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Abstract: Power quality (PQ) has become an important topic in today’s power system scenario.
PQ issues are raised not only in normal three-phase systems but also with the incorporation of
different distributed generations (DGs), including renewable energy sources, storage systems, and
other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the
non-linear features and rapid changing of power electronics devices, such as switch-mode converters
for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching
devices in the utility system leads to an increase in disturbances associated with harmonics and
reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the
utility system. Therefore, many researchers are working on the enhancement of PQ using different
custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the
utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid
filters. Further, the authors point out several compensation strategies, including reference signal
generation and gating signal strategies. In addition, this paper also presents the role of the active
power filter (APF) in different DG systems. Some technical and economic considerations and future
developments are also discussed in this literature. For easy reference, a volume of journals of more
than 140 publications on this particular subject is reported. The effectiveness of this research work
will boost researchers’ ability to select proper control methodology and compensation strategy for
various applications of APFs for improving PQ.

Keywords: active power filters; harmonics; power quality; current controlling techniques; custom
power devices

1. Introduction

Improvement in PQ has now become an essential task for researchers and engineers
working in the utility network [1]. With the advancements in power electronics technol-
ogy [2], it has become easier to balance PQ within the capacity of the IEEE standard. If the
quality of power is poor, it may cause several hazards, such as the unwanted process of the
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device, maximum losses in power, poor power factor, lower performance efficiency, and
communication network interference [3]. To overcome these unwanted disturbances [4,5],
custom power devices (CPD) are extensively used [6]. The performance of CPD at variable
voltage stages in power (utility) and industrial sectors seems to have become progressively
more widespread. Initially, the use of passive filters (PF) was limited to harmonics reduc-
tion and rectification in the power sector. But factors such as fixed compensation, bulky
size, and resonance make filters more limited in use. Later on, an active power filter (APF)
emerged in a different configuration for tracking and compensating distorted voltage and
current in variable nonlinear loads. However, these filters still have some flaws related
to their ratings, which are extremely close toward the load end, almost around a higher
percentage in some critical cases, and constitute an expensive option for improving PQ [7].
Owing to the cost analysis and rating of APFs, the acceptance rate of APFs by consumers
or customers has been found to be limited in the real world [8]. Now, to overcome these
issues found in PFs and APFs, the use of hybrid active power filters (HAPFs) has been
a significant part of an economical solution [9] for compensating for the distortions in
nonlinear loads. In this paper, a broad survey is conducted to work out the complications
related to utility networks taking nonlinear loads and to study different PQ mitigation
techniques for improving the value of supplied power.

This review article aims to investigate the advancement of APF schemes that are
widely employed to suppress the harmonics in the utility system. It is confident that the
present work will be helpful to attract more power engineering readers to work in this area.
For this reason, this comprehensive review of APF studies is compiled, highlighting various
APF techniques. Besides, the merits and flaws of each presented approach are discussed.
Furthermore, a selection of converter configurations based on specific applications is
provided along with the responsible factors that need to be considered. Overall, this review
provides broad knowledge on several controlling strategies of APFs for PQ enhancement.

A detailed survey from various reputed published articles has been carried out and
presented in the succeeding sections. Section 2 explains the problems that can occur in a
power system due to harmonics. Section 3 presents a classification of APFs, while Section 4
describes the basic compensation strategy of APFs. Configurations of APFs are discussed
in Section 5, while Section 6 provides basic ideas on various control techniques of APFs for
the producing of the switching signals. The selection criteria of PQ based on applications
are discussed in Section 7. The technical and economic considerations are discussed in
Section 8, and the conclusions are presented in Section 9.

2. Power System Harmonics and Standards

Harmonics are generated by non-linear loads coupled to the electrical network through
power converters. The presence of harmonics is observed as an obstacle disturbing the
performance of power systems that can also cause interference with the communication
devices of other types of equipment. Generally, devices such as a personal computer,
adjustable-speed drives, and electronic light act as the main source of distortion in standard
voltage and current [10], because these devices allow the current to vary nonlinearly. The
presence of harmonics in utility systems generates issues, such as interference in signals,
the malfunctioning of electrical equipment [11], the random tripping of circuit breakers,
power loss in the transmission system, sag and swell in voltages, neutral currents with
high value, the overheating of conductors, and transformer failures in early stages and in
the power factor, as well as the capacity of the system declining [12].

2.1. Problems Caused by Harmonics

Various problems are associated in the power system with the existence of harmonics.
Some of them are mentioned below:
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2.1.1. Effect on the Power System Itself

A sinusoidal current becomes distorted because of the existence of harmonics. Gen-
erally, these instances are found in the case of a third-order harmonic, which generates a
zero-sequence-increased current and also increases the neutral conductor current. More-
over, other power system components, such as the transformer, rotating machine, and
power electronics equipment, also influence the PQ. The magnetizing current of the trans-
formers is designed with a limit not exceeding 1–2% of the nominal current. The effects
of the transformer cause overheating and reduced life. Compared to the transformer, the
rotating machines also produce harmonic currents to create a magnetic field, which is
caused by small magnetizing characteristics. The pitch of motor winding produces har-
monic currents that affect overheating, efficiency loss, and pulsating torque, with reduced
life. In the generator, the induced voltage also contains harmonics with low magnitude.
However, to obtain a purely sinusoidal voltage waveform, a spatial distribution of the
stator windings must be designed, which is practically not possible. This voltage usu-
ally contains the third harmonic distorted voltage. Similarly, the switched-mode power
supplies (SMPS) also produce harmonics and draws current pulses containing third- and
higher-order harmonic components.

2.1.2. Effect on Consumer

Grid supply voltage becomes distorted due to the adverse effect of nonlinear loads,
and, due to these harmonics, the linear loads consume nonlinear current. The effect of
harmonics is also found in the converter, which causes firing errors. Most consumer power
equipment like motor drives and computers are also seriously affected by the presence
of harmonics.

2.1.3. Effect on the Communication System

Another important issue is communication interference, which is caused by harmonic
currents in the utility system. The distorted or the harmonics current in the utility system
are both attached to the communication network either by induction or conduction process.

2.1.4. Effect on Revenue Billing

Power distribution corporations calculate energy consumption in two components:
energy consumption and maximum power demand for a certain time duration. Both the
quantities are calculated using the so-called watt-hour and demand meters. The distorted
nonlinear load current affects the correctness of watt-hours and demand meters badly.
The conventional magnetic disk watt-hour meters work on the principle of an induc-
tion motor and provide a negative error at different harmonic frequencies that increases
simultaneously with increasing frequency.

2.1.5. Operating Loss

The existence of harmonics leads to transmission/distribution loss and equipment
operation and life loss. Distortions in voltage lead to the generation of increasing currents
and cause capacitor fuses to blow. Moreover, the load loss (which comprises copper and
stray losses) can increase in the transformer. The rise in stray losses affects the additional
transformer core heating losses caused by nonlinear loads. Further, harmonics damage the
metering and instrumentation devices.

2.2. Major Sources of Harmonics:

Below is a list of sources for harmonics:

(1) Power electronic devices comprising variable speed drives, uninterruptible power
supplies, line-frequency converters, and SMPS.

(2) Arcing devices including arc furnaces and mercury lights.
(3) Saturable equipment like industrial transformers, motors, and generators.
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2.3. Disadvantages of Harmonics

Harmonics leads to greater power losses in the distribution system, causing noise
troubles in the communication systems and a breakdown of the functioning of electronic
devices. Therefore, the researchers address harmonics as a serious PQ issue in the modern
power system. As far as the global standards are concerned, electrical devices must obey
the harmonics limit within the values specified. Meanwhile, it is a requirement to get to
the bottom of the harmonic problems produced by those devices that have by now been
connected. The application of PFs has shown typical solutions to mitigate harmonic current
issues, though; they give rise to several problems, like bulkiness, resonance, and tuning
problems. Therefore, an alternate solution is required to overcome these issues. In these
conditions, the alternatives solutions are an APF that is capable of mitigating harmonics
along with non-symmetric current.

2.4. Harmonic Emission Standards

At the national and international levels, numerous associations are working in cooper-
ation with architects, device suppliers, and academic organizations to establish principles
covering protocols, recommended procedures, and harmonic boundaries. The major pur-
pose of the standards is to deliver a common base for all associated parties to work together
to ensure consistency between end-user devices and system devices. Among the various
organizations, more emphasis is centered on the three main entities participating in creat-
ing harmonic emission standards (HES) [13,14], i.e., Institute of Electrical and Electronics
Engineers (IEEE), ANSI (American National Standards Institute), and the International
Electro-technical Commission (IEC). HES are intended to safeguard the power system
and customer devices from malfunction or misoperation during the deviation of voltage,
current, or frequency from normal values. The HES offers protection by maintaining ob-
servable limits, and these limits support providing the demand of better PQ to both utility
system and its consumers. In Table 1, a detailed description of the different harmonics
standards is provided.

Table 1. PQ disturbances and their harmonics standards.

Disturbances Harmonics Standards

Harmonic environment IEC 1000-2-1/2

Compatibility limits IEEE 519
IEC 1000-3-2/4 (555)

Harmonic measurement IEC 1000-4-7/13/15

Harmonic practices IEEE 519A
IEC 1000-5-5

Component heating
ANSI

IEEE C57.110
IEC 1000-3-6

Under-sag-conditions IEEE 1250
IEC 38, 1000-2-4

Sag measurement IEC 1000-4-1/11

Sag mitigation IEEE 446, 1100, 1159
IEC 1000-5-X

Over surge environment
ANSI

IEEE C62.41
IEC-1000-3-7

Fuse blowing/upsets ANSI C84.1
IEC 1000-2-5

Compatibility levels IEC 3000-3-X

Surge measurement
ANSI

IEEE C62.45
IEC 1000-4-1/2/4/5/12

Surge protection IEC 1000-5-X
Insulation breakdown IEC 664
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3. Classification of Power Filters

The total harmonic distortion (THD) factor in the utility system can be eliminated
using power filters. Traditionally, for suppressing harmonics, PF [15–17] are suggested, as
illustrated in Figure 1, but these filters never consistently react with the advanced utility
systems. These filters possess flaws [18,19], such as fixed compensation, resonance, bulki-
ness, and tuning issues. These flaws can be overcome using a quasi-PF (QPF), suggested
in [20] and illustrated in Figure 2, consisting of a parallel- and series-tuned LC circuit.
To block the line frequency, the QPF is designed with inductor (L1) and capacitor (C),
which are tuned at the fundamental frequency, whereas the inductor (L2) and capacitor (C)
supplies a low impedance path for harmonic frequency currents that are tuned at the third
harmonic. The QPF offers a cost effective and simple design. Variation in the frequency and
resistance of the system influence the characteristics of PFs strongly. Therefore, for further
PQ enhancement, APFs are implemented. APFs utilize power electronics techniques to
supply components of current or voltage that in turn eliminate the harmonic components
generated by the nonlinear load.
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On the other hand, APFs have some limits. A lot of research is in the advanced stage,
which is necessary to improve APF performance. The APF needs the fast switching of high
currents and is not able to reduce current harmonics more than the 25th order. Moreover,
with the existence of high-frequency current harmonics, there may be a presence of current
distortion. The design of HAPFs overwhelms the limitations of APFs. The arrangement
of basic APFs and PFs are treated as HAPFs [21–24]. The role of a HAPF is segregated
into two segments, wherein APFs exclude low-order harmonics, while PFs remove higher-
order harmonics. These filters take the compensations of both PFs and APFs, which
provide better performance with better voltage regulations and cost-effective solutions.
These arrangements simultaneously decrease the switching noise and electromagnetic
interference. HAPFs are again classified with different arrangements of passive and active
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filters. Figure 3 depicts different topologies of basic HAPFs, followed by Table 2, which
provides a comparative idea among different topologies of HAPFs. Further, the control
method of injection-type HAPFs is shown in Figure 4. Corasaniti et al. [21] proposed a
HAPF for harmonics and reactive power compensation in a power system. A novel design
method for a HAPF was presented by Luo et al. [23]. In 2010, Akagi [25] proposed a
transformer-less HPF with a three-level pulse-width modulation (PWM) converter.
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Table 2. HAPF Topology.

Topology of HAPF Applications and Brief Remarks Configuration of Circuit

SEAPF + shunt PF

− More economical than unified PQ
conditioners (UPQC)

− Harmonic damping
− With this topology, it is difficult to

ensure overcurrent protection
− More circuit for Q control

Refer to Figure 3a

SAPF + shunt PF

− Used for harmonics cancellation
applications

− Economical to use in low-power
applications

− Commercialized and widely popular
− Q control

Refer to Figure 3b

APF connected in series with shunt PF

− Can be used in applications that have
medium and high voltages

− The existing passive filter’s
performance can be enhanced with the
series APF

− Easy protection possible
− CT is minimized
− No Q control
− Still, this is underdeveloped

Refer to Figure 3c
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Shuai et al. in [26] proposed a new controlling approach for injection-type HAPFs.
Zobaa et al. in [27] proposed an optimal multi-objective design of HAPFs, considering a
distorted environment. In this paper, an innovative idea for the optimal sizing of HAPF
parameters is proposed and is utilized in three-phase industrial power systems. Tzung
et al. in [28] discussed a HAPF using variable conductance used for the mitigation of
harmonic resonance in a utility system. The proposed HAPF is performed as harmonic
variable conductance; consequently, the total harmonic distortion (THD) can be decreased
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to a suitable stage in reaction to a variation of load or a change of parameter in the
power system.

4. Design Configuration of Active Power Filters

The circuit configurations of APFs are presented in Figure 5, and more details can be
found in [29,30], which are discussed in subsequent subsections.
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Figure 6c depicts a block diagram of a UPQC. UPQC [36–39] uses the combining
arrangement of a SAPF and a SEAPF. The configuration is attached in such a manner that
the dc-link bus is connected in the middle of two voltage source inverters (VSI) acting as
a SEAPF and a SAPF. UPQC is implemented in a single-phase and multiphase system.
These configurations of APFs can suppress the voltage, and current harmonics also provide
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sinusoidal features of power towards harmonic-content non-linear loads. One major
problem associated with UPQC is cost and control complexity. These two problems arise
due to the use of a huge quantity of solid-state devices. Similarly, to improve the PQ of
two feeders in a utility network, a CPD is implemented, which is called an interline UPQC
(IUPQC) [40,41]. An IUPQC [42–44] is treated as a suitable and efficient CPD and solves
the issues of compensation in all transmission lines for a particular substation. Figure 6d
illustrates the block representation of an IUPQC.

4.2. Converter Type

In the process of designing APFs, basically two types of converters [45] are used. One
converter type is VSI, and the other one is the current source inverter (CSI) (illustrated
in Figure 7a and Figure 7b, respectively). VSI offers a self-support DC bus voltage that
comprises a DC capacitor. VSI is commonly used and has effective features, such as
a lower weight, economical value, and the existence of expanded features on different
multilevel types, which enables operations with less rapid switching. A CSI performs as
a compensated source to counter the harmonics generated by the nonlinear devices at
the load. For obstructing the opposite voltage, a diode in series is connected along with
a self-commutating device. However, the arrangement based on gate turn-off thyristor
(GTO) does not require the series diode and has limited switching frequency. Compared
to a VSI, a CSI is not suitable for multilevel modes for improving the operation. Table 3
provides a comparison between a CSI and a VSI.
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Table 3. Comparison of a CSI and a VSI.

Comparison Criteria CSI VSI

Phases 3-phase l- and 3-phase

Operation Inserts currents at PCC for suppressing
harmonics current at the load end

Perform through a superimposed current-control
loop to generate the desired signal

Power applications Medium-power ratings Low/medium-power ratings

Control strategy Complex Simple

Speed of response in ms Medium (−1) Fast (−0.1)

No of active devices 6 switches, 6 diodes L-phase: 4 switches, 14 diodes
3-phase: 6 switches, 6 diodes

Switching frequency, Hz −2–5 −20–30

DC energy storing capacity DC inductor (−100 mh) DC capacitor (-4700-9ooovf)

The DC-link voltage or current (1.3–1.5) × rated Supply current (1.3–1.5) × rated Supply voltage

AC components Na Na

AC voltage ratings Na Na

Voltage or current discontinuities Currents with higher ratings and change
(+idc and −idc)

Voltage with higher ratings and change
(+vdc and −vdc)

Associated loss Total power loss is high. Total power loss is low.

Input parameter

The current input is constant and changeable.
An inductor is connected across the CSI. This

inductor is large, high cost, and provides
more loss.

Voltage input is constant. The capacitor is
connected across the CSI. This capacitor is small,

economical, and is effective energy storage.

Power source The input of a CSI is a dc voltage source with
high impedance.

The input of VSI is a dc voltage source with
low impedance.

4.3. Based on Phase Connection

Classifications based on phase connections are discussed in [46–52] and are depicted
in Figure 8. They are classified as single-phase two-wire (2W), three-phase three-wire (3W)
and four-wire (4W) connections. Single-phase systems are connected to non-linear loads of
domestic equipment. Several structures and controlling methods of single-phase APF with
single-phase nonlinear loads [49,50] are discussed. The function of three-phase 3W [40,41]
and three-phase 4W [51,52] APFs are discussed in this work. These APFs are engaged to
suppress the issues of PQ in the utility system. An example of the need for a three-phase
3W system is the adjustable speed drive and examples of needing three-phase 4W systems
include computers, commercial lighting, etc.
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5. Compensation Strategy

Different compensation devices have been explored in the advancement of PQ and
among them APF technology has marked a special place for the mitigation of the distortion
of harmonics. APFs are employed to generate the components of harmonic current, as such
the supply will only provide the fundamental part of the current required by the load. An
APF is based on a two-circuits composition, i.e., a power and control circuit. The reference
current generation of a control circuit is provided with information concerning harmonic
current and other variable systems to produce the control signal that will execute the APF of
the power circuit to produce the required compensation current. APFs offer several benefits
like reactive and supply current suppression, a lack of harmful resonances, independence
from the power distribution system properties, and better filtering capabilities for a wide
range of frequencies. Figure 9 elucidates the operational sequence for the compensation
strategy [6–9] of APFs.
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The reference signal estimator runs the total controller of the system, which in turn
delivers the controlling signal for the switching of a signal generator. With the help of a
suitable interface, the output from this generator is provided as the input-controlling signal
to the power circuit. The operations of APFs pass through three different phases. The first
one is signal conditioning, followed by deriving the signal to be compensated, and the third
one is switching off the gating signals. The first step refers to the sense of distortions in the
transmission network. The estimation of the reference signal is introduced by detecting
the necessary voltage/current signals from the information collected from the variables of
the system. The system variables (voltage and current) are sensed by employing certain
devices (like potential and current transformers etc.). The estimation of the reference signal
depends on the feedback of system variables and is computed in different domains like
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time and frequency. The subsequent phase follows the signal derivation to be compensated
from the distorted signal and is comprised of sinusoidal and harmonic content signals. This
step can be worked out with two different techniques, i.e., time and frequency domains.
Detailed approaches of the frequency and time domains are discussed in the coming
sections. Finally, the last phase comprises the switching of gating signals for the mitigation
of harmonics.

An APF is composed of a DC bus capacitor (CDC), power filter, and coupling inductors(
L f

)
. An SAPF is employed to supply the filter current (iF) that is required to suppress the

distortion current formed due to non-linear loads. The required filter current is produced
using a VSI.

The filter currents are found by computing the load current (iL) and the sinusoidal
reference (iS), which is expressed as:

iS = iL − iF (1)

The load current with nonlinear characteristics is composed with fundamental
(

iL, f

)
and harmonics component (iL,h) and is expressed as:

iL = iL, f + iL,h (2)

The filter current supplied by the SAPF should be:

i f = iL,h (3)

And the resulting supply current is expressed as:

iS = iL − i f = iL, f (4)

Therefore, from Equation (4), it is clear that the supply current (iS) is composed of only
the fundamental component of the load current

(
iL, f

)
. APFs are employed in several levels

of power system applications. For low-power applications, APFs suppress the current
harmonics for single-phase systems, offer suitable solution for unbalanced load currents,
and reduce the current harmonics. Similarly for medium-level-power applications, APFs
are used to mitigate the distorted current. The reactive power compensation using APFs at
a high level is not normally regarded as feasible on cost-effectivity grounds. The distortion
currents in high-power applications are not a major issue compared to in low-power
applications. In APFs, the power circuit consists of a DC capacitor, DC/AC converter,
and a PF. The DC capacitor is used to keep the DC voltage with fewer ripples in a steady
state and performs as an energy storage device to provide the power gap between the
load and supply during the transient time. An APF based on converter types are used
in the form of a CSI and a VSI, but the VSI design with insulated gate bipolar transistors
(IGBTs) or GTO are used widely because it is not heavy and because it is economical and
can be extended to multilevel arrangement, to improve the efficiency of APFs with lower
switching frequencies. Moreover the harmonic filter is utilized to reduce the harmonics at
different frequencies.

5.1. Gating Signal Strategies

A volume of work based upon control techniques of APFs is discussed in [51,52]. This
segment demonstrates the different control techniques of APFs. The operation of the filter
is completely refereed by the operation of control strategies. This segment is implemented
only after the compensating signal is derived because it is applied to match the actual
current with the reference compensating current signal. A relative survey among different
control techniques for APFs and their applications are described in Table 4.



Energies 2021, 14, 4589 14 of 32

5.1.1. Linear Control Technique

The linear control technique (LCT) [50] is otherwise called a closed-loop fixed-frequency
current control. It has fast response and simple implementation. Figure 10 indicates the
block diagram of LCT. The main components would include a proportional-integral (PI)
controller, comparator, and a switch mode inverter.
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5.1.2. Hysteresis Current Control Technique

The generation of gating signals using hysteresis current control (HCC) is discussed
in [51–53]. A bang-bang type controller is used in this control technique, which is used
to calculate the difference between the reference values with the original compensating
current within a certain limit or tolerance band. The major benefits of HCC are of having
high or dynamic performance, easy implementation, unconditioned stability, and peak-to-
peak current controllability within the tolerance band. But uneven switching frequency
leads to the problem of filtering out switching harmonics and also has an adverse effect
on the reliability and efficiency of the converter. Figure 11 represents the performance of
hysteresis current control. In [54], the author presents an adaptive hysteresis band current
controller (AHCC) wherein the problems raised in HCC, i.e., the switching frequency is
uneven due to a fixed tolerance band, which adversely produces acoustic noise, more losses
and difficulty in filter design, were overcome by the use of AHCC. In this method, instead
of a fixed band, the technique adaptively changes the tolerance band, so that the switching
frequency maintains almost constant. This tolerance band in AHCC depends on different
parameters of the system, such as the current or voltage source, switching frequency, and
DC capacitor voltage. In conventionally current controllers, the tolerance band was fixed,
and hence, uneven switching frequency occurs, which leads to different disturbances like
acoustic noise, losses, and so on. To obtain good compensation and lower total harmonic
distortion with less switching loss, a new technique has been introduced, called a weighted
adaptive hysteresis band current controller [55,56], wherein a weighted factor is introduced,
which is calculated to reduce the source current THD. Fuzzy-AHCC (FAHCC) is discussed
in [57,58]. Suresh et al. [58] presented a real-time application of FAHCC theory for a SAPF.
By using this approach, APFs advance in outstanding compensation capability for different
steady-state and transient environments.

5.1.3. Negative Sequence Current Component Control

In [59,60], the negative sequence current component (NSCC) method is discussed.
This method essentially adjusts the uneven burdens, i.e., the unbalanced load. For realizing
the load balancing function, APFs are maintained to insert currents opposite to the negative
components of the load currents, which are calculated as magnitude and phase.
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5.1.4. Sliding Mode Control

The generation of gate signals using sliding mode control (SMC) is discussed in [61–64].
SMC can be employed to acquire robust performance against the variable of parameters
and harmonics in load. This control technique provides a satisfactory performance of
rapid switching control law to force the state trajectory of the system into a specified
surface. At the same time, for all succeeding times, this control technique maintains the
state trajectory in the state space. There exist some flaws with this control, which include
the issue of the chattering phenomenon in discrete implementation and issues in the
design and development of the controller, especially under transient and zero-steady-state
performance conditions.

5.1.5. One-Cycle Control

A one-cycle control (OCC) method has been discussed in the literature [65,66]. This
method is very encouraging, with excellent harmonic control, trouble-free circuitry, ro-
bust presentation, and low cost. Smedley et al. presented [65] the performance of OCC-
controlled APFs with uneven source and load values. The presented technique imple-
mented one integrator with reset. The arrangement was designed with different logic and
linear variables to control a VSI to attain a unity power factor for the current injected or
received from the supply system.

5.1.6. Dead-Beat Current Control

Controlling techniques using a deadbeat control (DBC) structure are discussed in [67–71].
Two state variables were calculated at each sampling gap. Using two state variables, the
pulse width was calculated in experiments so that it can make the output voltage equivalent
to the reference at every sampling instant [67]. In [70], a robust DBC for PWM rectifiers
and APFs is discussed. The stability limitations were analyzed using digital dead-beat
current control implemented through three-phase converters used as PWM rectifiers. A
revised estimation technique was suggested, to increase the robustness of the controller.
Delta modulation control (DMC) is presented in [71], which is based on nonlinear control,
and its concept is simple and easy to implement in a different application. The switching
frequency of DMC is not steady, and the controller execution related to percentage THD is
different, compared to HCC or LCT.

5.1.7. Repetitive Control

Repetitive control (RC) is exceptionally profitable to manage periodical tracking errors;
however, the inconvenience of the proposed technique impacts the subsequent tracking
errors, lagging about one sinusoidal signal period. To determine the issue, a parallel
combination of PI and repetitive controller [72,73] can be put into utilization. This plan
implements focal points both of the PI and repetitive controller with astounding dynamic
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and steady-state features. In [72] a dual-repetitive controller is implemented, which is
used for developing the energetic behavior of SAPFs and to eliminate multi-repetitive
errors. In [73] a digital repetitive control is implemented for a three-phase four-wire
SAPF. This method helps to improve the robustness of the system. These controllers are
implemented as harmonic compensators and current controllers. These controllers provide
robust performance for periodic issues and provide a zero-steady-state error at all the
harmonic frequencies.

5.1.8. Space Vector Modulation Technique

This technique is required to control the PWM. There are several variations of space
vector modulation (SVM) that requires different PQ and computational issues. This tech-
nique overcomes the lack of coordination issues of HCC by measuring the switching vector
of a VSI. In addition, SVM requires information from the terminal voltage of the VSI, a
derivative of the current error, and the line parameters, which is not appropriate for a
distribution system wherein the network parameters are not constant because there are
transformers and dynamic loads. It offers the following benefits over other control tech-
niques: the use of DC link voltage is high and can be conveniently used as current control
or flux tracking control in applications such as motor drives. Current control techniques
using SVM is presented in [74]. The objective of the SVM is to detect proper switching
combinations [75,76], as well as their duty ratios depending on their modulation scheme.
The SVM method includes lots of benefits, such as excellent voltage consumption, low
current harmonics, and fixed-frequency operation. SVM is very simple to implement in a
digital system [77,78] and has become the preferred option in three-phase voltage or current
source based APFs. However, the essential controls and equivalent execution time restrict
the maximum sampling time, maximum switching frequency, and maximum bandwidth.
Figure 12 represents the SVM switching technique.
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5.1.9. Predictive Control

In predictive control (PC), there are two general methods: the statistical time series
modeling method and the neural network, which is used to predict or forecast problems.
However, the artificial neural network (ANN) offers rapid calculation because of its par-
allel nature, adaptivity to parameter variations, and even plant structure and high noise
immunity. However, it needs prior training of the network. In this algorithm [79,80],
two methods (the time series modeling method and a neural network) are widely used
to predict or forecast problems. However, this algorithm produces two major flaws: the
need for extensive calculations and complicated system parameters for their application.
Bhattacharya et al. in [80] proposed a shunt APF with improved performance using ANN-
related predictive and adaptive controllers. This part can be improved further. It can
be connected with a future trends section saying how artificial intelligence can improve
performance, for instance. This controller can be utilized to reduce the switching frequency
for high-power inverters and maintaining the current error within a specified bound. It
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also achieves more precise current control with less THD and harmonic noise. Furthermore,
it needs a precise model of the APF to achieve the desired performance. This method
requires a lot of calculations.

5.1.10. Soft Computing Techniques

In [81], elementary work on soft computing techniques (SCTs) is presented. Basically,
SCTs include areas such as ANN, fuzzy logic controller (FLC), genetic algorithm (GA),
particle swarm optimization (PSO), and wavelet-transform (WT). For improving robustness
and enhancing the function of control procedures in most applications in the field of PQ
and power electronics, different tools related to soft computing are used.

Fuzzy logic controllers. SCTs based on FLC is presented in [82–84]. FLC are recently
used in many applications and areas like the processing industry, diagnostics, agriculture,
and more, such as the stock market. This controller does not require a mathematical model
that may be specific, and it can be implemented easily for non-linearity. The inputs use
imprecise values and are robust compared to the traditional controllers. Suresh et al. in [82]
proposed types-1 and -2 FLC for PQ improvement using RTDS hardware.

Genetic algorithm. SCTs based on a GA are presented in [85]. It is a programming
method that acts as a problem-solving strategy of biological evolution. For a particular
problem to be solved, the GA’s input is a set of possible explanations of that problem,
which are programmed in a fashion with a fitness function that permits all candidates
to be assessed quantitatively. The algorithm based on GA and fuzzy neural network
(FNN) is presented in [86]. These algorithms were developed to optimize the parameter
model or to design a predictive model compressed and specific. Further, these algorithms
suggested that, in comparison to the PI controller, GA and the fuzzy neural network (FNN)-
based predictive controllers terminate voltage distortion efficiently and provide current
significantly, which improves the harmonic-compensation feature. Figure 13 shows a flow
chart of the GA.
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Neural network. Neural network (NN) theories are discussed in [87–90] and are em-
ployed to extract the essential data by learning or training with an activation function.
Singh et al. [87] discussed a new method based on an estimation of load conductance
using a NN, which is executed on DSTATCOM in three phases. In [88], author discusses
NN-based anti-Hebbian control theory for PQ enhancement with linear or non-linear loads.
This method utilizes active and reactive components of the fundamentals of load currents
in the expression of weighted signals. In [90], author proposed a NN-positioned adjustable
step least mean square (LMS) for the extraction of the signal. This theory utilizes autocorre-
lation time mean estimate error signal for upgrading the step size in place of the normal
error signal.

Particle swarm optimization. PSO is an advanced technique that is utilized based on
population. Initially, the system is started with a random solution of a population and
is selected for updating the generations optimally. The overall techniques are discussed
in [91,92], and Figure 14 illustrates a flow chart of PSO. In this method, particles that
are so-called probable solutions fly via problem space depending on the current optimal
particles. This method is extremely quick and provides good results in different aspects.
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Wavelet transform. Under non-stationary conditions, WT transforms are more accurate
in determining PQ indices in a power system [93]. WT offers the time-frequency data of a
signal. Moreover, wavelet analysis can often de-noise a signal at the time of decomposing
without appreciable degradation [94]. WT is capable of revealing aspects of data that
other analysis tools would miss, including trends, breakdown points, discontinuities, and
self-similarity [95].

Therefore, in this section, the features of different control strategies have been analyzed,
and it was found that each control strategy has its individual merits and flaws on the basis
of performance and implementation. Basically, control strategies are performed on the basis
of load features, correctness, and ease of implementation, and therefore, it is necessary
to consider these features when selecting any control strategy. Now, the performance
of each strategy is analyzed using a sinusoidal waveform reference [96] and using the
instantaneous and root mean square (RMS) error for following the reference current. The
performance of each strategy for instantaneous error and root mean square (RMS) error
under different switching frequency are shown in Figure 15 and Figure 16 respectively.

5.2. Reference Signal Generation Strategies

Recently, many researchers have newly proposed several reference-signal generation
methods. Some of the recent types are discussed in the following. The author in [97] pro-
posed the virtual input signal-based instantaneous power theory (VIS-IPT)-based current
harmonic extraction for unbalanced grid conditions. VIS-IPT is better than the conventional
IPT theory, as in the former, the compensation currents are achieved from the measured
powers through multiple-phase inverse Clark transformation, and, in the latter, one can
measure the undesired average reference under unbalanced conditions. Moreover, the
PLL circuit is not required for synchronization in the VIS-IPT. Figure 17a shows the sig-
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nal waveforms for the IPT technique, and Figure 17b shows the performance for the
VIS-IPT method.
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The authors in [98] proposed a new synchronous reference frame (SRF) theory-based
power angle control (PAC) method. The SRF-PAC is based on an instantaneous three-
phase power estimation approach, which is simple and dynamic in use. The technique
is implemented in UPQC to improve the PQ issues in a grid-connected PV system. The
PAC technique is more sensitive to nonideal supply voltages. The SRF-PAC has following
salient features:

• For power calculation and power estimation, it uses a simple and less computationally
intensive method.

• It has fast transient response because of less computation.
• It has provisions for large values of the power angle.

The performance of the filter using the proposed technique is illustrated in
Figures 18 and 19. Figure 18 illustrates the waveform of the filter during a sag in supply
voltage, and Figure 19 illustrates the waveform of the filter during a swell in supply voltage.
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Figure 19. Waveform of the filter during a swell in supply voltage (a) voltage waveform during sag, (b) current waveform
during sag.

In [99], the author proposed adaptive frequency-based reference compensation current
control. This control can directly handle the problems of power-system frequency deviation
and distorted source voltage. The phase synchronization for SAPF compensation can
be effectively modified under the power variation of unbalanced nonlinear loads. The
proposed technique is better in comparison to the traditional instantaneous p-q method
and sliding discrete Fourier transform (DFT). Figure 20 illustrates the signal waveform of
the filter using (a) PI, (b) sliding DFT, and (c) the proposed technique. Figure 21 presents
the performance of the system in different cases with the unbalanced nonlinear load
composed of a six-pulse rectifier, a Y-connected resistor–inductor load, and the unbalanced
interharmonic load connected to a converter. It is observed that the proposed technique
shows better harmonic minimization results compared to the other two techniques. This
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experimental system is based on the sinusoidal pulse-width modulation control and then
in series with a motor is built in the MATLAB/Simulink model.

Energies 2021, 10, x FOR PEER REVIEW 28 of 41 
 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 20. Performance of the filter under unbalanced nonlinear loads with nominal source voltage 
using (a) PI, (b) sliding DFT, and (c) the proposed controller. 

Energies 2021, 10, x FOR PEER REVIEW 28 of 41 
 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 20. Performance of the filter under unbalanced nonlinear loads with nominal source voltage 
using (a) PI, (b) sliding DFT, and (c) the proposed controller. 

Figure 20. Performance of the filter under unbalanced nonlinear loads with nominal source voltage
using (a) PI, (b) sliding DFT, and (c) the proposed controller.

In [100], a direct harmonic voltage controller of a SAPF in microgrid applications is
suggested. The SAPF mainly depends upon the rapidness and precision of its internally
built control algorithms. In this literature two different configurations, a SAPF and a RAPF,
are compared, and it was found that the SAPF was better in comparison to the RAPF.
Figure 22a,b represents the performance of the PCC voltage and grid current using the
proposed method. Similarly, Figure 22c,d represents the PCC voltage and grid current
using the conventional method. Figure 23 shows the THD value between the proposed
and conventional one showing the PCC voltage and grid current.
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In [101], the authors proposed an adaptive neural system for harmonic estimation
and the detection of the renewable wind energy resources. The novel control design is
developed with a PWM control. In addition, feed forward networks (trained by back
propagation algorithm) works like a hysteresis band comparator. An APF control design is
developed with an adaptive linear neuron network in which the load and current, along
with voltage, is analyzed and then the controller calculates the control signal by considering
the reference compensation current. The proposed method is compared with the exiting
method in terms of many parameters, such as load voltage, load current, voltage, reactive
power, real power, and especially THD value. Figure 24 represents the THD value between
RLS, LMS, and the proposed method.
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Figure 23. THD value between the proposed method and the conventional one, showing the PCC
voltage and grid current.
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Table 4. Applications of different gating signal techniques.

Compensation Strategy Features References

HCC
Simple in operation; Fast response; Variable switching

frequency; No delay time; Harmonic elimination is suitable for
a certain range of frequency

[51,57,58]

SMC Simple in operation; Medium response; Variable switching
frequency; No delay time [62,63]

NSCC Simple in operation; Medium response; Constant switching
frequency; No delay time [59,60]

DBC Complex in operation; Medium response; Constant switching
frequency; Delay time is medium [67,68,70]

PC Medium in operation; Medium response; Constant switching
frequency; Delay time is long [79,102]

SVM Operation is quite complicated; Slow response; Constant
switching frequency; Delay time is long [74,77]

DMC Simple in operation; Fast response; Variable switching
frequency; No delay time [71]

LCT Moderate in operation; Fast response; No delay time; Harmonic
elimination is suitable for a certain range of frequency [50]
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Table 4. Cont.

Compensation Strategy Features References

RC Simple in operation; Medium response; Constant switching
frequency; No delay time [72,73]

OCC Simple in operation; Fast response; Constant switching
frequency; No delay time [65,66]

FLC
Medium in operation; Fast response; Constant switching

frequency; Delay time is slow; Selective harmonic elimination is
not suitable

[82,83]

NN

Medium in operation; Selective harmonic elimination is not
possible; Fast response; Better accuracy; Delay time is slow;

Performance against frequency variation is good; Suitable for
unbalanced and distorted supply and unbalanced load

[87,88]

GA Complex in operation; Fast response; Constant switching
frequency; No delay time [85,86]

PSO
Complex in operation; Fast response; Constant switching

frequency; Delay time is small; Selective harmonic elimination
is not suitable

[91,92]

WT
More complex in operation; Fast response; Constant switching

frequency; Delay time is small; Utilized for harmonic
elimination for a particular frequency range

[93,95]

Similarly, some authors have developed harmonic compensation methods used in
traction power supply systems. The authors in [102] proposed an active oscillation compen-
sation approach to compensate for high-frequency harmonic instability and low-frequency
oscillation in a railway traction power supply system. The proposed method helped to miti-
gate the voltage oscillation variables and restore the steady state of the train and traction net-
work system. Figures 25 and 26 illustrates the response of the filter using the compensation
device for high-frequency harmonic instability and low-frequency oscillation conditions.
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6. Selection Criteria of PQ Based on Application

PQ improvement based on its application has become a great challenge for engineers.
The criteria-based applications for the enhancement of PQ largely rely on the utilization of
the customer. The responses of several power filters for PQ improvement and reducing
reactive power have been discussed in [103–108]. The design features of PFs are uncompli-
cated and also very cheap. Yet, the flaws comprise huge size, resonance problem, and fixed
tuning, etc. Consequently, they are impressive in suppressing harmonics of lower order
and are used for a common purpose. The selection norms of PF are discussed in detail
in [104,108]. The selection norms of APFs for detailed implementation are revealed in [107].
The special function of APFs relies on several factors, such as supply type, the topology
used, and compensating techniques. SEAPFs help compensate for voltage-related harmon-
ics (flicker drop, the elimination of voltage sags, etc.), while current-related harmonics
(harmonic current, compensations on load balancing, etc.) are regulated using SAPFs. The
selection criteria for HAPFs are discussed in [108].

Some of the factors required for the selection of a converter configuration are men-
tioned below:

• Required level of PQ in input (PF, CF, THD)
• Kind of dc output voltage (constant, variable, etc.)
• Direction of power (unidirectional and bidirectional)
• Behavior of DC output (isolated, non-isolated)
• Requirement of DC output (buck, boost, and buck-boost)
• Required level of PQ in DC output (voltage ripple, voltage regulation, sag and swell)
• Category of dc loads (linear, nonlinear, etc.)
• Economic
• Size and weight
• Efficiency
• Rating
• Reliability

7. Technical and Economic Considerations

Usually, in power systems, conventional PFs are utilized to improve the PQ. Compared
to other filters, these filters are also treated as improving the harmonics and are economic,
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though their performance is not satisfactory in the presence of nonlinear loads. Present
APFs are suitable for compensating dynamically up to 25th-harmonics order [109,110].
Moreover, these have higher power ratings and have wide commercial use. With the use
of economical components, power-switching devices, and controllers, the cost of APFs
has decreased, after being relatively costly in the initial stages. Meanwhile, HAPFs have
emerged at a higher stage by providing PQ to sensitive loads and has also been helpful in
providing compensation for non-linear loads. The technical and economic consideration of
PQ enhancement approaches has been presented in [111,112], and a brief comparison of
filters based on different characteristics is provided. Further, modern APFs are suitable of
mitigating dynamically higher order of harmonics using a ripple PF. Other technical aspects
have been attempted to split different compensation approaches of the APFs to reduce size
and cost. However, some extra features are incorporated due to specific demand. Economic
considerations are treated initially as a limitation of APF improvement, but now they are
becoming reasonable because of the reduced cost of the device.

8. Trends and Future Developments

In the present scenario of power systems, new trends [113] for the improvement of PQ
requires the minimization of power semiconductor devices, such as IGBT, and minimizes
the overall cost of power converter equipment. Designing the converter topology in the
range of 10 KW with economical results has gained attention among researchers. Therefore,
the transformer-less system is gaining more attention towards an advanced level. The
advanced technology of microprocessors, controllers, and fast-switching devices in APF
systems have been used with highly-rated MW ranges, improved efficiency, and low cost
for varying applications. Recently, APFs have used dual-terminal inverters to substitute for
split-capacitor designs. Subsequently, coming-generation power semiconductor devices
and the packaging of silicon carbide IGBT power modules can be effectively used.

New trends are also working on the harmonic distortion analysis of large transmission
systems. The harmonic distortions effect should be investigated for current distortion
levels and for higher levels such that the distortion level must be computed before any
serious issue follows.

Another trend has also been noticed: the development of improved devices and the
development of new controlling techniques; for instance, large PWM are not only suitable
to generate a sinusoidal signal but also to reduce the distortions caused by nonlinear
loads. Sensor drop has also transformed APF technology in the areas of cost reduction and
reliability improvement. Similarly, the advanced methods of multilevel converters [114,115]
supply better efficiency, a lower burden on devices, and a decrease in high-frequency noise.
Further improvement in solid-state device technology in terms of low conduction losses,
larger permissible switching frequency, and new devices, especially those with low voltage
drop and reduced switching losses, will give a real boost for APF. Further, in HAPFs, there
is consistent new advancement of additional circuit configurations of HAPFs to provide
cost-effective and improved performance.

Furthermore, some recent works have also developed the use of FACTS controllers [116],
such as a thyristor-based series capacitor, thyristor-based phase angle regulator, etc., in an
electrical network using stationary and accurate load designs. The behavior of the system,
such as active and reactive power losses, PQ, power system oscillations, etc., is improved
optimally by employing FACTS controllers in the electrical network.

Nowadays, electric vehicles [117] are found in connection with a PV-integrated grid
for PQ improvement. Variations in PV output are mitigated by changing the charging
procedures of electric vehicles. EV technology is helpful in decreasing the distortions
affecting PQ considerably.

Smart-grid [118] application is found widely in recent power system scenarios be-
cause the existing grids concentrate only on generation, distribution and power control.
However the existing grid is not reliable and delivers more transmission losses, low PQ,
and unfavorable distributed-energy-sources integration. Therefore, smart grids, which
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need a small area compared to traditional grids, provides a better solution for producing
electric power and offers a method for the transmission and distribution of this power.

Several new introduced generating sources require research on variations in the
magnitude of voltage, emissions, and resonance in harmonics. Key performance indicators
probably play a vital role in addressing the presenting capability in the power system for
these new introduced sources. Various aspects of PQ issues are presented in brief:

8.1. Different Types of Disturbances

Disturbances due to variations in ideal current and voltage tend to be PQ disturbances.

(a) Voltage sags are the standards that were characterized by a magnitude at a given
duration. Specifically, the 3φ characteristics of voltage dips have been underexposed
due to the standardized effect. The producers must be conscious about characteristics
other than the duration and magnitude.

(b) The distortion in waveform is computed by the spectrum attained over a 200 ms
window. Pursuing research for distinct interharmonics considering a high time
resolution is an advanced area in the current power system scenario. A fascinating
important research challenge is to improve the framework in PQ disturbances not
dependent upon any computerization.

8.2. New Sources of Generation

New generating sources penetrating into the distribution and transmission systems
have been introduced in various countries across the globe. The pros and cons of the
current progress have been featured in different aspects of power quality issue.

PQ investigation challenges related with innovative development on the following
parameters:

• Performance indicators
• Voltage–magnitude variations
• Emission and resonances in harmonics.

8.3. Remote Identification of Events and Load Transitions and Nonlinear Characteristics

The diversification of complexity in the system topology, load characteristics, and
generation necessitate urgent attention to identify PQ issues, transitions in load, and
nonlinear characteristics. Identification is essential in remote areas because intelligent
monitoring systems will be used in certain locations. Challenges regarding the power-
quality issue include the accuracy analysis as a function of many conditions, such as the
signal-to-noise ratio, distance from the point of connection, composition, the topology of
the network, aggregation of loads at the load measuring point, and the existence of loads
with a similar signature located between the load point and the remote observation point.

8.4. Time-Varying Harmonic Analysis

In recent days, various research analyses have been performed to improve the accuracy
of harmonic magnitudes during time-varying conditions. The analysis comprises an
adaptive notch filter, Kalman filter-based analyzer, (PLL), adaptive neural networks, and
a phase-locked loop. Each of these methods used in the solution of power-quality issues
had advantages and disadvantages, in anticipation of a better method in a future area
of research.

8.5. Hardware-In-Loop/Real-Time Digital Simulation

Better accuracy can be achieved on PQ studies by extending the research work with
the adaptation of real-time hardware in the loop (HIL) for large and complex power
systems. HIL is a real-time simulator, comprised of a digital simulator, testing hardware
equipment, and their digital and analog signal interface. The real-time simulator approach
is mostly used because the accessibility of RT digital simulation computers must come to
be more affordable.
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8.6. DC PQ

Although PQ abnormalities and standards were mostly concentrated on AC systems,
PQ issues in the DC systems are also exposed to deviations in voltage, such as voltage
transients, spikes, and ripples. These deviations have an impact on the parts or on the
whole system, creating severe consequences. DC systems added more stability to the
system but conveyed less susceptibility to voltage distortions and deviations. Further
research is essential in this area, as the application of DC distribution may develop shortly.
This is mostly significant for data-center-type loads.

9. Conclusions

In this review article, a brief discussion on PQ, its causes and effects on power systems
in industrial, commercial, as well as domestic, fields was addressed. A detailed discussion
on power-system harmonics and standards are also discussed. Based on harmonic compen-
sation, different types of filters like passive, active, and hybrid filters for PQ improvement
are discussed. Furthermore the design configuration of APFs based on topology, number of
phases, and converter type are discussed. A compensation strategy using different gating
signal techniques and reference-signal techniques are provided in this literature. This
review provides a brief study on the selection criteria of PQ based on different applications.
Furthermore, detailed technical and economic considerations are approached, which are a
very important perspective for researchers and engineers dealing with harmonics and PQ
issues. Further, the scope of work in future developments with new trends to minimize
the number of power semiconductor components, with reduced costs of the converter, is
briefed in this literature.
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