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Abstract: Wind energy is an abundant renewable energy resource that has been extensively used
worldwide in recent years. The present work proposes a new Multi-Objective Optimization (MOO)
based genetic algorithm (GA) model for a wind energy system. The proposed algorithm consists
of non-dominated sorting which focuses to maximize the power extraction of the wind turbine,
minimize the cost of generating energy, and the lifetime of the battery. Additionally, the performance
characteristics of the wind turbine and battery energy storage system (BESS) are analyzed specifically
torque, current, voltage, state of charge (SOC), and internal resistance. The complete analysis is
carried out in the MATLAB/Simulink platform. The simulated results are compared with existing
optimization techniques such as single-objective, multi-objective, and non-dominating sorting GA
II (Genetic Algorithm-II). From the observed results, the non-dominated sorting genetic algorithm
(NSGA III) optimization algorithm offers superior performance notably higher turbine power output
with higher torque rate, lower speed variation, reduced energy cost, and lesser degradation rate of
the battery. This result attested to the fact that the proposed optimization tool can extract a higher
rate of power from a self-excited induction generator (SEIG) when compared with a conventional
optimization tool.

Keywords: dominating and non-dominated sorting; genetic algorithm; multi-objective optimization
(MOO); single-objective optimization; wind energy system

1. Introduction

The global economy has a direct impact on energy which acts as a prime driving
force [1]. However, fossil fuel-based generation from coal and oils threatens the climatic
conditions which increase carbon emission significantly [2]. Renewable energy (RE) is an
important alternative source to reduce the usage of fossil fuels and the design of renewable
energy-based system depend on numerous factors in order to ensure their competitiveness
and importance. Renewables such as wind, solar, biomass, and hydropower play an
important role to replace the conventional system [3].

There had always been a consistent push from the state government as well as the
central government in many developing countries, for instance India, to initiate attractive
Renewable Energy policies [4–6]. The specific renewable energy has been advanced based
on the technologies for the electricity generation [7]. By taking these effective steps,
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the country can become rich in renewable energy production and can pave the way for
the Sustainable Development Goal 7 attainment [8]. In recent times, the wind energy
system (WES) has become the most important renewable energy resource (RES) conversion
system and it is expected to rise more than 1000 GW by the year 2030 [9]. It has gained its
importance as one of the most important renewable energy sources by being an eco-friendly
energy resource [10,11]. There has been more competition for wind energy in the energy
market and many methods are implemented by researchers to improve the reliability,
maintenance, and increase in investment to develop renewable energy system utilization
based on the potential of wind energy [12,13]. It also has undergone many modernization
processes to ensure efficient operation [14,15]. Technically, many researchers are making
efforts to improve the system to the maximum level. Many problems are also rectified
related to the aerodynamic optimization of a wind turbine, the power curve at different
speeds, the position of a wind turbine in the wind farm, and the blade shape of the
wind turbine [16–18]. The important aspect is to maximize power extraction from the
available resources. To justify the maximum power extraction, the wind speed analysis
to be considered through modelling [19]. Further, storage integration using a battery
energy management system (BESS) is currently a significant topic in energy systems
study, predominantly due to the need for high RE capacities [20]. Considering these
inferences, the following subsection describes the literature review on WES, research gaps
and motivation, and contributions to the work.

1.1. Literature Review on Optimization Algorithm for WES

Over the past decade, many optimization techniques were introduced to solve the
issues in renewable energy sources particularly solar and wind energy systems. The recent
progress of the existing WES optimization algorithms is tabulated in Table 1.

Table 1. Existing survey report relating various optimization techniques.

Ref. No Method/Algorithm
Adopted Description Core Objectives Research Gaps

[21]

Scenario based-Non
dominated sorting
genetic algorithm

(NSGA)-II

• Implemented for
hybrid energy system
using a multi-scenario
strategy.

• Wind turbines,
Photovoltaic systems,
and batteries are used.

• Minimization of loss of
power supply.

• Minimization of the
annualized system cost.

• Maximization of
power extraction
was not made.

[22] NSGA-II

• Implemented for
hybrid
solar–wind–battery
generation system

• Total system cost (TSC).
• Loss of power supply

probability.

• Maximization of
power extraction
and minimization
of energy cost was
not demonstrated.

[23] NSGA-II

• Demonstrated for
economic dispatch
model of a microgrid.

• Maximize the benefits
of the grid.

• Minimize the cost of
generating electricity.

• Minimize the unit price
of energy.

• Multi-scenario
objectives were
not adopted.

[24] NSGA-II

• Implemented for
renewable energy
resources under
uncertainties.

• Minimum system total
cost.

• Maximum reliability.

• Battery
performances
were not
described notably.
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Table 1. Cont.

Ref. No Method/Algorithm
Adopted Description Core Objectives Research Gaps

[25]
Grey wolf optimizer

(GWO)-Particle swarm
optimization (PSO)

• Adopted for power
dispatch problem for
the hybrid objective
system.

• To minimize power
loss.

• To avoid the deviation
in the load voltage.

• It had no ability in
solving non-linear
distribution.

[26] Salp-Swarm
optimization (SSO)

• Analyzed the
performance of PV
systems.

• To achieve maximum
output power.

• Cost analysis was
not made.

[27] Techno-economic
optimization (TEC)

• A Hybrid (PV–wind)
renewable energy
system is designed
using TEC.

• This technique was
utilized mainly for the
concentration on energy
supply and battery
storage.

• To evaluate the energy
supply performance to
know the cost function.

• It is applicable
only for
economical
abilities.

[28] COMPSO based
optimization.

• Applied for various
renewable energy
resources systems.

• It suggested the
planning period for the
installation of
renewables but it was
based on the
assumptions for
investments and
production.

• To minimize the
operation and
maintenance cost.

• Applicable only in
high dimensional
process.

[29] Moth flame
optimization

• Demonstrated the
effective assessment of
onshore and offshore
wind energy potential
using the proposed
algorithm to identify
the potential location
for wind energy
conversion systems.

• To minimize the error
in the wind speed
distribution.

• The dynamic
behavior of the
system was not
pre-dominant.

[30] GWO

• Implemented for
PV-wind, diesel
generator, and battery
to minimize the total
annual cost of batteries.

• However,
the operational cost of a
diesel generator unit
was expensive.

• Cost of the system is
reduced.

• It has no ability in
solving non-linear
distribution.
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Table 1. Cont.

[31] Commercial power
optimizer

• It is used to find the
optimal design for the
switching converters,
where it has to be
linked for renewable
energy

• To obtain maximum
power.

• It is not suitable of
high-performance
power electronic
converters

[32]

Multi-Objective
Optimization (MOO)
based Strength Pareto

Evolutionary
Algorithm

• The aim of this
algorithm is to locate
and maintain a
collection of
non-dominated
solutions by the search
area.

• A utility function is
used during the
selection process.

• To minimize the power
loss.

• The emission
should be limited
while RE is
operating.

[33]

ε based MOO for
renewable

energy-distributed
generation

• Overall cost of the
power system operation
to be reduced.

• Function cost.
• Emission objective.

• Pareto solutions
are scattered in
this optimization

[34]
Goal

programming-based
MOO RES

• To be implemented in
the favor of stock
holders.

• To reduce the operation
time.

• Not all solutions
are generated

[35]

Technique for Order
Preference by Similarity

to Ideal Solution
(TOPSIS) approach

with MOO

• It is used for identifying
the most and least
important technical
criteria in hybrid
renewable energy.

• To minimize the cost. • Time consuming.

[36] PSO (Particle Swamm
Optimization)

• Applied for optimum
sizing of
grid-dependent
variables to minimize
the investment cost in
electricity demand.

• However,
the computational
proficiency of grid
utility had contrast
with this optimization
technique.

• The particles are
optimized to track for
maximum power.

• Slow convergence
in the iteration
process.

[37] Robust optimization
technique

• Implemented for
energy management in
the wind turbine.

• The load curve was
flattened more and the
cost of the model was
not decreased to the
notable point.

• Energy procurement
cost energy is
optimized.

• Sometimes
solutions are
highly
conservative.
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Table 1. Cont.

[38] Interval optimization

• Implemented to
recognize the power
uncertainty in the wind
turbine.

• It worked based on the
prediction where the
accurate values were
not taken.

• Generating cost is
optimized.

• Solutions are far
from optimal.

[39]
Sugeno fuzzy logic

controller-based whale
optimization technique

• Adopted for
grid-connected variable
speed generators.

• It was utilized to
improve the peak
power in the wind
turbine.

• However, the system
had unbalanced faults
to overcome.

• To extract maximum
power.

• Low accuracy and
cannot perform
well in high
optimization

[40] Enhanced whale
optimization technique

• This technique was
implemented to achieve
maximum power
tracking in wind
generators.

• However, there were
fluctuations in the
frequency range during
the implementation of
this optimization
technique.

• To optimize wind
speed.

• It has slow
convergence
while tracking.

1.2. Research Gaps and Motivation

Consolidating all the advantages and drawbacks from the literature reports, there
is a need to adopt a powerful optimization technique to enhance the RES system further
by focusing on both technical and economic concerns. As the combinations of the multi-
scenario-multi-objective strategy were not demonstrated by the authors greatly. Further,
the existing optimization algorithm had various concerns notably convergence compli-
cations while adopting multi-scenario-multi-objective problems. Moreover, energy cost
and battery performance were not discussed extensively. It is observed that the adapta-
tion of the NSGA II algorithm for RES application was described extensively by many
researchers [41] to optimize the sizing of multi-source renewable energy systems. However,
the effectiveness of the NGSA-III algorithm for RES has not been demonstrated by re-
searchers particularly for optimization of the wind energy system in terms of technical and
economic concerns. Therefore, this work focuses to propose an effective multi-objective
NSGA III optimization method to choose the best subset of features in the system to achieve
flexibility in the wind energy [42]. The major advantages of the NSGA III algorithm over
existing multi-objective algorithms are as follows [43];

• It uses the information from a set of supplied reference points and niche technology to
select the new parent population.

• It improves the diversity of the population greatly and shows the ability to solving
multi-objective problems.

• It uses a fixed rate for mutation operators.
• The adaptive mutation operators of the algorithm can be deal with big data optimiza-

tion problems effectively.
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Considering these advantages, the NSGA III-based multi-objective optimization of
the energy systems is important for finding the potential variables for enhancing system
performance. It forms a suitable method for wind energy systems compare to existing
optimization for choosing two or more objectives simultaneously [44]. Various generators
for wind turbines can be installed such as PMSG (Permanent Magnet Synchronous Genera-
tor), DFIG (Doubly Fed Induction Generator), and self-excited induction generator (SEIG).
PMSG has high oscillations in DC-link voltage when connected to the grid through wind
turbine [45]. DFIG has more power loss due to the presence of gear box that leads to low
efficiency [46]. A Self-Excited Induction Generator (SEIG) is considered in this work for
the wind turbine which has a high torque, high efficiency, less oscillations in a DC-link
voltage. In a nutshell, this work focuses to demonstrate the effectiveness of the NSGA-III
optimization technique in the wind energy system with SEIG wind turbines.

1.3. Objectives of the Work

Based on the available research gaps from the existing literature report, this work chief
focuses on the following objectives using the NSGA III algorithm;

• To check the effectiveness of the NSGA III algorithm for the optimization approach in
WES.

• To evacuate the higher rate of electrical power from SEIG.
• To reduce the cost of energy (COE) from WES.
• To analyze the SEIG parameters such as current, voltage, torque, and rotor speed.
• To study the degradation rate of the battery against operating hours.
• To study the internal resistance characteristics of the battery during the charging and

discharging process.

The rest of this research article is organized as follows. Section 2 describes the wind
energy systems. Section 3 describes the proposed methodology which includes the algo-
rithm of NSGA-III and SEIG modelling. The effectiveness of the proposed methodology
and comparative study with existing optimization techniques is demonstrated in Section 4.
Lastly, Section 5 concludes the work by highlighting the obtained results.

2. Wind Energy System

The effective operation of a wind energy system is tested by implementing the existing
algorithm and proposed algorithm in this work. The wind energy system operation is
shown in Figure 1. It consists of wind turbines, a battery energy storage system (BESS),
DC/DC converters, DC bus, DC/AC converters, and loads. The wind turbine comprises
of self-excited induction generator (SEIG) with a small scale rated connected in parallel
and the generated energy is stored in the battery energy storage system (BESS). A DC/DC
converter is an electronic circuit that converts a source direct current (DC) from one
voltage magnitude to another. The DC bus integrates the various sources and maintains
the specified voltage constantly. The load consumes the energy in terms of AC supply
and therefore DC/AC converters are adapted for DC to AC conversion. A bi-directional
converter also plays a major role to achieve the maximum power in the wind turbine
RES [47]. The efficiency of the wind turbine is considered 20% with a maximum and
minimum wind speed of 25 and 3 m/s, respectively. The maximum power of the turbine is
estimated to be 10 kW with an average wind speed of 11 m/s.
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2.1. Electrical Power Output

The power extraction from the wind energy system is evaluated using Equation (1)
according to wind speed and rated power of the individual turbine [48].

Pe = PR


0
Pn
1
0

V < Vi
Vi ≤ V ≤ VR
VR ≤ V ≤ V0

V ≥ V0

 (1)

where PR is the rated power of the turbine in Watts, Vi denotes the cut-in-speed of the wind
in m/s, V0 represents the cut-out-speed of the wind in m/s, and the term VR denotes the
average wind speed in m/s.

2.2. Cost Components

The cost analysis is carried out using the cost of energy (COE) per kWh and it can be
determined by the following expression [36]:

COE =
PVC

CF× AEP× Li f e O f time
(2)

PVC states the Present value cost that can be derived as follows;

PVC = 1 + Comr

(
1 + i
r− i

)
×
[

1−
(

1 + i
1 + r

)n]
− S

(
1 + i
1 + r

)n
(3)

where I represents the investment cost, r denotes a discount rate, Comr is the cost of operation
and maintenance, the term i states the inflation rate, S defines the salvage values, and n
defines the lifetime of the turbine. The cost breaks up of the 10-kW turbine is illustrated in
Table 2.
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Table 2. Cost breakup of 10-kW turbine.

Component Percentage Values

Capital cost (I)

Plant and machinery
(PM) 85% of I Rs. 44.62 Lacs

Civil and constructions
(CC) 10% of I Rs. 5.25 Lacs

Land cost (LC) 5% of I Rs. 2.625 Lacs

Operation and
maintenance (Comr) cost

PM 1.1% of PM Rs. 0.490 Lacs

CC and LC 0.22% of CC and LC Rs. 0.017 Lacs

Discount rate (r) - 8.75% of I Rs. 0.045 Lacs

Inflation rate (i) - 12% of I 6.3 Lacs

Salvage value (S) - 10% of I 5.25 Lacs

Lifetime of Turbine (n) - - 25 years

The Annual Energy Production (AEP) cost is an important term to investigate the
annual performance of the wind turbine. It can be computed as follows:

AEP(kWh) = Pe,avg × time = Pe,avg(kW)× 8760(hours) (4)

Then the capacity factor (CF) is defined as the ratio between the average output powers
to the rated power of the wind turbine. It is dimensionless and can be expressed as follows:

CF =
Pe,avg

PR
(5)

2.3. BESS

BESS is determined in three stages to known the performance of the battery storage.
They are as follows:

2.3.1. State of Charge (SOC)

The battery energy storage is the main part of the wind energy system. There are
various types of battery models, where it will provide a particular type of battery [49].
The model for the battery energy storage systems is as follows:

y(n + 1) = r(y(n)) + s(y(n), z(n)) (6)

The functions r and s as follow:

y(n) = α(n)n (7)

and,

s(y, z) =


β(y)Mc
B(y)u
−δ(n)u
−δ(n)Md

f or
f or
f or
f or

u > Mc
0 ≤ u ≤ Mc
−Md ≤ u ≤ 0

u ≤ Md

 (8)

With the following constraints,
r(y(n)) ≤ y(n) ∀ y(n)
s(y(n)), 0) = 0 ∀ y(n)

s(y(n), z(n)) ≤ z(n) ∀ y(n), z(n)

 (9)

where α denotes the battery self-discharge rate in percentage/day, β states the charging
efficiency in percentage, δ terms the discharge efficiency in percentage, Mc represents the
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maximum charging threshold in MW, and Md states the maximum discharging threshold
in MW. The description of the parameters in (7), y(n), and z(n) are energy in the battery and
energy fed to the battery respectively. When (z(n) > 0) the battery is charged with positive
input energy and (z(n) < 0) is negative input energy while the battery is discharging.

The state of charge of the battery is defined as follows [50]:
SOC(t) = SOCinit i f t = 0

SOC(t) = SOC(t− 1) + 1
Cn
∗

t∫
t−1

i(t)dt elsewhere

 (10)

where i(t) is the DC in the interval [t − 1, t], positive if the battery is charging, and Cn is the
nominal capacity. In SOC the DC voltage is elapsed.

2.3.2. Degradation Rate of Battery

The degradation rate of the battery is computed based on lifetime throughput. It is de-
rived from the lifetime curve given by the manufacturers with diverse depths of discharge
(DOD) related to numbers of residual cycles to failure. It is known that deeper discharges
resulting in less residual cycles to failure. The lifetime throughput can be computed for
every DOD using the below equation

Ln = Qmax × gn × fn (11)

where the term Qmax states the battery capacity in kWh, fn denotes the number of cycles to
failure, and gn represents the DOD in percentage (from manufacturer data). The battery
life can be computed using the following equation;

Rbatt = (
Nbatt × Ln

Qthrpt
, R f ) (12)

where the term Ln indicates the lifespan throughput of an individual battery in kWh, Qthrpt
represents the annual battery throughput in kWh/year, and the term Rf terms a battery
float life in years.

2.3.3. Effect of Internal Resistance

The internal resistance of the battery is considered base on the Rint model. The internal
resistance of the battery for the wind energy in the Rint model is given as [51].

Ibat(t) =
Vbat −

√
V2

bat − 4RbatPbat(t)

2Rbat
(13)

where, in Equation (13), Pbat is the power of the battery, Vbat is the voltage given to the
battery, Ibat current of the battery, and Rbat is the resistance of the battery.

3. Proposed Methodology and Its Modelling
3.1. Multi-Objective Non-Dominated Sorting Genetic Algorithm (NSGA-III)

GA is the metaheuristic search algorithms that are inspired by Darwin’s Theory of
Evolution. To solve the optimization problems, GA possess an intelligent approach. It is
utilized for a wide range of optimization problems [42] and done by the decision-making
process for a mono solution. It has a set of parameters to control within the optimization [52].
Further, Scaffer introduced multi-objective optimization in the 1980s [53] for solving the
problems in machine learning. It initially generates the population randomly to match the
set of solutions. The objective functions at an optimal solution give clear solutions. It has
dominant solutions and non-dominant solutions in which the non-dominant solutions
are known as Pareto solutions [54]. In Pareto, one or more satisfactory solutions can be
chosen with the iteration process [55]. The Multi-Objective Optimization (MOO) based GA
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algorithm uses non dominated classifications of the GA population and it maintained the
diversity in non-dominated solutions. The Pareto optimal solution procedure is presented
in Figure 2 to show the difference between dominant solutions and non-dominant solutions.
Based on the non-dominated solutions this will modify the Pareto population and perform
the GA for MOO.
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The steps to be followed for calculations in GA based MOO are as follows.
In the first step, the rank should be assigned according to ri. In this step ri is deter-

mined as,
ri = 1 + ni (14)

where ni is the number of solutions that dominate the solution ‘i’.
In the second step, there is a need to assign the row fitness to each solution using

linear mapping functions. In this, the best rank solutions and worst rank solutions are
determined. After row fitness values are assigned in the second step, the third step is to
find the average in the best solutions and worst solutions. The average is called as assigned
fitness to each solution of the rank.

The assigned fitness values are evaluated for GA based MOO in the following method.
Initially, there is a need to compute ni, i.e., the dominant solutions of ‘i’ and ri for the

rank µ(ri) = µ(ri) + 1, for the count of rank solutions.
Next ‘N’ is considered as the best rank solution and ‘1’ as the worst solution.
For the next step, if i < N and I = i + 1, again the procedure should be started from the

first step. Otherwise, the next step should be followed to find the maximum rank, which is
considered as r*.

To find the average fitness solution, the following equation should be derived;

Fi = N −
ri−1

∑
k=1

µ(K)− 0.5[µ(ri − 1] (15)

In Equation (15), k is the total number of solutions that gives the fitness solution for
each ‘i’. Shared fitness value should also be counted if two variables have the same rank
and it should be converted into a single value. If both have the same count, it is known as
the nesha count in the Pareto frontier.
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Nesha count is calculated using the below equation.

nci =
µ(ri)

∑
j=1

sh(dij) (16)

In Equation (16), dij represents two solutions that have the same rank. The sharing of
fitness value can be calculated as follows:

sh(dij) =
{

1− (d/δshare)
α} (17)

Equation (17) is applicable only when d < δshare and ‘α’ should be between 1 and 2.
The dij should be evaluated as follows:

dij =

√√√√ M

∑
l=1

(
f i
l − f j

l
f max
l − f min

l

)2

(18)

In (18), f l is represented as objectives. The fitness value should be calculated in ‘i’ and
‘j’ to find the best rank in ‘i’ and ‘j’.

The assigned fitness solution is changed to,

F′i =
Fi
nci

(19)

The assigned fitness value should be calculated for each value to find the rank solution.
In the final step, if the rank r > r*, there is a need to increment the r* and find fitness

solution dij. If r < r*, the procedure will be completed.
The MOO based on NSGA-III gives the best solution with the variations in the step-

wise calculation. Even though this has various possible solutions in the optimization,
the best solution can be easily captured by optimizing through the fitness solution curve.
The simplified algorithm of the proposed methodology is demonstrated in Figure 3.

Algorithm Steps:
Step 1: Feed the input data into the algorithm
Step 2: Initialization of algorithm parameters, which is shown in Table 3
Step 3: Evaluate the fitness function according to objective function
Step 4: Initiate evolution procedure of NSGA-III for proposed work
Step 5: Checking the criteria, if current Iteration is greater than Iteration_Max
Step 6: If the maximum iteration is not reached, then go to step 5, where iteration is

incremented by 1
Step 7: If the maximum iteration is reached, the optimal solutions are printed and the

criterion is stopped

Table 3. NSGA III System parameters.

Parameters Value

Population 50

Crossover Probability 0.09

Mutation Probability 0.010

Mutation Parameter 50
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3.2. Parameters of NSGA III
3.2.1. Population Size and Robustness

The population size in GAs is generally taken from tens to hundreds and rarely
considered up to thousands. The NSGA-III parameters have been clearly shown in Table 3.
This algorithm runs five times continuously with different initializations. In the long run,
it is evaluated for 1000 fitness function and in the shorter run for 100. In the MOO problem,
there is a set of solutions to be determined rather than a single solution. The objectives are
the function of another set of parameters, the decision variables, which are the variables that
can control within the optimization model such as retrofit measures. Further, a robustness
assessment of Pareto solutions can be performed by simulating the performance of over
50 possible operations. Different from above, the robustness functions are introduced as an
additional objective cost in the multi-objective optimization.{

minG(x) = (g1(x), gv
1(x), . . . gk(x), gv

k (x))
x ∈ S

}
(20)

gv
i (x) = a f i/l f i = 1/gr

i (x) (21)

where gv
i (x) and gr

i (x) are the vulnerability and robustness functions of the objective
function gi(x), respectively: l f i and a f i define the mean value and standard deviation of
gi(x), respectively. Then a simulation method is used to evaluate the robustness functions
with some samples. However, in this case, the mean value l f i and the objective function
gi(x) have a similar meaning, it can be consolidated and form optimization functions.
The mean value a f i and standard deviation of the objective function gi(x) are defined as
the optimization functions and the robustness functions.

3.2.2. Noise Handling Features

In MOO, three noise-handling features, including experiential learning directed pertur-
bation, gene adaptation selection strategy, and possibilistic archiving model are proposed
to improve the robustness [56]. This noise is an important distributed perturbation with an
objective as follows:

u(x) = u(x) + Normal(0, n2) (22)

where n2 represents the level of noise, Normal denotes the normal distribution function
u, and u represents the objective function with and without the additive noise. The three
noise handling characteristics are based on population dynamics, diversity, and leadership.

The individual is represented as a vector
⇀
Y = (

⇀
c ,

⇀
d ,

⇀
e ); where the vector

⇀
c ,

⇀
d denotes

the decision vector in the genotype space
⇀
J ∈ Lchromosome_length and the phenotype space

⇀
P ∈

⇀
R

ndec
, respectively;

⇀
e is associated objective vector in the objective space,

⇀
E ∈ Rnobj .

The binary representation
⇀
c of the decision variables is mapped by the function u :

⇀
J →

⇀
P

from the genotype space to the phenotype space and there is a corresponding inverse

function u−1 :
⇀
P →

⇀
J .

3.2.3. Quantitative Measure

In this study, three different qualitative measures were used [57].
Proximity Indicator: The metric of generational distance (GD) gives a good indication

of the gap between the true Pareto front (PFtrue) and the evolved Pareto front (PFknown).
PFtrue is the global Pareto-optimal set. Mathematically, the metric is a function of individual
distance given as follows;

GD = (
1

nPF

nPF

∑
i=1

d2
i )

1/2 (23)
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where nPF is the number of members in PFknown, di is the Euclidean distance between the
members i of PFknown and its nearest member of PFtrue. Intuitively, the lower value of GD is
desirable since it indicates little deviation from the true Pareto front.

Diversity Indicator: The concern about unary diverse indicators it gives measure of
diversity. Based on pareto front it is followed as:

MS =

√√√√ 1
nobj

nobj

∑
i=1

[(min( f max
i , Fmax

i )−max( f min
i , Fmin

i ))/(Fmax
i − Fmin

i )]2 (24)

where f max
m , f min

m are the maximum and minimum of the mth objective of PFknown and
Fmax

m , Fmin
m are the maximum and minimum of the mth objective in PFknown. The greater the

maximum spread is, the more area of PFtrue is covered by the PFknown.
Distribution Indicator: The metric of spacing indicates how evenly the solutions are

distributed along the discovered front. Considering the diversity present in the solution
set, we modify spacing as follows:

S =
1

nPF
[

1
nPF

nPF

∑
i=1

(di − d)
2
]1/2, where d =

1
nPF

nPF

∑
i=1

di (25)

where nPF is the number of members in PFknown, di is the Euclidean distance between the
member i of PFknown and its nearest member of PFknown. The smaller the spacing is, the more
evenly the members in PFknown distribute.

3.2.4. Predictive Controllers for MOO Based NSGA-III

The predictive control has three levels in the objective function; they are handling
constraints, maximizing economics, and maintaining control. The control or constraint
variables are found to be out of their limits. Maximizing economics is assigned to out-weigh
the control variables. The control maintenance predicts the limits in operation process and
structure design for the system considered. Further, Szulczyk et al. [58], Lichota et al. [59]
described an equation for harmonic excitation in the predictive analysis.

δj = ∑
k∈Mj

Aj,k sin(2π fkt + φk) (26)

In Equation (26), fk are consecutive harmonic frequencies, Ak is the amplitude of k-th
harmonic, Φk is the phase shift angle, δj is a deflection of j-th speed control and t denotes
time. To select a base frequency fo, it is required to define the signal duration T,

fo = 1/T (27)

Amplitudes of the outputs in the latter case can be obtained from,

Aj,k = Aj

√
Pj,k (28)

In Equation (28), Pj,k defines the power of the k-th harmonic assigned to j-th control
surface.
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3.2.5. Stochastic Dominance in the MOO Based NSGA-III

Stochastic parameters will be useful when dealing with non-linearity in the opera-
tion [60]. This stochastic dominance allows investors to maximize profit. This is utilized to
know the pros and cons of the system without considering the losses in the system.

The measure of risk is calculated as follows;

VR(Y) = −Fx
−1(α) (29)

In Equation (29), VR is the value at risk. The value-at-risk of the random outcome x at
level α.

The average value at risk is sometimes known as conditional value at risk. This risk
does not affect the system heavily and it is represented as.

AVR
β
(X) = E

∣∣∣−X
∣∣∣X ≤ −VR(Y)] (30)

In Equation (30), AVRα is the average value at risk and E |−X| is a special case of AVR.
A decision-maker is risk-neutral in some of the chosen objectives. For illustration,

it may be a budget with respect to costs.
In a two-stage stochastic multi-objective optimization the equation is given as.

max f (y) + E|j(y, v|] (31)

where j is the recourse function and it is evaluated in an additional stage, the second stage
can be derived as follows:

j(y, v) = max(ω)Tx (32)

In Equation (32), y is called as here and now or 1st stage decision, whereas, x depends
on the realization of ω, is known as wait and see or 2nd stage operation.

3.3. SEIG Modelling

Based on the non-dominant solutions of the Pareto frontier, the modelling of SEIG
is carried out which can be used for the wind energy system. Various stator poles and
rotors can be designed based on the requirement to operate the system smoothly [61].
To protect a system during grid fault to achieve maximum power a fuzzy logic design is
implemented [62,63]. The complete SEIG modelling is shown in Figure 4.

In SEIG modelling, the voltage and current of the d-q axis reference notations are
taken as Vqs, Vds, Iqs, Ids. The resistance value of the stator and rotor are denoted as ‘Rr’ and
‘Rs’. Further, Ls and Lr are the inductance of stator and rotor. The inertia is represented as
‘Jg’ and the number of poles is denoted as P. Additionally, the wind velocity is represented
as ‘VW’, radius as ‘R’, diameter as ‘D’, pitch angle as ‘B’, and Gear ratio as Gr. Moreover,
‘Y’ is considered as Tip Speed Ratio (TSR), Cp is power coefficient, ‘A’ as area, ‘Pt’ as power,
and ‘Tt’ as torque. The term ‘M’ is denoted as Mutual inductance and ‘Im’ as magnetizing
inductance. In SEIG, ‘Tg’ is denoted a generator torque, ‘Pwr’ as power, ‘Tt’ as turbine
torque, ‘Pt’ as turbine power, and ‘w’ as rotor speed.
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3.4. Objective Function

To maximize the multiple objective functions, a vector of objective functions is consid-
ered and derived as follows:

F(x) =
[

F1(x) F2(x) . . . . . . . . . Fm(x)
]

(33)

F1(x) =
[

min Pe
]−1 (34)

F2(x) =
[

min Rbatt
]−1 (35)

F3(x) = [ max COE]−1 (36)

The above function is expressed with minimization and subject to certain constraints
as represented below.

Turbine constraints:
0 ≤ Pwt ≤ Pmax

wt (37)

Vtip < Vtip,max (38)

0 < Vtip,max > 12m/s (39)

ω

3ohm− rated
> 1.1 (40)

∂

∂0
< 1.1 (41)

where Vtip is the tip speed and Vtip,max is the maximum tip speed on turbine blade;ω is the
blade natural frequency and ∂ is the tip deflection.

Battery constraints:
The charging and discharging power of the battery states the upper and lower power

limitation when the charging and discharging taken place. It should be within the allowable
band as described below,

− Pmax ≤ Pstorage,t ≤ Pmax (42)

where Pstorage,t states the charging and discharging power of battery at time t; −Pmax and
Pmax represent the upper and lower bound of battery power respectively.

The balancing equation of battery between charging and discharging can be derived
as constraints as follows;

tb∫
ta

Pchdt−
td∫

tc

Pdtsdt ≤ ε (43)

where ta and tb states the charging region and tc and td denotes the discharging region;
Pch and Pdis represent the charging and discharge power of the battery, and ε denotes the
permissible error for power balance.

4. Results and Discussions
4.1. Performance of SEIG

It is stated earlier that the SEIG is considered for this study which consists of four
poles, 4 m radius, 13–15◦ pitch angle, and a gear ratio of 30. Additionally, the wind speed
profile of the system is demonstrated in Figure 5. The proposed methodology is simulated
using the defined wind turbine system and the results are observed and demonstrated
in detail.
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Figure 5. Wind speed profile.

The mechanical power output of the wind turbine is directly associated with the wind
speed profile. It is a known fact that the output power of the turbine is proportional to
the cube of wind profile and the reduction of the wind speed by half results in a reduction
of power output by one-eighth of its reference value. The mechanical features of the
turbine affect the electrical characteristics directly. Based on the defined wind profile,
the electrical parameters of the SEIG have recorded notably output voltage, output current,
and maximum power extraction. The generated voltage increases with faster wind speed
specifically between 3.8 to 9 m/s. Consequently, the output voltage of the turbine attains a
higher magnitude of 305 V with a smoother waveshape. Particularly, the magnitude of the
voltage is maintained constant after 0.05 s as shown in Figure 6. Nonetheless, the existing
technologies such as SOO, MOO, and NSGA II generate voltage up to 290.9 V, 374 V,
and 332.4 V, respectively. This shows the effectiveness of the proposed algorithm which
can attain higher voltage from the wind turbine.
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Further, the wind turbine generates the output current concerning the characteristics
of the generated voltage. The output current shows similar trends with voltage characteris-
tics with a maximum magnitude of 25.5 A as demonstrated in Figure 7. On other hand,
the existing optimization techniques generate a better magnitude of current but not greater
than NSGA III. Both the current and voltage magnitude shows a greater level when the
proposed optimization is adopted. This is because NSGA III maintains better coverage of
Pareto solutions that takes the reference point mechanism but the other existing method
notably NSGAII uses crowding distance operator to maintain the uniform coverage. More-
over, the most significant component of the scheme is the maximum power extraction
using the proposed system. Therefore, the power characteristics of the system are charted
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and demonstrated in Figure 8. Since the output current and voltage of the proposed system
show better characteristics over the existing optimization technique, the electrical power
output should represent similar characteristics. From the observed plot, it is perceived that
the NSGA-III based SEIG system yield maximum power optimally about 7.5 kW. This is
a notably greater power extraction over the existing methods notably MOO and NGSA
II. It shows that the proposed scheme obtains high wind power density which results in
better electrical energy production per square meter of air space (W/m2).
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Figure 8. Power characteristics.

Attesting to the above-discussed facts, the rotor speed of the turbine shows similar
trends as characterized in Figure 9. This is due to the statement that the speed of the
wind turbine is directly related to output power. Moreover, the torque characteristics of
the NSGA-III based system show the initial distortions and it is reduced significantly to
obtain a steady level laterally. The relationship between the torque–speed characteristics of
the system is presented in Figure 10. The torque characteristic represents that there is an
inclination with an increase in the speed of the rotor. However, it starts to decline from the
specific speed of the rotor. The maximum torque is obtained about 152 N/m at a speed of
1100 rpm; the torque on full load is reduced to 125 N/m at a speed of 1250 rpm.
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Further, wind speed chiefly governs the amount of electricity produced by a wind
turbine. Generally, higher wind velocities produce more power because it allows the blades
to revolve faster. Consequently, it generates more mechanical power and extracts more
electrical power from the turbine. The relationship between wind velocity and electrical
power output for a 10-kW wind turbine is depicted in Figure 11. The proposed technique
maintains a better limit of cut-in speed and cut-out speed that generates a higher rate of
electrical power with a constant level. In general, the wind velocity varies from 11 m/s
to 15 m/s for the wind energy system. Consequently, the output power is recorded as
7.5 kW at 11 m/s and started to decline towards the increase of velocity. Later, the output
power dropped suddenly particularly after the cut-out speed due to the wind velocity
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factor. As exceeding the cut-out speed may damage the equipment, it must be shut down
immediately. However, constant speed power is maintained between the rated output
speeds and cut-out speed. This shows the effectiveness of the proposed methodology that
can maintain constant power for diverse wind velocity. Under this scenario, the pitch angle
of 15◦ is noticed during the attainment of maximum power shown in Figure 12.
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To show the effect of single parameter change, 16 different cases are tested as shown in
Table 4. In the cases 1, 2, 3 and 4, Population, Crossover Probability, Mutation Probability
and Mutation Parameter are varied, respectively, whereas other three parameters are kept
constant. It can be observed that, though algorithm parameters are sensitivity, it has not
affected the quality of solution. The optimal parameter settings of algorithm is tabulated as
shown in Table 4.
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Table 4. Performance analysis of parameters of NSGA III.

Case
Parameter

No.
of Iteration

Power
(kW)

COE
(Rs./kWh)

SOC at
100%Population Crossover

Probability
Mutation

Probability
Mutation
Parameter

1

50 0.06 0.011 30 16 7.4 4.4 431

50 0.06 0.011 35 16 7.4 4.4 431

50 0.06 0.011 45 16 7.1 4.3 432

50 0.06 0.011 50 15 7.4 4.3 435

2 50 0.06 0.010 50 16 7.4 4.3 435

50 0.06 0.011 50 16 7.3 4.5 432

50 0.06 0.012 50 16 7.3 4.4 431

50 0.06 0.013 50 16 7.4 4.4 433

3

50 0.04 0.010 50 15 7.3 4.4 433

50 0.05 0.010 50 16 7.4 4.4 433

50 0.07 0.010 50 16 7.0 4.3 432

50 0.09 0.010 50 16 7.4 4.3 435

4

46 0.09 0.010 50 16 7.2 4.4 432

47 0.09 0.010 50 16 7.3 4.4 432

48 0.09 0.010 50 16 7.2 4.3 432

50 0.09 0.010 50 15 7.5 4.2 435

The considered system is simulated for conventional GA optimization techniques such
as Single objective-based GA [64], Multi-objective [65], and NSGA-II [41]. The observed
results for the NSGA-III algorithm are compared with the conventional optimization
techniques and tabulated in Table 5.

Table 5. Comparison of proposed NSGA-III with other existing optimization techniques.

Parameters Single Objective
Optimization

Multi-Objective
Optimization-NSGA

Multi-Objective
Optimization-NSGA-II

Multi-Objective
Optimization-NSGA-III

Speed considered (m/s) 8–12 8–12 8–12 8–12

Voltage (V) 290.9 374 332.4 305.5

Current (A) 14.1 11.92 15.3 25.5

Power (kW) 4.1 kW 4.5 kW 5.1 kW 7.5 kW

100 runs

Best - - - 7.5 kW

Worst - - - 6.9 kW

Average - - - 7.2 kW

Speed variation (%) 12.01 12.59 13.95 13.33

Pitch angle at maximum
power (Degree) 14.75 14.8 15 15

Maximum Torque
(N/m) 110 118 127 152

Capacity factor 0.41 0.45 0.51 0.75

AEP (MWh) 35.916 39.42 44.67 65.70

COE (Rs./kWh) 14.1 11.8 9.1 4.2

100 runs

Best - - - 4.2

Worst - - - 4.6

Average - - - 4.4
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The proposed method is solved repeatedly for 100 times. The best and the worst
values among the best solutions of these 100 runs are presented in Table 5.

Further, the COE of the wind energy system is analyzed for existing and proposed
optimization algorithm. Comparing the outcomes of all optimization techniques adopted,
NSGA III offers a lesser COE of Rs. 4.2/kWh. This is due to the higher generation of AEP
of 65.70 MWh with a higher rate of the capacity factor of about 0.75.

In a nutshell, it is stated earlier that the wind speed is considered as 8–10 m/s for
all cases. However, the output from each case shows varied magnitudes of parameters
as mentioned in the above Table. Notably, the output voltage of the wind energy system
recorded a lower value of 290.9 V for the single objective optimization system and obtained
a higher value of about 374 V for MOO. On the other hand, the maximum current is
observed from NSGA-III. Therefore, it logged a higher rate of output power extraction about
7.5 kW (with a pitch angle of 15◦) which is much greater than other optimization techniques.
Additionally, the NSGA-III technique shows a lower speed variation of about 13.33% which
ensures the stable operation of the system. Further, the torque generation is found to be
152 N/m. Furthermore, the capacity factor and AEP show superior performance which
endorses the effective performance of the NSGA-III optimization technique over other
techniques.

4.2. BESS

The basic functions of BESS are charging, discharging, and storage processes, and their
characteristics are based on the following conditions [66]:

• State of charge
• Battery storage capacity
• Rate of discharge and charge
• Environmental temperature

The BESS based power electronic converter is employed for frequency regulation
and load changes [67]. To attain a suitable operation, each of these conditions are to be
considered, and the behavior of the battery is depending on three factors:

• Charging time
• Discharging time
• Storing period

The three behavior types are very important for analysis and described as follows:

4.2.1. Charging Time

When the battery is charging, a change in the energy occurs in the battery. The param-
eters such as ambient temperature, rate of charge, battery quantity, state of charge, and a
specific amount of energy is absorbed in the battery.

4.2.2. Discharging Time

In the case of discharge time, the characteristics are the same as charging time. How-
ever, these effects are not the same as charging based on empirical results from any type of
batteries [68]. It is observed that the percentage of loss of energy in the discharging process
is larger than the time of charging with the same conditions [69]. The effect of temperature
also plays a role in charging and discharging time.

4.2.3. Storing Period

In discharging and charging time, energy will be stored inside the battery and also
some energy will be lost due to the chemical reactions inside the battery. The factors for
storing energy in the battery are based on the type of battery and materials used in the
battery [70].

In all the conditions the temperature the performance of the battery is highly depen-
dent on the temperature.
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Based on the modelling of the battery charging, discharging, and SOC, the tests
are conducted in MATLAB/Simulink software platform and discussed to represent the
performance of the battery on the considered parameters. Figure 13 shows the system
voltage response based on the SOC response. The test includes six different levels for
determining the charge and discharge of the battery it is visible for the proposed algorithm
MOO based NSGA-III charge level has a better performance compared to SOO, MOO,
and MOO (NSGA-II).
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The degrading mechanism is a complex matter due to the charging and discharging
pattern that can trigger the degradation pathways. The degradation performance of the
battery can be projected using real-time storage measurements, accelerated aging at higher
temperatures, and thermal measurements. The major cause of degradation is due to
the inaccurate control of charging voltages. Considering these facts, the degradation of
the battery is analyzed based on the charging and discharging span and represented in
Figure 14. The response for battery degradation in NSGA-III is linearly increasing; whereas
for SOO, MOO, and MOO (NSGA-II), the degradation of battery life shows a high distortion
rate when compared with MOO based NSGA-III.

The internal resistance of the battery varies with the SOC of the battery. The resistance
value is higher at the initial range after charging and gradually reduces with the increase
of SOC. This is caused due to the decline of the specific gravity and a depletion of the
electrolyte. However, the resistance value increase is practically linear with the fall of the
specific gravity. Attesting to these facts, Figure 15 shows the comparison for the battery
charge and discharge internal resistance for different techniques.

The proposed method is evaluated by repeatedly running for 100 times. The best and
the worst values among the best solutions of these 100 runs are presented in Table 6 for
BESS in NSGA-III. The simulated results show that there is slight disturbance in the output
during repeated running of algorithm which might not affect the quality of the solution.
The proposed system can withstand up to 2 kΩ in a charging state for the SOO technique
and maintains 1.25 kΩ during discharging mode. In MOO, the system can withstand up
to 2.5 kΩ and 0.75 kΩ during the charging and discharging state. For MOO (NSGA-II),
the system can withstand up to 2.35 kΩ in the charging state; whereas it can operate up
to 0.63 kΩ in the discharging state. Notably, the battery charge for the MOO (NSGA-III)
algorithm can withstand the system for 3 kΩ. During discharging, the system can operate
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up to 0.38 kΩ. The internal resistance of the battery is directly related to the performance of
the battery. It is essential to maintain higher resistance during the charging state and lower
value during the discharging state. As per the observed analysis, it is inferred that the
NSGA-III is advantageous when compared with SOO, MOO (NSGA), and MOO (NSGA-II).
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Table 6. Performance analysis of parameters of NSGA III for battery energy storage system (BESS).

100 Runs Percentage of
SOC @ 100%

Degradation of
Battery Life @ 100%

Battery Resistance at Initial Stage

During
Charging (kΩ)

During
Discharging (kΩ)

Best 435 0.076 2.00 1.45

Worst 429 0.071 1.97 1.41

Average 432 0.074 1.985 1.43

Consolidating all the results, it is observed that the proposed system has the potential
to enhance the electrical power output from a wind turbine with the reduced cost of energy.
The application of the proposed method adopted in this work by investors during the
planning stage could considerably increase the financial enactment of their investment.

5. Conclusions

In this work, the effectiveness of a multi-objective-based NSGA-III algorithm is demon-
strated for wind energy systems consisting of SEIG. The various parameters such as output
voltage, output current, rotor speed, pitch angle, speed variations, torque, and power of
SEIG are evaluated. The chief conclusions of this exertion are summarized as follows:

• NSGA-III algorithm can accurately recognize the best boundary.
• It extracted a higher rate of power about 7.5 kW from SEIG which is greater than other

existing optimization algorithms.
• The speed variation of the generator recorded the least value of about 13.33%.
• The net torque rate of the generator is commendable about 152 N/m.
• The capacity factor and annual energy production show greater characteristics about

0.75 and 65.70 MWh respectively.
• The cost of generated energy is reduced by about Rs. 4.2/kWh with the proposed

methodology.
• The charge level of the BESS against system voltage and degradation factor against

operating hours shows better performance using the proposed scheme compared with
the conventional method.

• Using the NSGA-III scheme, the withstand resistance of BESS during the charging
period shows a better scale of 3 kΩ, and discharging withstand resistance is least
about 0.38 kΩ.

In a nutshell, the proposed methodology (NSGA-III) delivers greater advantages
for wind energy systems compare with a single objective, multi-objective, and NSGA-II
algorithm.
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