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Abstract: The application of machine learning techniques to the epidemiology of COVID-19 is a
necessary measure that can be exploited to curtail the further spread of this endemic. Conventional
techniques used to determine the epidemiology of COVID-19 are slow and costly, and data are
scarce. We investigate the effects of noise filters on the performance of machine learning algorithms
on the COVID-19 epidemiology dataset. Noise filter algorithms are used to remove noise from
the datasets utilized in this study. We applied nine machine learning techniques to classify the
epidemiology of COVID-19, which are bagging, boosting, support vector machine, bidirectional long
short-term memory, decision tree, naïve Bayes, k-nearest neighbor, random forest, and multinomial
logistic regression. Data from patients who contracted coronavirus disease were collected from the
Kaggle database between 23 January 2020 and 24 June 2020. Noisy and filtered data were used in
our experiments. As a result of denoising, machine learning models have produced high results
for the prediction of COVID-19 cases in South Korea. For isolated cases after performing noise
filtering operations, machine learning techniques achieved an accuracy between 98–100%. The
results indicate that filtering noise from the dataset can improve the accuracy of COVID-19 case
prediction algorithms.

Keywords: healthcare data mining; COVID-19 case prediction; noise filtering; machine learning;
data mining; predictive analytics; artificial intelligence; neural networks

1. Introduction

On 30 December 2019, the first diagnosis of COVID-19 was first reported at Wuhan
Jinyintan Hospital in a patient with pneumonia of unknown etiology. The result showed
that the virus had a family of coronaviruses called Betacoronavirus 2B [1]. Coronavirus bat-
like SARS exhibited a close link to the virus of COVID-19. The World Health Organization
(WHO) identified the novel coronavirus as extreme acute coronavirus syndrome 2 (SARS-
COV-2) and referred to it as coronavirus disorder 2019 (COVID-19) on 30 January 2020 [2].
Symptoms of breathlessness, fever, headache, chills, myalgia or arthralgia, congested
nose, diarrhea, hemoptysis, and conjunctival obstruction are typical symptoms of the
disease [3]. This can result in kidney failure, death, and severe acute respiratory syndrome
in severe cases of the coronavirus disease [4]. The present spread of coronavirus (COVID-19)
threatens national health systems in all nations [5]. The United States has become one of the
most affected countries to be hit by the increase in COVID-19 in public health, emergency
health care, and hospitals [6]. Unfortunately, the rate of infections is expected to increase
exponentially in many countries regardless of their health systems. Emergency steps are
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needed to provide good medical equipment and high-quality information in the health care
system and hospital. Translational science can provide stakeholders and clinicians with
appropriate evidence-based medicine concepts [7]. The world has recorded 252,469,591
confirmed cases of COVID-19 and 5,093,058 deaths in 222 countries in 30 January 2021 [8].

Management measures to mitigate transmission include the wearing of masks, hy-
gienic hand screening, avoiding public contact, case identification, contact control, and
quarantines [9]. COVID-19 infected subjects depend on symptomatic treatment, since no
successful antiviral therapy has been discovered [10]. A scoping analysis suggested in [11]
was adopted to investigate COVID-19 in [12] to better understand the cause, prevention,
diagnosis, and control of this coronavirus. However, research papers focused primarily on
causes, but prevention and regulation have improved over time. Diagnostic tests can dis-
cover viral infections that can be contagious and cause infection in other people. Antibody
tests, conversely, examine whether the person has previously been infected with the virus.
There are three reasons for testing for COVID-19:

1. Surveillance allows the government and health officials to monitor the rate of infec-
tions in a particular community. It seeks to observe the effectiveness of COVID-19
prevention measures, such as wearing a mask and maintaining social distancing. This
could involve random testing of people in a particular location to know whether there
is community transmission of the disease or not [13];

2. Screening involves testing anyone regardless of whether they show symptoms or are
unaware of their exposure to someone who has been infected. It provides an effective
means of recognizing those who are likely to have been infected with the virus to stop
further transmission [14];

3. Diagnostic testing involves testing a person who is assumed to have been infected
with COVID-19. The person may show symptoms of COVID-19, know that they have
contacted people with confirmed cases of COVID-19 or have been infected, and is
trying to perform more tests to verify that they are now negative [15].

Machine learning (ML) algorithms are used to solve problems by analyzing and in-
terpreting large volumes of data to solve problems in the medical sector [16–20]. Several
researchers have used machine learning algorithms to solve medical difficulties in this
area. Since the beginning of the pandemic, a wide range of studies have been conducted to
provide a better understanding of the case, prevention, diagnosis, and control of COVID-19.
In this paper, ML algorithms are applied to determine the epidemiology of the COVID-19
pandemic. The ML algorithms have been shown to be very effective and robust algo-
rithms that can handle large data successfully. Therefore, it can be used to analyze the
epidemiology of COVID-19 [21–29].

The major contributions of this work include:

i. The exploration of dataset noise filtering techniques (all k-edited nearest neighbors,
blame based noise reduction, and condensed nearest neighbors) on the dataset of
COVID-19 infection cases in South Korea, which has not been conducted before;

ii. The combination of noise filtering combined with machine learning techniques in
epidemiological data for the prediction of COVID-19 cases;

iii. The performance evaluation of all k-edited nearest-neighbors noise filters combined
with machine learning algorithms using different performance metrics.

The rest of this paper is organized as follows: Section 2 is a review of the literature;
Section 3 discusses the materials and methods used in this work, as well as our performance
measurements used; the results and the discussion are presented in Section 4; and Section 5
presents the conclusions.

2. Review of Related Works

In this section, we succinctly discuss recent research conducted in the field of appli-
cation of machine learning to the COVID-19 pandemic. This Section follows from our
explanations in Section 1 of this paper, in which it was pointed out that machine learning
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algorithms have gained wide acceptance by data scientists and researchers as a viable tool
for solving the COVID-19 crisis. This is due to the effectiveness of these algorithms in
the detection and diagnosis of health-related problems. For example, Nemati et al. [21]
proposed the combination of statistical methods, support vector machine (SVM), and en-
semble techniques that use COVID-19 data of patients to predict the date they are likely to
be discharged from the isolation center. It also evaluates clinical information to determine
the duration of the patient in the hospital. The downside of this work is that it is just a
framework and there is no practical implementation of any machine learning or statistical
algorithm. The effectiveness of the proposed method was also not evaluated.

Lalmuanawma et al. [22] presented a review on the role of artificial intelligence (AI)
and machine learning (ML) in investigating and predicting the transmission rate of COVID-
19. They also examined how these techniques can be used to recognize, evaluate, and
handle people who have been exposed to COVID-19 to prevent further transmission.
Furthermore, the authors examined how AI and ML can help in the process of bringing
a new pharmaceutical drugs into clinical practice for SARS-CoV-2 and its associated
endemic. The findings of this study indicated that AI and ML have significantly improved
the treatment, testing, prediction, and cure/immunization steps needed to take COVID-
19 drugs from concept to market availability. Malik et al. [23] used multiple machine
learning models to obtain the correlation between different characteristics and the rate
of transmission of COVID-19. ML models were used to evaluate the effect of climatic
factors on the spread of COVID-19 by mining the connection between the number of
confirmed cases and the variables of atmospheric condition variables in some counties.
The authors opined that atmospheric characteristics are of great significance in forecasting
the number of deaths due to COVID-19 compared to other factors mentioned in the paper.
Kavadi et al. [24] developed a partial derivative regression and nonlinear machine learning
(PDR-NML) method for predicting COVID-19. The PDR was used to explore the dataset
for optimal parameters with little computer resource usage. Subsequently, the machine
learning model was used to normalize the attributes that are used to make predictions
with high accuracy. In a more specific study, Amar et al. [25] used various machine
learning and statistical techniques to predict the transmission of the COVID-19 pandemic
in Egypt. The authors aimed to assist the Egyptian government in managing the pandemic
in the subsequent months. The experimental results showed that the exponential model
outperforms other models compared in the paper. The authors deduced from their results
that the COVID-19 pandemic in Egypt is not likely to end soon.

Goodman-Meza et al. [26] applied ensemble machine learning to diagnose COVID-19
in patients admitted to hospital and receiving treatment. The patients are in an environment
where the PCR test is insufficient or inaccessible. The performance is good, though there
is still room for improvement. The authors did not propose any new machine learning
algorithm; rather, they only used an ensemble of different machine learning models. Ozturk
et al. [27] used deep neural network models to automatically detect COVID-19 from rib
cage radiographs of patients. Their model can classify images into two classes or more
than two classes. The model can serve as a secondary or assisting diagnosis tool, especially
in places where there is an unavailability of medical experts. The classification accuracy of
the model is high for binary classes; however, the accuracy for multiclass is poor.

Khan et al. [28] suggested employing parallel fusion and deep learning model op-
timization with a contrast enhancement using a top-hat and Wiener filter combination.
Two deep learning models (AlexNet and VGG16) that have been pre-trained are used
and fine-tuned based on the target classes (COVID-19 and healthy). A parallel fusion
approach is used, parallel positive correlation, to extract and fuse features. The entropy-
controlled firefly optimization approach is used to identify optimal features. Machine
learning classifiers, such as the multiclass SVM, are used for classification.

Rehman et al. [29] presented a framework for the diagnosis of 15 different forms
of chest disease, including COVID-19, using a chest radiograph modality. They used
a convolutional neural network (CNN) with a softmax classifier and a fully connected
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layer to extract deep features, which are input into traditional machine learning (ML)
classification algorithms. The suggested architecture, conversely, improves the accuracy of
COVID-19 detection and increases the prediction rates for other chest disorders.

Rustam et al. [30] investigated the ability of four machine learning models to predict
the number of people who will be infected with COVID-19. Each of the models was used
to predict the number of new confirmed cases, death toll, and the number of recovered
cases in a period of 10 days. The results show that the predictive capability of the models
under investigation was not very good. Therefore, there is a need to try other machine
learning models.

Wieczorek et al. in [31,32] used artificial neural networks (ANN) to estimate future
COVID-19 cases using geolocation and past case data. The results of the proposed model
show high accuracy, which in some cases reaches above 99%. Ahouz and Golabpour [33]
developed a least-squares-boosting classification model to predict the incidence rate two
weeks in advance. The proposed model predicted the number of globally confirmed cases
of COVID-19 with an accuracy of 98.45%. Zivkovic et al. [34] proposed a hybridized
method combining machine learning, adaptive neurofuzzy inference system (ANFIS),
and enhanced beetle antennae search metaheuristics. The proposed model achieved a
correlation of 0.9763 correlation on China’s COVID-19 outbreak data. For more related
works, we would like to refer the readers to the review papers [35,36].

In summary, current machine learning methods have not been very successful in the
prediction of confirmed cases due to challenges, such as the lack of historical data and
the different approaches of governments toward testing, which makes the results hardly
comparable [37]. The prediction of COVID-19 cases using the deep learning method has
gained more attention currently due to the unavailability of more data. Deep learning
methods can specifically handle nonlinear problems more effectively. However, they still
face the same problems of governmental actions that influence the data [38].

3. Methodology
3.1. Dataset

The dataset used in this research comprises epidemiological data of COVID-19 infec-
tion cases in South Korea, which were obtained from the Kaggle database. The dataset
is composed of data from 23 January 2020 to 24 June 2020 recorded daily, patient ID, sex,
age, country, province, city, infected by, contact number, symptom onset date, confirmed
date, released date, and state (which consists of released, deceased, and isolated). In this
study, due to the nature of the dataset, we have extracted sex, age, country, symptom onset
date, confirmed date, released date, and the state features as shown in Table 1. The no CS
feature is the number of days from symptom onset to disease confirmation. It is obtained
by subtracting the confirmed date from the symptom onset date, while the no RC feature,
which is the number of days between the confirmation of disease to release from hospital,
is obtained from subtracting the released date from the confirmed date.

Table 1. Description of COVID-19 infection cases.

S/No. Attribute Data Type

1. Sex Categorical
2. Age Nominal
3. Country Nominal
4. Symptom onset date Interval
5. Confirmed date Interval
6. Released date Interval
7. State Categorical

3.2. Machine Learning Algorithms

In this subsection, we briefly discuss the machine learning algorithms that are used for
this work. We discuss bagging, stochastic gradient boosting, bi-directional long short-term
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memory, support vector machine, naïve Bayes, random forest, k-nearest neighbor, decision
tree, and logistic regression classifiers, as well as noise filtering methods.

3.2.1. Bagging (BAG)

Bagging is a method that combines the predictions of many simple estimators with
a given algorithm, so that generalizability and robustness can be improved over a single
estimator [39]. Decisions made by multiple learners can be integrated into a single predic-
tion. In the case of classification, it is a vote to combine these decisions. Models of bagging
bear the same weight as good models of bagging because an executive can use a collection
of expert advice based on their previous right predictions to achieve other outcomes. The
model in which one obtains more votes than others is considered correct.

H
(
di, cj

)
= ∑M

m=1 αmHm
(
di, cj

)
, (1)

where Hm are weak classifiers that decide over a subset of a dataset di with class cj; di is
classified into the classes cj; and αm is the weight of weak classifier Hm.

3.2.2. Stochastic Gradient Boosting (BST)

The stochastic gradient boosting (BST) method is a hybrid of boosting and bagging
proposed by Friedman [40]. The BST is a set of learning algorithms with a combination of
boosting and decision trees, which classifies the value of all trees by weighting all trees.
The new model is constructed along the path of gradient descent of the loss function of the
previous three. Th eloss function between classification and actual function is reduced by
the training function of the classification function. The loss function is given as:

ρ(yk, Fk(x)) = ∑K
k=0 yk log

[
eFk(x)

∑K
k=1 eFk(x)

]
, (2)

ŷk = −
[

∂ρ(Yk, Fk(x)
∂Fk(x)

]
= yk − Pk(x), (3)

where ρ is the loss function; yk is the k-th output variable; x is the vector of input variables;
Fk(x) is the function that maps from input vector x to yk; K is the number of classes; and
Pk(x) is the probability of k-th class given input vector x.

3.2.3. Bi-Directional Long Short-Term Memory (BLSTM)

Bi-directional long short-term memory (BLSTM) combines long short-term memory
(LSTM) and bi-directional recurrent neural network (BiRNN) [41] for the analysis of classi-
fication and time-series data. The benefit of a recurrent neural network (RNN) is to encode
dependencies between inputs. For long data classification, the RNN causes its gradient to
erupt and vanish. LSTM is subsequently developed to address RNN long-term problems.
There are three gates to LSTM. Input gate is required for the layer of input and also output
and forget gate inclusive. Moreover, both LSTM and RNN can only obtain information
from the past so that additional changes are made through the bi-directional network. Two
pieces of information from front and back can be managed by BiRNN. The combination of
BiRNN and LSTM generates BLSTM. Thus, a combination of LSTM advantages as a cell
memory and BiRNN with context access information make BLSTM perform better. This
allows the BLSTM to benefit from the input of LSTM for the next layer. However, BLSTM
is also capable of handling long-range data. The forward function of BLSTM with inputs of
L units and H as the number of hidden units is expressed by Equations (4) and (5), while
Equations (6) and (7) are the backward calculation of BLTSM:

at
h = ∑L

i=1 xt
iWih + ∑H

h=1 bt−1
h′ Wh′h, (4)

bt
h = f

(
at

h
)
, (5)
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δO
δWhk

= ∑T
i=1

δO
δat

h
bt

h, (6)

δO
δat

h
= f

(
at

h

(
∑K

k=1
δO
δat

h
Whk + ∑H

h′=1
δO

δat+1
h

Whh′

))
, (7)

where xt is the input vector at time t; at
h is the network input to LSTM of unit h at time t;

and the activation function of h at time t is denoted by bt
h. Wih is the weight of the input

i towards h and Wh′h is the weight of the hidden unit h towards the hidden unit h′. f is
an activation function of the hidden unit of h and O is an objective function with unit K
output.

3.2.4. Support Vector Machine (SVM)

The support vector machine (SVM) procedure categorizes both linear and non-linear
data [42]. SVM uses a non-linear mapping to transform the training set to a high level. In
this new dimension, SVM explores the ideal linear hyperplane separation as a decision
limit by which the tuples of a class of one class are split from another. Two class data can
be separated by a hyperplane with the proper, non-linear upper dimensional mapping. In
contrast to the other approaches, hyperplanes are robust for overfitting.

3.2.5. Naïve Bayes (NB)

Naïve Bayes (NB) is one of the probabilistic methods that is used to describe, use, and
acquire information. A maximum posterior rule is an approach for classifying a test sample
x, to construct a probabilistic model for estimating the corresponding likelihood P(y), and
to measure it with the largest context likelihood. The Bayes theorem is given by:

P(x|y) = P(y|x)P(x)
P(y)

, (8)

where x is the input variable; P is the probability; and y is the target variable.

3.2.6. Random Forest (RF)

Random forest (RF) [43] is a decision-making ensemble classifier with various types
of trees. An arbitrary sequence of features at each node is used to evaluate the division
to create a decision tree. Each tree is based on the individual values of a random variable.
We can shape an RF using bagging along with the selection of the random attribute, using
the CART method, to increase the trees. RF uses a random linear combination of the
input attributes. The sub-cluster of features is not chosen randomly, but new attributes are
created, which reflect a linear combination of existing features.

3.2.7. K-Nearest Neighbor (KNN)

K-nearest neighbor (KNN) [44] is a lazy learning technique that learns by comparison
of a tested sample with similar training samples. A distance metric, such as Euclidean
distance, describes closeness. To classify using KNN, the sample that is not known is
classified as the most common class among its neighbors.

3.2.8. Decision Tree (DT)

Decision trees (DT) classify by dividing training data into pieces and mainly holding
the result of each part. It is a natural non-parametric supervised learning model, called
classification and regression tree (CART), which produces accurate classifications with
easily understood regulations. Model transparency makes them highly relevant.

3.2.9. Multinomial Logistic Regression (MLR)

The multinomial logistic regression (MLR) model that contains more than two target
variables, discrete and unordered categories, with nominal features and a multinomial
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distribution, represents an extension of the binomial logistic regression. LR with a single
category dependent variable must have logistic regression. The likelihood that a target
variable is labeled as k-th is defined in the LR as in Equation (9):

π(x) =
eα+β1x1+β2x2+···+βkxk

1 + eα+β1x1+β2x2+···+βkxk
(9)

where π(x) defines the natural logarithm of the odds ratio given an independent vari-
able vector x; α and β signify the coefficients of parameters; and xi represents the i-th
independent variable.

3.3. Noise Filtering Methods

The effectiveness of the classifiers that we typically want to optimize under those
circumstances will not only depend on the quality of the data, but also on the robustness
of the noise-reduction method. Therefore, analyzing noise data is challenging, and it is
often difficult to find accurate solutions [45–47]. Data noise can affect the inherent essence
of a classification problem, as this can lead to the introduction of new properties into the
problem area. The data from the real world usually contain noise and sometimes they are
corrupted. These can hamper the efficiency of the method. Data from the real-world are
therefore never flawless and frequently suffer from manipulation that can impair system
efficiency. To have clean data from the classes of released, deceased, and isolated, we
employed three noise filter algorithms, which are discussed below.

3.3.1. All K-Edited Nearest Neighbors (AENN)

The all k-edited nearest neighbors [48] method classifies each training dataset using
samples x ∈ D, where D is called a design set. A new design set D′ contains exactly those
samples from D, which have been classified correctly. For a given value of k and a given
sample x, the procedure of AENN is as follows:

4. If i = 1, find i nearest neighbors of x;
5. If the majority of k(x, i) classify x incorrect and end;
6. i ++;
7. If i < k go to step 2, otherwise end;
8. After processing all samples from D, eliminate incorrectly classified samples.

3.3.2. Blame Based Noise Reduction (BBNR)

Blamed based noise reduction (BBNR) [49] emphasizes the cases that cause misclassi-
fications rather than the cases that are misclassified. It attempts to remove mislabeled cases
and unhelpful cases that cause misclassification as follows:

1. For each case (c) in Training set T;
2. Split the training set into two which are coverage set C and liability set L;
3. Sort L in descending order;
4. While |L >0|;
5. T = T − c, misclassifiedFlag = False;
6. For each x in C;
7. If x cannot be correctly classified by T, misclassifiedFlag = true;
8. End if,
9. If misclassifiedFlag = true, T = T + c.

3.3.3. Condensed Nearest Neighbors (CNN)

The condensed nearest neighbors (CNN) was developed in [50]. The training sample
set is divided into STORE and GRABBAG as follows:

1. The first training sample is placed in STORE;
2. The second sample that is correctly classified using the KNN rule is placed in GRAB-

BAG, but if it is incorrectly classified it is placed in STORE;
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3. Loop through GRABBAG until termination is reached when any of the following
conditions are satisfied:

a. GRABBAG is empty, with all its members now transferred to STORE; or
b. A complete pass is made through GRABBAG with no transfer to the STORE.

4. The content of STORE is used as reference points for the KNN.

3.3.4. Computational Complexity of the Methods

The computational complexity of the AENN method is O (n× d× k), where ‘n’ is
the number of training features, d is the number of dimensions, and k is the number of
neighbors considered.

The computational complexity of the BBNR method is quadratic, because it needs to
perform the classification with respect of each neighbor removed from the liability dataset,
i.e., its computational complexity is O (n× n).

The computational complexity of the CNN method grows quadratically with the
number of training samples, because the K-NN-based training set filtering technique is
employed in the development stage of the proposed strategy, and identifying the NNs for
each training sample requires computing the distances between all training samples, so it
is O (n× n).

3.4. Performance Measures

In this study, accuracy (Ac), sensitivity (Se), specificity (Sp), Kappa (K), and balanced
accuracy (BA) are used.

AC = 1− FN + FP
TN + FN + TP + FP

, (10)

Se =
TP

TP + FN
, (11)

Sp =
TN

TN + FP
, (12)

K =
Po − Pe

1− Pe
, (13)

BA =
Se + Sp

2
, (14)

where TP is the true positive; TN is the true negative; FP is the false positive; FN is the
false negative; Po is the probability of the observed accuracy; and Pe is the probability of
expected accuracy obtained from the confusion matrix.

4. Results and Discussion

This section presents the experimental results of machine learning techniques, such as
bagging (BAG), stochastic gradient boosting (BST), bi-directional long short-term memory
(BLSTM), support vector machine (SVM), naïve Bayes (NB), random forest (RF), k-nearest
neighborhood (KNN), decision tree, and the multinomial logistic regression (LR) for the
diagnosis of COVID-19 infection cases.

For our experiments, we used MATLAB 2021a (MathWorks Inc., Nattick, MA, USA)
on a laptop computer with 64-bit Windows 10 OS with Intel Core i5-8265U CPU 1.80 GHz
with 8 GB RAM.

We compared the performances of the algorithms under consideration using sensi-
tivity, specificity, and balanced accuracy, kappa, accuracy, and p-value to discern which
is more accurate in the diagnosis of COVID-19 cases, such as the number of released, de-
ceased, and isolated cases. We used data from the Kaggle database for COVID-19 infection
cases in South Korea. The data were segmented into both training (60%) and testing (40%)
datasets. The training set was used to train the model, while the test set was used to test it.
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Classification of data has three classes—released, deceased, and an isolated class, consisting
of 5165 data samples.

Table 2 shows the comparison of the performance metrics used in this research:
sensitivity, specificity, and balanced accuracy. Most of the machine learning algorithms,
such as BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR, can classify isolated and
released classes, but fails to classify the deceased in sensitivity metrics. The specificity of
the three classes, released, deceased, and isolated, is within the range of 78–100%, except in
the isolated class of BLSTM.

Table 2. Performance Metrics of BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR.

Algorithm Sensitivity (%) Specificity (%) Balanced Accuracy (%)

Released Deceased Isolate Released Deceased Isolate Released Deceased Isolate

BAG 80.57 0.00 90.84 90.86 100.00 78.49 85.72 50.00 84.67
BST 80.64 0.00 88.69 89.07 100.00 78.49 84.85 50.00 83.59

BLSTM 29.08 0.00 98.36 98.39 100.00 29.30 64.18 50.00 63.83
SVM 79.24 0.00 92.79 92.83 100.00 77.14 86.04 50.00 84.96
NB 76.53 2.22 99.81 99.46 98.07 77.01 87.99 50.14 88.41
RF 80.44 0.00 90.06 90.32 100.00 78.30 85.38 50.00 84.18

KNN 80.37 0.00 90.06 90.50 100.00 78.17 85.44 50.00 84.11
DT 80.70 0.00 88.69 89.07 100.00 78.56 84.89 50.00 83.63
LR 79.64 0.00 99.22 98.75 100.00 77.53 89.19 50.00 88.37

Table 3 shows the comparison of accuracy, kappa, and p-value of BAG, BST, BLSTM,
SVM, NB, RF, KNN, DT, and LR. The overall best accuracy was obtained from LR with an
accuracy of 82.77%, while the lowest was obtained from BLSTM with an accuracy of 65.96%.
The result is not encouraging when compared with other state-of-the-art techniques. We
use the proposed method to filter the noise from the COVID-19 dataset.

Table 3. Performance Metrics of BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR.

Algorithm Accuracy (%) Kappa p-Value

BAG 81.36 0.5919 2.2 × 10−6

BST 80.88 0.5789 2.2 × 10−6

BLSTM 65.96 0.2904 2.2 × 10−6

SVM 80.88 0.5878 2.2 × 10−6

NB 80.69 0.6029 2.2 × 10−6

RF 81.07 0.5853 2.2 × 10−6

KNN 81.03 0.5846 2.2 × 10−6

DT 80.93 0.5797 2.2 × 10−6

LR 82.77 0.6335 2.2 × 10−6

Table 4 presents the performance comparison of all the ML models for the AENN
filtered dataset using sensitivity, specificity, and balanced accuracy. LR attained 82.77%
accuracy, while BLSTM produced the worst accuracy, at 65.96%.
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Table 4. Performance Metrics of AENN on BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR. The
best results are shown in bold.

Algorithm Sensitivity (%) Specificity (%) Balanced Accuracy (%)

BAG 100.00 100.00 100.00
BST 97.56 99.96 98.76

BLSTM 63.33 99.22 81.27
SVM 29.26 100.00 64.63
NB 87.81 98.76 93.28
RF 100.00 100.00 100.00

KNN 73.17 99.75 86.46
DT 39.02 99.96 69.49
LR 36.58 99.71 68.15

Table 5 presents the performance comparison of all the ML models for the AENN
filtered dataset using accuracy, kappa, and p-value. Both BAG and RF attained 100%
accuracy, while LR produced the worst accuracy, at 98.81%.

Table 5. Performance of AENN on BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR.

Algorithm Accuracy (%) Kappa p-Value

BAG 100.00 1.00 2.2 × 10−6

BST 99.93 0.9753 1.05 × 10−15

BLSTM 98.84 0.5295 0.7454
SVM 98.98 0.4492 0.03
NB 98.60 0.6362 0.47
RF 100.00 1.00 2.2 × 10−6

KNN 99.37 0.766 4.11 × 10−5

DT 99.09 0.5479 0.007
LR 98.81 0.4632 0.15

Table 6 depicts the performance comparison of all the ML algorithms on the BBNR fil-
tered dataset using sensitivity, specificity, and balanced accuracy. Both SVM and NB
achieved 100% sensitivity and specificity, while LR produced the worst accuracy of
the results.

Table 6. Performance of BBNR on BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR.

Algorithm Sensitivity (%) Specificity (%) Balanced Accuracy (%)

Released Deceased Isolated Released Deceased Isolate Released Deceased Isolated

BAG 66.36 2.85 87.13 87.54 100.00 64.87 76.95 51.43 76.00
BST 64.40 0.00 88.50 88.86 100.00 62.89 76.63 50.00 75.69

BLSTM 65.22 0.00 84.82 85.30 100.00 63.69 75.26 50.00 74.25
SVM 54.05 0.00 100.00 100.00 100.00 52.79 77.03 50.00 76.39
NB 24.74 0.00 100.00 100.00 100.00 24.16 62.37 50.00 62.08
RF 58.42 2.85 97.74 97.81 100.00 57.11 78.11 51.42 77.43

KNN 99.21 0.00 3.34 3.42 100.00 99.09 51.31 50.00 51.22
DT 56.53 0.00 98.63 98.68 100.00 55.20 77.60 50.00 76.92
LR 54.57 0.00 99.53 99.50 100.00 53.32 77.03 50.00 76.43

Table 7 represents the performance comparison of accuracy, kappa, and p-value of all
the ML models for the BBNR filtered dataset. BAG produced the best performance, closely
followed by RF with 74.12% and 74.01% accuracy, respectively, while NB produced the
worst accuracy, at 55.69%.
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Table 7. Performance of BBNR on BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR. The best
results are shown in bold.

Algorithm Accuracy (%) Kappa p-Value

BAG 74.12 0.50 2.2 × 10−16

BST 73.53 0.49 2.2 × 10−16

BLSTM 72.48 0.47 2.2 × 10−16

SVM 72.42 0.49 2.2 × 10−16

NB 55.69 0.21 0.98
RF 74.01 0.51 2.2 × 10−16

KNN 57.99 0.02 0.08
DT 73.26 0.49 2.2 × 10−16

LR 72.52 0.49 2.2 × 10−16

Table 8 depicts the performance comparison of all the ML algorithms on dataset that
was filtered by CNN using sensitivity, specificity, and balanced accuracy as performance
metrics. NB achieved a sensitivity of 99.32% and specificity of 100%.

Table 8. Performance of CNN on BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR.

Algorithm Sensitivity (%) Specificity (%) Balanced Accuracy (%)

Released Deceased Isolated Released Deceased Isolated Released Deceased Isolated

BAG 69.82 12.82 95.48 95.60 99.79 63.13 82.71 56.30 79.30
BST 60.56 1.28 96.11 96.11 99.95 53.22 78.34 50.62 74.66

BLSTM 67.44 0.00 94.06 94.14 100.00 58.78 80.77 50.00 76.42
SVM 12.67 1.28 99.74 99.64 99.91 11.83 56.16 50.59 55.78
NB 99.32 0.00 14.88 13.22 100.00 99.24 56.27 50.00 57.06
RF 68.61 15.38 95.74 95.96 99.70 62.43 82.28 57.54 79.09

KNN 68.21 8.97 95.06 95.15 99.79 61.39 81.68 54.38 78.22
DT 60.56 0.00 96.11 96.11 100.00 52.87 78.34 50.00 74.49
LR 15.69 1.28 98.74 98.63 99.87 14.78 57.16 50.57 56.76

Table 9 shows the performance comparison of all the ML models for the CNN filtered
the dataset using accuracy, kappa, and p-value. RF produced the best performance and
was closely followed by BAG with 87.76% and 87.72% accuracy, respectively, while SVM
produced the worst accuracy, at 79.16%. The main result of Table 9 is that the BAG and RF
methods achieve the best performance in terms of accuracy and kappa.

Table 9. Performance of CNN on BAG, BST, BLSTM, SVM, NB, RF, KNN, DT, and LR. The best
results are shown in bold.

Algorithm Accuracy (%) Kappa p-Value

BAG 87.72 0.63 2.2 × 10−16

BST 85.99 0.56 2.2 × 10−16

BLSTM 85.74 0.57 2.2 × 10−16

SVM 79.16 0.16 0.00
NB 79.24 0.17 0.00
RF 87.76 0.63 2.2 × 10−16

KNN 86.95 0.61 2.2 × 10−16

DT 85.95 0.55 2.2 × 10−16

LR 79.00 0.18 0.00

The accuracy results from Tables 5, 7 and 9 are visualized in Figure 1. We summa-
rize the results of experiments in Figure 2, which shows that the AENN method allows
to achieve a statistically significant improvement (p < 0.001, using the t-test) of classi-
fication performance in terms of accuracy metric. AENN, on average, improved the
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accuracy by 19.7833 ± 4.9896% and BBNR was ineffective and led to the decrease in perfor-
mance by 9.9500 ± 9.3480%, while the CNN filtering method increased the accuracy by
4.6600 ± 6.9520%.
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The results of our study underscore the need for data filtering to improve the per-
formance of machine learning classifiers. This study demonstrated the superiority of the
AENN filtering method, which outperformed the BBNR and CNN filtering methods. This
finding is in line with other recent studies [51–53]. However, more research is needed to
confirm our results.

The limitation of the current study is that only a limited dataset from a single country
was used. More research with larger datasets is still needed to validate the proposed
methods.

5. Conclusions

Machine learning techniques have been successful in the classification and prediction
of sequential data in recent years. Several algorithms, for example, gradient boosting and
neural networks, were explored for strength in the classification of COVID-19. However,
the removal of noise from the data has remained unexploited in this field. In this paper,
we have used noise filter algorithms to remove noise from all data sets utilized in this
study. As a result of denoising, machine learning models have produced high results
for the prediction of COVID-19 cases in South Korea. The technique has proven to be
effective in the classification of released, deceased, and isolated classes. The presented
methodology can contribute to the analysis of epidemiological data and the monitoring of
the spread of infections. The results of this study can catalyze the governments of nations
to take well-timed actions and make quality decisions to effectively address the COVID-19
emergency.



Information 2021, 12, 528 13 of 15

In the future, this work will be continuously enhanced by exploring more efficient
machine learning and deep learning models to determine the epidemiology of COVID-19
in real-time using the up-to-date datasets. Further validation of our framework on other,
possible larger datasets, if they become available, will also be a subject of our future work.
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Abbreviations

Notation Description
AENN All k-edited nearest neighbors
BAG Bagging
BBNR Blame based noise reduction
BiRNN Bi-directional recurrent neural network
BLSTM Bi-directional long short-term memory
BST Stochastic gradient boosting
CNN Condensed nearest neighbors
DT Decision tree
KNN K-nearest neighbor
NB Naïve Bayes
RF Random forest
SVM Support vector machine
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