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Abstract: The restructuring of power systems and the ever-increasing demand for electricity have
given rise to congestion in power networks. The use of distributed generators (DGs) may play a
significant role in tackling such issues. DGs may be integrated with electrical power networks to
regulate the drift of power in the transmission lines, thereby increasing the power transfer capabilities
of lines and improving the overall performance of electrical networks. In this article, an effective
method based on the Harris hawks optimization (HHO) algorithm is used to select the optimum
capacity, number, and site of solar-based DGs to reduce real power losses and voltage deviation. The
proposed HHO has been tested with a complex benchmark function then applied to the IEEE 33 and
IEEE 69 bus radial distribution systems. The single and multiple solar-based DGs are optimized for
the optimum size and site with a unity power factor. It is observed that the overall performance of
the systems is enhanced when additional DGs are installed. Moreover, considering the stochastic and
sporadic nature of solar irradiance, the practical size of DG has been suggested based on analysis
that may be adopted while designing the actual photovoltaic (PV) plant for usage. The obtained
simulation outcomes are compared with the latest state-of-the-art literature and suggest that the
proposed HHO is capable of processing complex high dimensional benchmark functions and has
capability to handle problems pertaining to electrical distribution in an effective manner.

Keywords: RDS; Harris hawks; optimal power flow; optimization; solar PV; transmission loss

1. Introduction

Installing distributed generation (DG) sources in the distribution network system has
been standard practice in recent years to minimize overall power losses and enhance the
power quality [1,2]. The optimum sizing and positioning of DGs in power system networks
are essential to maximize the benefits from those installations. The incorrect allocation
and unreasonable sizing of DG units in the power system networks may increase voltage
sags, voltage flickering, harmonic distortion, fault current, and power losses. With the
application of DG units, the power system losses may be reduced by 13% [3,4]. In the
functioning of power systems, economic damage and voltage collapse may be avoided
through the reduction in power loss and voltage stability enhancement, respectively [5].
Thus, the investigation in optimal location selection and sizing of DG units in the distribu-
tion network is a step towards a profitable electricity supply [6,7]. Among all DG systems,
solar photovoltaic DG systems seek attention worldwide for their abundant availability,
easy installation, maintenance, and environment-friendly features.
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The major goals of most techniques to determine the best location and size of DG
units are to reduce power loss and improve voltage profile. The various techniques such
as analytical methods, ant bee colony (ABC), genetic algorithm (GA), tabu search (TS),
particle swarm optimization (PSO), fuzzy system, evolutionary programming, dynamic
programming, etc., have been utilized to achieve the aforesaid objectives in a distribution
network through the proper allocation and sizing of DG units. In the literature, GA is
used to estimate the placement and size of DG units to improve the voltage profile and
reduce power loss. Once DG units are appropriately placed in the distribution system
network, voltage stability and loss reduction are improved significantly. The GA is utilized
as the most applied optimization technique in resolving the problem of DGs allocation
and sizing [8,9]. The multiobjective genetic optimization method is used in radial distri-
bution systems to determine the best position and size for renewable-based DG units [10].
For site determination of DGs planning and performance index-based size, a GA-based
multiobjective optimization is utilized to minimize the actual power loss in distribution
systems with constant power, current, and impedance models [11]. Almabsout et al. [12]
suggest an improved GA to determine the best placement and capacity of the simultaneous
allocation of DGs/SCs in radial systems by combining the benefits of genetic algorithms
and local search [12]. To minimize system losses, a mix of analytical and genetic algo-
rithm approaches is utilized to optimize the allocation of numerous DGs in a distribution
network [13].

To reduce real power losses and improve the voltage profile, Madhusudhan et al. [14]
proposed the GA to identify the optimum location, as well as the size of the distribution
network’s DG units. Ayodele et al. [15] used GA to find the best DG technology for optimal
power system functioning, as well as the best position and size of the DG to reduce network
power loss. GA is applied to reduce the cost of system expansion and improves system
stability [16,17]. However, GA convergence time is high, especially, when applied in the
solution of complex problems, and may suggest inaccurate solutions. When compared to
GA and TS techniques, Hassan et al. and Fan et al. [18,19] employed simulated annealing
(SA) to find and specify the capacity of DGs while lowering computation time. However,
the SA method has disadvantages such as termination at a local minimum, significant
computational time, no information regarding the divergence of the local minimum from
the global minimum, and no upper constraint for the calculation time. Using the TS
approach, Liu et al. and Azam et al. [20,21] concentrated on DG optimum planning with
the goal of minimizing both losses and line loadings. The TS technique, on the other hand,
has the drawback of requiring a large number of iterations and parameter calculations.
PSO was used to determine the best scale and distribution of DG units in the power system,
together with its benefits [22].

One of the most effective and widely used optimization strategies is the PSO [23–25].
Barik et al. [26] presented a multiobjective PSO method for determining the best location
and size of DG units while taking economic and technical factors into account. The
advanced versions of PSO methods, such as improved PSO [27], binary PSO [28], social
learning PSO [29], PSO with inertia weight, and PSO with constriction factor [30], are also
applied in the DG allocation and sizing problems. However, the PSO technique has some
disadvantages, such as difficulty in initializing the design parameters and inapplicability
to scattering problems. Tolabi et al. and Oloulade et al. [31,32] introduced the ant colony
optimization (ACO) technique to tackle the allocation and size problem of renewable energy
source-based DGs in radial distribution networks with the goal of minimizing overall
system losses. Their analysis showed that ACO gives a better solution, and computational
time is less than GA. However, ACO takes more time to converge due to the complex
nature of the problem but is still shorter than analytical methods. The major disadvantage
of the ACO technique lies with its uncertainty in time to convergence. Das et al. [33] and
Seker and Hocaoglu [34] used the artificial bee colony (ABC) method to compare results
to the PSO technique and discovered that ABC provides a higher-quality solution with a
faster convergence rate. The cuckoo search algorithm was used by Yuvaraj and Ravi [35]
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to improve the voltage profile and reduce power losses in biomass and solar–thermal DG
units. To optimize the system voltage profile and decrease line losses, Arya and Koshti [36]
used a shuffled frog leaping algorithm.

Rajaram et al. [37] used a plant growth simulation algorithm with objectives such
as decreasing the losses and improving the voltage profile. To reduce energy losses in a
distribution network system, Othman et al. [38] used the big bang–big crunch approach
to find appropriate DG units. The bat algorithm was suggested by Sudabattula and
Kowsalya [39] for the efficient allocation of solar-based DGs in the distribution network. To
decrease power losses while preserving voltage profile, Duong et al. [40] developed an effi-
cient biogeography-based optimization for optimal location and size of solar photovoltaic
distributed generating units.

Harris hawks optimization (HHO) is a new metaheuristic optimization algorithm
used in various applications, as tabulated in Table 1.

After a thorough search in credible academic publications, as shown in Table 1, to-date,
the efficient newly invented HHO method has not been utilized to optimal solar-based DG
allocation in a radial distribution system. As a result, this study compares and contrasts the
suggested work with well-known optimization techniques. Suitable DG unit placement
may bring significant benefits, including cost saving through a reduction in power loss and
increasing the purchasing power capacity.

Table 1. Application of HHO in different literatures.

Year Area of Application Research Objectives Research Findings Reference No.

2021 Design of truss
structures

The use of HHO to solve planar and
spatial trusses with discrete design
variables was investigated in this
paper. Five benchmark structural
issues were used to assess HHO’s

performance, and the resultant
designs were compared to 10

state-of-the-art algorithms.

The statistical results
demonstrate that HHO is quite

consistent and reliable when
related to truss structure

optimization.

[41]

2021 Prediction of slope
stability

The study’s major goal is to develop a
new metaheuristic optimization

approach HHO for improving the
accuracy of the traditional multilayer
perceptron technique in estimating the

factor of safety in the presence of
inflexible foundations. Four slope
stability conditioning elements are
taken into account in this method:

slope angle, rigid foundation position,
soil strength, and applied surcharge.

The findings revealed that
employing the HHO improves
the ANN’s prediction accuracy

while analyzing slopes with
unknown circumstances.

[42]

2021 Power flow controller

To reduce oscillations in single and
multimachine power systems, a HHO

tuned dual interval type-2 fuzzy
lead–lag (Dual-IT2FLL)-based

universal power flow controller
(UPFC) is suggested. The suggested

damping controller uses speed
deviation, a distant input signal for
stability enhancement, to coordinate
between the modulation index (MI)
and phase angle of series and shunt

converters of UPFC at the same time.

Different performance indicators
(PIs) such as mean, standard
deviation, overshoots, and

settling time are used to
demonstrate that the proposed
HHO-tuned dual-IT2FLL-based
UPFC outperforms others under
various operating circumstances.

[43]
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Table 1. Cont.

Year Area of Application Research Objectives Research Findings Reference No.

2021
Shear strength

estimation of reinforced
concrete walls

The authors suggested three novel
models for estimating peak shear

strength using a mix of support vector
regression and metaheuristic

optimization techniques including
teaching–learning-based optimization
(TLBO), PSO, and HHO. The authors
compiled a huge database with 228

RC shear wall experimental data and
eight input parameters.

The suggested models may be
used to estimate the shear
strength of RC shear walls,
potentially improving the
accuracy of forecasting the
structure’s behavior and

lowering construction costs.

[44]

2021 Screening of COVID-19
CT-scans

For the identification of COVID-19
from CT scan images, they suggested

a two-stage pipeline consisting of
feature extraction followed by feature

selection (FS). A state-of-the-art
convolutional neural network (CNN)

model based on the DenseNet
architecture was used for feature

extraction. The HHO method was
used in conjunction with SA and
Chaotic initialization to remove
noninformative and redundant

features. The SARS-COV-2 CT-Scan
dataset, which contains 2482 CT-scans,

was used to test the suggested
method.

The technique has an accuracy of
about 98.42% without the chaotic
initialization and the SA, which
improves to 98.85% when the

two are included, and therefore
outperforms several

state-of-the-art methods
including other

metaheuristic-based feature
selection (FS) algorithms. The

suggested approach reduces the
number of characteristics chosen

by around 75%, which is
significantly better than most

existing algorithms.

[45]

2021 Drug design and
discovery

The authors presented a modified
Henry gas solubility optimization

(HGSO) based on heavy-tailed
distributions (HTDs) utilizing
improved HHO. A dynamical

exchange between five HTDs were
employed in this work to increase the

HHO, which alters the exploitation
phase in HGSO.

According to the values of
accuracy, fitness value, and the

number of selected
characteristics, the results show
that dynamic modified HGSO
based on improved HHO has a

high quality.

[46]

2021 Prediction of
meteorological drought

In this study, the SVR (support vector
regression) model was combined with

two distinct optimization methods,
PSO and HHO, to forecast the

effective drought index (EDI) one
month in advance in various sites

across Uttarakhand, India.

The SVR-HHO model beat the
SVR-PSO model in forecasting
EDI, according to the results.
SVR-HHO performed better

than SVR-PSO in recreating the
median, interquartile range,

dispersion, and pattern of the
EDI calculated from observed

rainfall, according to visual
assessment of model.

[47]

2021 Wireless sensor
networks

The authors applied the HHO method
to sensor node localization and

compared their findings to other
well-known optimization techniques

that had just become available.

The suggested work’s simulation
results revealed that it
outperforms existing

computational intelligence
methods in terms of average
localization error, number of
localized sensor nodes, and

computational cost.

[48]
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Table 1. Cont.

Year Area of Application Research Objectives Research Findings Reference No.

2021 Groundwater

The HHO method was used to
minimize the sum of absolute

deviation between observed and
simulated water-table levels in order
to optimize hydraulic conductivity
and specific yield parameters of a

modular three-dimensional
finite-difference (MODFLOW)

groundwater model.

According to the findings, the
Pareto parameter sets gave

appropriate results when the
maximum and minimum aquifer
drawdown were defined in the

range of –40 to +40 cm/year.

[49]

2020
Parameter optimization

of support vector
regression

The goal of this research is to look at
the SVR approach that is optimized

using HHO, also known as HHO-SVR.
To establish the performance of the
HHO-SVR, five benchmark datasets

were used to assess it. The HHO
method is also compared to various
metaheuristic algorithms and kernel

types.

The findings revealed that the
HHO-SVR has almost the same

performance as other techniques,
but is less time efficient.

[50]

2020 MPPT control

This study offers a new MPPT
controller based on HHO that

successfully tracks maximum power
in all weather situations.

The suggested HHO
outperforms the competition in
terms of maximum power point

tracking (MPPT) and
convergence at the global

maximum power point. The
HHO-based MPPT approach

provides faster maximum power
point (MPP) tracking, decreased

computing burden, and
increased efficiency.

[51]

2020 Data dissemination for
the Internet of Things

This study offers reliable data
dissemination for the Internet of

Things using HHO technique, which
is a safe data diffusion mechanism for

wireless sensor networks
(WSN)-based IoT that accoutered a
fuzzy hierarchical network model.

Simulation results show that
RDDI delivers a more

dependable approach and a
better result than the other three

disposals.

[52]

2020 Image segmentation

The HHO algorithm and the lowest
cross-entropy as a fitness function are
used to provide an efficient approach

for multilevel segmentation in this
work.

This HHO-based method
outperforms other segmentation
methods currently in use in the

literature.

[53]

2020 Modeling of
rainfall–runoff

To simulate the rainfall–runoff
connection, data-driven approaches

such as a multilayer perceptron (MLP)
neural network and least squares

support vector machine (LSSVM) are
combined with a sophisticated

nature-inspired optimizer, namely
HHO.

All of the enhanced models with
HHO outperformed other

integrated models with PSO in
predicting runoff changes,
according to the findings.

Furthermore, when HHO was
combined with LSSVM, a high

degree of accuracy in forecasting
runoff levels was attained.

[54]

2020 Image segmentation
The HHO technique is used in this

study to find reduced pulse coupled
neural network settings.

The results of the experiments
show that the HHO method is

superior in image segmentation.
[55]
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Table 1. Cont.

Year Area of Application Research Objectives Research Findings Reference No.

2020
Prediction of scour

depth downstream of
the ski-jump spillway

To forecast scour depth (SD)
downstream of the ski-jump spillway,
an alternative to standard techniques
was used in this study. To improve the

performance of an artificial neural
network (ANN) to predict the SD, a
novel optimization technique HHO

was suggested.

The ANN-HHO model beat
other existing models during the
testing period, according to the

findings. Furthermore, graphical
evaluation reveals that the
ANN-HHO model is more

accurate than other models in
predicting SD near the ski-jump

spillway.

[56]

2020 Optimal power flow

By addressing single and
multiobjective Optimal Power Flow

(OPF) problems, this study provides a
unique nature-inspired and

population-based HHO approach for
reducing emissions from thermal

producing sources.

The findings are compared to
artificial intelligence (AI), whale
optimization algorithm (WOA),

salp swarm algorithm (SSA),
moth flame (MF), and glow
warm optimization (GWO).

Furthermore, according to the
study on DG deployment,

system losses and emissions are
decreased by 9.83% percent and

26.2%, respectively.

[57]

2020 Water distribution
network

A model based on the HHO was
created to optimize the water

distribution network for a one-month
period, in Homashahr, Iran.

The findings showed that the
HHO algorithm performed

effectively in the challenge of
optimal water supply network

design. This method was
equivalent to approximately 12%
of the optimization in the end.

[58]

2020 Design of load
frequency control

The best settings of the
proportional-integral (PI) controller

modeling load frequency control
(LFC) in a multi-interconnected

system with renewable energy sources
are evaluated using a reliable

technique-based HHO.

The collected findings proved
the validity and superiority of

the suggested HHO-based
strategy for developing LFC for
the systems under consideration.

[59]

2019 Design of microchannel
heat sinks

For the reduction of entropy
production, a unique Harris hawks
optimization technique is used to

microchannel heat sinks. The slip flow
velocity and temperature jump

boundary conditions were taken into
account when creating the

microchannel heat transfer model.

The Harris hawks method
outperforms the other

algorithms in terms of reducing
microchannel entropy

production.

[60]

Motivation and Contributions

The primary motivation behind this work is to design a novel technique for appropri-
ate allocation and sizing of solar photovoltaic DGs to reduce power losses and enhance
the voltage profile. Worldwide sustainable development is possible through the gener-
ation of electricity from renewable energy resources. The Indian government has taken
a number of steps to stimulate the use of renewable energy (RE) resources, including
setting state-specific RE objectives in the form of solar purchase obligations (SPO) and
renewable purchase obligations (RPO). Every state has set a goal to fulfill a significant
part of its overall energy demand from renewable resources under the provisions of RPO
and SPO. The solar photovoltaic DGs (PV DG) considered in this paper are among all
the renewable energy resources; solar energy has received major importance due to its
abundant availability worldwide. Although researchers have previously used a variety of
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approaches to tackle the problem of DG allocation and size in the power system network,
the authors have not considered the actual field installation capacity of PV DG; instead,
they have considered only the actual power to be injected. Whereas the output of the solar
PV DG is a meteorological parameter and PV module parameter-dependent system, thus,
it is imperative to calculate the actual size of the PV DG to be installed to inject the targeted
power into the grid. The contribution of this work is presented below:

• The proposed HHO has been tested with complex benchmark functions;
• Assign a novel approach for appropriate allocation and sizing of PV DGs in IEEE 33

bus and IEEE 69 bus power system network using HHO to minimize the power losses
and improve the voltage profile;

• Compare the simulation outcomes of the proposed technique together with the re-
cently available methods such as the teaching–learning-based optimization (TLBO),
genetic algorithm (GA), particle swarm optimization (PSO), quasi-oppositional TLBO
(QOTLBO), comprehensive teaching learning-based optimization (CTLBO), CTLBO
ε-method, improved multiobjective elephant herding optimization (IMOEHO), im-
proved decomposition-based evolutionary algorithm (I-DBEA), bat algorithm (BA),
simulated annealing (SA), invasive weed optimization (IWO), bacterial foraging opti-
mization algorithm (BFOA), and moth–flame optimization (MFO) to determine the
effectiveness of the proposed algorithm over the exciting ones;

• Calculate the actual/practical size of the solar PV DG units to be installed to inject the
targeted power into the power system grid.

The remainder of this article is structured in the following order. The mathematical
formulation of the problem with various constraints is detailed in Section 2. The detail of
the proposed HHO and the solution approach for the considered problem is presented in
Section 3. In Section 4, the problem is tested with a benchmark function and with standard
test systems. Section 5 deals with the practical calculation of solar PV DG. Section 6
concludes with some final observations together the breadth of future development.

2. Formulation of the Mathematical Problem
2.1. Loss Minimization

The objective of the present work is to relax the congestion in power lines along
with determining the proper size and optimal location of DGs while keeping the losses
(202.67 kW and 224.9 kW for IEEE 33 and IEEE 69 bus RDS, respectively) to the minimum.
The major objective function (OF) is framed in the form of total system losses. Therefore,
the OF may be stated by Equation (1).

OF = Minimize(PLoss) (1)

where

PLoss =
n

∑
k=1

gk

(
V2

i + V2
j − 2Vi ×Vj × cos

(
δi − δj

))
(2)

The various constraints of the proposed optimization problem are as stated in Equa-
tions (3)–(7).

Vmin
i ≤ Vi ≤ Vmax

i (3)

Pmin
DG ≤ PDG ≤ Pmax

DG (4)

Qmin
DG ≤ QDG ≤ Qmax

DG (5)

Qmin
Gi
≤ QGi ≤ Qmax

Gi
(6)

Pmin
Gi
≤ PGi ≤ Pmax

Gi
(7)

where gk is the conductance of branch k; Vi and Vj are the magnitude of voltages at
sending and receiving bus, respectively; PDG and QDG represent active and reactive power



Energies 2021, 14, 5206 8 of 26

generation by DG; δi is the phase angle at ith and jth bus, respectively; and PGi represents
active power generation at ith bus.

In Equations (3)–(7), the superscripts max and min represent the upper and the lower
limits of the respective variables. The major objective here is to reduce congestion in lines
and minimize losses.

2.2. Practical Sizing of PV DG

The power output of the PV module depends on meteorological parameters (such
as ambient temperature and solar irradiance at the particular location) and on the pa-
rameters of the PV modules. To address the dependence on solar irradiation, the beta
probability density function was used to model the uncertain nature of solar irradiance.
The distribution of solar irradiance may be written as Equation (8) [61].

fb(s) =

{
Γ(α+β)

Γ(α)Γ(β)
s(α−1)

0
(1− s)(β−1) 0 ≤ s ≤ 1 & α, β ≥ 0 (8)

β = (1− µ)

(
µ(1− µ)

σ2 − 1
)

(9)

α =
µβ

(1− µ)
(10)

where Γ(◦) is defined as the gamma function, s is defined as the random variable of solar
irradiance, fb(s) is defined as the beta distribution function of s, α and β are defined as the
parameters of the beta distribution function, µ and σ are defined as the mean and standard
deviation of s.

Equations (11)–(13) have been used to address the effect of ambient temperature on the
output of the PV module. The temperature of the PV module is influenced by the nominal
operating module temperature (NOMT), solar irradiance, and ambient temperature, as
shown by Equation (11) [62].

TM = TA + s
(

NOMT− 20
0.8

)
(11)

The output current of the PV module is a function of the solar irradiance, short-circuit
current, temperature coefficient of current, and temperature of PV module, shown by
Equation (12) [63].

IM = s[ISC + εi(TM − 25)] (12)

The voltage of the PV module is a function of the open-circuit voltage, voltage temper-
ature coefficient of the module, and its temperature, as shown by Equation (13).

VM = [VOC − εv(TM − 25)] (13)

FFM =
Impp ×Vmpp

ISC ×VOC
(14)

Considering aforesaid environmental and PV module parameters correction factors,
Equation (14) will be modified to Equation (15).

FFM =
Impp ×Vmpp

IM ×VM
(15)

The output power of PV module, operating at maximum power point at solar irradi-
ance s, may be estimated using Equation (16).

Po(s) = Impp ×Vmpp = FFM × IM ×VM (16)
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The output power of the PV plant, operating at maximum power point at solar
irradiance s may be estimated using Equation (17) [64].

Po(s) = NM × FFM × IM ×VM (17)

The power output from the PV module considering maximum power point may be
obtained by Equations (14) and (15). The variables used are defined as follows: TM is
the temperature of the PV module; TA is the ambient temperature; NOMT is the nominal
operating module temperature; IM is the current of the PV module; VM is the voltage of the
PV module; ISC is the short-circuit current of PV module; VOC is the open-circuit voltage
of PV module; εi is the temperature coefficient of current; εv is the temperature coefficient
of voltage; Impp is the current at maximum power point at standard test condition (STC);
Vmpp is the voltage at maximum power point at STC; FFM is defined as the fill factor; NM
denotes the number of PV modules used in the PV plant; and Po(s) is the power output
from the PV module (NM = 1)/plant at solar irradiance s.

The expected output power from the PV module considering the effect of solar irradi-
ance s and ambient temperature TA may be calculated using Equation (18), and the expected
total output power for a specific time period may be calculated using Equation (19) [64].

EOP(s) = Po(s)× fb(s) (18)

ETOP =

1∫
0

EOP(s) ds (19)

Monocrystalline silicon PERC PV module of the following specifications as presented
in Table 2, was used for calculation [65].

εi = Ti × Impp (20)

εv = Tv ×Vmpp (21)

Table 2. PV module parameters.

Parameter Specification

Nominal power—Pmpp (Wp) 350
Vmpp (V) 38.9
Impp (A) 9.0
VOC (V) 46.7
ISC (A) 9.72

Tv (Temperature coefficient of voltage) −0.30 %/◦C
Ti (Temperature coefficient of current) 0.066 %/◦C

NOMT 44.6 ◦C
Area 2.01 m2

To convert the temperature coefficient of voltage and current from %/◦C (Ti and Tv)
to A/◦C (εi) and V/◦C (εv), Equations (20) and (21) are used, respectively. Impact of NOMT
and irradiance on the temperature, voltage, and current of the PV module are depicted in
Figure 1.
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Figure 1. Different PV module parameters considering the NOMT and solar irradiance.

Considering the parameters effecting the output of PV module, it is observed that the
voltage and the current of the PV module varies from 45.85 to 42.62 V and 0.49 to 9.43 A,
respectively, with the variation of solar irradiance. The temperature of the PV module
varies from 32.3 to 60 ◦C as irradiance changes, as shown in Figure 1.

The ambient temperature, mean, and standard derivation of solar irradiance during
a specified time period are considered as 30.76◦, 0.52 kW/m2, and 0.21 kW/m2, respec-
tively [61]. The expected output power from the PV module considering the effect of solar
irradiance and ambient temperature, associated environmental parameters, PV module
parameters and modeling parameters are tabulated in Table 3.

Table 3. The expected output power from the PV module considering correction factors.

Environmental Parameters PV Module Parameters
Considering Correction Factors Modeling Parameters Output

s TA IM VM fb(s) β Po(s) EOP(s)

0.05 30.76 0.49 45.85 2.16 0.14 17.26 2.38
0.15 30.76 1.47 45.49 2.16 0.56 51.48 28.66
0.25 30.76 2.45 45.13 2.16 0.98 85.28 83.44
0.35 30.76 3.44 44.77 2.16 1.32 118.66 156.88
0.45 30.76 4.43 44.41 2.16 1.54 151.62 234.05
0.55 30.76 5.42 44.05 2.16 1.62 184.16 297.55
0.65 30.76 6.42 43.70 2.16 1.52 216.27 329.15
0.75 30.76 7.42 43.34 2.16 1.26 247.95 311.49
0.85 30.76 8.42 42.98 2.16 0.83 279.20 230.65
0.95 30.76 9.43 42.62 2.16 0.27 310.02 83.51

Average 175.78

The power output from the PV module Po(s) and fb(s) with respect to solar irradiance
s is presented in Figure 2.
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Figure 2. Output power from the PV module at different solar irradiance s.

The expected total power obtained from a single PV module is the average of EOP(s),
which is shown in Table 3 and depicted in Figure 3, i.e., 175.78 W.
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Figure 3. Expected output power from the PV module.

3. Proposed HHO and Solution Approach
3.1. HHO: Features

The Harris hawks is a recent population-based and gradient-free metaheuristic [66],
hence, equally applicable to all optimization models or problems. The different phases of
Harris hawks formulation are described in the next subsections.

3.2. Exploration Phase

In this phase, Harris hawks randomly search on locations and adopt a wait and watch
strategy to catch the prey, as per Equation (22) [66].

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5
(Xrabit(t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5

(22)
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where Xrabbit is the rabbit position and X (t+1) is the hawks’ position for next iteration; x
(t) shows the current position of the hawks. The LB and UB are maximum and minimum
of decision variables. Xrand(t) is a randomly selected hawk from the current position. The
random number in the range (0,1) is shown by the r(1–4).

Xm(t) =
1
N

N

∑
i=1

Xi(t) (23)

where Xm is the mean of the current population of hawks while N indicates the hawks’
total population.

Assuming the energy of the rabbit is given by

E = 2Eo

(
1− t

T

)
(24)

E, Eo, and T represent the escaping energy of prey, primary energy, and the maximum
number of iterations taken, respectively.

3.3. Exploitation Phase
3.3.1. Soft Besiege

This behavior is demonstrated by Equation (25) [66].

X(t + 1) = ∆X(t)− E|JXrabit(t)− X(t)| (25)

∆X(t) = Xrabit(t)− X(t) (26)

where X(t) and J represent the difference between the position vector of the rabbit and the
current location in iteration and the random jump strength of the rabbit, respectively.

3.3.2. Hard Besiege

This behavior is showcased by (27).

(t + 1) = Xrabit(t)− E|∆X(t)| (27)

3.3.3. Soft Besiege along with Rapid Drives

In this behavior, it is assumed that hawks may choose their next step provided by the
rule given in Equation (28) [66].

Y = Xrabit(t)− E|JXrabit(t)− X(t)| (28)

Z = Y + S× LF(D) (29)

D, S, and LF are problem dimensions, a random number of order (1 × D), and levy
flight function, respectively. In addition, u and v are random numbers (0 to 1 range), while
beta is the default constant value (assuming 1.5).

LF(x) = 0.01× U × σ

|ϑ|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2 )


1
β

(30)

Soft besiege updates the position of the hawks by

X(t + 1) =

{
Y, i f F(Y) < F(X(t))
Z, i f F(Z) < F(X(t))

(31)
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3.3.4. Hard Besiege along with Rapid Drives

Hard besiege condition given by the following rule:

X(t + 1) =

{
Y, i f F(Y) < F(X(t))
Z, i f F(Z) < F(X(t))

(32)

Y = Xrabit(t)− E|JXrabit(t)− Xm(t)| (33)

Z = Y + S× LF(D) (34)

The step-by-step procedure of HHO is summarized to the pseudocode, as shown in
Figure 4 [66].
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3.4. Solution Approch
3.4.1. HHO for PV DG Placement and Location

The major goal of this research is to determine the best placement and size for numer-
ous PV DGs with the least amount of network power loss and a better voltage profile. In
this work, the inequality constraints are converted to the penalty functions (PFs), and these
PFs are added to the OF to construct the fitness function (FF) defined in Equation (35).

Minimum FF = OF + PF×
VB

∑
j=1

(
∆Vj

)2 (35)

Here, FF is essential to be minimized in order to get minimum loss value, VB represents
the set of overloaded lines and voltage violated load buses, and PF represents the penalty
factor. The violation in inequality constraints such as load bus voltage and line power
flows was handled using the penalty function approach. PF that represents penalty factor
was taken as 10,000 throughout the simulation process.

3.4.2. Computational Practice of HHO for DG Location and Values

Step 1 Read the input data of the system, such as the maximum number of iterations,
number of PV DG units, and population size.
Step 2 Generate the value of the size of PV DG within their upper (DGmax) and lower limits
(DGmin). The same is shown in Equation (36).

DGi = DGmin
i + rand×

(
DGmax

i − DGmin
i

)
(36)

Here, DGi represents the size of ith DG unit. Now, constitute a vector Xj, that contains
the possible locations (LOC) and size of DGs as mentioned in Equation (37).

Xj =
[
DGj,1, DGj,2, . . . . . . . . . , DGj,n, LOCj,1, LOCj,2, . . . . . . . . . , LOCj,n

]
(37)

The LOC is generated randomly. Initial solution set X is then formulated as shown in
Equation (38).

X = [X1, X2, . . . . . . . . . . . . , XN ] (38)

Step 3 Evaluation of the fitness function is processed using Equation (35) for individual
Harris hawks, and the best hawk location is acknowledged.
Step 4 Calculate E using Equation (24).
Step 5 Exploration phase: Update the location of Harris hawks using Equation (22).
Step 6 Exploitation phase: Update the position using Equation (25), (27), (31), and (32).
Step 7 Once the number of iterations reaches the maximum value, then terminate. Else, go
back to Step 3.

4. Simulation Results and Discussions
4.1. Testing Strategies

The simulations were run on a MATLAB 9.9 computer with an Intel i3 CPU running at
2.4 GHz and 4 GB of RAM. The software utilized is MATPOWER 7.2, which is a well-known
power modeling tool.

4.2. Case 1

In order to establish an algorithm, the proposed HHO was tested with selected
extremely complex benchmark functions taken from CEC-2014 (see Table 4). The results
obtained are tabulated in Table 5. The HHO seems to provide very competitive results as
compared to other recent metaheuristic optimization techniques.



Energies 2021, 14, 5206 15 of 26

Table 4. Summary of the CEC-2014 benchmark functions considered.

Type ID Functions Fi = Fi(x)

Unimodal
F1 Rotated High Conditioned Elliptic 100
F2 Rotated Bent Cigar 200

Simple Multimodal F3 Shifted and Rotated Rastrigin’s 900
F4 Shifted Schwefel’s 1000

Hybrid F5 Hybrid Function 3 (N = 4) 1900
F6 Hybrid Function 4 (N = 4) 2000

Composition F7 Composition Function 8 (N = 3) 3000

Table 5. Comparative experimental outcomes on selected benchmark functions.

ID Parameters PSO TLBO CS GSA SFS HHO

F1

max 4.56 × 108 8.93 × 108 5.51 × 108 5.31 × 107 1.17 × 106 3.01 × 105

min 2.47 × 108 4.39 × 107 1.18 × 108 4.56 × 106 1.54 × 105 1.43 × 104

median 3.31 × 108 3.42 × 108 3.10 × 108 8.37 × 106 6.16 × 105 1.52 × 105

std 7.92 × 107 3.42 × 108 1.05 × 108 1.32 × 107 2.35 × 105 1.23 × 105

F2

max 3.63 × 1010 4.06 × 104 2.42 × 104 1.61 × 104 2.00 × 102 2.00 × 102

min 6.00 × 107 6.00 × 103 3.09 × 102 3.47 × 103 2.00 × 102 2.00 × 102

median 1.55 × 1010 1.52 × 104 8.08 × 103 8.38 × 103 2.00 × 102 2.00 × 102

std 1.43 × 1010 8.65 × 103 6.00 × 103 2.90 × 103 7.89 × 10−9 0. 00

F3

max 1.24 × 103 1.12 × 103 1.34 × 103 1.10 × 103 9.84 × 102 9.03 × 102

min 1.13 × 103 1.06 × 103 1.15 × 103 1.02 × 103 9.35 × 102 9.20 × 102

median 1.18 × 103 1.09 × 103 1.25 × 103 1.06 × 103 9.61 × 102 9.19 × 102

std 4.33 × 10 0.25 × 102 4.41 × 10 1.74 × 10 1.11 × 10 1.017 × 10

F4

max 7.90 × 103 5.92 × 103 3.21 × 103 5.25 × 103 2.71 × 103 1.05 × 103

min 6.26 × 103 4.14 × 103 1.36 × 103 3.45 × 103 1.02 × 103 1.00 × 103

median 7.18 × 103 5.06 × 103 2.17 × 103 4.37 × 103 1.49 × 103 1.01 × 103

std 5.98 × 102 7.89 × 102 4.33 × 102 3.61 × 102 3.62 × 102 1.45 × 10

F5

max 2.10 × 103 1.91 × 103 2.04 × 103 2.00 × 103 1.91 × 103 1.92 × 103

min 1.91 × 103 1.90 × 103 1.91 × 103 1.91 × 103 1.90 × 103 1.90 × 103

median 1.97 × 103 1.91 × 103 1.92 × 103 2.00 × 103 1.91 × 103 1.91 × 103

std 7.07 × 10 1.65 3.30 × 10 3.43 × 10 1.47 1.46

F6

max 4.37 × 103 5.34 × 103 6.02 × 104 6.82 × 104 2.10 × 103 2.75 × 103

min 2.55 × 103 2.30 × 103 2.22 × 104 2.32 × 103 2.02 × 103 2.00 × 103

median 3.00 × 103 2.74 × 103 3.68 × 104 1.77 × 104 2.06 × 103 2.26 × 103

std 5.32 × 102 7.00 × 102 8.42 × 104 1.39 × 104 2.60 × 10 2.06 × 102

F7

max 9.70 × 105 1.56 × 106 5.08 × 105 1.14 × 105 7.66 × 103 5.62 × 103

min 6.90 × 104 2.08 × 104 6.26 × 104 1.22 × 104 4.25 × 103 3.56 × 103

median 3.35 × 105 6.56 × 105 1.77 × 105 1.46 × 104 5.63 × 103 4.71 × 103

std 3.63 × 105 5.64 × 105 9.11 × 104 1.84 × 104 7.38 × 102 1.30 × 103

4.3. Case 2

The proposed HHO-based approach is applied to find the suitable location and
capacity of the DGs in the IEEE 33-bus RDS test system where the network and load data
may be obtained from [67]. The single line diagram of the IEEE 33-bus RDS is shown in
Figure 5. IEEE 33-bus RDS has a total of 33 buses, among which 32 are load buses and 1 is
a generator bus. It can be visualized from Figure 5 that at bus no. 1 generator is connected;
the other buses may have any type of load connected, as per the requirement. The total
active power demand is 3.72 MW while reactive is 2.3 MVAR. Total power loss of the
system is 202.67 kW.
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In order to find candidate buses for locating a PV DG using this approach for each
individual bus, it is assumed that there is a PV DG at that bus at a time. For optimal
sizing of a PV DG at this stage, it is assumed that the PV DG may produce electric power
in all possible ranges (e.g., 0–1 MW). The proposed HHO algorithm is applied for the
minimization of overall loss as the objective function of the problem. First, only one PV
DG is used to relax the congestion in lines, and the results obtained are tabulated in Table 6.
With the application of proposed HHO on distribution problem, the losses are reduced to
129.2 from 202.67 kW with only one DG in installation of size 0.95 MW.

Table 6. Variation in power loss with change in an optimal allocation of PV DGs.

Test System Buses Count Array Location Ploss (kW) Loss Reduction
(%)

33 bus system
1 30 129.20 38.76
2 12, 30 86.90 58.81
3 13, 24, 30 72.10 64.42

For further improvement, the problem is tested by installing two and three PV DGs
in the power network. The results obtained are presented in Table 6. The overall active
power losses decreased to 86.9 and 72.10 kW with the application of two and three PV DGs,
respectively, using HHO. The comparative results are portrayed in Table 7 in terms of the
best location and size of PV DGs. The locations suggested by HHO to install PV plants in
IEEE 33 bus are depicted in Figure 6.

Table 7. Comparative results for optimal location and values of PV DGs corresponding to case 2.

Optimization
Method Bus Count Array Location DG Size (MW) Total DG Size

(MW) Ploss (kW) Loss
Reduction (%)

Base case - - - - 202.67 0.00

TLBO [68] 3
12 1.1826

3.560 124.70 38.4728 1.1913
30 1.1863

GA [69] 3
11 1.5000

2.994 106.30 47.5529 0.4230
30 1.0710

PSO [69] 3
8 1.1770

2.989 105.30 48.0413 0.9820
32 0.8300
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Table 7. Cont.

Optimization
Method Bus Count Array Location DG Size (MW) Total DG Size

(MW) Ploss (kW) Loss
Reduction (%)

GA/PSO [69] 3
11 0.9250

2.998 103.40 48.9816 0.8630
32 1.2000

QOTLBO [68] 3
13 1.0834

3.470 103.40 48.9826 1.1876
30 1.1992

CTLBO
ε-method [70] 3

13 1.1926
3.693 96.17 52.5525 0.8706

30 1.6296

IMOEHO [71] 3
14 1.0570

3.852 95.00 53.1324 1.0540
30 1.7410

I-DBEA [72] 3
13 1.0980

3.913 94.85 53.2024 1.0970
30 1.7150

CTLBO [70] 3
13 1.0364

3.721 85.96 57.5924 1.1630
30 1.5217

BA [39] 3
15 0.81630

2.721 75.05 62.9725 0.95235
30 0.95235

HHO
[Proposed] 3

13 0.8311
2.731 72.10 64.4224 0.9500

30 0.9500
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The size and location suggested by HHO (refer to Table 7) provide maximum reduction
in losses as compared to TLBO [68], GA [69], PSO [69], GA/PSO [69], QOTLBO [68], CTLBO
ε-method [70], IMOEHO [71], I-DBEA [72], CTLBO [70], and BA [39]. In addition, the
voltage graph of all the buses obtained after utilization of PV DGs is showcased in Figure 7.
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The bus voltages are obtained from the load flow analysis. The bus voltage profile improves
significantly under the application of three PV DGs at their respective optimal locations.
The variation of fitness function against the number of iterations for installation with three
PV DGs using HHO is showcased in Figure 8. The iterative graph shows that the HHO
converges to an optimal solution value with very few iterations.
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4.4. Case 3

To test the effectiveness of the HHO on a larger system, the proposed approach is
tested to find the suitable location and capacity (size) of the DGs in the IEEE 69 bus RDS
test system where the load and branch data values may be obtained from [73]. The single
line diagram of the IEEE 69-bus RDS is shown in Figure 9. IEEE 69-bus RDS consists of
69 buses, including 68 load buses and 1 generator bus. The generator is connected at bus
no. 1 and a load of the required amount can be connected to the other buses. The total
active power demand is 3.80 MW while reactive is 2.69 MVAR. Total power loss of the
system is 224.9 kW.
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For addressing the most suitable candidate buses for locating a PV DG using this
approach for each individual bus, it is assumed that there is a PV DG at that bus at a
time. For optimal sizing of a PV DG at this stage, it is assumed that the PV DG may
produce electric power in all possible ranges (e.g., 0–1 MW). The proposed HHO algorithm
is applied for the reduction/minimization of overall loss as the objective function of the
problem. First, only one PV DG is used to relax the congestion and reduce losses in lines,
and the results obtained are tabulated in Table 8. The installation of one optimum PV DG
the line losses reduced by 48.86% with DG size of 0.95 MW.

Table 8. Variation in power loss with change in an optimal allocation of PV DGs.

Test System Bus Count Array Location DG Size (MW) Ploss (kW) Loss Reduction
(%)

69 bus system
1 61 0.95 115 48.866
2 61, 62 0.95, 0.9118 83.4 62.916
3 17, 61, 62 0.5329, 0.95, 0.822 71.8 68.074

For further improvement, the problem is tested by installing two and three PV DGs
in the power network. The results obtained are presented in Table 8. The overall active
power losses decreased to 71.80 kW with the application of three PV DGs using HHO. The
comparative results are portrayed in Table 9 in terms of the best location and size of PV
DGs. The locations suggested by HHO to install PV plants in the IEEE 69 bus are depicted
in Figure 10.
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Table 9. Comparative results for optimal location and values of PV DGs corresponding to case 3.

Optimization
Method Bus Count Array Location DG Size (MW) Total DG Size

(MW) Ploss (kW) Loss
Reduction (%)

Base case - - - - 224.9 0.00

GA [69] 3
21 0.9297

2.9897 89 60.4362 1.0752
64 0.9848

PSO [69] 3
61 1.1998

2.9879 83.2 60.4363 0.7956
17 0.9925

TLBO [68] 3
13 1.0134

3.1636 82.172 63.4661 0.9901
62 1.1601

GA/PSO [69] 3
63 0.8849

2.988 81.1 63.9461 1.1926
21 0.9105

QOTLBO [68] 3
15 0.8114

2.9606 80.585 64.1761 1.1470
63 1.0022

CTLBO
ε-method [70] 3

12 0.9658
3.3301 79.66 64.5825 0.2307

61 2.1336

I-DBEA [72] 3
61 2.1487

3.32 78.347 65.1619 0.4717
11 0.7126

SA [74] 3
18 0.4204

2.1813 77.09 65.7260 1.3311
65 0.4298

CTLBO [70] 3
11 0.5603

3.1411 76.372 66.0418 0.4274
61 2.1534

IWO [75] 3
27 0.2381

1.9981 76.12 66.1565 0.4334
61 1.3266

BFOA [76] 3
27 0.2954

2.0881 75.21 66.5665 0.4476
61 1.3451

MFO [77] 3
61 2.0000

2.9625 72.37 67.8218 0.3803
11 0.5822

HHO
[Proposed] 3

17 0.5329
2.3049 71.8 68.0761 0.9500

62 0.8220

The size and location suggested by HHO (refer to Table 9) provides maximum reduc-
tion in losses as compared to GA [69], PSO [69], TLBO [68], GA/PSO [69], QOTLBO [68],
CTLBO ε-method [70], I-DBEA [72], SA [74], CTLBO [70], IWO [75], BFOA [76], and
MFO [77]. In addition, the voltage graph of all the buses obtained after utilization of PV
DGs is showcased in Figure 11. The bus voltages are obtained from the load flow analysis.
The bus voltage profile improves significantly under the application of three PV DGs at
their respective optimal locations. The variation of fitness function against the number of
iterations for installation with three PV DGs using HHO is showcased in Figure 12. The
iterative graph shows that the HHO converges to an optimal solution value with very few
iterations.
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5. Practical PV DG Size Analysis

The optimum allocation of PV DGs using HHO indicates (refer to Table 7) that PV
DGs need to be installed at bus number 13, 24, and 30 in case 2 and at bus number 17, 61
and 62 in case 3 (refer to Table 9) for optimum results. The analysis based on calculation
from Section 2.2 suggests that in case 2, power to be injected at bus number 13, 24, and 30
are 831, 950, and 950 kW, respectively. In case 3, power to be injected at bus number 17, 61,
and 62 are 532.9, 950, and 822 kW, respectively. Practically, to inject the targeted power as
calculated through HHO, DC overload needs to be considered as described in Section 2.2.
The actual field size of the PV DG plant and the number of PV modules required for case 2
and case 3 are tabulated in Table 10.

Table 10. Size of practical PV DG corresponding to case 2 and case 3 (with three PV DGs).

Case No. Bus No. Targeted Power to
Be Injected (kW)

Actual Size of PV
DG (kW)

DC Overload
(kW)

Number of PV
Modules

Case 2
13 831.0 1655.00 824.00 4728
24 950.0 1891.00 941.00 5404
30 950.0 1891.00 941.00 5404

Case 3
17 532.9 1061.08 528.18 3032
61 950.0 1891.59 941.59 5405
62 822.0 1636.73 814.73 4676

In case 2, the number of PV modules used in bus number 13 is 4728 to form a PV
array of capacity 1.655 MWP. The PV array of capacity 1.891 MWP is proposed to be
installed at bus number 24 and 30 using 5404 numbers of PV modules at each bus. In
case 3, the practical size of the PV plant to be installed at bus number 17, 61, and 62 are
of size 1.061, 1.892, and 1.637 MWP, respectively. The analysis shows that in practical
conditions, approximately 50% DC overload exists on PV DGs installation. The allocation
of PV DGs in-network without considering the practical size of the PV DG may lead to
underperformance.
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6. Conclusions

The proposed HHO-based approach is significantly effective in finding the optimum
number, optimal locations, and optimal sizes of DGs. On conventional IEEE 33 and
IEEE 69 bus test systems, the efficacy of the suggested technique is evaluated. With the
employment of optimally sized DGs at their optimum location, voltage profiles of load
buses are improved and the losses reduced noticeably. When more PV DGs are installed,
the system’s performance improves. The comparison with the TLBO, GA, PSO, QOTLBO,
CTLBO, CTLBO ε-method, IMOEHO, I-DBEA, SA, IWO, BFOA, MFO, and BA methods
shows that the proposed method performs comparatively better among all. The active
power loss is reduced by 64.42% and 68.07% using this approach with the installation
of three PV DGs in IEEE 33 and IEEE 69 bus RDS, respectively. The collected findings
demonstrate that the proposed technique reduces power loss by a greater proportion with
a smaller DG size when compared to other algorithms, and it offers better convergence
properties. According to the analysis, there is roughly a 50% DC overload on PV DGs
installations under real-world situations. The in-network allocation of PV DGs without
consideration of the PV DG’s realistic size may result in underperformance.

The HHO is established as a reliable optimization technique for tackling the congestion
problem of power systems with the application of DGs. The proposed method provides
an alternative way for both system operators and energy producers to tackle complex
problems such as voltage instability, transmission congestion, and huge system losses in an
impressive way. In addition, current work suggests the practical size of PV DGs that may
be employed for producing effective outcomes.
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