1:1 of effectors to non-effectors. For each of the
feature extraction methods, different numbers of pseudo proteins were generated. Table 2 shows the
distribution of pseudo proteins according to the feature extraction methods and effector types.

Table 2. Number of generated pseudo proteins using ADASYN algorithm.

Effector Types

IVA IVB

Feature
Extraction
Methods

Effectors
(Minority

Class)

Generated
Pseudo
Proteins

Non-Effectors
(Majority

Class)

Effector:
Non-Effector

Ratio

Effectors
(Minority

Class)

Generated
Pseudo
Proteins

Non-Effectors
(Majority

Class)

Effector:
Non-Effector

Ratio

AAC 30 1098 1132 0.996 310 853 1132 1.027
DPC 30 1105 1132 1.003 310 811 1132 0.990

PSSM 30 1100 1132 0.998 310 821 1132 0.999

After extracting features for AAC, DPC and PSSM, different color values were assigned for all
amino acids to represent the images for proteins.

In addition to representations with AAC, DPC and PSSM, we prepared six more representation
scenarios to determine the colors of amino acid types. There were two ideas behind these scenarios.
First, to determine how different coloring schemes affect prediction performance, we assigned different
colors to different group of proteins. Second, by assigning shades of colors to proteins in the same

Data 2019, 4, 45 8 of 13

group, we aimed to find how color shade parameter affects predicting proteins and as well as CNN’s
discriminative behavior.

For scenario 1 (Sc1), all hydrophobic amino acids were represented as red, hydrophilic ones as
green, and amphipathic as blue.

Scenario 2 (Sc2) is a modified version of Sc1. Instead of using single colors, shades of red were
given to hydrophobics, shades of green to hydrophilics and shades of blue to amphipathics.

Scenario 3 (Sc3) was based on Sc1 but amphipathics were discarded. No color value was given to
them. They were represented as black.

Scenario 4 (Sc4) was based on Sc2 but amphipathics were also discarded. They were represented
as black.

For Scenario 5 (Sc5), we considered subclasses of hydrophobic amino acids. Aliphatic, simple,
cyclic and aromatic amino acids were represented with different colors. Other amino acids without
considering their classes were also given different colors.

Scenario 6 (Sc6) is a modified version of Sc5. The only difference is that aliphatic amino acids
were assigned shades of red.

Color values for all representation scenarios are presented in Supplementary Material Table S1.
We built a CNN architecture to predict T4SS effector proteins. Our network consists of three

convolutional layers. Each convolutional layer has 8, 16 and 32 filters, respectively, with size 3 × 3.
After each convolutional layer, batch normalization, ReLU and max-pooling layers exist, except in the
last convolutional layer. The fully connected layer combines the learned features to classify the images
that represent proteins. The softmax layer calculates classification probabilities to predict whether an
image belongs to effector or non-effector protein classes. Our CNN architecture is shown in Figure 3.

Data 2019, 4, x FOR PEER REVIEW 8 of 13

Scenario 2 (Sc2) is a modified version of Sc1. Instead of using single colors, shades of red were
given to hydrophobics, shades of green to hydrophilics and shades of blue to amphipathics.

Scenario 3 (Sc3) was based on Sc1 but amphipathics were discarded. No color value was given
to them. They were represented as black.

Scenario 4 (Sc4) was based on Sc2 but amphipathics were also discarded. They were
represented as black.

For Scenario 5 (Sc5), we considered subclasses of hydrophobic amino acids. Aliphatic, simple,
cyclic and aromatic amino acids were represented with different colors. Other amino acids without
considering their classes were also given different colors.

Scenario 6 (Sc6) is a modified version of Sc5. The only difference is that aliphatic amino acids
were assigned shades of red.

Color values for all representation scenarios are presented in supplementary material Table S1.
We built a CNN architecture to predict T4SS effector proteins. Our network consists of three

convolutional layers. Each convolutional layer has 8, 16 and 32 filters, respectively, with size 3 × 3.
After each convolutional layer, batch normalization, ReLU and max-pooling layers exist, except in
the last convolutional layer. The fully connected layer combines the learned features to classify the
images that represent proteins. The softmax layer calculates classification probabilities to predict
whether an image belongs to effector or non-effector protein classes. Our CNN architecture is shown
in Figure 3.

Figure 3. Convolutional Neural Network CNN architecture.

3.3. Evaluation

Leave One Out (LOO) cross-validation tests were used to assess all protein representation
methods. According to the LOO strategy, a sample is accepted as query instances (test set) while
other samples in the dataset as training set. A model is constructed from the training samples and
query instance is compared to the model. This process continues until all of the samples have been
queried in this manner.

Six different metrics were used to evaluate the performance of the classification: sensitivity,
specificity, accuracy, Matthew’s correlation coefficient, Youden’s J Statistic, and F1 Score. TP, TN, FP
and FN refer to the number of true positives, true negatives, false positives and false negatives,
respectively.

Figure 3. Convolutional Neural Network CNN architecture.

3.3. Evaluation

Leave One Out (LOO) cross-validation tests were used to assess all protein representation methods.
According to the LOO strategy, a sample is accepted as query instances (test set) while other samples
in the dataset as training set. A model is constructed from the training samples and query instance
is compared to the model. This process continues until all of the samples have been queried in
this manner.

Data 2019, 4, 45 9 of 13

Six different metrics were used to evaluate the performance of the classification: sensitivity,
specificity, accuracy, Matthew’s correlation coefficient, Youden’s J Statistic, and F1 Score. TP, TN, FP and
FN refer to the number of true positives, true negatives, false positives and false negatives, respectively.

Sensitivity (Sn) is the ratio between correctly classified effectors and all effectors:

Sn =
TP

TP + FN
(12)

Specificity (Sp) is the ratio between correctly classified non-effectors and all non-effectors:

Sp =
TN

TN + FP
(13)

Accuracy (Acc) is the ratio between correctly classified non-effectors and effectors and all samples:

Accuracy =
TP + TN

TP + FP + TN + FN
(14)

The Matthew’s correlation coefficient (MCC) measures the quality of classification:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

Youden’s J Statistic (J Stat.) is measured as follows:

J = Sn + Sp− 1 (16)

F1 score is the harmonic average of the precision and recall:

F1 =
precision∗ recall

precision + recall
∗ 2Precision =

TP
TP + FP

Recall =
TP

TP + FN
(17)

F1 score is also calculated as:

F1 =
2 ∗ TP

2 ∗ TP + FN + FP
(18)

3.4. Empirical Results

The evaluation results of LOO cross-validation experiments when protein representation models
are applied for the effector (IVA and IVB) prediction are given in Supplementary Materials Tables S2–S5.

According to Tables S2 and S3, the highest scores for sensitivity measure were obtained by using
AAC and DPC with ADASYN apposition. All effectors were predicted correctly with them. In addition,
using all scenarios for AAC and DPC predicted all IVA effectors. It was shown that utilizing ADASYN
algorithm for all protein representation methods and scenarios was superior to all methods without
ADASYN. For other metrics, all representations and scenarios gave better performance than PSSM
and variations. Comparison of representation methods for IVA in terms of sensitivity metric is shown
in Figure 4a,b.

Data 2019, 4, 45 10 of 13Data 2019, 4, x FOR PEER REVIEW 10 of 13

(a) (b)

Figure 4. (a) Sensitivity performance for IVA effectors. (b) Sensitivity performance for IVA effectors.

According to Tables S4 and S5, the highest score for sensitivity measure was obtained using

AAC with ADASYN apposition. The second highest score was achieved by PSSM with ADASYN

without considering representation scenarios. DPC with ADASYN had the lowest score. It was

shown that representation scenarios for AAC and PSSM with ADASYN gave better results than DPC

and its variations. It was found that utilizing ADASYN algorithm was superior to others without

ADASYN. For other metrics, AAC with ADASYN had the best performance values. In addition,

representation scenarios for AAC and PSSM with ADASYN gave close results to AAC with

ADASYN. Comparison of representation methods for IVB in terms of sensitivity metric is shown in

Figure 5a,b.

(a) (b)

Figure 5. (a) Sensitivity performance for IVB effectors. (b) Sensitivity performance for IVB effectors.

Figure 4. (a) Sensitivity performance for IVA effectors. (b) Sensitivity performance for IVA effectors.

According to Tables S4 and S5, the highest score for sensitivity measure was obtained using AAC
with ADASYN apposition. The second highest score was achieved by PSSM with ADASYN without
considering representation scenarios. DPC with ADASYN had the lowest score. It was shown that
representation scenarios for AAC and PSSM with ADASYN gave better results than DPC and its
variations. It was found that utilizing ADASYN algorithm was superior to others without ADASYN.
For other metrics, AAC with ADASYN had the best performance values. In addition, representation
scenarios for AAC and PSSM with ADASYN gave close results to AAC with ADASYN. Comparison
of representation methods for IVB in terms of sensitivity metric is shown in Figure 5a,b.

Data 2019, 4, x FOR PEER REVIEW 10 of 13

(a) (b)

Figure 4. (a) Sensitivity performance for IVA effectors. (b) Sensitivity performance for IVA effectors.

According to Tables S4 and S5, the highest score for sensitivity measure was obtained using
AAC with ADASYN apposition. The second highest score was achieved by PSSM with ADASYN
without considering representation scenarios. DPC with ADASYN had the lowest score. It was
shown that representation scenarios for AAC and PSSM with ADASYN gave better results than DPC
and its variations. It was found that utilizing ADASYN algorithm was superior to others without
ADASYN. For other metrics, AAC with ADASYN had the best performance values. In addition,
representation scenarios for AAC and PSSM with ADASYN gave close results to AAC with
ADASYN. Comparison of representation methods for IVB in terms of sensitivity metric is shown in
Figure 5a,b.

(a) (b)

Figure 5. (a) Sensitivity performance for IVB effectors. (b) Sensitivity performance for IVB effectors. Figure 5. (a) Sensitivity performance for IVB effectors. (b) Sensitivity performance for IVB effectors.

Data 2019, 4, 45 11 of 13

When we compared our approach with our original research [15], it was revealed that we
improved the classification performance of the original one in terms of sensitivity. This result can be
interpreted as deep learning architectures can exploit the image representation of proteins. Extracting
image features can be more effective than raw AAC protein representations in terms of sensitivity.
Therefore, it can be said that this study provides a baseline for applying CNN architectures to T4SS
protein prediction problem. The comparison of the best performances for two studies is given in
Table 3. Sensitivity performance was increased by about 3%.

Table 3. Performance comparison for IVB with previous work.

Sn Sp Acc MCC J stat. F1

Zou et al. [15] * 0.916 0.996 0.979 0.936 NR NR

Our study 0.942 0.903 0.911 0.774 0.840 0.820

* Ten-fold CV tests were performed on the dataset. We used LOO tests. Their best performance was achieved by 2
in 3 voting scheme with 3 SVM classifiers. We used only a CNN for classification. (NR: Not Reported).

4. Conclusions and Discussion

The contribution of this study is fourfold. First, the proposed approach offers a deep
learning-based framework to predict T4SS effector proteins. Thus far, all studies on T4SS use
traditional machine learning methods. We demonstrated the usability of CNN, one of the deep
learning architectures. Second, we showed that protein to image conversion, using AAC, DPC and
PSSM feature extraction methods, is applicable to classification problems in bioinformatics. Proteins
can be represented as images and used as inputs for deep learning. Third, generating pseudo proteins,
in a situation where unbalanced classes exist in a dataset, is advantageous for classification while
working with CNN. ADASYN algorithm solved this imbalanced dataset issue in protein prediction
problem. The algorithm created new samples for effector proteins, which are a minority class in this
situation, and balanced the dataset distribution; therefore, a more corrective and accurate classification
procedure was implemented. In addition, by increasing the number of samples with this algorithm,
the deep learning architecture we used had more variant data to train on, and therefore a significant
increase in performance was observed using ADASYN. Fourth, grouping amino acid types according
to their hydrophobicity yielded close results to the best one, which was obtained using AAC. AAC
yielded better results because AAC of a protein consists of features where each element of the feature
vector represents the percentage of each amino acid type in the protein. This information is better than
features that include protein pairs because it adds information to the feature vector of only one protein
and not a pair. These results show that the percentage of one protein in an amino acid representation is
better than other representations. Grouping amino acids according to their hydrophobicity yielded
better results because using different shades for different subgroups made the CNN network more
discriminative. Shading could increase the variance of protein samples, therefore CNN better learned
the data and the training process was more effective.

We hope that this study could be an introduction to utilize CNN on T4SS effector recognition as
well as other secretion systems for researchers. Utilization of deep learning networks has advantages:
instead of extracting handmade features in traditional machine learning, deep learning architecture
extracts features automatically and classifies them. In addition, by representing proteins with images
and feeding them into CNN is more meaningful than traditional feature extraction methods in terms of
classification performance. However, deep learning networks also have a disadvantage: they require
many data to be successful and much parameter tuning is required for success.

This framework could be improved by combining features to represent a protein with more
than three-dimensional matrixes. Another improvement might be to include other deep learning
architectures such as Long-Short Term Memory (LSTM) networks and Deep Belief Networks (DBN).
Applying majority voting on results of the different architectures may achieve performance increase.
Different traditional machine learning approaches and feature extraction methods [25,26] can be used

Data 2019, 4, 45 12 of 13

to increase the classification performance as well. In addition, trying different CNN architectures
and applying parameter tunings to explore the effects of layer size and parameter selection can be
considered to improve performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/4/1/45/s1.

Author Contributions: The following statements should be used “methodology, K.A., T.A, Ç.B.E.; validation,
H.O.; data curation, K.A.; writing—original draft preparation, K.A, T.A.; writing—review and editing, K.A, T.A.,
Ç.B.E.; supervision, H.O.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Green, E.R.; Mecsas, J. Bacterial secretion systems: An overview. Microbiol. Spectr. 2016, 4. [CrossRef]
2. Fronzes, R.; Christie, P.J.; Waksman, G. The structural biology of type IV secretion systems. Nat. Rev.

Microbiol. 2009, 7. [CrossRef] [PubMed]
3. Juhas, M.; Crook, D.W.; Hood, D.W. Type IV secretion systems: Tools of bacterial horizontal gene transfer

and virulence. Cell. Microbiol. 2008, 10, 2377–2386. [CrossRef]
4. Hatakeyama, M.; Higashi, H. Helicobacter pylori CagA: A new paradigm for bacterial carcinogenesis.

Cancer Sci. 2005, 96, 835–843. [CrossRef] [PubMed]
5. Burns, D.L. Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 2003, 6, 1–6. [CrossRef]
6. Cascales, E.; Christie, P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 2003,

1, 137–149. [CrossRef]
7. Zhu, J.; Oger, P.M.; Schrammeijer, B.; Hooykaas, P.J.; Farrand, S.K.; Winans, S.C. The bases of crown gall

tumorigenesis. J. Bacteriol. 2002, 182, 3885–3895. [CrossRef]
8. Seubert, A.; Hiestand, R.; de la Cruz, F.; Dehio, C. A bacterial conjugation machinery recruited for

pathogenesis. Mol. Microbiol. 2003, 49, 1253–1266. [CrossRef] [PubMed]
9. Schulein, R.; Dehio, C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing

intraerythrocytic infection. Mol. Microbiol. 2002, 46, 1053–1067. [CrossRef]
10. Boschiroli, M.L.; Ouahrani-Bettache, S.; Foulongne, V.; Michaux-Charachon, S.; Bourg, G.;

Allardet-Servent, A.; Cazevieille, C.; Lavigne, J.P.; Liautard, J.P.; Ramuz, M.; et al. Type IV secretion
and Brucella virulence. Vet. Microbiol. 2002, 90, 341–348. [CrossRef]

11. Lawley, T.D.; Klimke, W.A.; Gubbins, M.J.; Frost, L.S. F factor conjugation is a true type IV secretion system.
FEMS Microbiol. Lett. 2003, 224, 1–15. [CrossRef]

12. Christie, P.J.; Atmakuri, K.; Krishnamoorthy, V.; Jakubowski, S.; Cascales, E. Biogenesis, architecture, and
function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 2005, 59, 451–485. [CrossRef] [PubMed]

13. Juhas, M.; Crook, D.W.; Dimopoulou, I.D.; Lunter, G.; Harding, R.M.; Ferguson, D.J.; Hood, D.W. Novel type
IV secretion system involved in propagation of genomic islands. J. Bacteriol. 2007, 189, 761–771. [CrossRef]
[PubMed]

14. Burstein, D.; Zusman, T.; Degtyar, E.; Viner, R.; Segal, G.; Pupko, T. Genome-scale identification of Legionella
pneumophila effectors using a machine learning approach. PLoS Pathog. 2009, 5, e6974. [CrossRef] [PubMed]

15. Zou, L.; Nan, C.; Hu, F. Accurate prediction of bacterial type IV secreted effectors using amino acid
composition and PSSM profiles. Bioinformatics 2013, 29, 3135–3142. [CrossRef]

16. Wang, Y.; Wei, X.; Bao, H.; Liu, S.L. Prediction of bacterial type IV secreted effectors by C-terminal features.
BMC Genomics 2014, 15, 1–14. [CrossRef]

17. Zou, L.; Chen, K. Computational prediction of bacterial type IV-B effectors using C-terminal signals and
machine learning algorithms. In Proceedings of the 2016 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), Chiang Mai, Thailand, 5–7 October 2016; pp. 1–5.

18. Wang, J.; Yang, B.; An, Y.; Marquez-Lago, T.; Leier, A.; Wilksch, J.; Hong, Q.; Zhang, Y.; Hayashida, M.;
Akutsu, T.; et al. Systematic analysis and prediction of type IV secreted effector proteins by machine learning
approaches. Brief. Bioinform. 2017, 1–21. [CrossRef] [PubMed]

http://www.mdpi.com/2306-5729/4/1/45/s1
http://dx.doi.org/10.1128/microbiolspec
http://dx.doi.org/10.1038/nrmicro2218
http://www.ncbi.nlm.nih.gov/pubmed/19756009
http://dx.doi.org/10.1111/j.1462-5822.2008.01187.x
http://dx.doi.org/10.1111/j.1349-7006.2005.00130.x
http://www.ncbi.nlm.nih.gov/pubmed/16367902
http://dx.doi.org/10.1016/S1369-5274(02)00006-1
http://dx.doi.org/10.1038/nrmicro753
http://dx.doi.org/10.1128/JB.182.14.3885-3895.2000
http://dx.doi.org/10.1046/j.1365-2958.2003.03650.x
http://www.ncbi.nlm.nih.gov/pubmed/12940985
http://dx.doi.org/10.1046/j.1365-2958.2002.03208.x
http://dx.doi.org/10.1016/S0378-1135(02)00219-5
http://dx.doi.org/10.1016/S0378-1097(03)00430-0
http://dx.doi.org/10.1146/annurev.micro.58.030603.123630
http://www.ncbi.nlm.nih.gov/pubmed/16153176
http://dx.doi.org/10.1128/JB.01327-06
http://www.ncbi.nlm.nih.gov/pubmed/17122343
http://dx.doi.org/10.1371/journal.ppat.1000508
http://www.ncbi.nlm.nih.gov/pubmed/19593377
http://dx.doi.org/10.1093/bioinformatics/btt554
http://dx.doi.org/10.1186/1471-2164-15-50
http://dx.doi.org/10.1093/bib/bbx164
http://www.ncbi.nlm.nih.gov/pubmed/29186295

Data 2019, 4, 45 13 of 13

19. Duan, J.; Schlemper, J.; Bai, W.; Dawes, T.J.W.; Bello, G.; Doumou, G.; De Marvao, A.; O’Regan, D.P.;
Rueckert, D. Deep Nested Level Sets: Fully Automated Segmentation of Cardiac MR Images in Patients
with Pulmonary Hypertension. In Medical Image Computing and Computer Assisted Intervention—MICCAI
2018, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Granada, Spain, 16–20 September 2018; Springer: Cham, Switzerland, 2018; Volume 11073, pp. 595–603.

20. Duan, J.; Bello, G.; Schlemper, J.; Wenjia, B.; Dawes, T.J.W.; Biffi, C.; De Marvao, A.; Doumou, G.;
O’Regan, D.P.; Rueckert, D. Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined
multi-task deep learning approach. IEEE Trans. Med. Imaging 2019. [CrossRef] [PubMed]

21. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

22. Chawla, N.V.; Hall, L.O.; Bowyer, K.W.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Oversampling
Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

23. Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington,
DC, USA, 16–21 June 2012; pp. 3642–3649.

24. Cao, C.; Liu, F.; Tan, H.; Song, D.; Shu, W.; Li, W.; Zhou, Y.; Bo, X.; Xie, Z. Deep Learning and its Applications
in Biomedicine—Genomics. Prot. Bioinform. 2018, 16, 17–32.

25. Ding, Y.; Pardon, M.C.; Agostini, A.; Faas, H.; Duan, J.; Ward, W.O.C.; Easton, F.; Auer, D.; Bai, L. Novel
Methods for Microglia Segmentation, Feature Extraction, and Classification. IEEE/ACM Trans. Comput.
Biol. Bioinform. 2017, 14, 1366–1377. [CrossRef] [PubMed]

26. Yang, D.; Subramanian, G.; Duan, J.; Gao, S.; Bai, L.; Chandramohanadas, R.; Ai, Y. A portable image-based
cytometer for rapid malaria detection and quantification. PLoS ONE 2017, 12, e0179161. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMI.2019.2894322
http://www.ncbi.nlm.nih.gov/pubmed/30676949
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/TCBB.2016.2591520
http://www.ncbi.nlm.nih.gov/pubmed/27429441
http://dx.doi.org/10.1371/journal.pone.0179161
http://www.ncbi.nlm.nih.gov/pubmed/28594960
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	General Framework
	ADASYN Algorithm
	Feature Extraction for Image Representation
	Protein to Image Conversion
	Convolutional Neural Network (CNN)

	Results
	Dataset
	Experimental Setup
	Evaluation
	Empirical Results

	Conclusions and Discussion
	References

