
A Look at Modern Classification Algorithms for

Structural Data

HIOF University Colledge

Freddy Christoffer Suther & Frank Daniel Suther

May 15, 2018

Abstract

We tested 108 classification algorithms from caret andWEKA. The classification
algorithms were tested on 10 fold cross-validation repeated 100 times, on 89
datasets. The algorithms were tuned once per dataset, with a manual tunegrid.
We used three metrics, accuracy, kappa and Friedman rank. The best algorithm,
catboost, got an average accuracy of 83.96%, only 1.5 percentage point behind
the maximum accuracy(the average of the best average result for each dataset
across all algorithms) of 85.5%. The catboost algorithm overcomes 90% of
the maximum accuracy on every single dataset, and overcomes 95% of the
maximum accuracy in 92% of the datasets. The catboost algorithm achieved
on average 98.15% of the maximum accuracy over all the datasets. There is no
statistically significant difference between catboost and xgbTree, and catboost
and parRF, although parRF is close to be significantly different from catboost.
The boosting ensembles, tree ensembles, combined classifiers and SVMs are
significantly better than the other families(bayesian classifiers, discriminant
analysis, classification trees, rule-based models and instance based models).
Across the 89 datasets, we have 46 different algorithms being the best, many of
which are shared positions . Most of the top classification algorithms are from
the caret package, with the top 7 coming from caret, and 8/10 best using caret,
all tuned with manual tunegrids, WEKA is not far behind however, with 9 of
the top 20 on Friedman Rank, and 10 of the top 20 on accuracy.

Keywords: machine learning, classification, boosting, bagging, support vector
machines, neural networks, automatic machine learning.

I

Declaration

We have no horse in this race.

II

Acknowledgements

We would like to thank our thesis supervisor, Dr. Roland Olsson for his support
and advice.

III

Contents

List of Figures VI

List of Tables VII

1 Introduction 1
1.1 Introduction and Motivation . 1
1.2 Research Question . 2
1.3 Thesis Outline . 2

2 Background 4
2.1 Related work . 4
2.2 Supervised Learning & Classification 8

2.2.1 Artificial Neural Networks 8
2.2.2 Automatic Classification 10
2.2.3 Bayes Classification methods 10
2.2.4 Classification Trees . 11
2.2.5 Discriminant Analysis . 14
2.2.6 Ensemble methods . 15
2.2.7 Instance based learners 21
2.2.8 Rule-based models . 23
2.2.9 Support Vector Machines 26
2.2.10 Misc. classifiers used . 27

3 Method 29
3.1 Method . 29

3.1.1 Tuning in R . 32
3.1.2 Tuning in WEKA . 33
3.1.3 Chosen optimization package 34
3.1.4 Method -cont. 35

3.2 Datasets . 37
3.3 Database . 40
3.4 Classification Algorithms . 43
3.5 Potential Pitfalls . 44
3.6 Replication . 46

IV

3.6.1 Changes made to R . 47
3.6.2 Changes made to WEKA 47

4 Results 49
4.1 Classification Algorithm Results 49
4.2 Dataset Results . 54
4.3 Probability of achieving 95% of the maximum accuracy 58
4.4 catboost vs Maximum Accuracy 58
4.5 Variation In Results . 59

5 Discussion 61
5.1 Paired T-tests . 63
5.2 Effects of bagging . 63
5.3 Comparison to Similar Research 64
5.4 Comparison Within Family . 67

5.4.1 Artificial Neural Networks 67
5.4.2 Bayes Classification Methods 69
5.4.3 Boosting Ensembles . 70
5.4.4 Classification Trees . 71
5.4.5 Combined Classifiers . 72
5.4.6 Discriminant Analysis . 73
5.4.7 Misc Classification Algorithms 74
5.4.8 Instance Based Algorithms 75
5.4.9 Rule-based Models . 76
5.4.10 Support Vector Machines 77
5.4.11 Tree Ensembles . 78

5.5 What Could Have Been Done Differently 79
5.6 Limits on this Research . 80
5.7 Answering the Research Questions 80

6 Conclusion 83

7 Bibliography 85

A Tuning Parameter Values 93
A.1 R . 93
A.2 WEKA . 97

B R code 109
B.1 R script for tuning . 109
B.2 R script for repeated cross-validation 110

C Java code 112

V

List of Figures

2.1 Multilayer Perceptron . 9
2.2 Classification Tree data . 12
2.3 Classification Tree . 13
2.4 Linear Discriminants . 14
2.5 Boosting . 17
2.6 K Nearest Neighbor . 22
2.7 Support Vector Machines . 26
2.8 Support vectors . 27

3.1 Kaggle poll . 31
3.2 Kdnuggets poll . 31
3.3 Cross validation . 35
3.4 Mysql database . 41

4.1 catboost vs maximum accuracy 59
4.2 Variation in Results . 60

5.1 Heatmap . 62
5.2 Scatter Plot Accuracy per Family 67
5.3 Comparison of Artificial Neural Networks Classification Methods 68
5.4 Comparison of Bayesian Classification Methods 69
5.5 Comparison of Boosting Ensembles 70
5.6 Comparison of Classification Trees 71
5.7 Comparison of Combined Classifiers 72
5.8 Comparison of Discriminant Analysis 73
5.9 Comparison of Misc Classification Algorithms 74
5.10 Comparison of Instance Based Algorithms 75
5.11 Comparison of Rule-based Models 76
5.12 Comparison of Support Vector Machines 77
5.13 Comparison of Tree Ensembles 78

VI

List of Tables

2.1 Instanced Based Learning Table 23
2.2 Different kernels . 26

3.1 Tuning-method-comparison . 34
3.2 List of Datasets . 38
3.3 Database . 42
3.4 Classification Algorithms . 43
3.5 Clothes Dataset . 44
3.6 Classification Algorithms . 46

4.1 Head to head comparison catboost vs top 10 50
4.2 Classification Algorithm Comparison, ordered by Friedman ranking. 51
4.3 Best result per dataset . 54
4.4 Probability of achieving 95% of the maximum Accuracy, or more. 58

5.1 20 best algorithms according to accuracy. 61
5.2 Paired T Tests . 63
5.3 Bagged classification algorithms vs base algorithms 64
5.4 Result Comparison Delgado et.al. vs ours. 65
5.5 Tuning vs overall accuracy . 79

VII

Chapter 1

Introduction

1.1 Introduction and Motivation

Machine learning can be defined as the ability of making a machine learn without
explicitly programming them. TomM. Mitchell defined learning as ”A computer
program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E [1].

A few state of the art achievements may provide a glimpse into the possibilities
of the field: programs which can successfully learn to recognize spoken words
were made in 1989 [2], predict recovery rates of pneumonia patients in 1997 [3],
predict Airfare prices in 2017 [4]. Machine Learning can be split into two
directions, supervised learning, and unsupervised learning. Supervised learning
can be split into three directions, Classification, Regression and Reinforcement
Learning. We want to take a look at classification algorithms.

What can be considered the best classification algorithm? Wolpert’s No Free
Lunch Theorem states that there is no one model that works best for every
problem [5]. While this is true, it does not stop us from considering one method
generally better than the others. The search for the best classification algorithms
is useful for two groups, the researchers and for those who practice classification.
Researchers will typically benefit from knowing what kind of family the best
algorithms come from, in order to know what to focus on when they develop
their next algorithm. E.g. if a group of researchers want to create the new best
algorithm it is more useful to try to create an improved version of a boosted
tree than a rule-based model. For those who practice classification, through the
data science website Kaggle [6] or at work, this research can be more important,
because our results show the potential of multiple algorithms, and the strengths
of some not so common ensembles.

1

1.2 Research Question

This thesis aims to compare classification algorithms for structured data. The
classification algorithms are measured by the metrics accuracy and kappa, and
the Friedman Rank. They will be compared against every other classification
algorithm as well as every other classification algorithm within their family,
using paired T-tests, heat maps, and compared to the maximum accuracy
achieved across classification algorithms.

The goal of this research was to answer the following research question:

RQ 1: What are the best classification algorithms?

Secondary relevant research questions are:
RQ 1.1: What do the better classification algorithms have in common, are they
of the same family, or do they share other characteristics?
RQ 1.2: Does Wolpert’s No Free Lunch Theorem still hold true?
RQ 1.3: How does Auto-WEKA perform compared to the other classification
algorithms?
RQ 1.4: For the bagging ensembles, what are the effects of bagging compared
to the base-classifiers?
RQ 1.5: Do our results differ from the results from similar research?

1.3 Thesis Outline

• In Chapter 2 we mention related work, and give a brief introduction to the
different ”families” of classification algorithms. The families are somewhat
arbitrary, for instance the classification algorithm DTNB(decision table
naive Bayes) can be considered both a bayesian model and a rule-based
model, as it is a hybrid model. Chapter 2 also contains a list of each
classification algorithm we used, and a brief description of them.

• In Chapter 3 we describe how the experiment was designed and performed.
The datasets used are mentioned and a link to their location is mentioned.
Different software, which versions of aforementioned software, scale of the
experiment and hardware we used is mentioned. The chapter also contains
a description of why we chose to run the experiment the way we did, and
other information needed for replication of the experiment such as what
seed we used etc..

• In Chapter 4 we describe our results. This includes the average accuracy,
average kappa and Friedman rank of each classification algorithm. We
also include a list of which classification algorithms were the best and the
score of the best on each dataset.

2

• In Chapter 5 we discuss our findings, compare our results to similar
research and answer the Research Questions.

• In Chapter 6 contains our conclusion, where we sum up our results and
what we have done.

3

Chapter 2

Background

2.1 Related work

In 1999, Eric Bauer and Ron Kohavi had a large-scale comparison of Bagging,
Bagging variants, AdaBoost, and Arc-x4 on two families of induction algorithm,
decision trees and Naive-Bayes. The boosting algorithms were generally better
than Bagging, but not uniformly better. They looked at how boosting and
bagging would reduce the error the induction algorithms had, the best algorithm
AdaBoost caused an error reduction of 27% for MC4, 31% for MC4(1)-disc, and
24% for Naive-Bayes. [7].

In 2000, Tjen-Sien Lim, Wei-Yin Loh & Yu-Shan Shih compared twenty-two
decision trees, nine statistical and two neural network algorithms on 33 datasets
in terms of classification accuracy, training time and number of leaves(decision
trees only). Classification accuracy was measured by mean error rate and mean
rank of error rate. The statistical algorithm POLYCLASS was the best in both
criteria. The second best algorithm was logistic regression. Best decision tree
algorithm was QUEST with linear splits. The POLYCLASS algorithm had
the third longest training time, and was significantly slower than the QUEST
algorithm(3.2 hours vs 5.9 minutes) [8].

In 2005, Olcay Taner Yildiz and Ethem Alpaydin tested seven different Decision
Tree algorithms(C4.5, Classification And Regression Tree, ID-LP, Linear Machine
Decision Tree, Oblique Classifier, Quick Unbiased Efficient Statistical Tree and
Linear Discriminant Tree) on 20 datasets from the UCI database. The algorithms
were tested on percentage correctly classified instances, learning times and tree
sizes by the number of nodes. The most accurate algorithms were ID-LP(Neural
Tree with a linear perceptron), Linear Machine Decision Tree, C4.5, Linear
Discriminant Tree and Quick Unbiased Efficient Statistical Tree being nearly
equal. The fastest algorithm was C4.5 and Linear Discriminant Tree. The tree
size of C4.5 was the smallest with LDT and ID-LP as number 2 and 3 [9].

4

In a paper by Xindong Wu et. al from 2007 presents the top 10 most influential
classification algorithms in data mining, according to a panel of 145 attendees
on the International Conference of Data Mining. The top 10 was C4.5, k -Means,
Support Vector Machine, Apriori, Expectation Maximization, PageRank, AdaBoost,
kNN, Naive Bayes and Classification and Regression Tree [10].

In 2012, Gouda I. Salama, M. B. Abdelhalim and Magdy Abd-elghany Zeid
compared five different classification algorithms from WEKA on three different
databases of breast cancer, Wisconsin Breast Cancer(WBC), Wisconsin Diagnosis
Breast Cancer(WDBC) and Wisconsin Prognosis Breast Cancer(WPBC). The
classification algorithms were J48 classification tree, Multilayer Perceptron(MLP),
Naive Bayes(NB), Sequential Minimal Optimization(SMO) and Instanced Based
for K-Nearest neighbour(IBK). They also combined the models using voting to
determine the class. A combination of MLP and J48 with feature selection was
superior to the other classifiers on the WBC database. On the WDBC database
SMO was superior and on the WPBC database an ensemble of J48, SMO, MLP
and IBK was the best classifier [11].

In 2013, K. Wisaeng presented a comparison of different classification techniques
on a set of bank direct marketing dataset. The classification algorithms tested
were J48-grafted decision tree, Logical Analysis of Data tree(LAD Tree, Radial
Basis Function Network, and LibSVM, all from WEKA. K. Wisaeng tested the
algorithms on Sensitivity TP

TP+FN , Specificity TP
TP+FP and accuracy(TP= true

positive, FP= false positive and FN= false negative). LibSVM got the best
results with a Sensitivity of 87%, a Specificity of 86.70% and an accuracy of
86.95%. J48-graft got a Sensitivity of 76.5%, a Specificity of 78.6% and an
accuracy of 76.52%. LAD Tree got a Sensitivity of 76.1%, a Specificity of 75%
and a accuracy of 76.08%. The worst results came from the RBF Network with
a Sensitivity of 74.3%, Specificity of 73.5% and accuracy 74.34% [12].

In 2014, Diego Raphael Amancio et.al. compared nine classification algorithms
fromWEKA, Naive Bayes(NB), Bayesian Network(BN), C4.5, Random Forest(RF),
Simple Classification and Regression Tree(CART), k-Nearest Neighbors(kNN),
Logistic(Log), Multilayer Perceptron(MLP) and Support Vector Machine(SVM)
on an artificial dataset. They also looked at the effects of parameter tuning for
these classification algorithms. Without parameter tuning the kNN algorithm
performed better than the rest. SVM performed worse than the rest with default
parameters but was significantly stronger when tuned. When they increased the
number of attributes in the dataset kNN and SVM performed better than the
rest with and without tuning [13].

Also in 2014, Manuel Fernández-Delgado, Eva Cernadas and Senén Barro tested
179 classifiers from 17 families(Bagging, Bayesian, Boosting, Decision Trees,
Discriminant Analysis, Generalized Linear Models, Logistic and Multinomial
Regression, Multiple Adaptive Regression Splines, Nearest Neighbor, Neural

5

Networks, Partial Least Squares, Principal Component Regression, Random
Forest, Rule-based classifiers, Stacking, Suport Vector Machines and other methods)
implemented inWEKA, R, C and Matlab on 121 datasets from the UCI database.
The Random Forest classifiers were most likely to be the best versions, with the
best(implemented in R with the caret package) achieved 94.1% of the maximum
accuracy overcoming 90% in 84.3% of the datasets. Three out of the five
best classifiers were implementations of Random Forest, making it the best
family of classifiers. The second best family was support vector machines with
four classifiers in the top ten, and the second best classifier, Support Vector
Machine with Gaussian kernel implemented in C using LibSVM, with 92.3% of
the maximum accuracy [14].

In 2016, Jacques Wainer et.al. tested 14 different classification algorithms(random
forest, gradient boosting machines, SVM-linear,polynomial, and RBF-1-hidden-layer
neural nets, extreme learning machines, k-nearest neighbours and a bagging of
knn, naive Bayes, learning vector quantization, elastic net logistic regression,
sparse linear discriminant analysis and a boosting of linear classifiers) on 115
real life binary datasets. The algorithms’ parameters were tuned on a subset
of each dataset using five fold cross-validation. They found that the three best
classifiers(random forest, gbm and support vector machine with radial basis
function) were not significantly different from each other in terms of precision.
They also verified the execution speed of standard implementations of these
algorithms and found support vector machine with radial basis function to be
the fastest among the three best, both in training time and in training plus
testing time [15].

In 2017, Edwin Raczko and Bogdan Zagajewski compared three classification
algorithms, Random Forest, Support Vector Machine and a Neural Network.
The task was to classify trees in the northwesten part of the Karkonosze National
Park in Poland, south of Szklarska Poreba. The National Park is located on
the Polish-Czech border.The area contained five types of trees, spruce, larch,
alder, beech and birch. The data was collected from two spectrometers which
covered the spectral range of 380-2500 nanometers. The data was reduced from
288 spectral to 40. The data was split in a training set of 63.2% and a test set
of 36.8%. The Support Vector Machine they chose was the ”svmRadial”, the
Random Forest implementation was the ”rf”. The Artificial Neural Network
is either ”nnet”, or a deep neural network, it is hard to say based on the
information given in the journal. The ANN achieved the highest median overall
classification accuracy with 77%, followed by SVM with 68% and RF with 62%.
ANN had the highest median kappa at 0.72, SVM 0.61 and RF 0.52. All three
algorithms had an easier time classifying Alder than the other treetypes. Edwin
Raczko and Bogdan Zagajewski mention that the reduction in bands was made
to lower the training time for ANN might have an impact on the result [16].

Since the Manuel Fernández-Delgado, Eva Cernadas and Senén Barro study,
and the Jacques Wainer’s follow-up study new algorithms have been made, the

6

Kaggle favorite Extreme Gradient Boosting(XGB) is known to do well(according
to Anthony Goldbloom the, founder and CEO of Kaggle, who noted that after
Random Forest was beaten by xgboost repeatedly ”It used to be random forest
that was the big winner, but over the last six months a new algorithm called
XGboost has cropped up, and its winning practically every competition in the
structured data category”) [17], and two new boosting methods LightGBM [18]
and catboost [19] have been published.

7

2.2 Supervised Learning & Classification

Supervised learning is something every human being has experienced, imagine
being young and seeing a bonfire, what can we throw onto it and what effect will
it have? There might be three outcomes, flames increase, flames are put out or
flames increase rapidly, depending on what we throw on. We can create 3 classes
for this example, objects that burn, objects that do not burn and objects which
are inflammatory. With experience we learn that flasks with a skull on belongs
in the inflammatory class. This is a very simple case of classification, we try to
put an instance or object into a group based on its attributes. This is called
supervised learning, because we have tried x objects before, and know their
characteristics/attributes, and based on their attributes we create a model or a
set of rules which can be used to predict new objects outcome. Classification
is strictly postjudice, and is used to create a predictive model based data.
Multiple ”families” of classification algorithms exists, we chose to split them
into 11 groups, artificial neural networks, Bayes classification methods, boosting
ensembles, classification trees, discriminant analysis, instanced based learners,tree
ensembles, rule-based models, support vector machines and misc classification
algorithms.

2.2.1 Artificial Neural Networks

Artificial neural network models are created as very simplified models of the
human brain. The human brain is composed of a large number(1011) of processing
units, or neurons, operating in parallel. Though the speed of the neurons in our
brain is unknown, it is believed to be much slower than that of a computational
processor unit. What is believed to provide the human brain its processing
power is the synapses, or connections between neurons. A single neuron can
have 104 synapses to other neurons, all operating in parallel [20].

The human brain’s neuron is simulated in a neural network as the perceptron.
The perceptron is the basic processing element, its input is gathered from the
environment or from the output of other perceptrons. Each input(xj) is given
a weight wj which makes the output function:

y =
∑d

j=1 wjxj + w0

w0 is the intercept value. It is the weight coming from a bias unit,x0, which is
always +1. If d=1 and x is given an input, we have the formula

y = wx+ w0

which is the formula for a line with w0 is the intersect and w is the slope. So
a perceptron with single input and single output can be used to create a linear
discriminant. Nonlinear discriminant can be made with a Multilayer perceptron,

8

where a hidden layer between the input and the output layer applies a function
on the weighted sum of the outputs from the previous layer.

Figure 2.1: A Multilayer Perceptron.

2.2.1.1 Artificial Neural Network implementations

• avNNet (R) ”avNNet” is an implementation of an aggregated neural
network from the nnet package, where the same neural network model
is fit using different random number seeds, and the averaged result is
translated to predicted classes. May use Bagging [21].

• mlp (R) ”mlp” is an implementation of a fully connected feedforward
network from the RSNNS package [21].

• mlpML ”mlpML” is an implementation of a fully connected feedforward
network from the RSNNS package, with three hidden layers [21].

• mlpWeightDecay ”mlpWeightDecay” is an implementation of a multilayer
perceptron from the RSNNS package, which can be tuned on its decay
parameter and size parameter, unlike ”mlp” which only has a size parameter
[21].

• nnet (R) ”nnet” is an implementation of a single-hidden-layer neural
network from the nnet package [21].

9

• pcaNNet (R) ”pcaNNet” is an implementation of a multilayer perceptron
from the nnet package, which is created after running principal component
analysis on the dataset [21].

• Elman (WEKA) Builds a recurrent neural network with ”context units”
that stores the previous values of hidden units.

• MultilayerPerceptron (WEKA)A neural network that uses backpropagation
to classify instances.

2.2.2 Automatic Classification

The goal for automated machine learning is to find the best algorithm and
parameter setup for a given task, given its allotted time. Auto-WEKA searches
through all classifiers and their parameters and returns the best classifier and
attribute selector for your dataset. It uses the random-forest-based Bayesian
Optimization algorithm SMAC to determine which classifier has the best performance
on the given dataset [22]. Auto-WEKA is fully integrated in WEKA, with its
own tab in the Explorer GUI.

2.2.2.1 Automatic Classification implementations

• AutoWEKA Set up to search for 45 minutes per dataset.

2.2.3 Bayes Classification methods

Bayesian classifiers are statistical classifiers. Bayesian classifiers can predict
the class probability that a given instance belongs to a specific class. Bayesian
classifiers are based on Bayes’ theorem, named after the English statistician from
the 18th century. Let X be a data tuple. In Bayesian terms, X is considered
”evidence”, described by measurements made on a set of n attributes. Let H
be some hypothesis such as that the data tuple X belongs to a specified class
C. For classification problems, we want to determine P(H|X), the probability
that the hypothesis H holds given the ”evidence” or observed data tuple X. Or
simply, we are looking for the probability that instance X belongs to class C,
given the attributes of X [23].

P(H|X) is the a posteriori probability, of H conditioned on X. For instance,
imagine a store having a dataset with information about their customers, attributes
gender and annual income, and X is a female customer with an annual income
of $75 000. H is the hypothesis that a customer will buy a car. P(H|X) is the
probability that customer X will buy a car given that we know the customer’s
gender and annual income.

P(H) is the a priori probability, of H. In the aforementioned instance this is the
probability that a customer will buy a car. The posterior probability P(H|X)
is based on more information (here gender and annual income) than the prior

10

probability, P(H), which is independent of X.

P(X|H) is the a posteriori probability of X conditioned on H, the probability
that a customer, X, is female and earns $75 000, given that we know she will
buy a car.
P(X) is the prior probability of X. In this instance it is the probability that
a customer is female and earns $75 000. Bayes theorem shows how these
probabilities are connected:

P(H|X) = P(X|H)P(H)

P(X)
.

Bayesian classification methods use Bayes Theorem to classify instances. One of
their main advantages is the runtime, and it has been shown to be comparable
to decision trees in some domains [23].

2.2.3.1 Bayesian classification method implementations

• bayesglm (R) ”bayesglm” is an implementation of a bayesian function
for generalized linear modeling, from the arm package [24].

• naive bayes (R) ”naive bayes” is an implementation of the naive bayes
algorithm from the naivebayes package, which computes the conditional
a-posterior probabilities of a categorical class variable given independent
predictor variables using the Bayes rule [25].

• nb (R) ”nb” is another implementation of naive bayes algorithm, from
the klaR package.

• A1DE (WEKA) Builds an ensemble of one-dependence estimators, where
one node is set as a parent to every other node, except the classnode.

• Naive Bayes (WEKA) WEKAs implementation of Naive Bayes.

• Naive Bayes Updateable (WEKA) An updateable version of Naive
Bayes.

2.2.4 Classification Trees

A Classification Tree is a collection of decision nodes, connected by branches,
extending downward from the root node until terminating in leaf nodes. The
root node, displayed at the top of the decision tree diagram, creates leaf nodes
by splitting the dataset in multiple subsets, split on an attributeś value. This
split leads to a terminating leaf node or another decision node.

There are two kinds of decision trees, either ID3/C4.5/C5.0 or classification and
regression trees(CART). CART creates binary trees, each split creates minimum

11

1 node, maximum 2 [26]. CART also uses gini impurity,
∑

k 6=i

Pk = 1− pi which

is faster than the logarithmic Information Gain.

C4.5 is Quinlan’s extension of his Identigraph Dichotomizer 3. Unlike CART,
c4.5 is not strictly binary. For categorical(non numeric) attributes, c4.5 by
default produces a separate branch for each value of the categorical attribute.

The split point and attribute the data is split in by is chosen by finding the
highest Information Gain. Information Gain is found by comparing entropy
before and after a split and the highest change in entropy gives you the highest
information gain. The attribute and its value with the highest gain are marked
in the top node and this process is repeated recursively for the left and right
leafnode. This method is greedy, and thus might cause the model to be overfit.
In order to escape overfitting c4.5 prunes the tree, removing leafnodes with a
lower significance.

Figure 2.2: Figure shows a dataset which contains 2 classes, square and circle,
attribute x1, attribute x2 and lines representing the split done by a decision
tree.

2.2.4.1 Classification tree implementations

• C5.0Tree (R) ”C5.0Tree” is an implementation of a classification tree
model using Ross Quinlan’s C5.0 algorithm, from the C50 and plyr packages
[27].

• ctree (R) ”ctree” is an implementation of a tree using recursive partitioning
for continuous, censored, ordered, nominal and multivariate response variables
in a conditional inference framework, from the party package [28].

12

Figure 2.3: The decision tree created from Figure 2.2.

• rpart (R) ”rpart” is an implementation of a recursive and partitioning
tree from the rpart package, following Breiman, Friedman, Olshen and
Stone’s 1984 book Classification and Regression Trees [29].

• BFTree (WEKA) A best-first decision tree classifier.

• CDTree (WEKA)ADecision Tree that is built on imprecise probabilities
and uncertainty measures.

• DecisionStump (WEKA) Builds a decisionstump, usually used together
with a boosting algorithm.

• ExtraTree (WEKA) Extremely randomised Tree, selects a random value
for splitting, rather than by using gini/information gain.

• FT (WEKA) Builds trees with logistic regression functions at the inner
nodes and/or leaves.

• J48 (WEKA) Generates a pruned or unpruned C4.5 decision tree.

• J48consolidated (WEKA) Class for generating a pruned or unpruned
C45 consolidated tree.

• J48graft (WEKA) An extended version of j48 that may graft additional
branches to the j48 tree during pruning, by considering different tests
at the splits above the leaves that often miss-classify or never classify
instances.

• HoeffdingTree (WEKA) Hoeffding trees are decision trees built on a
small sample of the training set, it presupposes that the samples attribute
values are quite similar to the full training sets.

• NBtree (WEKA) Generates a decision tree with naive bayes classifiers
as leaves.

13

• PCT (WEKA) Probability calibration trees, a tree implementation of
ZeroR (zero rules).

• RandomTree (WEKA)A tree that considers K randomly chosen attributes
at each node with no pruning.

• REPTree (WEKA) Builds a decision/regression tree using information
gain/variance and prunes it using reduced-error pruning (with backfitting).

• SimpleCART (WEKA) Builds a decision tree with minimal cost-complexity
pruning.

2.2.5 Discriminant Analysis

Discriminant Analysis is a technique used to predict a categorical response
variable. In Discriminant Analysis it is assumed that the independent variables
follow a multivariate normal distribution. The Discriminant Analysis algorithms
attempt to determine several discriminant functions, linear combinations of the
independent variables, to separate the groups defined by the response variable
[30].

Figure 2.4: Image shows 3 linear discriminants L1,L2 and L3 and the
corresponding classes C1,C2 and C3.

The simplest form of Discriminant Analysis is a linear discriminant. A linear
discriminant algorithm creates a discriminant function which separates a class
from the rest. E.g. on a dataset for vehicles class=car if g(x)>0, and not car if

14

its below or equal 0. This assumes all classes are linearly separable, which may
not be the case. If the classes are not linearly separable we can split into pairwise
separation, which creates several smaller linear models, but the combined model
is no longer linear [31].

2.2.5.1 Discriminant Analysis implementations

• fda (R) ”fda” is an implementation of flexible discriminant analysis, from
the earth and mda packages, using multivariate adaptive regression splines
basis functions.

• lda (R) ”lda” is an implementation of the linear discriminant analysis
algorithm, from the MASS package.

• pda (R) ”pda” is an implementation of penalized discriminant analysis,
from the mda package.

• rda (R) ”rda” is an implementation of regularized discriminant analysis,
from the klaR package.

• RFlda (R) ”RFlda” finds the coefficients of a linear discriminant rule
based on a correlation (or covariance) matrix estimator that tries to approximate
the true correlation (covariance) by the closest (according to a Frobenius
norm) correlation (covariance) compatible with a q-factor model, from the
HiDimDA package [32].

• rlda (R) ”rlda” is an implementation of regularized linear discriminant
analysis, from the sparsediscrim package.

• sda (R) ”sda” is an implementation of shrinkage discriminant analysis,
from the sda package.

• slda (R) ”slda” is an implementation of the stabilized linear analysis
algorithm, from the ipred package, based on left-spherically distributed
linear scores.

• LDA (WEKA) Builds a Linear Discriminant Analysis model.

• QDA (WEKA) Builds a Quadratic Discriminant Analysis model.

2.2.6 Ensemble methods

Ensemble methods come from the idea that two heads think better than one.
The basic idea behind ensemble methods is that having lots of learners that
each get slightly different results on the dataset, some learning certain things
well and some learning others, and then putting them together, the resulting
model is significantly better than any of them on their own. Using ensemble
methods we can split the training data into multiple different training sets,
without negatively affecting the precision of the model [33]. Bagging, Boosting

15

and Stacking are ways to include multiple models to a strong combined model,
with astonishingly good performance [34]. Ensemble methods do not suffer the
negatives human committees do. Human committees are poor at handling noise
distractions, but noise may improve bagging models. Human committees filled
with low skilled people will probably never come up with a significant working
idea, but boosting can combine multiple weak model to a very strong model [34].

2.2.6.1 Bagging

Bagging is an ensemble method where multiple base-learners are created with
their own slightly different dataset. These datasets are Bootstrap aggregations,
that is randomly selected samples of the original dataset are taken with replacement,
which will create multiple, often 50+, datasets with similar but not equal data.
Bagging ensembles classify by voting, e.g. if we have 100 different models, 40
say class is ’A’, 41 say ’B’ and 19 say ’C’ the bagging ensemble will select
class ’B’. The models are created in parallel and are independent from each
other. Bagging is essentially a democracy for learners, and the success of the
ensemble is dependent on the strength of the base-learner [35]. The results of
a bagging ensemble is based on the accuracy and stability of the base learning
algorithm, bagging works best when used with an unstable yet accurate base
learner(learners with a random element such as RandomTree and ExtraTree can
be considered unstable), stable base learners will see little benefit to bagging [36].

2.2.6.2 Boosting

Boosting is an ensemble method where multiple weak learners are created in
sequence, with each learner is built on the errors of the former learners and
is given a weight to reflect when it is necessary when testing. Unlike bagging,
where the strength of the ensemble is based entirely on the strength of the
classifier, boosting does not require the classifier to be good, multiple weak
learners,weak being slightly better than chance, can correct the former learners
mistakes and together create a strong ensemble. Each learner is created in
sequence, and their weakness is passed on to the next learner to improve where
the former is performing poorly [37].

2.2.6.3 Combined Classifiers

Combined classifiers trains algorithms to work together to combine their predictions
in some way, either by voting, by picking the best classifier from the base
classifiers, by using meta classifiers to weight them or use the other learners
predictions in some ways. Unlike bagging and boosting, combiners usually stack
different types of models, i.e. you can combine instance based learners with
naive bayes learners and/or decision trees. The models may be combined by
simple voting, but if the models do not perform comparably well they may end
up predicting wrong even if one or some of the other learners predict correctly.

16

Figure 2.5: Image shows 3 weak classifiers C1,C2 and C3. Individually they
perform poorly, but combined they create a strong classifier.

17

Stacking
Stacking adds another learner to the group, the meta classifier, which tries to
learn how to combine the output of the others in the best possible way. The
input to the meta classifier will be the predictions of the base classifiers, and the
output will be its prediction based on the input. If the most precise predictor is
chosen, the ensemble may learn to prefer to use base classifier that overfit the
training data. One way to solve this is to withhold some data from the base
classifiers, so that their predictions will be unbiased, but they will also get less
data to work with. A different approach is to use k-fold cross-validation, so that
the meta classifier can use the full dataset for learning. A different approach is
to let the base classifiers output probabilities for each class given an instance,
instead of predicting the class. The meta learner can now consider the base
learners level of confidence before making its prediction [39].

Cascade Generalization
Cascade Generalization is a stacking method that uses its base classifiers in
sequence, extending the dataset by creating and adding new attributes at each
step. The new attributes are created by the class probabilities given by the
previous learner [40].

Grading
Grading tries to identify and correct its base classifiers incorrect predictions.

MultiScheme
MultiScheme runs each of its base classifiers through x folds, and picks the
classifier that performs the best on the current dataset.

Vote
A simple collection of classifiers that uses its probability classifiers estimates to
predict classes. May also use majority vote.

One downside to combining different learners is that it can be difficult to tune all
the parameters of all the different base learners, i.e. with five classifiers with an
average of three parameters each will give you at minimum 32768(215) different
combinations, even more if the stacking algorithm itself offers some parameters.

2.2.6.4 Tree Ensembles

RandomCommittee
ARandomCommittee is an ensemble of randomizable base classifiers, like RandomTree
or ExtraTree, that are built with a different random number seed. The committee
makes predictions by taking the average value of its base classifiers predicted
values.

Random Forest

18

Random Forest is an ensemble learning method created by Leo Breiman [38].Random
Forest consists of multiple Random Trees, which are created on randomly selected
bootstraps of the dataset and the mode is used to determine the class. For a
dataset with X objects and M attributes, N random trees are created with
a subset with x(x<X) objects. For each of the N random trees, m(m<M)
random attributes are chosen, and used to split the subset of data, creating a
fully grown classification tree. When new objects are to be classified, the class
is voted on by taking the mode(the value that occurs most often) of all the
random classification trees [38].

1. 1. For b = 1 to B

• Select random subset from training data.

• Grow a random tree T(b) with the subset by recursively repeating
the following steps:

– Select m variables at random from the M variables.

– Select the best variable for splitting.

– Split the node in two leafnodes.

• Output the ensemble of trees.

At each split a subset of randomly selected attributes are considered. The most
computation intensive part of classification trees is calculation on the split node,
which attribute to split on and at what value. Random Tree only considers a
random subset of the attributes (

√

(2n + 1)), and is used on a subset of the
dataset, which makes Random Tree significantly faster than other classification
tree methods.

RandomSubSpace
RandomSubSpace is an ensemble method that trains its base classifiers on
randomly chosen subsets of the input attributes. It can be combined with
bagging to randomize the datasets attributes and instances.

2.2.6.5 Ensemble Methods

• Boosting

– C5.0 (R) ”C5.0” is an implementation of a boosting ensemble of
classification tree models or rule-based models using Ross Quinlan’s
C5.0 algorithm [27]. Requires the C50 and plyr packages.

– catboost (R) ”catboost” is an open-source gradient boosting on
decision trees library created by Yandex. It is the successor of the
MatrixNet algorithm. Requires the catboost package.

– gbm (R) ”gbm” generalized boosting regression models, is an implementation
of extensions to Freund and Schapire’s AdaBoost algorithm and Friedman’s
gradient boosting machine [43]. Requires the gbm and plyr package.

19

– LightGBM (R) ”LightGBM” is a gradient boosting histogram based
algorithm [18].

– xgbLinear (R) ”xgbLinear” is an implementation of the extreme
gradient boosting using a linear discriminant, from the xgboost package
[44].

– xgbTree (R) ”xgbTree” is an implementation of the extreme gradient
boosting using trees, from the xgboost package [44].

– AdaBoostM1(SimpleCart) (WEKA) adaboost: implements Freund
and Schapires [45] AdaboostM1 method to boost classifiers, in our
case, SimpleCart.

– LADTree (WEKA) Creates a multi-class alternating decision tree
using the LogitBoost strategy.

– LogitBoost(DecisionStump) (WEKA) Boosts base learners that
can handle regression tasks, in our case DecisionStump, using additive
logistic regression.

– MultiBoostAB(SimpleCart) (WEKA) Combines boosting with
Wagging(a variant of bagging) to reduce overfitting.

• Combined Classifiers

– CascadeGeneralization(combo1) (WEKA)A CascadeGenerlization
with the base classifiers RandomTree, LDA, REPTree, NaiveBayes
and IB1.

– Grading(combo1)[ZeroR] (WEKA)Grading using the base classifiers
RandomTree, LDA, REPTree, NaiveBayes and IB1, and the metaclassifier
ZeroR.

– Grading(combo1)[IBk] (WEKA)Grading using the base classifiers
RandomTree, LDA, REPTree, NaiveBayes and IB1 and the metaclassifier
IBk.

– MultiScheme(W)MultiScheme using the base classifiers RandomTree,
LDA, REPTree, NaiveBayes and IB1.

– StackingC(combo1) (WEKA) StackingC using the base classifiers
RandomTree, LDA, REPTree, NaiveBayes and IB1.

– StackingC(combo2) (WEKA) StackingC using the base classifiers
RandomTree, ExtraTree, LDA and libLINEAR.

– Vote(combo1) (WEKA)Vote using the base classifiers RandomTree,
LDA, REPTree, NaiveBayes and IB1.

– Vote(combo2) (WEKA)Vote using the base classifiers RandomTree,
ExtraTree, LDA and libLINEAR.

• Tree Ensembles

20

– cforest (R) ”cforest” is an implementation of random forest which
uses conditional inference trees as base learners, not random trees.
From the party package.

– parRF (R) ”parRF” is an implementation of Breiman’s random
forest algorithm, with trees grown in parallel, requires the e1071,
randomForest, foreach and import packages [41].

– rf (R) ”rf” is an implementation of Breiman’s random forest algorithm
(based on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for accessing
proximities among data points [41]. Requires the randomForest package.

– treebag (R) ”treebag” is an ensemble method with bagged classification
and regression trees(rpart). Requires the e1071, plyr and ipred package.

– wsrf (R) ”wsrf” is an implementation of random forest that uses
variable weighting for variable subspace selection in place of the
traditional random variable sampling. Requires the wsrf package.

– Bagging(ExtraTree) (WEKA) a non-random committee of extratrees.

– ForestPA (WEKA) Builds a forest of simplecart trees with penalized
attributes.

– RandomCommittee(ExtraTree) (WEKA) Builds a RandomCommittee
of extremely randomised trees.

– RandomCommittee(RandomTree) (WEKA) An ensemble of
RandomTrees created with different seeds for each RandomTree.

– RandomForest (WEKA)WEKA’s implementation of random forest.

– RandomSubSpace(RandomTree) (WEKA) RandomSubSpace
with Random Tree as base classifier.

– RandomSubSpace(ExtraTree) (WEKA) RandomSubSpace with
ExtraTree as base classifier.

– RandomSubSpace(REPTree) (WEKA) RandomSubSpace with
REPTree as base classifier.

2.2.7 Instance based learners

Unlike other methods for classification, the instanced based learners do not
create a model for classification, or do any work whatsoever before attempting
to classify a new instance. Rather they do all the work during classification of
a new instance, hence why they are nicknamed lazy methods. Lazy methods
use the distance between instances to determine how similar they are, and use
the similar instances to determine the class. The distance used is either the
euclidean distance:

d(xi, xj) ≡

√

√

√

√

n
∑

r=1

(ar(xi)− ar(xj))
2,

21

the Manhattan distance:

d(p,q) =

n
∑

i=1

|pi − qi|,

where p=p1, p2, ..., pn and q=q1, q2, ..., qn
or the Minkowski distance:

D(X,Y) =

(

n
∑

i=1

|xi − yi|p
)1/p

where X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn).

The formula for Euclidean distance requires all values to be numbers between 1
and 0, for nominal values that means the instance used for classification gets the
value 1 for every nominal attribute and any instance it is compared to gets 1 if
equal, 0 if not equal. Numerical attributes are converted to a number between
0 and 1 through standardization. This is done by determining the mean(x)
and standard deviation(σ) for the attribute, then for each instance subtract the
mean and divide by the standard deviation. x′ = x−x

σ

Figure 2.6: Figure shows the importance of the value K in K-nearest neighbors.
With a k of 5, the object is classified as a boat, with a k value of 1, it is classified
as a car.

Everyone who has recommended something for someone else has used the
principle of an instanced based learner. When buying friends gifts or recommending
something your thought process probably goes like this: he/she likes a,b,c and
will probably enjoy d. In order to use lazy methods to get good results one has
to weight the attributes, imagine a dating app runs into the following instances:

22

Name Age Sex fav food political leaning Religion Sex. orientation
Agnes 83 Female Pizza Conservative Rastafari Straight
Tobias 17 Male Pizza Conservative Rastafari Gay
Steve 30 Male Chicken Communist Aasatru Straight
Jack 24 Male Cod Libertarian Sikhism Straigh
Stacy 19 Female Salad Socialist Roman Catholic Straight

Note Table consisting of data for dating app.

Table 2.1: Instanced Based Learning Table

Looking at the instances in Table 2.1, without attribute weights the suggested
date partner for Tobias would be Agnes.

2.2.7.1 Instance based learner implementations

• knn (R) ”knn” is an implementation of k-nearest neighbour algorithm.

• lvq (R) ”lvq” is Learning Vector Quantization, from the class package, a
prototype based supervised learning algorithm.

• IB1 (WEKA) A nearest neighbour classifier.

• IBk (WEKA) A k nearest neighbour classifier.

2.2.8 Rule-based models

There are multiple ways to create a rule-based model. The simplest way to
create a rule-based model is to create a decision tree and then convert every leaf
to a rule. These rules can then be combined to predict the class. The decision
tree in Figure: 2.2 can be converted to the following set of rules:

• IF x1<=10 THEN SQUARE

• IF x1>10 AND x2>8 THEN CIRCLE

• IF x1>10 AND x2<=8 THEN SQUARE

Rule-based models created from trees consist of mutually exclusive and exhaustive
rules. Mutually exclusive because an instance cannot be the target of two rules,
and exhaustive because there is one rule per attribute, which means they are
not ordered(no main rule all others have to acknowledge) [47].

23

Another way to create a rule-based model is to use Sequential Covering. Sequential
Covering algorithms learn one rule at a time, and removes the instances in the
dataset the rule covers. This process can be repeated as many times as desired.
Finally the set of rules can be sorted to make the more accurate rules will be
used first when a new instance is to be classified [48].

Using a Rule-based model over Decision Trees comes with an obvious advantage
for us human beings, it is easy to understand the model. Another advantage
with rules compared to Decision Trees is that rules can be recursive, Decision
Trees typically have a maximum depth. Rule-based models also have an easier
time with changes in data, for a Decision Tree a new discovery might lead to a
change in the tree structure, rule-based models can just add another rule [49].

2.2.8.1 Rule-based implementations

• C5.0Rules (R) ”C5.0Rules” is an implementation of a rule-based model
using Ross Quinlan’s C5.0 algorithm [27]. Requires the plyr and C50
packages.

• CSimca (R) CSimca performs the (classical) SIMCA method from the
rrcov and rrcovHD packages. This method classifies a data matrix x with
a known group structure. To reduce the dimension on each group a PCA
analysis is performed. Afterwards a classification rule is developed to
determine the assignment of new observations [50].

• Conjunctive (WEKA) Creates one conjunctive rule that predicts one
class. Can be used as a meta learner for boosters.

• DecisionTable Builds a simple decision table majority classifier.

• DTNB (WEKA) A decisiontable/Naive Bayes hybrid.

• FURIA (WEKA) FURIA builds an unordered set of fuzzy rules, that
is, rules that gradually drop their validity outside their core

• JRip (WEKA) Implements a propositional rule learner, Repeated Incremental
Pruning to Produce Error Reduction (RIPPER).

• MODLEM (WEKA) Builds rules using the rule-extraction algorith(REA)
[?]

• NNge (WEKA)Nearest Neighbor With Generalization. A nearest-neighbour-like
algorithm that uses non-nested generalized exemplars(hyperrectangles that
can be viewed as if-then rules).

• OLM (WEKA) An implmementation of the Ordinal Learning Method.

• OneR (WEKA) Simply makes the single best rule it can.

24

• PART (WEKA) Class for generating a PART decision list. Builds a
partial C4.5 decision tree in each iteration and makes the ”best” leaf into
a rule.

• Ridor (WEKA) An implementation of a RIpple-Down Rule learner,
which generates a default rule first, then all the exceptions to that rule.

• Vfdr (WEKA) Builds decision rules incrementally from incoming data,
expanding its rules over time.

• ZeroR (WEKA) A simple guess on the class which appears the most in
the training set.

25

2.2.9 Support Vector Machines

Support Vector Machine is an algorithm that uses a nonlinear mapping to
transform the original training data into a higher dimension, and within this
new dimension, searches for the linear optimal separating hyperplane(i.e. a
”decision boundary” separating the instances of one class from another) [51].
The weakness of support vector machines is that the training time can be
very slow compared to other methods of classification(support vector machines
consider every instance in the dataset to be a support vector), but they are
very accurate [14], and are less prone to overfitting, because the Support Vector
Machines rely only on the support vectors and not the complete training set [51].

Figure 2.7: Figure shows 4 different models on a dataset, each with a hyperplane
separating the classes.

Four main svm kernels are used, linear, polynomial, radial and sigmoid.

kernel Function
Linear kernel k(xi, xj) = xT

i xj + 1
Polynomial kernel k(xi, xj) = (xi ∗ xj + 1)d

Gaussian radial basis function(RBF) k(xi, xj) = exp(−γ||xi − xj ||2)
Sigmoid kernel k(xi, xj) = tanh(αxT

i ∗ xj + c)

Note Table consisting of different kernels and their functions.

Table 2.2: Different kernels

26

Figure 2.8: Figure shows which instances in the dataset are chosen as support
vectors.

2.2.9.1 Support vector machine implementations

• svmLinear (R) ”svmLinear” is an implementation of a support vector
machine with a linear kernel, from the kernlab package [52].

• svmPoly (R) ”svmPoly” is an implementation of a support vector machine
with a polynomial kernel, from the kernlab package [52].

• svmRadial (R) ”svmRadial” is an implementation of a support vector
machine with radial basis function kernel, from the kernlab package. [52]

• svmRadialCost (R) ”svmRadialCost” is another implementation of a
support vector machine with radial basis function from the kernlab package,
svmRadialCost only have one tuning parameter, cost [52].

• LibLINEAR (WEKA) libLINEAR: A wrapper for the libLINEAR library
which includes multiple linear support vector machines.

• LibSVM (WEKA) A wrapper for the libsvm library created by Chang
and Lin [53].

• SMO (WEKA) SMO trains a support vector machine using John Platt’s
sequential minimal optimization algorithm [54].

2.2.10 Misc. classifiers used

• glmnet (R) ”glmnet” is an implementation of a Lasso or elasticnet
generalized linear model [55]. Requires the glmnet and Matrix packages.

• rocc (R) ”rocc” is a receiver operating characteristics classifier from the
rocc package, where features are selected according to their ranked AUC
value in the training set. The selected features are merged by the mean

27

value to form a metagene. The samples are ranked by their metagene value
and the metagene threshold that has the highest accuracy in splitting the
training samples is determined. A new sample is classified by its metagene
value relative to the threshold [56].

• HyperPipes (WEKA) Creates a hyperpipe for each class, that records
the attribute bounds observed for that class. Test instances are classified
according to the category that the instance seems to fit best in.

• Logistic (WEKA) Generates a multinomial logistic regression model
with a ridge estimator.

• SimpleLogistic (WEKA) Builds linear logistic regression models. Uses
LogitBoost with simple regression functions as base learners for fitting the
models.

• VFI (WEKA) Classification by voting feature intervals.

28

Chapter 3

Method

3.1 Method

Our methodology is the following. For each classification algorithm, for each
dataset, multiple runs with ten fold cross-validation is used for parameter tuning.
This produces a list of parameter values, and the corresponding accuracy result
from them. The run with the best accuracy is stored, with the parameter
values. A ten fold cross-validation repeated 100 times is then executed using
the parameter values from the best run. Results are stored in a database.

1. For each Classification Algorithm

• For each Dataset

(a) Perform a ten fold cross-validation run for each unique parameter
value combination.

(b) Order results on Accuracy

(c) Store best run’s Accuracy, Kappa and parameter values.

(d) Perform a ten fold cross-validation repeated 100 times with the
best run’s parameter values.

(e) Store results

• end For each Dataset

2. end For each Classification Algorithm

3. Look at results

29

Software used:

• R version 3.4.4

• caret version 6.0-78

• WEKA 3.8.2

• MySQL version 14.14 distrib 5.7.21

hardware used:

• Desktop with i7-7700 3.6 GHz 16 GB RAM

• Asus X550J Notebook with intel core i7 processors (4th Gen) 4720HQ /
2.6 / 3.6 GHz and 8GB RAM

• lenovo g510 i7 4700 mq 2.4 GHz 8GB RAM

We chose to use R and WEKA as the software package. R is a language and
environment for statistical computing and graphics. R is a dialect of the S
language and environment which was developed at Bell Laboratories (formerly
AT&T, now Lucent Technologies) by John Chambers, who was awarded the
1998 ACM Software Systems Award for S. R is according to Drew Conway and
John Myles White the lingua franca for analytics. Polls made by Kaggle and
Knuggets puts R in the second spot in popularity for machine learning tasks.
R was made by statisticians and for statisticians [57].

R can provide a wide variety of statistical and graphical techniques such as linear
and nonlinear modelling, classical statistical tests, classification and clustering.
The S language is often the vehicle of choice for research in statistical methodology,
and R provides an Open Source route to participation in that activity [58]. R is
free software under the terms of the Free Software Foundation’s GNU General
Public License in source code form.

WEKA is an open source data mining toolbox developed at the University of
Waikato in New Zealand [59]. WEKA has support for all the tasks usually
performed in data mining through numerous algorithms for pre-processing,
classification, regression and clustering. The WEKA system is written in Java
and distributed under the terms of the GNU General Public License.

With the WEKA workbench you can quickly try out different algorithms and
methods on a dataset, and compare them. The workbench provides tools for
comparing the results from different algorithms, allowing the user to identify
the most appropriate method for learning.

30

Figure 3.1: Figure shows how many of the participants in the poll use each
software. Python and R are top 2. Almost 8000 participated in the poll.

Figure 3.2: Figure shows Kdnuggets analytics for 2015, 2016 and 2017. The %
represents how many of the participants in the poll used the software for machine
learning. Python and R language are top 2. Almost 16000 participated in the
poll.

31

WEKA’s main user interface is the graphical user interface Explorer, which
guides the user through multiple steps, preprocessing, classify, associate, cluster,
select and visualize. WEKA may also be run through commandline, or another
graphical user interface such as Knowledge Flow.

WEKA requires the data to be given in the ARFF format (Attribute Relation
File Format), which it then uses to convert the data into a database table.
Depending on the task, let’s say create a well structured decision tree, the data
may be restructured, and organized in a decision tree. ThenWEKA will attempt
to find association rules and attempt clustering to create a decision tree more
suited for the task. When this is done, WEKA will select the best attributes to
build the tree with, and visualize the final tree or compare the different trees if
more than one method is attempted.

The main difference between R and WEKA is how the classification algorithms
are used. E.g. if you want to use a support vector machine in WEKA you can
choose SMO or libSVM and then have to choose polynomial, radial, sigmoid or
linear kernel. R skips the first step and lets you choose kernel right away, e.g.
method=”svmRadial”, ”svmPoly”, ”svmLinear”. In caret alone you have 230+
methods to choose between, while WEKA gives you a stepwise choice to select
a classification algorithm.

We use 63 classifiers implemented in WEKA and 41 implemented in R. We used
all the classifiers implemented in WEKA. The classifiers we chose implemented
in R were chosen from the Manuel Fernández-Delgado et.al. study [14] where we
picked the top 10 from caret(parRF, rf, svmPoly, svmRadialCost, svmRadial,
C5.0, avNNet, nnet, pcaNNet and mlp), and some select others. We also
chose new implementations which were not in the Manuel Fernández-Delgado
et.al. study [14] such as extreme gradient boosting(xgboost), catboost, gbm
and LightGBM.

3.1.1 Tuning in R

The R classifiers are run through the train interface from the caret package
[60]. This interface also allows us to set up cross validation and repeated
cross-validation. The train function also allows us to choose between two tuning
options, the tuneGrid and the tuneLength. The tuneLength option is also known
as randomsearch, which randomly selects # values for each tuning parameter.
The tuneGrid option will attempt all values in the grid you provide.

When deciding the values for the parameters in the tuning grid we looked
up what the parameters do in the classification algorithm’s documentation.
Some parameter’s values were self-explanatory, the values of these parameters
were the easiest to set up, e.g. where the parameters values are boolean such

32

as naive bayes’ usekernel parameter(TRUE/FALSE), the options are known
in advance such as C5.0’s model type parameter(trees or rules), or such as
randomFern’s depth parameter which according to its documentation is between
1 and 16.

When the algorithm’s parameters were not self-explanatory we used two approaches
to find good values. The first approach is the caret package’s random search
option which chooses # number of values per parameter. This option is set
up by replacing the tuneGrid option with the tuneLength=# option. We used
tuneLength=5 on all the datasets. The second approach is to look online for
good tuning parameter values, some competitors of Kaggle share their tuneGrid
values. The final tuning values we chose were chosen by amalgamating the
results from the two aforementioned approaches. As the number of parameters
increased we decreased the number of values tested per parameter, e.g. for ”mlp”
we tried 19 different values for the number of neurons in the hidden layer, but
for ”mlpML” we only tried five values of neurons in each of the three hidden
layers. We did this for no other reason than to save time, the mlp method had
a tuning runtime of approximately two hours on 19 attempts, with 19 attempts
in each hidden layer on ”mlpML” we would reach 193 = 6859 attempts, which
is very time consuming.

WEKA requires the data files to be of ARFF format. We wanted to use the
same data files for R and WEKA so we used the R package RWEKA to read
the ARFF data files.

3.1.2 Tuning in WEKA

There are three optimization classifiers in weka; CVParameterSelection, GridSearch
and MultiSearch.

3.1.2.1 CVParameterSelection

CVParameterSelection lets you optimize an arbitrary number of parameters,
as long as they belong to the main classifier(i.e. you can not optimize any
of the base classifiers parameters when tuning LogitBoost). The parameters
are set up with a string, e.g. ”P nmin nmax c” where P is the parameter
token(the same as its command line argument, e.g. ”-L” for the learning rate
of the MultiLayerPerceptron), nmin is the lower bound, nmax is the upper and
c is the number of steps. CVParameterSelection can only optimize numbers.
CVParameterSelection can only optimize accuracy(classification) or mean squared
error(regression).

33

3.1.2.2 GridSearch

Gridsearch lets you optimize two parameters, from both classifiers or filters,
as well as nested parameters, like the base classifiers parameters when tuning
LogitBoost. GridSearch also lets you pick the measure you want to optimize
on, like accuracy, kappa or mean absolute error. The base classifiers parameters
are accessed by prefacing them with ”classifier.”, and the filters parameters are
prefaced with ”filter.”, arrays of objects can be accessed with ”classifier[<index>].”
or ”filter[<index>].”. GridSearch will automatically widen the search if the best
parameter found was on the edge of the grid. GridSearch can only optimize
numbers.

3.1.2.3 MultiSearch

MultiSearch lets you optimize an arbitrary number of parameters, from both
classifiers or filters, as well as nested parameters. You have to specify what
kind of search parameter you are going to optimize, either a MathParameter,
which lets you set a min, max and step value, or a ListParameter, which lets you
set a string of values separated by space. The ListParameter lets you specify
not only strings or numbers, but also classes or boolean values(represented by
strings). Like GridSearch, MultiSearch also lets you pick which measure you
want to optimize on. Unlike GridSearch, MultiSearch does not automatically
widen the search space.

Capability CVP GS MS
More than two parameters X O X
Nested parameters O X X
Non numeric parameters O O X

Table 3.1: Tuning-method-comparison

3.1.3 Chosen optimization package

We chose the MultiSearch package because it let us optimize however many
parameters we wanted, both on the classifier itself as well as its nested parameters.
MultiSearch comes with two search algorithms, RandomSearch and DefaultSearch.
We chose the DefaultSearch class for tuning, set up with 8 threads. DefaultSearch
searches through all the different parameters the user sets up, with one search
for each unique combination. This can quickly lead to an overwhelming amount,
as five different values for five different parameters will lead to 3125(55) unique
combinations. DefaultSearch first runs through all combinations using two-fold
cross-validation, then it sets the best combination of parameters found to be the
centre of the search and searches through the closest parameters using ten-fold

34

cross-validation. If a better option is found that option is set as the centre of the
search and another ten fold search will be performed, this process is repeated
until no better option can be found or the current best option is located at the
edge of the parameter searchspace. If multiple combinations perform the same,
the first found is used as centre of search/returned as best option found. This
can be a problem on easy datasets, if multiple options return a perfect score, a
suboptimal combination may be chosen.

3.1.4 Method -cont.

Rather than splitting the data into a training part and a test part, we chose
to use k -fold cross-validation, also known as rotation estimation. In k -fold
cross-validation the Dataset D is randomly split into k mutually exclusive
subsets D1,D2, ...,Dk, of approximately same size. These subsets are known
as folds. The classifiers is trained and tested k times, each time t 1, 2,..., k, it
is trained on D without the fold Dt, and is then tested on Dt [61].

Figure 3.3: Figure shows 5 fold cross-validation. The original dataset is split randomly

into 5 groups D1, D2, D3, D4 and D5 of equal size. Four groups are used for training

and the last group for testing. This process is repeated five times.

The split into folds may not be representative of the dataset. Imagine if the
dataset is for predicting human beings age and one fold comes with only children
between 6 and 8 years old. A classifier being trained on that fold can not be

35

expected to perform well on the test data, especially if the test data is poorly
skewed as well, perhaps with only human beings from age 80+. To prevent
this problem the folds should be stratified. Stratified folds contain a proper
representation of each class, which makes the fold represent the whole dataset.
The number k in k -fold cross-validation is arbitrary, there is no formula or rule
for selecting it. The higher the number, the more work as training and testing
is repeated k times, which takes more time. The number 10 and stratified
is suggested in the book Data Mining, Concepts and Techniques [61], from a
study by Kohavi et.al. [62]. Kohavi also suggested repeated cross-validation.
We ended up selecting 10-fold stratified cross-validation repeated 100 times.

We use three metrics for the results, accuracy, Kappa and Friedman Rank.
Accuracy on its own is not sufficient, for instance when trying to find false
passports at an airport you can make an algorithm which always responds
real passport and you will be correct 99.9% of the time, assuming 99.9% of
the passports are real. 99.9% is a great result but does not help the custom
regulators. Kappa is a number which shows to which extent of agreement two
raters have, in this case two classification algorithms. Kappa ranges from 1
to -1, where 1 is complete agreement among the raters, and -1 is complete
disagreement, a kappa of 0 shows an agreement that can be expected from
random chance among the raters [63]. Kappa results will help as this algorithm
will have a very low Kappa(near or below 0) and will not be used, the algorithms
ZeroR(zero rules) and PCT(Probability Calibration Tree) gives a good indication
of how low the kappa would be for simply putting all your eggs in one basket.

To sum it up, in R we first tune with a tuneGrid using caret’s train interface,
save the accuracy, Kappa and tuning parameter values of the best run, and
then run a repeated 10 fold cross-validation repeated 99 times with the tuning
parameters from the first run. This is repeated for each dataset. In WEKA they
are tuned by searching over the parameterspace with twofolds cross-validation,
after which it sets the best combination as the centre of the search, and runs
subsequent ten folds cross-validations until the best option is found, repeating
ten folds cross-validation until it has tested all nearby values. After the tuning
it runs tenfold cross-validation 100 times with a seed from 0 to 99.

We used parallel execution to speed up the process. In R this is done with
the doMC(Linux) or doParallel(Windows) packages. The rFerns method did
not use parallel execution because it is a memory hog. Because multi-threading
in WEKA is only available on some classifiers, we chose to use two different
approaches. The learners that do support multi-threading ran one hundred
attempts with eight cores through a simple loop, while those that did not
ran hundred threads through a ThreadPoolExecutor, eight simultaneously, each
with a unique seed, that returned their results back to the main thread. This
is not a perfect solution, as this may lead to memory problems(We had to run
ForestPA on the desktop, as seven GB of ram was not enough), especially on
the ensemble learners, but luckily most of them support multi-threading. We

36

chose not to look at the runtimes as WEKA and R run different code and the
experiment was ran on three different computers.

3.2 Datasets

We use the datasets from the study performed by Manuel Fernández-Delgado
et.al. [14]. They made three changes to the datasets:

1. The nominal values were converted to numeric values.

2. Data was preprocessed to have zero mean and standard deviation of one.

3. Missing values were converted to zero.

Given that we run ten fold cross-validation repeated 100 times per classification
algorithm, we decided to remove some of the larger datasets as time is a limited
resource. We also removed some of the smaller datasets. The following datasets
were removed either because the execution time of these was too long, or because
they were deemed too small.

• Adult

• Annealing

• Audiology-std

• Balloons

• Chess-krvk

• Conn-bench-vowel-deterding

• Connect-4

• Hayes-Roth

• Hill-valley

• Horse-colic

• Image-segmentation

• Lenses

• Letter

• Lung-cancer

• Miniboone

• Monks-1

• Monks-2

• Monks-3

• Optical

• Pendigits

• Pittsburg-bridges-SPAN

• Plant-margin

37

• Plant-shape

• Plant-texture

• Post-operative

• Soybean

• Spect

• Spectf

• Statlog-landsat

• Statlog-shuttle

• Thyroid

• Trains

Which leaves us with the following 89 datasets. Attributes range from 3(Titanic)
to 262(Arrhythmia). Number of instances range from 100(Fertility) to 19020(Magic).
Number of classes range from 2(several datasets) to 15(Libras and primary-tumor).
The % majority of classes is 52.5. The datasets cover many different areas, we
have 4 real life datasets(Oocytes...), multiple datasets cover biology, economy,
medicine and statistics.

Table 3.2: List of Datasets

Name Instances Classes Attributes %Maj
Abalone 4177 3 8 34.6
Acute-inflammation 120 2 6 50.8
Acute-nephritis 120 2 6 58.3
Arrhythmia 452 13 262 54.2
Balance-scale 625 3 4 46.1
Bank 4521 2 16 88.5
Blood 748 2 4 76.2
Breast-cancer 286 2 9 70.3
Breast-cancer-wisc 699 2 9 65.5
Breast-cancer-wisc-diag 569 2 30 62.7
Breast-cancer-wisc-prog 198 2 33 76.3
Breast-tissue 106 6 9 20.7
Car 1728 4 6 70.0
Cardiotocography 2126 3 21 27.2
Cardiotocography-10 2126 10 21 77.8
Chess-krvkp 3196 2 36 52.5
Congressional-voting 435 2 16 61.4
Conn-bench-sonar-mines-rocks 208 2 60 53.4
Contrac 1473 3 9 42.7
Credit-approval 690 2 15 55.5
Cylinder-bands 512 2 35 60.9
Dermatology 366 6 34 30.6
Echocardiogram 131 2 10 67.2

Continued on next page

38

Table 3.2 – continued from previous page
Name Instances Classes Attributes %Maj
Ecoli 336 7 8 42.6
Energy-y1 768 3 8 46.9
Energy-y2 768 3 8 49.9
Fertility 100 2 9 88.0
Flags 194 8 28 30.9
Glass 214 6 9 35.5
Haberman-survival 306 2 3 73.5
Heart-cleveland 303 5 13 54.1
Heart-hungarian 294 2 12 63.9
Heart-switzerland 123 5 12 39.0
Heart-va 200 5 12 28.0
Hepatitis 155 2 19 79.3
Ilpd-indian-liver 583 2 9 71.4
Ionosphere 351 2 33 64.1
Iris 150 3 4 33.3
Led-display 1000 10 7 11.1
Libras 360 15 90 6.7
Low-res-spect 531 9 100 51.9
Lymphography 148 4 18 54.7
Magic 19020 2 10 64.8
Mammographic 961 2 5 53.7
Molec-biol-promoter 106 2 57 50.0
Molec-biol-splice 3190 3 60 51.9
Mushroom 8124 2 21 51.8
Musk-1 476 2 166 56.5
Musk-2 6598 2 166 84.6
Nursery 12960 5 8 33.3
Oocytes merluccius nucleus 4d 1022 2 41 67.0
Oocytes merluccius states 2f 1022 3 25 68.7
Oocytes trisopterus nucleus 2f 912 2 25 57.8
Oocytes trisopterus states 5b 912 3 32 57.6
Ozone 2536 2 72 97.1
Page-blocks 5473 5 10 89.8
Parkinsons 195 2 22 75.4
Pima 768 2 8 65.1
Pittsburg-bridges-MATERIAL 106 3 7 74.5
Pittsburg-bridges-REL-L 103 3 7 51.5
Pittsburg-bridges-T-OR-D 102 2 7 86.3
Pittsburg-bridges-TYPE 105 6 7 41.9
Planning 182 2 12 71.4
Primary-tumor 330 15 17 25.4
Ringnorm 7400 2 20 50.5
Seeds 210 3 7 33.3

Continued on next page

39

Table 3.2 – continued from previous page
Name Instances Classes Attributes %Maj
Semeion 1593 10 256 10.2
Spambase 4601 2 57 60.6
Statlog-australian-credit 690 2 14 67.8
Statlog-german-credit 1000 2 24 70.0
Statlog-heart 270 2 13 55.6
Statlog-image 2310 7 18 14.3
Statlog-vehicle 846 4 18 25.8
Steel-plates 1941 7 27 34.7
Synthetic-control 600 6 60 16.7
Teaching 151 3 5 34.4
Tic-tac-toe 958 2 9 65.3
Titanic 2201 2 3 67.7
Twonorm 7400 2 20 50.0
Vertebral-column-2clases 310 2 6 67.7
Vertebral-column-3clases 310 3 6 48.4
Wall-following 5456 4 24 40.4
Waveform 5000 3 21 33.9
Waveform-noise 5000 3 40 33.8
Wine 178 3 13 39.9
Wine-quality-red 1599 6 11 42.6
Wine-quality-white 4898 7 11 44.9
Yeast 1484 10 8 31.2
Zoo 101 7 16 40.6
Combined average %Maj 52.5%

3.3 Database

The database consists of seven tables, Dataset, Attribute, Classifier, Software,
Family, Parameters and Results. The Dataset table contains the name, source
location, number of instances, number of attributes and the number of classes
of each dataset. The attribute table contains each attributes name, its possible
values and a link to its dataset. The Classifier table contains the name of the
classifier and a link to its software and family type. The Software table contains
the name of the software, in our case R and WEKA. The Family table contains
the name of the family types. The Result table contains the accuracy and kappa
score, as well as a link to its parameters. The Parameters table contains a link
to the classifier, a link to the dataset and the parameters the classifier found to
be the best when it was tuned on the corresponding dataset.

The Dataset and Attribute table was populated by a php script that read
through all the datasets we were going to use. The family table contains
the name of each ”family” of classifiers, like SVM(Support Vector Machine) or

40

ANN(Artificial Neural Network). The Attribute table and the num instances,
num attributes and num classes columns of the Dataset table er not strictly
necessary for our task, but it was included to give us a way to quickly look up
that information in the case we wanted to see it(e.g. if a bayesian classifier is
running slowly on semeion, we can look it up and see that it is because semeion
has a lot of attributes).

Figure 3.4: Image shows how our database is set up.

41

Table Dataset
Field Type Key
id int primary key AI
name varchar(255)
src varchar(1024)
instances int(8)
attributes int(8)
classes int(8)

Table Attribute
Field Type Key
id int Primary key AI
dataset id int Foreign key
name varchar(255)
vals varchar(1024)

Table Classifier
Field Type Key
id int primary key AI
name varchar(255)
software id varchar(50) Foreign key
family id varchar(50) Foreign key

Table Software
Field Type Key
id int primary key AI
name varchar(255)

Table Family
Field Type Key
id int primary key AI
name varchar(255)

Table Parameters
Field Type Key
id int primary key AI
parameters varchar(1024)

Table Results
Field Type Key
id int primary key AI
parameters id int foreign key
accuracy double
kappa double

Table 3.3: Database

42

3.4 Classification Algorithms

The following is a list of classification algorithms we tested.

Table 3.4: Classification Algorithms

Classification Algorithm Classification Algorithm
A1DE AdaBoostM1(SimpleCart)
AutoWEKA avNNet
Bagging(ExtraTree) bayesglm
BFTree C5.0
C5.0Rules C5.0Tree
CascadeGeneralization(combo1) catboost
CDT cforest
ConjunctiveRule CSimca
ctree DecisionStump
DecisionTable Elman
ExtraTree fda
ForestPA FT
FURIA gbm
glmnet Grading(combo1)[IBk]
Grading(combo1)[ZeroR] HoeffdingTree
HyperPipes IB1
IBk J48
J48Consolidated J48graft
JRip knn
LADTree lda(R)
LDA(W) LibLINEAR
LibSVM LightGBM
Logistic LogitBoost(DecisionStump)
lvq mlp
mlpML mlpWeightDecay
MODLEM MultiBoostAB(SimpleCart)
MultilayerPerceptron MultiScheme(combo1)
NaiveBayes NaiveBayesUpdateable
naive bayes nb
NBTree nnet
NNge OLM
OneR parRF
PART pcaNNet
PCT pda
QDA RandomCommittee(ExtraTree)
RandomCommittee(RandomTree) RandomForest
RandomSubSpace(ExtraTree) RandomSubSpace(RandomTree)
RandomSubSpace(REPTree) RandomTree

Continued on next page

43

Table 3.4 – continued from previous page
Classification Algorithm Classification Algorithm
rda REPTree
rf RFlda
Ridor rlda
rocc rpart
sda SimpleCart
SimpleLogistic slda
SMO StackingC(combo1)
StackingC(combo2) svmLinear
svmPoly svmRadial
svmRadialCost treebag
Vfdr VFI
Vote(combo1) vote(combo2)
wsrf xgbLinear
xgbTree ZeroR

Note Table consists of the Classification Algorithms tested in this research.

3.5 Potential Pitfalls

Colour Length Width WI
Pink 30 30 F
Yellow 36 36 F
Blue 34 40 T
Black 30 32 T
Red 34 34 F
Blue 32 32 T

Note Table shows a dataset with information about pants, and whether the pants

are a Worthwhile Investment.

Table 3.5: Clothes Dataset

The study performed by Manuel Fernández-Delgado et.al. [14] chose to
convert all nominal values to numeric values, this is not ideal for instance based
learners, classification trees or rule-based models. To demonstrate why we will
use a made up dataset in Table 3.5. Imagine a clothes branch stores information
about the pants they sell, width, length and colour, and if the pants are worth
making. The True and False values would be converted to 0 and 1, which has
no impact. The colour would be converted differently, Pink=-1, Yellow=-0.5,
Blue=0, Black=0.5 and Red=1. Without the conversion a decision tree model,
rule-based model or instance based learner would treat each colour distinctively,
e.g. for instance based learners the difference between Blue and Black=1,
the difference between Pink and Red=1 and so on. With the conversion the

44

difference between Pink and Blue is lower than the difference between Pink and
Black which again is lower than the difference between Pink and Red.

For classification trees and rule-based models the splits may possibly be changed.
Before the conversion a branch in a classification tree may have the test if colour
is Black or Blue, creating two leaves one for Black or Blue and one for the rest.
After conversion the branch could be changed to if Pants ≥ 0, after all red pants
are rare so it might not show up in the training set. The conversion made by
Manuel Fernández-Delgado et.al. may not have a huge impact on the decision
tree and rule-based models, but the instance based learners may have a big
impact in the results due to the change in representation.

Maciá and Bernadó-Mansilla published an analysis in 2014 about the use of
the UCI repository [64]. The analysis contained a critique of usual practice
in experimental comparisons. Their criticisms are in italics, and our response
following:

1. The choice of datasets can impact the results, some datasets may be more
suited for a specific family of classifiers. We use 89 datasets, any suitable
combination of dataset and algorithm that creates a favourable situation
for that algorithm may be offset by the next dataset being more suitable
for a different algorithm. If a single algorithm is more suited for multiple
datasets, perhaps this algorithm is simply better.

2. Is the selection of classification algorithms representative enough and are
they properly configured to work at their best performance. In our test,
all algorithms with tunable parameters are tested with several values. It
is possible better values for the tuning parameters exist, but testing too
many values of a parameter will take considerable time and algorithms
with many parameters will create the cross product of the number of each
parameter’s values models. E.g. if we try ten values per parameter for
xgbTree we end up with 107 models, and we simply do not have the time
for that.

3. It is still impossible to determine the maximum attainable accuracy for a
data set, so that it is difficult to evaluate the true quality of each classifier.
We have no evidence that a higher accuracy can be achieved on a given
dataset than the best we achieve in our test. The possibility of higher
accuracy exists, but until it is shown to be possible we have no reason to
believe it exists. Several of the algorithms reach the maximum accuracy
on acute-inflammation, acute-nephritis and mushroom so the classifiers
who do not reach 100% on these have something to improve.

4. The data set complexity(measured somehow by the maximum attainable
accuracy) is unknown, we do not know if the classification error is caused
by unfitted classifier design(learner’s limitation) or by intrinsic difficulties
of the problem(data limitation). Since we consider the maximum accuracy

45

to be the best accuracy we achieve with some algorithm, we can consider
lower accuracies achieved by other classifiers to be caused by classifier
limitations.

5. The lack of standard data partitioning, defining training and testing data
for cross-validation trials. Simply the use of different data partitioning will
eventually bias the results, and make the comparison between experiments
impossible. We use stratified 10 fold cross-validation repeated 100 times,
any lucky draw generated for an algorithm on a specific set will potentially
be offset by a bad draw on another or a lucky draw by the rest of the
algorithms elsewhere. The average result that is obtained by the trial
should be closer to the expected value than a single ten fold cross-validation.

3.6 Replication

We used seed=765 for the tuning and seed=765 for the repeated cross-validation.
The datasets can be found at
http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz.
The WEKA packages are not available in WEKA’s graphical user-interface by
default, except with WEKA itself. We recommend more than 8GB RAM. In
order to replicate this experiment you will need the following R and WEKA
packages:

Table 3.6: Classification Algorithms

R WEKA
arm alternatingDecisionTrees
C50 AnDE
caret AutoWEKA
catboost bestFirstTree
class conjunctiveRule
doParallel discriminantAnalysis
earth Elman
e1071 extraTrees
foreach ForestPA
gbm functionalTrees
glmnet fuzzyUnorderedRuleInduction
import Grading
ipred hyperPipes
kernlab J48Consolidated
klaR J48graft
MASS JCDT
Matrix LibLINEAR
mda LibSVM
naivebayes MODLEM

Continued on next page

46

Table 3.6 – continued from previous page
R WEKA
party multiBoostAB
plyr multisearch
randomForest naiveBayesTree
rFerns NNge
RLightGBM ordinalLearningMethod
rocc probabilityCalibrationTrees
rpart RBFNetwork
RWEKA ridor
rrcov simpleCART
rrcovHD SimpleEducationalLearningSchemes
RSNNS stackingc
sda vfdr
sparsediscrim votingFeatureIntervals
wsrf weka.jar
xgboost

Note Table consists of the packages required to replicate this research.

3.6.1 Changes made to R

The ”gbm” package has a memory leak. Trying to run repeated ten fold
cross-validation will use up all your memory, and start eating your hard disk
drive. To fix this we ran the ten fold cross-validations in a loop of size 99 instead
as the memory is released once the cross-validation run is completed, seed values
from 765-50 to 765+49.

3.6.2 Changes made to WEKA

1. MODLEM
We changed the setOptions method in the MODLEM class so that it
now accepts both numbers and letters as input for the RT, CM, CS and
AS parameters(the GUI and MultiSearch remaps the numbers to letters).
While its not strictly necessary to edit and recompile the package just for
that, we wanted the code to be consistent.

2. A1DE, CascadeGeneralization, Grading, MultiSCheme and StackingC
For some reason the A1DE algorithm feeds WEKA’s normalize function
a null instead of a double. We added a nullcheck and made the method
return if that was the case. The other algorithms fail on the lymphography
dataset without this change.

3. FURIA
Changed line 2253 which previously threw an exception(which according
to its message ”should never happen:...”) when a double is either null or

47

infinite. We changed it to setting the aforementioned double to Double.minValue.
This variable is later used in a comparison to find the best rule, so we
thought it would be best if the algorithm picked the other option. The
exception was thrown only once when we tuned FURIA on the fertility
dataset.

4. VFDR
The VFDR package we found was filled with bugs,
the hoeffdingTieThreshold(hTT) input was mapped to the hoeffdingConfidence(hC)
variable, nothing was mapped to the hTT variable, and the C parameter(hC
variable) was not parsed by the setOptions method. We fixed the mapping
and added a get method for the hTT.Auto-WEKAAdded a getBestClassifier
method that returned the best classifier found.

48

Chapter 4

Results

4.1 Classification Algorithm Results

We tested 104 classification algorithms, 41 from caret and 63 from WEKA. This
includes 8 artificial neural networks, 6 bayes classification methods, 10 boosting
ensembles, 17 classification trees,10 discriminant analysis methods,8 combined
classifiers, 6 misc classification algorithms, 4 instance-based algorithms, 14 rule-based
models, 7 support vector machines, 13 tree ensembles and 1 automatic algorithm.
We chose not to show the complete table, because a table with 104(algorithms)x100(10
fold cross-validation repeats)x89(datasets)=925600 rows is not comprehensible.
The catboost algorithm achieved the best Friedman Rank with 17.938, with a
gap to the second best which is xgbTree with 20.747. The three algorithms
parRF, svmPoly and follow rf within 1 point. The maximum average accuracy
across all classification algorithms on all datasets is 85.5%, the best classification
algorithm is catboost with 83.9%, followed by xgbTree with 83.7%. The xgbTree
algorithm has the best kappa at 0.6654. The best classification algorithm for
WEKA was AutoWEKA, followed by RandomForest and Bagging(ExtraTree).
It is not that surprising that AutoWEKA is the best among theWEKA classification
algorithms, after all it is the Swiss army knife of classification algorithms, it has
every tool in the toolbox, and given enough time it will be able to figure out
which tool works best. The tic-tac-toe dataset is the best example for this as
none of the tree ensembles or boosting ensembles get 100% accuracy on that
dataset.

The lowest accuracy achieved was 52.5% by the classification algorithms ZeroR
and PCT. This is expected as they simply guess on the class which occurs the
most, the % majority is 52.5. ZeroR and PCT also have the lowest Kappa with
-0.001, which again is expected for the same reason.

Compared to the other classification algorithms among the top 10, catboost
is better on atleast 46 datasets. The svmPoly is better than catboost on 42 of

49

the datasets, which is the highest of the challengers, see Table 4.1.

Algorithm catboost better catboost worse equal
xgbTree 49 39 1
parRF 52 36 1
rf 53 35 1
LightGBM 63 25 1
gbm 59 30 0
AutoWEKA 50 39 0
RandomForest 68 20 1
wsrf 64 24 1
svmPoly 46 42 1

Note Table shows on how many datasets catboost is better than the other

classification algorithms.

Table 4.1: Head to head comparison catboost vs top 10

The classification algorithm lda got errors on two datasets, arrhythmia and
zoo. Both zoo and arrhythmia contains more attributes than instances which
might cause collinear data errors. The pcaNNet algorithm also got errors on
arrhythmia. The RFlda algorithm got errors on led-display and zoo. WEKA
algorithms had no errors. We had four options on how to handle the errors:

1. Give them 0 on accuracy and kappa.

2. Give them the average of all classification methods on accuracy and kappa.

3. Exclude the errors from the results(e.g. divide the combined accuracy on
8800 and not 8900 on the method which failed on 1 dataset).

4. Give them ZeroR’s accuracy and kappa.

We chose option 1 because a non-existing model has zero predictive capabilities.
The other options also come with some negative effects, option 2 will lower the
Friedman rank of all methods with a score below the average on the dataset
where a method failed, and with option 3 a classification algorithm that gets
an error on heart-va(best=0.365) might get a better accuracy than if they
managed to get a result on heart-va. We tried multiple other methods, like
A2DE, protoclass, mda, hlda, RotationForest(caret), but had to cancel those
because of too many errors, the working rule was, classification algorithms
which failed on more than two datasets were stopped. On two classification
algorithms,elm(extreme learning machine) and rFerns(random ferns) we only
had time to run one 10 fold cross-validation. The result for rFerns was an
accuracy of 0.7111 and for elm an accuracy of 0.784.

The combined runtime of this experiment is more than four months with three
computers running simultaneously. Typically, the datasets magic and musk-2

50

were the most time-consuming, however, for some algorithms(nb, naive bayes,
fda...) semeion and arrhythmia were the most time consuming.

The caret package’s methods (R) dominate the Friedman Rank. Top seven
are all from caret, and 8/10 are from caret. WEKA is quite bottom heavy,
having the nine worst Friedman Ranks, however this could easily have been
changed if we ran the zeroR, etc... algorithms in R.

Interesting to note is the difference between RandomTree and ExtraTree. RandomTree
has a higher Friedman Rank, higher accuracy and higher Kappa than ExtraTree.
On their bagged versions Bagging(ExtraTree) has a higher Friedman Rank but
lower accuracy and kappa. On their RandomSubSpace versions
RandomSubSpace(ExtraTree) is better on all metrics, and on their RandomCommittee
versions RandomCommittee(ExtraTree) is again better on all metrics.

Table 4.2: Classification Algorithm Comparison, ordered by
Friedman ranking.

Rank Accuracy Kappa Classifier Software
17.938 0.8396 0.662 catboost r
20.747 0.8378 0.6654 xgbTree r
20.966 0.8372 0.6536 parRF r
21.157 0.8314 0.6458 svmPoly r
21.421 0.837 0.6543 rf r
23.163 0.8304 0.6442 svmRadial r
24.5 0.8341 0.6571 gbm r

25.169 0.8328 0.6532 AutoWEKA weka
25.826 0.8344 0.6562 LightGBM r
27.573 0.8307 0.6504 Bagging(ExtraTree) weka
28.5 0.8314 0.6459 wsrf r

28.697 0.8321 0.6526 RandomForest weka
28.983 0.8302 0.6455 StackingC(combo1) weka
29.197 0.8294 0.6526 RandomCommittee(ExtraTree) weka
29.225 0.8247 0.634 svmRadialCost r
30.876 0.8284 0.6456 CascadeGeneralization(combo1) weka
31.163 0.8229 0.6438 avNNet r
31.702 0.8273 0.6294 ForestPA weka
31.742 0.8228 0.6414 SMO weka
32.781 0.8262 0.6309 RandomSubSpace(ExtraTree) weka
33.876 0.8276 0.6494 RandomCommittee(RandomTree) weka
34.949 0.8271 0.6532 MultiBoostAB(SimpleCart) weka
35.556 0.8174 0.6122 LibSVM weka
35.91 0.821 0.6269 StackingC(combo2) weka
36.073 0.8226 0.6343 LogitBoost(DecisionStump) weka
36.663 0.8146 0.6299 nnet r

Continued on next page

51

Table 4.2 – continued from previous page
Rank Accuracy Kappa Classifier Software
36.685 0.8226 0.6312 C5.0 r
37.118 0.816 0.6254 mlpWeightDecay r
37.225 0.8241 0.6287 RandomSubSpace(RandomTree) weka
37.713 0.8219 0.6174 RandomSubSpace(REPTree) weka
38.438 0.8224 0.6354 Grading(combo1)[ZeroR] weka
38.753 0.8211 0.6348 Grading(combo1)[IBk] weka
39.478 0.8071 0.6205 pcaNNet r
39.893 0.8229 0.6465 xgbLinear r
41.298 0.8149 0.635 mlp r
41.337 0.8224 0.6484 AdaBoostM1(SimpleCart) weka
41.787 0.7984 0.6018 rda r
42.197 0.7946 0.5852 glmnet r
42.511 0.8186 0.6379 vote(combo1) weka
43.275 0.8115 0.5899 cforest r
43.77 0.8171 0.6296 MultiScheme(combo1) weka
45.185 0.8028 0.5865 svmLinear r
45.219 0.8013 0.5954 LibLINEAR weka
46.242 0.7902 0.614 fda r
47.393 0.8158 0.6297 treebag r
47.882 0.8091 0.6221 FT weka
48.242 0.7978 0.58 SimpleLogistic weka
48.478 0.8049 0.6032 knn r
48.758 0.7952 0.5811 sda r
48.854 0.8129 0.6238 Vote(combo2) weka
49.034 0.8032 0.5992 IBk weka
50.163 0.7962 0.5925 Logistic weka
50.23 0.8056 0.6245 MultilayerPerceptron weka
50.73 0.8105 0.6262 LADTree weka
51.893 0.7916 0.579 pda r
52.326 0.7906 0.5793 LDA(W) weka
53.629 0.7856 0.5701 mlpML r
53.86 0.7947 0.5788 A1DE weka
54.287 0.7999 0.5945 C5.0Rules r
55.034 0.7717 0.5605 lda(R) r
56.865 0.7944 0.5868 FURIA weka
57.652 0.7956 0.5892 J48graft weka
58.888 0.7885 0.568 rpart r
59.258 0.7936 0.5849 C5.0Tree r
60.247 0.788 0.5614 SimpleCart weka
60.511 0.7792 0.5689 NaiveBayes weka
61.287 0.7909 0.5786 NBTree weka
61.994 0.7908 0.602 Elman weka
62.461 0.7886 0.5799 JRip weka

Continued on next page

52

Table 4.2 – continued from previous page
Rank Accuracy Kappa Classifier Software
64.371 0.7839 0.5711 CDT weka
64.494 0.7835 0.561 BFTree weka
64.629 0.7889 0.5863 PART weka
64.792 0.7878 0.5832 J48 weka
65.466 0.7205 0.4585 RFlda r
65.888 0.7605 0.5413 QDA weka
66.045 0.7846 0.5816 REPTree weka
66.32 0.7668 0.5503 NaiveBayesUpdateable weka
66.522 0.7878 0.5806 NNge weka
66.624 0.7789 0.5578 ctree r
67.663 0.7746 0.5468 lvq r
67.736 0.7468 0.5253 nb r
68.23 0.7777 0.6287 MODLEM weka
69.522 0.771 0.5664 IB1 weka
69.809 0.7428 0.5133 naive bayes r
69.815 0.7495 0.4788 slda r
71.848 0.7595 0.5205 DecisionTable weka
72.517 0.6214 0.3661 bayesglm r
72.938 0.707 0.5414 rlda r
74.933 0.7717 0.5674 Ridor weka
76.82 0.6001 0.3332 rocc r
77.096 0.7189 0.4996 HoeffdingTree weka
77.657 0.7647 0.5526 RandomTree weka
78.86 0.7374 0.5541 J48Consolidated weka
79.208 0.7561 0.5406 ExtraTree weka
79.826 0.6829 0.4696 CSimca r
80.848 0.6822 0.3812 OneR weka
84.73 0.6467 0.3042 DecisionStump weka
85.528 0.6461 0.3029 ConjunctiveRule weka
88.551 0.6599 0.4359 VFI weka
88.657 0.6533 0.4082 OLM weka
90.421 0.5941 0.2321 HyperPipes weka
92.045 0.5257 -0.0011 PCT weka
92.045 0.5257 -0.0011 ZeroR weka
95.112 0.6283 0.2897 Vfdr weka

Note
combo1=RandomTree, LDA, REPTree, NaiveBayes, IB1
combo2=RandomTree, ExtraTree, LDA, libLINEAR

Table shows the Friedman rank, average accuracy and average kappa for each
algorithm tested. Ordered by Friedman rank.

53

4.2 Dataset Results

On the 89 datasets we had 46 different classification algorithms with the best
accuracy, which means Wolpert’s ”No Free Lunch Theorem” is still true [5](the
”No Free Lunch Theorem” states that there is no single classification algorithm
that is the most accurate on all tasks). Among the 46 different classification
algorithms, the RandomCommittee(ExtraTree) algorithm have the best score on
the most datasets with eight, catboost, svmPoly and rda have seven, followed by
AutoWEKA, parRF, wsrf and xgbTree with six. The avNNet, bagging(ExtraTree),
SMO and svmRadial algorithms are best on five datasets each. Surprisingly,
some of the weaker classification algorithms such as roc curves(rocc) was the best
on three datasets and OneR was best on two, rocc was the best on acute-inflammation,
pittsburgh-bridges-T-or-D and statlog-heart, OneR was the best on voting and
echocardiogram.

It is worth noting that the best algorithm on congressional voting is OneR,
which means that the best model to predict how Americans vote is very simple.
The AutoWEKA algorithm also used OneR on congressional-voting, with the
same result. The rocc algorithm is best on two datasets, statlog-heart and
Pittsburgh-bridges-T-or-D, and the HyperPipes algorithm is the best on the
ilpd-indian-liver dataset, which shows that even if a method seems to be weak
overall(rocc is not even top 50 according to accuracy and HyperPipes is the
third weakest according to accuracy) it can be the best method on a dataset.

When multiple algorithms are best on a dataset they tend to have something
in common. Two algorithms are best on congressional-voting, both use OneR.
Three are best on echocardiogram, all of them are ”simple” models, perhaps the
more intricate models simply overcomplicate. Three are best on the iris dataset,
all of them are discriminant analysis. Two are best on the parkinsons dataset,
both use IB1. The exceptions are the acute-inflammation, acute-nephritis,
mushroom and tic-tac-toe datasets, but they have too many algorithms achieving
a perfect score to require a specific approach to predict all instances correctly.

The ZeroR and PCT algorithms have a shared lowest accuracy on 26 of the
datasets, they are never the best algorithms.

Table 4.3: Best result per dataset

Dataset Accuracy Algorithm

abalone 0.688 RFlda
acute-inflammation 1.000 52 got this score
acute-nephritis 1.000 41 got this score
arrhythmia 0.764 wsrf
balance-scale 0.999 svmPoly
bank 0.901 parRF

Continued on next page

54

Table 4.3 – continued from previous page
Dataset Accuracy Algorithm
blood 0.801 FT
breast-cancer 0.763 RandomSubSpace(ExtraTree)
breast-cancer-wisc 0.973 NaiveBayesUpdateable
—–||—– —–||—– NaiveBayes
breast-cancer-wisc-diag 0.980 svmPoly
breast-cancer-wisc-prog 0.822 gbm
breast-tissue 0.734 RandomCommittee(ExtraTree)
car 0.999 catboost
cardiotocography-10clases 0.891 xgbTree
cardiotocography-3clases 0.954 xgbLinear
chess-krvkp 0.996 C5.0
congressional-voting 0.630 OneR
—–||—– —–||—– AutoWEKA
conn-bench-sonar-mines-rocks 0.887 RandomCommittee(ExtraTree)
contrac 0.570 AutoWEKA
credit-approval 0.874 parRF
cylinder-bands 0.816 RandomSubSpace(RandomTree)
dermatology 0.983 wsrf
echocardiogram 0.855 ConjunctiveRule
—–||—– —–||—– OneR
—–||—– —–||—– DecisionStump
ecoli 0.878 parRF
energy-y1 0.974 Bagging(ExtraTree)
energy-y2 0.939 catboost
fertility 0.889 wsrf
flags 0.699 LightGBM
glass 0.804 catboost
haberman-survival 0.757 LogitBoost(DecisionStump)
heart-cleveland 0.620 nnet
heart-hungarian 0.841 rlda
heart-switzerland 0.456 avNNet
heart-va 0.365 RandomCommittee(ExtraTree)
hepatitis 0.852 nb
ilpd-indian-liver 0.728 HyperPipes
ionosphere 0.955 svmRadial
iris 0.980 pda
—–||—– —–||—– sda
—–||—– —–||—– LDA(W)
led-display 0.741 rda
libras 0.889 svmRadial
low-res-spect 0.919 SimpleLogistic

Continued on next page

55

Table 4.3 – continued from previous page
Dataset Accuracy Algorithm
lymphography 0.876 sda
magic 0.888 catboost
mammographic 0.838 FT
molec-biol-promoter 0.913 fda
molec-biol-splice 0.966 xgbTree
mushroom 1.000 35 got this score
musk-1 0.954 svmRadial
musk-2 0.999 MultilayerPerceptron
nursery 1.000 AdaBoostM1(SimpleCart)
oocytes merluccius nucleus 4d 0.858 SMO
oocytes merluccius states 2f 0.930 xgbLinear
oocytes trisopterus nucleus 2f 0.859 avNNet
oocytes trisopterus states 5b 0.944 avNNet
ozone 0.971 slda
page-blocks 0.976 RandomForest
parkinsons 0.959 MultiScheme(combo1)
—–||—– —–||—– IB1
pima 0.776 svmRadial
pittsburg-bridges-MATERIAL 0.875 naive bayes
pittsburg-bridges-REL-L 0.744 RandomSubSpace(ExtraTree)
pittsburg-bridges-T-OR-D 0.894 rocc
pittsburg-bridges-TYPE 0.659 xgbTree
planning 0.723 Bagging(ExtraTree)
primary-tumor 0.510 xgbTree
ringnorm 0.987 rda
seeds 0.971 rda
semeion 0.963 svmPoly
spambase 0.959 catboost
statlog-australian-credit 0.696 fda
statlog-german-credit 0.772 wsrf
statlog-heart 0.857 rocc
statlog-image 0.986 AdaBoostM1(SimpleCart)
statlog-vehicle 0.853 rda

Continued on next page

56

Table 4.3 – continued from previous page
Dataset Accuracy Algorithm
steel-plates 0.806 AutoWEKA
synthetic-control 0.994 svmRadial
teaching 0.700 Vote(combo2)
tic-tac-toe 1.000 9 got this score
titanic 0.790 LADTree
twonorm 0.979 svmPoly
vertebral-column-2clases 0.863 mlpWeightDecay
vertebral-column-3clases 0.869 nnet
wall-following 0.999 LogitBoost(DecisionStump)
waveform 0.871 AutoWEKA
waveform-noise 0.869 SimpleLogistic
wine 0.997 rda
wine-quality-red 0.714 RandomCommittee(ExtraTree)
wine-quality-white 0.708 RandomCommittee(ExtraTree)
yeast 0.630 parRF
zoo 0.981 svmPoly

Note The Table contains the best algorithm(s) on each dataset and the
accuracy achieved.

57

4.3 Probability of achieving 95% of the maximum

accuracy

The catboost algorithm achieved an accuracy score of at least 95% of the best
achieved accuracy on 82 out of 89 datasets. The four following algorithms
xgbTree, parRf, rf and LightGBM all follow between 87.6% and 89.8%.

Algorithm x/89 % chance
catboost 82/89 92.1%
xgbTree 79/89 88.7%
parRF 80/89 89.8%
rf 79/89 88.7%
LightGBM 78/89 87.6%
gbm 76/89 85.4%
AutoWEKA 75/89 84.2%
RandomForest 75/89 84.2%
wsrf 75/89 84.2%
svmPoly 72/89 80.9%
Bagging(ExtraTree) 72/89 80.9%
svmRadial 71/89 79.8%
Stacking(combo1) 73/89 82.0%
RandomCommittee(ExtraTree) 70/89 78.7%
CascadeGeneralization(combo1) 70/89 78.7%
RandomCommittee(RandomTree) 68/89 76.4%
ForestPA 70/89 78.7%
MultiBoostAB(SimpleCart) 70/89 78.7%
RandomSubSpace(ExtraTree) 72/89 80.9%
svmRadialCost 69/89 77.5%

Table 4.4: Probability of achieving 95% of the maximum Accuracy, or more.

4.4 catboost vs Maximum Accuracy

The maximum accuracy(considered the best average result per dataset across
all classification algorithms) is 85.49%. The catboost algorithm got an accuracy
of 83.96%, which is only 1.5 percentage point worse. The catboost algorithm
is rarely far off from the maximum accuracy, in 68/89 datasets it is within 2.5
percentage point behind the maximum accuracy, in 82/89 datasets it has a score
which is above 95% of the best achieved accuracy and in all datasets it has a
score within 90% of the maximum accuracy. The catboost algorithm is above 5
percentage points behind on only three datasets, which is statlog-vehicle (8.1%),
balance-scale(7.8%) and teaching(6.5%). The three aforementioned weak spots
are easily seen on Figure 4.1, teaching can be seen as the gap approximately

58

on position(15,60), statlog-vehicle can be seen as the gap approximately on
position(37,75) and the gap approximately on position(83,92) is balance-scale.

Figure 4.1: Figure shows how close catboost(blue) is to the maximum
accuracy(red) on the datasets.

4.5 Variation In Results

The most stable algorithm among the top 20 is theWEKA algorithm bagging(ExtraTree),
with a difference between the average of the lowest percentage correct on a
10 fold cross-validation per dataset and the average of the highest percentage
correct on a 10 fold cross-validation per dataset of 2.96 percentage points. The
least stable among the top 20 is another WEKA algorithm,
the CascadeGeneralization(combo1). The xgbTree algorithm got the highest
maximum with 85.70, slightly above catboost’s 85.68. The catboost algorithm
got a higher minimum with 82.07 vs xgbTree’s 81.71. The two RandomForest
implementations in caret are very similar, minimum 82.05 for parRF and 81.99
for rf, and maximum 85.15 for parRF and 85.12 for rf. The variation in results
is surprisingly low, the highest among the top 20 being only 4.86 percentage
points.

59

Figure 4.2: Figure shows the variation in results the top 20 algorithms got on
the 100x10 fold cross-validation. Left dumbbell is the combined minimum on
each dataset, right dumbbell is the combined maximum on each dataset.

60

Chapter 5

Discussion

Algorithm avg Accuracy %
catboost 83.96%
XgbTree 83.78%
parRF 83.72%
rf 83.70%
LightGBM 83.44%
gbm 83.41%
AutoWEKA 83.28%
RandomForest 83.21%
wsrf 83.14%
svmPoly 83.14%
Bagging(ExtraTree) 83.07%
svmRadial 83.04%
StackingC(combo1) 83.02%
RandomCommittee(ExtraTree) 82.94%
Cascadegeneralization(combo1) 82.84%
RandomCommittee(RandomTree) 82.76%
ForestPA 82.73%
MultiBoostAB(SimpleCart) 82.71%
RandomSubSpace(ExtraTree) 82.62%
svmRadialCost 82.47%

Note Table shows the top 20 classification algorithms.

Table 5.1: 20 best algorithms according to accuracy.

The top 20 algorithms consists of five boosting ensembles(catboost, xgbTree,
LightGBM, gbm and MultiBoostAB(SimpleCart)), nine tree ensembles(parRF,
rf, RandomForest, wsrf, Bagging(ExtraTree), RandomCommittee(ExtraTree),
RandomCommittee(RandomTree), ForestPA and RandomSubSpace(ExtraTree)),
three support vector machines(svmPoly, svmRadial and svmRadialCost), two

61

combined classifiers(StackingC(combo1) and CascadeGenerlization(combo1)) and
an automatic learning algorithm(AutoWEKA). Of the top 20 classification algorithms,
only four are not ensembles, and three of those four are support vector machines,
while the last one, AutoWEKA might use ensembles. In other words the only
family of classifiers that can match ensembles are Support Vector Machines and
AutoWEKA. Having AutoWEKA among the ten best algorithms is interesting,
it is the best of WEKA’s algorithms. Perhaps with longer tuning time it could
have scored even better.

Perhaps more interesting than the average accuracy is the distribution among
the top 20 classification algorithms, see Figure 5.

Figure 5.1: A heatmap which shows the distribution among the top 20
classification algorithms. The horizontal columns show how the algorithm is
spread across the 20 positions, while the vertical shows the position’s spread
across algorithms. E.g. catboost is the best algorithm 8 times, second best 11
times and third best 2 times. xgbTree is the best algorithm 8 times, second best
8 times and third best 9 times.

62

Among the top 20 classification algorithms, svmPoly is the best 18 times, second
best 13 times and third best two times. This explains svmPoly’s high Friedman
Rank(fourth best), while it is only the tenth best according to accuracy. We
can see the AutoWEKA algorithm is the best 12 times, svmRadial is the best
11 times, and the RandomCommittee(ExtraTree) is the best nine times. The
best algorithm, catboost, is the best only eight times, and second best 11 times
and third best two times. However, the catboost algorithm rarely occupy the
bottom ten spots among the top 20, the catboost algorithm is in the bottom
half of top 20 only 18/89 times. A similar trend is visible for the other top
algorithms according to accuracy, xgbTree(29/89), parRF(31/89), rf(32/89) and
LightGBM(42/89).

5.1 Paired T-tests

We ran paired T-tests on the top ten classification algorithms. A P value below
0.05 indicates there is statistically significant differences between the results
of the two classification algorithms. The catboost algorithm is statistically
significantly better than all methods except xgbTree and parRF, however it
is very close to be significantly better than parRF. The only method which
is significantly better than parRF, rf, svmPoly and AutoWEKA is catboost,
which indicates that there is no practical difference between xgbTree, parRF,
rf, AutoWEKA and svmPoly.

catboost xgb parRF rf LGBM gbm AW RF wsrf
xgbTree 0.17
parRF 0.05 0.7
rf 0.03 0.6 0.32
LGBM 0.00 0.00 0.06 0.08
gbm 0.00 0.00 0.10 0.12 0.86
AW 0.04 0.14 0.19 0.22 0.66 0.71
RF 0.00 0.00 0.00 0.00 0.21 0.35 0.82
wsrf 0.00 0.00 0.00 0.00 0.03 0.18 0.71 0.67
svmPoly 0.04 0.11 0.17 0.20 0.48 0.47 0.68 0.88 0.98

Note xgb=xgbTree, LGBM=LightGBM, RF=RandomForest, AW=AutoWEKA

Table shows the P value of the paired t tests among the top ten classification

algorithms. The statistically significant differences are marked with bold font.

Table 5.2: Paired T Tests

5.2 Effects of bagging

In all cases bagging increases the accuracy compared to the base classifier.
RandomForest is 6.74 percentage points better than RandomTree, Bagging(ExtraTree)

63

is 7.46 percentage points better than ExtraTree. The improvement is lower for
the ctree algorithm, Cforest is 3.26 percentage points better than ctree. The
improvement is even lower for the rpart algorithm, treebag is 2.73 percentage
points better than rpart. The difference between nnet and avNNet is only
0.83 percentage points, which shows us what Breiman showed in 1996, stable
Classification Algorithms do not benefit much from Bagging [36].

Algorithm Accuracy Bagged Accuracy
RandomTree 76.47 RandomForest 83.21
ExtraTree 75.61 Bagging(ExtraTree) 83.07
rpart 78.85 treebag 81.58
nnet 81.46 avNNet 82.29
ctree 77.89 cforest 81.15

Note Table shows the accuracy of base-classifiers and the accuracy of their bagged

versions. In all cases the bagged versions are better.

Table 5.3: Bagged classification algorithms vs base algorithms

5.3 Comparison to Similar Research

There are two studies which are very similar to this experiment, the Manuel
Fernández-Delgado, Eva Cernadas, Senén Barro study Do we Need Hundreds of
Classifiers to Solve Real World Classification Problems? [14] and the Jacques
Wainer study Comparison of 14 different families of classification algorithms
on 115 binary datasets [15]. Our results are somewhat compatible with their
results. Off course, we do not use the same datasets as Manuel Fernández-Delgado
et.al. and Jacques Wainer, so comparing % accuracy and kappa numbers is
useless, and we do not test the same amount of classification algorithms so the
Friedman Ranks will also not be comparable, however we can still look at how
the classification algorithms did compared to other classification algorithms.
Both studies had random forest as the best classification algorithm, four of our
top nine algorithms are random forest variants. When Manuel Fernández-Delgado,
Eva Cernadas, Senén Barro did their study the top three boosting variants were
not released on the market(gbm was but could only handle binary problems at
the time), but Jacques Wainer did use the gbm algorithm(Wainer changed the
all the datasets to binary problems), which had a slightly lower rank than the
rf algorithm, but not significantly lower, and according to Jacques Wainer gbm,
rf and svmRadial would perform at similar levels. We have rf, svmRadial and
gbm in the fifth, sixth and seventh place according to the Friedman Rank.

The Delgado et. al. study had svmPoly as the best support vector machine,
Wainer had svmRadial and we again got the best results with svmPoly. This
could be explained by different tuning parameter values, perhaps Wainer found
better values for svmRadial than we and Manuel Fernández-Delgado et.al. did or
perhaps we and Delgado et.al. found better values for svmPoly than Wainer did.

64

We have more WEKA algorithms among our top 20(9) than Delgado et.al.(4),
this can be explained by Delgado et.al. testing C and Matlab methods too,
but a more plausible explanation is that Delgado et.al. did their study before
the MultiSearch tuning package arrived on the market, which also explains why
SMO barely got into top 50 in their study and is top 25 in ours.

When looking at the top ten caret algorithms from the Delgado study and
comparing them to ours: As we can see in Table 5.4 the algorithms are not

Delgado et.al. Ours
parRF parRF
rf svmPoly
svmPoly rf
svmRadialCost svmRadial
svmRadial svmRadialCost
C5.0 avNNet
avNNet C5.0
nnet nnet
pcaNNet mlp
mlp pcaNNet

Note Table shows the order among the best caret algorithms from the Delgado

study, and the order of the same algorithms in our experiment.

Table 5.4: Result Comparison Delgado et.al. vs ours.

in the exact same order, some have switched one rank in the order, but no
algorithm is more than one spot away from the other research’s spot.

Delgado et.al. had six Random Forest variants, five Support Vector Machine
variants, five Artificial Neural Networks, three Boosted Trees and a bagged
libSVM among their top 20. We did not split the algorithms into the same
families that Delgado et.al. did but it is easy to see what is what in their system.
We have five Boosted Trees(4 out of top 6), six Random Forest variants, with
another three which are earlier variants(a RandomSubSpace and two RandomCommittees),
three Support Vector Machine variants, two combined classifier models and an
automatic method(AutoWEKA). Several of our top 20 were not involved in
the Delgado et.al study, some because they were not available such as gbm,
LightGBM, xgbTree, catboost. They did try RandomSubSpace, but they used
REPTrees as base classifier. They tried RandomCommittee(RandomTree), which
they got on 30th place according to Friedman Rank, perhaps they did not have
the tuning options we have now. We have no Artificial Neural Networks in our
top 20, but the Artificial neural Networks have approximately the same ranks
between themselves as in the Delgado study, which indicates that they have
not improved, nor have they worsened, perhaps those interested in creating new
artificial neural networks concentrate on deep learning instead.

65

Our weakest classification algorithms were ZeroR and PCT with 52.5%. Manuel
Fernández-Delgado et.al had MetaCost, ZeroR, MultiScheme, CSC and Vote.
Their MetaCost variant used ZeroR ”bagging” without bootstrap aggregation,
MultiScheme is an ensemble which selected one of several ZeroR classifiers using
cross validation on the training set, CSC combines several ZeroR where each
pattern is weighted depending of the cost assigned to each error type and Vote
used sever ZeroR base classifiers combined using the average rule. Perhaps they
did this because ZeroR is often set as the default baseclassifier in WEKA.

66

5.4 Comparison Within Family

As the scatter plot in Figure 5.2 show us, the classification algorithms in the
Boosting Ensembles, Tree Ensembles, Combined Classifiers and Support Vector
Machines families do not differ much from each other. The Classification Tree
family has the highest spread, but even there most algorithms gather around
78-79% accuracy. The two bottom algorithms are ZeroR and PCT. The Misc
classifiers, bayes classification methods, rule-based models and classification
trees are very diverse in their performance.

Figure 5.2: Figure shows a scatter plot with the accuracy as y values and the
algorithms’ family as x values. ANN=artificial neural networks, BOO=boosting
ensembles, IB=instanced based algorithms, DA=discriminant analysis,
BY=bayes classification methods, for=tree ensembles and CC=combined
classifiers.

5.4.1 Artificial Neural Networks

The Delgado study has five Artificial Neural Network implementations among
their top 20. We have none. The avNNet algorithm is their best ANN from caret
too, it being slightly better than nnet, which is slightly better than pcaNNet,
followed by mlp. Our ANN results differ just slightly, avNNet is the best, nnet
second best, mlpWeightDecay third best, nnet fourth best and pcaNNet fifth
best, although it is the third best according to the Friedman Rank. Delgado
et.al. had poor results with mlpWeightDecay, 76.9% vs mlp’s 80.3%. Delgado
et.al. mention they use ”automatic parameter tuning” in caret which indicates

67

Figure 5.3: Figure shows a heatmap for Artificial Neural Networks, and the
Friedman Rank, Accuracy and Kappa for the Artificial Neural Networks.

they use the random search(tuneLength=#), perhaps we can blame it some bad
luck with the random parameter values.

The pcaNNest algorithm did not manage to create a model for the arrhythmia
dataset, yet it is third best according to the Friedman Rank(the Friedman Rank
of an algorithm increases a lot when every other algorithm is better than it).
The worst ANN according to accuracy is the mlpML algorithm. Poor tuning
values are very likely to blame, with three layers it can be difficult to set up.
The Artificial Neural Networks performance are very similar, nnet, mlp and
mlpWeightDecay are within 0.1 percentage point, the pcaNNet algorithm has a
Friedman Rank close to mlp and mlpWeightDecay, and the WEKA variant of
MultiLayer Perceptron has almost the same accuracy as pcaNNet.

68

5.4.2 Bayes Classification Methods

Figure 5.4: Figure shows a heatmap for Bayesian Classification Methods,
and the Friedman Rank, Accuracy and Kappa for the Bayesian Classification
Methods.

Among the Bayesian Classification Methods the A1DE is the superior classification
algorithm across all metrics, followed by NaiveBayes and NaiveBayesUpdateable.
A1DE is the best algorithm among them more often than any of the other
two combined. The three WEKA methods are better than the three caret
methods, the most inferior of which is bayes generalized linear model, which is
17.4 percentage points weaker than A1DE. None of the Bayesian Classification
Methods reached 80% accuracy. Not much to say about these methods compared
to Delgado et.al [14]’s study as we only have two methods in common, NaiveBayes
and NaiveBayesUpdateable, where NaiveBayes has the higher Friedman Rank
in both cases.

69

5.4.3 Boosting Ensembles

Figure 5.5: Figure shows a heatmap for the Boosting Ensembles, and the
Friedman Rank, Accuracy and Kappa for the Boosting Ensembles

Among the Boosting Ensembles the catboost algorithm is the best on all metrics
except Kappa, where xgbTree is superior. The catboost algorithm is the best
or the second best among the Boosting Ensembles 47/89 times, xgbTree 38/89
times, LightGBM 19/89 times and gbm 24/89 times. There is a gap between
catboost, xgbTree, LightGBM and gbm down to MultiBoostAB(SimpleCart),
and another gap to LogitBoost, xgbLinear, C5.0 and AdaBoostM1(SimpleCart),
all of which have an average accuracy of 82.3% or 82.2%. The worst Boosting
Ensemble is LADTree, which is still a fairly good algorithm with an average
accuracy of 81.1%. We cannot compare our results to Delgado et.al’s results
as C5.0 and LogitBoost(DecisionStump) are the only Boosted Trees we both
tested, and they both have an accuracy of 82.3(82.26 rounded up). We chose
to use SimpleCart as baseclassifier on AdaBoostM1 and MultiBoostAB because
they did not seem to boost DecisionStump at all.

70

5.4.4 Classification Trees

Figure 5.6: Figure shows a heatmap for the Classification Trees, and the
Friedman Rank, Accuracy and Kappa for the Classification Trees.

The FT classification algorithm is the best Classification Tree across all metrics,
it is the best algorithm more often than the following eight classification trees
combined. FT is not that much better than the rest in terms of accuracy, which
means it often is just slightly better than the rest. The PCT algorithm is the
worst by far, which is not surprising considering it only guesses on the %majority
of classes. Our results have a lot in common with The Delgado et.al. study,
among the Decision Trees we both use C5.0Tree is the best, DecisionStump
is the weakest followed by RandomTree and ctree. The rpart algorithm did
become second among the eight trees we tested that Delgado et.al also tested,
it is the fourth best for them, otherwise there are only minor differences. All
the classification trees got an accuracy below 81.0%.

71

5.4.5 Combined Classifiers

Figure 5.7: Figure shows a heatmap for the Combined Classifiers, and the
Friedman Rank, Accuracy and Kappa for the Combined Classifiers.

When we set the combined classifiers up we chose base classifiers that, in our
experience, were quick and had few tuning parameters. We tuned them scarcely,
either with only 2 values for each parameter or none at all, to save time.
Despite this, StackingC and CascadeGeneralization both achieved a score within
the top 20, proving once again that an ensemble of weaker learners(RT(76.4),
LDA(79,1), REPT(78,5), NB(77,9) and IB1(77,1)) can beat stronger learners.
Amongst the combined classifiers, combo1 was unsurpringly the best combination,
as it is more diverse than combo2, although, in its defence, vote(combo2)
achieved the highest score on the teaching dataset.

The stackingc algorithm got the highest accuracy and friedman rank. The
CascadeGeneralization(combo1) achieved the highest kappa score. For grading,
ZeroR proved to be a better meta classifier than IBk, which Seewald & Furnkranz
[65] used in their paper. MultiScheme was, with the base classifiers we chose,
a weaker learner than Vote, but that does not necessarily mean that Vote is a
better learner than MultiScheme, it all depends on the base classifiers. Overall,
the combined classifiers performed quite well, with the lowest accuracy score
being 81.3%, which is the highest minimum across the families.

72

5.4.6 Discriminant Analysis

Figure 5.8: Figure shows a heatmap for the Discriminant Analysis algorithms,
and the Friedman Rank, Accuracy and Kappa for the Discriminant Analysis
algorithms.

The rda algorithm is the best Discriminant Analysis algorithm we tested. It
is best or second best among the Discriminant Analysis algorithms on 53/89
datasets, and it is the best on all metrics. The Delgado et.al. study had fda
as their best. We both have slda as the weakest of the discriminant analysis
algorithms. There is one major upset from their results, sda was their second
weakest among the six we have both tested, for us it is the second best. Their
best and our third best, fda, is the best Discriminant Analysis algorithm 34/89
times, far more often than any other algorithm. WEKA’s LDA is almost two
percentage point ahead of caret’s lda, which got errors on arrhythmia and zoo,
and thus was given an accuracy of 0 on those datasets. With a normal score on
those datasets caret’s lda would have been much closer.

73

5.4.7 Misc Classification Algorithms

Figure 5.9: Figure shows a heatmap for the Misc Classification Algorithms, and
the Friedman Rank, Accuracy and Kappa for the Misc Classification Algorithms.

The top three misc classification algorithms, glmnet, Logistic and SimpleLogistic
have a huge gap down to the weaker three, rocc, VFI and HyperPipes. The
glmnet algorithm is best according to Friedman Rank, with logistic second
and SimpleLogistic third. When it comes to Accuracy it is the opposite, with
SimpleLogistic best before Logisitc and glmnet. All of them are similar, only
0.03 percentage points difference between them. The rocc and HyperPipes
algorithm are among the weakest we tested overall, but they still manage to
be the best on some datasets. Delgado et.al. got comparable results, with VFI
and HyperPipes the two weakest and glmnet SimpleLogistic and Logistic fairly
even.

74

5.4.8 Instance Based Algorithms

Figure 5.10: Figure shows a heatmap for the Instance Based Algorithms, and
the Friedman Rank, Accuracy and Kappa for the Instance Based Algorithms.

The knn and IBk algorithms are significantly better than IB1 and lvq, with three
percentage points higher accuracies. The Delgado et.al. [14] results were similar
to ours, knn being the best and IBk better than IB1. The nearest neighbor
algorithms have comparable results to rule-based models, classification trees,
bayes classification methods and discriminant analysis algorithms if we look
only at their top 4.

75

5.4.9 Rule-based Models

Figure 5.11: Figure shows a heatmap for the Rule-based Models, and the
Friedman Rank, Accuracy and Kappa for the Rule-based Models.

The best rule-based model is C5.0Rules, with FURIA in close second. JRip,
PART and NNge are almost equal in accuracy. The weakest rule-based model
is off course ZeroR. Our results are again similar to the Delgado et.al. [14]
results, C5.0Rules is the best, JRip and PART next and ZeroR at the other
end. Rule-based models have a high spread in accuracy, from 52.5% to 80.0%,
only the classification trees have a higher spread.

76

5.4.10 Support Vector Machines

Figure 5.12: Figure shows a heatmap for the Support Vector Machines, and the
Friedman Rank, Accuracy and Kappa for the Support Vector Machines.

The Support Vector Machines generally perform very well, all of them have an
accuracy above 80.0%. The best SVM according to all metrics is svmPoly, it is
slightly ahead of svmRadial in Friedman Rank, accuracy and kappa. SMO and
svmRadial are the third and fourth best, with decent accuracies of 82.3% and
82.5%. The linear SVMs are atleast 1.4 percentage points less accurate than
the nonlinear SVMs. We use six SVM algorithms that Delgado et.al. [14] used,
among those they had the best results with svmPoly, followed by svmRadialCost
and svmRadial. Our results differ, we have svmPoly as the best followed by
svmRadial and then SMO, their SMO was outside top 50. Probably caused by
improved tuning packages for WEKA, which was limited at the time of their
research.

77

5.4.11 Tree Ensembles

Figure 5.13: Figure shows a heatmap for the Tree Ensembles, and the Friedman
Rank, Accuracy and Kappa for the Tree Ensembles.

Among the tree ensembles the random forest methods from R, parRF and rf,
are the top two. They have equal kappa and accuracy(parRF rounded down, rf
rounded up). The RandomCommittee(ExtraTree) algorithm is the best more
often than rf and parRF combined with 28 vs 6+12. It is worth noting that
the tree ensembles are very even, and all above 81.2%, which is the result
of the weakest algorithm cforest. 81.2% is higher than all the decision trees,
which makes all tree ensembles better than all decision trees. Our results
are comparable to the the Manuel Fernández-Delgado study, parRF the best
followed by rf, however unlike them, our RandomForest(WEKA) results are
much better than our cforest results. Overall, the tree ensembles performed
very well, with the lowest accuracy score being 81.2% and have two of the top
four algorithms overall.

78

5.5 What Could Have Been Done Differently

There are plenty of classification algorithms we could have tested. The most
interesting in our eyes, which we would have tested given more time, are xgbDart(a
variation of xgbTree), xgboost with histogram algorithm, ORFlog(forest of
Oblique Trees), RotationForest, Decorate(claimed to be consistently more accurate
than bagging and RandomForest [66] [67]) and Stacking with better base classifiers.
The caret package’s evolutionary tree algorithm(evtree) would have been fun to
test as well.

Obviously, how we set up the tuning could have been done better. All classification
algorithms get a single tunegrid for 89 datasets, which would never happen in
practice. Every method should have a specific tunegrid for each dataset, with
thorough testing to determine the boundaries of the parameters. The algorithms
with few tuning parameters have a small advantage because we can set up a
wide search on those few parameters, e.g. 100 values for lambda for the glmnet
algorithm. Table 5.5 shows how much the boosting ensembles gain from proper
tuning on datasets. The xgbTree algorithm is 1.4 percentage point and 1.35
percentage point better than the random forest algorithms after tuning, but
loses almost all the advantage when ran on the other 99 10 fold cross-validations.
The xgbTree algorithm is also much better than catboost on the tuning run,
0.76 percentage point ahead.

Algorithm Tuning% Overall %
catboost 84.70 83.96
xgbTree 85.46 83.78
parRF 84.11 83.72
rf 84.06 83.7

Note Table shows the avg accuracy on the tuning run and overall for the four best

algorithms.

Table 5.5: Tuning vs overall accuracy

The tuning parameter values could have been different, for catboost we used
what was recommend by yandex [68], and added 2 to depth, 0.01 to learning rate,
150, 200, 250 to iterations, 2 and 1e-6 to l2 leaf regulations and 0.9 and 0.8 to
rsm. There are probably better values to use, if not generally then specifically
on a single dataset. The LightGBM algorithm was not tuned properly, as we
were running out of time and reduced the tuning grid to finish in time. We
tuned all the values except num leaves first, and later tuned num leaves. This
is off course not the proper way to do it, but when in a hurry one gets desperate.
In reflection, we realize it should have been started earlier, as we infer it could
reach better results. The MultiLayerPerceptron for WEKA had it’s original
tunegrid reduced to save time. In hindsight some other methods could have
been tuned better as well.

79

If we were to redo this experiment we would have reduced the repeated cross-validation
to maybe 25 repeats. The variation in results was low so it seems like 100 repeats
is unnecessary.

5.6 Limits on this Research

While we tried to create a general test experiment, with many datasets, repeated
cross-validations and many algorithms, our results do not give any absolute
foresight into how a classification algorithm will perform on a random dataset.
This experiment’s results only show how the 104 algorithms perform on these
89 datasets. Different tuning parameters, different datasets and different seeds
will produce different results. It is possible an algorithm such as LightGBM,
AutoWEKA or some combined classifier could be tuned better and reach an
average accuracy of 84% or higher on these dataset.

5.7 Answering the Research Questions

• RQ 1: What are the best classification algorithms? The best
classification algorithms are catboost, xgbTree and parRF. The catboost
algorithm is statistically significantly better than all other algorithms
except xgbTree and parRF. The catboost algorithm achieved the best
Friedman Rank, and it achieved the best accuracy. The xgbTree algorithm
achieved the best kappa.

• RQ 1.1: What do the better classification algorithms have in
common, are they of the same family, or do they share other
characteristics? There is a clear trend that certain families are much
better than others. Among the top 6 classification algorithms according
to accuracy, the two best are boosting ensembles, and the fifth and sixth
best are also boosting ensembles. Nine of the top twenty classification
algorithms according to accuracy are tree ensembles, two are combined
classifiers and three are support vector machines. Furthermore, all the
boosting ensembles have an accuracy above 81.0%, all the tree ensembles
have an accuracy above 81.0%, all the combined classifiers have an accuracy
above 81.0% and all the Support Vector Machines have an accuracy above
81.0%, except the two linear support vector machines. There is a clear
separation between these families and the rule-based models, decision
trees, misc classifiers, instanced based classifiers, discriminant analysis
classifiers and bayesian methods. The only other family that can reach
above 81% are the artificial neural networks. This is easily seen in Figure
5.2. This does not mean that the decision trees, rule-based models etc.
have no purpose, they can become strong ensembles, either through boosting,
bagging or stacking.

80

• RQ 1.2: Does Wolpert’s No Free Lunch Theorem still hold true?
Absolutely. We have 46 different algorithms with the best result on 89
different datasets, multiple datasets have more than one best algorithm.
The RandomCommittee(ExtraTree) algorithm is the best on eight datasets,
catboost, rda and svmPoly are the best on seven and AutoWEKA, parRF,
wsrf and xgbTree are the best on six datasets. The rocc algorithm, which
is the fourth weakest algorithm according to accuracy, is the best algorithm
on three datasets(acute-inflammation, pittsburgh-bridges-T-or-D and statlog-heart).
The Manuel Fernández-Delgado, Eva Cernadas, Senén Barro study [14]
argued that in practice, parRF was very near to the best attainable
accuracy for almost all the data sets, and if that is where the bar is
placed, catboost will jump over easily as it is much closer to the maximum
attainable accuracy(1.6 percentage points away from maximum vs 4.9
percentage points from maximum).

• RQ 1.3: How does Auto-WEKA perform compared to the other
classification algorithms? AutoWEKA got the eight highest accuracy
with 83.28%, slightly above RandomForest(83.20%), making it the best
classification algorithm from WEKA. AutoWEKA does make some weird
choices now and then, like bagging(IBk) or Vote with ZeroR as one of
the base classifiers. Given more time perhaps with an expanded list of
classifiers and parameters to its arsenal it might have grabbed a spot at the
podium. It would have been interesting to test a similar AUTOML version
for caret, with access to the stronger algorithms like catboost, xgbTree and
parRF. There is an AutoML algorithm from the h2o package, which also
contains multiple strong algorithms such as xgboost, Generalized Linear
Modeling, distributed Random Forest, GBM and Deep learning. Perhaps
worth looking into for another study.

• RQ 1.4: For the bagging ensembles, what are the effects of
bagging compared to the base-classifiers? The effects of bagging
are what is to be expected. Breiman claimed in 1996 [36] that unstable
classifiers with high accuracy works best for bagging. The RandomTree
and ExtraTree are 6.74 and 7.46 percentage points better when used with
bagging, while the more stable nnet is only 0.83 percentage point better
when used with bagging.

• RQ 1.5: Do our results differ from the results from similar
research? Compared to the Manuel Fernández-Delgado, Eva Cernadas,
Senén Barro study [14] we have a few minor differences, but overall we
reach almost the same results when we compare the classification algorithms
both groups used. Their best, parRF and rf are also our best if we look at
only the algorithms both groups used. Their top 10 algorithms from caret
have almost the same ranks between them as they do in our test, some
have switched positions(for them parRF best, rf second best svmPoly third
best, for us parRF best svmPoly second best and rf third best(Friedman
Rank)). We have better results with some of the WEKA methods, which

81

we think are caused by new WEKA improvements coming after 2014. The
bagged vs base classifier results are in agreement with what is expected of
bagging [36].

82

Chapter 6

Conclusion

We tested 108 classification algorithms from caret andWEKA. The classification
algorithms were tested on 10 fold cross-validation repeated 100 times, on 89
datasets. The algorithms were tuned once per dataset, with a manual tunegrid.
We used three metrics, accuracy, kappa and friedman rank.

The five best algorithms according to accuracy were catboost(83.96), xgbTree(83.78),
parRF(83.72), rf(83.7) and LightGBM(83.44). The five best according to kappa
were xgbTree(66.54), catboost(66.2), gbm(65.71), rf(65.43) and parRF(65.36),
all of which can be considered substantial agreement according to Cohen(61-80
=substantial agreement) [63]. The five best according to friedman rank were
catboost(17.938), xgbTree(20.747), parRF(20.966), svmPoly(21.157) and rf(21.421).
The worst classification algorithms were ZeroR and PCT with Accuracies of
52.5%, and Kappa of -0.001. The best algorithm, catboost, got an average
accuracy of 83.96%, only 1.5 percentage point behind the maximum accuracy(the
average of the best average result for each dataset across all algorithms) of
85.5%. The catboost algorithm overcomes 90% of the maximum accuracy on
every single dataset, and overcomes 95% of the maximum accuracy in 92% of the
datasets. The catboost algorithm achieved on average 98.15% of the maximum
accuracy over all the datasets.

There is a hard point between two groups of families of classification algorithms,
in our case 81.0% accuracy. All of the boosting ensembles, all the tree ensembles,
all the combined classifiers, and all the Support Vector Machines except the
linear SVMs have an accuracy above 81.0%. All the bayesian classifiers, all
the decision trees, all the discriminant analysis algorithms, all the rule-based
models, all the misc classification algorithms and all the instance-based models
have their algorithms with a score below 81.0% accuracy. The only family of
classifiers which have some above and some below 81.0% are the artificial neural
networks. Most of the best classification algorithms are from the caret package,
with the top 7 coming from caret, and 8/10 best using caret, all tuned with
manual tunegrids, WEKA is not far behind however, with 9 of the top 20 on

83

Friedman Rank, and 10 of the top 20 on accuracy.

84

Chapter 7

Bibliography

[1] Tom M. Mitchell
Machine Learning(1997)
McGraw Hill. p.2.
ISBN 0-07-042807-7

[2] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. & Lang, K.(1989)
Phoneme recognition using time-delay neural networks
IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3)
328-339.

[3] Cooper, G. et al. (1997).
An evaluation of machine-learning methods for predicting pneumonia
mortality
Artificial Intelligence in Medicine, vol 9, no.2
pp 107-138.

[4] K. Tzidiris, Th. Kalampokas, G.A. Papakostas
Airfare Prices in Prediction Using Machine Learning Techniques
2017 25th European Signal processing Conference(EUSIPCO)

[5] David H. Wolpert
The lack of a priori distinctions between learning algorithms
Neural Computations, 9:1341-1390, 1996

[6] The Home for Data Science & Machine Learning
Kaggle.com

[7] Eric Bauer & Ron Kohavi
An Empirical Comparison of Voting Classification Algorithms: Bagging,
Boosting, and Variants
Machine Learning 36, 105-139 1999
Kluwer Academic Publishers

85

[8] Tjen-Sien Lim, Wei-Yin Loh & Yu-Shan Shih
A Comparison of Prediction Accuracy, Complexity, and Training Time of
Thirty-Three Old and New Classification Algorithms
Machine Learning, 40, 203-228 2000
2000 Kluwer Academic Publishers

[9] Olcay Taner Yildiz & Ethem Alpaydin
Linear Discriminant Trees
International Journal of Pattern Recognition and Artifical Intelligence
Vol 19. No. 3 (2005)
pp. 323-353

[10] xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Quing Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S.
Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand & Dan Steinberg
Top 10 algorithms in data mining
Springer-Verlag London Limited 2007

[11] Gouda I. Salama, M. B. Abdelhalim and Magdy Abd-elghany Zeid
Experimental Comparison of Classifiers for Breast Cancer Diagnosis
2012

[12] K. Wisaeng
A Comparison of Different Classification Techniques for Bank Direct
Marketing
International Journal of Soft Computing and Engineering
ISSN:2231-2307, Volume 3 Issue 4 (2013)

[13] Diego Raphael Amancio, Cesar Henrique Comin, Dalcimar Casanova,
Gonzalo Travieso, Odemir Martinez Bruno, Francisco Aparecido
Rodrigues and Luciano da Fontoura Costa
A Systematic Comparison of Supervised Classifiers
PLoS ONE 9(4):e94137. doi:10.1371/journal.pone.0094137 (2014)

[14] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro
Do we Need Hundreds of Classifiers to Solve Real World Classification
Problems?
Journal of Machine Learning Research 15(2014) 3133-3181

[15] Jacques Wainer
Comparison of 14 different families of classification algorithms on 115
binary datasets

[16] Edwin Raczko & Bogdan Zagajewski
Comparison of support vector machine, random forest and neural network
classifiers for tree species classification on airborne hyperspectral APEX
images,

86

European Journal of Remote Sensing, 50:1, 144-154,
DOI:10.1080/22797254.2017.1299557

[17] Anthony Goldbloom,
in an interview on
https://www.datasciencecentral.com/profiles/blogs/
has-deep-learning-made-traditional-machine-learning-irrelevant

[18] LightGBM’s documentation.
https://LightGBM.readthedocs.io/en/latest/index.html

[19] Yandex
https://tech.yandex.com/catboost/

[20] Ethem Alpaydin
Introduction to Machine Learning
2nd edition 2010.
The MIT Press Cambridge, Massachusetts London England
pp. 233-256

[21] Brian Ripley, William Venables
Package ’nnet’, Software for feed-forward neural networks with a single
hidden layer, and for multinomial log-linear models
Version 7.3-12
Publication date 2016-02-02

[22] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, Kevin
Leyton-Brown
Auto-WEKA 2.0: Autonatic model selection and hyperparameter
optimization in WEKA
Journal of Machine Learning Research 17(2016)

[23] Jiawei Han, Micheline Kamber, Jian Pei
Data Mining Concepts and Techniques
third edition 2011.
Morgan Kaufmann Publishers inc. San Francisco, CA.
pp.350-355.

[24] Andrew Gelman, Yu-Sung Su, Masanao Yajima, Jennifer Hill, Maria
Grazia Pittau, Jouni Kerman, Tian Zheng, Vincent Dori
Package ’arm’, Data Analysis Using Regression and
Multilevel/Hierarchical Models
Version: 1.9-3 Publication date: 2016-11-21

[25] Michal Majka
Package ’naivebayes’, High Performance Implementation of the Naive
Bayes Algorithm
Version: 0.9.2
Publication date: 2018-01-03.

87

[26] Ethem Alpaydin
Introduction to Machine Learning
2nd edition 2010.
The MIT Press Cambridge, Massachusetts London England
pp. 186-192

[27] Max Kuhn, Weston Steve, Culp Mark, Coulter Nathan, Ross Quinlan,
RuleQuest Research
Package ’C50’, C5.0 decision trees and rule-based models for pattern
recognition that extend the work of Quinlan(1993, ISBN:1-55860-238-0).
Version: 0.1.1
Publication date 2017-11-20

[28] Torsen Hothorn, Kurt Hornik, Carolin Strobl, Achim Zeileis
Package ’party’, A Laboratory for Recursive Partitioning
Version: 1.2-4
Publication date:2017-12-13

[29] Terry Therneau, Beth Atkinson, Brian Ripley
Package ’rpart’, Recursive pertitioning for classification regression and
survival trees. An implementation of most of the functionality of the 1984
book by Breiman, Friedman, Olshen and Stone
version: 4.1-13
Publication date 2018-02-23

[30] Jiawei Han, Micheline Kamber, Jian Pei
Data Mining Concepts and Techniques
third edition 2011
Morgan Kaufmann Publishers inc. San Francisco, CA.
pp. 600.

[31] Ethem Alpaydin
Introduction to Machine Learning
2nd edition 2010. The MIT Press Cambridge, Massachusetts London
England
pp. 209-218.

[32] Antonio Pedro Duarte Silva
Package ’HiDimDA, High Dimensional Discriminant Analysis
Version: 0.2-4
Publication date:2014-10-18

[33] Stephen Marsland
Machine Learning: An Algorithmic Perspective
1st Chapman & Hall/CRC 2009
pp. 153-155.

[34] Ian H. Witten, Eibe Frank, Mark A. Hall
Data Mining, Practical Machine Learning Tools and Techniques

88

3rd edition 2011.
Morgan Kaufmann Publishers inc. San Francisco, CA.
pp. 351-352.

[35] Stephen Marsland
Machine Learning: An Algorithmic Perspective
1st Chapman & Hall/CRC 2009
pp. 160-164.

[36] Leo Breiman
Bagging Predictors
Machine Learning 24,(1996)
Kluwer Academic Publishers, Boston.
pp 123-140.

[37] Stephen Marsland
Machine Learning: An Algorithmic Perspective
1st Chapman & Hall/CRC 2009
pp. 154-160.

[38] Leo Breiman
Machine Learning(2001) 1st Kluwer Academic Publishers 2001
pp.5-32.

[39] Ian H Witten, Eibe Frank, Mark A Hall
Data Mining, Practical Machine Learning Tools and Techniques 3rd
edition 2011.
Morgan Kaufmann Publishers inc. San Francisco, CA.
pp. 369 - 370.

[40] Joäo Gama, Pavel Brazdil
Cascade Generalization
LIACC , FEP, University of Porto, Rua Campo Alegre, 823 4150 Porto,
Portugal
Machine Learning, 41, 315343, 2000
c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

[41] Andy Liaw
Package ’randomForest’, Breiman and Cutler’s Random Forest for
Classification and Regression
Version 4.6-12
Publication date: 2015-10-06

[42] Jaak Simm, Ildefons Magrans de Abril
Package ’extratrees’, Extremely Randomized Trees(ExtraTrees)Method for
Classification and Regression
Version: 1.0.5
Publication date: 2014-12-27

89

[43] Greg Ridgeway
Package ’gbm’, Generalized Boosted Regression Models
Version:2.1.3 Publication date:2017-03-21

[44] http://topepo.github.io/caret/train-models-by-tag.html

[45] Yoav Freund and Robert E. Schapire
Experiments with a new boosting algorithm Int. Conf. on Machine Learning
Morgan Kaufmann, 1996.
pp 148156.

[46] Klaus Schliep, Klaus Hechenbichler, Antoine Lizee
Package’kknn’, Weighted k-Nearest Neighbors
Version: 1.3.1
Publication date: 2016-03-26

[47] Jiawei Han, Micheline Kamber, Jian Pei
Data Mining Concepts and Techniques
third edition 2011. Morgan Kaufmann Publishers inc. San Francisco, CA.
pp. 355-364.

[48] Tom M. Mitchell
Machine Learning(1997)
McGraw Hill. pp. 274-282.
ISBN 0-07-042807-7 third edition 2011.

[49] Jiawei Han, Micheline Kamber, Jian Pei
Data Mining Concepts and Techniques
Morgan Kaufmann Publishers inc. San Francisco, CA.
pp. 61-83.

[50] Vanden Branden K, Hubert M
Robust classification in high dimensions based on the SIMCA method.
2006
Chemometrics and Intellegent Laboratory Systems 79:10–21 MODLEM
Tzu-Liang (Bill) Tseng, Chun-Che Huang, Kym Fraser and Hsien-Wei
Ting
Rough set based rule induction in decision making using credible
classification and preference from medical application perspective
Computer Methods and Programs in Biomedicine January 2016

[51] Jiawei Han, Micheline Kamber, Jian Pei
Data Mining Concepts and Techniques
third edition 2011. Morgan Kaufmann Publishers inc. San Francisco, CA.
pp. 408-413.

[52] https://www.rdocumentation.org/packages/e1071/versions/1.6-8/topics/svm

90

[53] Chih-Chung Chang, Chih-Jen Lin(2001)
LIBSVM: A library for support vector machines
http://www.csie.ntu.edu.tw/ cjlin/libsvm/

[54] John Platt
Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines Technical Report MSR-TR-98-14 April 21, 1998

[55] Jerome Friedman, Trevor Hastie, Rob Tibshirani, Noah Simon,
Balasubramanian Narasimhan, Junyang Qian
Package ’glmnet’,Lasso and Elasticnet Generalized Linear Models
Version: 2.0-16
Publication date: 2018-03-12

[56] Martin Lauss
Package ’rocc’, ROC based classification
Version:1.2
Publication date:2015-02-20

[57] Drew Conway, John Myles White
Machine Learning for hackers
OReilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.(2012)
pp.1-3

[58] R website https://www.r-project.org/about.html

[59] https://www.cs.waikato.ac.nz/ml/WEKA/

[60] Max Kuhn
Building predictive models in R using the caret package 2008.
Journal of Statistical Software, 28(5):
pp 126

[61] Jiawei Han, Micheline Kamber, Jian Pei
Data Mining Concepts and Techniques
third edition 2011. Morgan Kaufmann Publishers inc. San Francisco, CA.
pp. 370-371.

[62] Ron Kohavi
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection.
Proceedings of the 14th international joint conference on Artificial
intelligence.
p.1137-1143, August 20-25 1995, Montreal, Quebec, Canada.

[63] Mary L. McHugh
Interrater reliability: the kappa statistic
Biochem Med. v22(3): 2012 Oct 15.

91

[64] Nuria Macià and Ester Bernadó-Mansilla.
Towards UCI+: a mindful repository design.
Information Sciences, 261(10):237262, 2014.

[65] Alexander K. Seewald & Johannes Furnkranz
An Evolution of Grading Classifiers
Proceedings of the 4th International Conference on Advances in Intelligent
Data Analysis
Springer Verlag ISBN:3-540-42581-0 pp 115-124

[66] Prem Melville and Raymond J. Mooney
Creating Diversity In Ensembles Using Artificial Data Journal of
Information Fusion: Special Issue on Diversity in Multi Classifier Systems
Vol. 6, 1 (2004), pp. 99-111.

[67] Prem Melville and Raymond J.Mooney
Constructing Diverse Classifier Ensembles Using Artificial Training
Examples Proceedings of the 18th International Joint Conference on
Artificial Intelligence 2003
publisher = Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
pp 505–510

[68] Tuning values recommended by Yandex
https://tech.yandex.com/catboost/doc/dg/concepts/r-usages-examples-docpage/

92

Appendix A

Tuning Parameter Values

A.1 R

• avNNet

1. size 1, 2, 3,..., 8, 9

2. decay 0, 0.1, 0.2, 0.3, 0.01, 0.02, 0.03, 0.001, 0.002, 0.003, 0.0001

3. bag true/false

• bayesglm no parameters

• C5.0

1. winnow True/False

2. trials 1, 2, 3,..., 19, 20

3. model tree, rules

• C5.0Rules no parameters

• C5.0Tree no params

• catboost

1. depth 2,4,6,8

2. learning rate 0.01, 0.1

3. iterations 100, 150, 200, 250

4. l2 leaf reg 1e-3, 1e-6, 2

5. rsm 0.9, 0.95, 0.8

6. border count 255

• cforest

1. mtry 1, 2, 3,...,
√
atributes+ 1

93

• CSimca no parameters

• ctree

1. mincriterion 0.1, 0.2, 0.3, 0.4, 0.5, 0.01, 0.02, 0.03, 0.04, 0.05, 0.001,
0.002, 0.003, 0.004, 0.005

• elm

1. nhid 1, 2, 3, ... ,19 , 20

2. actfun ”purelin”, ”sin”, ”radbas”, ”tansig”, ”sig”, ”hardlim”, ”hardlims”,
”satlims”,”tribas”, ”poslin”

• fda

1. degree 1, 1.5, 2, 2.5, 3

2. nprune 1, 2, 3,..., 19, 20

• gbm

1. shrinkage 0.1, 0.01, 0.03

2. n.trees 50, 100, 150, 200, 250

3. interaction depth 1, 2, 3, 4, 5

4. n.minobsinnode 10, 20

• glmnet

1. alpha 0, 1

2. lambda sequence 0.0001->1, length=100

• knn

1. k 1, 2, 3,..., 9, 10

• lda no parameters

• LightGBM

1. num iterations 150, 300

2. learning rate 0.1, 0.01

3. num leaves 8, 16, 32, 64

4. min gain to split 0.2, 0.4

5. feature fraction 0.75, 0.8, 0.95

6. min sum hessian in leaf 0.05, 0.1

7. min data in leaf 1,3

8. bagging fraction 0.8, 0.9

9. lambda l2 0.2, 0.4

94

• lvq

1. size 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

2. k 1, 2, 3,..., 9, 10

• mlp

1. size 2, 3, 4,..., 18, 19, 20

• mlpML

1. layer1 1, 3, 5, 7, 9

2. layer2 1, 3, 5, 7, 9

3. layer3 1, 3, 5, 7, 9

• mlpWeightDecay

1. size 1,2,3,...,8,9

2. decay 0, 0.1, 0.2, 0.3, 0.01, 0.02, 0.03, 0.001, 0.002, 0.003, 0.0001

• naive bayes

1. laplace 0, 0.5, 1

2. usekernel TRUE, FALSE

3. adjust 0,0.5,1

• nb

1. usekernel TRUE, FALSE

2. fL 0, 1

3. adjust 0, 1

• nnet

1. size 1, 2, 3,...,8, 9

2. decay 0, 0.1, 0.2, 0.3, 0.01, 0.02, 0.03, 0.001, 0.002, 0.003, 0.0001

• parRF

1. mtry 1, 2, 3,...,
√
atributes+ 1

• pcaNNet

1. size 1, 2, 3,..., 8, 9

2. decay 0, 0.1, 0.2, 0.3, 0.01, 0.02, 0.03, 0.001, 0.002, 0.003, 0.0001

• pda

1. lambda 0.001, 0.002, 0.003, 0.01, 0.02, 0.03, 0.1, 0.2, 0.3

95

• rFerns

1. depth 1, 2, 3,..., 15, 16

• rda

1. gamma 0,0.25,0.5,0.75,1

2. lambda 0, 0.25, 0.5, 0.75, 1

• rf

1. mtry 1, 2, 3, ...,
√
atributes+ 1

• RFlda

1. q 1, 2, 3, 4, 5

• rlda

1. estimator ”Thomaz-Kitani-Gillies”, ”Schafer-Strimmer”, ”Moore-Penrose
Pseudo-Inverse”

• rocc

1. xgenes 1, 2, 3, 4,..., 97, 98, 99, 100

• rpart

1. cp 0.1, 0.2, 0.3, 0.4, 0.5, 0.01, 0.02, 0.03, 0.04, 0.05, 0.001, 0.002,
0.003, 0.004, 0.005

• sda

1. diagonal TRUE, FALSE

2. lambda 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

• slda no parameters

• svmLinear

1. C 1, 1.5, 2, 2.5, 3, 3.5, 4

• svmPoly

1. degree 1, 1.5, 2, 2.5, 3

2. scale 0.01, 0.001, 0.1, 1, 10

3. C 0.25, 0.5, 1, 2, 3, 4

• svmRadial

1. C 1, 1.5, 2, 2.5, 3, 3.5, 4

2. sigma 0.1, 0.01, 0.02, 0.03, 0.001, 0.002, 0.003, 0.15, 0.015, 0.025

96

• svmRadialCost

1. C 1, 1.5, 2, 2.5, 3, 3.5, 4

• treebag no parameters

• wsrf

1. mtry 1, 2, 3...,
√
atributes+ 1

• xgbLinear

1. eta 0.1, 0.01

2. alpha 0, 0.1, 0.01, 0.001

3. lambda 0,0.1, 0.01, 0.001

4. nrounds 50, 100, 150, 250

• xgbtree

1. eta 0.1, 0.2, 0.3, 0.02, 0.4, 0.03

2. max depth 1, 2, 3, 4, 5, 6, 7, 8

3. gamma 0

4. colsample bytree 0.5, 0.6, 0.7, 0.8

5. min child weight 1, 2

6. subsample 0.5, 0.625, 0.75, 0.875

7. nrounds 50, 100, 150, 200, 250

A.2 WEKA

• A1DE

1. frequencyLimit 1,2,3....10

2. subsumptionResolution true, false

3. weightedAODE true, false

• AdaBoostM1

1. numIterations 10,25,40,75,100

2. useResampling true, false

3. classifier SimpleCart

4. classifier.useOneSE true, false

5. classifier.numFoldsPruning 3,4,5

• AutoWEKAClassifier

97

1. timeLimit 45

2. parallelRuns 8

• bagging(ExtraTree)

1. classifier ExtraTree

2. numIterations 500 750 1000

3. representCopiesUsingWeights true, false

4. numExecutionSlots 8

• BFTree

1. minNumObj 2,3,4,5

2. numFoldsPruning 2,3,4...12

3. pruningStrategy 0,1,2

4. useGini true, false

5. useOneSE true, false

• CascadeGeneralization(combo1)

1. useLogOdds false

2. metaClassifier.minNumInstances 5,10,15

3. numFolds 10

4. classifiers[1].minNum 1.0

5. classifiers[1].minVarianceProp 0.1,0.01

6. classifiers[3].ridge 1.0E-7, 1.0E-9

7. classifiers[4].minNum 2,5,8

8. classifiers[4].minVarianceProp 0.01,0.01

9. classifiers[4].numFolds 3,4,5,6

10. classifiers [IB1, RandomTree, NaiveBayes, LDA, REPTree]

• CDT

1. SValue 1.0,1.0...5.0

2. minVarianceProp 0.0005,0.0010....0.0025

3. noPruning true, false

• ConjunctiveRule

1. folds 3,4,5

2. minNo 2,3,4,5

3. numAntds -1,1,2,3

98

• DecisionStump No parameters

• DecisionTable

1. evaluationMeasure acc,rmse,mae,auc

2. useIBk true,false

3. search BestFirst, GreedyStepWise

4. search.direction 0,1,2

5. search.searchTermination 5

6. search

7. search.conservativeForwardSelection true, false

• Elman

1. trainingTime 600,1200,1800 item hiddenLayers 2,3,5,8

2. learningRate 0.5,0.4,0.3,0.2,0.1

3. momentum 0.01,0.05, 0.001,0.005,0.01,0.05,0.1

4. nominalToBinaryFilter false

5. normalizeAttributes false

6. normalizeNumericClass false

7. decay false

• ExtraTree No parameters

• ForestPA

1. numberOfTrees 100

2. simpleCartMinimumRecords 2,3,4,5

3. simpleCartPruningFolds 2,3,4,5

• FT

1. numBoostingIterations 5,10,15,20,25

2. modelType 0,1,2

3. minNumInstances 5,7,9...25

4. weightTrimBeta 0,0.01,0.02

5. useAIC true,false

• FURIA

1. folds 2,3,4,5

2. minNo 2,3,4,5

3. optimizations 2,4...10

99

4. TNorm 0,1

5. uncovAction 0,1,2

• Grading(combo1)[IBk]

1. numFolds 10

2. classifiers[0].minNum 1.0

3. classifiers[0].minVarianceProp 0.1,0.01

4. classifiers[1].ridge 1.0E-7, 1.0E-9

5. classifiers[2].minNum 2,5,8

6. classifiers[2].minVarianceProp 0.1,0.01

7. classifiers[2].numFolds 3,4,5,6

8. metaClassifierIBk

9. metaClassifier.KNN 10

10. metaClassifier.distanceWeighting Weight by 1-distance

11. classifiers [RandomTree, LDA, REPTree, NaiveBayes, IB1]

• Grading(combo1)[ZeroR]

1. numFolds 10

2. classifiers[0].minNum 1.0

3. classifiers[0].minVarianceProp 0.1,0.01

4. classifiers[1].ridge 1.0E-7, 1.0E-9

5. classifiers[2].minNum 2,5,8

6. classifiers[2].minVarianceProp 0.1,0.01

7. classifiers[2].numFolds 3,4,5,6

8. classifiers [RandomTree, LDA, REPTree, NaiveBayes, IB1]

• HoeffdingTree

1. leafPredictionStrategy 0,1,2

2. splitCriterion 0,1,2

3. splitConfidence 1.0E-8,5.0E-8,1.0E-7,5.0E-7,1.0E-6

4. hoeffdingTieThreshold 0.03, 0.035, 0.04...0.1

5. minimumFractionOfWeightInfoGain 0.01,0.015,0.02...0.05

6. gracePeriod 50,100,150...500

7. naiveBayesPredictionThreshold 0,10,50,100,200

• HoeffdingTree No parameters

• IB1 No parameters

100

• IBk

1. KNN 1,25,50,100

2. crossValidate true, false

3. distanceWeighting No distance weighting, Weight by 1/distance, Weight
by 1-distance

4. nearestNeighbourSearchAlgorithm BallTree,CoverTree,KDTree

5. nearestNeighbourSearchAlgorithm.ballTreeConstructor BottomUpConstructor,
MiddleOutConstructor, TopDownConstructor

6. nearestNeighbourSearchAlgorithm.nodeSplitter MedianOfWidestDimension,MidPointOfWidestDimension,SlidingMidP

7. nearestNeighbourSearchAlgorithm.distanceFunction EuclideanDistance

8. nearestNeighbourSearchAlgorithm.skipIdentical true, false

• J48

1. confidence 0.15,0.20...0.55

2. minNumObj 2,3,4,5

3. reducedErrorPruning true

4. useLaplace true,false

5. useMDLcorrection true,false

• J48Consolidate

1. RMbagSizePercent -2,-1

2. RMnewDistrMinClass 50

3. RMnumberSamples 75,85,90

4. RMnumberSamplesHowToSet -C

5. RMreplacement false

6. collapseTree true,false

7. confidenceFactor 0.10,0.13...0.25

8. doNotMakeSplitPointActualValue true,false

9. minNumObj 2,4,6

10. subtreeRaising true,false

11. useLaplace true,false

12. useMDLcorrection true,false

• J48Graft

1. confidenceFactor 0.15,0.17...0.25

2. minNumObj 2,3,4,5

3. subtreeRaising true

101

4. relabeltrue,false

5. useLaplace true,false

• JRip

1. folds 2,3,4,5

2. minNo 2,3,4,5

3. optimizations 2,4...10

4. usePruningtrue,false

• LadTree

1. numOfBoostingIterations 10,25,50,100

• LDA

1. ridge 1.0E-5,5.0E-5,1.0E-6,5.0E-6,1.0E-7

• libLINEAR

1. SVMType 0,1...7

2. eps 0.005,0.01...0.05

3. cost 1,2,3,4

• libSVM

1. cacheSize 400

2. SVMType 0,1

3. cost 0.5,1...2.5

4. degree 2,2.5...5

5. kernelType 0,1,2,3

6. nu 0.3,0.4...0.7

7. probabilityEstimates true, false

8. shrinking true,false

• LogitBoost

1. numIterations 100,200...500

2. ZMax 2,2.5...5

3. shrinkage 0.05,0.1,0.2

4. useResamplingtrue,false

5. useEstimatedPriors true,false

• MultiBoostAB

102

1. useResampling true,false

2. numSubCmtys 3,5,10

3. numIterations 25,50,100

4. classifierSimpleCart

5. classifier.useOneSE true,false

6. classifier.numFoldsPruning 3,4,5

• MultiLayerPerceptron

1. learningRate 0.2,0.3,0.5

2. momentum 0.1,0.15...0.3

3. trainingTime 500,750,1000

4. hiddenLayersa,5,10,25

5. decay false

• MultiScheme(combo1)

1. numFolds 0,5,10

2. classifiers[0].minNum 1.0

3. classifiers[0].minVarianceProp 0.1,0.01

4. classifiers[1].ridge 1.0E-7,1.0E-9

5. classifiers[2].minNum 2,5,8

6. classifiers[2].minVarianceProp 0.1,0.01

7. classifiers[2].numFolds 3, 4, 5, 6

8. classifiers [RandomTree, LDA, REPTree, NaiveBayes, IB1]

• NaiveBayes

1. useKernelEstimator true, false

2. useSupervisedDiscretizatiom true, false

• NaiveBayesUpdateable

1. useKernelEstimator true, false

2. useSupervisedDiscretizatiom true, false

• NBTree No parameters

• NNge

1. numAttemptsOfGeneOption 5,9...25

2. numFoldersMIOption 5,9...25

• OLM

103

1. resolutionMode 0,1,2,3

2. classificationMode 1,0

• OneR

1. minBucketSize 5,9...25

• PART

1. binarySplits true, false

2. confidenceFactor 0.15,0.2...0.5

3. minNumObj 2,3,4,5

4. reducedErrorPruning true, false

5. unpruned true, false

6. useMDLcorrection true, false

• PCT

1. minNumInstances 5,15,25,50,100

2. useAIC true, false

• QDA

1. ridge 1.0E-7,5.0E-7,1.0E-6,5.0E-6,1.0E-5

• RandomCommittee(ExtraTree)

1. numIterations 500,1000,2500

• RandomCommittee(RandomTree)

1. numIterations 500,1000,2500

2. classifier.minNum 1,2,3,5

3. classifier.minVarianceProp 0.0001, 0.0005, 0.001, 0.005, 0.01

• RandomForest

1. numIterations 500,1000,2500

2. classifier.minNum 1,2...5

3. classifier.minVarianceProp 0.0001, 0.0005, 0.001, 0.005, 0.01

• RandomSubSpace(ExtraTree)

1. numIterations 100

2. classifier ExtraTree

• RandomSubSpace(RandomTree)

104

1. numIterations 100

2. classifier RandomTree

3. classifier.minNum 1,2

4. classifier.minVarianceProp 0.0005, 0.001...0.005

• RandomSubSpace(REPTree)

1. numIterations 100

2. classifier REPTree

3. classifier.minNum 2,3,4,5

4. classifier.minVarianceProp 0.01, 0.001, 0.005, 0.0001, 0.0005

5. classifier.numFolds 2,4...10

6. classifier.spreadInitialCount

7. classifier-noPruning true

• RandomTree

1. breakTiesRandomly true, false

2. minNum 1, 2

3. minVarianceProp 0.0005, 0.001...0.0025

• REPTree

1. minNum 2, 3, 4, 5

2. minVarianceProp 0.01, 0.001, 0.0001, 0.0001

3. numFolds 4,5...10

4. spreadInitialCount true, false

5. noPruning true

• Ridor

1. folds 3, 4, 5

2. shuffle 1, 2 ... 5

3. minNo 2,3...5

4. wholeDataErr true, false

• SimpleCart

1. minNumObj 2, 3, 4

2. numFoldsPruning 3, 4, 5

3. useOneSE true, false

• SimpleLogistic

105

1. maxBoostingIterations 100, 300 ... 900

2. heuristicStop 10, 28 ... 100

3. weightTrimBeta 0, 0.5 ... 2.0

4. useAIC true, false

5. errorOnProbabilities true, false

• SMO

1. c 1.0, 2.5, 5.0, 10.0

2. calibrator.ridge 1.0E-7, 5.0E-7, 1.0E-8, 5.0E-8, 1.0E-9

3. calibrator.useConjugateGradientDescent true, false

4. kernel.cacheSize 500287

5. kernel PolyKernel, Puk, RBFKernel,

6. kernel.exponent 2.0

7. kernel.useLowerOrdertrue, false

8. kernel.omega 1.0, 2.5, 5.0, 10.0

9. kernel.sigma 1, 2.5, 5, 10

10. kernel.gamma 0.03, 0.02, 0.01, 0.008, 0.005

11. filterType No normalization/standardization

• StackingC(combo1)

1. metaClassifier.attributeSelectionMethod 0, 1, 2

2. metaClassifier.eliminateColinearAttributes true, false

3. metaClassifier.ridge 1.0E-5, 1.0E-7

4. classifiers[0].minNum 1

5. classifiers[0].minVarianceProp 0.1, 0.01

6. classifiers[1].ridge 1.0E-7, 1.0E-9

7. classifiers[2].minNum 2,5,8

8. classifiers[2].minVarianceProp 0.1, 0.01

9. classifiers[2].numFolds 3, 4, 5, 6

10. classifiers [RandomTree, LDA, REPTree, NaiveBayes, IB1]

• StackingC(combo2)

1. metaClassifier.attributeSelectionMethod 0, 1, 2

2. metaClassifier.eliminateColinearAttributes true, false

3. metaClassifier.ridge 1.0E-5, 1.0E-7

4. classifiers[0].minNum 1, 2

106

5. classifiers[0].minVarianceProp 0.002, 0.004

6. classifiers[1].ridge 1.0E-5, 1.0E-7

7. classifiers[3].SVMType 0, 1, 2, 5, 6, 7

8. classifiers[3].eps 0.02, 0.04

9. classifiers[3].epsilonParameter 0.2, 0.4

10. classifiers[3].cost 2, 4

11. classifiers [RandomTree, ExtraTree, LDA, libLINEAR]

• Vfdr

1. gracePeriod 10, 15 ... 50

2. nbWeightTreshold 5, 7 ... 25

3. predictionStrategy 0, 1

4. hoeffdingConfidence 1.0E-8, 5.0E-7, 1.0E-7, 5.0E-6, 1.0E-6, 5.0E-5,
1.0E-5

• VFI

1. bias 0.2, 0.3 ... 1.2

2. weightByConfidence true, false

• Vote(combo1)

1. classifiers[0].minNum 1

2. classifiers[0].minVarianceProp 0.1, 0.01

3. classifiers[1].ridge 1.0E-7, 1.0E-9

4. classifiers[2].minNum 2, 5, 8

5. classifiers[2].minVarianceProp” 0.1, 0.01

6. classifiers[2].numFolds 3, 4, 5, 6

7. classifiers

• Vote(combo2)

1. classifiers[0].minNum 1

2. classifiers[0].minVarianceProp 0.1, 0.01

3. classifiers[1].ridge 1.0E-7, 1.0E-9

4. classifiers[2].minNum 2, 5, 8

5. classifiers[2].minVarianceProp” 0.1, 0.01

6. classifiers[2].numFolds 3, 4, 5, 6 item

7. [RandomTree, LDA, REPTree, NaiveBayes, IB1]

• Vote(combo2)

107

1. classifiers[0].minNum 1

2. classifiers[0].minVarianceProp 0.1, 0.01

3. classifiers[2].ridge 1.0E-5, 1.0E-7

4. classifiers[3].SVMType 0, 1, 2, 5, 6, 7

5. classifiers[3].eps 0.02, 0.04

6. classifiers[3].epsilonParameter 0.2, 0.4

7. classifiers[3].cost 2, 4

8. classifiers [RandomTree, ExtraTree, LDA, libLINEAR]

108

Appendix B

R code

B.1 R script for tuning

The tuning script can be used by calling the tunec function, it needs the number
of tuning parameters, the method(algorithm) and a tunegrid for this algorithm.
In this example it uses svmPoly, to change to RFlda call the function, e.g.
tunec(1,f,train control,”RFlda”,expand.grid(.q=c(1:5))).

more libraries may be required, depending on the classification algorithm.

library(caret)

library(RWeka)

library(doParallel)

#where the files are

setwd("D:/Datasets")

#find all .arff files, recursive

files<-list.files(pattern=".arff$", recursive=TRUE)

#ten fold cross-validation

train_control<-trainControl(method="cv", number=10)

tunec<-function(tune,data,cv,mt,tg)

{

#let’s use 8 threads

cl <- makeCluster(8)

registerDoParallel(cl)

print(sprintf("starting dataset %s.",data))

#same seed for all methods...

set.seed(765)

dataset<-read.arff(sprintf("%s",data))

model<-train(dataset[,1:(ncol(dataset)-1)],dataset[,ncol(dataset)],

trControl=cv,method=mt,tuneGrid=tg)

stopCluster(cl)

109

#let’s order on accuracy, best first

res<-model$results[order(-model$results$Accuracy),]

#before attempting this, create a folder, here called svmPoly,

#and a file params.txt with the line "method,Software,Type",

#in this case svmPoly,R,SVM

write(sprintf("’%s’,’degree=%s, scale=%s, C=%s’",shortname(data),

model$bestTune$degree,model$bestTune$scale,model$bestTune$C),

sprintf("C:\\Users\\tom\\Desktop\\%s\\params.txt",mt),append=TRUE)

write(sprintf("%s,%s",head(res[1+tune],1),head(res[2+tune],1)),

sprintf("C:\\Users\\tom\\Desktop\\%s\\%s.txt",mt,shortname(data)),append=TRUE)

print(res)

print(sprintf("finished dataset %s.",data))

}

#datafiles are in their own folder, e.g. abalone/abalone.arff

function removes all infront of / and the ending, e.g.

#shortname("abalone/abalone.arff")="abalone"

shortname<-function(instr)

{

return(gsub(".arff","",gsub("^.*\\/","",instr)))

}

#for each .arff file

for(f in files)

{

tunec(3,f,train_control,"svmPoly",expand.grid(.degree=c(1,1.5,2,2.5,3),

.scale=c(0.01,0.001,0.1,1,10),.C=c(0.25,0.5,1,2,3,4)))

}

B.2 R script for repeated cross-validation

library(caret)

library(RWeka)

library(doParallel)

setwd("D:/Datasets")

#this time we repeat the 10 fold cross-validation 99 times.

tr<-trainControl(method="repeatedcv",number=10,repeats=99)

#this script has to adapted to each method, the less parameters, the less work.

repcv<-function(data,mt,cv,d,s,c)

{

#8 threads again

cl <- makeCluster(8)

registerDoParallel(cl)

110

print(sprintf("starting %s",data))

set.seed(765)

dataset<-read.arff(sprintf("%s",data))

mod<-train(dataset[,1:(ncol(dataset)-1)],dataset[,ncol(dataset)],

trControl=cv,method=mt,tuneGrid=expand.grid(.degree=d,.scale=s,.C=c))

stopCluster(cl)

il<-sprintf("C:\\Users\\tom\\Desktop\\%s\\%s.txt",mt,shortname(data))

sink(il,append=TRUE)

ctr=1

ct=1

k=0

a=0

#we have 990 values for kappa and accuracy(99x10 folds)

#we add them 10 times and divide by 10

while(ctr<991)

{

k=k+mod$resample[ctr,2]

a=a+mod$resample[ctr,1]

if(ct==10)

{

cat(sprintf("\n%s,%s",toString(a/10),toString(k/10)))

ct=0

k=0

a=0

}

ctr=ctr+1

ct=ct+1

}

sink()

print(sprintf("end %s",data))

}

shortname<-function(instr)

{

return(gsub(".arff","",gsub("^.*\\/","",instr)))

}

finishstuff<-function(tr)

{

#one line per dataset

repcv("acute-inflammation/acute-inflammation.arff","svmPoly",tr,1,0.1,0.25)

repcv("acute-nephritis/acute-nephritis.arff","svmPoly",tr,1,1,0.25)

}

finishstuff(tr)

111

Appendix C

Java code

The java code is too large to print. See the usb. The following is the modifications
we made to the different packages.
Core WEKA package
Modified normalize method for weka.core.Utils

public static void normalize(double[] doubles, double sum)

{

if (Double.isNaN(sum))

{

//throw new IllegalArgumentException("Can’t normalize array. Sum is NaN.");

sum = 0;

}

if (sum == 0)

{

// Maybe this should just be a return.

//throw new IllegalArgumentException("Can’t normalize array. Sum is zero.");

return;

}

for(int i = 0; i < doubles.length; i++)

{

doubles[i] /= sum;

}

}

Fuzzy Unordered Rule Induction Package
Modification of FURIAs rulesetForOneClass method, in the optimization stage

if (Double.isNaN(repDL) || Double.isInfinite(repDL))

{

repDL = Double.MIN_VALUE;

//throw new Exception("Should never happen: repDL" +

"in optmz. stage NaN or " + "infinite!");

}

112

We added this method to the Vfdr class.

//Get method for the HoeffdingTieThreshold

public double getHoeffdingTieThreshold()

{

return m_hoeffdingTieThreshold;

}

Vfdr Package
Modified version of Vfdrs setOptions method

@Override public void setOptions(String[] options) throws Exception

{

String gracePeriod = Utils.getOption(’G’, options);

if (gracePeriod.length() != 0)

{

setGracePeriod(Integer.parseInt(gracePeriod));

}

String nbThreshold = Utils.getOption(’N’, options);

if (nbThreshold.length() != 0)

{

setNBWeightThreshold(Double.parseDouble(nbThreshold));

}

String predictionStrat = Utils.getOption(’R’, options);

if (predictionStrat.length() != 0)

{

setPredictionStrategy(Integer.parseInt(predictionStrat));

}

//Previously mapped to the hoeffdingConfidence

String hoeffdingTieThreshold = Utils.getOption(’T’, options);

if (hoeffdingTieThreshold.length() != 0)

{

setHoeffdingTieThreshold(Double.parseDouble(hoeffdingTieThreshold));

}

//The C option was not previously parsed

String hoeffdingConfidence = Utils.getOption(’C’, options);

if (hoeffdingConfidence.length() != 0)

{

setHoeffdingConfidence(Double.parseDouble(hoeffdingConfidence));

}

setOrderedSet(Utils.getFlag(’O’, options));

super.setOptions(options);

Utils.checkForRemainingOptions(options);

}

MODLEM Package
The modified setOptions method for MODLEM.

113

public void setOptions(String[] options)throws Exception

{

String value = Utils.getOption("RT", options);

if (value.toLowerCase().equals("c") || value.equals("0"))

{

setRulesType(new SelectedTag(0, RULES_TYPES));

}

else if (value.toLowerCase().equals("l") || value.equals("1"))

{

setRulesType(new SelectedTag(1, RULES_TYPES));

}

else if (value.toLowerCase().equals("u") || value.equals("2"))

{

setRulesType(new SelectedTag(2, RULES_TYPES));

}

else

{

//throw new IllegalArgumentException("Invalid rules approximation type");

}

value = Utils.getOption("CM", options);

if (value.toLowerCase().equals("e") || value.equals("0"))

{ setConditionsMeasure(new SelectedTag(0, CONDITIONS_MEASURES));

}

else if (value.toLowerCase().equals("l") || value.equals("1"))

{

setConditionsMeasure(new SelectedTag(1, CONDITIONS_MEASURES));

}

else

{

//throw new IllegalArgumentException("Invalid conditions measure");

} value = Utils.getOption("CS", options);

if (value.toLowerCase().equals("n"))

{

setClassificationStrategy(new SelectedTag(1, CLASSIFICATION_STRATEGIES));

}

else if (value.toLowerCase().equals("s") || value.equals("0"))

{

setClassificationStrategy(new SelectedTag(0, CLASSIFICATION_STRATEGIES));

} else if (value.toLowerCase().equals("d") || value.equals("2"))

{

setClassificationStrategy(new SelectedTag(2, CLASSIFICATION_STRATEGIES));

}

else if (value.toLowerCase().equals("m") || value.equals("8"))

{

setClassificationStrategy(new SelectedTag(8, CLASSIFICATION_STRATEGIES));

}

114

else if (value.toLowerCase().equals("c") || value.equals("6"))

{

setClassificationStrategy(new SelectedTag(6, CLASSIFICATION_STRATEGIES));

}

else if (value.toLowerCase().equals("l") || value.equals("3"))

{

setClassificationStrategy(new SelectedTag(3, CLASSIFICATION_STRATEGIES));

}

else if (value.toLowerCase().equals("1") || value.equals("1"))

{

setClassificationStrategy(new SelectedTag(1, CLASSIFICATION_STRATEGIES));

}

else

{

//throw new IllegalArgumentException("Invalid classification strategy");

}

value = Utils.getOption("AS", options);

if (value.toLowerCase().equals("f") || value.toLowerCase().equals("0"))

{

setMatchingType(new SelectedTag(0, MATCHING_TYPES));

}

else if (value.toLowerCase().equals("m") || value.toLowerCase().equals("1"))

{

setMatchingType(new SelectedTag(1, MATCHING_TYPES));

}

else if (value.toLowerCase().equals("a") || value.toLowerCase().equals("2"))

{

setMatchingType(new SelectedTag(2, MATCHING_TYPES));

}

else

{

//throw new IllegalArgumentException("Invalid matching type");

}

super.setOptions(options);

}

115

