
sensors

Article

Double Deep Q-Learning and Faster R-CNN-Based
Autonomous Vehicle Navigation and Obstacle Avoidance in
Dynamic Environment

Razin Bin Issa 1,† , Modhumonty Das 1,† , Md. Saferi Rahman 1 , Monika Barua 1 , Md. Khalilur Rhaman 1 ,
Kazi Shah Nawaz Ripon 2,* and Md. Golam Rabiul Alam 1

����������
�������

Citation: Bin Issa, R.; Das, M.;

Rahman, M.S.; Barua, M.; Rhaman,

M.K.; Ripon, K.S.N.; Alam, M.G.R.

Double Deep Q-Learning and Faster

R-CNN-Based Autonomous Vehicle

Navigation and Obstacle Avoidance

in Dynamic Environment. Sensors

2021, 21, 1468. https://doi.org/

10.3390/s21041468

Academic Editor: Md Zia Uddin

Received: 16 December 2020

Accepted: 12 February 2021

Published: 20 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, School of Data and Sciences, BRAC University,
66 Mohakhali, Dhaka 1212, Bangladesh; razin.bin.issa@g.bracu.ac.bd (R.B.I.);
modhumonty.das@g.bracu.ac.bd (M.D.); md.saferi.rahman@g.bracu.ac.bd (M.S.R.);
monika.barua@g.bracu.ac.bd (M.B.); khalilur@bracu.ac.bd (M.K.R.); rabiul.alam@bracu.ac.bd (M.G.R.A.)

2 Faculty of Computer Sciences, Østfold University College, 1783 Halden, Norway
* Correspondence: kazi.s.ripon@hiof.no
† These authors contributed equally to this work.

Abstract: Autonomous vehicle navigation in an unknown dynamic environment is crucial for both
supervised- and Reinforcement Learning-based autonomous maneuvering. The cooperative fusion
of these two learning approaches has the potential to be an effective mechanism to tackle indefinite
environmental dynamics. Most of the state-of-the-art autonomous vehicle navigation systems
are trained on a specific mapped model with familiar environmental dynamics. However, this
research focuses on the cooperative fusion of supervised and Reinforcement Learning technologies
for autonomous navigation of land vehicles in a dynamic and unknown environment. The Faster R-
CNN, a supervised learning approach, identifies the ambient environmental obstacles for untroubled
maneuver of the autonomous vehicle. Whereas, the training policies of Double Deep Q-Learning,
a Reinforcement Learning approach, enable the autonomous agent to learn effective navigation
decisions form the dynamic environment. The proposed model is primarily tested in a gaming
environment similar to the real-world. It exhibits the overall efficiency and effectiveness in the
maneuver of autonomous land vehicles.

Keywords: autonomous vehicle; reinforcement learning; Double Deep Q Learning; faster R-CNN;
object classifier; markov decision process

1. Introduction

Autonomous vehicles, in this modern era, are a vital part of an advanced trans-
portation system. Autonomous vehicles are considered to be one of the fastest-growing
technologies that exist at present. The autonomous vehicle extracts environment perception
to conclude directing the agent [1]. Decision-making is the main module of an autonomous
vehicle. Thus, it is vital to make an autonomous vehicle learn finding an optimal path for
traversing. This work suggests the integration of Reinforcement Learning method in an
autonomous vehicle to make it able to take optimal decisions while traversing in a dynamic
environment.

Reinforcement Learning is a kind of machine learning algorithm that works with
gaining experiences through communicating with the worldly environment and evaluating
feedback to develop a system’s performance to make behavioral decisions [2]. It improves
the system’s performance through trial and error experience with a dynamic environment.
Reinforcement Learning provides qualitative and quantitative frameworks through re-
wards and punishment to understand and adapt decision-making [3]. The decision-making
executes a particular operation through maximizing reward in a specific circumstance [4].
Incorporated with several machines and software, it looks for the best possible behavior

Sensors 2021, 21, 1468. https://doi.org/10.3390/s21041468 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2283-3292
https://orcid.org/0000-0002-2265-7412
https://orcid.org/0000-0001-8073-3682
https://orcid.org/0000-0002-0575-259X
https://orcid.org/0000-0001-7796-8018
https://orcid.org/0000-0002-6551-9714
https://orcid.org/0000-0002-9054-7557
https://doi.org/10.3390/s21041468
https://doi.org/10.3390/s21041468
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041468
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1468?type=check_update&version=3


Sensors 2021, 21, 1468 2 of 24

that it should take in a particular condition. Usually, the agent in a Reinforcement Learning
model communicates with the environment through perception and action [5]. It inputs
indication from the environment, and the agent takes actions based on decisions which are
generated as output. Thus, Reinforcement Learning involves learning to take decisions,
mapping situations to actions and maximizing reward signals [6].

A Reinforcement Learning-based agent decides how a given task will be performed
on its own from a training data-set. However, in the absence of a training data-set, an agent
has to learn from its experience. For learning to take optimal decisions, the vehicle must
explore the same environment many times. A balance of exploitation and exploration is
thus needed to get the agent to learn finding better goals [7]. Exploitation is what the agent
already knows about the worldly environment and what it knows of as the best results [7].
On the other hand, exploration is to discover new conditions and features of the world and
finding a better goal path than what the agent knows of already. The typical autonomous
vehicle systems are limited within specific mapped models. Including Reinforcement
Learning model in autonomous vehicles will make the agent able to operate in a dynamic
environment through exploitation and exploration. In consequence, autonomous vehicles
will be able to make path finding decisions to traverse in even unknown environments [8].

In this work, we use Double Deep Q-Learning [6] as the Reinforcement Learning
algorithm for the agent to explore the environment. While the Q-Learning algorithm
thrives on finding adequate measures to decide in a provided condition, the Double Q-
Learning solves the problem of overestimation of Q-value in basic Q-Learning [9]. The
precision of Q-values depends on the actions that are attempted and the states that are
explored. Hence, an agent does not have necessary information regarding which action
to take at the beginning of the training. Choosing the maximum Q-value as the best
action can give false positive results and can be noisy. Thus, Double Deep Q-Learning
Network uses two separate networks which are Deep Q Network and Target Network to
dissociate selection of action from target Q-value generation. As a consequence, DDQN
significantly helps in reduction of overestimation of Q-values which assists an agent in
steady learning through faster training and proves this method to be better than other
learning algorithms. Therefore, DDQN proves to be suitable for an autonomous agent to
make decisions for optimal traversing by picking the maximum Q-value while exploring the
same environment. The process in which the agent consistently determines the maximum
Q-value for navigation is called the epsilon greedy strategy [6].

This work also includes detecting and classifying obstacles along its way while navi-
gating. It takes data from obstacles in rocky, rough and bumpy surfaces through the sensor.
We have mainly used a vision sensor to implement the mentioned proposal. The sensory
data are fed to the agent, and the decision is taken based on the fed conditions. Faster
R-CNN [10] is primarily applied for the prototype as the vehicle tries to identify and detect
objects while navigating. Faster R-CNN, currently, is a distinguished algorithm for object
classification. The R-CNN and Fast R-CNN algorithms follow selective search algorithm to
detect the region proposals. However, in Faster R-CNN [11], selective search algorithm is
eliminated and the network itself learns the region proposals making this algorithm better
than its predecessors. It utilizes convolutional network for region proposal and object
detection, making it swifter and suitable in case of real-time object detection.

Several highway decision-making strategies [12,13] have been performed with deep
Reinforcement Learning; in this research, the deep Q-Learning approach is incorporated
with the Faster R-CNN method so that an autonomous agent can also detect and avoid
obstacles along its way while traversing. Although the deep Q-Learning and Faster R-
CNN algorithms have proven to be successful for autonomous driving strategy and object
classification, respectively, the fusion of these two methods for autonomous maneuver
combines the benefits of these two approaches in autonomous vehicle navigation. Figure 1
shows the proposed autonomous vehicle model based on Reinforcement Learning. The
proposed model merges the Double Deep Q-Learning Network (DDQN) and Faster R-CNN,
and integrates into an autonomous vehicle so that it can make maneuvering decisions



Sensors 2021, 21, 1468 3 of 24

while classifying and avoiding objects and obstacles on its way. The proposed model is
tested on a gaming environment that is similar to the real-world scenario.

The major contributions of this research work are as follows:

• This research presents the development of two learning approaches algorithms, i.e.,
a combination of Double Deep Q-Learning and Faster R-CNN for an autonomous
vehicle in order to identify obstacles and navigate properly. Therefore, it integrates the
benefits of these two approaches and ensures autonomous navigation and obstacle
avoidance in a stochastic vehicular environment.

• Real-world testing of algorithms on autonomous vehicles is time-consuming and
expensive; therefore, a dynamic game engine simulator is used for training and
validating the proposed model.

Preprocess

Neural 
Network

Q-value

Reward / 
Penalty

Convolutional 
neural network

Feature map

Proposals

Classifier

RPN R
O

I p
o

o
lin

g

Action 
space

Classified objects

Accelerate
Lane 

change
Decelerate Stop

DDQN
Faster
R-CNN

Figure 1. Proposed architecture of autonomous vehicle navigation and obstacle avoidance in dynamic
environment.

This paper is organized as follows. Section 2 presents the related works. Section 3
discusses the object classifier methodology through Faster R-CNN. The application of
Reinforcement Learning in the autonomous vehicle is described in Section 4. In Section 5,
the implementation is described in detail. Section 6 contains the experimental results with
analysis. Section 7 presents the discussion. Finally, Section 8 concludes the paper.



Sensors 2021, 21, 1468 4 of 24

2. Related Works

A primary proposition of object detection is classifying few interesting regions and use
the Convolutional Neural Network (CNN) to it [14]. Erhan et al. propose the Region-based
Convolutional Neural Networks (R-CNN) to minimize the interface by focusing on a single
region at a time [10]. In this work, we use the Faster R-CNN to make object detection more
efficient. Other image classifying algorithms, such as R-CNN, apply the selective search
for regions; however, Faster R-CNN applies a separate network to predict region proposals.
The bounding boxes value is projected by reshaping the proposed region. In [4], the authors
used a region-based CNN using deep learning for road obstacles detection [15]. However,
our proposed model does not only let an agent identify obstacles; it also determines actions
based on them by integrating DDQN.

Min et al. present a related work which influences driving policy on highways using
Reinforcement Learning [16]. Their proposed model involves training a Driving Assistance
System Supervisor by deep Reinforcement Learning. In our proposed model, we have used
a game engine simulator that differs from the driving simulator used in [16]. The driving
simulator used in [16] is implemented by Unity ML agents for static environment while
we have implemented our system in a GTA V dynamic game environment. Real-world
testing of algorithms on autonomous vehicles is time-consuming and expensive, so the
authors of [17] present a visually and physically realistic simulator and tested it on a
quadrotor autonomous agent. However, as mentioned earlier, we used a game engine
as a simulator to test our algorithm. This is because the scenario of that game is almost
similar to the real-world. Identical to our proposed approach, Reinforcement Learning
has been used as a decision-making method in [18]. It focuses on combining longitudinal
and lateral control in traffic overtaking maneuver. In our work, the maneuvering decisions
include lane changing along with acceleration, deceleration and stopping as needed in a
dynamic environment.

As human-driven vehicles and autonomous vehicles coexist on land, efficient ma-
neuver of autonomous vehicles has become a necessity. In [19], a regret theory is adapted
based on human drivers’ lane-changing behavior. The predicted decision is integrated, and
DDQN is used in training the autonomous vehicle controller. Our proposed model varies
as we train the autonomous vehicle to determine path based on the distance calculated in
real-time from other vehicles or obstacles. In [20], the author presents longitudinal control
of autonomous land vehicle models by using parameterized Reinforcement Learning. It
is mostly implemented using PBAC algorithm and is different from the Double Deep
Q-Learning algorithm that we have used in our previous work [21]. The authors in [22]
depict eight extensions of Reinforcement Learning which consist of adaptive heuristic
critic (AHC) learning, Q-Learning and three further extensions to the basic methods to
accelerate learning. Our proposed model focuses on Deep Reinforcement-based Learning
to train the autonomous agent throughout. In [23], the authors present a Reinforcement
Learning-based approach for autonomous helicopter flight where a dynamic model is
created first by the help of a pilot flying the helicopter. The approach, later, integrates with
Differential Dynamic Programming (DDP) to learn a controller for optimization of the
model. Our application of Reinforcement Learning to land vehicles works in a way that
the proposed model takes data from a gaming environment while traversing and learns to
take decisions with Double Deep Q-Learning algorithm.

Thus, Reinforcement Learning is considered as an exciting learning method which
requires performance feedback from the environment. So far, Reinforcement Learning
solved various learning problems. This paper explores Reinforcement Learning as a
decision-maker for maneuvering and path-finding in any environment. The proposed
work proves to be promising as it not only implements a decision-making method based
on Double Deep Q-Learning for autonomous vehicles but also it integrates Faster R-
CNN. Ultimately, our proposed model can avoid obstacles while traversing in a dynamic
environment. The Double Deep Q-Learning algorithm is used to train the autonomous
vehicles for navigation control. The autonomous agent makes path-finding decisions



Sensors 2021, 21, 1468 5 of 24

on its own by avoiding obstacles as the distance from obstacles is calculated real-time
to take maneuvering decisions which include lane-changing, accelerating, decelerating
and stopping.

3. Object Classification Using Faster R-CNN
3.1. Faster R-CNN

The R-CNN operates in a distinctive way to trim the computed box proposition of
a remotely featured input picture and implements neural classifier on it. Unlike other
techniques, it costs much as it requires many crops which creates overlap calculation.
However, the use of Fast R-CNN can curtail this problem. Fast R-CNN sends the whole
picture to feature extractor and trims the picture from a middle layer and smooths the
highlighting extraction process. Prior, R-CNN and Fast R-CNN required outer proposition
generator. Now, the neural network can do the same work more efficiently. On the picture,
it is normal to have boxes on the beat of each other which are mainly called ‘’anchors”.
Scales and perspective proportions are required to maintain an outline. Thus, to anticipate
each anchor, a model is designed by (i) expectation for a discrete class of individual anchor,
and (ii) an accumulation of counterbalance forecast which will be required to relocate
the anchor for fitting in the ground truth bounding box. A consolidated distribution and
relapse loss are discussed below.

As part of the process for each anchor a, there is a best matching ground-truth box
b. If the identification process is completed and the best match is found, then it will be
called a “positive anchor”. It is accredited with (i) class specify yaε{1 ...k}, and (ii) the best
coordinating empirical evidence box b is first to be established for individual anchor a
(called the crate concealing Φ(ba; a)). If no such match could be discovered, it has been
considered as a “negative anchor”, and set the class name to be ya = 0. Thinking about the
anchor as a, on the off chance that we foresee box concealing floc (I; a; θ) and relating class
fcls (I; a; θ), where θ represents the model boundaries and I is the picture, at that point the
loss for I is estimated as a weighted amount of a classification loss and an area-based loss:

L(a; I; θ) = α× 1[aispositive]× lloc(Φ(ba; a)− floc(I; a; θ)) + β× lcls(ya, fcls(I; a; θ)) (1)

Here α, β refers to weights which balance classification losses and localization, respec-
tively. Equation (1) is reduced with respect to parameters θ [24] and to train the system, it
is averaged over anchors.

Identifying anchors has excellent repercussions for its accuracy and computation.
Unlike calculating the anchors from the data-set using clustered ground-truth boxes, now
it is conducted by tiling boxes over the image with respect to various scales and ratios. The
vital side of using a network is that the tiled indicators of the picture, along with its shared
parameters, can be used to compose the forecast. It stands out as a traditional sliding
window method [11,25].

Acquiring Data-Set

A huge data-set named Open Image V5 [26] is used to conduct experiments. It is
produced by Google, and also it is a free index. It is enriched with elucidated images which
have 600 box-able object classes. There are total 1,743,042 training images which include
bounding boxes, visual relationship, object segmentation, total validation (41,620 pictures)
and test sets as well. However, not all 600 classes are required for our Object Classifier.

Seven distinctive classes (Motorcycle, Van, Bus, Bicycle, Car, Person, Truck) are sepa-
rated from these 600 classes using ‘OIDv4_ToolKit’. To train our model, 8335 images are
extracted, where each class contains at least 1000 images. For testing, a total of 2360 images
are extracted from the data-set, where each class contains at least 300 images. Then, labels
of these images are accumulated in .XML format.



Sensors 2021, 21, 1468 6 of 24

3.2. Training Object Classifier

TensorFlow framework [27] is used to run a feature separator, which is called Faster
R-CNN Inception V2 [28], to train the data-set and to prepare the object classifier as well.
NVIDIA GTX 1050 GPU featured a computer, with CUDA core reinforce has been utilized
for developing and testing methods. The training process was run for 18 h at a stretch
until the total loss was under 0.4. Image classifier was prepared by conducting a total of
200,000 steps.

Faster R-CNN involves two phases to complete the detection method. The Region
proposal Network (RPN) is the primary phase which processes images through feature
extractor. In this model, the feature extractor (Faster R-CNN Inception V2) has been utilized
at the transitional level to foresee class analytic box proposition. Additionally, loss function
of initial stage shows up as the Loss Equation using a matrix of anchors tiled in scale, space
and angle proportion.

In the following stage, utilizing the forecast of box proposition is used to manage high-
lights from the element map. At that point, these highlights are utilized in the remainder
of feature extractor for every proposition to anticipate a class and for refining class-explicit
box. The loss function during the current second stage box classifier in like manner shows
up as the Loss Equation utilizing the proposition created as anchors from the RPN. Figure 2
demonstrates the standardized type of absolute loss diagram.

Figure 2. Absolute loss diagram of the developed data model.

4. Distributional Agent for Autonomous Driving
4.1. Double Deep Q-Learning Network (DDQN)

H. V. Hasselt came up with the idea of DDQN [9] as an extension of his past proposition
which applies to Deep Q Network (DQN) [29]. The DQN is one of only a handful few
Q-Learning-based methods. Estimation errors cause overestimation issues among these
Q-Learning-based algorithms. Overoptimistic fee evaluation and performance decrepitude
occur because of overestimation. In any case, the system for DDQN does not merely lessen
the overoptimistic revere evaluation, yet also gives preferred execution over DQN on
a couple of virtual accustoms. Excerpt and interpretation measures are disengaged by
DDQN while it focuses on two Q-functions as a motivation. The objective regard states of
DDQN and DQN are:

yDQN = Rt + γ max
At+1

Q
(
St+1, At+1; θ−

)
(2)



Sensors 2021, 21, 1468 7 of 24

yDDQN = Rt + γQ

(
St+1, argmax

At+1

Q(St+1, At+1; θ); θ−
)

(3)

4.2. Markov Decision Process for Path Circulation

Markov Decision Process expresses the securing way course for self-governing driving
in this analysis. The actor determines his activity in each progression, and quickly a prize is
earned for that response. The tuple {S, P, A, R, γ} which has just been articulated previously
chronicles Markov Decision Process (MDP). For better understanding, a short synopsis of
MDP is expressed below:

• s ε S defines the limited state area which accommodates a gray proportioned picture
from vision sensors of the actor.

• P(s′‖s a ) : S×A× S→ [0, 1] , where P defines the evolution behavior.
• a ε A is definite response area which works for an actor.
• R defines reward behavior, where R(s, a) : S×A→ R
• γ characterizes the rebate aspect, where γ→ [0,1] for deferred reward.

For the high dimensional perceptions, MDP states s ε S can be utilized by adopting
Deep Neural Networks [30]. Figure 3 speaks to the view of the encompassing inclusion by
adopting three vision sensors placed in the front.

Figure 3. Vision sensor coverage of perception

The autonomous driving actor has five particular activities. The definite response area
A comprises of forward, left, right, stop and deceleration. For forward and deceleration,
5 kph is summed or deducted from the running actor acceleration. The actor acceleration is
bound in the scope of 30 kph to 80 kph. Actor naturally changes the acceleration for vehicles
in a specific separation so that it keeps up a protected gap from the front vehicle. When the
vehicle in front out of nowhere slows down or some other vehicle cuts in suddenly before
our representative vehicle, the ’stop’ action appears immediately.

4.3. Data Preprocessing

The images of surroundings are collected from three vision sensors, as shown in
Figure 3. The output pictures from vision sensors are edited so the model will not be
prepared with the sky and the vehicle’s forward portions. According to NVIDIA model,
those pictures are converted to 160× 320 (3 YUV channels). Those pictures are standardized



Sensors 2021, 21, 1468 8 of 24

(picture information isolated by 127.5 and deducted 1.0). As expressed in the Model Scheme
area, this is to maintain congestion and make gradients work enhanced.

4.4. Model Architecture Pattern

Planning the discernment state, S and taking the accompanying action on response
area, A is the primary objective of the actor, π(a]s). The total of the action will be driven
in a stochastic driving situation. Be that as it may, to achieve this planning the model
necessities to fulfill to specific conditions: (i) concentrate and catch huge features from
three vision sensor’s pictures, and (ii) it should assess the characteristic arbitrariness of the
climate for picking a specific activity.

The network should detect spatio-balanced data recovering from vision sensors to
fulfill the primary condition. Utilizing CNN directs this cycle. CNN is well-known for
extricating spatial aspects in distinction to pictures. Additionally, immense spatial vision
sensor pictures are polished into ocular component vector utilizing two-dimensional three
convolutional layers.

In addition, the subsequent situation can be satisfied by utilizing the DDQN scheme.
Stochastic driving conditions utilize this scheme. For every activity, there is a restoration
circulation made by the totaFull connected layer with the assistance of θ. The Q(s,a)
decision can be assessed as the longing of quantiles, ∑i qiθi(s, a).

Furthermore, the most extreme Q-value perhaps recovered from the highest response,
a∗ that can be additionally selected from open restricted Q-values of response area, A.

a∗ = argmaxa Q(s, argmaxa Q(s, a)) (4)

The flow diagram of recommended DDQN scheme for the proposed algorithm is
presented in Figure 4. We use Keras to prepare this proposed network.

Figure 4. Flow diagram of recommended DDQN scheme



Sensors 2021, 21, 1468 9 of 24

4.5. Hyperparameters

The network is constructed after NVIDIA model. It is used to execute start to finish an
autonomous test by NVIDIA. The NVIDIA model itself is all around archived. Supervised
image distribution or relapse issues can be fathomed inconsistent strategy utilizing the
deep convolutional network. Accordingly, the primary spotlight lies on changing the
preparation pictures for conveying the best outcome. In any case, to procure the best
outcome, fundamental changes have been prepared for abstaining from over-fitting nature
and including impartiality for preparing the forecast precise. Moreover, the accompanying
acclimation has been summed to the model.

• Lambda layer is acquainted with standardizing input pictures for preparing gradients
to work all the more easily and to dodge saturation.

• Extra dropout layer is included following the convolution layers for staying away
from the over-fitting situation.

• At that point ReLU has been executed for actuation capacity to guarantee linearity.

Adam Optimizer at a 1 × 10−5 learning rate with epsilon 0.0001 and 32 set of mini-
batches is utilized for preparing the network to get superior precision. For instating
network loads, Xavier Initializer has been utilized, and all data sources are standardized
into [1,−1]. To accomplish the precision of the forecast of guiding plot for every picture,
mean squared errors have been utilized to assess the loss function. Table 1 shows the
hyper-parameters of this propulsive approach network. Estimation of support Q as 200
has been set. Replay memory’s value is 5,000,000, and γ is used as the markdown aspect,
which has been locked to 0.99. ε-greedy policy has been utilized where ε was progressively
reduced to 0.1 from 1.0 in every progression and afterwards locked to 0.1. Those strategies
have been actualized during 3 millions of stages training.

Table 1. Autonomous propulsive approach network: hyper-parameters.

Input Layer Nature Actuation Hyper-Parameters of
Strategy Network

(5 × 5) Patch size
4 Strides
24 filters

(5 × 5) Patch size
4 Strides
36 filters

(5 × 5) Patch size
Vision Sensor Data Convolution 2D ReLU 4 Strides

48 filters
(3 × 3) Patch size

1 Strides
64 filters

(3 × 3) Patch size
1 Strides
64 filters

Integrated Data Fully Connected
Layer ReLU 512 Units

4.6. Model Training

Agent training has been done on the game environment and based on the pictures
collected from the cameras of the agent. The study assumptions includes the daylight for
clear vision and known objects for classification. However, for diversification, we utilized
the accompanying growth procedure alongside the Python generator to produce a limitless
number of pictures. These pictures have been used arbitrarily as well as changing the
characteristics of those images for giving the agent various kinds of scenarios like changing



Sensors 2021, 21, 1468 10 of 24

images splendor and shadows, flip images between left and right, etc. Arbitrary detail
changes have been given below:

• Arbitrarily select right, center or left picture.
• Steering angle is adapted by +0.2 for left picture.
• Steering angle is adapted by −0.2 for right picture.
• Arbitrarily flip picture right/left.
• Arbitrarily convert picture horizontally with steering angle accommodated (0.002 per

pixel shift).
• Arbitrarily convert picture vertically.
• Arbitrarily added shadows.
• Arbitrarily changing picture splendor (lighter or more obscure).

Utilizing the left/right pictures is valuable for preparing the recuperation driving
situation. The level interpretation is helpful for troublesome bend taking care of.

5. Implementation

This section explains the implementation procedure of the proposed model for nav-
igation of autonomous vehicle and obstacle avoidance in a dynamic environment. We
implement and test the object detection part of the model using the Open Image V5 data-
set [26]. On the other hand, the reward determination part of the model is implemented
and tested on GTA V game environment. The implementation of the models consists
of three stages: (i) object detection using Faster R-CNN, (ii) reward determination us-
ing Reinforcement Learning algorithm and (iii) Double Deep Q-Learning and combined
decision-making.

5.1. Object Detection

We take the translated image from the three physical vision sensors of the autonomous
vehicle and run the image through the image classifying algorithm architecture. It uses
the Fast R-CNN as the detector, which includes CNN backbone, RoI pooling layer and
fully connected layers for bounding box regression and classification. Firstly, a feature map
for the image is generated through the backbone CNN. The Region Proposal Networks
have bounding box proposals that are then utilized for pooling features from the feature
map. RoI pooling is very advantageous to be used here. The features are provided to the
sibling classification and regression branches. Passing through a softmax layer, they obtain
classification scores. These scores determine the belonging class of each box. Predicted
bounding boxes are developed utilizing the regression layer coefficients.

5.2. Reward Determination

Double Deep Q-Learning works based on reward value which is evaluated from the
reward function of this algorithm. The main part of this reward function is epsilon value
determination. These epsilon values are generated in the data pre-processing part. In the
training period, we generate a CSV file from input data. Figure 5 shows the steering angle
and throttle value during the model object classification portion. This data-set file consists
of 3 image files of 3 vision sensors which have been already discussed in Sections 3 and 4.
The steering angle is calculated from each image during the training period as well as
throttle value which is in −1 to +1 range. After that, the training procedure also generates
the epsilon value for each case which helps to construct the reward values as shown
in Figure 6. Steering angle values and throttle values are the vital actuators to control
autonomous vehicle. If the RL agent observes no obstacle in front of it then it increases its
throttle value gradually. On the other hand, if it detects any obstacle then it reduces its
throttle and changes the steering angle so that it can avoid the obstacle. The relation of
steering angle and throttle value has been shown for a testing period. Reward values in
Reinforcement Learning refer to the numeric value that an agent receives for performing
right actions to the environment using actuators. An agent’s aim is to maximize its entire
reward in order to learn certain behavior. The evaluated reward values are fed to the agent



Sensors 2021, 21, 1468 11 of 24

after each training, and they determine the action taken by an autonomous agent. The
reward policy makes the process of decision-making more precise.

Figure 5. Training data model object classification: steering and throttle angle.

Figure 6. Training data model object classification: epsilon value.

5.3. Combined Decision Making

The flow diagram in Figure 7 represents the decision-making procedure that the
agent follows. The agent takes the decision based on the output result from the DDQN
and Faster R-CNN fusion. DDQN assists an autonomous agent to generate and choose
actions to achieve the maximum rewards. Here, Faster R-CNN outputs object classification
from input images from the environments which influences the reward values generated
from DDQN and helps to get more accurate results even in case of randomness. The
DDQN agent can come to a decision regarding what action should be appropriate for a
particular situation based on the explored environment and Faster R-CNN outputs. Here,
four decisions or actions are considered for different scenarios. Therefore, an agent’s



Sensors 2021, 21, 1468 12 of 24

response and decision-making are categorized into accelerate, lane change, decelerate
and stop modes. Generally, if the agent finds no obstacle in a certain distance, it will be
in acceleration mode. If no obstacle is found on the right or left side of the agent, then
it will be able to change its lane. It will be in deceleration mode if obstacles are found
on both sides of the agent. Lastly, it will immediately stop its exploration in case of any
unexpected abruption.

Figure 7. Combined decision-making process.

An agent takes decisions based on the distance calculations of surroundings and
the condition which satisfies the action. Moreover, to make the decision-making process
error-free and smooth, an agent calculates the braking distance precisely. The equation for
calculating the braking distance is as follows:

Distance =
1
2
×

V2
init

Gravity
(5)

6. Results

The integration of Faster R-CNN and DDQN shows the optimum result in autonomous
exploration. The data-set that is used here to train the image classifier shows the accuracy
of 94.06%. This accuracy level represents the effectiveness of the classifier to identify any
object which may appear before the autonomous vehicle. Acquiring values from Faster
R-CNN, the reward function can be manipulated, which accelerates the efficiency in the
decision-making process and enables safe autonomous exploration of vehicle.

The implementation of the proposed model on a game environment results in precise
object classification, which assists an agent in taking path-finding decisions avoiding
obstacles. Figures 8–10 show the output of object detection which is implemented on
sample frames from the game environment. Here, identifying nearby cars, objects and
pedestrians through Faster R-CNN depicts optimum accuracy and detecting these obstacles
makes autonomous navigation more efficient.



Sensors 2021, 21, 1468 13 of 24

Figure 8. Image analysis through Faster R-CNN: car.

Figure 9. Image analysis through Faster R-CNN: object.

Figure 10. Image analysis through Faster R-CNN: pedestrian.



Sensors 2021, 21, 1468 14 of 24

Further, Table 2 calculates the braking distance measurement for the agent in the dry
road condition. According to the calculated measures, an agent compares the braking
distance with other surrounding cars. Parameter estimator algorithm (PEA) [31] has been
incorporated for calculating the distance between our agent and other cars. Figure 11
portrays the braking situation in GTA V environment which is the visual representation
of the braking distance calculation of the proposed algorithm. When the agent detects
any car within the braking distance, it warns the agent. The agent then reduces the speed
accordingly and finds a possible path to traverse.

Table 2. Braking distance calculation of dry road.

Speed Reaction Distance Braking Distance Total Stopping Distance

80 km/h 33 m 36 m 69 m
70 km/h 29 m 27 m 56 m
60 km/h 25 m 20 m 45 m
50 km/h 21 m 14 m 35 m
40 km/h 17 m 9 m 26 m

Figure 11. Braking situation in terms of distance calculation in GTA V environment.

We run some tests on our model to evaluate the constructed object classifier. True
negative and false positive values for each class defines the accuracy, and for evaluation,
they require a normalized confusion matrix. We construct the matrix, and it is shown
in Figure 12. Here, the rows represent the target values (what the model should have
predicted—the ground-truth). The columns represent the predicted values (what the
model predicted).

Furthermore, on a scale of 0.0 to 1.0, precision and recall for each class are computed
gradually according to Bicycle, Bus, Person, Motorcycle, Truck, Van, Car (Seven distinct
classes). Table 3 shows these values. Recall represents the capacity to find the relevant
occurrences in a data-set, and precision depicts the fraction of the data points that the
model says is relevant that is actually relevant. Overall results show that the image
classification model is quite vital for detecting objects that will come in the way of our
autonomous vehicle.



Sensors 2021, 21, 1468 15 of 24

Figure 12. Normalized confusion matrix for the object classifications.

Table 3. Gradual precision and recall values of various classes.

Class Precision Recall

Bicycle 0.89 0.94
Bus 0.97 0.93

Person 1.0 0.99
Motorcycle 0.93 0.89

Truck 0.98 0.97
Van 0.94 0.93
Car 0.94 1.0

Effect of Learning Rate Schedules

Among various learning rate schedule methods, the ReduceLROnPlateau callback
method has been demonstrated which drops the learning rate by a factor after the moni-
tored metric remains unchanged for a given number of epochs.

The impact of different ‘patience’ values can be explored here, where ‘patience’ value
is the total number of epochs while waiting for a change before dropping the learning rate.
Learning rate of 0.01 is used at first and dropped by an order of magnitude by setting the
‘factor’ argument to 0.1. It helps to observe the effect on the learning rate over the training
epochs. This can be done by creating a new Keras Callback that is responsible for recording
the learning rate at the end of each training epoch. The recorded learning rates can then be
retrieved to plot a line graph to notice how the learning rate is affected by drops.

Here, Figure 13 shows line plots of the learning rate over the training epochs for each
of the evaluated patience values. A significant drop in the learning rate within 20 epochs
can be observed when the patience value is the smallest. The learning rate only suffers one
drop due to the largest patience value of 15.



Sensors 2021, 21, 1468 16 of 24

Figure 13. Result analysis of various patience values: learning rate over epochs.

From these plots, it can be expected that when the patience value is of 5 and 10, the
model will result in better performance as a larger learning rate is allowed to be used for
some time before the rate is dropped to refine the weights.

Secondly, Figure 14 indicates the loss on the training data-set for each of the patience
values. The plot shows that the patience values of 2 and 5 initiate a rapid convergence of
the model. It can possibly be up to a suboptimal loss value. In the event of patience values
of 10 and 15, the loss value drops moderately until the learning rate also drops below a
certain level where significant changes to loss value can be noticed. This happens halfway
when the patience value is 10 and nearly at the end of the run in case of patience 15.

Figure 14. Result analysis of various patience values: training loss over epochs.



Sensors 2021, 21, 1468 17 of 24

Lastly, Figure 15 shows the training set accuracy over training epochs for each patience
value. It can be observed that, indeed, premature convergence of the model to a less-than-
optimal model is resulted from the minor patience values of 2 and 5 epochs at around 65%
and less than 75% accuracy, respectively. On the contrary, larger patience values result in
better performing models, with the patience value of 10 that shows convergence just before
120 epochs. Patience value of 15 continues to show the outcome of a volatile accuracy given
the close to unvaried learning rate.

Figure 15. Result analysis of various patience values: training accuracy over epochs.

Therefore, these plots represent how a learning rate that is decreased reasonably for
the problem and the chosen model configuration can result in both a skillful and converged
stable set of final weights as well as a preferable property in the final model at the end of
the training run.

7. Discussion

This system works simultaneously with both Faster R-CNN and DDQN algorithms
which makes the exploration process smoother. Implementing only a DDQN model limits
the situation handling process of the agent. Therefore, the focus is kept more on the
integration of both models to make the exploration process secure and effective without
any interruption. Thus, it is important to normalize input data to remove unnecessary
data. Further, the system’s accuracy and loss validation data are calculated simultaneously
for checking the effectiveness of the algorithm. Comparison among the algorithm that we
have used and other similar algorithms also depicts the system’s productivity.

Figures 16 and 17 are the representation of training data collected from GTA V game
environment. We test the system on the agent in possible scenarios that are close to a
real-life environment (such as, night time, daytime, foggy, rainy, sunny, crowded etc.).
Here, Figure 16 portrays a graph of raw training data. This data contains everything in the
environment that has been captured. However, for obtaining accuracy and better perfor-
mance, some data are entirely unnecessary. Therefore, raw data have been normalized,
which is shown in Figure 17. This figure represents 160,000 normalized training data. By
normalizing the data-set, more accurate results are obtained.



Sensors 2021, 21, 1468 18 of 24

Figure 16. Training data before normalization.

Figure 17. Training data after normalization.

DDQN hyper-parameters determine the system’s performance. Tuning these parame-
ters is thus, important to get better results from the developed algorithm. The following
figures depict the characteristics of the DDQN hyper-parameter. Figure 18 defines the
accuracy validation which comes from the accuracy validation function of Double Deep
Q-Learning, and Figure 19 shows the total loss function from the values of the value
loss function.

Figure 18. Characteristics of DDQN hyper-parameters: accuracy validation.



Sensors 2021, 21, 1468 19 of 24

Figure 19. Characteristics of DDQN hyper-parameters: loss validation.

Figure 20 illustrates eight line plots for eight different evaluated learning rates where
epoch and accuracy values are represented respectively on the x-axis and y-axis. Classi-
fication accuracy of the training data-set is marked in blue, whereas accuracy of the test
data-set is marked in orange.

Figure 20. DDQN hyper-parameter tuning for learning rate.

The plots show oscillations in behavior for the too-large learning rates of 1.0 and the
inability of the model to learn anything with too-small learning rates of 1 × 10−6 and
1 × 10−7. It can be seen that the model is able to learn well with the learning rates 1× 10−1,
1 × 10−2 and 1 × 10−3, although successively slower as the learning rates were decreased.
With the chosen model configuration, a moderate learning rate of 0.1 is suggested which
results in satisfactory performance on the train and test sets.

The discount factor can dictate how far-sighted an agent can be. Values that are too
insignificant will make an agent consider more about the reward that is present and values
that are too big will make an agent pay the same attention to rewards after the time point.
This may confuse the agent regarding which action leads to a high or low return.



Sensors 2021, 21, 1468 20 of 24

Figure 21 shows the average score for four different gamma values. It is evident that
γ = 0.9 makes the agent short-sighted and there is no significant change during 80 epochs.
When γ ≥ 0.999, the average score fluctuates widely after the 50th epoch. Since γ = 0.99
has a gradually increasing trend, this is used as the final discount factor.

Figure 21. DDQN hyper-parameter tuning for discount factor, γ.

The effectiveness of the proposed algorithms is measured by comparing our imple-
mented algorithm with two other similar Deep Reinforcement Learning algorithms. The
compared algorithms are the Deep Q-Learning (Multi Input) and the Deep Q-Learning
(Image), which only work on image processing. These algorithms are compared in terms of
lane-changing decisions of an autonomous agent in GTA V game environment. Figure 22
shows the lane-changing results of these algorithms. The figure shows that the proposed
algorithm proves to be more favorable than those algorithms. The number of lane changes
refers to the compatibility of the algorithm. From the graph in Figure 22, it can be seen that
the DDQN (Multi-Input) makes the lowest number of lane-changing decisions at the end
of the training process. It indicates that the decision-making process is more precise in this
algorithm. Hence, the proposed approach is best suited and reliable with Double Deep
Q-Learning algorithm.

Figure 22. Lane changing comparison among different Q-Learning algorithms.



Sensors 2021, 21, 1468 21 of 24

Reinforcement Learning gives reward based on Q-values which generate from Q
function. That is why we compare different Q-Learning algorithms in terms of Q-values.
Figure 23 shows the results of the Q-values of different Reinforcement Learning algorithms.
The figure illustrates the comparison of the average Q-values of these algorithms, which
is one of the characteristics of DDQN hyper-parameters. Q-Learning algorithms make
a Q table based on Q-value for taking decisions. Q-Learning algorithms such as DDQN
(Multi-Input), DQN (Multi-Input) and DQN (Image) have been considered for this com-
parison. This figure justifies that DDQN is more appropriate than other Q algorithms
for autonomous vehicles. DQN (Image) is a Q-Learning algorithm which is only based
on image processing showing the lowest average Q-value. DQN (Multi-Input) shows a
better result than DQN (Image); however, its value is not consistent. That is why DQN
algorithm for Multi-Input can give inaccurate results at the time of decision-making. On
the contrary, DDQN algorithm for Multi-Input represents the maximum average Q-value
with a consistency which makes the algorithm more efficient than the rest.

Figure 23. DDQN hyper-parameter attributes: average Q-value.

The graph in Figure 24 is generated from the average reward values (r̄) of our DDQN
hyper-parameter. In this figure, three values (training reward final, evaluation reward final
and training reward with first try) have been considered which have been incorporated for
the uninterrupted traversing of the agent. The green line shows the training reward values
in the first try, which is very low. Better reward values have been obtained in the training
process through trial and error, which is shown by the red dotted line. Furthermore, by
normalizing the evaluation reward values, the deep red line has been found, which is the
final reward values in the training process. The DDQN algorithm works based on the final
reward values in the game environment. The final reward value increases at a consistent
rate which shows the precision of the proposed algorithm.



Sensors 2021, 21, 1468 22 of 24

Figure 24. DDQN hyper-parameter attributes: average reward value.

8. Conclusions

This work develops a model that integrates the Double Deep Q-Learning (DDQN)
algorithm with Faster R-CNN in autonomous vehicles for making decisions to navigate
avoiding obstacles on its way. DDQN algorithm has a reward system policy for which a
vehicle can take maneuvering decisions in a stochastic environment. Thus, DDQN algo-
rithm ensures more effectiveness over other non-distributional algorithms. Additionally,
where most of the existing models for the autonomous vehicle are entirely constructed on
the frame of neural networks, our proposed model integrates Faster R-CNN with DDQN
to detect any object that appears in front of the autonomous vehicle. Our proposed model,
thus, can stimulate accuracy in safe and smooth decision-making even in unexpected situa-
tions. Unlike the existing systems, the proposed model is not only enclosed in a mapped
environment. Accordingly, our model can avoid the limitations exhibited by the existing
systems on exploration scope and Precision. However, the model has potential limitations
that include less number of integrated sensors as the system only uses vision sensors to
take data from the environment. The system has scope to perform better in stochastic
environments if integrated with more sensors. Further, the system faces challenges in
decision-making when it has to consider the vehicles which are in parallel sides. Testing the
algorithms on a real vehicle requires a large amount of environmental data of a dynamic
environment which is expensive and time consuming. A real autonomous vehicle might
face challenges to perform globally considering different infrastructural differences of
different countries.

Although the proposed model attains preferable results, the key recommendation
to work on this system in the future is to integrate more sensors like Lidar and Sonar to
make it more efficient regarding decision-making and accurate in path-finding by detecting
obstacles. In the future, we hope to overcome the limitation of resources to implement
the system practically on a real vehicle. In addition, we expect to increase the accuracy
in decision-making during the time of any randomness and to take preferable action
complying with reality. Further, the object classifier also has great scopes for improving
its performance by lowering the average number of misclassification and by increasing
the average number of accuracy levels. By configuring the confusion matrix; it will
simply indicate the percentage of accuracy that has been acquired through these processes.
Therefore, in the future, we hope to increase the iteration score while training object classes
to overcome the misclassification problem.



Sensors 2021, 21, 1468 23 of 24

Author Contributions: Conceptualization, M.G.R.A. and M.K.R.; methodology, R.B.I. and M.S.R.;
software, R.B.I., M.D. and M.B.; validation, K.S.N.R.; formal analysis, M.G.R.A.; investigation, M.K.R.;
resources, K.S.N.R.; data curation, M.D. and M.B.; writing—original draft preparation, M.D. and
R.B.I.; writing—review and editing, M.G.R.A. and K.S.N.R.; visualization, R.B.I., M.D. and M.S.R.;
supervision, M.G.R.A. and M.K.R.; project administration, M.G.R.A.; funding acquisition, K.S.N.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
CUDA Compute Unified Device Architecture (Nvidia)
DDQN Double Deep Q-Network
DQN Deep Q-Network
GTA Grand Theft Auto
MDP Markov Decision Process
PEA Parameter estimator algorithm
R–CNN Region based Convolutional Neural Network
ReLU Rectified Linear Unit
ROI Region of Interest
RPN Region Proposal Network
CSV Comma-Separated Values

References
1. Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Rus, D.; Ang, M.H. Perception, planning, control, and

coordination for autonomous vehicles. Machines 2017, 5, 6. [CrossRef]
2. Littman, M.L. Reinforcement learning improves behaviour from evaluative feedback. Nature 2015, 521, 445–451. [CrossRef]

[PubMed]
3. Dayan, P.; Niv, Y. Reinforcement learning: The good, the bad and the ugly. Curr. Opin. Neurobiol. 2008, 18, 185–196. [CrossRef]

[PubMed]
4. Greenwald, A.; Hall, K.; Serrano, R. Correlated Q-learning. ICML 2003, 3, 242–249.
5. Kaelbling, L.P.; Littman, M.L.; Moore, A.W., Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
6. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, UK, 2011.
7. Coggan, M. Exploration and Exploitation in Reinforcement Learning. Research Thesis, McGill University, Montreal, QC, Canada,

2004.
8. Reddy, P.P. Autonomous Car: Deployment of Reinforcement Learning in Various Autonomous Driving Applications. Available

online: https://easychair.org/publications/preprint/bHkQ (accessed on 18 July 2019).
9. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-learning. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 2 March 2016.
10. Erhan, D.; Szegedy, C.; Toshev, A.; Anguelov, D. Scalable object detection using deep neural networks. In Proceedings of the

CVPR, Columbus, OH, USA, 24–27 June 2014.
11. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]
12. Liao, J.; Liu, T.; Tang, X.; Mu, X.; Huang, B.; Cao, D. Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep

Reinforcement Learning. IEEE Access 2020, 8, 177804–177814. [CrossRef]
13. Nageshrao, S.; Tseng, H.E.; Filev, D. Autonomous Highway Driving using Deep Reinforcement Learning. In Proceedings of

the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2326–2331.
[CrossRef]

14. Ujiie, T.; Hiromoto, M.; Sato, T. Approximated Prediction Strategy for Reducing Power Consumption of Convolutional Neural
Network Processor. In Proceedings of the ICML, Washington, DC, USA, 21–24 August 2003; Volume 3, pp. 242–249.

http://doi.org/10.3390/machines5010006
http://dx.doi.org/10.1038/nature14540
http://www.ncbi.nlm.nih.gov/pubmed/26017443
http://dx.doi.org/10.1016/j.conb.2008.08.003
http://www.ncbi.nlm.nih.gov/pubmed/18708140
http://dx.doi.org/10.1613/jair.301
https://easychair.org/publications/preprint/bHkQ
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/ACCESS.2020.3022755
http://dx.doi.org/10.1109/SMC.2019.8914621


Sensors 2021, 21, 1468 24 of 24

15. Hassan, M.M.; Alam, M.G.R.; Uddin, M.Z.; Huda, S.; Almogren, A.; Fortino, G. Human emotion recognition using deep belief
network architecture. Inf. Fusion 2019, 51, 10–18. [CrossRef]

16. Min, K.; Kim, H.; Huh, K. Deep distributional reinforcement learning based high level driving policy determination. IEEE Trans.
Intell. Veh. 2019, 4, 416–424. [CrossRef]

17. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. Field
Serv. Robot. 2018, 5, 621–635.

18. Mo, S.; Pei, X.; Chen, Z. Decision-Making for Oncoming Traffic Overtaking Scenario using Double DQN. In Proceedings of the
3rd Conference on Vehicle Control and Intelligence (CVCI), Hefei, China, 21–21 September 2019; pp. 1–4. [CrossRef]

19. Chen, Y.D.; Jiang, L.; Wang, Y.; Li, Z. Autonomous Driving using Safe Reinforcement Learning by Incorporating a Regret-based
Human Lane-Changing Decision Model. In proceedings of the American Control Conference (ACC), Denver, CO, USA, 1–3 July
2020; pp. 4355–4361. [CrossRef]

20. Huang, Z.; Xu, X.; He, H.; Tan, J.; Sun, Z. Parameterized batch reinforcement learning for longitudinal control of autonomous
land vehicles. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 49, 730–741. [CrossRef]

21. Issa, R.B.; Saferi Rahman, M.; Das, M.; Barua, M.; Rabiul Alam, M.G. Reinforcement Learning based Autonomous Vehicle
for Exploration and Exploitation of Undiscovered Track. In proceedings of the 2020 International Conference on Information
Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 276–281. [CrossRef]

22. Lin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 1992, 8, 293–321.
[CrossRef]

23. Abbeel, P.; Coates, A.; Quigley, M.; Ng, A.Y. An application of reinforcement learning to aerobatic helicopter flight. Adv. Neural
Inf. Process. Syst. 2007, 19, 1–8.

24. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; Murphy, K.
Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311.

25. Szegedy, C.; Reed, S.; Erhan, D.; Anguelov, D.; Ioffe, S. Scalable, high-quality object detection. arXiv 2014, arXiv:1412.1441.
26. Kuznetsova, A.; Rom, H.; and Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; and Kamali, S.; Popov, S.; Malloci, M.; Duerig, T.;

Ferrari, V. The Open Images Dataset V4. Int. J. Comput. Vis. 2020, 128, 1956–1981. [CrossRef]
27. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur, M.

TensorFlow: A system for large-scale machine learning. In proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), Savannah, GA, USA, 2 November 2016; pp. 265–283.

28. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 30 June
2016; pp. 2818–2826.

29. Hasselt, H.V. Double q-learning. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC,
Canada, 6–9 December 2010; pp. 2613–2621.

30. Alam, M.; Kwon, K.C.; Abbass, M.Y; Imtiaz, S.M.; Kim, N. Trajectory-Based Air-Writing Recognition Using Deep Neural Network
and Depth Sensor. Sensors 2020, 20, 376. [CrossRef] [PubMed]

31. Gerardo, C.G.J.; Jesús, A.L.; Ricardo, O.M. Modeling the turning speed and car following behaviors of autonomous vehicles in a
virtual world. Ing. Investig. Tecnol. 2015, 16, 391–405. [CrossRef]

http://dx.doi.org/10.1016/j.inffus.2018.10.009
http://dx.doi.org/10.1109/TIV.2019.2919467
http://dx.doi.org/10.1109/CVCI47823.2019.8951626
http://dx.doi.org/10.23919/ACC45564.2020.9147626
http://dx.doi.org/10.1109/TSMC.2017.2712561
http://dx.doi.org/10.1109/ICOIN48656.2020.9016539
http://dx.doi.org/10.1007/BF00992699
http://dx.doi.org/10.1007/s11263-020-01316-z
http://dx.doi.org/10.3390/s20020376
http://www.ncbi.nlm.nih.gov/pubmed/31936546
http://dx.doi.org/10.1016/j.riit.2015.05.013

	Introduction
	Related Works
	Object Classification Using Faster R-CNN
	Faster R-CNN 
	Training Object Classifier

	Distributional Agent for Autonomous Driving
	Double Deep Q-Learning Network (DDQN)
	Markov Decision Process for Path Circulation
	Data Preprocessing
	Model Architecture Pattern
	Hyperparameters
	Model Training

	Implementation
	Object Detection
	Reward Determination
	Combined Decision Making

	Results
	Discussion
	Conclusions
	References

