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Abstract

In recent years, the world has witnessed an exponential growth and availability of data.
The term ”big data” has become one of the hottest topics which attracts the investment
of a lot of people from research to business, from small to large organizations. People
have data and want to get insights from them. This leads to the demand of a parallel
processing models that are scalable and stable. There are several choices such as Hadoop
and its variants and Message Passing Interface. Standard ML is a functional programming
language which is mainly used in teaching and research. However, there is not much sup-
port for this language, especially in parallel model. Therefore, in this thesis, we develop a
Standard ML API for Hadoop called MLoop to provide SML developers a framework to
program with MapReduce paradigm in Hadoop. This library is an extension of Hadoop
Pipes to support SML instead of C++. The thesis also conducts experiments to evalu-
ate and compare proposed library with other notable large-scale parallel solutions. The
results show that MLoop achieves better performance compared with Hadoop Streaming
which is an extension provided by Hadoop to support programming languages other than
Java. Although its performance is really not as good as the native Hadoop, MLoop often
gets at least 80% the performance of the native Hadoop. In some cases (the summation
problem for example), when strengths of SML are utilized, MLoop even outperforms the
native Hadoop. Besides that, MLoop also inherits characteristics of Hadoop such as scal-
ability and fault tolerance. However, the current implementation of MLoop suffers from
several shortcomings such as it does not support job chaining and global counter. Finally,
the thesis also provides several useful guide-lines to make it easier to choose the suitable
solution for the actual large-scale problems.

Keywords: Standard ML, Hadoop, MPI, MapReduce, Evaluation, large-scale, big data,
parallel processing.
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Chapter 1

Introduction

We are living in the Digital Era: information is instantly and readily available to more
people than ever before. People take pictures on their phone, upload videos, update
social network status, surf the web and much more. Data are being generated with an
incredible speed. According to a study in 2014 [5], every minute of the day, we send 138
million emails, generate 4.7 million posts on Tumblr; YouTube users view over 5 million
videos; Google processes 2.66 million searches. Therefore, ”big data” becomes a fact of
the world and certainly an issue that real-world systems must cope with. Furthermore,
there is a claim that ”more data lead to better algorithms and systems for solving real-
world problems” [25]. Indeed, Banko and Bill [12] published a classic paper discussing
the effects of training data size on classification accuracy in natural language processing.
They concluded that several classification algorithms got better accuracy with more data.
This leads to a consideration between working on algorithms and gathering data. With
increasing amounts of data, a ”good-enough” algorithm can provide very good accuracy.

In recent years, there has been a growing demand for the analysis of user behavior
data. Electronic commerce websites need to record user activities and analyze them to
provide users useful and personalized information. However, gathering user behavior data
generates a massive amount of data which many organizations cannot handle in terms of
both storage and processing capacity. A simple approach is to discard some data or only
store data for a certain period. This can lead to lost opportunities because useful value
can be derived from mining such data. As a result, there is a very high demand for storing
and processing a very big amount of data. This task currently becomes a challenge for
lots of companies like Google, Facebook, Yahoo, Microsoft. As a leader in many aspects
of technology, in 2004, Google introduced MapReduce [15] - a programming model for
processing and generating large datasets. This paradigm has drawn lots of attention from
open-source communities and even big organizations. An open source implementation of
MapReduce was developed, which called Hadoop. It was created by Doug Cutting and
Mike Cafarela, then got support from Yahoo and now becomes an Apache project. For
years, MapReduce and its implementations (Hadoop for example) become a great solution
for lots of companies and organizations to cope with big data.

1



2 Chapter 1. Introduction

1.1 Related Work

The urgent demand of processing massive datasets have inspired lots of efforts this field.
Hadoop is the solution that many people take into account to solve their problems. There-
fore, lots of work have been done by researchers to improve Hadoop’s performance in
different aspects.

1.1.1 Improving Hadoop

Zaharia et. al. suggested a new scheduler for Hadoop system to improve the perfor-
mance [34]. In their work, they listed assumptions in Hadoop’s scheduler and pointed out
how these assumptions were break down in reality. For example, assumption ”starting
speculative task on an idle node cost nothing” is break down when resources are shared.
In this case, network bottleneck, disk I/O competition can happen. From the judgment,
they proposed a new scheduler for Hadoop called LATE. The main difference between
two schedulers is that LATE estimates the time left for a task to finish and uses this
information for launching back-up task instead of using the progress of task as in original
scheduler. They also carried out experiments to compare the performance between two
schedulers. The result showed that LATE provided better performance in most of cases.

In another point of view, Chu and colleges [13] pointed out a characteristic that helps
to recognize a class of machine learning algorithms which can be easily implemented with
MapReduce. In more detail, algorithms that can write in summary form can easily adapt
to run in multi-core environment. The authors also proposed a multi-core mapreduce
framework which is based on the original architecture from Google. To prove their model
is efficient, they conducted experiments to compare the performance of algorithms in two
versions: one with mapreduce and the other in normal implementation. The result showed
that the performance speed up very much, in some cases, it is linear with the number of
the processing cores.

In heterogeneous or shared environments, data locality in scheduling of Hadoop may
not be as good as desired. Therefore, the data transmission may occur in some tasks and
causes performance degradation. To address this problem, Tao Gu et. al. proposed a data
prefetching mechanism [31]. The idea is to minimize the overhead of data transmission. In
Hadoop, the input data of map tasks is not transfered at one time, but in many small parts.
When mapper get the first part of input, it processes that part of data. After finishing,
it starts to transfers next part and processes it. This process is repeated till complete
input is processed. This technique obviously wastes the time because data processing and
transmission can be carried out in parallel. In data prefetching mechanism, a data fetching
thread is created for requesting non-local input data and a prefetching buffer is allocated
at the node which contains the task to store temporary data. Data prefetching thread
retrieves input data through network and store in prefetching buffer. Map task only needs
to process data in that buffer. Experiments result shows that this method can reduce data
transmission time up to 95%, and improve 15% performance of the job.

Heterogeneous environment can also result in another problem with balanced data
processing load. In more detail, more powerful node can complete its tasks on local data
before a lower powerful node. Then it starts to handle tasks with data in remote slower
node. Again data transmission becomes an overhead of system. Jiong Xie et. al. proposed
a different approach [33]. They developed a data placement method in HDFS with two
algorithms. The first algorithm deals with initial data placement: distribute data in a way
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so that all the node can complete processing local data at the same time. It means high-
performance node will contains more data. The second algorithm addresses dynamic data
load-balancing problem when new data or nodes are added or data blocks are deleted. This
algorithm re-organizes the input data. Experiments show improvement of their methods
in two programs: Grep and WordCount.

In another approach to improve MapReduce performance, Zhenhua Guo and Geoffrey
Fox tried to increase resource utilization [18]. In Hadoop cluster, each slave node hosts a
number of task slots where tasks can run. When all slots are not fully used, the resources
on idle slots are wasted. Authors introduced resourse stealing method, in which running
tasks will steal idle resources by creating sub-tasks to share the workload. When master
node assigns new tasks to a node, stolen resources on that node are returned back. The
authors also introduced Benefit Aware Speculative Execution (BASE) method to schedule
speculative task instead of default strategy of Hadoop. BASE estimates the remaining time
of a task and predicts execution time of speculative task based on historical information.
The speculative task is only executed if it can finish earlier than current task.

Improving Hadoop performance by data placing is a topic which attracts lots of re-
searchers. Seo at. al. in their paper proposed a plug-in component for Hadoop called
HPMR [29]. In HPMR, a prefetching scheme is used. In this prefetching technique, map
or reduce tasks are carried out at the beginning of the input split, at the same time, data
is prefetched from the end of the input split. This bi-directional technique simplifies the
implementation of prefetching data. However, with prefetching approach, the task still has
to fetch data by itself before it reaches the point where data are prefetched. HPMR also
introduces a so-called pre-shuffling scheme. The idea behind this technique is simple: the
pre-shuffling module examines the input split for map task and predicts the reducer which
will process the output key-value pairs. Input data will be assigned to a map task which
is near the predicted reducer to reduce the network transmission. To evaluate HPMR,
authors conducted experiments on Yahoo Grid which consists of 1670 nodes. According
to the reported result, performance is improved up to 73% with HPMR.

In the same vein of data placement, Rajashekhar and Daanish proposed two models to
estimate the machine’s power [11]. The mathematical model is built based on hardware
specification like CPU speed, internal memory size, cache size, network speed, etc; while
the history-based model bases on historical information of previous tasks like total input
bytes, total output bytes, start time, end time. However, their evaluation does not show
much about improvement of their solution. It mainly focuses on comparison between two
suggested models.

1.1.2 Evaluating Parallel Solutions

Another branch of research focuses on evaluating existing parallel solutions to understand
the actual performance on practical circumstances. From that, we have bases to choose
suitable solutions for our issues. In [17], Ding et. al. conducted experiments to compare
Hadoop, Hadoop Streaming and MPI with 6 benchmarks. The results show that the
performance of Hadoop Streaming are often worse than the native Hadoop. The authors
also pointed out that the overhead on Pipe Operations is one of the factor which causes
performance degradation.

In [27], Pavlo et. al. compared Hadoop and two parallel database management systems
(DBMS), DBMS-X and Vertica. Their results show that the performance of these DBMSs
was better than Hadoop. In return, their processes to load data into took much longer
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than Hadoop.

In [22], Kaur and his colleges presented a comparison of two open source frameworks for
parallel computations, Hadoop and Nephele-PACT. The work focused on comparing the
execution engine because both frameworks use HDFS. The results revealed that Nephele-
PACT has better scalability while Hadoop shows its strength in fault-tolerance.

1.1.3 Extending Hadoop for non-Java Languages

Hadoop requires developers to write MapReduce programs in Java. Although Hadoop pro-
vides an utility to run applications written in other languages, called Hadoop Streaming,
it suffers from a noteworthy degradation in the performance. As a result, several libraries
are introduced to support writing programs without Java.

Abuin et. al. introduced Perldoop [10]. This is a tool that automatically translates
Hadoop Streaming scripts written in Perl into equivalent Hadoop Java codes. Their per-
formance comparison showed that Perldoop decreases the processing time with respect to
Hadoop Streaming. Perldoop runs 12 times faster than Hadoop Streaming for Perl. How-
ever, some strengths of Perl language (for example, Perl is very good for pattern matching
and regular expression) cannot be taken advantage of when translating original programs
in Perl into Java codes.

Paper [23] represented a Python package Pydoop that provides a Python API for
Hadoop MapReduce and HDFS. The package is built based on Hadoop Pipes (C++). Py-
doop supports access to HDFS as well as the control of different components of MapReduce
model such as combiner, partitioner, job counter, record reader and writer. The exper-
imental results showed that Pydoop performs better than Hadoop Streaming but worse
than Hadoop Pipes and the native Hadoop.

RHadoop [7,28] is an open source project developed by Revolution Analytics1. RHadoop
contains four R packages which allow users to define map and reduce R functions. There
are two important packages. The rmr package offers Hadoop MapReduce functionalities
in R. The rhdfs package provides functions providing file management of the HDFS from
within R. RHadoop is also an extension of Hadoop Streaming. User-defined functions in
R will be called from Hadoop Streaming.

1.2 Motivation

Standard ML is a functional programming language which is mainly used in teaching and
research. Although it is not widely used, Standard ML has been enormously influential.
Many popular programming languages have adopted concepts of SML such as garbage
collection, dynamically-scoped exceptions. SML is used to develop Automatic Design of
Algorithms through Evolution (ADATE) [1]. This is a system for automatic programming.
ADATE can automatically generate non-trivial algorithms. However, ADATE requires
very large number of operations to run combinatorial search in order to employ program
transformations. Therefore, ADATE consumes lots of time from hours to days to generate
the desired programs. Reducing the execution time is the key point to bring ADATE to
a wider community. Therefore, there is an urgent demand for distributed and parallel
processing for Standard ML. This not only supports ADATE but also supports other
systems which use SML as developing language.

1http://www.revolutionanalytics.com/
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The first attempt to satisfy that demand is to take advantage of Message Passing
Interface (MPI). For years, MPI has become a standard for writing parallel programs in
research area. However, it suffers from a big problem. The effort that developers need to
spend to write MPI programs is extremely large. With the introduction of MapReduce and
its open implementation Hadoop, people have a second approach: integrating Standard
ML with Hadoop.

Lots of research in the field of parallel processing focus on improving Hadoop’s perfor-
mance. However, there are only several efforts to evaluate different parallel approaches as
well as develop new libraries (modules) to support programing languages other than Java
to write Hadoop MapReduce programs. The problem is even more serious with develop-
ers who use SML because it is almost forgotten. Therefore, this thesis makes an effort
to address those problems for SML developers. At first, we will develop a Standard ML
API (library) for Hadoop. It supports writing MapReduce programs in SML that can
run on Hadoop cluster. One of requirements for this library is that it must inherit good
features of Hadoop MapReduce. In second part of this thesis, we will conduct experiments
to compare new library with existing large-scale solutions. The result will be summarized
and generalized into advice (guide-lines) to help developers to find the best appropriate
approach for their issues in more general situation. In other words, the thesis will resolve
following research questions:

1. How can we provide a new library that allows writing MapReduce programs in
Standard ML?

2. How is the performance of new library in comparison with existing large-scale ap-
proaches?

3. What aspects should developers consider to find out the best solution for their actual
issues?

1.3 Methodology

Existing efforts to provide a library for writing MapReduce programs in languages other
than Java mainly follow two approaches: extend Hadoop Streaming [10] and Hadoop
Pipes [23]. In the first approach, the library only allows developers to customize three main
components of Hadoop: mapper, reducer and combiner. On the other hand, the second
approach allows the library to support more useful features of Hadoop as mentioned in
section 1.1.3. Therefore, this thesis uses the second approach to develop a Standard ML
library for Hadoop.

In the evaluation, the new library will be evaluated with existing solutions which
includes MPI, native Hadoop, Hadoop Streaming. All of these solutions will be tested in
different metrics with different problems and under different cluster configurations.

1.4 Report Outline

The remaining of this thesis is organized as follows. Chapter 2 overviews the MapReduce
framework and gives a short comparison with other systems. This chapter also describes
Hadoop, an implementation of MapReduce in details. In chapter 3, concepts in Message
Passing Interface are explained and some sample programs are presented. The Standard
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ML language is introduced in chapter 4. Then the design of Standard ML library (MLoop)
is described. Its implementation is also represented in this chapter. The chapter concludes
by listing several limitations of MLoop. Chapter 5 compares the new library with other
large-scale systems and discusses the result. Several guide-lines are also given at the end
of this chapter. The final chapter gives a conclusion and suggests future work.



Chapter 2

MapReduce and Its Open
Implementation Hadoop

The explosion of data in the digital era have brought a lot of opportunities to us. There is
no doubt that big data has become a significant force for innovation and growth. In order
to take advantages of big data, people must face with several fundamental challenges: how
to deal with the size of big data, how to analyze it and create new insights as a competitive
advantage. Since introduced in 2004, MapReduce and its open implementation Hadoop
have become the de facto standard for storing, processing and analyzing huge volume of
data. This chapter provides basic understanding about the MapReduce as well as the
components of Hadoop. Through this chapter, we will know how to use Hadoop to solve
different problems.

2.1 MapReduce

In 2004, Google published a paper that introduced MapReduce to the world. It is not a
library or a programming framework, but instead is just a programming model for process-
ing problems with huge datasets using a large number of computers. The model is inspired
by the map and reduce functions which are commonly used in functional programming
although they are used in MapReduce framework with a different purpose than that of
the original.

2.1.1 Ideas Behind MapReduce

A lot of research has focused on tackling large scale problems. The ideas behind MapRe-
duce are not quite new. They have been introduced and discussed in computer science
theories for years. The point is that there is a tremendous combination of these ideas
in MapReduce that brings into play the power of these ideas. Following are ideas that
MapReduce obeys [25].

Scale ”out”, not ”up”. For processing massive amounts of data, a large number of low-
end computer system (scaling ”out” approach) is prefered to a small number of high-
end servers (scaling ”up” approach). The main reason for this is because investing
in a such powerful system with high-end servers is not cost effective. Although there
are issues with network-based cluster like communication between nodes, operational
costs, data center efficiency, scaling out remains more attractive than scaling up.

7
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Fault-tolerance. Failures are common on large cluster of low-end machines. For example,
disk failures, errors in RAM, connectivity loss often happen. MapReduce are built
on such cluster. Therefore, it is designed to be robust enough to handle failures
which are common in a cluster. That is, it needs to have the capability to operate
well without impacting the quality of service when failures happen. When a node
goes down, another node will take responsibility of that node to handle the load.
And after broken node is repaired, it should be able to re-join the cluster easily
without manual configuration.

Move processing to the data. Instead of having ”processing nodes” and ”storage nodes”
linked together via high speed interconnect like in high-performance computing ap-
plications, MapReduce moves the processing around. The idea is that we try to run
the code on the processor which is on the same computer with the block of data we
need. In that way, MapReduce can take advantage of data locality, which reduces
the bottleneck in the network a lot.

Hide system-level details. System-level details (locking data structure, data starva-
tion, parallelize the process) are hidden from developers. MapReduce separates the
what and the how: what computation are to be performed and how they actually
run on a cluster of machines. The programmers only need to care about the first
part: what, and are free with the latter. Therefore, they can focus on designing
algorithms or applications.

Scalability. For an ideal algorithm, scalability is defined with at least two aspects. In
terms of data, given twice the amount of data, the same algorithm should take no
more than twice the amount of time to finish. In terms of resources, when the
cluster doubles the size, the same algorithm should run in no more than half as
long. MapReduce is designed to reach this property although it is impossible to get
exactly this. It can be considered that MapReduce represents a small step toward
the above ideal algorithms.

2.1.2 MapReduce Basics

Funtional Programming Root

MapReduce is inspired by the map and reduce high-order functions in Lisp, or map and
fold in other functional languages, as illustrated in Listing 2.1. Map function applies a
given function f to each element of a list and returns a list of results. On the other hand,
fold function takes a list, a function g of two arguments and an initial value. Fold can be
left-associative (foldl) or right-associative (foldr). Left fold returns initial value if the list
is empty. Otherwise, it applies g to initial value and the first element of list, then applies
recursively left fold with result of previous step as initial value and the rest of original list
as input list.

Listing 2.1: Map and Fold high-order functions

map f [a; b; c] = [f a; f b; f c]

foldl g initial [] = initial
foldl g initial [x1, x2, ...] = foldl g (g intial x1) [x2, ...]

// Example
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fun f x = x * x
fun g (x,y) = x + y
map f [1,2,3,4,5] => [1,4,9,16,25]
foldl g 0 [1,2,3] => 6

The map phase in MapReduce corresponds to the map operation in functional pro-
gramming, and the reduce phase corresponds to reduce or fold operation in functional
programming. Each phase has a data processing function which is defined by user. These
functions are called mapper and reducer respectively.

Programming Model

Key-value pairs are the basic data structure in MapReduce. Keys and values may be
primitives such as integers, floating point values, strings, and raw bytes, or they could be
user-defined types. The basic forms of mapper and reducer are as follows.

map : (k1, v1) −→ [(k2, v2)]
reduce : (k2, [v2]) −→ [(k3, v3)]

The mapper takes input key-value pair and produces a set of intermediate key-value
pairs. The MapReduce framework then groups all intermediate values associated with the
same intermediate key and passes them to the reducer. Intermediate data come to each
reducer in order, sorted by the key. The reducer accepts an intermediate key and a set of
values for that key. It processes these values and generates output key-value pairs.

Consider the problem of counting the number of occurrences of each word in a large
collection of documents. The pseudo-code for MapReduce program is shown in Listing
2.2.

Listing 2.2: Word Count with MapReduce

map(document_name n, document d):
for each word w in document d:

Emit(word w, count 1);
reduce(word w, counts [c1,c2,...]):

sum = 0
for each count c in [c1,c2,...]:

sum = sum + c
Emit(word w, count sum);

The map function takes input key-value pair in the form of (document name, document
content) pairs, parses token (word) and produces an intermediate key-pair value for each
word: the word itself as key and an associated count of occurrences (just 1 in this case) as
value. All values of the same key are grouped together and sent to the reducer. Therefore,
we just need to sum up all counts associated with a word. That is what is done in reducer.

MapReduce Execution

As described in original paper [16], the execution of MapReduce framework consists of six
steps. When the user program calls the MapReduce function, the following sequence of
actions occurs:

1. Input files are split into M pieces, typically 16-64MB per piece (this size can be
controlled by user via a parameter). The MapReduce library then launches many
copies of user program on the cluster.



10 Chapter 2. MapReduce and Its Open Implementation Hadoop

Figure 2.1: Execution Overview [16]

2. One of the copies of the program is the master, which assigns the work to the workers
- the rest copies. There are total M map tasks corresponding to M pieces, and R
reduce tasks (R is automatically determined by the MapReduce library or can be
set by user). The master assigns a map task or a reduce task to each idle worker.

3. The worker who is assigned the map task reads the corresponding input split. It
translates the input data into key-value pairs and passes each pair to the user-defined
map function. The output key-value pairs are buffered in memory.

4. A background thread periodically spills the buffered data to local disk and splits
them into R parts by the partitioning function, each part is corresponding to a
reduce worker. The addresses of these data are reported to the master so that the
reduce worker can know the location of these data through the master.

5. The reduce worker contacts the master to get information of its input data, then
it uses remote procedure calls to read the intermediate data from the local disks of
the map workers. After reading all necessary intermediate data, reducer sorts the
data by the intermediate keys to group the data by the key. An external sort may
be used if intermediate data cannot fit in main memory.

6. The reduce worker passes the key and the corresponding set of intermediate values
to the user-defined reduce function. The output of this function is written directly
to the output file system.

When the developer submits a MapReduce program (referred as a job) to the frame-
work, it must take care of handling all aspects of distributed code execution on clusters.
Responsibilities include [16,25]:

Scheduling. Each MapReduce job is divided into smaller parts called tasks. Map task is
responsible for processing a set of input key-value pairs, reduce task processes a set
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of the intermediate data. When the total number of tasks is larger than the number
of tasks that can be run in parallel on the cluster, the scheduler has to maintain some
kind of task queue and track the state of running tasks. Another aspect involves
multiple jobs from different users.

One more thing needs to care is something called straggler : a node takes unusual
long time to complete one of the last few map or reduce tasks. This can lead to
increasing total time for MapReduce operation. Therefore, the scheduler may need
to schedule backup executions of the remaining in-progress tasks.

Data/Code Distribution. In MapReduce, the scheduler starts the task on the node
which contains data for that task. That is ”moving code to the data”. If this is
impossible (the node already had too many running tasks for example), new task is
started on another node and the necessary data are streamed over the network.

Synchronization. In MapReduce, the reducer cannot start until all mappers have fin-
ished emitting key-value pairs and all intermediate key-value pairs have been shuffled
and sorted.

Error and fault handling. MapReduce execution framework must ensure the smooth
execution on a fragile environment where errors and faults are common. The master
pings every worker periodically. If no response is received from a worker in a certain
amount of time, the master marks it as failed. Any tasks completed and in progress
on failed node are re-scheduled on other workers.

Partitioners and Combiners

Partitioners are responsible for splitting intermediate data and assigning them to reducers.
The default partitioner uses hashing technique (compute the hash value of the key and
then compute the modulo of this value with the number of reducers). In MapReduce, there
is a guarantee that within a partition, the intermediate key-value pairs are processed in
increasing key order. This makes it easy to generate a sorted output file per partition.

Combiners are an optimization of MapRedue that allows local aggregation before shuf-
fle and sort phase. An example of this is the word count example. Since distribution of
word occurrences are imbalanced, each map task may produce thousands of key-value
pairs in the form <the, 1>. All of these intermediate data will be sent over the network
to a reducer. This is obviously inefficient. One solution is to perform local aggregation on
the output of each mapper.

Combiner function is executed on each machine that performs a map task. Combiners
can be considered as ”mini-reducers” that take the output of the mappers. The combiners
can emit any number of key-value pairs but the keys and values must have the same type
as the mapper output. Another difference between a reducer and a combiner is how its
output is handled. The output of a reducer function is written to the final output file,
whereas the output of a combiner is written to an intermediate file.

Figure 2.2 shows the complete MapReduce model. Input splits are consumed, trans-
lated to key-value pairs and processed by the mappers. Outputs of the mappers are
handled by the combiners which perform local aggregations to reduce the number of inter-
mediate output key-value pairs. The partitioner then splits the intermediate data, creates
one partition for each reduce task. Based on this information, the reducer fetches its cor-
responding input data from mappers. When all the map outputs have been copied, the
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Figure 2.2: Complete view of MapReduce on Word Count problem

reducer starts the sort phase, which merges and sorts the map outputs. Finally, the reduce
function is called to process the data and create the final output. In summary, a com-
plete MapReduce job consists of the mapper, combiner, partitioner and the reducer, which
are aspects that developers could manage. Other aspects are handled by the execution
framework.

2.1.3 MapReduce Distributed File System

As described before, MapReduce is a programming model to store and process big mount
of data. So far, we just focus on the processing aspect of the model. To deal with storing
aspect, MapReduce uses a distributed file system (DFS), which builds on previous work
and is customized for large-data processing workloads. The MapReduce DFS splits files
into chunks, replicates them and stores them across the cluster. There are different im-
plementations of DFS for MapReduce. The Google File System (GFS) supports Google’s
proprietary implementation of MapReduce; HDFS (Hadoop Distributed File System) is an
open-source implementation of GFS that supports Hadoop; CloudStore is an open-source
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Figure 2.3: The architecture of HDFS [25]

DFS originally developed by Kosmix.
MapReduce DFS uses the master-slave architecture (Figure 2.3) in which master main-

tains a file namespace (meta-data, directory structure, file-block mapping, access permis-
sion, etc.) and the slaves store the actual data blocks. In GFS, the master is called
the GFS master and the slaves are called GFS chunk-servers [25]. In Hadoop, they are
namenode and datanodes respectively.

In HDFS, to read a file, the client must contact the namenode to get information
about actual data. The namenode returns the block id and location of the block. Client
then contacts datanode to retrieve actual data blocks. We should notice that all data
are transfered directly between client and datanodes, data are never moved through the
namenode. To ensure reliability, availability and performance, HDFS stores three copies
of each data block by default. Datanodes are constantly reporting to the namenode to
provide information about local changes as well as receive instructions to create, move or
delete blocks from local disks. Namenode, therefore, can ensure proper replication of all
the blocks: if there are not enough replicas, additional copies are created; if there are too
many replicas, extra copies are removed.

2.1.4 MapReduce and Other Systems

The approach in MapReduce is not the only approach for parallel and distributed com-
putation. There are other approaches which each of them is suitable for a specific class of
problems. In this part, we will look at some of well-known approaches.

Relational Database Management System

Database Management System (DBMS) is a system that manages data, organizes it, and
provides suitable ways to retrieve and process data. A relational database management
system (RDBMS) is a DBMS that is based on the relational model.

We can use DBMS with a lot of disks to analyze large-scale data. However, this solution
has several limitations. The first limitation comes from the disk drive technology: seek
time is improved more slowly than transfer time. Seek time refers to the time required
to position the disk’s head on the correct track of the disk to read or write data, while
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the transfer time mentions the time needed to transfer the data. If an operation on data
needs more seek time than transfer time, reading or write a large amount of data will
take longer than just streaming the data. In this case, MapReduce will be more efficient
than B-Tree [30] (the data structure is common used in relational databases) because
MapReduce uses Sort-Merge to rebuild the database. On the other hand, B-Tree is better
for updating small portion of dataset. From this analysis, MapReduce is suitable for
problems that need to work with whole dataset whereas RDBMS is good for problems
which need low-latency or need to update a small fraction of data.

Another limitation of RDMBS is the type of data which it can manage. RDBMS works
well with structured data, which are the data that conform a defined format. On the other
hand, semi-structure data does not have a predefined schema and has a structure that may
change unpredictably, while unstructured data are not organized in a predefine manner
(plain text or image data are examples). RDBMS shows drawbacks when coping with
semi-structured data or unstructured data. Fortunately, MapReduce works well on these
kinds of data because it has the ability to interpret the data when processing them.

High Performance Computing and Grid Computing

Both of these systems aim at solving complex computation problems through parallel pro-
cessing. High Performance Computing (HPC) relates to techniques to build and manage
a supercomputer or parallel processing machine. There are two types of HPC archi-
tectures: Shared-Memory system and Distributed-Memory system. In shared-memory
system, multiple CPUs will share a global memory. This architecture lacks of scalability
between memory and CPUs. Adding more CPUs or transmitting a large amount of data
will cause bottle-neck in data traffic. On the other hand, distributed-memory system has
multiple nodes each with its own local memory. This architecture requires programmer to
be responsible for mapping data structures across nodes. Programmer also has to man-
age communication between nodes when remote data is required in a local computation
(message-passing). To perform message-passing between nodes, a low-level programming
API (such as MPI) is needed.

Grid computing can be considered as a more economical way of achieving the processing
capabilities of HPC. It connects computers and resources to form a cluster with higher
performance. A widely used approach for communication between cluster nodes is MPI.

MPI - Message Passing Interface - is a language-independent protocol to program
parallel computers. MPI allows programmers a lot of control. However, it is a low-level
programming API. Therefore, it is hard to develop programs and requires programmers
to handle lots of aspects: checkpoint, recovery, data flow, ...

Another difficulty which programmer may have to counter is to coordinate the pro-
cesses in distributed environment. One of hardest aspect is to handle failures, especially
partial failures - when you don’t know exactly where the problem happens.

Volunteer Computing

Volunteer computing is a type of computing in which people (volunteers) provide comput-
ing resources to one or more projects. SETI@home [8] (analyze radio signal to find out
the sign of life outside the earth) and Folding@home [6](analyze protein-folding and its
effects) are two among well-known projects.
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The volunteer computing projects work by breaking the problem into independent
chunks called work units, which are sent to volunteers around the world to be com-
puted [32]. Because volunteers are anonymous, volunteer computing systems must cope
with problems related to correctness of the result. Besides, volunteers computing sys-
tem requires time to solve and get the results from volunteers because they donate CPU
resources, not network bandwidth.

Memcached

Memcached1 is a free and open source, high-performance, distributed memory object
caching system [14]. It is used to speed up dynamic database-driven websites by caching
data in RAM. Many famous sites have used Memcached to increase their performance.
Facebook, Twitter and Youtube are examples.

Indeed, Memcached is very simple. It uses a client-server architecture. The server
maintains a key-value store and the client requests value from the server. Key and value
are allowed to be any types. The server keeps these key-value pairs in RAM. If the RAM
is full, it removes old pairs according to the LRU (Least recently Used) order.

One can use this technique to improve the performance of machine learning algorithms.
It is possible. But for very large amount of data (or big data) and for long term use,
Memcached is not a good choice because of some reasons. At first, Memcached is designed
for caching system, it is not a cluster solution. Memcached nodes are independent and
unaware of other nodes. Secondly, it lacks Scale-Out Flexibility [14]. Adding or removing
a new node to/from an existing Memcached tier is a very complicated task. The next
problem is the nature of RAM. When the system is offline, it forgets all the data. And
finally, the cost of the RAM is much higher than hard disk. So it is not cost-effective to
invest a Memcached system with large memory.

Apache Spark

Apache Spark2 is originally developed in UC Berkeley. It is a open-source engine for
processing large-scale data. Spark at first was written in Scala, then it was ported to Java
and Python. Current version of Spark can easily integrate with Hadoop 2 cluster without
any installation.

According to the Spark homepage, it is very efficient for iterative machine learning
computations. Indeed, Spark outperforms Hadoop in this section. However, when the size
of data increases and exceed the total size of RAM in the cluster by an order of magnitude,
Hadoop, in turn, outperforms the Spark.

2.1.5 MapReduce Limitations

Although MapReduce provides lots of convenience to develop parallel programs. How-
ever, there are several limitations of MapReduce paradigm that needs to consider before
applying it for practical issues.

Skew. In lots of cases, the distribution of intermediate key-value pairs is not balanced.
As a result, some reducers must work more compared with others. These reducers
become stragglers which make the MapReduce job slow down significantly.

1http://en.wikipedia.org/wiki/Memcached
2https://spark.apache.org/
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Two phases. Some problems cannot be broken down into two-phases, such as complex
SQL-like queries.

Iterative and Recursive Algorithm. Hadoop is built on cheap hardware. Therefore,
failures are common. To deal with this problem, MapReduce restricts the units of
computation: Both Map tasks and Reduce tasks have the blocking property : ”A
task does not deliver output to any other task until it has completely finished its
work.” Unfortunately, recursive tasks cannot satisfy this property. It needs to deliver
some output before finishing because output of recursive task needs to feed back to
its input. Therefore, to implement recursive task with MapReduce, we need to
translate it to iterative form.

2.2 Hadoop: An Open Implementation of MapReduce

In 2002, Nutch project was started as a web search engine by Doug Cutting and Mike
Cafarela. However, the architecture of Nutch at that time did not scale to the billions of
web pages. MapReduce which was introduced in 2004 became the solution. In 2005, the
Nutch developers finished a MapReduce implementation and ported the Nutch algorithms
into MapReduce. In 2006, the storage and processing parts of Nutch were spun out to form
Hadoop as an Apache project. In short, Apache Hadoop is an open source implementation
of MapReduce written in Java. It provides both distributed storage and computational
capabilities. In this section, we’ll look at Hadoop in two aspects: its architecture and how
to write programs in Hadoop.

Hadoop uses the master-slave architecture for both processing and storing model. At
the time of this writing, Hadoop has two versions. The first version has several limitations
in the scalability. The second version introduces new features that bring improvements
for scalability and reliability of Hadoop. In the scope of this thesis, only Hadoop 2 is
considered. It consists of following components:

• Yet Another Resource Negotiator (YARN), a general scheduler and resource man-
ager. YARN enables its applications to run in Hadoop cluster, not just MapReduce.

• Hadoop Distributed File System for storing data.

• MapReduce, a computational engine for parallel and distributed applications. In
Hadoop 2, MapReduce is a YARN application.

Hadoop provides a practical solution for large-scale data applications. A lot of projects
are built on top of Hadoop to customize or optimize it for specific requirements. All of
them form an ecosystem which is diverse and grows by day. Figure 2.4 shows the Hadoop
ecosystem. Following is the brief description of several well-known projects:

Pig

A high-level data flow language and execution environment for exploring very large
datasets. Pig runs on HDFS and MapReduce clusters.

Hive

A SQL-like data warehouse infrastructure. It allows analysts with strong SQL skills
to run queries on the huge volume of data without any programming code in Java.

HBase
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Figure 2.4: Hadoop Ecosystem

A distributed, column-oriented database modeled after Google’s Bigtable. HBase is
built on top of HDFS. HBase is suitable for applications that require real-time read/write
random access to very large datasets.

ZooKeeper

ZooKeeper is a centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services. ZooKeeper steps up
performance and availability of a distributed system such as a Hadoop cluster and protects
the system from coordination errors such as race conditions and deadlock.

Mahout

A scalable machine learning libraries implemented on top of Hadoop. Mahout focuses
on three key areas of machine learning: collaborative filtering (recommender engines),
clustering and classification.

Storm

A distributed real-time computation system for processing large volumes of high-
velocity data. Storm running on YARN is powerful for scenarios requiring real-time
analytics, machine learning and continuous monitoring of operations.
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2.2.1 Hadoop YARN

In Hadoop MapReduce v1, one JobTracker and multiple TaskTrackers are entities which
manage the life-cycle of the MapReduce job. This, however, becomes a weakness of Hadoop
because it limits the scalability of overall system. To overcome this limit, Hadoop v2
introduces a new architecture called YARN (Yet Another Resource Negotiator). YARN
breaks main functionalities of the JobTracker into two independent daemons: a global
ResourceManager to manage the resource in the cluster and many ApplicationMasters
(one for each application) to manage the life-cycle of applications running in the cluster.

Figure 2.5: Hadoop YARN

The YARN framework has one primary duty, which is to schedule resources in a cluster.
An application which wants to run in the cluster is managed by YARN and allocated
containers (resources) which are specific for that application. When application is running,
containers are monitored by YARN to ensure that resources are used efficiently. The
YARN framework has two primary components:

• Resource Manager. A Hadoop cluster has only a Resource Manager. It is the
master process of YARN which runs on master node of the cluster. Its only duty
is to manage the resources of the cluster. It serves the client request for resources
(which is defined as containers). If the sources are available, Resource Manager
schedules the containers on the cluster and delegates the Node Manger to create the
containers.

• Node Manager. The Node Manager is the slave process of YARN that runs on every
slave node in the cluster. It is responsible for creating, monitoring and killing the
containers. It serves requests from Resource Manager and Application Master con-
tainer to create containers. The Node Manager also reports the status of containers
to Resource Manager.
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The architecture of Hadoop YARN is described in Figure 2.5. The central agent is
ResourceManager which manages and allocates cluster resources. NodeManager runs on
each node in the cluster; manages and monitors the resource allocation on the node. The
ApplicationMaster runs under the schedule of ResourceManager and is managed by Node-
Manager. It is responsible for negotiating resources (which is defined as containers) from
ResourceManager, also monitoring the execution and resource consumption of containers.

Running a Job in YARN

Running a MapReduce job in YARN involves many entities than classic MapReduce. They
consist of the client, who submits the job; the Resource Manager, which schedules the
resources on the cluster; the Node Manager, which launches and monitors the containers
in cluster, the MapReduce Application Master, which manages the job and is responsible
for fault-tolerance of the MapReduce application; the HDFS, which is the job resources.

The client sends request to ResourceManager. It then negotiates and allocates re-
sources for a container and launches an ApplicationMaster there. Application Master is
responsible for managing the submitted job which means managing the application-specific
containers. The application master then keeps track of job’s progress. It may request con-
tainers for all the map and reduce tasks in the job from the Resource Manager. Each
map or reduce task is handled in a container. All requests contain information about the
resources that each container requires such as which host should launch the container,
the memory and CPU requirement of container. When task is running in container un-
der YARN, it reports the progress and status back to its application master so that the
application master has a overall view about the job.

The Application Master is also responsible for the fault-torrence of the application. The
failure of container is monitored by Node Manager and reported to Resource Manager.
When a container fails, the Resource Manager sends status message to the Application
Master so that it can response to that event.

On job completion, the application master and the task containers clean up their
working state and the resources are released.

Failures in YARN

There are many entities that can fail in YARN: the task, the application master, the node
manager and the resource manager.

The task status is monitored by the application master. If task fails (task exits due to
an running exception or task hangs), it is attempted to run again. The task is marked as
failed after several attempts.

An application master sends periodic heartbeats to the resource manager. If the appli-
cation master fails, the resource manager will detect the failure and start a new instance
of the master running in a new container.

If a node manager fails, the resource manager will not receive heartbeats any more.
Therefore, the resource manager will detect that failure. The failed node manager is
removed from the pool of available nodes. Any task or application master running on the
failed node manager is recovered as described above.

The failure of resource manager is serious. When running, the resource manager uses
check-pointing mechanism to store its state to persistent devices. Therefore, the resource
manager can be recovered from last saved state when a crash happens.
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2.2.2 Hadoop Distributed File System

The Design of HDFS

HDFS is a filesystem designed for storing very large files which are maybe hundreds of
gigabytes or terabytes in size. The idea for building HDFS is to provide the most efficient
data processing. In detail, it is designed following write-one, read-many-times pattern.
Moreover, Hadoop does not require expensive, highly reliable hardware. It can run on
clusters of commodity hardware.

HDFS is not good fit for following requirements:

Low-latency data access. HDFS is designed to optimize data transfer. This may cause
a high latency.

Lots of small files. The number of files in a filesystem which is managed by namenode
is limited by the amount of its memory because namenode holds filesystem metadata
in memory. Assume that each file, folder or block takes about 150 bytes. Then it
needs at least 300 MB of memory to manage one million files.

Multiple writers, arbitrary file modifications. Files in HDFS are always written at
the end of the file. Hadoop does not support for multiple writers or for modifications
at arbitrary offsets in the file.

HDFS Concepts

Blocks

A disk block is a minimum amount of data in disk that can be read or written. Filesys-
tem blocks are often several kilobytes in size while disk blocks are about 512 bytes. HDFS
also use the concept block. However, its size is much larger: 64MB by default. The reason
for this is to minimize the cost of seeking.

Namenode and Datanodes

HDFS adopts master-slave architecture with the namenode (the master) and lots of
datanodes (the slaves). Namenode manage filesystem namespace while actual data are
stored in datanodes. The client that want to access the data will communicate with
the namenode to get information about actual data, then it contacts with datanodes to
retrieve desired data blocks. Therefore, without the namenode, the filesystem cannot be
used. As a result, it is very important to keep the namenode robust against failures.
Hadoop provides two ways to ensure this.

The first thing is to back up the files. The second way is to provide a secondary namen-
ode. This node differs from namenode in that it doesn’t record any real-time changes to
HDFS. Instead, it communicates with the namenode to take snapshots of HDFS metadata
at each predefined interval. When the namenode is down, the secondary namenode will
replace it and take the responsibility of namenode.

HDFS Federation

The namenode manages all filesystem namespace in memory. Therefore, in very large
clusters, memory of namenode is a barrier of scalability. To deal with this, from Hadoop
version 2.x, HDFS Federation [19] has been introduced, as shown in Figure 2.6. It allows
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Figure 2.6: HDFS Federation

to expand the namenode by adding more namenodes, each of them will manage a pro-
portion of file system. For example, one namenode manages all the files on folder /user,
and another namenode controls files under /etc. The namenodes are federated, which
means the namenodes are independent and don’t require cooperation with one another.
Therefore, the failure of one namenode does not affect other namenodes. The datanodes
now are used as a commmon storage for all namenodes. Each datanode registers with
each namenode in the cluster.

The block pool contains all the blocks for the files in a single namespace. It is managed
independently with other block pools. So that a namespace can generate Block IDs for
new blocks without cooperating with other namespaces.

HDFS High Availability

The namenode is the single point of failure of Hadoop. To deal with this problem,
Hadoop 2.x introduces HDFS High-Availability, as shown in Figure 2.7. In this mechanism,
two separated machines are used as namenodes in an active-standby configuration. It
means that at any time, there is only one namenode which is in Active state, the other
is in Standby. The role of the Standby namenode is to take over the duty of Active
namenode quickly to continue responding to clients’ requests. To do that, there are several
requirements that the new Hadoop system must provide: Two namenodes have to share
an edit log so that Standby namenode can update the current state of Active namenode;
datanodes need to report their states to both namenodes because filesystem namespace is
stored in main-memory, not the hard disk; when the failure occurs, the clients must have
the ability to handle it without any intervention from users.

Hadoop introduces a new entity to manage the process of changing from Active namen-
ode to Standby namenode. It is called failover controller. One responsibility is to ensure
only one namenode is active at any time. The first implementation of failover controler
uses ZooKeeper to do that. Failover process can be activated automatically by failover
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Figure 2.7: HDFS High Availability

controller or manually by administrator.

One notable point in failover process should be noticed is the likelihood of failed
namenode has stopped working. Take a slow network as an example. This case can trigger
a failover transition. However, the Active namenode is still running in reality. Therefore,
to ensure that only namenode is in Active, a mechanism called fencing is applied. The
failed namenode is forced to stop working by killing the namenode’s process, revoking the
privilege to access the shared storage directory.

2.3 Developing a MapReduce Application

In this section, we will take a closer look at writing MapReduce programs with Hadoop.
A complete MapReduce program is often referred as a MapReduce job. A MapReduce job
consists of mapper and reducer (also combiner and partitioner) as well as configuration
parameters. Writing a MapReduce program mainly mentions functions for map and reduce
step. The complete code can be found in Appendix B.

2.3.1 Counting words with Hadoop

The pseudo-code for the Word Count problem is listed in section 2.1.2. In this part, we
will illustrate how to express it in Hadoop MapReduce. Our program mainly contains
three parts: a map function, a reduce function and some code to configure and run the
job.

Listing 2.3: MapReduce WordCount program

1 public class WordCount {
2 public static class WordCountMapper extends
3 Mapper<Object, Text, Text, IntWritable> {
4 private final IntWritable ONE = new IntWritable(1);
5 private Text word = new Text();
6

7 public void map(Object key, Text value, Context context)
8 throws Exception {
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9 StringTokenizer itr = new StringTokenizer(value.toString());
10 while (itr.hasMoreTokens()) {
11 word.set(itr.nextToken());
12 context.write(word, ONE);
13 }
14 }
15 }
16

17 public static class WordCountReducer extends
18 Reducer<Text, IntWritable, Text, IntWritable> {
19

20 public void reduce(Text text, Iterable<IntWritable> values,
21 Context context) throws Exception {
22 int sum = 0;
23 for (IntWritable value : values) {
24 sum += value.get();
25 }
26 context.write(text, new IntWritable(sum));
27 }
28 }
29

30 public static void main(String[] args) throws IOException,
31 InterruptedException, ClassNotFoundException {
32 Configuration conf = new Configuration(true);
33 Job job = Job.getInstance(conf, "wordcount");
34 job.setJarByClass(WordCount.class);
35

36 Path inputPath = new Path(args[0]);
37 Path outputDir = new Path(args[1]);
38 FileInputFormat.addInputPath(job, inputPath);
39 FileOutputFormat.setOutputPath(job, outputDir);
40

41 job.setMapperClass(WordCountMapper.class);
42 job.setReducerClass(WordCountReducer.class);
43

44 job.setOutputKeyClass(Text.class);
45 job.setOutputValueClass(IntWritable.class);
46 job.setInputFormatClass(TextInputFormat.class);
47 job.setOutputFormatClass(TextOutputFormat.class);
48

49 int code = job.waitForCompletion(true) ? 0 : 1;
50 System.exit(code);
51 }
52 }

Listing 2.3 shows a partial view of WordCount program. The map and reduce function
are defined inside inner classes of WordCount. The Mapper class is a generic type, with
four formal type parameters that specify the input key, input value, output key, and output
value types of the map function. In this example, the input key is an Java object, the
input value is a line (a text object), the output key is a word (a text object), and the
output value is a number (an integer object). The map() method is passed a key and a
value. The Text value contains the line of input. In line 9, we use Java StringTokenizer
to tokenize the line based on whitespaces. The set of tokens then is looped over. Each
token is extracted and cast into a Text object (line 11). To emit the key-value pair, we
use an instance of Context which is provided by the map() method. In this case, we
emit each cast token as key and a value of 1 as value. (line 12).
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Four formal type parameters are also used to specify the input and output types of the
reduce function. The input types must match the output types of the map function. There-
fore, in this example, the input types of the reduce function are Text and IntWritable.
The output type of the reduce function are defined as Text and IntWritable. The
reduce() function receives the key (the word) and an— associated list of counts. It
loops through the list and calculates the sum (line 22 - 25). Finally, it generates the final
output key-value pair (line 26).

We now finish the definition of map and reduce functions. To make the job run, we
also need to configure the job: what is the job’s name, what are mapper and reducer
of this job; where it should get the input files for the job and where it should store the
output, ... The configuration is set up via a Job object. The job’s name is ”wordcount”
(line 33). We pass a class to the Job in Job’s setJarByClass() method. The job uses
this information to locate the JAR file which containing our code.

The input and output paths of the job is specified by calling static methods addInput
Path() on FileInputFormat and setOutputPath() on FileOutputFormat (line
36 - 39). We then specify the map and reduce class to use via setMapperClass() and
setReducerClass(). The setOutputKeyClass() and setOutputValueClass()
specify the output types for the map and reduce functions; which are often the same.
In case of difference, we use setMapOutputKeyClass() and setMapOutputValue
Class() to control the map output types.

The input and output types are controlled through setInputFormatClass() and
setOutputFormatClass() methods. These classes specify how to parse to input files
to key-value pairs for map function and how to write output key-value pairs from reduce
function to output files.

Method waitForCompletion() return a Boolean value indicating success (true) or
failure (false). We translate it into exit code (0 or 1).

2.3.2 Chaining MapReduce jobs

Above example illustrates a simple data processing task which a single MapReduce job
can accomplish. However, there is always more complex tasks that a single job can not
handle or have trouble in processing. These tasks may be split into simpler sub-tasks,
which can be handled by single MapReduce jobs. For example, we may want to know top
frequent words in a large document. A sequence of two MapReduce jobs can give us the
answer. The first job calculate the number of occurrences of each word in the document.
Then the second job filters out words with high number of occurrences.

Chaining jobs to run in sequence

We can chain MapReduce jobs to run in sequence, the output of one job becomes the
input for the next job. There are several approaches to do that. However, the simplest
approach is to use JobConf to configure the job and then pass the JobConf objects to
JobClient.runJob() in order of the sequence. The JobClient.runJob() is blocked
until it finishes the job. Therefore, the jobs will executed in the same order of the order
of calling JobClient.runJob() methods.

Assume that we want to chain three jobs A, B, C to run sequentially. At first, we
create JobConf objects for A, B, C. Then we configure all the parameters for each job.
Finally, we submit them in sequence. The Listing shows the template of this.
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Listing 2.4: Chaining job to run sequentially

// Create a JobConfs for job A, B, C, which are implemented by JobA, JobB,
JobC classes respectively

JobConf jobA = new JobConf(new Configuration(), JobA.class);
JobConf jobB = new JobConf(new Configuration(), JobB.class);
JobConf jobC = new JobConf(new Configuration(), JobC.class);

// Configure parameters for JobA
jobA.setMapperClass...
jobA.setMapperClass...
...

// Configure parameters for JobB, JobC
...

// Submit jobs
JobClient.runJob(jobA);
JobClient.runJob(jobB);
JobClient.runJob(jobA);

Chaining jobs with complex dependency

When the jobs do not depend sequentially, we have to use a more complex approach.
Hadoop provides a mechanism to do that via Job and JobControl classes. A Job object
represents a MapReduce job. We already know how to initialize it through Word Count
example. To specify the dependency between jobs, we use addDependingJob() method
on Job object. For Job objects x and y, x.addDependingJob(y) indicates that job x
only starts when job y finishes. Having all the dependencies of jobs, the execution of all
the jobs is managed and monitored by JobControl object. Hence, we need to add jobs
to JobControl object via addJob() method. Then JobControl object calls run()
method to submit the jobs for execution.

Assume that we have a complex dependencies between jobs as shown in Figure 2.8.
The arrow from node x to node y means that job y only runs after job x finishes. Listing
2.5 shows the template to specify these dependencies in Hadoop.

Figure 2.8: A complex dependencies between jobs

Listing 2.5: Chaining job with JobControl

// Create a JobControl
JobControl control = new JobControl("example");

// Initialize jobs
...
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// Specifies the dependencies between jobs
job2.addDepending(job1);
job3.addDepending(job2);
job4.addDepending(job2);
job3.addDepending(job4);

// Add jobs to the JobControl object
control.addJob(job1);
control.addJob(job2);
control.addJob(job3);
control.addJob(job4);
...

// Submit jobs
control.run()

2.3.3 Example Applications with Hadoop MapReduce

This section introduces several programs written in Hadoop MapReduce. The full source-
code can be found in Appendix section B.1.

Distributed Summation

The purpose of this application is to calculate formula: 1 + 2 + 3 + ... + 1010. The
distributed calculation implemented with Hadoop will divide the task into ten sub-tasks,
each for one map task. The result of summation is 50000000005000000000 = 5.109+5.1019.

The implementation in Hadoop is pretty simple. In the map function(), the value
which is passed into contains two integers (start and end) in the text format separated
by a blank. These values are passed into Big Integer objects (line 7-9). The mapper then
calculates the sum from start to end, and emits an empty string as key and the sum as
value. The reducer now gets the empty key and all the sum values associated with that
key. It simply adds all these values to get the final result (line 21-24). The Java code is
shown in Listing 2.6.

Listing 2.6: Mapper and Reducer for Summation example

1 class SumMap extends Mapper<LongWritable, Text, Text, BigIntegerWritable>{
2 Text word = new Text("");
3 protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {
4 String val = value.toString().trim();
5 if ("".equals(val))
6 return;
7 String[] temp = val.split(" ");
8 BigInteger start = new BigInteger(temp[0].trim());
9 BigInteger end = new BigInteger(temp[1].trim());

10 BigInteger sum = BigInteger.ZERO;
11 while(start.compareTo(end) <= 0){
12 sum = sum.add(start);
13 start = start.add(BigInteger.ONE);
14 }
15 context.write(word, new BigIntegerWritable(sum));
16 }
17 }
18
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19 class SumReduce extends Reducer<Text, BigIntegerWritable, Text, Text>{
20 protected void reduce(Text key, Iterable<BigIntegerWritable> values,

Context context) throws IOException, InterruptedException {
21 BigInteger sum = BigInteger.ZERO;
22 for (BigIntegerWritable value : values){
23 sum = sum.add(value.getValue());
24 }
25 context.write(new Text("Total sum: "), new Text(sum.toString()));
26 }
27 }

Graph Search

Graph theory is very famous today because of its application. There are many data
structures to represent a graph. One way is to store using an adjacency list. Each node
(vertex on the graph) stores a list of adjacent nodes.

BFS is a common strategy that is used for searching a graph. With this algorithm, lots
of problem in graph theory are solved, for example: Find the shortest path in a graph, test
a graph for bipartiteness. Given a graph represented using adjacency list. BFS colors each
node white, gray or black. All nodes will start with white, means ”not visited yet”, then
later become gray (”visiting”) and then black (”visited”). Breadth-first search constructs
a tree starting from a source node s, as followings. It colors s as gray, initials the distance
d(s) = 0 and puts into an empty queue q. Then it repeats until q is empty: get one node
n from q, get all white adjacent nodes of n, colors them as gray, sets distance to d(n) +
1, puts to the queue q and assigns n as black.

A single thread approach to implement BFS is good in many cases. But when working
with a huge graph, it shows limitations. It’s easy to find out that one problem is the lack
of memory. Therefore, a solution to run this algorithm in parallel is essential.

An implementation of BFS with MapReduce can be found at the [21]. This site provides
an interesting approach to implement BFS with map-reduce. In this implementation, a
node is represented as:

ID ADJACENT_NODES | DISTANCE_FROM_SOURCE | COLOR

At beginning, all nodes have the distance is Integer.MAX_VALUE, source node has
distance 0. An example of graph is:

1 2 | 0 | GRAY
2 1,3 | Integer.MAX_VALUE | WHITE
3 2 | Integer.MAX_VALUE | WHITE

Mapper will get all gray nodes. For each gray node, it emits new gray nodes with
distance = current distance + 1 and ID is adjacent ID. Mapper also convert current gray
node into black node and emits it. For all non-gray nodes, mapper emits them with no
change (line 3-11, Listing 2.7).

1 2 | 0 | BLACK
2 NULL | 1 | GRAY
2 1,3 | Integer.MAX_VALUE | WHITE
3 2 | Integer.MAX_VALUE | WHITE

Because each time map function is called, it only receives a node, so that it doesn’t
know the adjacent nodes for the new gray node. So mapper leaves it as NULL.

Reducer will receive all data for a given key, which is all the copies of a given node.
For example, for key = 2, corresponding reducer will gets:
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2 NULL | 1 | GRAY
2 1,3 | Integer.MAX_VALUE | WHITE

Reducer will merge this information to create a final node: same ID, non-null adjacent
nodes, minimum distance, darkest color (line 22-36, Listing 2.7). So, the output of first
iteration is:

1 2 | 0 | BLACK
2 1,3 | 1 | GRAY
3 2 | Integer.MAX_VALUE | WHITE

With this approach, if we view the graph as the tree with start node as root node, one
level of tree is processed after each iteration. After several iterations, all the nodes in the
tree are traversed and the final output will be produced. This approach requires some way
to store information of previous iteration because the program needs to know whether the
last iteration achieves the final result. If it does, the program should stop. Fortunately,
Hadoop allows developers to create their own custom counters to keep information of jobs.
We take advantages of counter to store the number of gray nodes left after each iteration
(line 43-44, Listing 2.7). In the main driver of the class, we check this counter and create
a new job to process the last output if this value is greater than 0. Listing 2.8 shows the
actual code in Java. The full program for this problem can be found in Appendix section.

Listing 2.7: Mapper and Reducer for Graph example

1 protected void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException {

2 Node node = new Node(value.toString());
3 if (node.getColor() == Node.Color.GRAY) {
4 String edges = node.getEdges();
5 if (edges != null && !"NULL".equals(edges)){
6 for (String v : edges.split(",")) {
7 context.write(new Text(v), new Text("NULL|" + (node.

getDistance() + 1) + "|GRAY"));
8 }
9 }

10 node.setColor(Node.Color.BLACK);
11 }
12

13 context.write(new Text(node.getId()), node.getLine());
14 }
15

16 protected void reduce(Text key, Iterable<Text> values,
17 Context context) throws IOException,

InterruptedException {
18 String edges = "NULL";
19 int distance = Integer.MAX_VALUE;
20 Node.Color color = Node.Color.WHITE;
21

22 for (Text value : values) {
23 Node u = new Node();
24 u.updateInfo(value.toString());
25 if (!"NULL".equals(u.getEdges())) {
26 edges = u.getEdges();
27 }
28

29 if (u.getDistance() < distance) {
30 distance = u.getDistance();
31 }
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32

33 if (u.getColor().ordinal() > color.ordinal()) {
34 color = u.getColor();
35 }
36 }
37

38 Node n = new Node();
39 n.setDistance(distance);
40 n.setEdges(edges);
41 n.setColor(color);
42 context.write(key, new Text(n.getLine()));
43 if (color == Node.Color.GRAY)
44 context.getCounter(counter_enum.ITERATION).increment(1L);
45 }

Listing 2.8: Iterative jobs for Graph example

1 int iterationCount = 0;
2 long terminateValue = 1;
3 while (terminateValue > 0) {
4 String input;
5 if (iterationCount == 0)
6 input = "/input-graph";
7 else
8 input = "/output/output-graph-" + iterationCount;
9

10 String output = "/output/output-graph-" + (iterationCount + 1);
11

12 Job job = getJobConf(args);
13 FileInputFormat.setInputPaths(job, new Path(input));
14 FileOutputFormat.setOutputPath(job, new Path(output));
15

16 job.waitForCompletion(true);
17

18 Counters jobCnt = job.getCounters();
19 terminateValue = jobCnt.findCounter(counter_enum.ITERATION).getValue();
20 iterationCount++;
21 }

N-Queens

The N-Queens problem can be also solved with iterative Map-Reduce. In this problem, we
combine the breadth-first-search and depth-first-search to solve.That is first five jobs find
all possible ways of putting first five queens on board, then last job will find all solutions
for each given board with first five queens placed. That is to use breadth-first search
strategy (Job 1 - 5) followed by a depth-first search (Job 6). The code snippet can be
found in Appendix section.

Listing 2.9: Mapper and Reducer for first five jobs of N-Queens

1 protected void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException {

2 String val = value.toString().trim();
3 if ("START".equals(val)) {
4 for (int i = 0; i < n; i++) {
5 context.write(new IntWritable(1), new Text(String.valueOf(i)));
6 }
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7 return;
8 }
9

10 String[] map = val.split("-");
11 int[] board = new int[map.length];
12 for (int i = 0; i < map.length; i++) {
13 board[i] = Integer.parseInt(map[i]);
14 }
15 Random r = new Random();
16

17 for (int row = 0; row < n; row++) {
18 if (safe(board, row)) {
19 context.write(new IntWritable(r.nextInt(10)), new Text(val + "-

" + row));
20 }
21 }
22 }
23 protected void reduce(IntWritable key, Iterable<Text> values, Context

context) throws IOException, InterruptedException {
24 for (Text val : values) {
25 context.write(new Text(""), val);
26 }
27 }

Listing 2.9 shows the code for map() and reduce() method of first five jobs. The
input of first job just contains a ”START” string. The first job just generates all columns
to put in the first row (line 3-8). The current board is stored as ”1-3-5” means that in
the first, second and the third columns, queens are put at the first, the third and the fifth
rows respectively. Therefore, four next jobs need to passed this value to the board in map
step (line 10-14). Then the mapper checks for all row to find all possible row to put in
the next column (line 17-21). The reduce just emits all associated values it receives with
an empty key.

Listing 2.10: Mapper for the last job of N-Queens

1 // parse the board
2 ...
3

4 Random r = new Random();
5 // ’len’ is the number of queens appeared on board
6 int column = len; // column ’len’ + 1
7 board[column] = -1;
8 while (column >= len) {
9 int row = -1;

10 do {
11 row = board[column];
12 board[column] = row = row + 1;
13 } while (row < n && !safe(board, column));
14 if (row < n) {
15 if (column < n - 1) {
16 board[++column] = -1;
17 } else { // found the board
18 String s = String.valueOf(board[0]);
19 for (int i = 1; i < n; i++) {
20 s += "-" + board[i];
21 }
22 context.write(new IntWritable(r.nextInt(10)), new Text(s));
23 }
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24 } else {
25 column--;
26 }
27 }

The mapper for the last job is shown in Listing 2.10. From the current board, the
mapper find all possible valid board to fulfill the board using depth-first-search (line 8-
27). Each time it found a complete board, it emits the result (line 22). The last job uses
the same reducer with previous jobs.

2.4 Hadoop Extensions for Non-Java Languages

Hadoop is built on Java. Hence, writing Hadoop MapReduce programs also requires Java
to implement the algorithm. To support developers who do not want to use Java to
write programs, Hadoop provides two extensions: Hadoop Streaming for all languages
that support the standard input and output, Hadoop Pipes for C++.

Hadoop Streaming

Hadoop Streaming uses Unix pipes as the channel to communicate between Hadoop and
user program. Therefore, it allows users to use any programming language that can
read standard input and write to standard output to write MapReduce programs which
can work with Hadoop cluster. Users provide map and reduce implementation through
executables compiled by their languages. These executables read key-value pairs from
standard input and write them to standard output. Data communicated between Hadoop
framework and executables are based on Text Protocol: records are serialized as bytes of
string. As a result, Hadoop Streaming is suitable for text processing. The Word Count
program in python with Hadoop Streaming is shown in Listing 2.11 and 2.12.

Listing 2.11: mapper.py

#!/usr/bin/env python

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:

# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:

# write the results to STDOUT (standard output);
# tab-delimited; the trivial word count is 1
print ’%s\t%s’ % (word, 1)

Listing 2.12: reducer.py

#!/usr/bin/env python

from operator import itemgetter
import sys
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current_word = None
current_count = 0
word = None

for line in sys.stdin:
line = line.strip()
word, count = line.split(’\t’, 1)

# convert count (currently a string) to int
try:

count = int(count)
except ValueError:

# count was not a number, so silently
# ignore/discard this line
continue

if current_word == word:
current_count += count

else:
if current_word:

print ’%s\t%s’ % (current_word, current_count)
current_count = count
current_word = word

if current_word == word:
print ’%s\t%s’ % (current_word, current_count)

Hadoop Pipes

Figure 2.9: Hadoop Pipes data flows

Hadoop Pipes provides a C++ interface to Hadoop MapReduce. Hadoop Pipes uses
sockets as the channel to communicate between Hadoop Framework and processes run-
ning C++ map or reduce functions. The data flows are shown in Figure 2.9. Hadoop
uses Pipes Tasks to communicate with user-provided executables via persistent sockets.
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C++ application provides a factory class used by the framework to create MapReduce
components (Mapper, Reducer, RecordReader, Partitioner ...). When starting a Pipes
Application, the framework sets up the PipeMapRunner and PipeReducer as well as lo-
cating the user-provided C++ executable file. When map phase starts, the framework
automatically calls the PipeMapRunner and passes the input split into it. PipeMapRun-
ner then creates a socket server to listen to C++ clients. When a socket is established,
PipeMapRunner directs the client to process map task and processes the data returned
from client via socket. The process is similar with PipeReducer for reduce tasks. With
Hadoop Pipes, programmer can access and customize various MapReduce components in
Hadoop. Furthermore, application is able to process any type of input data.





Chapter 3

Message Passing Interface - MPI

3.1 What is MPI

MPI is a library to make the work of programming parallel computers easier. MPI is an
attempt to collect the best features of message-passing systems which have been developed
over the years. There are several fundamentals about MPI which should be listed:

• MPI is a library, not a language. It specifies the names, calling sequences, and the
results of routines called. The programs can be written in Fortran, C or C++ and
are compiled by ordinary compiler and linked with the MPI library.

• MPI is a specification, not an implementation. Different parallel computer vendors
offer their own MPI implementation for their machines. Well-known implementa-
tions are MPICH, OpenMPI, LAM/MPI.

3.2 Basic Concepts

This sections introduce basic concepts which need to be understood to begin with MPI.
The points presented here are mainly gotten from the book ”An Introduction to Parallel
Programming” [26].

Rank is the common way to identify the process in parallel programming. It is a
non-negative number. If there are p processes, then they will have ranks 0, 1, 2, ..., p-1,
respectively.

3.2.1 MPI Program

Listing 3.1 shows a simple MPI program that uses send and receive messages.

Listing 3.1: A simple MPI send/recv program

1 #include <mpi.h> /* For MPI functions, etc */
2 #include <stdio.h>
3

4 int main(int argc, char** argv) {
5 MPI_Init(NULL, NULL);
6 int my_rank; /* My process rank */
7 int comm_size; /* Number of processes */
8 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
9 MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

35
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10

11 int number;
12 if (my_rank != 0) {
13 number = my_rank + 5;
14 MPI_Send(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);
15 } else {
16 for (int i = 1; i < comm_size; i++){
17 MPI_Recv(&number, 1, MPI_INT, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE

);
18 printf("Process 0 received number %d from process %d.\n", number, i);
19 }
20 }
21 MPI_Finalize();
22 return 0;
23 }

If we compile this program and run it with two processes, the output would be

Process 0 received number 6 from process 1.

With five processes, the output would be

Process 0 received number 6 from process 1.
Process 0 received number 7 from process 2.
Process 0 received number 8 from process 3.
Process 0 received number 9 from process 4.

Let’s take a closer look at the program. It starts with include declaration. To use
MPI library in C program, it is required to include mpi.h header file. This contains macro
definitions, type definitions and procedures of MPI. All of these start with the string MPI_.

3.2.2 MPI Init and MPI Finalize

MPI_Init tells the system to setup all the necessary stuffs, like allocate storage for
message buffers (line 5). No other MPI functions should be called before MPI_Init. Its
syntax is

int MPI_Init(int* argc_pointer, char*** argv_pointer);

The arguments argc_pointer, argv_pointer are pointers to the arguments of the
main() function, argc and argv. Our program don’t use these arguments, so we pass
NULL for both.

MPI_Finalize tells the system that the program is done using MPI so that the sys-
tem frees resources (line 21). No other MPI functions should be called after MPI_Finalize.

3.2.3 Communicators

A communicator in MPI is a collection of processes that can send messages to each other.
The communicator called MPI_COMM_WORLD contains all of the processes started by the
user. Information about the communicator can be retrieved through two functions:

int MPI_Comm_size(MPI_Comm communication, int* communication_size_pointer);
int MPI_Comm_rank(MPI_Comm communication, int* my_rank_pointer);

The first argument for both functions is a communicator, which has a MPI type,
MPI_Comm. The number of processes in the communicator is returned to the second
argument communication_size_pointer of the first function. The rank of calling



3.2. Basic Concepts 37

process in the communicator is returned to my_rank_pointer of the second function.
Line 8 and 9 get information about MPI_COMM_WORLD, its size and the rank of calling
process.

3.2.4 Communication

In the message-passing model, the processes which are executing in parallel have separate
address spaces. Communication happens when a portion of one process’s address space
is copied to another process’s address space. This occurs only when the one process
executes a send operation and the other executes a receive operation. To send a message,
MPI_Send is called. The syntax is

int MPI_Send(
void* msg_buf_p /* in */,
int msg_size /* in */,
MPI_Datatype msg_type /* in */,
int dest /* in */,
int tag /* in */,
MPI_Comm communicator /* in */);

The first three arguments define the content of message. The remaining arguments
defines the destination of message. First argument is a pointer to the block of memory
containing the contents of message. The second and third define the amount of data to
be sent. The forth argument defines the rank of the process which receives this message.
The fifth argument is a non-negative number. It is used to distinguish messages. Final
argument is the communicator. It specifies the communication universe. A message sent
by one process can be received by a process in the same communicator.

To receive the message, MPI_Recv is called. The syntax is:

int MPI_Recv(
void* msg_buf_p /* out */,
int buf_size /* in */,
MPI_Datatype buf_type /* in */,
int source /* in */,
int tag /* in */,
MPI_Comm communicator /* in */,
MPI_Status* status_p /* out */);

The first three arguments specify the memory available for receiving the message:
msg_buf_p points to the block memory, buf_size is the available size of the block
memory and buf_type indicates the type of object which stores the message. The next
three argument identifies the message. The source specifies the the process which sends
the wanted message. The tag and the communicator must match with the tag and
communicator specified by the sending process. The last argument status_p contains
information about the sending process, the tag of message and the amount of data in that
message.

In our program, each process, other than process 0, creates a number (line 13) and
sends it to process 0 (line 14). On the other hand, process 0 receives messages from other
processes and prints out to the console (line 16-19).

3.2.5 Collective Communication

MPI_Send and MPI_Receive messages allow processes communicate with each other.
These communications are often called point-to-point communications because we need
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to specify the sending and receiving objects. There are situations that it is difficult to
develop efficient programs with only above send and receive messages. For example, we
want to calculate the global sum after each process has computed its partial value. The
least efficient way to do is that each process with rank greater than 0 sends its value to
process 0, then the process 0 calculates the sum of these values. We can instead do more
efficient with a ”tree structure” to calculate the sum as illustrated in Figure 3.1. In the
first step, processes 1, 3 and 5 send their values to processes 0, 2 and 4, respectively. Then
processes 0, 2, and 4 compute the sum of its value and received value. Subsequence steps
is quite similar. Processes 2 and 6 send their values to processes 0 and 4, respectively.
Processes 0 and 4 add received values to their values. Finally, process 4 send its value to
process 0 to compute the final sum. This solution distributes the task of computing the
sum to process 0, 2 and 4. Therefore, it reduces the task of process 0 from 6 additions to
3 additions. Moreover, it increases the degree of parallelization. For example, in the first
step, additions in process 0, 2 and 4 can be conducted simultaneously.

Figure 3.1: A tree-structured global sum

There are other possibilities to compute the sum in a ”tree structure”. It is hard to
decide which option is best suitable for a specific case (for example, compute the sum of
one hundred numbers, one million numbers). MPI, indeed, provides develop functions to
simplify the tasks which require the communication of more than two processes. In MPI,
a communication which involves all the processes in a communicator are called collective
communication.

The global sum is just a case of collective communication. There are other cases, such
as finding the maximum value, minimum value, or the product of values. All of these
tasks can be achieved with a single function in MPI, MPI_Reduce.

int MPI_Reduce(
void* input_data_pointer /* in */,
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void* output_data_pointer /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
MPI_Op operator /* in */,
int dest_proces /* in */,
MPI_Comm communicator /* in */);

The most important argument in this function is the fifth argument, operator. It
defines the operation which is applied on input values to get the final output value. There
are several pre-defined operators in MPI. Table 3.1 lists these operators. MPI allows
developers to define their own operators. For the global sum , the operator is MPI_SUM.
If each process keep its value in variable double local and we want to store the global
sum into variable double total, the sum can be calculated by calling following function
in each process.

MPI_Reduce(&local, &total, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Operator Meaning

MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
MPI_PROD Product
MPI_LAND Logical and
MPI_BAND Bitwise and
MPI_LOR Logical or
MPI_BOR Bitwise or
MPI_LXOR Logical exclusive or
MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Table 3.1: Predefined Operators in MPI

MPI also provides a variant of MPI_Reduce to support collective communication, but
allows all the processes in the communicator to receive the final result. It is MPI_Allreduce.

int MPI_Allreduce(
void* input_data_pointer /* in */,
void* output_data_pointer /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
MPI_Op operator /* in */,
MPI_Comm communicator /* in */);

The arguments are identical except that there is no destination process required.

3.3 Sample Programs in MPI

To understand MPI, we write several programs with C++ using Open MPI library, an
implementation of MPI, to solve different problems. These problems are the same with
ones described in section 2.3. They are already implemented with Hadoop MapReduce.
Now we’ll see how to implement it in MPI. These MPI programs will be used in experiments
reported in Chapter 5. The complete program can be found in Appendix section B.3.
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3.3.1 Counting words

The first step to write this program is to define the parallel paradigm. In my implemen-
tation, one process reads the data and distributes it to other processes. Each process
computes the word count on its part of data and reports the result to the master process.
Here, the final output is computed. Then the next step is to implement the paradigm in
actual code.

Listing 3.2: Read and distribute data

1 if (rank == 0) {
2 // assume number of line is equal to number of character / 10
3 pLineStartIndex = new long long int[buff_size / 10];
4 pLineStartIndex[0] = 0;
5 pszFileBuffer = readFile(file, total_size);
6 }
7

8 nTotalLines = 0;
9 if (rank == 0) {

10 // calculate the number of line in this chunk, store it in nTotalLines
11 // calculate the start index of each line in pszFileBuffer, store in
12 // pLineStartIndex array
13 // pLineStartIndex[1] stores the start index of the second line.
14 }
15

16 if (rank == 0) {
17 // get its part of data
18 ...
19

20 for (int i = 1; i < nTasks; i++) {
21 // calculate the data for each thread.
22 ...
23

24 // we need to send a thread the number of characters it will be
receiving.

25 // curLength: the number of bytes of data.
26 MPI_Send(&curLength, 1, MPI_INT, i, 1, MPI_COMM_WORLD);
27 if (curLength > 0)
28 MPI_Send(pszFileBuffer + pLineStartIndex[curStartNum],

curLength, MPI_CHAR, i, 2, MPI_COMM_WORLD);
29 }
30

31 } else {
32 MPI_Status status;
33 MPI_Recv(&totalChars, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);
34 if (totalChars > 0) {
35 buffer = new char[totalChars + 1];
36 MPI_Recv(buffer, totalChars, MPI_CHAR, 0, 2, MPI_COMM_WORLD, &

status);
37 buffer[totalChars] = ’\0’;
38 }
39 }

Listing 3.2 shows the a part of code to read and distribute the input data. Process
0 (the master process) reads the file from hard disk, chunk by chunk (line 1-6). It then
computes the appropriate parts of data for other processes and sends to them by calling
two MPI_Send functions for each target process: one to specify the length of data, the
other contains the actual data (line 17-29). Line 32-37 shows the code for receiving data
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of processes with rank greater than 0.

Listing 3.3: Compute the word count on each part of data

1 map<string, int> wordcount;
2 int size = 0;
3 WordStruct* words = NULL;
4 if (buffer != NULL) {
5 char* word = strtok(buffer, " ,.\r\n");
6 while (word != NULL) {
7 if (wordcount.find(word) == wordcount.end())
8 wordcount[word] = 1;
9 else

10 wordcount[word]++;
11 word = strtok(NULL, " ,.\r\n");
12 }
13 delete []buffer;
14 size = wordcount.size();
15 if (size > 0) {
16 words = new WordStruct[size];
17 int i = 0;
18 for (map<string, int>::iterator it = wordcount.begin(); it !=

wordcount.end(); it++) {
19 strcpy(words[i].word, (it->first).c_str());
20 words[i].count = it->second;
21 i++;
22 }
23 }
24 }

After all the processes receive the data, the actual work is started: parse the word
from the data, count the occurrence of each word as shown in Listing 3.3. The result then
is sent back to the master process by calling MPI_Send functions. The final task for the
master process is to aggregate the result and store it into the output file, Listing 3.4.

Listing 3.4: Aggreate the result

1 //aggreate the result from other processes
2 for (int i = 1; i < nTasks; i++) {
3 int sz;
4 MPI_Recv(&sz, 1, MPI_INT, i, 3, MPI_COMM_WORLD, &status);
5 if (sz > 0) {
6 WordStruct* local_words = new WordStruct[sz];
7 MPI_Recv(local_words, sz, obj_type, i, 4, MPI_COMM_WORLD, &status);
8

9 for (int j = 0; j < sz; j++) {
10 totalwordcount[local_words[j].word] += local_words[j].count;
11 }
12 delete []local_words;
13 }
14 }
15

16 // aggregate with local result
17 for (map<string, int>::iterator it = wordcount.begin(); it != wordcount.end

(); it++) {
18 totalwordcount[it->first] += it->second;
19 }
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3.3.2 Summation

The first aspect that needs to be handled in this problem is that primitive types of C++
can not work with very big number. Therefore, we must use another library for this. In this
program, GMP library (The GNU Multiple Precision Arithmetic Library1) is used. This
is a free library which provides very good performance for arbitrary precision arithmetic.

The approach is that each process calculates the sum of a group of numbers. For
example, assume that there are total 10 processes, then process 0 calculates the sum of
numbers from 1 to 109−1, process 1 calculates the sum of numbers from 109 to 2∗109−1
and so on. Each process then sends its result back to the process 0 to sum again and get
the final result. Collective communication is not used because MPI_SUM does not work
with special types of GMP.

Listing 3.5: Global sum with MPI

1 //initilize the parameter
2 mpz_init(sum);
3 mpz_t i;
4 mpz_init_set(i, start);
5 while (mpz_cmp(i, end) <= 0) {
6 mpz_add(sum, sum, i); // sum = sum + i
7 mpz_add_ui(i, i, 1);
8 }
9

10 if (rank == 0) {
11 // The master thread will need to receive all computations from all

other threads.
12 MPI_Status status;
13 for (int i = 1; i < size; i++) {
14 int sz;
15 MPI_Recv(&sz, 1, MPI_INT, i, 1, MPI_COMM_WORLD, &status);
16 char* value = new char[sz];
17 MPI_Recv(value, sz + 1, MPI_CHAR, i, 2, MPI_COMM_WORLD, &status);
18 mpz_t pSum;
19 mpz_init_set_str(pSum, value, 10);
20

21 mpz_add(sum, sum, pSum); // sum += pSum
22 }
23 } else {
24 // The destination is thread 0.
25 char* t;
26 mpz_get_str(t, 10, sum);
27 int len = strlen(t);
28 MPI_Send(&len, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
29 MPI_Send(t, len + 1, MPI_CHAR, 0, 2, MPI_COMM_WORLD);
30 }

Listing 3.5 is a partial view of the global sum in MPI. Line 5-8 computes the sum of a
group of numbers. The sum is then converted to string and sent to process 0 (line 25-29).
Finally, process 0 gets the value, converts it back to GMP numbers and calculates the
final sum (line 12-22).

1https://gmplib.org/
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3.3.3 N-Queens

The N-Queens is solved in MPI with master-slave architecture. The master process will
manage all the board the need to be solved. The worker (slave) processes actively request
the board to solve from the master process whenever it is free (has nothing to do). The
worker stops when there is nothing to solve any more.

Listing 3.6: The worker of N-Queen with MPI

1 while (true){
2 MPI_Send((void*) &REQUEST, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD);
3 MPI_Recv(&msg, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD, MPI_STATUSES_IGNORE

);
4 if (msg == NO_MORE_WORK) break;
5

6 int newSize;
7 MPI_Recv(&size, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD,

MPI_STATUSES_IGNORE);
8 if (size < 5)
9 newSize = size + 1;

10 else newSize = board_size;
11

12 board = new int[newSize];
13 if (size > 0)
14 MPI_Recv(board, size, MPI_INT, 0, DATA, MPI_COMM_WORLD,

MPI_STATUSES_IGNORE);
15

16 //add a new queen, breadth first search
17 if (size < 5) {
18 for (int row = 0; row < board_size; row++) {
19 if (safe(size, board, row)) {
20 board[size] = row;
21 if (newSize == board_size) { // found complete solution
22 //Store the board to local file
23 ...
24 } else {
25 MPI_Send((void*) &NEW, 1, MPI_INT, 0, DATA,

MPI_COMM_WORLD);
26 MPI_Send(&newSize, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD)

;
27 MPI_Send(board, newSize, MPI_INT, 0, DATA,

MPI_COMM_WORLD);
28 }
29 }
30 }
31 } else {// depth first search: find the complete board
32 int column = size; // column ’size’ + 1
33 board[column] = -1;
34 while (column >= size) {
35 int row = -1;
36 do {
37 row = board[column] = board[column] + 1;
38 } while (row < board_size && !safeAtColumn(board, column));
39 if (row < board_size) {
40 if (column < board_size - 1) {
41 board[++column] = -1;
42 } else { // found the board
43 // store the board to local file
44 ...
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45 }
46 } else {
47 column--;
48 }
49 }
50

51 }
52 delete []board;
53 }

Listing 3.6 shows the partial view of worker processes. It requests the board from the
master process (line 2-14). If the board has less than five queens, it finds all possible
solutions to put a queen in the next column (line 17-31). Each solution is reported to
master process through message type NEW (line 25).

Listing 3.7: The master of N-Queen with MPI

1 while (listen) {
2 MPI_Recv(&msg, 1, MPI_INT, MPI_ANY_SOURCE, DATA, MPI_COMM_WORLD, &

status);
3 workerid = status.MPI_SOURCE;
4 if (msg == REQUEST) {
5 remaining = workQueue.size();
6 if (remaining > 0) {
7 iboard b = workQueue.front();
8 MPI_Send((void*) &NEW, 1, MPI_INT, workerid, DATA,

MPI_COMM_WORLD);
9 MPI_Send(&b.size, 1, MPI_INT, workerid, DATA, MPI_COMM_WORLD);

10 if (b.size > 0)
11 MPI_Send(b.board, b.size, MPI_INT, workerid, DATA,

MPI_COMM_WORLD);
12 workQueue.pop();
13 delete []b.board;
14 } else {
15 // store free worker, then assign work for it later
16 freeWorker.push(workerid);
17 if (freeWorker.size() == nWorker) // all workers are free
18 listen = false;
19 }
20 } else if (msg == NEW) {
21 MPI_Recv(&size, 1, MPI_INT, workerid, DATA, MPI_COMM_WORLD,

MPI_STATUSES_IGNORE);
22 board = new int[size];
23 MPI_Recv(board, size, MPI_INT, workerid, DATA, MPI_COMM_WORLD,

MPI_STATUSES_IGNORE);
24 if (size < board_size) {
25 // send this new work to free worker
26 if (freeWorker.size() > 0) {
27 int id = freeWorker.front();
28 MPI_Send((void*) &NEW, 1, MPI_INT, id, DATA, MPI_COMM_WORLD

);
29 MPI_Send(&size, 1, MPI_INT, id, DATA, MPI_COMM_WORLD);
30 MPI_Send(board, size, MPI_INT, id, DATA, MPI_COMM_WORLD);
31 delete []board;
32 freeWorker.pop();
33 } else { // store work and assign when requested
34 iboard b;
35 b.size = size;
36 b.board = board;
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37 workQueue.push(b);
38 }
39 }
40 }
41 }
42 for (int i = 1; i <= nWorker; i++)
43 // stop signal to worker
44 MPI_Send((void *) &NO_MORE_WORK, 1, MPI_INT, i, DATA, MPI_COMM_WORLD);

The master process keep a queue, workQueue, to store all the boards that need to be
solved, Listing 3.7. Each time a process contacts it to get new job, it pops a board and
sends to that process (line 2-14). If there is no board left, it marks that process as free to
assign work later as soon as it has new boards (15-18). If all other processes are marked
as free, it knows that there is no change to get new boards. Hence, the process should
stop (listen = false). It then sends the stop signal to other processes (line 42-44).

The new boards received from work processes (via NEW messages) are pushed back to
the workQueue (line 34-37). Before doing so, the master process checks if there is free
worker processes. If yes, the new board is sent immediately to a free process (line 26-33).

3.3.4 Graph Search

The approach to solve this problem is the same as described in previous chapter, section
2.3.3. In MPI implementation, process 0 (master process) reads the input file and dis-
tributes to other processes, each process has a part of file contains a subset of nodes in the
graph. Each iteration is separated into four steps. In the first step, adjacency list for each
node is parsed and new nodes are generated for each GRAY node (4-23). A hash function
is used to determine which process this node should be sent to. Function storeNewNode
adds the new node to list for that process. If the total nodes (the new nodes and nodes
with color rather than GRAY) of the running process exceeds 1.5 million nodes, a small
step is conducted to reduce the number of nodes with reduce function (line 25-33). This
function simply does the job and aggregate values for all the node of the same ID to one
node with minimal distance, darkest color and the known list of adjacent nodes. Listing
3.8 shows the code.

Listing 3.8: MPI - Graph Search (step 1): Generate new nodes from GRAY node

1 while (newLoop) {
2 newLoop = false;
3 // Step 1: map data
4 for (int i = 0; i < size - 1; i++)
5 other_data[i].clear();
6 int pack = 0;
7 for (int i = 0; i < input.size(); i++) {
8 vector<string> node = parseNode(input[i].c_str());
9 if (node[3].compare("GRAY") == 0) {

10 vector<string> edges = split(node[1].c_str(), ’,’);
11 for (int i = 0; i < edges.size(); i++) {
12 string new_node;
13 string newDist;
14 increaseDist(newDist, node[2]);
15 createNode(new_node, edges[i], "NULL", newDist, "GRAY");
16 storeNewNode(size, edges[i], new_node, other_data_tmp);
17 }
18 string oldNode;
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19 createNode(oldNode, node[0], node[1], node[2], "BLACK");
20 storeNewNode(size, node[0], oldNode, other_data_tmp);
21 pack += edges.size();
22 } else
23 storeNewNode(size, node[0], input[i], other_data_tmp);
24 pack++;
25 if (pack >= 1500000) {
26 pack = 0;
27 for (int i = 0; i < size; i++) {
28 other_data_tmp[i].insert(other_data_tmp[i].end(),

other_data[i].begin(), other_data[i].end());
29 other_data[i].clear();
30 reduce(other_data_tmp[i], other_data[i]);
31 other_data_tmp[i].clear();
32 }
33 }
34 }
35 ...
36 }

In the second step, data is re-distributed between processes, as shown in Listing 3.9.
The purpose of this is to have all the nodes of the same ID are sent to the same process.
We then sort the data by node id to group by node id so that the aggregation step is able
to be done right.

Listing 3.9: MPI - Graph Search (step 2,3): Gathering data and sorting

1 while (newLoop) {
2 ...
3 // Step 2: send data to corresponding processes...
4 for (int i = 0; i < size; i++) {
5 reduce(other_data_tmp[i], other_data[i]);
6 other_data_tmp[i].clear();
7 }
8 // for each phase, 1 process sends, others receive.
9 for (int phase = 0; phase < size; phase++) {

10 if (phase == rank) {// send
11 for (int i = 0; i < size; i++) {
12 if (i == rank)
13 continue;
14 sendData(i, other_data[i], other_data[i].size());
15 other_data[i].clear();
16 }
17 } else {// receive
18 receive_resp(phase, other_data[rank]);
19 }
20 }
21

22 // Step 3: Sort data
23 sort(other_data[rank]);
24 }

In the last step, we aggregate all the nodes with the same ID to create a final node
of this iteration (line 4-44). We then update the condition for the loop. We continue the
loop if all worker processes do not generate any new GRAY nodes (line 45). Otherwise, a
new iteration is started with the same manner. The partial view of this step is shown in
Listing 3.10.
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Listing 3.10: MPI - Graph Search (step 4): Aggregate the data

1 while (newLoop) {
2 ...
3 // Step 4: find the smallest distance
4 input.clear();
5 string previous("NULL");
6 string edges("NULL");
7 string distance("Integer.MAX_VALUE");
8 string color("WHITE");
9 bool hasGray = false;

10 for (int k = 0; k < other_data[rank].size(); k++) {
11 vector<string> node = parseNode(other_data[rank][k].c_str());
12 string node_id = node[0];
13

14 if (node_id.compare(previous) != 0) {
15 if (k > 0) {
16 string nnode;
17 createNode(nnode, previous, edges, distance, color);
18 input.push_back(nnode);
19

20 if (color.compare("GRAY") == 0)
21 hasGray = true;
22 }
23 previous = node_id;
24 edges = "NULL";
25 distance = "Integer.MAX_VALUE";
26 color = "WHITE";
27 }
28

29 if (node[1].compare("NULL") != 0) {
30 edges = node[1];
31 }
32 minDist(distance, distance, node[2]);
33 maxColor(color, color, node[3]);
34 }
35 if (other_data[rank].size() > 0) {
36 string nnode;
37 createNode(nnode, previous, edges, distance, color);
38 input.push_back(nnode);
39 }
40

41 other_data[rank].clear();
42

43 if (color.compare("GRAY") == 0)
44 hasGray = true;
45 MPI_Allreduce(&hasGray, &newLoop, 1, MPI_BYTE, MPI_BOR, MPI_COMM_WORLD)

;
46 }





Chapter 4

Standard ML API for Hadoop

Standard ML (SML) is a functional programming language with compile-time type check-
ing. It supports polymorphic type inference which frees developer from specifying types
of variables. Like all functional programming languages, the function is a main feature
of Standard ML. Programming with recursive and symbolic data structure is common
in SML with the pattern matching feature of function definitions. SML also provides
techniques to structure large programs: module hierarchies, enforce abstraction or build
generic interfaces.

There are different compilers for compiling a program written in SML. Standard ML
of New Jersey (SML/NJ) is a full compiler with associated tools and libraries. It supports
an interactive shell. MLton is a whole-program optimizing SML compiler that produces
very fast executables compared to other SML implementations. The executables also have
smaller sizes. Furthermore, MLton supports communication between C and SML via a
special feature. Moscow ML is a light-weigh implementation which implement the full
SML language.

This chapter introduces basic knowledge about SML. It also analyzes advantages and
disadvantages of some current large-scale solutions for SML. The approach to provide a
new library for SML for large-scale problems is then described. This library is named
MLoop. Its architecture and implementation are reported in Section 4.4. Finally, Section
illustrates how to solve several problems with MLoop.

4.1 Programming in Standard ML

4.1.1 Type, Values and Expression

A type in Standard SML is defined by specifying three things: the name, the possible
values and possible operations on those values. Take the type of integer as an example.
Its name is int. Possible values are whole numbers 0, 1, ˜1, 2,˜2 and so on (˜ is used
for minus sign in SML). And possible operations include + (addition), - (subtraction), *
(multiplication), div (quotient) and mod (remainder).

A value is an atomic expression which cannot be evaluated any further. Compound
expressions include atomic expression and expressions built by applying an operator on
other compound expressions. Every expression has to have a type; then it is said to be well-
typed. Otherwise, it is said to be ill-typed; which is considered in-eligible for evaluation.
The evaluation of expressions is governed by a set of rules, called evaluation rules. These
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rules define how to determine the value of a compound expression as a function of its
constituent expressions. For example, 2 + 3 is evaluated as value 5 because applying
operation + to two atomic expressions 2 and 3 yields 5.

4.1.2 Variables and Declarations

Like many programming languages, values can by assigned to variables. However, unlike
other languages, variables in ML do not vary. A value is bound to a variable via a construct
called value binding. This can be seen as an assignment in other languages. But the value
is bound to the variable forever. So variables in SML are similar to constants in C or Java.
Therefore, variables in ML are close to the definition of variables in mathematics than to
variables in languages such as C or Java.

A type may be also bound to a type constructor via type binding. A binding generates
a new variable that effects within its scope. For example: type float = real introduces a
type variable float which is synonymous with real. Similarly, val m:int = 3 + 3 introduces
the variable m with type int and value 6. One important thing to remember is that
bindings are not assignments. Once a variable is bound to a value, the binding of that
variable never changes.

A binding is an atomic declaration. Multiple declarations can be written one after the
others.

4.1.3 Mutable Data Structures

Coding with immutable variables provides comfortableness. Because we are free from side
effects and therefore, it’s easier to reason about the behavior of the code. However, in
some situations, we need mutable data structures to do our purposes more effectively. For
example, counting the number of words that already appeared. When a new word comes,
we need to update the current count.

Like most imperative programming languages, SML supports mutable data structures.
There are two built-in ones in SML: Reference and Array. Type typ ref is the type of
reference cells containing values of type typ. A value of type int ref is a pointer to
a location in memory, where that location contains an integer. It’s similar to int* in
C/C++. Like all values, reference cells may be bound to variables, passed as arguments
to functions, returned as results of functions, etc...

A reference cell is created by the function ref of type typ -> typ ref. The content
of a reference cell is retrieved using the function ! of type typ ref -> typ. By using
the := operator, the value in the cell can be changed as a side effect. Here are examples.

val x : int ref = ref 3
val y : int = !x
val _ = x := (!x) + 1
val z = y + (!x)

The first line creates a reference cell with content of 3. The second line reads the content
of the cell referenced by x, then binds it to y. So y has value 3. The third line evaluates
”!x” to get 3, adds one to it to get 4, then updates the content of reference cell by x to
this value. The final line gets the content of reference cell by x and adds to y. Therefore,
it yields 3 + 4 = 7 and binds to z.

Array is another mutable data structure that SML provides. Arrays generalize the
reference concept in that they are a sequence of memory locations. Basic operations of
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arrays are provided via Array structure.

4.1.4 Type Inference

In most programming languages, we must explicitly assign it a type. ML allows us to omit
this type information whenever the compiler can infer it from the context when declaring
a variable. This process is called type inference. For example, the value binding val v:int
= 5 can just be written as val v = 5 because the type of value 5 is int.

This feature enables functions in SML to have a characteristic called polymorphic. The
identity function fn x=>x is an example. The body of the function has no constraints on
the type of x. This expression is not rejected because it works perfectly for any choice
of the type of x. This is contrast to the function fn x =>x + 1 which there are only
two possible types of x (int or real). The choice of int or real affects the behavior of the
function: perform an integer addition or a floating point addition. The behavior of the
identity function is uniform for any types of its argument, which is said to be polymorphic.

4.1.5 Higher-Order Functions

Functions which take functions as arguments or yields functions as results are known as
higher-order function. The map’ function below is an example of function which receives
another function as argument.

fun map’ (f, nil) = nil
| map’ (f, h::t) = (f h) :: map’ (f,t)

For example,

map’ (fn x => x + 1, [1,2,3,4])

returns the list [2,3,4,5]
The add3 function below is an example of function which returns a function.

fun add3 a = fn () => a + 3

has the type int -> (unit -> int). The value of add3 7 is the function which
receives no arguments and yields 7 + 3. So add3 7 () yields 10.

4.1.6 Signature and Structure

Signature and Structure are employed to construct module in ML. Signature and structure
can be seen as interface and class respectively in languages such as C++ or Java.

A structure is a unit of program which consists of a sequence of declarations of types,
exceptions, variables and functions. Below is an example of structure

structure IntLT = struct
type t = int
val lt = (op <)
val eq = (op =)
end

This structure has three components, one type and two functions. The component of
structure can be accessed using paths. For example, IntLT.lt refers to function lt of
structure IntLT: IntLT.lt (3,5) yields true.

Signature is the type (or specification) of a structure. A signature specifies some
requirements on a structure which implements it, such as the type component, the value
components that structure must have. Here is an example,
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signature ORDERED = sig
type t
val lt : t * t -> bool
val eq : t * t -> bool
end

This signature specifies a structure that provides a type component named t and two
functions with type (t * t) -> bool.

Signature may be built from another using signature inclusion and signature special-
ization. These forms are signature inheritance. Signature inclusion is used to add more
components to an existing signature.

signature ORDERED_CLONE = sig
include ORDERED
end

This signature just includes signature ORDERED with no additional components.
Signature specialization is used to clarify an existing signature with additional type

definitions

signature INT_ORDERED =
ORDERED where type t = int
end

4.1.7 Signature Ascription

Signature ascription expresses the requirement that a structure implements a signature.
There are two forms of signature ascription, transparent and opaque.

structure IntDiv : ORDERED = struct
type t = int
fun lt (m, n) = (n mod m = 0)
val eq = (op =)
end

Above transparent ascription is so-called because the synonym between IntLT.t and int
is still valid in the scope of this structure.

Here’s an example of opaque ascription. We may use opaque ascription to specify that
a structure implement queues, and, at the same time, specify that only the operations in
the signature be used to manipulate values of that type.

signature QUEUE = sig
type ’a queue
val empty : ’a queue
val insert : ’a * ’a queue -> ’a queue
exception Empty
val remove : ’a queue -> ’a * ’a queue
end

structure Queue :> QUEUE = struct
type ’a queue = ’a list * ’a list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
exception Empty
fun remove (nil, nil) = raise Empty
| remove (bs, f::fs) = (f, (bs, fs))
| remove (bs, nil) = remove (nil, rev bs)
end
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In this structure, the definition of ’a Queue.queue is hidden by the binding; the equiv-
alence of the types ’a Queue.queue and ’a list * ’a list is not propagated into
the scope of the binding.

4.2 Parallelization for SML

Standard ML is mainly used for teaching and research. However, it is not a widely used
language. Therefore, there is not much effort to provide extensions/solutions for SML to
adapt to new demands of changes in technologies. Parallel and distributed processing is
an example. The explosion of large-scale applications which are not handled by a single
server require a solution for Standard ML that can take advantage of parallel processing
in cluster.

Currently, there are two well-known approach for parallelization for SML that can
work with a cluster. The first choice is to use MPI. In this approach, we manage the
parallel architecture with MPI C/C++. Then we can call the actual code in SML to do
the task. However, this approach suffers from several issues. At first, MPI provides no
fault-tolerance ability. When one process fails, the overall task also fails. The burden
of handling the fault is given to developers. Secondly, MPI only provides the way to
communicate between processes. Developers have to manage the parallel paradigm by
themselves. This task is really difficult and costs a lot of time.

The second approach is to use Hadoop. As introduced in Chapter 2, Hadoop provides
a lot of good features. It allows developers to focus on application algorithm while the
system-level detail of parallel processing is hidden and managed by Hadoop. It also offers
scalability and robustness to the system. However, Hadoop is written in Java and provides
Java APIs to interact with both MapReduce and HDFS. Therefore, to use all of the
features that Hadoop provides, a program usually needs to be written in Java language.
Fortunately, developers who want to use Hadoop without Java can take advantage of
Hadoop Streaming library which allows developers to write MapReduce programs with
any language that supports standard input and output. However, Hadoop Streaming
suffers from several limitations. At first, the developers can only customize the mapper,
combiner and reducer via executable scripts. They cannot provide their own record reader,
record writer and partitioner to take more control of Hadoop. Furthermore, HDFS is also
not accessible from scripts. Finally, Hadoop Streaming is only appropriate with problems
which only need to process text data streams.

4.3 Extend Hadoop Pipes for Standard ML

Hadoop provides a C++ interface called Hadoop Pipes to write MapReduce programs with
C++. With Hadoop Pipes, programmers can access and customize various MapReduce
components in Hadoop. Furthermore, the application is able to process various types of
input data.

C++ interface in Hadoop Pipes is written in a way that make it a SWIG-compatible
C++ API. This means that an interface for other languages such as Python, Perl can
be generated by SWIG-tool [9]. Currently, SWIG supports scripting languages including
Javascript, Perl, PHP, Python, Tcl and Ruby; and non-scripting languages including C#,
Common Lisp (CLISP, Allegro CL, CFFI, UFFI), D, Go language, Java, Lua, Modula-3,
OCAML, Octave and R. Paper [23] represented a Python package Pydoop that provides
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a Python API for Hadoop MapReduce and HDFS. The package is built based on Pipes
(C++). Figure 4.1 shows the integration of Pydoop with C++ API. Method calls from
MapReduce framework flow through the C++ pipes and Pydoop API and finally calls user-
defined methods. The results which are Python object then are wrapped and returned
to the framework. To reach HDFS operations, function calls are initiated by Pydoop and
parsed to C calls to libhdfs library. Results are then wrapped back into Python objects
and returned to the application.

Figure 4.1: Integration of Pydoop with C++

The approach in Pydoop suggests a way to create Hadoop interface for programming
languages other than Java. At first, we need to provide APIs for the target language to
access MapReduce components in Hadoop. Secondly, the target language and C++ Pipes
have to be provided an interface to communicate with each other. In that way, C++ Pipes
can delegate the task to the function written in the target language. This requirement can
be achieved through SWIG. If the target language supports an interface to communicate
with C++, that interface might also be a solution.

Above analysis provides an approach to extend Hadoop Pipes for Standard ML. If we
use MLton as a compiler for SML, we have an interface to communicate between SML and
C/C++: MLton’s Foreign Function Interface (MLton’s FFI) [4]. It extends Standard ML
and allows SML code to take the address of C global objects, access C global variables.
Especially, it allows us to call from SML to C and call from C to SML.

4.4 Architecture of MLoop

The library which is developed in this thesis is named MLoop, which stands for Standard
ML API for Hadoop. As described in previous section, developing MLoop is the task
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of providing Standard ML API to write mapper, combiner and reducer for Hadoop job.
Moreover, MLoop is also destined for allowing customization in record reader and writer.
Figure 4.2 shows the architecture of MLoop.

Figure 4.2: SML API for Hadoop

The MapReduce tasks are delegated from Hadoop Java Framework to corresponding
C++ components in Hadoop Pipes. These components, in turn, call the user imple-
mentations which are provided by MLoop to actually do the tasks. The provided im-
plementations simply delegate the tasks to use code in Standard ML through MLoop
library. In detail, C++ classes which are responsible for the tasks call corresponding
functions in MLoop to accomplish the tasks. Mapper, Combiner and Reducer objects
call mloop_map_, mloop_combine_ and mloop_reduce_ functions in MLoop, re-
spectively. The key-value outputs of these functions are reported back to Hadoop Java
Framework through the Task Context object in Hadoop Pipes. On the other hand, Recor-
dReader object communicates with mloop_reader_ to get the input key-value pair and
itself reports the result to Hadoop Framework. RecordWriter object works the same way
with RecordReader object. It calls mloop_write_ to get the custom final key-value pair
and reports back to the Hadoop Framework. We use MLton compiler for Standard ML
because it generates efficient executables. Hence, the communications between Hadoop
Pipes objects and MLoop functions are carried out with MLton’s FFI. We should notice
that functions in MLoop which are called by Hadoop Pipes objects actually do nothing.
They instead call user implementations in SML to accomplish the tasks.
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4.5 MLoop Implementation

In the implementation, we have to deal with two main issues. The first issue is the commu-
nication between different languages. Hadoop Pipes written in C++ while Standard ML
can only communicate with C. The second issue is the data-flow of MLoop have to conform
with the operations in Hadoop Pipes so that the overall process can run as smoothly as
possible.

4.5.1 Communication between SML, C and C++

Hadoop Pipes is written in C++. Therefore, to make MLoop work with Hadoop Pipes,
we need to communicate between C and C++ and between SML and C. Fortunately, all
of these communications are already supported.

Communicate between C and C++

The situation is that we have written a program in C and we need to integrate an existing
third party C++ library into our program. We have a C++ class as shown in Table 4.1.

MyClass.hpp MyClass.cpp

#ifndef __MYCLASS_H
#define __MYCLASS_H

class MyClass {
private:

int m_i;
public:

void int_set(int i);
int int_get();

};

#endif

#include <MyClass.h>
void MyClass::int_set(int

i) {
m_i = i;

}

int MyClass::int_get() {
return m_i;

}

Table 4.1: A C++ class

To call C++ function above, we have to solve two problems: the name mangling of
C is different from C++ and C doesn’t know classes. To solve these problem, we write a
C-wrapper of C++ class as shown in Table 4.2.

Now we can call C++ function in our C code.

#include "MyWrapper.h"
#include <stdio.h>

int main(int argc, char* argv[]) {
struct MyClass* c = newMyClass();
MyClass_int_set(c, 3);
printf("%i\n", MyClass_int_get(c));
deleteMyClass(c);

}

Communicate between C and SML

As mentioned before, we use MLton compiler for Standard ML. MLton provides an inter-
face called Foreign Function Interface which allows a SML program to import C functions.
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MyWrapper.h MyWrapper.c

#ifndef __MYWRAPPER_H
#define __MYWRAPPER_H

#ifdef __cplusplus
extern "C" {
#endif

typedef struct MyClass MyClass;

MyClass* newMyClass();

void MyClass_int_set(MyClass* v,
int i);

int MyClass_int_get(MyClass* v);

void deleteMyClass(MyClass* v);

#ifdef __cplusplus
}
#endif
#endif

#include "MyClass.h"
#include "MyWrapper.h"

extern "C" {
MyClass* newMyClass() {
return new MyClass();

}

void MyClass_int_set(MyClass* v,
int i) {

v->int_set(i);
}

int MyClass_int_get(MyClass* v) {
return v->int_get();

}

void deleteMyClass(MyClass* v) {
delete v;

}
}

Table 4.2: C Wrapper for MyClass class

Suppose a C function with prototype int foo(double d, char c);. MLton extends
the syntax of SML to allow expressions like

_import "foo": real * char -> int;

Therefore, in SML program, we can call C function as following:

val foo_ = _import "foo": real * char -> int;
val c = foo_ 2.0 #"c"
val _ = print (Int.toString c)

To compile, we use

mlton -default-ann ’allowFFI true’ -export-header export.h \

import.sml foo.c

where foo.c contains the definition of foo function in C and import.sml contains the
SML code above.

MLton’s FFI also allows programs to export SML functions to be called from C. A
function of type real * char -> int can be exported via following declarations:

val e = _export "foo": (real * char -> int) -> unit;
val _ = e (fn (x, c) => 13 + Real.floor x + Char.ord c)

Then following command will generate a C header file (named export.h) that can be used
to call from a C program.

mlton -default-ann ’allowFFI true’ -export-header export.h \

-stop tc export.sml
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4.5.2 MLoop Data-flow

The data-flow of Hadoop Pipes and the architecture of MLoop which are described before
have pointed out the requirements of the implementation. It requires C++ implementation
classes which are initialized by the Pipes C++ library to handle the map task and reduce
task. Besides that, it also requires C wrapper classes for calling C functions from SML.

Figure 4.3: Sequence diagram of map phase in MLoop

At least two implementation classes are required to make Hadoop Pipes work: Map-
per and Reducer. The other classes provide developers additional controls on operating
Hadoop jobs: Combiner helps to reduce the intermediate key-value pairs of map phase,
Record Reader controls the way input key-value pairs are generated and fed to mapper,
Record Writer deals with storing output pairs of reduce phase. These classes are im-
plemented in MLoop to act as delegates which call MLoop functions to actually do the
job.

Figure 4.3 and 4.4 shows the flows inside the MLoop. In the map phase, the Hadoop
Pipes object sends a message to next function of C++ RecordReader implementation
(step 1) to read the input file and get an input key-value pair to feed to the map function.
This only happens if the RecordReader object is provided. This object simply forwards
the request to mloop_read_ function of MLoop to get the result key-value pair. If
RecordReader object is not provided, the system uses the provided Java Record Reader
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to parse key-value pairs from the files and feed to the map function.

In the next step, the Hadoop Pipes object sends a MapContext object which contains
the input key-value pair to map function of C++ Mapper implementation (step 2). The
request then is forwarded to mloop_map_ of MLoop to invoke the user code in SML
which contains the business logic of map step (step 2.1). The output key-value pairs are
emitted back to Hadoop Pipes via a calls to TaskContext object provided by Hadoop
Pipes (step 2.1.1).

If the combiner is provided, the intermediate key-value pairs are buffered. At the
end of map phase, these pairs are fed to Combiner object (step 3). It, in turn, calls
mloop_combine_ of MLoop to do the job (step 3.1). Again this function only takes
responsibility to call the user code to do the business logic. The new output key-value
pairs are then reported to Hadoop Java Framework via TaskContext object (step 3.1.1).
If there is no combiner, the intermediate key-value pairs are reported directly to Hadoop
Java Framework each time a new pair arrives to TaskContext object.

Figure 4.4: Sequence diagram of reduce phase in MLoop

In the reduce phase (Figure 4.4), reduce function of C++ Reducer is passed a
ReduceContext object from which the key and all the values associated with it could
be retrieved (step 1). The input key is sent to mloop_reduce_ function of MLoop (step
1.1) and then sent to user-implemented function mloop_reduce. This key together with
functions provided by MLoop to get associated values are enough to process the actual
business logic. The output key-value pairs are returned to TaskContext object to write
back to file system (step 1.1.1). At this point, there are two cases which can happen. If
the writer is provided, the key-value pairs are sent to the writer. It delegates these pairs
to mloop_write_ (step 1.1.1.1.1) to allow user to customize the final key-value pairs.
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These final pairs are written directly to HDFS by the writer. On the other hand, if there
is no writer, the output key-value pairs from reducer are sent back to Java Framework to
write to file system using Java Record Writer.

4.5.3 MLoop Implementation Details

This part reports technical implementation of MLoop based on the architecture and data-
flow described in previous sections. MLoop is considered as a channel between the user
code in SML and Hadoop Pipes framework in C++. Therefore, MLoop must provide two
counterparts: SML module to communicate with user code in SML, provide structures,
functions that support user code; C++ module to retrieve the task from Hadoop Pipes
framework, forward to SML module, receive the result from user code and report to Pipes
framework.

Standard ML API for Hadoop

MLoop aims to provide a very simple API for user to write the MapReduce program
in Hadoop. Indeed, to control different aspects of MapReduce job, user only needs to
implement following functions:

fun mloop_map (key:string, value:string):unit
fun mloop_reduce (key:string):unit
fun mloop_combine (key:string):unit
fun mloop_read ():bool
fun mloop_write (key:string, value:string):unit

mloop_map allows user to define the behavior of map function of MapReduce model.
It takes two strings as key-value pair and emits intermediate key-value pair(s). MLoop pro-
vides MapContext structure to support user to manipulate the map task. MapContext
provides function emit: string * string -> unit to emit the intermediate pair.

mloop_reduce and mloop_combine allow user to define the bahavior of the reduce
and combiner function of MapReduce model. Input key is given as a parameter of the
function. MLoop contains ReduceContext which provides functions that are needed to
retrieve necessary information: getValueSet: unit -> string list gets all asso-
ciated values of the key at a time, nextValue: unit -> bool checks if there is still
another value associated with current key and getInputValue: unit -> string ac-
tually gets the associated value. Finally, function emit: string * string -> unit
is used to emit the output key-value pair.

mloop_read and mloop_write allow user to customize the record reader and writer.
mloop_write takes key-value pair from reduce step as inputs. It may generate new key-
value pair to actually be written to the file system. Function emit: string * string -> unit
in Writer structure is defined to do that. mloop_read uses functions provided by
Reader structure to parse input split to key-value pairs which are fed to map function.
mloop_read returns a true value indicating that there is still other pairs. Otherwise, it
returns false. Supporting functions in Reader structure is listed as below.

getOffset ()
return the offset of the current input split which corresponds to this map task.

getBytes read ()
return the number of bytes consumed by the reader for the last read operation.
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updateOffset bytesConsumed (offset, bytesConsumed)
update the current offset of the reader in the file and the number of bytes consumed
for the last read operation.

getOffsetNow ()
return the current offset of the reader in the file.

get ()
return the reader.

seekHdfs offset
seek to given offset in file.

The detailed description of all structures which are provided by MLoop is shown in
Appendix A.3.

The C++ Mapper

MLoop needs to provide a C++ implementation of Hadoop Pipes Mapper class to delegate
the task to user-implemented function mloop_map. Listing 4.1 shows a partial view of
the C++ Mapper provided by MLoop. When the object is created, it sends the address
of MapContext C++ object to MapContext structure (line 13) to store it because
emit function of MapContext structure needs this information to retrieve the original
MapContext C++ object to actually emit the output (key, value) pair. When the map
function of MLoopMapper is called from Hadoop Pipes Framework, it retrieves the key
and value from MapContext object and forwards them to mloop_map_ (line 18). The
responsibility of mloop_map_ is to convert C++ string pointers to SML strings and feed
them to mloop_map function. Listing 4.2 shows the definitions of functions in SML
module of MLoop.

Listing 4.1: C++ Mapper implementation

1 class MloopMapper : public hp::Mapper {
2 private:
3 char* addr;
4 public:
5 MloopMapper(hp::MapContext& ctx);
6 void map(hp::MapContext& ctx);
7 void close(){}
8 virtual ˜MloopMapper(){}
9 };

10

11 MloopMapper::MloopMapper(hp::MapContext& ctx) {
12 hp::MapContext* ptr = &ctx;
13 init_map((CPointer) ptr);
14 }
15 void MloopMapper::map(hp::MapContext& ctx) {
16 string key = ctx.getInputKey();
17 string value = ctx.getInputValue();
18 mloop_map_((CPointer) key.c_str(), (CPointer) value.c_str());
19 }

Listing 4.2: MLoop setup for map task

fun init_map addr = MapContext.setAddress addr
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fun mloop_map_ (key:MLton.Pointer.t, value:MLton.Pointer.t) = mloop_map (
fetchCString key, fetchCString value)

The C++ Reducer and Combiner

C++ Reducer and Combiner implementations (MloopReducer and MloopCombiner) are
also provided by MLoop (Listing 4.3). The address of C++ ReduceContext object is
stored in ReduceContext structure each time a MloopReducer object is created (line 18).
reduce function of MloopReducer gets the input key from C++ ReduceContext object
and sends to mloop_reducer via mloop_reduce_ (line 22-23). reduce function of
MloopCombiner works with a slightly different manner. It sends also the address of
C++ ReduceContext object. This is because many ReduceContext objects are created
to combiner different chunks of intermediate (key, value) pairs. Listing 4.4 shows the
counterparts of MloopReducer and MloopCombiner in SML module of MLoop.

Listing 4.3: C++ Reducer and Combiner implementation

1 class MloopReducer : public hp::Reducer {
2 public:
3 MloopReducer(hp::ReduceContext& ctx);
4 virtual void reduce(hp::ReduceContext& ctx);
5 virtual void close();
6 virtual ˜MloopReducer();
7 };
8

9 class MloopCombiner : public MloopReducer {
10 public:
11 MloopCombiner(hp::MapContext& ctx);
12 virtual void reduce(hp::ReduceContext& ctx);
13 virtual void close();
14 };
15

16 MloopReducer::MloopReducer(hp::ReduceContext& ctx) {
17 hp::ReduceContext* ptr = &ctx;
18 init_reduce((CPointer) ptr);
19 }
20

21 void MloopReducer::reduce(hp::ReduceContext& ctx) {
22 std::string key = ctx.getInputKey();
23 mloop_reduce_((CPointer) key.c_str());
24 }
25

26 void MloopCombiner::reduce(hp::ReduceContext& ctx) {
27 hp::ReduceContext* ptr = &ctx;
28 std::string key = ctx.getInputKey();
29 mloop_combine_((CPointer) ptr, (CPointer) key.c_str());
30 }

Listing 4.4: MLoop setup for reduce and combiner task

fun init_reduce (addr:MLton.Pointer.t) = ReduceContext.setAddress addr
fun mloop_combine_ (address:MLton.Pointer.t, key:MLton.Pointer.t) =

let
val _ = ReduceContext.setAddress address

in
mloop_combine (fetchCString (key))
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end
fun mloop_reduce_ (key:MLton.Pointer.t) = mloop_reduce (fetchCString (key))

The C++ Record Reader

Listing 4.5 and 4.6 show the main view of Reader in MLoop. MloopRecordReader parses
information about its corresponding input split (line 2-11). This information is stored in
Reader structure through calling to reader_init function (line 20). This information
is also used to connect directly to HDFS (line 13-15) and create a LineReader object to
read each line of input split (line 18). The Hadoop Pipes framework calls next function
of MloopRecordReader to get input key-value pair for map function. next function, in
turn, delegates to user-implemented function in SML API, reader_read to response to
the call from Hadoop Pipes (line 25).If the result is yes (a positive number), the passed
key-value pair is already stored in two class variables key, value. They are returned to
Hadoop Pipes via two reference variables key , value (line 26-30).

Listing 4.5: C++ Record Reader implementation

1 MloopRecordReader::MloopRecordReader(hp::MapContext& ctx) {
2 char* home = getenv("HADOOP_HOME");
3 setenv("CLASSPATH", get_hadoop_classpath(home), 1);
4 key = value = NULL;
5 string split = ctx.getInputSplit();
6 _StringInStream is(split);
7 string filename;
8 hu::deserializeString(filename, is);
9 offset = is.readLong();

10 length = is.readLong();
11 int pos = filename.find(’/’, 7);
12

13 fs = hdfsConnect("default", 0);
14 file = hdfsOpenFile(fs, filename.substr(pos).c_str(), O_RDONLY,
15 0, 0, 0);
16 bytes_read = 0;
17 start = offset;
18 in = new LineReader(fs, file);
19 newLine = NULL;
20 reader_init((CPointer) this, (Int64) offset, (Int64) length);
21 reader_setup();
22 }
23

24 bool MloopRecordReader::next(std::string& key_, std::string& value_) {
25 int32_t res = reader_nextVal();
26 if (res) {
27 key_ = *key;
28 value_ = *value;
29 return true;
30 }
31 return false;
32 }

Listing 4.6: SML functions for reader

fun reader_init(file,offset,length) = Reader.init (file,offset,length)
fun reader_setup () = let

val offset = Reader.getOffset()
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val reader = Reader.get()
in

if offset = 0 then ()
else (seekHdfs(reader, offset - 1); Reader.readLine ();())

end
fun reader_nextVal () = reader_read ()

The C++ Record Writer

The Record Writer controls the way that output key-value pairs are written to the file
in HDFS. The current implementation of Writer in MLoop allows users to customize
the output key-value pair as well as define the separator between key and value. The
MlooopRecordWriter works directly with HDFS to create output file (2-17). The address
of current writer object is stored in Writer structure to access it later. Whenever a key-
value pair needs to write to the file system, the writer object invokes user-implemented
function mloop_write to process (line 22). Listing 4.7 and 4.8 show the implementation.

Listing 4.7: C++ Record Writer implementation

1 MloopRecordWriter::MloopRecordWriter(hp::ReduceContext& ctx) {
2 char* home = getenv("HADOOP_HOME");
3 setenv("CLASSPATH", get_hadoop_classpath(home), 1);
4 const JobConf* conf = ctx.getJobConf();
5 string out_dir = conf->get("mapreduce.output.fileoutputformat.outputdir

");
6 int pos = out_dir.find(’/’, 7);
7 out_dir = out_dir.substr(pos);
8 int part = conf->getInt("mapred.task.partition");
9 char s[200];

10 sprintf(s, "%s/part-%.5d", out_dir.c_str(), part);
11 fs = hdfsConnect("default", 0);
12 file = hdfsOpenFile(fs, s, O_WRONLY | O_CREAT,
13 0, 0, 0);
14 string sep("\t");
15 if (conf->hasKey("mapred.textoutputformat.separator"))
16 sep = conf->get("mapred.textoutputformat.separator");
17 writer = new LineWriter(fs, file, sep);
18 writer_init((CPointer) this);
19 }
20

21 void MloopRecordWriter::emit(const std::string& key, const std::string&
value) {

22 mloop_write_((CPointer) key.c_str(), (CPointer) value.c_str());
23 }

Listing 4.8: SML functions for writer

fun writer_init address = Writer.store address
fun mloop_write_ (key,value) = mloop_write (key,value)

4.6 Writing MapReduce programs in MLoop

4.6.1 MLoop Basics

Writing MapReduce programs in MLoop is similar to writing in Hadoop Java. We just
need to define two functions mloop_map and mloop_reduce. We are also able to provide
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the combiner via function mloop_combine.

Listing 4.9: Counting words in MLoop

1 fun mloop_map (key:string, value:string) =
2 let
3 val splitter = String.tokens(fn c => Char.isSpace c)
4 val words = splitter value
5

6 in
7 map (fn word => MapContext.emit (word,"1")) words
8 end
9

10 fun mloop_reduce (key:string)=
11 let
12 fun fromString str = let
13 val x = Int.fromString str
14 in
15 Option.getOpt(x,0)
16 end
17 val sum = ref 0
18 in
19 while (ReduceContext.nextValue()) do
20 sum := (!sum) + (fromString (ReduceContext.getInputValue()));
21 ReduceContext.emit(key, Int.toString(!sum))
22 end
23

24 fun mloop_combine (key:string) =
25 mloop_reduce (key)
26

27 val useCombiner = true

Listing 4.9 shows the Word Count program in MLoop. In the map function, the
value argument contains a line of input. In line 3, we use function tokens of structure
String which takes two arguments (f, s) to get a list of tokens derived from string
s by a delimiter which is a character satisfying the predicate f. In our code, f is
the function Char.isSpace which retrieves a character c and returns true if c is a
whitespace (space, newline, tab, carriage return, vertical tab, form-feed). We only pass
a predicate f to function tokens. Therefore, it returns a another function with type
string -> string list. We then apply that function which is bound to variable
splitter to the string value to tokenize the input line with whitespace delimiter (line
4). In line 7, we use the map function of Standard ML,which is used to apply a function
f on every element of a list, to emit each token as key with associated count of ”1”.

In reduce function (mloop_reduce), we first define a function fromString to con-
vert the input string into number (line 12-16). We also initialize a reference cell which is
pointed to by sum to keep track of the total occurrences of a word. We then loop over all
the associated values of the input key to sum all the counts (line 19-20). Finally, we emit
the output key-value pair to the Hadoop Pipes framework (line 21).

We also provide a combiner for this job which is the same as the reduce function (line
24-25). Finally, we need to notify the system that we want to use combiner feature. That
is specified by setting variable useCombiner to true.
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4.6.2 Record Reader

By default, Hadoop splits input data into text lines. The key-value pairs are generated
from these lines. The key is the byte offset within the file of the beginning of a line. The
value is the content of the line. If you want to process multiple line at a time, you need
to write a custom Record Reader.

The Record Reader works at the HDFS file level: it reads data from the file, gener-
ates key-value pairs to pass into the Mapper. To write a Record Reader in MLoop, two
functions must be defined: setUpReader and mloop_read.

Listing 4.10: A custome record reader to read two lines at a time

1 (* define map and reduce here *)
2

3 fun setUpReader () = let
4 val offset = Reader.getOffset()
5 in
6 if offset = 0 then ()
7 else (Reader.seekHdfs(offset - 1); Reader.readLine ();())
8 end
9

10 fun mloop_read () = let
11 val start = Reader.getOffsetNow ()
12 val endOffset = (Reader.length()) + (Reader.getOffset())
13 val (value,isSuccess) = if start < endOffset then (Reader.readLine (),

true) else ("",false)
14 val (value2, isNext) = if isSuccess andalso (Reader.getOffsetNow ()) <

endOffset then (value ˆ (Reader.readLine ()), true)
15 else (value, false)
16 in
17 if isSuccess orelse isNext then setKeyValue (Reader.get(),cstring (

Int64.toString start),cstring value2)
18 else ();
19 isNext
20 end
21 val useReader = true

The reader specified in Listing 4.10 reads the input split into lines, combines two lines into
one line. In the setup phase, we get the offset of input split in the file (line 4). If the input
split starts in the middle of file, it may start in the middle of line. Therefore, we remove
a line which starts right before the offset of current input split (line 6-7). This makes sure
that we do not read again the last line of previous input split. The actual task of reading
key-value pair takes place in mloop_read function. At first, the current offset of reader
and the last offset of input split are stored into start and endOffset, respectively
(line 11-12). The reader tries to read a line from current offset. If it succeeds, value
stores the line and isSuccess is set to true. Otherwise, value is an empty string and
isSuccess is set to false (line 13). In line 14, the reader tries to read the second line
if previous operation is successful and the current offset is still in the input split. If this
operation is successful, the new line is append to old line value. Finally, we need to send
the key (start offset) and the value (lines which are read) to MloopRecordReader object
via setKeyValue which updates the class variables key and value of MloopRecordReader
object (line 17-18). The function returns the boolean value isNext which indicates that
there is maybe value for current input split to read. In line 21, we notify that we want to
use Record Reader to read input split.
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4.6.3 Record Writer

The Record Writer controls the way that output key-value pairs are written to the file in
HDFS.

Listing 4.11: A custom record writer in MLoop

(* define map and reduce here *)
fun mloop_write (key,value) = Writer.emit (key, value ˆ "|")
val useWriter = true

The writer specified in Listing 4.11 changes the value by appending to it a vertical bar
”|”. The key and new value is sent to MloopRecordWriter to write directly to output file
in HDFS using Writer.emit.

4.7 Sample Programs in MLoop

In chapter 5, we want to compare the performance between different large-scale parallel
solutions on different problems. Therefore, we again solve the same problems described in
section 2.3, but use MLoop instead. The complete source code can be found in Appendix
section B.2.

4.7.1 Summation

Working with calculating the sum of whole numbers from one to ten billion requires
dealing with big integer. Fortunately, Standard ML supports it with IntInf structure.
Operations with big numbers in Standard ML is based on GMP library. Therefore, it is
very efficient. Listing 4.12 shows the code for map and reduce function written in MLoop.

Listing 4.12: Summation in MLoop

1 fun mloop_map (key:string, value:string) =
2 let
3 val splitter = String.tokens(fn c => Char.isSpace c)
4 val words = splitter value
5 fun toInt number = let
6 val x = IntInf.fromString number
7 in
8 Option.getOpt(x,0)
9 end

10 fun sum (from:IntInf.int,to:IntInf.int, result:IntInf.int) = if from >
to then result

11 else sum (from + 1, to, result + from);
12 val v = sum (toInt (List.nth(words,0)), toInt (List.nth(words,1)), 0);
13 in
14 MapContext.emit ("", IntInf.toString v)
15 end
16

17 fun mloop_reduce (key:string)=
18 let
19 fun fromString str = let
20 val x = IntInf.fromString str
21 in
22 Option.getOpt(x,0)
23 end
24 val sum = ref 0 : IntInf.int ref
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25 in
26 while (ReduceContext.nextValue()) do
27 sum := (!sum) + (fromString (ReduceContext.getInputValue()));
28 ReduceContext.emit(key, IntInf.toString(!sum))
29 end

Each map function calculates the sum of a sequence of numbers: x, x + 1, ..., x + n. This
sequence is represented by two numbers: x, x + n. The value argument of mloop_map
contains these two numbers which is represented in text format and is separated by whites-
pace delimiter. Therefore, the map function at first tokenize the value to get these two
numbers (line 3-4). Function toInt is used to convert from string to number. Two passed
numbers are put into function sum to calculate the sum (line 12). All map functions emit
the same key ”” and the sum of its sequence as value so that all the partial sums come
to a reducer (line 14). The reduce function of this problem is very similar to the reduce
function described in Word Count problem, which calculates the sum of all the associated
values of the input key (line 17-29).

4.7.2 17-Queens

N-Queens problem can be solved with iterative Map-Reduce. In this example, we try to
use MLoop to find the solution for it. The solution starts with trying to find all possible
ways of putting first n queens on the board, then finding the complete solution for each
way.

Listing 4.13: MapReduce job to put one more queen into the board

1 fun addQueen (qs,n) = let
2 val col = 1 + List.length qs
3 fun put row = if row > n then ()
4 else if conflict (col,row) qs then put (row + 1)
5 else (MapContext.emit(randInt (), codeBoard((col,row)::qs, "")); put (row

+ 1))
6 in
7 put 1
8 end
9

10 fun append (row,nil) = [(1,row)]
11 | append (row, (col,x)::t) = (col + 1, row) :: (col,x)::t
12

13 fun parseBoard value = let
14 val splitter = String.tokens(fn c => c = #"-")
15 fun toInt s = Option.getOpt (Int.fromString s, 0)
16 val values = map toInt (splitter value)
17 in foldl append nil values
18 end
19

20 fun mloop_map (key,value) = if value = "START" then addQueen ([],17)
21 else addQueen(parseBoard value,17)
22

23 fun mloop_reduce (key:string)=
24 while (ReduceContext.nextValue()) do
25 ReduceContext.emit("", ReduceContext.getInputValue())

The code snippet to find all possible ways to add one more queen on the next column
is listed in Listing 4.13. The board is represented as a string. It can be ”1-3-5” means
the queens were put at the first, third and fifth row on the first, the second and the
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third column respectively; or the string can just be ”START” means no queen was put
on the board. That string then is parsed into a list of coordinates of queens on the board
using function parseBoard (line 13-18). The coordinate has the form (column, row).
For example, the string ”1-3-5” is parsed as [(1,1),(2,3), (3,5)]. For a specific board with
known size which is filled by queens for several first columns, function addQueen tries
to put a queen on every row (line 1-8). The legal row is reported as key-value pair: the
key is randomized from 1 to 10, the value is the string representing the board (line 5).
Remember that all values associated with a key are sent to only one reducer. So the
purpose of randomizing key is to send the output values (the boards indeed) to different
reducers.

The mloop_map function receives a key-value pair whose the value contains the current
state of the board. If no queen was put on the board (value equals to ”START”), then the
program find all possible ways to put one queen on the first column: addQueen([],17)
(line 20). Here 17 is the size of the board. Otherwise, all possible ways to put one more
queen on the next column is searched (line 21).

After filling the board with several first columns, we then use depth-first-search to find
all possible solutions correspond to each filled board as shown in Listing 4.14. Function
fillQueen uses depth-first-search approach to find all complete solution for given board
and size (line 1-8). Each time it finds a board, it emits to the Hadoop Pipes framework
(line 4). The function mloop_map just parses the board (line 16), calls fillQueen to
get all complete solutions and emits them (line 19). The reduce function do nothing rather
than emitting all the associated values which represent the board (line 10-12).

Listing 4.14: MapReduce job to find the complete board with 17 queens

1 fun fillQueen (qs,n,col,fc) = let
2 fun put row = if row > n then fc ()
3 else if conflict (col,row) qs then put (row + 1)
4 else if col = n then (MapContext.emit(randInt (), codeBoard((col,row)::qs

, "")); put (row + 1))
5 else fillQueen((col,row)::qs,n,col+1, fn () => put (row+1))
6 in
7 put 1
8 end
9

10 fun mloop_reduce (key:string)=
11 while (ReduceContext.nextValue()) do
12 ReduceContext.emit("", ReduceContext.getInputValue())
13

14

15 fun mloop_map (key,value) = let
16 val board = parseBoard value
17 val col = 1 + List.length board
18 in
19 fillQueen(board, 17, col, fn () => ())
20 end

We define two kinds of job to solve 17-Queens problem. However, MLoop do not
support a mechanism to control the job sequence. Therefore, we have to come up the
manual solution. We write script to get the first five jobs run in sequence, one by one, the
later uses the output of the former. In first five job, we use the MapReduce job defined
in Listing 4.13. Finally, we run the job defined in Listing 4.14 on the output of the last
running job. In this way, we achieve the result that we need.
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4.7.3 Graph Search

Graph search is already described in previous chapters. It could be solved with iterative
MapReduce. Using MLoop, we can implement the solution for this problem with SML.

In the map phase, when a node comes in, it colors turns into ”BLACK” (means that
it was visited) if its current colors is ”GRAY” (means that it is going to being visited)
(line 6 - 9). At the same time, we also generate new nodes from each adjacent node with
incoming node’s distance plus 1, gray color and adjacent list NULL (line 7). If node is not
gray, we just push it out (line 11).

In the reduce phase, reducer will get a node id as key and all possible associated
information as value set. In line 44-45, we loop over this set. At each step of the loop,
the associated information is extracted using function unpackInfo to get the adjacent
list, the distance and the color. At the end of the loop, valid adjacent list, the smallest
distance and maximum color are found. Then reducer just push out a new node with old
key and new found values (line 46). The code snippet is shown in Listing 4.15.

Listing 4.15: A partial view of Graph Search in MLoop

1 fun mloop_map (key,value) = let
2 val (id,(edges,dist,color)) = unpack value
3 fun increaseDist dist = case (Int.fromString dist) of SOME t => Int.

toString(t+1) | NONE => "Integer.MAX_VALUE"
4 fun parseEdges e = if e = "NULL" then [] else split (e,#",")
5 in
6 if color = "GRAY" then (
7 map (fn k => printNode (k,"NULL",(increaseDist dist),color)) (parseEdges

edges);
8 printNode (id, edges,dist,"BLACK")
9 )

10 else
11 printNode (id,edges,dist,color)
12 end
13

14 (* info = EDGES|DISTANCE_FROM_SOURCE|COLOR| *)
15 fun unpackInfo info = let
16 val tmp = split (info,#"|")
17 val valid2 = if List.length tmp = 3 then true else raise Fail("Invalid

info.")
18 val e::d::c::_ = tmp
19 in
20 (e,d,c)
21 end
22

23 fun mloop_reduce (key:string) = let
24 val dist = ref "Integer.MAX_VALUE"
25 val colour = ref "WHITE"
26 val edge = ref "NULL"
27 fun colorInt color = case color of "WHITE" => 0 | "GRAY" => 1 | "BLACK"

=> 2 | _ => ˜1
28 fun maxColor (c1, c2) = let
29 val v1 = colorInt c1
30 val v2 = colorInt c2
31 in
32 if v1 < v2 then c2 else c1
33 end
34 fun minDist (d1, d2) = let
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35 val v1 = case (Int.fromString d1) of SOME t => t | NONE => maxInt
36 val v2 = case (Int.fromString d2) of SOME t => t | NONE => maxInt
37 in
38 if v1 < v2 then d1 else d2
39 end
40 fun update (edges:string,distance:string,color:string) = (if not (edges =

"NULL") then edge:=edges else ();
41 dist:= minDist (!dist, distance);
42 colour := maxColor(!colour,color))
43 in
44 while (ReduceContext.nextValue()) do
45 update (unpackInfo (ReduceContext.getInputValue()));
46 reduceNode (key,!edge,!dist,!colour)
47 end

In this problem, we can use the same approach with 17-Queens problem to run iterative
MapReduce job. However, as described in Section 2.3.3, to stop the job, we need to use a
counter to keep track of the status of graph. That is what we are not provided in MLoop.
Therefore, there is no way to know if all the nodes in the graph are visited or not. A
solution for this problem is that we just run the job several times on new output. Then
we use another job to check if there is ”GRAY”node in the graph or not. If not, we stop.
Otherwise, we run above job again on the latest output several times and then check again.
We repeat that process till we are sure to have the final graph.

4.8 MLoop Limitations

From actual use cases, we find out that MLoop suffers from several shortcomings. They
come from the implementation as well as the nature of the approach to develop MLoop.

In this implementation, MLoop does not support partitioner and Hadoop job counters
because the available amount of time for implementation is limited. Partitioner decides
the reducer to which an intermediate key-value pairs belongs. Lacking of supporting
partitioner makes developers impossible to customize this function. In some situation, the
performance of MapReduce jobs is increased a lot if using job counters. This cannot be
achieved in MLoop because it does not support counters. Finally, access to HDFS is not
fully supported in current implementation of MLoop. It is restricted in pre-defined actions
of record reader and writer.

The current approach of MLoop has some drawbacks. Because it extends Hadoop
Pipes, which does not provide any mechanisms to chain multiple jobs. This is also im-
possible in MLoop. Therefore, a class of problems which need iterative jobs to solve are
not able to be implemented in MLoop. Furthermore, communication between MLoop and
Java framework is through Hadoop Pipes. It introduces overhead on data communications
which can reduce the performance of the job.





Chapter 5

Evaluation and Results

In order to verify the efficiency and usefulness of MLoop, we conduct various experi-
ments to compare it with other existing large-scale solutions. Considered solutions include
Hadoop, Hadoop Streaming and MPI. Two clusters were set up to run these experiments:
a small heterogeneous cluster of high-end machines and a bigger homogeneous one of low-
end commodity machines. Different worth noting points then are discovered from the
results. From them, we suggest several guide-lines (advice) which should be considered
when choosing the parallel processing solution to solve the problem.

5.1 Evaluation Metrics

There are many aspects which need to be considered when choosing a solution for parallel
processing. Consider all of them is impossible in this thesis. Instead, we just choose several
notable aspects as metrics to evaluate chosen approaches. They include:

Performance In this evaluation, the performance is measured by the execution time -
the amount of time which the program needs to solve the problem.

Scalability This mentions how the program scales with different sizes of the same prob-
lem. When looking at the scalability, there are two aspects which are under consid-
eration. In terms of data, the execution time of the same algorithm should increase
linearly with the amount of data. We use ratio per unit (constant of proportionality)
value to compare effective of each solution in this aspect. This value is calculated as
follows.

ratio per unit =
yt
y0
xt
x0

= yt
y0
.x0
xt

, where yt is the execution time when the amount of

data is xt; y0 is the execution time when the amount of data is smallest, x0. In ideal
case, ratio per unit is 1 means that the execution time increases at the same rate
that the amount of data does. In actual case, this value is greater than 1 means that
the execution time increases faster than the amount of data does. The smaller value
of ratio per unit means better scalability.

In terms of resources, with the same amount of data, the execution time of same
algorithm should be inversely proportional to the cluster size. In order to compare
this property, we calculate the Constant of Proportionality a = yt

y0
. xt
x0

. In ideal
case, a is equal to 1 means that the execution time decreases at the same rate that

73



74 Chapter 5. Evaluation and Results

Specification Machine 1 Machine 2 Machine 3

Processor (CPU)

Core i7 - 3610QM Core 2 Quad Q9450 Core 2 Quad Q9450
2.2GHz 2.66GHz 2.66GHz
(4 cores, (4 cores, (4 cores,

2 threads/core) 1 thread/core) 1 thread/core)

Operating System Ubuntu 15.04 Ubuntu 14.04 Ubuntu 14.04

Memory 4GB RAM 8GB RAM 8GB RAM

Hard Disk
Read 60 MB/s Read 77 MB/s Read 98 MB/s
Write 61 MB/s Write 80 MB/s Write 111 MB/s

Network BandWidth 936 megabits per second

Table 5.1: Local cluster specification

the cluster size increases. However, in general, a is greater than 1 means that the
execution time decreases slower than the cluster size increases. This is because there
is an extra overhead on communication when increasing the cluster size. In this
metric, the smaller value also means better scalability.

Fault Tolerance This shows the robustness of the program with errors and faults. These
can come from hardware failures or software bugs. In this evaluation, we only view
it as ”yes” or ”no”.

Development Effort It is the effort that the developer needs to spend to develop a
program that can solve the problem. This is hard to measure. In this evaluation,
it is measured simply by the number of code lines in the program, and the level of
how hard or easy to maintain that program.

5.2 Experiments

In our experiment, we evaluate the performance of the system under two input parameters.
The first is the cluster configuration. We, indeed, compare the performance of two different
clusters: one is set up in local environment and the other is set up on Google Cloud Service.
The second input parameter is the parallel approach that we use to solve the problem.
In the scope of this experiment, we compare different choices to develop programs for
large-scale problems. They include MPI (Chapter 3), MLoop (Chapter 4), Hadoop and
Hadoop Streaming (Chapter 2).

5.2.1 Experiment Setup

Two clusters are set up to carry out the experiment. The Hadoop and MPI cluster then
are set up on these clusters.

The first cluster includes three machines with strong hardwares. These machines differ
from CPU, RAM, disks... The detail information is shown in Table 5.1. In total, this
cluster has 12 physical cores or 16 logical cores and 20 GB of memory to handle the tasks.

The second cluster is set up based on Google Compute Engine service. Eight virtual
machine instances form a homogeneous cluster. Each instance is a n1-standard-1, which
has one virtual CPU and 3.75 GB memory. Each instance then is attached to a 50 GB
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Specification Machine 1 - 8

Processor (CPU) A single hyperthread on
a Intel(R) Xeon(R) E5-2670 @ 2.60GHz

Operating System Ubuntu 14.04

Memory 3.75GB RAM

Storage 50 GB HDD

Hard Disk
Read 127 MB/s
Write 71 MB/s

Network BandWidth 1875 megabits per second

Table 5.2: Google cluster specification

Configuration Cloud Cluster Local Cluster

Map Container memory 1.5 GB 1.5 GB

Reduce Container Memory 2 GB 2 GB

Maximum memory 3 GB on each node 3 GB on node 1,
7 GB on node 2 and 3

Total memory 24 GB 17 GB

# Parallel mappers b3/1.5c ∗ 8 = 16 b3/1.5c+ b7/1.5c ∗ 2 = 10

# Parallel reducers b3/2c ∗ 8 = 8 b3/2c+ b7/2c ∗ 2 = 7

Table 5.3: Hadoop configuration

”standard persistent disk”. The detail specification is listed in Table 5.2. In total, this
cluster has 8 physical (logical) cores and 30 GB of memory to process the workload.

In terms of software, all the machines in both clusters have installed JDK 1.7.0 76,
OpenMPI 1.8.1 and Apache Hadoop 2.2.0. Hadoop is set up on each cluster so that
mapper container uses 1.5 GB of memory while reducer container uses 2 GB of memory.
The maximum memory that Hadoop YARN can utilize on each node is set up based on
the memory of that node. Table 5.3 shows the detail information.

To evaluate the performance of the cluster, two kinds of applications were tested. We
use one data-intensive application - Word Count - and three processor-intensive appli-
cations - Graph Search, Summation and 17-Queens problem. However, Graph Search is
also considered as a data-intensive problem because its input is not small at all. In each
problem, the input files are stored in Hadoop Distributed File System (HDFS). They are
also stored in the master node of MPI cluster so that the master process can read and
then distribute the data to worker processes. MPI task is tested with different number of
processes which are the multiple of the number of logical cores in cluster.

The input data for the Word Count problem is extracted from Amazon movie review
dataset [24]. This dataset consists of movie reviews from Amazon. The data were collected
during a period of more than ten years, including about eight million reviews. From this
dataset, 2GB, 4GB and 8GB are extracted as input files for the Word Count problem.
With Hadoop family, we use 6 reducers to generate the result.

The Graph Search problem finds the smallest distance from a given node to every node
in the graph. The input for this problem is a huge graph which is generated randomly by a
Java program. This graph contains one hundred thousand nodes; each has 1000 adjacent
nodes. This graph is stored as adjacency list in a 592 MB text file. The detail format
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of input and the algorithm of solution already mentioned in previous chapters. In this
experiment, 6 reducers are also used to generate the output in Hadoop cluster.

In Summation problem, the sum from zero to 1010 is calculated in a very normal
and in-efficient fashion: aggregate the sum one by one from the first number to the last.
The sequence is split into ten sub-sequences of equal length to calculate in parallel. The
purpose here is to measure the efficiency of parallel processing with Hadoop and MPI.

Another processor-intensive problem which is considered here is the 17-Queens. This
is the problem of placing 17 chess queens on a 17x17 chessboard so that no two queens
threaten each other. There are different optimized solutions for this. However, the purpose
of this experiment is to evaluate the performance of parallel solutions. Therefore, the
brute-force solution is applied to solve this problem. The detail algorithm is also described
in previous chapters. In this experiment, Hadoop cluster is set up to run with 8 reducers.

5.2.2 Experimental Results

Experiments were conducted to compare different large-scale parallel processing solutions
based on several pre-defined evaluation metrics. Therefore, the experiment results which
draw from these experiments will be discussed separately on each of chosen metric. To
get the performance result, each evaluation is conducted three times. The figures which
are reported are the average values.

Performance

In this metric, the performance differences between different solutions and between two
setup of clusters are analyzed. Furthermore, from the result of related work, we know
that MPI provides the best result and among the Hadoop family, the native Hadoop is the
best. However, we want to know how much better MPI is and to know the difference in
performance of our MLoop library and the native Hadoop. Therefore, these two concerns
are especially focused. Furthermore, in some experiments, we will see the appearance of
MLoop with combiner enabled (programs written with MLoop, using combiner to optimize
the performance) but not Hadoop Streaming with combiner enabled. That is because we
only want to know the effect of using combiner in MLoop library.

Figure 5.1 shows the execution time on Word Count when input file size is 2.1 GB. It is
easy to see that MPI out-performs other solutions. On the local cluster, the MPI job only
needs 50.6% the amount of time which the best of remaining solutions - native Hadoop -
needs. It means that MPI performs at least 1/0.506 = 1.98 times faster. On Google cloud
cluster, the MPI job spends more time. However, it is still at least 1.21 times faster than
others. This can be explained. MPI job on cloud cluster has less cores to handle the tasks
than the one in local cluster (8 cores vs 16 cores). Therefore, the performance of MPI on
cloud cluster is worse than on local one.

Among the family of Hadoop, the native Hadoop - in which programs are written
in Java - provides the best performance while Hadoop Streaming is the worst one. We
can see that the performance of Hadoop family on Google cloud cluster is better than
local cluster: 235.7 seconds compared with 273.3 seconds. The reason is simple. Hadoop
divides the job into smaller tasks. The number of parallel tasks that could be run at the
same time depends on the amount of available memory so that YARN resource manager
can allocate resource for the container. Table 5.3 shows that the cloud cluster has bigger
amount of available memory: 24 GB in comparison with 17 GB. However, we could see
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Figure 5.1: Performance on Word Count problem

that the judgment which we have with MPI above is not true with MLoop. We already
know that increasing the degree of parallelization also increases communication costs. One
of disadvantages of MLoop architecture is that it uses a lot of communications between
modules. This can cause overhead on the performance as we see: MLoop performs worse
on cloud cluster.

There are two versions of MLoop which is tested in this problem: with and without
the combiner. With Word Count problem, the combiner helps to improve the performance
a lot, at least in theory. However, MLoop with combiner enabled does not work better
than the one without combiner. Enabling combiner increase the execution time from
292 seconds to 307 seconds and 288 seconds to 289.7 seconds on cloud and local cluster,
respectively. The overhead of enabling combiner in MLoop may be too big in this case. An
interesting point from the result is that MLoop works better than Hadoop Streaming: the
execution time is 6.3% less in cloud cluster (292 seconds versus 315 seconds) and 13.4%
less in local cluster (288 seconds compared with 332.7 seconds). In comparison with the
native Hadoop, MLoop provides promising results. On cloud cluster, the performance of
MLoop is as 81.3% (237.5/292) as the performance of the native Hadoop. This ratio is
even much better on local cluster when it is very close to 1, about 94.5% (273.3/288).

The results of Graph Search problem are shown in Figure 5.2. Note that in this exper-
iment, the reported execution time of MLoop and Hadoop Streaming is just the amount
of time to produce the answer in case we know the height of the tree. Otherwise, the
execution time must be greater than reported figures because we need more time to check
if that is the final answer. The purpose of this experiment is to evaluate the performance
when chaining multiple jobs. Therefore, it’s reasonable to have the assumption which we
know the height of the tree. The best solution is still MPI. It saves about 28% (211.4 sec-
onds compared with 292.3 seconds on local cluster and 303.9 seconds compared with 422.3
seconds on cloud cluster) the amount of time which the best one on remaining solutions
has to spend to solve the problem. The native Hadoop is still the best choice in Hadoop
family. The notable point in this problem is that MLoop really offers better results com-
pared with Hadoop Streaming. On cloud cluster, it saves the developer 4% the amount of
time when only needing 490 seconds instead of 508.7 seconds to finish the task. On local
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cluster, the amount of time which is saved is even much more with 8% degradation from
343.3 seconds to 314.3 seconds. This is brought back with the use of combiner. It reduces
the execution time from 333.3 seconds to 314.3 seconds, a 6% reduction. However, the
efficiency of using combiner in this problem is hard to know because the combiner only
helps to reduce one seconds (491 seconds and 490 seconds with and without using combiner
respectively) on cloud cluster. The result also shows that MLoop is worth to consider as
an alternative for the native Hadoop. Its performance is about 86% the performance of
the native one on both cluster configurations (333.3 seconds versus 292.3 seconds and 491
seconds versus 422.3 seconds on local and cloud cluster respectively).
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Figure 5.2: Performance on Graph problem

The result from Figure 5.2 also shows a remarkable point: the local cluster only needs
around 2/3 the amount of time that the cloud cluster spends to solve the problem. This
is a significant difference. This phenomenon is not hard to explain when remembering
that this is a processor-intensive problem. The cloud cluster is able to run 8 truly parallel
threads at the same time (8 machines * 1 cores * 1 thread/core) while the local cluster
has 16 truly parallel threads (4 cores * 2 threads/core + 4 cores * 1 thread/core + 4
cores * 1 thread/core). Moreover, each machine in the local cluster is more powerful as
we can see in the specification mentioned on the previous section. Therefore, solving the
problem with MPI on local cluster achieves better result. Indeed, the result from this
problem is also consistent with the result of Word Count problem when MPI also shows
better performance on local cluster. The processing power of each machine in the cluster
is also the explanation for the performance of Hadoop cluster in this experiment. The
local cluster is able to process the task faster on each phase of the job (map and reduce
phase) so that the overall performance achieved is better.

Figure 5.3 depicts the performance of cluster on 17-Queen problem. Because the oper-
ation in the reduce phase of the MapReduce algorithm does not really do any aggregation,
the combiner will not help to optimize anything. Hence, in this experiment, MLoop with
combiner enabled is not evaluated. As described before, this is the processor-intensive
problem. Therefore, we can observe the familiar pattern in the result. The local clus-
ter performs better on every parallel architecture, MPI and the family of Hadoop. The
amount of time that MPI and the native Hadoop spend on local cluster is about as 60% as
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on cloud cluster. On the other hand, MLoop and Hadoop Streaming on local cluster only
saves about 20% execution time on cloud cluster. Among tested solutions, MPI continues
showing its strengths in performance. The native Hadoop, the best in the Hadoop family,
is slower about 32% and 23% on local and cloud cluster respectively.
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Figure 5.3: Performance on 17-Queen problem

One thing that we can observer from the result is that MLoop provides an improve-
ment of about 9% in performance compared with Hadoop Streaming on both local and
cloud cluster. It reduces the execution time from 1519 seconds to 1382.3 seconds and from
1886.3 seconds to 1715.7 seconds on local and cloud cluster respectively. This improve-
ment saves a lot of time in long tasks. This experiment also confirms the promising of
MLoop in comparison with the native Hadoop. MLoop achieves 1377.7/1715.7 = 80%
the performance of the native Hadoop on cloud cluster. However, MLoop only obtains
about 60% the native Hadoop performance on local cluster when it needs 1382.3 seconds
to process while the native Hadoop only spends 831.7 seconds.
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Figure 5.4: Performance on Summation problem

The result of the last experiment is shown in Figure 5.4. In this experiment, the native
Hadoop performs really bad in comparison with others. Its execution time is from 3.4 to
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4 times the execution time of the worst one in remaining solutions. This comes from the
nature of the programming language. With MPI, Summation algorithm is implemented
in C++ using GMP library for arbitrary precision arithmetic. With MLoop and Hadoop
Streaming for Standard ML, this algorithm is implemented in SML. However, SML also
uses GMP as its multiple precision arithmetic library. GMP library offers very fast oper-
ations for huge operands compared with the implementation in Java which is used in the
native Hadoop. Therefore, it is reasonable that MPI, MLoop and Hadoop Streaming for
SML perform very well in comparison with the native Hadoop. Moreover, MPI is still the
best option when completing the task in only about 30 seconds. MLoop also shows very
good result with 50 seconds. Hadoop Streaming for SML works better than MLoop this
time with 37.3 and 46.5 seconds on local and cloud cluster respectively. The operations
which are executed by MLoop and Hadoop Streaming for SML are the same because they
use same code. The only difference between MLoop and Hadoop Streaming for SML in
this experiment is their communication with the MapReduce framework. Therefore, the
difference in performance of MLoop and Hadoop Streaming comes from the communi-
cation cost. Hadoop Streaming uses system pipes while MLoop communicates with the
MapReduce framework via socket. Therefore, Hadoop Streaming suffers from the cost of
converting between the (key,value) pair and the line of bytes as input/output of pipes.
Summation problem is a processor-intensive task with very few communication between
processes/workers. Each process/worker only receives two inputs from the mapper, the
starting and the ending number of the number sequence which is need to calculate the
sum. When they finish, a reducer receives the partial sums from mappers and calculates
the final result. Hence, the cost of converting in Hadoop Streaming is small. Furthermore,
using socket is as not cost-effective as using pipe. Therefore, MLoop is slower than Hadoop
Streaming in this case.

Scalability

In this metric, we conduct two tests: Word Count with different sizes of data and with vari-
ant sizes of cluster. The tests only provide reasonable results if the cluster is homogeneous
so that we can eliminate the effect of unexpected factors. Therefore, these experiments
are conducted on Google cloud cluster. However, we only have a limited resources with
maximum cluster size of 8. As a result, the analysis of scalability with respect to resources
is just appropriate for small clusters.

Input Size
Execution Time (s)/ Ratio per Unit

MPI MLoop Hadoop Streaming Hadoop

2 GB (1x) 184.882/1 276/1 276.667/1 235.667/1

4 GB (2x) 445.782/1.21 749/1.36 820/1.48 590/1.25

6 GB (3x) 620.133/1.12 1154/1.39 1194.5/1.44 961.5/1.36

8 GB (4x) 892.111/1.21 1559/1.41 1628.5/1.47 1225/1.30

Table 5.4: Word Count with different sizes of data

We conduct the first test with various sizes of input data: 2 GB, 4 GB, 6 GB and 8
GB. The result is reported in Table 5.4. Figure 5.5 visualizes the ratio per unit of each
solution at different sizes of input data: 2x (4GB), 3x (6 GB) and 4x (8 GB). It is expected
that the value is greater than one and the smaller it is, the better scalability is. From this
visualization, we can say that MPI provides the best scalability upon this dataset. When
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Figure 5.5: Scalability on Word Count with different input sizes

increasing the size of data 2 times, 3 times and 4 times, the execution time of MPI solution
increase correspondingly with a nearly same rate, the ratio per unit which is between 1.1
and 1.2 is close to 1. The native Hadoop is the next candidate. It offers a ratio per unit
ranged between 1.25 and 1.36, which is not too far from the ideal solution. MLoop is a
bit worse than the native Hadoop when the ratio per unit is from 1.36 to 1.41. Hadoop
Streaming shows that it has the least scalability when its ratio per unit is very close to 1.5
which means that the execution time almost increases 1.5 times faster than the amount
of data does.

Cluster Size
Execution Time (s)/ Constant of Proportionality
MPI MLoop Hadoop Streaming Hadoop

2 nodes (1x) 578.4085/1 1356.5/1 1441.5/1 1104/1

4 nodes (2x) 308.766/1.07 702/1.04 729.5/1.01 619.5/1.12

6 nodes (3x) 229.925/1.19 464/1.03 480/1.00 369.5/1.00

8 nodes (4x) 195.502/1.35 292/0.86 315/0.87 237.5/0.86

Table 5.5: Word Count with different cluster sizes

In the second test, Word Count problem with input data 2 GB is solved with different
cluster sizes ranged from 2 nodes to 8 nodes. Table 5.5 tells the detailed result. The
constant of proportionality a is illustrated in Figure 5.6. The red line is the value a in
the ideal case. It is expected that all the values are greater than the value of the ideal
case which is one. MPI provides very good scalability when double the size of cluster,
a = 1.07 ≈ 1. However, when the cluster size continues increasing, a also increases, from
1.07 to 1.19 and then 1.35. This means that MPI is less efficient with bigger cluster size,
up to 8 nodes. This result is reasonable because increasing the number of nodes in the
cluster also increases communication cost.

On the contrary, the Hadoop family achieves a very good value of a which is very
close to 1 or even below 1. It is extraordinary that the Hadoop family has a less than
1 (a ≈ 0.86) in 8 node cluster. It means that the execution time even decreases faster
than the cluster size increases. This is impossible if the cluster utilizes as much of its
strength as possible at any time. Consider the native Hadoop cluster. When changing the
cluster size from 2 nodes to 4 nodes (2 times), from 4 nodes to 6 nodes (1.5 times) and 6
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Figure 5.6: Scalability on Word Count with different cluster sizes

nodes to 8 nodes (1.33 times), the execution time reduces 1.78, 1.67 times and 1.55 times
respectively. This pattern shows that Hadoop cluster achieves better performance with
bigger cluster sizes. However, because there is not enough resources to test bigger cluster
size than 8 nodes, we do not have not enough data to correctly analyze this pattern. With
this test, we just know that Hadoop works well with cluster size of 6 or 8 than 2 or 4.
The inefficiency of very small cluster (2 or 4 nodes) makes Hadoop performs too badly
and spends too much time to complete. As a result, there is a big improvement when we
compare the performance between small cluster and big cluster. This is the explanation
for above extraordinary result.

Fault Tolerance

This feature is easy to test. One of the nodes is shut down. If the program is still able to
complete, the current solution provides good fault tolerance. Otherwise, it does not. We
should remember that MPI is a specification, not an implementation. Therefore, in this
criteria, we mention fault tolerance as property of an MPI program coupled with an MPI
implementation.

The actual result confirms that MPI (OpenMPI 1.8.1) does not provide fault tolerance
ability by default. When one of nodes fails, the entire program also fails. Although
OpenMPI supports BLCR checkpoint/restart system [2], it requires configuration and not
transparent to users. On the other hand, Hadoop supports fault tolerance by default as
it is designed for that. When a node fails, all the tasks running on the failed node will be
re-scheduled on another node of the cluster. Actual result shows that the Word Count on
Hadoop finishes after about 15 minutes in case of one node fails. In normal case, Hadoop
solves this problem in about 5 minutes. This is because by default Hadoop considers a
node as failed if it has sent no heartbeat during the period of ten minutes. This interval
can be configured by users. However, when we shutdown the master node, the Hadoop job
then fails to complete. This is a serious issue. However, in Hadoop cluster, this failure is
unlikely because the chance of a particular failing machine is low compared with the chance
of failing an arbitrary machine in cluster. Furthermore, Hadoop provides mechanisms to
recover from this failure. Therefore, it is not a big matter.
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In summary, fault tolerance in MPI is supported poorly. Hadoop, on the other hand,
provides well-designed, fault tolerant services. Hadoop cluster is robust with failures.

Development Effort

The development effort of parallel programs could be evaluated in many aspects. They
may include the amount of time to design, write program; how readable the code is;
the effort to maintain or debug program. These aspects are hard to evaluated properly:
the amount of time to develop programs depends on the experience of developer and the
complexity of algorithms that need to be implemented while two other aspects are hard to
quantify. Therefore, in the scope of this evaluation, we use two simple features to represent
the effort of develop programs. First, the number of code lines can be used to demonstrate
the complexity of algorithms. Therefore, it makes sense to use that number to measure
the development effort. Second, instead of measuring the effort to maintain the program
quantitatively, we consider it as three levels of difficulty: easy, medium and hard.

Problem
The number of code lines

MPI MLoop Hadoop Streaming Hadoop

Word Count 316 27 41 96

Graph Search 433 83 109 244

17-Queens 257 104 135 191

Summation 91 33 59 90

Table 5.6: The number of code lines

The results shown in Table 5.6 confirm that writing program in Standard ML provides
the most compact code. That is because Standard ML is the functional programming lan-
guage. Writing programs in SML means describing what the solution is rather than how
to solve it. Therefore, the program written in SM is shorter than in other non-functional
programming languages. Indeed, MLoop and Hadoop Streaming provides shorter pro-
grams as seen in the result. The reason that Hadoop Streaming program is longer than
corresponding program in MLoop is that there are operations which need to take place to
parse standard input into (key,value) input pair in Hadoop Streaming program with SML.

From previous experiments, we know that MPI provides the best performance. How-
ever, in return, the programs in MPI is much more complicated compared with programs
written in Hadoop family. With complicated algorithms such as Graph Search, 17-Queens
and even with simple program like Word Count, program written in MPI is 3 to 10 times
as long as in MLoop. That is because developers must handle different aspects which
in Hadoop they don’t have to do such as reading, distributing data, managing parallel
architecture.

The native Hadoop also provides compact codes. Programs written by Java MapRe-
duce is twice or three times as long as programs written in MLoop.

The level of difficulty to develop parallel programs is evaluated by my experience when
developing different algorithms with these parallel solutions. The thought is that parallel
models in Hadoop is also easy to develop because of its clear and simple ideas. I can write
programs simple and easy to understand, easy to debug and maintain without a lot of
effort. Therefore, the native Hadoop (Java MapReduce), MLoop and Hadoop Streaming
for SML have the difficulty level ”easy”. On the contrary, I spent a lot of time to write
programs with MPI. Most of time is spent to develop the parallel architecture, the way
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to split the task, the data as well as manage the synchronization between processes. The
effort which is needed to analyze the bug or discover the bug is also a major problem.
Finally, the complexity in the language is also a concern. Writing MPI in C++ requires a
big care about working with pointers and memory management. These tasks are simplified
in languages such as Java, Standard ML, but not in C/C++. Hence, the difficulty level
of writing programs in MPI is considered as ”hard”.

5.3 Discussion

Before MLoop is introduced, Hadoop Streaming is the first solution which is considered to
develop distributed and parallel programs with Standard ML. Results from experiments
show that performance of Hadoop Streaming is not so far from the native Hadoop. In
most of our experiments, Hadoop Streaming achieves about 73% to 85% performance
of the native Hadoop, except for the experiment on local cluster with 17-Queens prob-
lem where Hadoop Streaming only acquires about 55% the native Hadoop’s performance.
Hadoop Streaming only provides better performance in Summation problem when SML’s
strength on operations for huge operands is utilized. From [17], we also know that Hadoop
Streaming jobs which are programmed with C++ is slower than the native Hadoop in
data-intensive jobs, but not in processor-intensive jobs. Therefore, we may conclude that
Hadoop Streaming (with any language) suffers from performance losses in data-intensive
jobs. Its performance in processor-intensive jobs depends on the programming language
which is used in Hadoop Streaming.

On the other hand, although Hadoop Streaming (with SML) inherits fault tolerance
ability of Hadoop, it does not keep original scalability as analysis in the section 5.2.2. The
most advantage of using Hadoop Streaming is that MapReduce programs can be written in
Standard ML. This helps to reduce the development effort because developers are allowed
to use their favorite programming language. Nevertheless, developers can only define map,
reduce and combiner functions for MapReduce job running on Hadoop cluster. We cannot
control other aspects of Hadoop framework such as the input reader, output writer, the
counter, etc. Hadoop Streaming also does not support any mechanisms to chain multiple
MapReduce jobs. This limits the application of Hadoop Streaming on problems which
needs iterative jobs to resolve.

The results from experiments confirm that MLoop is a good replacement for Hadoop
Streaming to develop parallel programs with SML. In most metrics, MLoop beats Hadoop
Streaming when providing better features. Except for Summation problem, MLoop pro-
vides a 7% to 10% performance improvement in most cases. As a result, MLoop can
achieve about 80% - 95% performance of the native Hadoop in most cases. In the worst
case - 17-Queens on local cluster, MLoop gets 60% the native Hadoop’s performance.
MLoop is only left behind by Hadoop Streaming in problems which only require very few
data communications like Summation. MLoop is also better in terms of scalability and
development effort. Moreover, MLoop provides developers more control of on operating
MapReduce jobs. It allows developers to control the way Hadoop framework parses input
splits and writes output (key, value) pairs.

Good performance that MLoop brings back proves the our approach is right. Actually,
our approach is inspired by the work in [23] where Pydoop showed a big improvement
compared with Streaming (Python scripts). However, in terms of performance, the current
approach is not the best choice. The approach used in Perldoop [10] brings back much more
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improvements on the performance of Streaming (Perl scripts): at least five times faster.
As mentioned in section 1.1.3, this approach converts the Hadoop Streaming scripts in Perl
into Java codes and therefore allows to run every part of job inside Hadoop framework.

MLoop still has several weaknesses. Results from experiments force us to reconsider
the efficiency of combiner implementation of MLoop. It is expected that combiner helps
to reduce the execution time of MapReduce jobs. But combiner only helps to reduce
a small amount of time in Graph Search problem on local cluster while it almost does
not provide any improvement on cloud cluster. Using combiner in MLoop even makes
the performance worse as we saw in Word Count problem. This shows that the current
implementation is not efficient in communications between MLoop and Hadoop Pipes when
calling combiner function. Although MLoop achieves better scalability in comparison with
Hadoop Streaming, it is still worse than the native Hadoop. Furthermore, like Hadoop
Streaming, Hadoop cannot take advantage of Hadoop counter as well as freely access to
HDFS. We also cannot chain MapReduce jobs in MLoop.

If the performance of the applications is the key feature that we need, the native
Hadoop and MPI are the best candidates. Choosing them means that developers have to
change their programming languages. They have to use Java with the native Hadoop or
C/C++ with MPI. From experimental results, MPI provides best performance. MPI only
spends about 70% - 82% execution time of the native Hadoop. In the best case, it only
uses half amount of execution time. This result is consistent to the results reported in [17].
MPI also provides better scalability when it can exploit cluster’s resources more efficiently.
But this scalability decreases when increasing the cluster’s size as it also increases commu-
nication costs. This requires developers to maintain a more complicated parallel model to
communicate more efficiently between processes. Furthermore, MPI is really poor in fault
tolerant ability if compared with Hadoop. The effort that developers need to spend to
develop MPI programs is also much more than to write MapReduce programs. Take Word
Count program as an example. In MapReduce, we only need to define two simple steps:
tokenize the tokens in map phase and aggregate the result in reduce phase. In contrast,
developers have to write their own codes to distribute the data, manage communication
between processes, gather the result, etc. with MPI (section 3.3.1). In short, MPI puts
lots of burden to developers. This is worth to consider because in many applications like
try and error analysis, we need an approach which is quick, easy to develop rather than
spending too much time just for implementing the algorithms. In these cases, MPI is not
a wise choice. Hadoop and MLoop are much better solutions. Therefore, if we care about
the robustness and simpleness of our programs, the native Hadooop and MLoop are the
promising choices.

One question may arise when we see the performance of MPI in comparison with others
is that why we do not provide a Standard ML API for MPI but instead for Hadoop if MPI
provides so good performance. This is because MPI has to suffer from many weaknesses
as mentioned above in order to provide that performance. These weaknesses are very hard
to overcome. Meanwhile, MLoop is slower in performance but we can easily solve it with
larger cluster.

Another worth highlighting point that we could draw from experiments is the perfor-
mance of cluster on different configurations. We have two configurations: a smaller cluster
of stronger nodes (local cluster) and a bigger cluster of weaker nodes (cloud cluster). We
can recognize that the local cluster performs better on processor-intensive problems such
as 17-Queens, Graph Search and Summation. On Graph Search problem, the local cluster
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only spends two thirds the execution time of cloud cluster to complete the task. The
results allows us to confirm that the processing power of nodes in cluster is an impor-
tant factor which determines the performance on processor-intensive problems. On the
other hand, we could see that Hadoop cluster performs better on cloud cluster with Word
Count (a data-intensive problem). In this case, cloud cluster which has bigger available
memory for YARN containers provides higher degree of parallelization. Therefore, it is
easy to understand the result. However, MLoop is an exception for this judgment. As
analyzed before, the overhead of communications of MLoop when increasing the degree
of parallelization makes it worse on cloud cluster. Then we come to a conclusion: with
data-intensive problems, MLoop prefers a smaller cluster of stronger nodes to big cluster
of low-end commodity nodes. Finally, we realize from the experimental results that MPI
always performs better on cluster of stronger machines. MPI which requires developers
to manage the parallel model of program by themselves can utilize cluster’s processing-
resources efficiently and in an optimal way for a particular problem.

Above comments may make us want to come back to the ”scale-up” approach to build
cluster: purchasing high-end machines to build small clusters. Then we will have efficient
clusters with high performance. This may be true. However, the main challenge here is
that it is not cost effective since the costs of high-end machines do not scale linearly. A
machine with twice as many processors is often more than twice as expensive. In 2009,
Barroso and Hölzle [20] conducted a TPC-C benchmark [3] to compare the cost-efficiency
between cluster based on a high-end server and one based on a low-end server. The results
showed a difference in cost-efficiency of over a factor of four in favor of the low-end server.
Thus, the ”scale out” is preferred to ”scale up”. That is what MapReduce model aims to.
To achieve a desired performance, it is recommended to increase the cluster’s size rather
than increase the processing power of machines. However, we can use a hybrid approach
to reduce the disadvantage of ”scale up”. Instead of using high-end machines to build a
small cluster, we can have a bigger cluster but with mid-end commodity machines.

5.4 Guidelines

Experiences drawn from experiments can be summarized into more general guide-lines
which are worth to consider when choosing the distributed and parallel solution for actual
problem. The first guide-line is to define the ultimate goal of the desired solution. We
may want our solution to have good performance, high scalability, easy to develop, etc.
Understanding this clearly is the first step to find the best appropriate solution. We could
not find out a thing that ourselves do not know about it. In particularly, if we want to
have a solution that can provide performance as good as possible, MPI is the answer.
Otherwise, if we also require the solution to have other good features such as robustness,
easy to develop and maintain, Hadoop family provides promising choices.

The strengths of each solution for a particular problem is the next thing that we need
to care. Each parallel approach has its own strengths and weaknesses depending on the
application. The native Hadoop is the most reasonable choice for data-intensive problems.
With processor-intensive problems, MPI, Hadoop Streaming (C++ scripts) and Hadoop
Pipes may be are recommended because of the efficiency of C++ language. However, it is
impossible to have a common formula for every problem. For example, we could say that
in general the native Hadoop is the best one among Hadoop, Hadoop Streaming, MLoop.
However, in some situation, it is not true any more. The Summation problem gives us an
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example. The strength of Standard ML with operations on very big operands is exploited
in this experiment. Therefore, MLoop and Hadoop Streaming (SML scripts) is 3 or 4
times faster than the native Hadoop.

There are other aspects that we need to look at to decide the best suitable approach
for our problem. A detailed analysis on all of them is unnecessary. Instead, we should
focus on several critical aspects which can influence most to the operation of the solution.
They are the aspects which lots of researchers focus on such as scalability, development
effort, fault tolerance, operating and maintenance cost, energy cost.

The forth guide-line is that we may develop our own solution to meet our requirements.
Promising results offered by MLoop are the motivation for doing that. Although MLoop
still suffers from lots of drawbacks, it shows that it is not possible to provide an acceptable
solution through extending Hadoop. In this way, we still take advantage of great features
of Hadoop while also making use of good aspects of our favorite programming languages.
Hence, if we cannot change programming language but want to have the performance
beyond Hadoop Streaming, just implement an extension of Hadoop Pipes. Architecture
and necessary technologies are already discussed in section 4.3.

The last guide-line that we want to mention is about the cluster’s configuration. Al-
though ”scale out” is preferred to ”scale up” approach, we should think about the hybrid
approach. Instead of using a big cluster of low-end machines, we can use a slightly smaller
cluster of mid-end machines. This can increase the cost a bit, but the performance might
be improved a lot. Therefore, we recommend a cluster of more powerful machines. Besides
that, the configuring a cluster also depends on the type of cluster. If we want to build a
MPI cluster, the more total processing cores is, the better performance is. If we want to
build a Hadoop cluster, we should provide more available memory in order to increase the
degree of parallelization.





Chapter 6

Conclusions and Future Work

This chapter sums up the work and concludes this thesis. Section 6.1 gives a summary
of what have been done and the contribution of this work. Section 6.2 suggests possible
future work to improve the current solution as well as recommendations for future research.

6.1 Summary

Big Data has become a fact of the world. It is rapidly becoming one of the driving forces
behind the global economy. It leads to a strong demand of efficient processing and storage
models. This thesis aims to provide a distributed and parallel approach for programs
in Standard ML. Instead of inventing everything from scratch, we extend Hadoop Pipes
framework to make it support MapReduce programs defined in SML. This thesis responses
to two research objectives:

1. Develop a Standard ML API for Hadoop which allows to write MapReduce programs
in SML that can run on Hadoop cluster.

2. Evaluate new API (library) to show its performance in comparison with existing
large-scale solutions.

3. Provide some guide-lines to find out the best suitable solution for actual issue.

The library that we develop is called MLoop. It allows developers to use Standard
ML to define MapReduce programs. In current version of MLoop, developers can define
the map, reduce and combiner functions of MapReduce jobs. It also allows developers
to customize the way of parsing input splits into input (key, value) pairs to feed into
map function. Moreoever, the outputs of reduce function can be modified before actually
writing to Hadoop Distributed File System. MLoop inherits great features from Hadoop
such as fault tolerance, scalability, easy programming model, free system-level detail while
it stills keep the strengths of Standard ML.

Experimental results confirm that MLoop provides better performance than existing
approach provided by Hadoop, Hadoop Streaming. In general, MLoop performs worse
than the native Hadoop. However, in most experiments, it achieves about 80% to 95%
performance of the native Hadoop in terms of execution time. This is a very promising
result. In some special case, MLoop even beats the native Hadoop in terms of execution
time. Summation problem is an example. In this case, Standard ML is much faster than
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Java in processing operations with big numbers. As a result, Summation program in
MLoop requires much less amount of time than in Hadoop Java.

However, the results also show that the combiner of MLoop is not efficient and does not
work as expected. It does not provide significant improvement in cases which it should.
The combiner even reduces the performance on Word Count problem. This reduction
comes from the communication overhead of using combiner in MLoop. Furthermore, the
approach of developing MLoop makes it suffer from inevitable shortcomings. MLoop can-
not take advantage of Hadoop counter. This prevents developers from approaching some
useful programming patterns with Hadoop. MLoop also does not provide any mechanisms
to chain multiple MapReduce jobs to solve complicated problems. This makes it difficult
or even impossible to implement a class of problems which needs iterative MapReduce
tasks to solve.

Experiences from experiments are summarized and generalized into guide-lines. These
guide-lines together with MLoop are the main contribution of this thesis. The guide-lines
remind developers to consider aspects to find out the most suitable approach for their
actual issues with big data or large-scale computations.

6.2 Future Work

The current version of MLoop suffers from several drawbacks. Some of them are inevitable
while others can be improved. The first thing to improve MLoop is to reduce the communi-
cation overhead of combiner in MLoop. The intermediate output pairs of map function are
sent back to Hadoop Pipes framework and buffered there before sending back to combiner
function of MLoop. Therefore, a suggestion is that doing all of those stuffs in MLoop. In
that way, we can save a lot of communication costs between MLoop and Pipes framework.

In current version, developers indirectly works with HDFS through Record Reader and
Writer. This limits the operations to several pre-defined actions. Providing HDFS API in
MLoop which allows developers to read,write files, get information of files, directories is a
big improvement. This provides developers more control in file operations. Then several
business logics can be implemented more easily.

Hadoop framework allows developers to customize the partitioner functions. They
specify the reducer to which an intermediate key-value pair belongs. Furthermore, Hadoop
provides application-level counters that can be updated and retrieved by developers. Sup-
porting partitioner and counter in MLoop are also considered in future.

Because of limitation on available resources, our experiment were conducted with small
clusters. It is interesting to know the performance of different large-scale parallel solutions
on bigger clusters. Therefore, one of our future work after improving MLoop is to evaluate
it with other solutions on bigger clusters. At that time, we can get the results from clusters
which have sizes closer to real cases. As a result, we can have better analyses.

Finally, promising result of this thesis motivates us to go further to provide a complete
solution for Standard ML to write programs which can run on Hadoop cluster. Remember
that YARN supports different kinds of jobs not only MapReduce. Therefore, one sugges-
tion for future research is to study how to develop application running on YARN. Then
we can build a YARN application based on MapReduce model but for Standard ML. This
requires a lot of effort. However, we will be able to achieve a really good framework for
Standard ML which can utilize full features of MapReduce model.
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Appendix A

Working with MLoop

In this appendix, we cover how to use our library MLoop to build MapReduce programs
in Standard ML on Hadoop cluster.

A.1 Prerequisites

MLoop is written in C++ and Standard ML. MLton is used to compile Standard ML in
MLoop. So you need to install a MLton on your machine. Besides, MLoop executables
run on Hadoop cluster. Hence, you also need to install Java, version 6 or later.

A.2 Installation

A.2.1 Installing Hadoop

We cover here main step to configure a Hadoop cluster in Ubuntu. You can find a full
version here http://n0where.net/multi-node-hadoop-cluster/.

Adding dedicated Hadoop system user

We will use a dedicated Hadoop user account for running Hadoop. While that’s not
required but it is recommended, because it helps to separate the Hadoop installation from
other software applications and user accounts running on the same machine.

$ sudo addgroup Hadoop
$ sudo adduser -ingroup Hadoop hduser

We created a user named hduser and assigned him to group Hadoop.

Configuring SSH access

Because Hadoop works with a lot of nodes, it will need some techniques to perform its
operations. Indeed, it uses pass-phrase-less SSH for this purpose. Generating a public/pri-
vate key pair and placing it locally on every node in the cluster is the simplest way. At
that point, the master node can provide the private key and access to slave nodes.

To generate a SSH key for hduser account, we need:

1. Login as hduser with sudo
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2. Run this command to generate the key: $ ssh-keyegen -t rsa -P ""
It will ask to provide the file name in which to save the key, press ”Enter” so that it
will generate the key at ‘/home/hduser/.ssh’

To enable SSH access to your local machine with this newly created key.
$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

Disabling IPv6

Ubuntu is using 0.0.0.0 IP for different Hadoop configurations. Hence, we need to disable
IPv6. At first,

$ sudo gedit /etc/sysctl.conf
Then add the following lines to the end of the file:

#disable ipv6
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

Installing Hadoop

Run following command to download Hadoop version 2.2.0, unpack it and change the
owner.

$ wget https://archive.apache.org/dist/hadoop/core/hadoop-2.2.0/hadoop
-2.2.0.tar.gz

$ tar -xvzf hadoop-2.2.0.tar.gz
$ sudo chown -R hduser:Hadoop hadoop-2.2.0

Add the following lines at end of .bashrc file

export HADOOP_HOME=/home/hduser/hadoop-2.2.0
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

Add JAVA HOME to libexec/hadoop-config.sh at beginning of the file

$ vi /home/hduser/hadoop-2.2.0/libexec/hadoop-config.sh
...
export JAVA_HOME=’/usr/local/Java/jdk1.7.0_45’
...

Add JAVA HOME to hadoop/hadoop-env.sh at beginning of the file

$ vi /home/hduser/hadoop-2.2.0/etc/hadoop/hadoop-env.sh
...
export JAVA_HOME=’/usr/local/Java/jdk1.7.0_45’
...

Check Hadoop installation

$ cd /home/hduser/hadoop-2.2.0/bin
$ ./hadoop version
Hadoop 2.2.0
...
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At this point Hadoop installed in your node.
Create folder tmp

$ mkdir -p $HADOOP_HOME/tmp

Configuring multi-node cluster

Add IP address of Master and all Slaves to /etc/hosts – for both master and all the slave
nodes.

Password-less ssh from host master to host slave1:

$ ssh-copy-id -i /home/hduser/.ssh/id_dsa.pub hduser@slave
$ ssh slave1

Only at Master node, add all slaves into slaves file.

$ vi /home/hduser/hadoop-2.2.0/etc/hadoop/slaves
slave1
slave2
...

Add the properties in following hadoop configuration file which is availabile under
$HADOOP_CONF_DIR.

core-site.xml

<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>

</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hduser/hadoop-2.2.0/tmp</value>

</property>

hdfs-site.xml

<property>
<name>dfs.replication</name>
<value>2</value>

</property>
<property>
<name>dfs.permissions</name>
<value>false</value>

</property>

Note: Here, replication values is 2 [one master and one slave]. If you have more slaves put
replication value based on that. But it is recommend that replication value should be 3
for small cluster.

mapred-site.xml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

yarn-site.xml

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
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</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8025</value>

</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>

</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master:8040</value>

</property>

Only at Master node, format the namenode. This is just for the first time of setting
up cluster.

/home/hduser/hadoop-2.2.0/bin$ ./hadoop namenode -format

Starting Hadoop

We only need to start the process at Master node. The processes at slave nodes will
automatically start.

/home/hduser/hadoop-2.2.0/sbin$ ./start-dfs.sh
/home/hduser/hadoop-2.2.0/sbin$ ./start-yarn.sh

We use start-dfs.sh to start namenode and datanode and start-yarn.sh to
start resourcemanager and nodemanager.

A.2.2 Installing MLoop

At first, we need to install MLton
$ sudo apt-get install mlton-compiler
Install some required packages to compile MLoop.

$ sudo apt-get install uuid-dev
$ sudo apt-get install libssl-dev

Download and extract MLoop package from https://github.com/mywish07/
mloop/archive/master.zip. This zip file contains MLoop library in folder mloop-
master. MLoop library is also provided in the CD, at folder source code/MLoop.

$ wget https://github.com/mywish07/mloop/archive/master.zip
$ unzip master.zip

This package contains some example programs written in MLoop such as Word Count
(wordcount.sml), Graph Search (graph.sml), N-Queen (queen.sml and queen2.sml) and
Summation (sum.sml).

To compile wordcount.sml into executable program in Hadoop, use following build
utility. This assumes that you already set environment variable $HADOOP_HOME.

$ cd mloop-master
$ ./build main.sml

https://github.com/mywish07/mloop/archive/master.zip
https://github.com/mywish07/mloop/archive/master.zip
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In the same folder, the output executable file is mloop.

To execute this file in Hadoop cluster,

1. Start Hadoop

2. Copy this file into HDFS.

$ cd /home/hduser/hadoop-2.2.0/bin
$ ./hdfs dfs -copyFromLocal /home/hduser/mloop-master/mloop /

3. Use following command to start a job in Hadoop cluster

$ ./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.
java.recordwriter=true -input <input> -output <output folder> -program /
mloop -reduces 3

This command will execute the job defined by file mloop in the folder / of HDFS.
Before in this case, we do not use Record Reader and Writer of MLoop, the com-
mand has two options with values true. In case of using Record Reader, we set
hadoop.pipes.java.recordreader=false.

Option -reduces is optional. This is used to set the number of the reducers. Here
we use three reducers.

A.3 MLoop Documentation

MLoop is a project which aims to create a library for Standard ML to run in parallel with
Hadoop. MLoop provides a simple way to write parallel programs in Standard ML with the
Map and Reduce concepts of Hadoop. Running in the Hadoop cluster, parallel programs
written with MLoop inherit great features of Hadoop: scalability and fault tolerance.

MLoop is developed as an extension of Hadoop Pipes which delegates tasks to SML
functions. The SML executable file interacts with Hadoop Framework to process the task.
Hadoop Framework initializes the job, divides it into smaller tasks which can be run in
parallel. Each task will be handled by the SML functions.

A.3.1 MLoop Structures

MLoop provides several structures to interact between SML functions and the Hadoop
Pipes framework. These structures play an important role in the library.

MapContext

The MapContext structure provides two utility functions for manipulating the map task:
storing the address of MLoopMapper C++ class, an implementation of Mapper C++
abstract class; emitting the intermediate key-value pairs to the Hadoop Pipes framework.

Interface

val setAddress: MLton.Pointer.t ->unit
val emit: string * string ->unit

Description
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setAddress adress
store the address of MLoopMapper C++ class. This method is reserved for the
internal use. The developer has nothing to deal with it.

emit (key, value)
emit the intermediate key-value pair to the Hadoop Pipes framework.

ReduceContext

The ReduceContext structure provides utility functions for manipulating the reduce task:
retrieve the value associated with a specific key; emit final key-value pair.

Interface

val setAddress: MLton.Pointer.t ->unit
val emit: string * string ->unit
val getInputValue : unit ->string
val nextValue: unit ->bool
val getValueSet: unit ->string list

Description

setAddress adress
store the address of MLoopReducer C++ class. This method is reserved for the
internal use. The developer has nothing to deal with it.

emit (key,value)
emit the output (key, value) pair to the Hadoop Pipes framework.

getInputValue ()
return the next value associated with current key.

nextValue ()
check whether or not the next value associated with current key exists.

getValueSet ()
return all the values associated with current key. Developer must be careful. The
result list may consumes a lot of memory in case there are too many values.

Reader

The Reader structure provides utility functions for working with custom Record Reader.

Interface

val getOffset: unit ->Int64.int
val getBytes read: unit ->Int64.int
val updateOffset bytesConsumed: Int64.int * Int64.int ->unit
val getOffsetNow: unit ->Int64.int
val get: unit ->Reader
val seekHdfs: Int64.int ->unit

Description
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getOffset ()
return the offset of the current input split which corresponds to this map task.

getBytes read ()
return the number of bytes consumed by the reader for the last read operation.

updateOffset bytesConsumed (offset, bytesConsumed)
update the current offset of the reader in the file and the number of bytes consumed
for the last read operation.

getOffsetNow ()
return the current offset of the reader in the file.

get ()
return the reader.

seekHdfs offset
seek to given offset in file.

Writer

The Writer structure provides utility functions for working with custom Record Writer.

Interface

val emit: string * string ->unit

Description

emit (key,value)
write the key-value pair to the output file in HDFS.

A.4 Running Sample Programs in Hadoop

Use above steps to build executables for programs in MLoop and rename it. For example,
assume mloop-wc, mloop-graph, mloop-sum, mloop-queen and mloop-queen2 are the ex-
ecutables of wordcount.sml, graph.sml, sum.sml, queen.sml and queen2.sml, respectively.
We also upload all of these executables into root directory of HDFS. This is not required,
you can upload them into any folder in HDFS.

A.4.1 Word Count

Run following commands to run Word Count programs in Hadoop cluster with n reducers.

$ cd /home/hduser/hadoop-2.2.0/bin
$ ./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.

java.recordwriter=true -input <input> -output <output folder> -program /
mloop-wc -reduces n
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A.4.2 Summation

Run following commands to run Summation programs in Hadoop cluster.

$ cd /home/hduser/hadoop-2.2.0/bin
$ ./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.

java.recordwriter=true -input <input> -output <output folder> -program /
mloop-sum -reduces 1

A.4.3 17-Queens

In 17-Queens, we need to run in sequence different jobs to find the complete solution.
At first, we run five jobs defined in mloop-queen.sml, then we run job defined in mloop-
queens2.sml. Because MLoop does not support chaining jobs, we have to do it manually.
Create a bash file with following content:

#!/usr/bin/env bash
./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.java.

recordwriter=true -input /input-nqueen -output /output-mloop/queen1 -
program /mloop-queen -reduces 8

i=1
for j in 2 3 4 5
do
./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.

java.recordwriter=true -input /output-mloop/queen$((i++)) -output /
output-mloop/queen$j -program /mloop-queen -reduces 8

done

./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.java.
recordwriter=true -input /output-mloop/queen5 -output /output-mloop/
queen -program /mloop-queen2 -reduces 8

Then execute the bash file to run the jobs.

A.4.4 Graph Search

We have the same situation with previous problem. Therefore, we also create a bash file
with following content.

#!/usr/bin/env bash
./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.java.

recordwriter=true -input /input-graph -output /output-mloop/graph1 -
program /mloop-graph -reduces 6

i=1
for j in 2 3 4 5
do
./mapred pipes -D hadoop.pipes.java.recordreader=true -D hadoop.pipes.

java.recordwriter=true -input /output-mloop/graph$((i++)) -output /
output-mloop/graph$j -program /mloop-graph -reduces 6

done

Execute the bash file to run the jobs.
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Program Source Code

In this appendix, we include the full program source code for MapReduce programs.

B.1 Hadoop Java Programs

B.1.1 Word Count

Listing B.1: WordCount.java
1 import org.apache.hadoop.conf.Configuration;
2 import org.apache.hadoop.fs.FileSystem;
3 import org.apache.hadoop.fs.Path;
4 import org.apache.hadoop.io.IntWritable;
5 import org.apache.hadoop.io.Text;
6 import org.apache.hadoop.mapreduce.Job;
7 import org.apache.hadoop.mapreduce.Mapper;
8 import org.apache.hadoop.mapreduce.Reducer;
9 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

10 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
11 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
13

14 import java.io.IOException;
15 import java.util.StringTokenizer;
16

17 public class WordCount {
18 public static void main(String[] args) throws IOException,
19 InterruptedException, ClassNotFoundException {
20 long startTime = System.currentTimeMillis();
21 Path inputPath = new Path(args[0]);
22 Path outputDir = new Path(args[1]);
23

24 Configuration conf = new Configuration(true);
25 Job job = Job.getInstance(conf, "wordcount");
26 job.setJarByClass(WordCount.class);
27

28 job.setMapperClass(WordCountMapper.class);
29 job.setReducerClass(WordCountReducer.class);
30 if (args.length > 2)
31 job.setNumReduceTasks(Integer.parseInt(args[2]));
32 else
33 job.setNumReduceTasks(4);
34

35 // Specify key / value
36 job.setOutputKeyClass(Text.class);
37 job.setOutputValueClass(IntWritable.class);
38

39 // Input
40 FileInputFormat.addInputPath(job, inputPath);
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41 job.setInputFormatClass(TextInputFormat.class);
42

43 // Output
44 FileOutputFormat.setOutputPath(job, outputDir);
45 job.setOutputFormatClass(TextOutputFormat.class);
46

47 // Delete output if exists
48 FileSystem hdfs = FileSystem.get(conf);
49 if (hdfs.exists(outputDir))
50 hdfs.delete(outputDir, true);
51

52 // Execute job
53 int code = job.waitForCompletion(true) ? 0 : 1;
54 long endTime = System.currentTimeMillis();
55 System.out.println("Total time: " + (endTime - startTime) + "ms");
56 System.exit(code);
57

58 }
59

60 public static class WordCountMapper extends
61 Mapper<Object, Text, Text, IntWritable> {
62 private final IntWritable ONE = new IntWritable(1);
63 private Text word = new Text();
64

65 public WordCountMapper() {
66 }
67 public void map(Object key, Text value, Context context)
68 throws IOException, InterruptedException {
69 StringTokenizer itr = new StringTokenizer(value.toString());
70 while (itr.hasMoreTokens()) {
71 word.set(itr.nextToken());
72 context.write(word, ONE);
73 }
74 }
75 }
76

77 public static class WordCountReducer extends
78 Reducer<Text, IntWritable, Text, IntWritable> {
79 public void reduce(Text text, Iterable<IntWritable> values,
80 Context context) throws IOException, InterruptedException {
81 int sum = 0;
82 for (IntWritable value : values) {
83 sum += value.get();
84 }
85 context.write(text, new IntWritable(sum));
86 }
87 }
88

89 }

B.1.2 Graph Search

Listing B.2: GraphSearch.java
1 import org.apache.commons.logging.Log;
2 import org.apache.commons.logging.LogFactory;
3 import org.apache.hadoop.conf.Configuration;
4 import org.apache.hadoop.conf.Configured;
5 import org.apache.hadoop.fs.Path;
6 import org.apache.hadoop.io.IntWritable;
7 import org.apache.hadoop.io.LongWritable;
8 import org.apache.hadoop.io.Text;
9 import org.apache.hadoop.mapreduce.Counters;

10 import org.apache.hadoop.mapreduce.Job;
11 import org.apache.hadoop.mapreduce.Mapper;
12 import org.apache.hadoop.mapreduce.Reducer;
13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
14 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
16 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
17 import org.apache.hadoop.util.Tool;
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18 import org.apache.hadoop.util.ToolRunner;
19

20 import java.io.IOException;
21 import java.util.ArrayList;
22 import java.util.List;
23

24 public class GraphSearch extends Configured implements Tool {
25 public static final Log LOG = LogFactory.getLog(GraphSearch.class);
26 static int printUsage() {
27 System.out.println("graphsearch [-m <num mappers>] [-r <num reducers>]");
28 ToolRunner.printGenericCommandUsage(System.out);
29 return -1;
30 }
31

32 public static void main(String[] args) throws Exception {
33 int res = ToolRunner.run(new Configuration(), new GraphSearch(), args);
34 System.exit(res);
35 }
36

37 public int run(String[] args) throws Exception {
38 int iterationCount = 0;
39 long terminateValue = 1;
40 while (terminateValue > 0) {
41 String input;
42 if (iterationCount == 0)
43 input = "/input-graph";
44 else
45 input = "/output/output-graph-" + iterationCount;
46 String output = "/output/output-graph-" + (iterationCount + 1);
47

48 Job job = getJobConf(args);
49 FileInputFormat.setInputPaths(job, new Path(input));
50 FileOutputFormat.setOutputPath(job, new Path(output));
51

52 job.waitForCompletion(true);
53 Counters jobCnt = job.getCounters();
54 terminateValue = jobCnt.findCounter(counter_enum.ITERATION).getValue();
55 iterationCount++;
56 }
57 return 0;
58 }
59

60 private Job getJobConf(String[] args) throws IOException {
61 Configuration conf = getConf();
62 Job job = Job.getInstance(conf, "graphsearch");
63 job.setJarByClass(GraphSearch.class);
64

65 job.setInputFormatClass(TextInputFormat.class);
66 job.setOutputFormatClass(TextOutputFormat.class);
67 job.setOutputKeyClass(Text.class);
68 job.setOutputValueClass(Text.class);
69

70 job.setMapperClass(MapClass.class);
71 job.setReducerClass(Reduce.class);
72

73 for (int i = 0; i < args.length; ++i) {
74 if ("-r".equals(args[i])) {
75 job.setNumReduceTasks(Integer.parseInt(args[++i]));
76 }
77 }
78 return job;
79 }
80

81 public static enum counter_enum {ITERATION}
82

83 public static class MapClass extends Mapper
84 <LongWritable, Text, Text, Text> {
85 protected void map(LongWritable key, Text value, Context context) throws IOException,

InterruptedException {
86 Node node = new Node(value.toString());
87 // For each GRAY node, emit each of the edges as a new node (also GRAY)
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88 if (node.getColor() == Node.Color.GRAY) {
89 String edges = node.getEdges();
90 if (edges != null && !"NULL".equals(edges)){
91 for (String v : edges.split(",")) {
92 context.write(new Text(v), new Text("NULL|" + (node.getDistance() + 1) +

"|GRAY"));
93 }
94 }
95 // We’re done with this node now, color it BLACK
96 node.setColor(Node.Color.BLACK);
97 }
98

99 // If the node came into this method GRAY, it will be output as BLACK
100 context.write(new Text(node.getId()), node.getLine());
101 }
102 }
103

104 public static class Reduce extends Reducer
105 <Text, Text, Text, Text> {
106 protected void reduce(Text key, Iterable<Text> values,
107 Context context) throws IOException, InterruptedException {
108 String edges = "NULL";
109 int distance = Integer.MAX_VALUE;
110 Node.Color color = Node.Color.WHITE;
111

112 for (Text value : values) {
113 Node u = new Node();
114 u.updateInfo(value.toString());
115 if (!"NULL".equals(u.getEdges())) {
116 edges = u.getEdges();
117 }
118

119 // Save the minimum distance
120 if (u.getDistance() < distance) {
121 distance = u.getDistance();
122 }
123

124 // Save the darkest color
125 if (u.getColor().ordinal() > color.ordinal()) {
126 color = u.getColor();
127 }
128 }
129

130 Node n = new Node();
131 n.setDistance(distance);
132 n.setEdges(edges);
133 n.setColor(color);
134 context.write(key, new Text(n.getLine()));
135 if (color == Node.Color.GRAY)
136 context.getCounter(counter_enum.ITERATION).increment(1L);
137 }
138 }
139 }

B.1.3 N-Queens

In this program, first five job will use the map function which is defined by MapClass class.
These job will do breadth-first search to find all possible ways of putting first five queens
on the board. The last job will use the map function which is defined by MapClass2 class.
This job finds all the solutions for each given board with five queens placed.

Listing B.3: NQueens.java
1 import org.apache.hadoop.conf.Configuration;
2 import org.apache.hadoop.conf.Configured;
3 import org.apache.hadoop.fs.Path;
4 import org.apache.hadoop.io.IntWritable;
5 import org.apache.hadoop.io.LongWritable;
6 import org.apache.hadoop.io.Text;
7 import org.apache.hadoop.mapreduce.Counters;
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8 import org.apache.hadoop.mapreduce.Job;
9 import org.apache.hadoop.mapreduce.Mapper;

10 import org.apache.hadoop.mapreduce.Reducer;
11 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
12 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
13 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
14 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
15 import org.apache.hadoop.util.Tool;
16 import org.apache.hadoop.util.ToolRunner;
17

18 import java.io.IOException;
19 import java.util.Random;
20

21 public class NQueens extends Configured implements Tool {
22 static int n = 17;
23 public static void main(String[] args) throws Exception {
24 if (args.length > 0) {
25 n = Integer.parseInt(args[0]);
26 System.out.println(n);
27 }
28 int res = ToolRunner.run(new Configuration(), new NQueens(), args);
29 System.exit(res);
30 }
31

32 @Override
33 public int run(String[] args) throws Exception {
34 int iterationCount = 0;
35

36 String input;
37 String output;
38 while (iterationCount < 5) {
39 if (iterationCount == 0) {
40 input = "/input-nqueen";
41 } else {
42 input = "/output/output-nqueen-" + iterationCount;
43 }
44

45 output = "/output/output-nqueen-" + (iterationCount + 1);
46 Job job = getJobConf(1, args);
47 FileInputFormat.setInputPaths(job, new Path(input));
48 FileOutputFormat.setOutputPath(job, new Path(output));
49

50 job.waitForCompletion(true);
51 Counters jobCnt = job.getCounters();
52 iterationCount++;
53 }
54 input = "/output/output-nqueen-" + iterationCount;
55 output = "/output/output-nqueen-" + (iterationCount + 1);
56 Job job = getJobConf(2, args);
57 FileInputFormat.setInputPaths(job, new Path(input));
58 FileOutputFormat.setOutputPath(job, new Path(output));
59 job.waitForCompletion(true);
60 return 0;
61 }
62

63 private Job getJobConf(int n, String[] args) throws IOException {
64 Configuration conf = getConf();
65 Job job = Job.getInstance(conf, "nQueens");
66 job.setJarByClass(NQueens.class);
67

68 job.setInputFormatClass(TextInputFormat.class);
69 job.setOutputFormatClass(TextOutputFormat.class);
70 job.setOutputKeyClass(IntWritable.class);
71 job.setOutputValueClass(Text.class);
72

73 if (n == 1)
74 job.setMapperClass(MapClass.class);
75 else
76 job.setMapperClass(MapClass2.class);
77 job.setReducerClass(Reduce.class);
78 if (args.length > 0)
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79 job.setNumReduceTasks(Integer.parseInt(args[0]));
80 else
81 job.setNumReduceTasks(6);
82

83 return job;
84 }
85

86 public static enum counter_enum {ITERATION}
87

88 public static class MapClass extends Mapper<LongWritable, Text, IntWritable, Text> {
89 public MapClass() {
90 }
91

92 @Override
93 protected void map(LongWritable key, Text value, Context context) throws IOException,

InterruptedException {
94 String val = value.toString().trim();
95 if ("START".equals(val)) {
96 for (int i = 0; i < n; i++) {
97 context.write(new IntWritable(1), new Text(String.valueOf(i)));
98 }
99 return;

100 }
101

102 String[] map = val.split("-");
103 int[] board = new int[map.length];
104 for (int i = 0; i < map.length; i++) {
105 board[i] = Integer.parseInt(map[i]);
106 }
107 Random r = new Random();
108 // Put new queen on new column
109 for (int row = 0; row < n; row++) {
110 if (safe(board, row)) {
111 context.write(new IntWritable(r.nextInt(10)), new Text(val + "-" + row));
112 }
113 }
114 }
115

116 private boolean safe(int[] board, int row) {
117 int currentColumn = board.length;
118 for (int i = 1; i <= currentColumn; i++) {
119 int preRow = board[currentColumn - i];
120 if (preRow == row || preRow == row - i || preRow == row + i)
121 return false;
122 }
123 return true;
124 }
125 }
126

127 public static class MapClass2 extends Mapper<LongWritable, Text, IntWritable, Text> {
128 public MapClass2() {
129 }
130

131 @Override
132 protected void map(LongWritable key, Text value, Context context) throws IOException,

InterruptedException {
133 String val = value.toString().trim();
134 String[] map = val.split("-");
135 int[] board = new int[n];
136 int len = map.length;
137 for (int i = 0; i < len; i++) {
138 board[i] = Integer.parseInt(map[i]);
139 }
140

141 Random r = new Random();
142 // Currently, board is filled with first ’len’ columns
143 // Find the solution for this branch
144 int column = len; // column ’len’ + 1
145 board[column] = -1;
146 while (column >= len) {
147 int row = -1;
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148 do {
149 row = board[column];
150 board[column] = row = row + 1;
151 } while (row < n && !safe(board, column));
152 if (row < n) {
153 if (column < n - 1) {
154 board[++column] = -1;
155 } else { // found the board
156 String s = String.valueOf(board[0]);
157 for (int i = 1; i < n; i++) {
158 s += "-" + board[i];
159 }
160 context.write(new IntWritable(r.nextInt(10)), new Text(s));
161 }
162 } else {
163 column--;
164 }
165 }
166 }
167

168 private boolean safe(int[] board, int column) {
169 int row = board[column];
170 for (int i = 1; i <= column; i++) {
171 int preRow = board[column - i];
172 if (preRow == row || preRow == row - i || preRow == row + i)
173 return false;
174 }
175 return true;
176 }
177 }
178

179 public static class Reduce extends Reducer<IntWritable, Text, Text, Text> {
180 @Override
181 protected void reduce(IntWritable key, Iterable<Text> values, Context context) throws

IOException, InterruptedException {
182 for (Text val : values) {
183 context.write(new Text(""), val);
184 }
185 }
186 }
187 }

B.1.4 Summation

Listing B.4: Sum.java
1 import hadoop.in.action.template.MapClass;
2 import hadoop.in.action.template.Reduce;
3 import org.apache.hadoop.conf.Configuration;
4 import org.apache.hadoop.conf.Configured;
5 import org.apache.hadoop.fs.FSDataOutputStream;
6 import org.apache.hadoop.fs.FileSystem;
7 import org.apache.hadoop.fs.Path;
8 import org.apache.hadoop.io.LongWritable;
9 import org.apache.hadoop.io.Text;

10 import org.apache.hadoop.mapreduce.Job;
11 import org.apache.hadoop.mapreduce.Mapper;
12 import org.apache.hadoop.mapreduce.Reducer;
13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
14 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
16 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
17 import org.apache.hadoop.util.Tool;
18 import org.apache.hadoop.util.ToolRunner;
19

20 import java.io.IOException;
21 import java.math.BigInteger;
22

23 public class Sum extends Configured implements Tool {
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24 @Override
25 public int run(String[] args) throws Exception {
26 Configuration conf = getConf();
27 Job job = Job.getInstance(conf,"sum");
28 job.setJarByClass(Sum.class);
29

30 Path in = new Path(args[0]);
31 Path out = new Path(args[1]);
32 FileInputFormat.setInputPaths(job, in);
33 FileOutputFormat.setOutputPath(job, out);
34

35 job.setInputFormatClass(TextInputFormat.class);
36 job.setOutputFormatClass(TextOutputFormat.class);
37 job.setOutputKeyClass(Text.class);
38 job.setMapOutputValueClass(BigIntegerWritable.class);
39 job.setOutputValueClass(Text.class);
40

41 FileSystem hdfs = FileSystem.get(conf);
42 hdfs.setWriteChecksum(false);
43 for (int i = 0; i < 20; i++){
44 Path file = new Path(in, "part_" + i);
45 FSDataOutputStream outStream = hdfs.create(file);
46 BigInteger base = new BigInteger("500000000");
47 String start = base.multiply(BigInteger.valueOf((long)i)).add(BigInteger.ONE).

toString();
48 String end = base.multiply(BigInteger.valueOf((long) (i + 1))).toString();
49 outStream.writeUTF(start + " " + end);
50 outStream.close();
51 }
52

53 job.setMapperClass(SumMap.class);
54 job.setReducerClass(SumReduce.class);
55 int code = job.waitForCompletion(true) ? 0 : 1;
56 System.exit(code);
57 return 0;
58 }
59

60 public static void main(String[] args) throws Exception {
61 int res = ToolRunner.run(new Configuration(), new Sum(), args);
62 System.exit(res);
63 }
64

65 private static class SumMap extends Mapper<LongWritable, Text, Text, BigIntegerWritable>{
66 Text word = new Text("");
67 @Override
68 protected void map(LongWritable key, Text value, Context context) throws IOException,

InterruptedException {
69 String val = value.toString().trim();
70 if ("".equals(val))
71 return;
72 String[] temp = val.split(" ");
73

74 BigInteger start = new BigInteger(temp[0].trim());
75 BigInteger end = new BigInteger(temp[1].trim());
76 BigInteger sum = BigInteger.ZERO;
77 while(start.compareTo(end) <= 0){
78 sum = sum.add(start);
79 start = start.add(BigInteger.ONE);
80 }
81 context.write(word, new BigIntegerWritable(sum));
82 }
83 }
84

85 private static class SumReduce extends Reducer<Text, BigIntegerWritable, Text, Text>{
86 @Override
87 protected void reduce(Text key, Iterable<BigIntegerWritable> values, Context context)

throws IOException, InterruptedException {
88 BigInteger sum = BigInteger.ZERO;
89 for (BigIntegerWritable value : values){
90 sum = sum.add(value.getValue());
91 }
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92 context.write(new Text("Total sum: "), new Text(sum.toString()));
93 }
94 }
95 }

B.2 MLoop Programs

B.2.1 Word Count

Listing B.5: wordcount.sml
1

2 fun mloop_map (key:string, value:string) =
3 let
4 val splitter = String.tokens(fn c => Char.isSpace c)
5 val words = splitter value
6

7 in
8 map (fn word => MapContext.emit (word,"1")) words;
9 ()

10 end
11

12 fun mloop_reduce (key:string)=
13 let
14 fun fromString str = let
15 val x = Int.fromString str
16 in
17 Option.getOpt(x,0)
18 end
19 val sum = ref 0
20 in
21 while (ReduceContext.nextValue()) do
22 sum := (!sum) + (fromString (ReduceContext.getInputValue()));
23 ReduceContext.emit(key, Int.toString(!sum))
24 end
25

26 fun mloop_combine (key:string) =
27 mloop_reduce (key)
28

29 val useCombiner = true

B.2.2 Graph Search

Listing B.6: graph.sml
1 fun split (str,c) = String.tokens (fn ch => ch = c) str
2

3 fun tokens str = String.tokens (fn c => Char.isSpace c) str
4

5 fun join (l,separator) = let
6 fun j ([],sep,result) = result
7 | j ([h],sep,result) = result ˆ h
8 | j (h::t, sep, result) = j (t,sep,result ˆ h ˆ sep)
9 in

10 j(l,separator,"")
11 end
12

13 val maxInt = Option.getOpt(Int.maxInt,1000000000)
14

15 (* info = EDGES|DISTANCE_FROM_SOURCE|COLOR| *)
16 fun unpackInfo info = let
17 val tmp = split (info,#"|")
18 val valid2 = if List.length tmp = 3 then true else raise Fail("Invalid info.")
19 val e::d::c::_ = tmp
20 in
21 (e,d,c)
22 end
23

24 (* str = ID EDGES|DISTANCE_FROM_SOURCE|COLOR| *)
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25 fun unpack str = let
26 val tmp = tokens str
27 val valid = if List.length tmp = 2 then true else raise Fail("Invalid key-value.")
28 val k::v::_ = tmp
29 in
30 (k, unpackInfo v)
31 end
32

33 fun pack {id=k:string,edges=e:string list,distance=d:int,color=c:string} = (join (e,",")) ˆ "|" ˆ
(Int.toString d) ˆ "|" ˆ c

34 fun newNode (identity,e, dist,c) = {id=identity,edges=e,distance=dist,color=c}
35

36 fun printNode (id, edges, dist, color) = MapContext.emit (id, edges ˆ "|" ˆ dist ˆ "|" ˆ color)
37 fun reduceNode (id, edges, dist, color) = ReduceContext.emit (id, edges ˆ "|" ˆ dist ˆ "|" ˆ

color)
38

39 fun mloop_map (key,value) = let
40 val (id,(edges,dist,color)) = unpack value
41 fun increaseDist dist = case (Int.fromString dist) of SOME t => Int.toString(t+1) | NONE => "

Integer.MAX_VALUE"
42 fun parseEdges e = if e = "NULL" then [] else split (e,#",")
43 in
44 if color = "GRAY" then (
45 map (fn k => printNode (k,"NULL",(increaseDist dist),color)) (parseEdges edges);
46 printNode (id, edges,dist,"BLACK")
47 )
48 else
49 printNode (id,edges,dist,color)
50 end
51

52 fun mloop_reduce (key:string) = let
53 val dist = ref "Integer.MAX_VALUE"
54 val colour = ref "WHITE"
55 val edge = ref "NULL"
56 fun colorInt color = case color of "WHITE" => 0 | "GRAY" => 1 | "BLACK" => 2 | _ => ˜1
57 fun maxColor (c1, c2) = let
58 val v1 = colorInt c1
59 val v2 = colorInt c2
60 in
61 if v1 < v2 then c2 else c1
62 end
63 fun minDist (d1, d2) = let
64 val v1 = case (Int.fromString d1) of SOME t => t | NONE => maxInt
65 val v2 = case (Int.fromString d2) of SOME t => t | NONE => maxInt
66 in
67 if v1 < v2 then d1 else d2
68 end
69 fun update (edges:string,distance:string,color:string) = (if not (edges = "NULL") then edge:=

edges else ();
70 dist:= minDist (!dist, distance);
71 colour := maxColor(!colour,color))
72 in
73 while (ReduceContext.nextValue()) do
74 update (unpackInfo (ReduceContext.getInputValue()));
75 reduceNode (key,!edge,!dist,!colour)
76 end

B.2.3 N-Queens

Listing B.7: queen.sml
1 fun threat (x,y) (x’,y’) = let
2 val distance = x’ - x
3 in
4 y = y’ orelse y = y’ - distance orelse y = y’ + distance
5 end
6

7 fun conflict pos = List.exists (threat pos)
8

9 fun randInt ()= let
10 val t = Time.now()
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11 val b = Time.toMilliseconds t
12 val bucket = b mod 10
13 in
14 IntInf.toString bucket
15 end
16

17 fun codeBoard ([],str) = str
18 | codeBoard ((_,row)::t, "") = codeBoard(t, Int.toString row)
19 | codeBoard ((_,row)::t, str) = codeBoard(t, (Int.toString row) ˆ "-" ˆ str)
20

21 fun addQueen (qs,n) = let
22 val col = 1 + List.length qs
23 fun put row = if row > n then ()
24 else if conflict (col,row) qs then put (row + 1)
25 else (MapContext.emit(randInt (), codeBoard((col,row)::qs, "")); put (row + 1))
26 in
27 put 1
28 end
29

30 fun append (row,nil) = [(1,row)]
31 | append (row, (col,x)::t) = (col + 1, row) :: (col,x)::t
32

33 fun parseBoard value = let
34 val splitter = String.tokens(fn c => c = #"-")
35 fun toInt s = Option.getOpt (Int.fromString s, 0)
36 val values = map toInt (splitter value)
37 in foldl append nil values
38 end
39

40 fun mloop_map (key,value) = if value = "START" then addQueen ([],17)
41 else addQueen(parseBoard value,17)
42

43 fun mloop_reduce (key:string)=
44 while (ReduceContext.nextValue()) do
45 ReduceContext.emit("", ReduceContext.getInputValue())

Listing B.8: queen2.sml
1 fun threat (x,y) (x’,y’) = let
2 val distance = x’ - x
3 in
4 y = y’ orelse y = y’ - distance orelse y = y’ + distance
5 end
6

7 fun conflict pos = List.exists (threat pos)
8

9 fun randInt ()= let
10 val t = Time.now()
11 val b = Time.toMilliseconds t
12 val bucket = b mod 10
13 in
14 IntInf.toString bucket
15 end
16

17 fun codeBoard ([],str) = str
18 | codeBoard ((_,row)::t, "") = codeBoard(t, Int.toString row)
19 | codeBoard ((_,row)::t, str) = codeBoard(t, (Int.toString row) ˆ "-" ˆ str)
20

21

22 fun fillQueen (qs,n,col,fc) = let
23 fun put row = if row > n then fc ()
24 else if conflict (col,row) qs then put (row + 1)
25 else if col = n then (MapContext.emit(randInt (), codeBoard((col,row)::qs, "")); put (row + 1))
26 else fillQueen((col,row)::qs,n,col+1, fn () => put (row+1))
27 in
28 put 1
29 end
30

31 fun append (row,nil) = [(1,row)]
32 | append (row, (col,x)::t) = (col + 1, row) :: (col,x)::t
33
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34 fun parseBoard value = let
35 val splitter = String.tokens(fn c => c = #"-")
36 fun toInt s = Option.getOpt (Int.fromString s, 0)
37 val values = map toInt (splitter value)
38 in foldl append nil values
39 end
40

41 fun mloop_reduce (key:string)=
42 while (ReduceContext.nextValue()) do
43 ReduceContext.emit("", ReduceContext.getInputValue())
44

45

46 fun mloop_map (key,value) = let
47 val board = parseBoard value
48 val col = 1 + List.length board
49 in
50 fillQueen(board, 17, col, fn () => ())
51 end

B.2.4 Summation

Listing B.9: sum.sml
1

2 fun mloop_map (key:string, value:string) =
3 let
4 val splitter = String.tokens(fn c => Char.isSpace c)
5 val words = splitter value
6 fun toInt number = let
7 val x = IntInf.fromString number
8 in
9 Option.getOpt(x,0)

10 end
11 fun sum (from:IntInf.int,to:IntInf.int, result:IntInf.int) = if from > to then result
12 else sum (from + 1, to, result + from);
13 val v = sum (toInt (List.nth(words,0)), toInt (List.nth(words,1)), 0);
14 in
15 MapContext.emit ("", IntInf.toString v)
16 end
17

18 fun mloop_reduce (key:string)=
19 let
20 fun fromString str = let
21 val x = IntInf.fromString str
22 in
23 Option.getOpt(x,0)
24 end
25 val sum = ref 0 : IntInf.int ref
26 in
27 while (ReduceContext.nextValue()) do
28 sum := (!sum) + (fromString (ReduceContext.getInputValue()));
29 ReduceContext.emit(key, IntInf.toString(!sum))
30 end
31

32 fun mloop_combine (key:string) =
33 mloop_reduce (key)
34

35 val useCombiner = true

B.3 MPI Programs

Here we only mention primary class for each problem. The full source code can be found
in attached CD.

B.3.1 Word Count
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Listing B.10: wordcount.cpp

1 #include "wordcount.h"
2 #include <iostream>
3 #include <fstream>
4 #include "mpi.h"
5 #include <sys/stat.h>
6 #include <sys/types.h>
7 #include <stdio.h>
8

9 using namespace std;
10

11 #define MIN(A,B) ((A) < (B)) ? (A) : (B)
12 #define BUFF_SIZE 256000000 // 256MB of data
13

14 int WordCount::count(int argc, char* argv[]) {
15 typedef struct {
16 int count;
17 char word[30];
18 } WordStruct;
19 int blocks[2] = {1, 30};
20 MPI_Datatype types[2] = {MPI_INT, MPI_CHAR};
21 MPI_Aint displacements[2];
22 MPI_Datatype obj_type;
23 MPI_Aint charex, intex;
24

25 int nTasks, rank;
26 MPI::Init(argc, argv);
27 nTasks = MPI::COMM_WORLD.Get_size();
28 rank = MPI::COMM_WORLD.Get_rank();
29

30 MPI_Type_extent(MPI_INT, &intex);
31 MPI_Type_extent(MPI_CHAR, &charex);
32 displacements[0] = static_cast<MPI_Aint> (0);
33 displacements[1] = intex;
34 MPI_Type_struct(2, blocks, displacements, types, &obj_type);
35 MPI_Type_commit(&obj_type);
36

37 // When creating out buffer, we use the new operator to avoid stack overflow.
38 // If you are programming in C instead of C++, you’ll want to use malloc.
39 // Please note that this is not the most efficient way to use memory.
40 // We are sacrificing memory now in order to gain more performance later.
41 long long int *pLineStartIndex; // keep track of which lines start where. Mainly for

debugging
42 char *pszFileBuffer;
43 int nTotalLines = 0;
44 if (argc >= 3)
45 buff_size = atoll(argv[2]);
46 else
47 buff_size = BUFF_SIZE;
48

49 FILE* file;
50 size_t total_size;
51 if (rank == 0) {
52 file = fopen("input.txt", "r+");
53 struct stat filestatus;
54 stat("input.txt", &filestatus);
55 total_size = filestatus.st_size;
56 }
57 map<string, int> totalwordcount;
58 while (1) {
59 int cont = 1;
60 if (rank == 0) {
61 pLineStartIndex = new long long int[buff_size / 10]; // assume number of line is

equal to number of character / 10
62 pLineStartIndex[0] = 0;
63 pszFileBuffer = readFile(file, total_size);
64 if (pszFileBuffer == NULL)
65 cont = 0;
66 }
67 nTotalLines = 0;
68 MPI::COMM_WORLD.Bcast(&cont, 1, MPI::INT, 0);
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69 if (cont == 0)
70 break;
71 if (rank == 0) {
72 char* ptr = strchr(pszFileBuffer, 10); // find a new line character
73 while (ptr != NULL) {
74 nTotalLines++;
75 pLineStartIndex[nTotalLines] = (ptr - pszFileBuffer + 1);
76 ptr = strchr(ptr + 1, 10);
77 }
78 pLineStartIndex[nTotalLines + 1] = strlen(pszFileBuffer);
79 }
80

81 // Thread zero needs to distribute data to other threads.
82 // Because this is a relatively large amount of data, we SHOULD NOT send the entire

dataset to all threads.
83 // Instead, it’s best to intelligently break up the data, and only send relevant portions

to each thread.
84 // Data communication is an expensive resource, and we have to minimize it at all costs.
85 char *buffer = NULL;
86 int totalChars = 0;
87 int portion = 0;
88 int startNum = 0;
89 int endNum = 0;
90

91

92 if (rank == 0) {
93 portion = nTotalLines / nTasks;
94 startNum = 0;
95 endNum = portion;
96 buffer = new char[pLineStartIndex[endNum] + 1];
97 strncpy(buffer, pszFileBuffer, pLineStartIndex[endNum]);
98 buffer[pLineStartIndex[endNum]] = ’\0’;
99 for (int i = 1; i < nTasks; i++) {

100 // calculate the data for each thread.
101 int curStartNum = i * portion;
102 int curEndNum = (i + 1) * portion - 1;
103 if (i == nTasks - 1) {
104 curEndNum = nTotalLines;
105 }
106 if (curStartNum < 0) {
107 curStartNum = 0;
108 }
109

110 // we need to send a thread the number of characters it will be receiving.
111 int curLength = pLineStartIndex[curEndNum + 1] - pLineStartIndex[curStartNum];
112 MPI_Send(&curLength, 1, MPI_INT, i, 1, MPI_COMM_WORLD);
113 if (curLength > 0)
114 MPI_Send(pszFileBuffer + pLineStartIndex[curStartNum], curLength, MPI_CHAR, i

, 2, MPI_COMM_WORLD);
115 }
116 delete []pszFileBuffer;
117 delete []pLineStartIndex;
118 } else {
119 // We are not the thread that read the file.
120 // We need to receive data from whichever thread
121 MPI_Status status;
122 MPI_Recv(&totalChars, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);
123 if (totalChars > 0) {
124 buffer = new char[totalChars + 1];
125 MPI_Recv(buffer, totalChars, MPI_CHAR, 0, 2, MPI_COMM_WORLD, &status);
126 buffer[totalChars] = ’\0’;
127 }
128 }
129

130 // Do the search
131 map<string, int> wordcount;
132 int size = 0;
133 WordStruct* words = NULL;
134 if (buffer != NULL) {
135 char* word = strtok(buffer, " ,.\r\n");
136 while (word != NULL) {
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137 if (wordcount.find(word) == wordcount.end())
138 wordcount[word] = 1;
139 else
140 wordcount[word]++;
141 word = strtok(NULL, " ,.\r\n");
142 }
143 delete []buffer;
144

145 size = wordcount.size();
146 if (size > 0) {
147 words = new WordStruct[size];
148 int i = 0;
149 for (map<string, int>::iterator it = wordcount.begin(); it != wordcount.end(); it

++) {
150

151 strcpy(words[i].word, (it->first).c_str());
152 words[i].count = it->second;
153 i++;
154 }
155 }
156 }
157

158 // At this point, all threads need to communicate their results to thread 0.
159 if (rank == 0) {
160 // The master thread will need to receive all computations from all other threads.
161 MPI_Status status;
162

163 // We need to go and receive the data from all other threads.
164 // aggregate the result for current chunk of data
165 for (int i = 1; i < nTasks; i++) {
166 int sz;
167 MPI_Recv(&sz, 1, MPI_INT, i, 3, MPI_COMM_WORLD, &status);
168 if (sz > 0) {
169 WordStruct* local_words = new WordStruct[sz];
170 MPI_Recv(local_words, sz, obj_type, i, 4, MPI_COMM_WORLD, &status);
171

172 for (int j = 0; j < sz; j++) {
173 totalwordcount[local_words[j].word] += local_words[j].count;
174 }
175 delete []local_words;
176 }
177 }
178

179 for (map<string, int>::iterator it = wordcount.begin(); it != wordcount.end(); it++)
{

180 totalwordcount[it->first] += it->second;
181 }
182 } else {
183 // We are finished with the results in this thread, and need to send the data to

thread 1.
184 // The destination is thread 0
185 MPI_Send(&size, 1, MPI_INT, 0, 3, MPI_COMM_WORLD);
186 if (size > 0) {
187 MPI_Send(words, size, obj_type, 0, 4, MPI_COMM_WORLD);
188 }
189 }
190 wordcount.clear();
191 if (words != NULL && size > 0)
192 delete []words;
193 }
194 if (rank == 0) {
195 fclose(file);
196 // Display the final calculated value
197 ofstream out("output.txt");
198 for (map<string, int>::iterator it = totalwordcount.begin(); it != totalwordcount.end();

it++) {
199 out << it->first << ": " << it->second << "\n";
200 }
201 totalwordcount.clear();
202 out.close();
203 }
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204 MPI_Finalize();
205 return 0;
206 }
207

208 void WordCount::print(char* str, int start, int len) {
209 cout << "@";
210 for (int i = 0; i < len; i++) {
211 if (str[start + i] == ’\r’)
212 cout << "EOL";
213 else if (str[start + i] == ’\n’)
214 cout << "NL";
215 else
216 cout << str[start + i];
217 }
218 cout << "@" << endl;
219 }
220

221 char* WordCount::readFile(FILE* file, size_t fileSize) {
222 long long readsize = MIN(buff_size, fileSize - lastPosition);
223 if (readsize <= 0)
224 return NULL;
225 char* str = new char[readsize + 1];
226 fseek(file, lastPosition, SEEK_SET); // read file from last position
227 fread(str, 1, readsize, file);
228

229 // trim the end of string: remove part of string after the last space
230 long start = 0;
231 if (readsize > 50)
232 start = readsize - 50;
233 // check from last 50 characters
234 char* ptr = strchr(&str[start], ’ ’);
235

236 if (ptr == NULL || readsize < buff_size) { // return entire string
237 lastPosition = fileSize;
238 str[readsize] = ’\0’;
239 return str;
240 }
241 char* pre = NULL;
242 while (ptr != NULL) {
243 pre = ptr;
244 ptr = strchr(ptr + 1, ’ ’);
245 }
246

247 int rSize = pre - str + 1;
248 if (pre != NULL) {
249 *pre = ’\0’;
250 }
251

252 // update current read position
253 lastPosition += rSize;
254 return str;
255 }

B.3.2 Graph Search

The Graph Search problem is solved in class BFS in bfs.cpp.

Listing B.11: bfs.cpp
1 #include <mpi.h>
2 #include "bfs.hpp"
3 #include "LineReader.hpp"
4 #include <sys/stat.h>
5 #include <stdio.h>
6 #include <vector>
7 #include <string.h>
8 #include <string>
9 #include <sstream>

10 #include <functional>
11

12 #include <fstream>
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13 using namespace std;
14

15 #define LENG 0
16 #define DATA 1
17 #define RESPONSE 2
18

19 const int LOW = 1;
20 const int HIGH = 2;
21 const int NO_DATA = 3;
22 const int HAVE_DATA = 4;
23 const int MORE_DATA = 5;
24

25 vector<string> split(const char* strChar, char delimiter) {
26 vector<string> internal;
27 stringstream ss(strChar); // Turn the string into a stream.
28 string tok;
29

30 if (delimiter == ’ ’ || delimiter == ’\t’) {
31 while (ss) {
32 ss >> tok;
33 internal.push_back(tok);
34 }
35 } else {
36 while (getline(ss, tok, delimiter)) {
37 internal.push_back(tok);
38 }
39 }
40 return internal;
41 }
42

43 int hashKey(string data, int n) {
44 hash<string> str_hash;
45 size_t value = str_hash(data);
46 return value % n;
47 }
48

49 void storeNewNode(int size, string key, string data, vector<string>* &otherdata) {
50 int id = hashKey(key, size);
51 otherdata[id].push_back(data);
52 }
53

54 vector<string> parseNode(const char* str) {
55 vector<string> result;
56 vector<string> internal = split(str, ’ ’);
57 result.push_back(internal[0]);
58 vector<string> edges = split(internal[1].c_str(), ’|’);
59 result.insert(result.end(), edges.begin(), edges.end());
60 return result;
61 }
62

63 void createNode(string& result, string id, string nodes, string dist, string color) {
64 result.clear();
65 result.append(id);
66 result.append("\t");
67 result.append(nodes);
68 result.append("|");
69 result.append(dist);
70 result.append("|");
71 result.append(color);
72 result.append("|");
73 }
74

75 void increaseDist(string& output, string distance) {
76 if (distance.compare("Integer.MAX_VALUE") == 0) {
77 output = distance;
78 return;
79 }
80

81 int value = stoi(distance);
82 output = to_string(value + 1);
83 }
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84

85 void minDist(string& output, string dist1, string dist2) {
86 if (dist1 == "Integer.MAX_VALUE") {
87 output = dist2;
88 return;
89 } else if (dist2 == "Integer.MAX_VALUE") {
90 output = dist1;
91 return;
92 }
93

94 int value1 = stoi(dist1);
95 int value2 = stoi(dist2);
96 output = value1 < value2 ? dist1 : dist2;
97 }
98

99 int encodeColor(string color) {
100 if (color == "WHITE")
101 return 0;
102 if (color == "GRAY")
103 return 1;
104 if (color == "BLACK")
105 return 2;
106 return -1;
107 }
108

109 void maxColor(string& output, string color1, string color2) {
110 int c1 = encodeColor(color1);
111 int c2 = encodeColor(color2);
112 output = c1 < c2 ? color2 : color1;
113 }
114

115 void swap(string& s1, string& s2) {
116 string temp;
117 temp = s1;
118 s1 = s2;
119 s2 = temp;
120 }
121

122 void siftDown(vector<string>& data, int start, int n) {
123 while (start * 2 + 1 < n) {
124 // children are 2*i + 1 and 2*i + 2
125 int child = start * 2 + 1;
126 // get bigger child
127 if (child + 1 < n && data[child] < data[child + 1]) child++;
128

129 if (data[start] < data[child]) {
130 swap(data[start], data[child]);
131 start = child;
132 } else
133 return;
134 }
135 }
136

137 void sort(vector<string> &data) { // heap-sort
138 int size = data.size();
139 if (size == 0)
140 return;
141 for (int k = size / 2; k >= 0; k--) {
142 siftDown(data, k, size);
143 }
144

145 while (size > 1) {
146 swap(data[size - 1], data[0]);
147 siftDown(data, 0, size - 1);
148 size--;
149 }
150 }
151

152 void sendData(int target, vector<string> &data, int count) {
153 MPI_Send(&count, 1, MPI_INT, target, LENG, MPI_COMM_WORLD);
154 for (int i = 0; i < count; i++) {
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155 int data_len = data[i].length();
156 MPI_Send(&data_len, 1, MPI_INT, target, LENG, MPI_COMM_WORLD);
157 MPI_Send(data[i].c_str(), data_len, MPI_CHAR, target, DATA, MPI_COMM_WORLD);
158 }
159 }
160

161 void receive_resp(int from, vector<string> &output) {
162 int len;
163 MPI_Recv(&len, 1, MPI_INT, from, LENG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
164

165 for (int i = 0; i < len; i++) {
166 int data_len;
167 MPI_Recv(&data_len, 1, MPI_INT, from, LENG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
168 char* rdata = new char[data_len + 1];
169 rdata[data_len] = ’\0’;
170 MPI_Recv(rdata, data_len, MPI_CHAR, from, DATA, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
171 string d(rdata);
172 output.push_back(d);
173

174 delete []rdata;
175 }
176 }
177

178 void reduce(vector<string> &input, vector<string> &output) {
179 string previous("NULL");
180 string edges("NULL");
181 string distance("Integer.MAX_VALUE");
182 string color("WHITE");
183

184 sort(input);
185 for (int k = 0; k < input.size(); k++) {
186 vector<string> node = parseNode(input[k].c_str());
187 string node_id = node[0];
188 if (node_id.compare(previous) != 0) {
189 if (k > 0) {
190 string nnode;
191 createNode(nnode, previous, edges, distance, color);
192 output.push_back(nnode);
193 }
194 previous = node_id;
195 edges = "NULL";
196 distance = "Integer.MAX_VALUE";
197 color = "WHITE";
198 }
199

200 if (node[1].compare("NULL") != 0) {
201 edges = node[1];
202 }
203 minDist(distance, distance, node[2]);
204 maxColor(color, color, node[3]);
205 }
206

207 if (input.size() > 0) {
208 string nnode;
209 createNode(nnode, previous, edges, distance, color);
210 output.push_back(nnode);
211 }
212 }
213

214 int BFS::run(int argc, char* argv[]) {
215 int size, rank;
216 MPI::Init(argc, argv);
217 size = MPI::COMM_WORLD.Get_size();
218 rank = MPI::COMM_WORLD.Get_rank();
219

220 const int FINISH = -1;
221

222 // Read data and distribute
223 vector<string> input;
224 if (rank == 0) {
225 FILE* file;
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226 size_t total_size;
227 const char* name = "graph.txt";
228 LineReader* reader;
229

230 if (argc >= 3)
231 name = argv[2];
232

233 file = fopen(name, "r+");
234

235 struct stat filestatus;
236 stat(name, &filestatus);
237 total_size = filestatus.st_size;
238

239 reader = new LineReader(file, total_size);
240 char* line = NULL;
241 reader->readLine(line);
242

243 int id = 0;
244 while (line != NULL) {
245 if (id == 0) {
246 string node(line);
247 input.push_back(node);
248 }
249 else { // send this data to worker process
250 int len = strlen(line);
251 MPI_Send(&len, 1, MPI_INT, id, LENG, MPI_COMM_WORLD);
252 MPI_Send(line, strlen(line), MPI_CHAR, id, DATA, MPI_COMM_WORLD);
253 }
254

255 delete []line;
256 reader->readLine(line);
257

258 id = (id + 1) % size;
259 }
260 for (int i = 1; i < size; i++) {
261 MPI_Send((void *) &FINISH, 1, MPI_INT, i, LENG, MPI_COMM_WORLD);
262 }
263

264 fclose(file);
265 reader->close();
266 delete reader;
267 } else { // receive data from server
268 int len;
269 while (true) {
270 MPI_Recv(&len, 1, MPI_INT, 0, LENG, MPI_COMM_WORLD, MPI_STATUSES_IGNORE);
271 if (len == FINISH) break;
272

273 char* line = new char[len + 1];
274 line[len] = ’\0’;
275 MPI_Recv(line, len, MPI_CHAR, 0, DATA, MPI_COMM_WORLD, MPI_STATUSES_IGNORE);
276 string node(line);
277 input.push_back(node);
278 delete []line;
279 }
280 }
281

282 // Process: map data, sort, exchange, merge
283 bool newLoop = true;
284 int m = 0;
285 vector<string>* other_data_tmp = new vector<string>[size];
286 vector<string>* other_data = new vector<string>[size];
287 while (newLoop) {
288 m++;
289 if (rank == 0)
290 printf("Iteration %d\n", m);
291 newLoop = false;
292 // Step 1: map data
293 for (int i = 0; i < size - 1; i++)
294 other_data[i].clear();
295 int pack = 0;
296 for (int i = 0; i < input.size(); i++) {
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297 vector<string> node = parseNode(input[i].c_str());
298 if (node[3].compare("GRAY") == 0) {
299 vector<string> edges = split(node[1].c_str(), ’,’);
300 for (int i = 0; i < edges.size(); i++) {
301 string new_node;
302 string newDist;
303 increaseDist(newDist, node[2]);
304 createNode(new_node, edges[i], "NULL", newDist, "GRAY");
305 storeNewNode(size, edges[i], new_node, other_data_tmp);
306 }
307 string oldNode;
308 createNode(oldNode, node[0], node[1], node[2], "BLACK");
309 storeNewNode(size, node[0], oldNode, other_data_tmp);
310 pack += edges.size();
311 } else
312 storeNewNode(size, node[0], input[i], other_data_tmp);
313 pack++;
314 if (pack >= 1500000) {
315 pack = 0;
316 for (int i = 0; i < size; i++) {
317 other_data_tmp[i].insert(other_data_tmp[i].end(), other_data[i].begin(),

other_data[i].end());
318 other_data[i].clear();
319 reduce(other_data_tmp[i], other_data[i]);
320 other_data_tmp[i].clear();
321 }
322 }
323 }
324

325 for (int i = 0; i < size; i++) {
326 reduce(other_data_tmp[i], other_data[i]);
327 other_data_tmp[i].clear();
328 }
329

330 // for each phase, 1 process sends, others receive.
331 for (int phase = 0; phase < size; phase++) {
332 if (phase == rank) {// send
333 for (int i = 0; i < size; i++) {
334 if (i == rank)
335 continue;
336 sendData(i, other_data[i], other_data[i].size());
337 other_data[i].clear();
338 }
339 } else {// receive
340 receive_resp(phase, other_data[rank]);
341 }
342 }
343

344 // Step 3: Sort data
345 sort(other_data[rank]);
346

347 // reduce phase: find the smallest distance
348 input.clear();
349

350 string previous("NULL");
351 string edges("NULL");
352 string distance("Integer.MAX_VALUE");
353 string color("WHITE");
354 bool hasGray = false;
355 for (int k = 0; k < other_data[rank].size(); k++) {
356 vector<string> node = parseNode(other_data[rank][k].c_str());
357 string node_id = node[0];
358

359 if (node_id.compare(previous) != 0) {
360 if (k > 0) {
361 string nnode;
362 createNode(nnode, previous, edges, distance, color);
363 input.push_back(nnode);
364

365 if (color.compare("GRAY") == 0)
366 hasGray = true;
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367 }
368 previous = node_id;
369 edges = "NULL";
370 distance = "Integer.MAX_VALUE";
371 color = "WHITE";
372 }
373

374 if (node[1].compare("NULL") != 0) {
375 edges = node[1];
376 }
377 minDist(distance, distance, node[2]);
378 maxColor(color, color, node[3]);
379 }
380 if (other_data[rank].size() > 0) {
381 string nnode;
382 createNode(nnode, previous, edges, distance, color);
383 input.push_back(nnode);
384 }
385

386 other_data[rank].clear();
387

388 if (color.compare("GRAY") == 0)
389 hasGray = true;
390

391 MPI_Allreduce(&hasGray, &newLoop, 1, MPI_BYTE, MPI_BOR, MPI_COMM_WORLD);
392 }
393

394 string out_name("graph");
395 out_name.append(to_string(rank));
396 out_name.append(".txt");
397 ofstream out(out_name);
398

399

400 for (int k = 0; k < input.size(); k++) {
401 out << input[k] << "\n";
402 }
403

404 out.close();
405 input.clear();
406 delete []other_data_tmp;
407 delete []other_data;
408 MPI::Finalize();
409 return 0;
410 }

B.3.3 N-Queens

Listing B.12: nQueen.cpp
1 #include <mpi.h>
2 #include "nQueen.hpp"
3 #include <queue>
4 #include <fstream>
5 #include <string>
6

7 #define DATA 1
8 #define BOARD_SIZE 14
9

10 const int REQUEST = -1, NO_MORE_WORK = -1;
11 const int NEW = -2;
12

13 using namespace std;
14

15 typedef struct {
16 int size;
17 int* board;
18 } iboard;
19

20 void push(queue<iboard>& q, int len, int* board) {
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21 iboard b;
22 b.size = len;
23 b.board = board;
24 q.push(b);
25 }
26

27 bool NQueens::safe(int len, int board[], int row) {
28 int currentColumn = len;
29 for (int i = 1; i <= currentColumn; i++) {
30 int preRow = board[currentColumn - i];
31 if (preRow == row || preRow == row - i || preRow == row + i)
32 return false;
33 }
34 return true;
35 }
36

37 bool NQueens::safeAtColumn(int* board, int column) {
38 int row = board[column];
39 for (int i = 1; i <= column; i++) {
40 int preRow = board[column - i];
41 if (preRow == row || preRow == row - i || preRow == row + i)
42 return false;
43 }
44 return true;
45

46 }
47 /**
48 * Master piece
49 */
50 void NQueens::nqueen_master(int nWorker, long& total) {
51 int msg, workerid, size;
52 int* board;
53 MPI_Status status;
54 queue<iboard> workQueue;
55 queue<int> freeWorker;
56 push(workQueue, 0, NULL);
57 long unsigned int remaining;
58 bool listen = true;
59

60 //breadth first search for first 5 columns
61 while (listen) {
62 MPI_Recv(&msg, 1, MPI_INT, MPI_ANY_SOURCE, DATA, MPI_COMM_WORLD, &status);
63 workerid = status.MPI_SOURCE;
64

65 if (msg == REQUEST) {
66 remaining = workQueue.size();
67 if (remaining > 0) {
68 iboard b = workQueue.front();
69 MPI_Send((void*) &NEW, 1, MPI_INT, workerid, DATA, MPI_COMM_WORLD);
70 MPI_Send(&b.size, 1, MPI_INT, workerid, DATA, MPI_COMM_WORLD);
71 if (b.size > 0)
72 MPI_Send(b.board, b.size, MPI_INT, workerid, DATA, MPI_COMM_WORLD);
73 workQueue.pop();
74 delete []b.board;
75 } else {
76 // store free worker, then assign work for it later
77 freeWorker.push(workerid);
78 if (freeWorker.size() == nWorker) // all workers are free
79 {
80 listen = false;
81 }
82 }
83

84 } else if (msg == NEW) {
85 MPI_Recv(&size, 1, MPI_INT, workerid, DATA, MPI_COMM_WORLD, MPI_STATUSES_IGNORE);
86 board = new int[size];
87 MPI_Recv(board, size, MPI_INT, workerid, DATA, MPI_COMM_WORLD, MPI_STATUSES_IGNORE);
88 if (size < board_size) {
89 // send this new work to free worker
90 if (freeWorker.size() > 0) {
91 int id = freeWorker.front();
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92 MPI_Send((void*) &NEW, 1, MPI_INT, id, DATA, MPI_COMM_WORLD);
93 MPI_Send(&size, 1, MPI_INT, id, DATA, MPI_COMM_WORLD);
94 MPI_Send(board, size, MPI_INT, id, DATA, MPI_COMM_WORLD);
95 delete []board;
96 freeWorker.pop();
97 } else { // store work and assign when requested
98 iboard b;
99 b.size = size;

100 b.board = board;
101 workQueue.push(b);
102 }
103 }
104 }
105 }
106

107 for (int i = 1; i <= nWorker; i++) {
108 // stop signal to worker
109 MPI_Send((void *) &NO_MORE_WORK, 1, MPI_INT, i, DATA, MPI_COMM_WORLD);
110 }
111

112 long count = 0;
113 MPI_Reduce(&count, &total, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
114 }
115

116 void NQueens::nqueen_worker(int rank, long& total) {
117 int msg, size;
118 long count = 0;
119 int* board;
120 string name("nqueen");
121 name.append(to_string(rank));
122 name.append(".txt");
123 ofstream out(name);
124 double t = 0.0;
125 while (true) {
126 // send work request
127 MPI_Send((void*) &REQUEST, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD);
128 // receive work
129 MPI_Recv(&msg, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD, MPI_STATUSES_IGNORE);
130 if (msg == NO_MORE_WORK) {
131 break;
132 }
133

134 int newSize;
135 MPI_Recv(&size, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD, MPI_STATUSES_IGNORE);
136 if (size < 5)
137 newSize = size + 1;
138 else newSize = board_size;
139 board = new int[newSize];
140 if (size > 0)
141 MPI_Recv(board, size, MPI_INT, 0, DATA, MPI_COMM_WORLD, MPI_STATUSES_IGNORE);
142

143 //add a new queen, breadth first search
144 if (size < 5) {
145 for (int row = 0; row < board_size; row++) {
146 if (safe(size, board, row)) {
147 board[size] = row;
148 if (newSize == board_size) { // found complete solution
149 if (store > 0) {
150 for (int i = 0; i < newSize - 1; i++) {
151 out << board[i] << "-";
152 }
153 out << board[size] << "\n";
154 }
155 count++;
156 } else {
157 MPI_Send((void*) &NEW, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD);
158 MPI_Send(&newSize, 1, MPI_INT, 0, DATA, MPI_COMM_WORLD);
159 MPI_Send(board, newSize, MPI_INT, 0, DATA, MPI_COMM_WORLD);
160 }
161 }
162 }
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163 } else {// depth first search: find the complete board
164 int column = size; // column ’size’ + 1
165 board[column] = -1;
166 while (column >= size) {
167 int row = -1;
168 do {
169 row = board[column] = board[column] + 1;
170 } while (row < board_size && !safeAtColumn(board, column));
171 if (row < board_size) {
172 if (column < board_size - 1) {
173 board[++column] = -1;
174 } else { // found the board
175 if (store > 0) {
176 for (int i = 0; i < newSize - 1; i++) {
177 out << board[i] << "-";
178 }
179 out << board[newSize - 1] << "\n";
180 }
181 count++;
182 }
183 } else {
184 column--;
185 }
186 }
187

188 }
189 delete []board;
190 }
191 out.close();
192 }
193

194 int NQueens::run(int argc, char* argv[]) {
195 board_size = BOARD_SIZE;
196 store = 1; // store data
197 int size, rank;
198 long total;
199 MPI::Init(argc, argv);
200 size = MPI::COMM_WORLD.Get_size();
201 rank = MPI::COMM_WORLD.Get_rank();
202

203 if (argc >= 3)
204 board_size = atol(argv[2]);
205 if (argc == 4)
206 store = atol(argv[3]);
207

208 if (rank == 0) {
209 nqueen_master(size - 1, total);
210 } else {
211 nqueen_worker(rank, total);
212 }
213

214 MPI::Finalize();
215 return 0;
216 }

B.3.4 Summation

Listing B.13: sum.cpp
1 #include "sum.h"
2 #include <iostream>
3 #include "mpi.h"
4 #include <cmath>
5 #include <gmp.h>
6

7 using namespace std;
8

9

10 int Sum::sum(int argc, char* argv[]) {
11 int rank, size;
12
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13 MPI::Init(argc, argv);
14 size = MPI::COMM_WORLD.Get_size();
15 rank = MPI::COMM_WORLD.Get_rank();
16

17 int startTime = MPI::Wtime();
18

19 mpz_t max;
20 if (argc == 3) {
21 mpz_init_set_str(max, argv[2], 10);
22 } else {
23 mpz_init_set_str(max, "1000", 10);
24 }
25

26 mpz_t nTasks, pSize, start, end, sum, m_rank;
27 mpz_init_set_ui(nTasks, size); // nTasks = size;
28 mpz_init(end);
29

30 mpz_init(pSize);
31 mpz_cdiv_q(pSize, max, nTasks); // pSize = max / nTasks
32

33 mpz_init(start);
34 mpz_mul_si(start, pSize, rank); // start = pSize * rank
35

36 if (rank == size - 1) {
37 mpz_set(end, max);
38 } else {
39 mpz_mul_si(end, pSize, rank + 1); // end = pSize * (rank + 1)
40 mpz_sub_ui(end, end, 1); // end = end + 1;
41 }
42

43

44 mpz_init(sum);
45 mpz_t i;
46 mpz_init_set(i, start);
47 while (mpz_cmp(i, end) <= 0) {
48 mpz_add(sum, sum, i); // sum = sum + i
49 mpz_add_ui(i, i, 1);
50 }
51

52

53 // At this point, all threads need to communicate their results to thread 0.
54 if (rank == 0) {
55 // The master thread will need to receive all computations from all other threads.
56 MPI_Status status;
57

58 for (int i = 1; i < size; i++) {
59 int sz;
60 MPI_Recv(&sz, 1, MPI_INT, i, 1, MPI_COMM_WORLD, &status);
61 char* value = new char[sz];
62 MPI_Recv(value, sz + 1, MPI_CHAR, i, 2, MPI_COMM_WORLD, &status);
63 mpz_t pSum;
64 mpz_init_set_str(pSum, value, 10);
65

66 mpz_add(sum, sum, pSum); // sum += pSum
67 }
68

69 int endTime = MPI::Wtime();
70 char* num = new char[mpz_sizeinbase(sum, 10) + 1];
71 mpz_get_str(num, 10, sum);
72 cout << num << endl;
73 cout << "Time: " << endTime - startTime << " seconds";
74 } else {
75 // The destination is thread 0.
76 char* t = new char[mpz_sizeinbase(sum, 10) + 1];
77 mpz_get_str(t, 10, sum);
78 int len = strlen(t);
79 MPI_Send(&len, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
80 MPI_Send(t, len + 1, MPI_CHAR, 0, 2, MPI_COMM_WORLD);
81 }
82

83 MPI::Finalize();
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84 return 0;
85 }








	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Listings
	Introduction
	Related Work
	Motivation
	Methodology
	Report Outline

	MapReduce and Its Open Implementation Hadoop
	MapReduce
	Hadoop: An Open Implementation of MapReduce
	Developing a MapReduce Application
	Hadoop Extensions for Non-Java Languages

	Message Passing Interface - MPI
	What is MPI
	Basic Concepts
	Sample Programs in MPI

	Standard ML API for Hadoop
	Programming in Standard ML
	Parallelization for SML
	Extend Hadoop Pipes for Standard ML
	Architecture of MLoop
	MLoop Implementation
	Writing MapReduce programs in MLoop
	Sample Programs in MLoop
	MLoop Limitations

	Evaluation and Results
	Evaluation Metrics
	Experiments
	Discussion
	Guidelines

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography
	Working with MLoop
	Prerequisites
	Installation
	MLoop Documentation
	Running Sample Programs in Hadoop

	Program Source Code
	Hadoop Java Programs
	MLoop Programs
	MPI Programs


