
Autonomous Learning of Core Skills
Off-line learning of a model-free reinforcement

learning agent with sparse reward and goal state

Master’s Thesis

Martin Forsberg Lie

Department of Computer Sciences
Østfold University College

Halden
January 16, 2022

Autonomous Learning of Core
Skills

Off-line learning of a model-free
reinforcement learning agent with sparse

reward and goal state

Master’s Thesis

Martin Forsberg Lie

Department of Computer Sciences
Østfold University College

Halden
January 16, 2022

Preface

I got my first degree in computer sciences more than 20 years ago, and have been working
nearly three decades within the information technology industry, mostly on the business
level in the domain of industrial IT. During this time there have been tremendous discoveries
within machine learning, and neural networks in particular. I have often got the question
on how to optimize some process, and how we can improve the outcome. Entering the field
of AI opens up an ocean of possibilities and methods.

As a child, I had a box full of electrical wires that I played with, and I remember
advancing to play-sets of different kinds and custom made electronics. I could wait outside
the radio shop for its opening and scan all the hardware, tools and supplies on the shelves,
picking a few missing components to play with back home. Sparking a blinking light bulb
or controlling the speed of a motor was mesmerizing. Later, I entered the computing
area with a Commodore 641, mostly for programming Basic. When my father bought an
IBM XT2 in 1985, a new world opened up for building applications and connecting my
knowledge to actual business use.

One day I asked my father, after seeing a crime investigation drama on television, how
they could identify fingerprints from a database that fast? Of course, it was fictitious, and
doing it in reality is hard, if not close to impossible. —Isn’t this something you should
solve? The flame inside me was lit — and finding digital solutions to problems has followed
me since. With the tools and methods available today, a fingerprint-identification system
can easily be set up using convolutional neural networks and digitized imagery [97].

With the computing power available at everyone’s fingertips, technological use and
advance become a matter for society. As we train our algorithms more than explicitly
programming them, there are fewer barriers to scaling business ideas or making disruptive
concepts. Conversational interfaces have changed how we communicate with businesses,
and self-driving cars are at the beginning of their journey towards safer transportation.
Our ideas and how we form them is not limited by technology, only by our visions. More
devices and businesses are connected to the internet, we have entered a world where the
evil compete with the good on a common, global platform.

This thesis is the result of a long-wanted journey into the world of artificial intelligence
and discusses some of the methods and tools to use for building a robot trained on existing
data. The robot is not physical but lives inside the computer for making robotized decisions.
The robot is not wired, and survive only on the mercy of humans.

Fukuda [22] defines basic, animal intelligence as the ability to adapt to dynamic
environments. Our AI robot starts from scratch, senses the world to create its knowledge
map, self-learns which decisions lead to positive results, and acts accordingly. This loop

1https://en.wikipedia.org/wiki/Commodore_64
2https://en.wikipedia.org/wiki/IBM_Personal_Computer_XT

i

of fundamental functions is shared amongst all living creatures and has been sought for
replication by mankind for long.

The thesis is a journey where I invite the reader to join the history, and therefore I
consistently use plurals to indicate that we are travelling together.

Martin Forsberg Lie
Engelsviken, January 16, 2022

Abstract

This thesis presents a concept and framework for training PPO, SAC and
DDPG reinforcement learning agents on historical data logs, exemplified using
an industrial spray drier use case. The work consists of four parts: discussing
the theoretical foundation of reinforcement learning, describing architecture
and realisation of an agent for testing the hypothesis, evaluation of the agent
performance in a synthetic simulation setup for an industrial spray drier, and
testing in a real-world scenario. A generative model using LSTM autoencoders
is trained on historical process data and used as a dynamic simulator for training
the agents by careful manipulation of the network state. The results show
that it is possible to train a reinforcement learning agent to act towards a
new goal set based on the dynamics found in the data set, both in uni- and
multivariate action spaces. The historical data logs must exhibit a wide range
of dynamics for proper training, which makes the method suitable for unstable-
and stochastic processes. This opens up many applications within the domain
of process control and optimization, beyond steady-state control.

Keywords: Reinforcement Learning, Actor Critic, Autoencoder, Recurrent
Neural Networks, Learning for Control

iii

Acknowledgments

At the start of my master’s programme, the Covid-19 pandemic consequently shut down all
physical presence at campus and forced us to find digital solutions for meeting, socializing
and project work. Thanks to technology, we have found ways to continue life, and the
pandemic is still raging when I hand in this thesis.

In these situations, we find comfort in family and friends, and my biggest supporters
have been my wife and children during this period, who have patiently let me devote our
free time to this work.

I would also like to thank Dr. Steinar Sælid who encouraged me to embark on this
programme, my supervisor Dr. Roland Olsson, and Msc. Dag Skjeltorp at my employer
Borregaard for discussing ideas and concepts.

v

Contents

Abstract iii

Acknowledgments v

List of Figures xi

List of Tables xv

List of Code xvii

1 Introduction 1
1.1 Background and motivation . 2
1.2 Applications . 3

1.2.1 Research questions . 4
1.2.2 Method . 5
1.2.3 Hypothesis formulation and testing 6
1.2.4 Experiment modelling . 6
1.2.5 Architecture . 6

1.3 Contribution . 6
1.4 Report Outline . 7

2 Literature 9
2.1 Foundations . 9

2.1.1 Markov processes . 10
2.1.2 Temporal differences . 11
2.1.3 Delayed reinforcement learning . 13
2.1.4 Q-learning . 14

2.2 Rediscovery . 14
2.2.1 Deep Q-learning . 14
2.2.2 Value networks . 16
2.2.3 Memory networks . 17

2.3 Physical control . 18
2.3.1 Simulated environment . 18
2.3.2 Transfer to the physical environment 19

2.4 Bioprocess modelling . 22
2.4.1 Process optimization on economic factors 22

2.5 Model predictive control . 24
2.6 Agent training strategies . 26

vii

2.6.1 Representation learning . 26
2.6.2 Partial observability and physical consistency 29
2.6.3 Pre-training and imitation learning 30
2.6.4 Latent space training . 32
2.6.5 Regularization . 33
2.6.6 Experience replay . 33
2.6.7 Inverse reinforcement learning . 34
2.6.8 Soft Actor Critic . 36

3 Use Case 37
3.1 Introduction to spray drying . 37
3.2 Controlling the process . 38
3.3 Modeling the process . 39

3.3.1 System boundary . 40
3.3.2 Level 0 Heat and mass balance model 41
3.3.3 Level 1 Droplet size and evaporation dynamics 43
3.3.4 Historical logs . 45

3.4 Autonomous Modelling . 46

4 Autonomous Learning of Core Skills 47
4.1 Introduction . 47
4.2 Generating synthetic data . 49

4.2.1 Connecting to the Environment . 50
4.2.2 Predictive baseline . 50
4.2.3 Process noise . 51
4.2.4 Randomized input . 52
4.2.5 Sinusoidal input . 54
4.2.6 Randomized step-wise input . 54
4.2.7 Data augmentation . 55

4.3 Design of generative model . 55
4.3.1 Training and evaluating the Generative Process Dynamics Model . . 56
4.3.2 Querying the Environment . 65
4.3.3 Process model as RL environment 65
4.3.4 Training a multivariate generative model 66

5 Autonomous Control 75
5.1 Design of the Reinforcement Learning agent 75

5.1.1 Soft Actor-Critic (SAC) . 75
5.1.2 Proximal Policy Optimization (PPO) 77
5.1.3 Deep Deterministic Policy Gradient (DDPG) 77

5.2 Initial conditions . 78
5.3 Reward functions and terminal conditions 79

5.3.1 Direct response reward, univariate scenario 80
5.3.2 Sparse reward and learning from failure 84
5.3.3 Trained reward model, multivariate scenario 88
5.3.4 Trained reward model with an inverse mean squared error as reward 95
5.3.5 Training towards the process model using the reward model 96

5.4 Covering unmodeled dynamics . 97

5.4.1 Retraining the generative model . 98
5.4.2 Retraining the reward model . 99
5.4.3 Retraining the agents . 100

5.5 Estimating uncertainty . 102
5.5.1 Monte Carlo simulation . 103
5.5.2 Variational inference . 103
5.5.3 Conformal prediction . 104
5.5.4 Value-based uncertainty . 105

5.6 Varying conditions . 107

6 Evaluation 109
6.1 Method . 109
6.2 Research questions . 109

6.2.1 Limitations . 111
6.2.2 Advantages . 111

6.3 Building experience . 112

7 Applied Use 113
7.1 Introduction . 113
7.2 Architecture . 114

7.2.1 HistorianDatastore design . 114
7.3 System design . 115

7.3.1 System boundary . 115
7.3.2 Data exploration . 116
7.3.3 Generative model training . 116
7.3.4 Zero-vector bias estimation . 121
7.3.5 Evaluating forecasting capability . 122

7.4 Training RL agents . 124
7.4.1 Soft Actor-Critic agent . 124
7.4.2 Proximal Policy Optimization agent 125
7.4.3 Simulating with real-time data . 125

7.5 Evaluating simulation runs . 129

8 Discussion 131
8.1 Introduction . 131
8.2 Contribution . 132
8.3 Agent selection . 133
8.4 Reward engineering . 136
8.5 Autoencoder and recurrency . 138
8.6 Network design . 140
8.7 Use cases . 142
8.8 Frontier in research . 143
8.9 Further work . 144
8.10 Limitations and threats to validity . 145

9 Conclusion 147

Bibliography 149

A Matlab Code 159
A.1 Spray drier ODE function . 159
A.2 Datastores . 160

A.2.1 RolloutDatastore.m . 161
A.2.2 HistorianDatastore.m . 163
A.2.3 get_data.m . 167

A.3 Generative Model . 167
A.3.1 GenerativeModel.m . 168
A.3.2 RewardModel.m . 171

A.4 Rollout functions . 172
A.4.1 spray_rollout_pid.m . 172
A.4.2 spray_rollou_pid_stable.m . 173

A.5 RL Environments . 174
A.5.1 SyntheticEnvironment.m . 175
A.5.2 ProcessEnvironment.m . 177

A.6 Reward functions . 180
A.6.1 direct_response_reward.m . 180
A.6.2 sparse_reward.m . 180
A.6.3 learnt_reward.m . 181

A.7 Agent neural networks . 181
A.7.1 agent_sac_v1_norm.m . 182
A.7.2 agent_ppo_v1_norm.m . 183
A.7.3 agent_ddpg_v1_norm.m . 184

A.8 RL Simulation function . 185
A.9 Cascade demonstration environment . 186

B Bayesian optimization run 189

C Demonstration of cascade implementation 191

D Demonstration of RNN implementation 199

List of Figures

1.1 Agent and environment interaction . 2

2.1 A simple neural network architecture . 10
2.2 Screenshots from five Atari 2600 Games . 15
2.3 AlphaGo game play . 16
2.4 Game play from Dota 2 . 18
2.5 Illustration of a walking gait learned in the real world 20
2.6 Neural network architecture for (a) value network and (b) policy network . 21
2.7 Actor-Critic RL design architecture . 23
2.8 A non-exhaustive, but useful taxonomy of algorithms in modern reinforcement

learning . 26
2.9 Multivariate time series . 28
2.10 Different kernel sizes (blue box) within each layer 29
2.11 Stacking images leaves trails of history for physical model identification . . 30
2.12 Greedy layer-wise pre-training . 31
2.13 Vision V, memory M and controller C networks forms the World Model . . 32
2.14 Reactivation patterns during sleep after hippocampal reactivation 34

3.1 A typical spray drier setup . 37
3.2 System boundary for the model . 40
3.3 System response with a constant feed rate Q̇ = 8 42
3.4 System response when ramping up feed rate Q̇ from 5 to 8 43
3.5 Droplet size when ramping up feed rate Q̇ from 5 to 8 44
3.6 Droplet size when ramping up feed rate Q̇ from 5 to 8 45

4.1 Concept for Autonomous Learning of Core Skills 47
4.2 Architecture of the RolloutDatastore class 49
4.3 System boundary for a multivariate model 49
4.4 Generating sequences Sin from a rollout . 50
4.5 System response using a propotional regulator 52
4.6 System response using a propotional regulator and added system noise, ±1%

of σ using Kp = 0.1 . 53
4.7 System response using a random input if Qfeed in the range 3-20 53
4.8 System response using a sinusoidal input of Qfeed. 54
4.9 Generative model LSTM-AE neural network architecture. h is estimated by

Bayesian optimization. 56

xi

4.10 Matlab Experiment Manager for Bayesian optimization of generative model
hyperparameters . 58

4.11 Bayesian hyperparameter optimization sequence results fromMatlab Experiment
Manager . 59

4.12 PCA of Bayesian hyperparameter optimization sequence results 60
4.13 Correlation of hyperparameters twoards validation RMSE 60
4.14 Results of querying the generative model for next steps of random test runs 62
4.15 Results of querying the generative model for next steps of random test runs 64
4.16 Querying the generative model . 65
4.17 Step-wise learning rate decay . 67
4.18 Results of querying the generative model, multivariate scneario 67
4.19 Multivariate query of the generative model vs. process model 69
4.20 Comparison of generative model and process model 70
4.21 RMSE of larger model vs. smaller model . 72
4.22 Effect of first four learning rate steps in training the generative model . . . 74

5.1 Network architectures of the Soft Actor Critic (SAC) agent 76
5.2 Network architectures of the Proximal Policy Optimization (PPO) agent . . 77
5.3 Network architectures of the Deep Deterministic Policy Gradient (DDPG)

agent . 78
5.4 Normalized initial observation data for an instance of the generative model 79
5.5 Normalized initial observation data for two random instances of the process

model . 80
5.6 Experiment 0: SAC agent training progress (a) and log-scaled (b) 82
5.7 Experiment 1: SAC agent training progress on generative model (a) and

simulated process model response (b) . 83
5.8 Experiment 2: PPO agent training progress on generative model (a) and

simulated process model response (b) . 83
5.9 Experiment 3: DDPG agent training progress on generative model (a) and

simulated process model response (b) . 84
5.10 Particle size distribution from multivariate test case 85
5.11 Randomized particle samples . 86
5.12 Episode data for training an agent based on a sparse reward scheme 87
5.13 Simulation towards generative model . 88
5.14 Simulation towards process model . 88
5.15 Experiment 5: SAC agent training progress on generative model (a) and

simulated process model response (b) using trained reward model 90
5.16 Training SAC agent towards process model, µ = 90.56 and σ = 0.19 91
5.17 Training SAC agent towards process model with 0.1% noise on controlled

variables, µ = 90.54 and σ = 1.71 . 92
5.18 Experiment 8: PPO agent training progress on generative model (a) and

simulated process model response (b) using trained reward model 93
5.19 Experiment 9: DDPG agent training progress on generative model (a)

and simulated process model response (b), and introducing 0.1% noise on
controlled variables (c), using trained reward model 94

5.20 Experiment 10: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model 95

5.21 Experiment 11: SAC agent training progress on generative model (a) and
simulated process model response (b) using trained reward model 96

5.22 Experiment 13: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model 97

5.23 Running Matlab Experiment Manager: parallel bayesian hyperparameter
search of the generative model . 98

5.24 Generative model retraining with modifications, RMSE=2.5 99
5.25 Experiment 14: PPO agent training progress on (a) log sccale and (b) normal

scale . 100
5.26 Experiment 14: PPO agent simulation towards (a) the generative model

(µ = 107.73, σ = 1.76) and (b) the process model (µ = 111.20, σ = 1.67) . . 101
5.27 Experiment 15: SAC agent training progress on (a) log scale and (b) normal

scale . 101
5.28 Experiment 15: SAC agent simulation towards (a) the generative model

(µ = 119.4, σ = 4.18) and (b) the process model (µ = 121.67, σ = 9.67) . . . 102
5.29 Monte Carlo simulation of neural prediction, a dataset is perturbated with

a distribution of choice to produce a set of distributed predictions 103
5.30 Value-based uncertainty simulated on the generative model 106
5.31 Value-based uncertainty simulated on the process model 107
5.32 Uncertainty estimation of 30 initial sequences of a PPO agent running

towards the process model . 108

6.1 Mean uncertainty estimation of 30 initial sequences of a PPO agent running
towards the process model . 111

7.1 System architecture for training and executing agent policy 114
7.2 System boundary for the real world model 116
7.3 Cloud plot of data distributions and variable correlations 117
7.4 Dataset sequences for generative model training 119
7.5 One-step forecast from the generative model for real world data 120
7.6 Zero-vector bias estimation for sequence length of 3 122
7.7 Zero-vector bias estimation for sequence length of 12 122
7.8 Generative model forecasting of steps 1-6, original data (blue) and forecast

(red) . 123
7.9 Generative model forecasting of steps 1-6, recorded RMSE and correlation . 124
7.10 SAC agent training progress on (a) log scale and (b) normal scale 125
7.11 PPO agent training progress on (a) log scale and (b) normal scale 126
7.12 Real time simulation with SAC agent . 127
7.13 Real time simulation with PPO agent . 128
7.14 Five simulation runs for the PPO agent towards setpoint of 100℃ 129
7.15 Five simulation runs for the SAC agent towards setpoint of 100℃ 130

8.1 Cascade control of two processes with disturbance model 133
8.2 RL for control of non-linear functions . 134
8.3 Average reward per episode per agent, first 1000 episodes for demonstration

case . 135
8.4 Three modes of rewards . 137
8.5 A simplified autoencoder . 138

8.6 RNN for one-step forecast and horizoned forecast 139

A.1 Class diagram of datastores . 160
A.2 Class diagram of generative models . 168
A.3 Class diagram of implemented RL environments 175

B.1 Matlab Experiment Manager for Bayesian optimization of generative model
hyperparameters . 190

List of Tables

3.1 Relationships between spray drying parameters 39

4.1 Implementation tasks . 48
4.2 System signals, nominal values and units . 51
4.3 Results of applying different noise levels and tuning of Kp 51
4.4 Ranges for hyperparameters for generative model 57

5.1 Experiment 1: SAC training and simulation results 82
5.2 Experiment 2: PPO training and simulation results 83
5.3 Experiment 3: DDPG training and simulation results 84
5.4 Experiment 4: SAC training and simulation results 86
5.5 Experiment 5: SAC training and simulation results 91
5.6 Experiment 8: PPO training and simulation results 92
5.7 Experiment 9: DDPG training and simulation results 93
5.8 Experiment 10: PPO training and simulation results 96
5.9 Experiment 13: PPO training and simulation results 97

6.1 RQ 1 Results . 110
6.2 RQ 1.1 Results . 110
6.3 RQ 2 Results . 110

7.1 SAC training and simulation results . 125
7.2 PPO training and simulation results . 125

xv

List of Code

4.1 Querying the generative model (Matlab code) 66
4.2 Custom Huber loss regression layer (Matlab code) 71
4.3 Generative model neural network layers (Matlab code) 71
5.1 Direct response reward function (Matlab code) 81
5.2 Sparse reward function (Matlab code) . 87
5.3 Reward function for querying the reward model (Matlab code) 89
5.4 Inverse dropout layer (Matlab code) . 104
5.5 Our understanding of conformal prediction (Matlab code) 105
7.1 Calculating zero-vector bias (Matlab code) 121
A.1 spray_f.m . 159
A.2 RolloutDatastore.m . 161
A.3 HistorianDatastore.m . 163
A.4 GenerativeModel.m . 168
A.5 RewardModel.m . 171
A.6 spray_rollout_pid.m . 172
A.7 spray_rollout_pid_stable.m . 173
A.8 SyntheticEnvironment.m . 175
A.9 ProcessEnvironment.m . 177
A.10 direct_response_reward.m . 180
A.11 sparsereward.m . 180
A.12 learnt_reward.m . 181
A.13 agent_sac_v1_norm.m . 182
A.14 agent_ppo_v1_norm.m . 183
A.15 agent_ddpg_v1_norm.m . 184
A.16 sim_confident.m . 185
A.17 CascadeEnvironment.m . 186

xvii

Chapter 1

Introduction

The wise are instructed by reason; ordinary minds by experience, the stupid
by necessity, and brutes by instinct1

We experience the world in linear time, from birth till death. Life unfolds between
those milestones, consisting of millions of small decisions, life experiences and episodes
of crisis and happiness, mixed with a myriad of ingredients and condiments. We develop
knowledge and moral from our cultural proximity, by guidance, experimentation and genes.
We become who we are as a combination of society, environment and preconditions.

Unlike computer algorithms, our decisions are executed sequentially and shape whom
we become. We cannot always undo our actions but must live with the consequences. A
computer program can restart, and retry the same scenario over and over again to learn
what matters. This is its strength, but also its culprit. A computer program cannot restart
if it transforms sensory information into insecure actions: a self-driving car must not crash
just to build experience. Experimental transactions from a stock-market robot will quickly
demonstrate its failure when faced with real life. A reward is given to the computer for
not crashing or doing the best stock investments. But is a reward-scheme comparable to
our evaluation of success? The current state of research within artificial intelligence is to
allow the computer to fail in simulated environments based on human-stated priors. Its
experience is transferred to the real world when we have enough confidence in its success.

As demonstrated by OpenAI, their GPT-3 algorithm is capable of conversing with
humans for extended peridods.2 The question remains unanswered: is advanced reasoning
a kind of pattern recognition in our brains? If so, can synthetic algorithms, like those used
for AI, replace human decision-making? Can AI become human, with feelings, passion and
moral? Nobel price winner Kazuo Ishiguro describes a world where our perception of the
human being is challenged when we consider that we are no longer unique individuals, but
the sum of artificial intelligence algorithms.3

In this report, a small, staggered stepping-stone is laid on the path to general artificial
intelligence. The hope is not to replace the perception of humanity as such, but to establish
a framework for assisting decision-making. Can we learn the computer to understand
the elements of success, and how will its moral story unfold? Within deep reinforcement
learning research, the actor-critic framework is popular for learning from rewards in unknown

1Marcus Tullius Cicero, Roman statesman 106 BC-43 BC
2https://www.aftenposten.no/kultur/i/563rpK/intervju-med-en-kunstig-intelligens
3https://www.nrk.no/kultur/nobelprisvinner-ishiguro_-er-mennesket-mer-enn-summen-av-algoritmer_-

1.15394666

1

CHAPTER 1. INTRODUCTION

systems. The actor proposes actions, while the critic evaluates its future expected reward.
The role of the critic is to behave as the grown adult in the room, while the actor must
learn from its childly experience.

1.1 Background and motivation

In a reinforcement learning problem, the idea of discovering long-term discounted rewards
through exploring combinations of action-space rewards leads to a trail of actions with the
least penalty or highest reward in the terminal state, as stated by Watkins and Dayan [18].
Watkins [16] introduced the concept of learning from delayed rewards through the Q-
learning-algoritm. The science of Q-learning has been known for some time through the
method of temporal differences [15]. Here, prediction of a future state assign rewards for
temporally successive predictions and establish an experience buffer for prediction of future
behaviour.

Building the Q-knowledge is done by iteratively exploring all possible actions and
rewards, and thereby establishing a set of policies for each state. An agent decides on
transitions between the states done by observation of responses from an observation space,
the environment as shown in Figure 1.1. The typical method is to utilize a process
simulator where the agent can invoke actions in a safe environment with a performance
outmatching a real-life learning process. Synthetic sensory feeds the Deep Q-network with
virtual responses corresponding to the result of an action transition. The system learns by
discounted rewards the best policies for any given state. The trained network is then put
in a real-world context using transfer learning and executed on real-world systems, which
also continues the learning process with new policy updates.

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 1.1: Agent and environment interaction

Deep reinforcement learning introduces deep neural networks as function approximators
as they efficiently can be trained to interpolate within a trained state-space. The function
approximator is computationally efficient and offers many options in its architectural
alternatives. There are observered challenges in using reinforcement learning as pointed
out by Dulac-Arnold et al. [92]:

1. Training off-line from the fixed logs of an external behaviour policy is complex.

2. Learning on the real system from limited samples is hard when using deep neural
networks, which are sample-intensive.

2

1.2. APPLICATIONS

3. High-dimensional continuous state and action spaces involves broad data coverage
for training.

Many samples and runs, called episodes in RL, are necessary to train the agent, as well
as exposing the agent to all facets of the observational space. An interesting aspect is to
investigate methods for obscuring data in such a way that enough training samples can be
provided from a limited data log set. It is critical for the learning outcome that the dataset
is diversified to avoid overfitting the network. Further, the reward-function necessary in
an RL context might not always be sufficiently engineered. Can the reward-function be
trained? What are the implications of trained reward-functions: will they behave differently
given the state of the system?

1.2 Applications
The motivation for entering this field of science is the broad application impact where
sequential decision workflows are involved. Implementing this project is relevant for many
application areas within many business processes. We can broadly categorize businesses
goals as iterative processes on several scenes:

1. Minimize energy consumption

2. Maximize yield

3. Minimize waste

4. Control quality

5. Improve realibility

6. Improve effectiviness

7. Sustainability

8. Reduce emissions

9. Optimize supply chains

Can reinforcement learning be applied as a general optimization concept and trained
on historical logs of data? A clear goal is optimized control and higher product yield
and quality, with less energy usage and waste. To investigate this hypothesis, we select a
delicate industrial process for analysis, further detailed in the Use Case chapter (Chapter 3).

Establishing closed-loop control of either industrial processes or even algorithmic stock
traders involves deep knowledge within the respective field. A traditional control model of
an industrial process may be solved by ordinary differential equations and Kalman filters,
given the correct model. The necessary mathematics may appear intimidating without
proper knowledge. Pre-training an RL agent on data and automatically specifying the
reward function would make algorithmic control more accessible and increase the efficiency
of implementation within the industry. As closed-loop control gains both acceptance and
momentum in many business fields, the need for efficient methods for implementation is
imperative for being able to deliver new ideas and applications, and improve existing ones.

3

CHAPTER 1. INTRODUCTION

There is a clear distinction between optimizing existing processes and establishing
completely new ones. In the latter case, traditional engineering might be the solution.
For existing processes, or processes where comparable data is available, we foresee that
optimization and control can be completely done by learning from historical data logs.

1.2.1 Research questions

As earlier mentioned, an RL agent will be trained by a historical dataset, and the reward
function estimated based on the data behaviour. The research involves the implementation
of a generic agent with several capabilities. The aim is to be able to apply the agent to
different industrial processes with minimal engineering effort. For this to succeed, the
performance of such an agent should match or surpass existing control strategies. There
are economic aspects to why such an implementation is tempting.

The research questions will surface both in the analysis of the problem, the choice of
methods, the design and implementation of the project, and, most importantly, it will
be revisited in the discussion and conclusion parts of the report. In light of the problem
statement, the research will be divided into the following research questions:

RQ 1 Can an RL Agent be efficiently trained on historical data logs?

RQ 1.1 Which choice of RL Agent realizations would be a generic solver for the
problem?

Here, a process model simulation will be executed by using data from a well-known
industrial process, and the resulting data will be recorded. Multiple runs of this dataset
will be used for separate training of an RL agent. The trained agent will then replace
the process control regulation and the performance of the agent evaluated towards the
state-of-the-art regulated process.

Given a selected control strategy, can a viable control simulation that exposes the
state-space, be modelled and used for generating data logs for RL training? In a real-
world situation, an existing process data log will substitute the simulation, but the agent
performance should be evaluated on the same process as the data was generated. It seems
not economically viable to expose the agent to a real process within the first exploratory
part of the training. After evaluation, confidence can be established for stepping into
physical processes.

RQ 2 Can a reward function be approximated and learned without supervision?

RQ 2.1 What are the implications of trained reward-functions: will they behave
differently given the state of the system?

We investigate the problem of using neural networks as a reward function approximator
and training this on data logs. Further, an analysis of the most important features by using
techniques from Explainable AI will give valuable insights to evaluate if the trained reward
function matches our a priori system knowledge. The term eXplainable AI has become
a popular topic lately, and Arrieta et al. [104] describes opportunities and challenges
regarding trustworthiness in the application of AI models, also called black-box-models,
where the internals are difficult to test and visualize. Two paths are explained, the ante-hoc
route where model internals and factors affecting them are attempted described, as well

4

1.2. APPLICATIONS

as post-hoc explanations, where the model results are interpreted. Lundberg and Lee [72]
reviews several frameworks for the latter and proposes the SHAP-framework for assigning
importance values for all model features for a particular prediction result. eXplainable AI
will become important for our RL agent to validate its knowledge causality. In evaluating
RL frameworks, the reward function would be the main training input for the critic,
representing the moral of the agent.

1.2.2 Method

To successfully build a deep recurrent network, we must expose our system to as many
states and policies as possible. This can be done by simulating the target system for
accelerated learning, or expose the system to the real environment as described above.
In the latter case, practical implications will most likely render this unacceptable in a
running industrial process, due to resource constraints, health- and security implications
etc., and to the fact that the learning process is a tedious task where the system needs
many iterations of trial-and-error to establish a sensible decision network.

Petsagkourakis, Sandoval and Bradford et al. [110] proposes a multi-step algorithm
where a process is controlled using reinforcement learning. They introduce transfer learning
as a central concept, where the policy gradients are updated based on a step-wise-approach:

1. Step 1, Preliminary off-line learning using a stoichiometric model

2. Step 2-3, Transfer learning by updating policies based on real data

3. Step 4, On-line transfer learning by updating rewards based on real data

4. Step 5, Terminatory policy update on a real system

Several case studies were done and they conclude that it should be possible to train a
reinforcement network where the true system dynamics are unknown. They build their
work on the assumption that a bioprocess model can be established using hybrid approaches
with both data-driven methods and physical models [103], requiring access to historical
process data. Rio‐Chanona et al. reviewed several methods of the performance for physical
and data-driven models for bioprocess simulation [91]. Their experiments show that models
in general only can model mechanisms it has been designed or exposed for. Extrapolating
to unknown state-spaces cannot be verified. An approach to counter-balance this would be
to be sure to expose the learning process to extremely varying process conditions, also those
scenarios resulting in faulty or bad quality products. Training in a simulated environment
covers this requirement, and one can presumably to some degree perturbate the input data
to augment uncovered system states.

The rules of physics must be learned by the agent, but prior knowledge of physical
causality could increase the training efficiency and extrapolation properties. Karpatne
et al. [70] investigates the possibility to add such priors through the use of adapted loss
functions with physical knowledge. They show that better generalization is achieved
with physics-based loss functions. In applications where the agent has no physical reality,
other constraints may be necessary. This might for example be cases of a stock market
trading agent, where the consistency rules might be juridic- and trading-specific laws and
regulations.

5

CHAPTER 1. INTRODUCTION

1.2.3 Hypothesis formulation and testing

An exploratory quantitative evaluation strategy will be chosen to test the success of the
different model realizations. Evaluating reinforcement network outcome can be done on the
reward function result after applying each action in the environment. The difference between
real-world observation and our policy result, is the model error, as we infer that the existing
process is under control at this stage. Over the course of training, the agent will attempt
to minimize this error and increase accuracy towards the existing control. The models
should gradually decide on the best long-term strategy to increase the accuracy towards
the reward function. Regression accuracy of the models will be measured using standard
machine learning metrics, where Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE) and Pearson correlation coefficient (R2) are widely used. The RMSE penalizes
larger model errors as shown in Equation 1.1 due to the squared prediction error. Here,
the squared difference between the real value y and our estimation ŷ is calculated on i
value pairs.

RMSE =

√√√√ 1

N

n∑
i=1

(yi − ŷi)2 (1.1)

We will also experiment using Huber loss estimation as an alternative to MAE and
RMSE.

1.2.4 Experiment modelling

The idea involves training an agent on offline data, but at some point, we reach the
need to integrate the algorithm into an online solution. A proper real-time execution
environment must be in place, and access to historical and real-time data must be available.
The execution model must also be architected, and the proper hyperparameter selection
strategy chosen. Step 1-3 will be executed off-process until the agent converges towards
plausible accuracy.

Step 4 will be executed by piggy-backing a selected process and run the reinforcement
in real-time but with no closed-loop control. Step 5 involves proper risk management and
mitigation, and need careful termination strategies implemented in the target organization.
The risk will be in the categories of health, environment and safety, as well as resource
utilization. This report will not implement real time control experiments due to the impact
of these considerations.

1.2.5 Architecture

The RL agent will be solved using Matlab as computation environment. An architecture
for the exploration, evaluation and deployment will be a part of the report.

1.3 Contribution

The main contribution of this thesis are:

• It is demonstrated that a shallow recurrent LSTM network can be trained on historical
logs of time-series data in order to reproduce the dynamics of a system

6

1.4. REPORT OUTLINE

• Given such a trained generative model, it is demonstrated that a reinforcement
learning agent can be sufficiently trained in a multivariate scenario and propose
actions towards a new goal set

• It is also demonstrated that the reward function of an agent can be trained by training
an autoencoder network with a specified class of time-series data

1.4 Report Outline
This section drafts an outline of the report and a foundation for the work progress.

Part 1 will discuss the theoretical foundation of reinforcement learning, and
Related work and different actor implementations.

Part 2 will describe an architecture and implementation of an agent for
testing the hypothesis.

Part 3 will be an Evaluation of the agent to see if the performance is viable.
Part 4 will focus on testing in real-world scenarios and use the agent to

solve real-world tasks in an experimental setting.
Part 5 will be Discussion and elaboration on Research Questions as well as

aspects of further work.
The thesis will end with a Conclusion.

7

Chapter 2

Literature

The image of the world around us, which we carry in our head, is just a
model. Nobody in his head imagines all the world, government or country. He
has only selected concepts, and relationships between them, and uses those to
represent the real system.1

2.1 Foundations

In chapter 7 of Alan Turings 1950 article [5], the learning machine is discussed referencing
a machine that can mimic the human brain. Turing presents the neutron that holds
remote ideas, and given enough disturbance exhibits critical phenomena. Turing’s ideas
are descriptive of today’s deep learning neural networks, abled by developments in silicon
performance, programming languages and knowledge sharing in science.

Neural networks have shown their ability to learn from examples, through supervised
learning. A proficient property is the ability to discover the data representation itself and
mask features, not only the mapping to the output. This is what we call representation
learning and can often result in better model performance [63]. Less pre-processing of the
input data is thus necessary. Deep learning solves a central challenge in representation
learning where the machine builds different abstraction layers where each neuron layer
builds upon knowledge from previous layers, as we go deeper into the network topology.
By combining our understanding of physical processes in the brain and construct networks
of neurons that are interconnected, we are able to solve many modelling problems through
architecting the neural networks accordingly for a broad set of applications [71].

Frank Rosenblatt introduced the theory of the perceptron [6] and that learned associations
in a differentiated environment approaches a better-than-chance classification as the number
of learning stimuli increases. A perceptron is an activation function with associated weighted
inputs, where incoming stimuli fire the perceptron or leave it idle.

Figure 2.1 shows a perceptron with three inputs x1, x2, x3 and one output. Each input
has associated weights w1, w2, w3 and is commonly referred to as synapses, the synaptic
weight vector w. The activation function in Equation 2.1 outputs a binary representation

1Jay Wright Forrester, 1971

9

CHAPTER 2. LITERATURE

x1 w1

x2 w2 Σ fact yout

x3 w3

Figure 2.1: A simple neural network architecture

of the weighted sum so that the output is fed to the next layer of perceptrons and their
input.

output =
{
0 if

∑
j wjxj ≤ threshold

1 if
∑

j wjxj > threshold (2.1)

The weights are trained by observing the output with a true sample. The error is
iteratively calculated using a backpropagation algorithm. It is now common that the
activation of a neuron is a scalar number in the range of −1, 1 and that a neuron has a bias
added to the activation function [63, p. 187]. In order to train our network, we can employ
a stochastic gradient descent strategy that estimates weight updates during iterations. In
backpropagation, we start at the output and step backwards in the network iteratively
adjusting the weights and bias with the weighted error derivative, as proposed by [49]
showed in Equation 2.2 where C represents a cost-function, the error between the network
state and the true state, L is the layer and a is the activation.

f(∆w) = ∆C · a(L−1) · φ′(a(L)) (2.2)

The design of the cost function C, activation function φ and strategy of gradient descent
has been a long-standing focus for the research community, and the selection of the method
is tightly dependent on the application.

2.1.1 Markov processes

A Markov decision process is described by a state space S, a possible action-space A, a
transition space T and reward function R [16].

P = S,A, T ,R (2.3)

The next state st+1 is dependent on an applied action a in state st, where an agent selects
the best action according to some policy. There is a probabilistic relationship between
the chosen action and the new state, a relation which is the core of the reinforcement
learning problem: a Markovian decision is a process in which the path to the end result
is always known based on the immediate observed state. In a non-propelled bullet case,
you will be able to calculate its terminal ballistic trajectory by knowing the state at any
point (speed, mass and direction). The calculation function can be based on first principle
physical models or data-driven by reinforcement learning and neural networks as function
approximators. A Markovian process chain is one where the history of previous events

10

2.1. FOUNDATIONS

determine the action and represents a class of algorithms that utilizes a discounted reward
system, based on the system horizon being episodic or continuous. The Markovian property
of the problem space is an important prerequisite for reinforcement learning: the future
state is only dependent on the current state.

2.1.2 Temporal differences

A history of machine learning theory is nicely summoned by [15] by describing the problem
of learning to predict by temporal differences. This field has its roots in the late 1950s
starting with Samuel’s checker-playing program [7], followed up by various articles in the
1980s. In traditional machine learning, a problem is optimized towards a minimal error
residual between a system’s true state and the predicted state. This can be described
as supervised learning where a true state is presented to learn the system probabilities
given a set of known inputs. The idea of TD learning is to learn from a set of successive
predictions in a sequence, as a multi-step prediction problem. Correctness is increased as
evidence of the true system is partially revealed. The reasoning behind this is founded on
how humans perceive problems and relate to the world, where we often make decisions
based on partially available information in a stream of related patterns. The decisions
reveal more information, and we learn from these temporal differences. We can model such
a multi-step sequence as

x1, x2, x3, ..., xm, z (2.4)

where each xt is an observation vector at time t leading to outcome z. For many such
sequences, a learner produces several predictions, each Pt corresponding to the outcome z:

P1, P2, P3, ..., Pm (2.5)

Each prediction has corresponding weights w with a functional dependence towards
xt, we can then explicitly write the probability function as P (xt, w). Our problem is now
narrowed towards learning w with the delta rule, with backpropagation or with the Widrof-
Hoff-rule. Sutton [15] presents the incremental TD-procedure, that can be calculated at
each sequence time step with the sum of all past values. The generalized TD(λ)-function
introduces a learning rate, in which earlier prediction sequences can be weighted differently
as opposed to the more recent observations. We see from the function

∆wt = α(Pt+1 − Pt)
t∑

k=1

λt−k∆wPk (2.6)

that the probability weight is updated by the temporal difference of predictions, learning
rate α and the sum of earlier weight updates, adjusted by the dynamic learning rate λ.

The whole idea of learning by temporal differences is that it allows us to predict the next
state given a sequence of preceding states. In this way, we are not only using the current
state to predict the next, which could lead to a less favourable next state but instead use
our earlier observations and experiences to select states that might be intermediate towards
our terminal state. The TD(λ)-procedure tries to use the information from the sequence
predictions, while traditional machine learning methods simply ignore them. In such a
system, there will only be one prediction given the current state, if the history is ignored.

11

CHAPTER 2. LITERATURE

It is tempting to draw a relation towards Bayes’ theorem that states that the conditional
probability of an event is based on knowledge of other related events. Mathematically, this
is described as

P (A|B) =
P (B|A)P (A)

P (B)
(2.7)

where the conditional probability of A given event B is described using already known
relations of events A and B. In a frequentist interpretation, P (A) and P (B) is the likelihood
of the event given available data. In a dice game, we might initially say that there is a
probability of 1

6 for each side of the dice, which is our initial estimate of the maximum
likelihood of the event. Learning the agent becomes a task of presenting available data,
and update our belief system’s probability distribution given new events.

The TD-learning process follows the principles of statistical gradient descent, pushing
the predictions in the direction of the steepest descent. Further, we may be interested
in the cumulative score when predicting the outcome of a gameplay, and the process can
be used intermediary, where system re-evaluation can be done at each time step. The
predicted score, cost or reward is cumulative, and thus we can calculate the remaining
cumulative cost anywhere in the observation sequence given an episodic model. The
cumulative cost prediction is the value of the observation sequence, hinting towards a
separate critic part of an actor. The strength of the TD-learning algorithm is its computing
efficiency and memory utilization, not needing access to previous observation and prediction
sequences. Sutton [15] links to related research, the most prominent is backpropagation in
connectionist networks [12] which decides which part of a network to change. An error
derivative combines the descent and weight update.

Further, we can map the episodic learning to a continuous learning case by discounting
the predictions:

zt =
∞∑
k=0

γct+k+1 (2.8)

where γ is a discount parameter. This way, we can predict with a parameterizable
horizon in the infinity time scale where we can balance the need for long-term or shorter-term
predictions.

Williams [19] argues that the search behaviour of a learning function should include
some randomness in the input-output state to accommodate exploratory behaviour. The
prediction function can be implemented in a neural network where each unit is considered
a learning agent that predicts the reinforcement signal r. In an immediate-reinforcement
learning problem, r is learnt at each time step, as opposed delayed-reinforcement where r
is learnt at the end of a sequence. The network is trained for each time step, a situation
applicable to real-time scenarios, however, we will later see that immediate training can
unnecessarily skew the training towards the last events. Williams [19] describes a simple
actor-critic algorithm where the actor at each time step predicts the output given the
input, and the reinforcement value r of the input/output pair is predicted by the critic.
Such a prediction can be a function of time or given by the sequence history.

The network weights are updated using r towards a baseline difference b:

∆w = α(r − b)e (2.9)

12

2.1. FOUNDATIONS

with α being the learning rate and e a characteristic eligibility of w. Each weight w is
locally updated to reflect the globally predicted reinforcement signal r. Selecting a proper
baseline is done towards minimizing the variance of the weight changes over time. This
gradient-based approach integrates well with backpropagation and serves as a starting
point for other reinforcement learning algorithms.

2.1.3 Delayed reinforcement learning

Tesauro [17] describes the delayed reinforcement learning paradigm where the learner
passively observes a temporal sequence of input states that leads to a reinforcement signal
r. This method is used to learn a system from scratch with no prior knowledge of the
optimal control strategy. By observing the temporal differences with the TD(λ)-algorithm,
actions that lead to the highest terminal reinforcement signal is learned. By terminal, we
mean that there is no supervised signal telling the success of each transient state during a
sequence. The temporal observed actions might therefore be suboptimal, depending on the
actual player performance in the system. Tesauro [17] describes practical considerations of
implementing the TD(λ)-algorithm to complex real-world problems, bringing the field of
reinforcement learning forward by applying TD-learning to the game of backgammon.

The problem is very well suited for reinforcement learning due to several appealing
features. Backgammon is non-deterministic, as opposed to chess and checkers, due to a
stochastic dice roll that controls the game. Several strategies can be employed for blocking
opponents, hitting them and resetting their pieces, but depending on game state, different
tactics are usually employed. At the start of the game, blocking configurations are engaged,
as opposed to the end of the game were racing the pieces to the goal is more important.
Further, branching ratios are high, meaning that there is no single best way or action
state. Tesauro [17] employs both deep- and shallow fully connected neural networks, and
demonstrate that the system has better performance than competing solutions at the time
of writing the article.

The network is trained with a sequence of board positions x1, x2, x3, ..., xm and a final
reward signal z. In a control scenario, the network is presented with new stochastic dice
rolls, enforcing an exploration strategy of the state space. This way, new strategies and
improved evaluations can be discovered [20].

However, the TD(λ)-algorithm does not address prediction-control tasks and Tesauro [17]
proposes to train a separate controller network for this purpose. Convergence of the
prediction and control networks towards a global optimum can be an issue in non-linear
problems like this. Volatility in stochastic networks may also influence weight updates,
as the noise should not exceed the baseline variance. Employing a learning rate schedule
and tuning the λ-parameter is important, as well as considerations for avoiding overfitting
by tuning the number of nodes and layers in the network, what we can call the network
fidelity.

Input volatility and network fidelity must be balanced in complex problems as the
network might only see xt and the succeeding state once. If xt+1 and xt is unrelated due
to high volatility, the network might not be a good predictor. One way to overcome this is
to iterate on state xt multiple times and assure that all states are visited during training.
There is a direct relation between these considerations and system performance. Neural
networks are known to interpolate well but fails at extrapolating. In these cases, physical
modelling rules can be of importance, depending on the problem being solved.

13

CHAPTER 2. LITERATURE

2.1.4 Q-learning

A true Markovian approach may in some cases be attractive, depending on the application.
In systems with finite state spaces, where there is no dependency on earlier observations
or actions, a learning process can be based on delayed rewards only. The Q-learning
is such a method described by Watkins [16]. In a Q-table, the future expected reward
for each possible state-action pair is trained by exploring all possible states and noting
the final reward in the terminal state. This trial-and-error approach is called exploring
the environment and is typically the strategy we use during training the Q-table and
learning the environment. Training each state-action-pair can be done with a simple
one-step-Q-learning, where the Q(s, a) is trained by a simple iterative update of Q:

Q(x, a) = (1− α)Q(x, a) + αr (2.10)

where α is a learning rate parameter. At some point, we will select the action with the
highest future expected reward in each state. This is called exploitation of the environment
where the agent suggests experimental actions. It is easy to see that balancing exploration
and exploitation is a matter of performance and security. We would optimally find a
strategy that balances these issues so that our Q-table is kept valid. Watkins [16] note that
exploration of the environment should be done when it adds value, is cheap and the time
used for exploration is short compared to the time we will use the behaviour.

2.2 Rediscovery
Playing games has a long history of being a demonstrator for reinforcement learning.
Gameplay consists of a goal, a player and the game with rules, and the interaction between
the player and the game to reach a specific target. Since computer games are excellent
non-destructive opponents (the real world state is never manipulated and stays intact),
training reinforcement agents within such an environment is tractable. A property of
computer programs is the ability to duplicate and parallelize, and speeding up beyond
real-time, thereby accelerating training. Further, games have often rounds where the player
takes action based on evaluation of a state. The action manipulates the state, initiates
environment feedback, and then the player can take his next draw based on the new state.
The gameplay metaphor fits perfectly for the evaluation of reinforcement learning.

2.2.1 Deep Q-learning

Mnih et al. [51] of Deepmind2 demonstrates how a deep convolutional neural network
can learn control policies from complex environments. Advances in deep learning and the
introduction of convolutional layers in neural networks have made it possible to represent
high fidelity sensory data efficiently. Mnih et al. [51] demonstrates the use of raw pixel
inputs from an Atari game emulator, as illustrated in Figure 2.2, to learn a deep neural
network with very little pre-processing. In fact, no specific feature engineering was done
except reducing the dimension space by resizing and cropping image input and colour
channels from the raw pixels outputted from the game emulator, in order to reduce
computation time and network volatility. The same neural network architecture was used
to train an agent to play multiple games, some outperforming human players.

2https://deepmind.com/

14

2.2. REDISCOVERY

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Figure 2.2: Screenshots from five Atari 2600 Games
Figure from [51]

There are nearly 20 years of research history between the initial backgammon TD-
learning and the Atari Deep Q Network by Deepmind. However, as the authors point out,
the relative advances have not been as expected. The backgammon gameplay seemed to
be the most promising attempt at reinforcement learning, probably due to its stochastic
nature and dice-roll, enabling efficient environment exploration. Attempts with chess and
checkers have not seen similar successive developments.

Deepmind was able to demonstrate that the principles of the Q-learning can be used
to calculate a Q-network, a neural network used as a function approximator instead of the
Q-table. The neural network was built with one input layer, two convolutional layers and
a fully connected layer. The output layer was organized with one node for each possible
action in the game under test, saving computation of the Q-value to one network pass only.
This would not be suitable for continuous action spaces, although the use case presented
a finite action space for each game under test. This was the only difference between the
game plays. The input layer was the pre-processed raw pixels from the emulator without
any additional feature engineering.

However, learning from a sequence of consecutive samples would skew the network in
the direction of the most recent training. Deepmind introduced experience replay in the
learning process which should break those correlations and reduce variance. A fixed history
of state-action-values is kept in a cyclic memory, and a random selection from this memory
is applied whenever the network is trained on new samples. New samples would also be
inserted into the memory and used for training later.

The reward function followed the game score but was clipped to the set [−1, 0, 1],
indicating negative, neutral or positive game score development. This was done so that the
same learning rate parameter could be used across all gameplay training, but it could affect
the system’s ability to counter the different magnitude of score changes. Last, a frame-
skipping strategy was chosen to further limit the data presented to the network. Depending
on the game, only every 3rd or 4th frame was used as input. We will later observe that
this is a common technique for training, Dota 2 by OpenAI [98] uses the frame-skipping
technique so that the system can perform its evaluation and policy-calculation in real-time,
enabling game plays with human opponents.

The performance of the DQN-network is impressive, and an update on the matter was
presented in Nature in 2015 with results of several other games trained under the same
conceptual framework. Out of 49 tested games, the methods show better-than-human
performance in 29 of the games [60]. Further, the authors demonstrated that training a
separate target network affects the results.

15

CHAPTER 2. LITERATURE

2.2.2 Value networks

Silver et al. [67] continued to work on mastering the game of Go, a task long time seen
as an ultimate goal for AI gameplay. They introduced value networks that evaluates the
current game state that outputs the probability of winning based on the board positions in
their project AlphaGo. Further, a policy network outputs action probability distributions
based on the state. Combined with a tree search algorithm, a look-ahead search algorithm
is used to evaluate the actions with the highest state value, where the nodes store the
action value Q(s,a), the visit count N(s,a) and prior probability P(s,a). On each game
iteration, a game simulation occurs where an action is selected as to maximize the action
value and a bonus u being the proportion between P and N :

at = argmax(Q(st, a) + u(st, a)) (2.11)

On each pass, the game is simulated to its terminal state using the tree search, starting
from the root node. After each simulation iteration i, the search tree is updated with
Q, N and P. u(st, a) decays after many visits to a node, encouraging exploration of the
environment. When reaching a leaf node, it can be expanded by adding the probabilities
from a different policy network trained using supervised learning on human gameplay. The
game is simulated using a fast rollout policy network combined with a value network, and
the tree is updated on each simulation iteration with the updated values reaching the
terminal state with the desired outcome. This combination is controlled with a mixing
parameter λ, indicating which method has the most impact, value networks or rollout policy.
The most visited action from the root indicates the move with the highest probability of
winning and is chosen for updating the environment in that round.

4 8 8 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

on high-performance MCTS algorithms. In addition, we included the
open source program GnuGo, a Go program using state-of-the-art
search methods that preceded MCTS. All programs were allowed 5 s
of computation time per move.

The results of the tournament (see Fig. 4a) suggest that single-
machine AlphaGo is many dan ranks stronger than any previous
Go program, winning 494 out of 495 games (99.8%) against other
Go programs. To provide a greater challenge to AlphaGo, we also
played games with four handicap stones (that is, free moves for the
opponent); AlphaGo won 77%, 86%, and 99% of handicap games
against Crazy Stone, Zen and Pachi, respectively. The distributed ver-
sion of AlphaGo was significantly stronger, winning 77% of games
against single-machine AlphaGo and 100% of its games against other
programs.

We also assessed variants of AlphaGo that evaluated positions
using just the value network (λ � 0) or just rollouts (λ � 1) (see
Fig. 4b). Even without rollouts AlphaGo exceeded the performance
of all other Go programs, demonstrating that value networks provide
a viable alternative to Monte Carlo evaluation in Go. However, the
mixed evaluation (λ � 0.5) performed best, winning �95% of games
against other variants. This suggests that the two position-evaluation

mechanisms are complementary: the value network approximates the
outcome of games played by the strong but impractically slow pρ, while
the rollouts can precisely score and evaluate the outcome of games
played by the weaker but faster rollout policy pπ. Figure 5 visualizes
the evaluation of a real game position by AlphaGo.

Finally, we evaluated the distributed version of AlphaGo against Fan
Hui, a professional 2 dan, and the winner of the 2013, 2014 and 2015
European Go championships. Over 5–9 October 2015 AlphaGo and
Fan Hui competed in a formal five-game match. AlphaGo won the
match 5 games to 0 (Fig. 6 and Extended Data Table 1). This is the
first time that a computer Go program has defeated a human profes-
sional player, without handicap, in the full game of Go—a feat that was
previously believed to be at least a decade away3,7,31.

Discussion
In this work we have developed a Go program, based on a combina-
tion of deep neural networks and tree search, that plays at the level of
the strongest human players, thereby achieving one of artificial intel-
ligence’s “grand challenges”31–33. We have developed, for the first time,
effective move selection and position evaluation functions for Go,
based on deep neural networks that are trained by a novel combination

Figure 6 | Games from the match between AlphaGo and the European
champion, Fan Hui. Moves are shown in a numbered sequence
corresponding to the order in which they were played. Repeated moves
on the same intersection are shown in pairs below the board. The first

move number in each pair indicates when the repeat move was played, at
an intersection identified by the second move number (see Supplementary
Information).

1 2

3

4

5

6

7

8

910

11

12

13

14

15 16

17

18

1920

21

22

23

24

25

26

27

28

29 30

31

32

33

3435

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56

57

58

59

60

61

62

63

6465

66

67

68

69

70

71 72

73

74

75

7677

78

79

80

8182 83

84

85

86

87

88 89

90

91

9293

94

95

96

97

9899

100

101 102

103 104

105

106

107108

109

110

111

112

113

114

115 116

117

118

119

120

121

122123

124

125

126

127

128

129130 131

132

133

134

135

136

137

138

139

140

141

142

143

144

145 146

147

148

149 150

151

152

153

154

155

156

157

158

159

160 161

162163

164

165

166

167

168

169

170

171 172

173

174

175

176 177

178

179

180

181 182

183

184

185

186

187

188

189

190

191

192

193194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213 214

215

216

217 218

219

220221

222

223

224

225226

227

228

229

230

231

232

233

235236

237

238

239

240

241

242

243244 246 247

248

249

251

252

253

254

255

256

257

258

259

260

261

262 263

264

265

266267

268

269 270

271

272

234 at 179 245 at 122 250 at 59

1 2

3

4

5 6

7 8

9

1011

12

13

14

15

16

17

18

1920

21

22

23

24

25

26

2728

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49 50 5152

53

54 55

5657

58

59

60

61

62 63

64

65

66

67

68

69

70

71

7273

7475

76 77

78

79

80

81

82

83

84

85

86

87

88

8990

91

92

93 94

95

96

9798 99

100

101

102

103

104

105

106

107 108

109

110

111

112

113 114

115

116

117

118

119

120121

122123

124

125

126

127

128

129

130

131

132

133

134 135136

137

138

139 140

141142143

144

145

146

147 148

149

150 151

152

153

154155

156

157

158

159 160

161

162

163

164165

166

167

168169170 171

172

173

174

175

176

177

178179 180

181

183

182 at 169

1 2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

2829

30

31

32

33

34

35

36

37 38

39

40

41 42

43 44

45

46

47

4849

50

51

5253

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 70

71

72

73

74 75

76

77

78

79

80

81 828384

85

86

87

88

8990

91

92

93

94

95

96 97

98

99

100

101

102

103104

105

106

107

108

109

110111

112

113

114

115

116

117 118

119

120

121 122

123

124 125

126

127

128

129130

131 132

133 134

135

136

137

138

139

140

141

142

143

144145

146

147 148

149

150

151

152

153

154

155156

157158

159160

161

162163

164

165

166

1 2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24 25

26

2728 29

30

3132

33

34

35

36 37

38

39

40

41

42 43

44 45

46

47

48

49

50

51

52

5354

55

56

57

58

59

60 61

62

63

6465

66 67

68

69

70

71

72 73

74

75

76

77

78

79 80

81

8283

84

85

86

87

88

89

90

91

9293

94

9597

98

99100

101

102

103

104

105

106

107108

109

110 111

112

113

114

115

116

117

118 119

120

121122

123

124

125

126

127

128

129

130

131

132

133

134135

136137

138139

140

141

142

143

144

145

146

147

148 149

150

151 152

153

154

155156 157

158

159

160

161 162

163

164165

96 at 10

1 2

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19 20

21

22

2324

25

26

27

28

29

30

31

32

33

34

35

36

37

3839

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

61

62

63

64

65

66

67

68

69

7071

72

73

74

75

76

77

78 79

80

81

82

83

84

85

86

87

8889

91

92

93

94

95

96

97

98 99

100

101

102 103

104105

106

107

108

109

110111

112

113

114

115

116117

118 119

120

121

122

123

124

125 126

128

129

130

131

132

133

134

135

136

137138

139140

141

142

143

144

145

146

147148

149

150

152 153

155

156

158159

161 162

164

165

166

167

168

169

170 171172

173

174175

176

177178

179

180

181

182

183

184 185

186 187

188 189

190

191

192

193 194

195

196197

198

199

200

201

202

203

204 205

206

207

208

209

210

211

212

213 214

90 at 15 127 at 37 151 at 141 154 at 148 157 at 141 160 at 148

163 at 141

Game 1
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by 2.5 points

Game 2
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 3
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation

Game 4
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 5
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation

© 2016 Macmillan Publishers Limited. All rights reserved

Figure 2.3: AlphaGo game play
Figure from [67]

This Monte Carlo tree search method combined with value- and policy networks were
able to beat a European Go champion in five games and achieved a winning rate of 99.8%
against other Go programs. The authors also evaluated different mixing parameters λ, and

16

2.2. REDISCOVERY

they found a balancing 0.5 had the best performance, however, using value networks only
(λ = 0) with no rollout policy network, AlphaGo exceeded the performance of all other
Go algorithms. This indicates that a value network implementation is a viable method to
evaluate states.

The authors introduced the AlphaGoZero in 2017 [74], where the algorithm did not
use pre-trained networks of human gameplay but learned the strategy itself without any
guidance. Only the game rules were known, and the system is trained by random self-play
only, using the historic- and current board positions as the input state. There is no
separate policy- and value networks, only one single neural network that outputs the action
probabilities and the state value. The gameplay uses this single network for look-ahead
search and updates the network based on the error between the actual winner and the
predicted winner. The implementation is efficient and defeats other implementations of
Go. In January 2017 it defeated human professional players 60-0 in online games [74].

Central to this pure reinforcement learning strategy is how to improve the policy
network. A traditional approach is to alternate between policy evaluation and policy
improvement as to estimate the value function based on outcomes from different gameplays
[112]. A greedy approach is to only select actions as to maximize the value function using
the error residual. This approach is useful in environments with large state spaces as
demonstrated in AlphaGoZero.

2.2.3 Memory networks

A group of scientists from OpenAI demonstrated the use of deep reinforcement learning
with recurrent networks on a large-scale gaming platform, the Dota 2 [98]. This game
presents challenges of long time horizons, complex environments and occlusion of state
information by only being able to partially observe the environment. The complexity
is increased by high dimension state- and observation spaces, where the reinforcement
agent controlled a team of several players, forming groups when the gameplay rewarded
such strategy. In early phases of the game, solo achievements were more valuable than
cooperative manoeuvres, ending in pure group collaboration in the end phases of the game.
The agent was trained with a single-layer LSTM recurrent memory network with 4096
nodes for several months of self gameplay, for a total of 159 million network parameters.
The network outputs a fully connected layer with action space probabilities and state value.

During training, the team updated parts of their algorithms, and to preserve the
training weights they invented a method called surgery, in which parts of the affected
network is replaced by the updated algorithms to avoid restarting the training. This
method performed well and was evaluated by complete retraining on the final algorithm
by evaluating the differences with the networks that were iteratively undergoing surgery.
The system utilizes one network instance per game hero, the character controlled by the
agent, and use frame-clipping to reduce the observational space and hence computation
time. The policy was trained based on a variation of the advantage actor critic, using
Proximal Policy Optimization algorithm. Experience buffers was used for training, but also
for distributing training across computers and GPUs.

However, the reward function was hand-made by humans, forcing the agent to learn
strategies that humans believe are best choices, like killing enemies and gaining resources.
OpenAI also engineered the reward function such that it forced the agent to change its
play strategy during playtime, to accommodate for group formation towards the end of
the game through a dynamic team spirit that was dependent on game time. Different

17

CHAPTER 2. LITERATURE

(a)

(b)

Figure 11: Screenshots right before two of the dire tower falls in the OpenAI Five Finals game 1.
In 11a, Gyrocopter and Crystal Maiden attack the bottom tower 1 (upper left in Figure 10) and
plan perhaps to kill it (their predictions go up). But they are chased away by the incoming dire
(human) heroes, and their plan changes (the prediction that they will participate in the tower kill
falls back to zero). Radiant creeps kill the tower half a minute later. In 11b, all radiant heroes
attack mid tower 2 (center in Figure 10). However just before it falls, few dire heroes show up trying
to save it, and most radiant heroes end up chasing them a fair distance away from the building.
The prediction for those heroes to participate in the tower kill drops accordingly.

36

Figure 2.4: Game play from Dota 2
Figure from [98]

rewards were given based on the human setup, like rewarding different towers concurred
and spending gold on resources. The rewards differed whether the resources were bought
individually or as a team. In sum, the reward function heavily determines game progress,
and it could be argued that the agent shows less self-intelligence when the reward function
is heavily engineered by humans. At least, we can say that the agent exhibits tactical
intelligence, but not strategic intelligence. The authors also reflect that investigating other
reward schemes is interesting future work.

One of the interesting approaches to reinforcement learning is to estimate the reward
function, which is one of the research questions in this thesis.

2.3 Physical control

Bringing the success of gameplay to the physical world enables us to broaden the menu
of available control strategies when considering a control problem. If we could let the
computer learn how the physical world works, it could potentially drive wider adoption of
data-driven methods within control engineering. There are situations where other methods
are better suited, i.e. in fields where less sensory data is present, or where you cannot
express the system state adequately. Here lies the culprit of data-driven methods: to use
them, we need data. In the case of reinforcement learning using neural networks, we need
a lot of training data to drive the network adaption and avoid gradient valleys.

2.3.1 Simulated environment

Within Deep Q-learning, Mnih et al. [51] and OpenAI [98] demonstrated control in
complex environments. Their method using convolutional neural networks and memory
networks to play computer games was however limited to a predefined discrete action space.
Applying DQN to the continuous action space is not so straight forward as the method
relies on maximizing each action-value pair, and iterating within the continuous domain
makes each step an optimization problem itself, which is computationally impractical. One

18

2.3. PHYSICAL CONTROL

solution is to discretize the action space to such a level that does not break the system’s
ability to learn the underlying system dynamics, however, this may be inadequate within
environments of higher action space complexity.

Lillicrap et al. [59] proposes a model-free, off-policy actor-critic method that is able
to learn within high-dimensional continuous action spaces so that at ∈ RN . The work is
based on extending the deterministic policy gradient (DPG) by Silver et al. [54] to what
the authors call the Deep DPG. The work challenges the algorithm on several robotic
control problems using two different observational spaces: one low-dimensional space
based on sensory inputs like joint positions and cartesian coordinates, and a pure camera-
based input using the pixel values directly. Training such algorithms is done in a virtual
environment that can simulate physical dynamics and react on the actions proposed by
the RL agent. Instead of learning the action-value directly, the states are mapped to a
probability distribution over the actions π : S → P(A).

An interesting discovery is that the same network architecture and hyperparameters
could be used on different control tasks. Further, they also observed that the agent in
some cases found policies that out-performed the dynamics engine itself. The algorithm
makes use of the experience replay memory technique whereby samples are stored for
later use for random training, and also batch normalization where samples in training on
mini-batches are normalized to unit mean and variance. The reasoning here is that the
network should slowly work towards convergence and minimize covariance shift, as well as
accepting observations of different magnitudes. Another interesting approach is that the
target network is also updated slowly by weighting the updates, and not directly replaced
as done by Mnih et al. [51]. The stability gained outweighed the negative consequences of
slow learning.

Exploration vs. exploitation of environments must be balanced, and the topic must
be addressed when applying reinforcement learning. Exploration means that the agent
is presented observations never or seldom seen before, to learn wider action policies. A
popular method is the epsilon greedy policy, in which we randomly select an action in ε of
the iterations to explore new parts of the environment. This is viable in discrete action
space implementations but cannot be directly applied here. Lillicrap et al. [59] makes use
of a noise function N added to the policy, so that

µ′ = µ(st|θµt) +N (2.12)

N could be any noise function suited for the application; Lillicrap et al. [59] selected
the Ornstein-Uhlenbeck function [1] to generate temporally correlated noise. Another way
to explore is to present more samples to the network [63, p. 233] by data augmentation
where random data disturbance is introduced. For pixels or image data, this can be done
by e.g., zooming, rotating, occluding, de-focusing etc. [99]. Other ways are to introduce
random disturbance is in the form of homoscedastic noise [110], Del Rio-Chanona et al.
proposes noise ±3% the standard deviation [91], or by synthetically re-create a signal using
Generative Adversarial Networks [68].

2.3.2 Transfer to the physical environment

Haarnoja et al. [81] demonstrates the use of reinforcement learning within the physical
domain by creating a learning algorithm for a multi-legged walkable robot. They argue that
as opposed to simulated environments, updates and hyperparameter searches in the real

19

CHAPTER 2. LITERATURE

world cannot be done extensively. This would impose the danger of damaging the physical
equipment through such trial-and-error policies. By applying the maximum entropy method,
they show that minimal training is necessary to achieve reasonable performance early in
the training, without utilizing simulated environments.

Learning to Walk via Deep Reinforcement Learning
Tuomas Haarnoja⇤,1,2, Sehoon Ha⇤,1, Aurick Zhou2, Jie Tan1, George Tucker1 and Sergey Levine1,2

1Google Brain 2Berkeley Artificial Intelligence Research, University of California, Berkeley
Email: {tuomash,sehoonha,jietan,gjt}@google.com,{azhou42,svlevine}@berkeley.edu

⇤The first two authors contributed equally.

Abstract—Deep reinforcement learning (deep RL) holds the

promise of automating the acquisition of complex controllers

that can map sensory inputs directly to low-level actions. In the

domain of robotic locomotion, deep RL could enable learning

locomotion skills with minimal engineering and without an

explicit model of the robot dynamics. Unfortunately, applying

deep RL to real-world robotic tasks is exceptionally difficult,

primarily due to poor sample complexity and sensitivity to

hyperparameters. While hyperparameters can be easily tuned

in simulated domains, tuning may be prohibitively expensive on

physical systems, such as legged robots, that can be damaged

through extensive trial-and-error learning. In this paper, we

propose a sample-efficient deep RL algorithm based on maximum

entropy RL that requires minimal per-task tuning and only a

modest number of trials to learn neural network policies. We

apply this method to learning walking gaits on a real-world

Minitaur robot. Our method can acquire a stable gait from

scratch directly in the real world in about two hours, without

relying on any model or simulation, and the resulting policy is

robust to moderate variations in the environment. We further

show that our algorithm achieves state-of-the-art performance

on simulated benchmarks with a single set of hyperparameters.

Videos of training and the learned policy can be found on the

project website
3
.

I. INTRODUCTION

Designing locomotion controllers for legged robots is a long-
standing research challenge. Current state-of-the-art methods
typically employ a pipelined approach, consisting of compo-
nents such as state estimation, contact scheduling, trajectory
optimization, foot placement planning, model-predictive control,
and operational space control [1, 5, 13, 23]. Designing
these components requires expertise and often an accurate
dynamics model of the robot that can be difficult to acquire.
In contrast, end-to-end deep reinforcement learning (deep RL)
does not assume any prior knowledge of the gait or the robot’s
dynamics, and can in principle be applied to robotic systems
without explicit system identification or manual engineering.
If successfully applied, deep RL can automate the controller
design, completely removing the need for system identification,
and resulting in gaits that are directly optimized for a particular
robot and environment. However, applying deep RL to learning
gaits in the real world is challenging, since current algorithms
often require a large number of samples—on the order of
tens of thousands of trials [44]. Moreover, such algorithms are
often highly sensitive to hyperparameter settings and require
considerable tuning [21], further increasing the overall sample
complexity. For this reason, many prior methods have studied

3https://sites.google.com/view/minitaur-locomotion/

Fig. 1: Illustration of a walking gait learned in the real world. The
policy is trained only on a flat terrain, but the learned gait is robust
and can handle obstacles that were not seen during training.

learning of locomotion gaits in simulation [4, 20, 34, 50],
requiring accurate system identification and modeling.

In this paper, we aim to address these challenges by
developing a deep RL algorithm that is both sample efficient
and robust to the choice of hyperparameters, thus allowing us
to learn locomotion gaits directly in the real world, without
prior modeling. In particular, we extend the framework of
maximum entropy RL. Methods of this type, such as soft actor-
critic [17] and soft Q-learning [15], can achieve state-of-the-art
sample efficiency [17] and have been successfully deployed in
real-world manipulation tasks [16, 31], where they exhibit a
high degree of robustness due to entropy maximization [16].
However, maximum entropy RL algorithms are sensitive to
the choice of the temperature parameter, which determines
the trade-off between exploration (maximizing the entropy)
and exploitation (maximizing the reward). In practice, this
temperature is considered as a hyperparameter that must be
tuned manually for each task.

We propose an extension to the soft actor-critic algo-
rithm [17] that removes the need for manually tuning of the
temperature parameter. Our method employs gradient-based
optimization of the temperature towards the targeted expected
entropy over the visited states. In contrast to standard RL,
our method controls only the expected entropy over the states,
while the per-state entropy can still vary—a desirable property
that allows the policy to automatically reduce entropy for
states where acting deterministically is preferred, while still
acting stochastically in other states. Consequently, our approach

ar
X

iv
:1

81
2.

11
10

3v
3

 [c
s.L

G
]

19
 Ju

n
20

19

Figure 2.5: Illustration of a walking gait learned in the real world
Figure from [81]

They propose the soft actor-critic and removes the manually tuned temperature
parameter α which is used to balance exploration of the environment with environment
exploitation in maximum entropy algorithms. They also show that minimal hyperparameter
tuning is necessary to reach stable performance across several control tasks. In this task,
the robot executes continuously with no defined terminal state, except where humans must
intervene due to physical constraints and safety. Hence, the given reward is discounted by
a factor γ so that the sum of future expected rewards are finite:

Rt =

∞∑
k=t

γk−trk(sk, ak) (2.13)

The γ influences the control horizon where a smaller factor makes the algorithm more
short-sighted than a larger factor.

Maximum entropy RL is robust and sample efficient, and the authors demonstrate
that it can be insensitive to hyperparameters by dynamically tuning the temperature
parameter α by Langrangian relaxation. Optimal entropy relies on the magnitude of the
reward and policy, which develops during training to be more and more efficient, and again
would influence the need to update the temperature parameter across tasks and trained
policies. The authors add α to the value function, and periodically optimize this parameter
during training to achieve an efficient physical control demonstration without the use of a
simulated environment.

To the other extent, there are also examples of systems where all training is done in a
simulator before being transferred and executed on a real system. This is an appealing
approach where safe operation of equipment is critical. OpenAI [99] used a robotic hand
to solve the Rubik’s cube based on RL, computer vision and convolutional neural networks
by the concept of a Deep Q Network. Central to the concept is environment randomization
where changes and occlusions in the simulated environment introduce randomness in the

20

2.3. PHYSICAL CONTROL

training, and hence situations that are slightly new to the system. This would further
help to generalize the trained network to the real world. A virtual simulator was set up
replicating the robotic hand model and robotic environment, using three virtual cameras
of the Rubik’s cube as input to a Deep Q Network to estimate the cube’s and finger’s
positions. All fingertips of the robot had a special pulsating light-emitting diode system
attached so that the cartesian coordinates of all fingertips could be tracked by altering the
LED pulse individually for each finger, via the same camera system. Further, the robot
joint positions were also recorded.

The reward system was highly specialized towards the task; distance between current
state and goal state and goal-reaching. Dropping the cube gave negative rewards. OpenAI
used 1024 LSTM memory blocks in two separate networks, one for the policy, and one
for the value network, where the value network was only trained in simulation as showed
in Figure 2.6. There was also a separate observation network based on ResNet50, where
cube positions were trained via supervised learning and inputted as real values to the RL
network.

A PREPRINT - OCTOBER 17, 2019

6.1 Actions, Rewards, and Goals

Our setup for the action space and rewards is unchanged from [77] so we only briefly recap them here. We use a
discretized action space with 11 bins per actuated joint (of which there are 20). We use a multi-categorical distribution.
Actions are relative changes in generalized joint position coordinates.

There are three types of rewards we provide to our agent during training: (a) The difference between the previous and
the current distance of the system state from the goal state, (b) an additional reward of 5 whenever a goal is achieved,
(c) and a penalty of �20 whenever a cube/block is dropped.

We generate random goals during training. For the block, the target rotation is randomly sampled but constrained such
that any face points directly upwards. For the Rubik’s cube the task generation is slightly more convoluted as it depends
on the state of the cube at the time when the goal is generated. If the cube faces are not aligned, we make sure to align
them and additionally rotate the whole cube according to a sampled random orientation just like with the block (called
a flip). Alternatively, if the faces are aligned, we rotate the top cube face with 50% probability either clockwise or
counter-clockwise. Otherwise we again perform a flip. Detailed listings of the goal generation algorithms can be found
in the Section C.1.

We consider a training episode to be finished whenever one of the following conditions is satisfied: (a) the agent
achieves 50 consecutive successes (of reaching a goal within the required threshold), (b) the agent drops the cube, (c) or
the agent times out when trying to reach the next goal. Time out limits are 400 timesteps for block reorientation and
800 timesteps10 for the Rubik’s Cube.

6.2 Policy Architecture

We base our policy architecture on [77] but extend it in a few important ways. The policy is still recurrent since only a
policy with access to some form of memory can perform meta-learning. We still use a single feed-forward layer with
a ReLU activation [72] followed by a single LSTM layer [45]. However, we increase the capacity of the network by
doubling the number of units: the feed-forward layer now has 2048 units and the LSTM layer has 1024 units.

The value network is separate from the policy network (but uses the same architecture) and we project the output of
the LSTM onto a scalar value. We also add L2 regularization with a coefficient of 10�6 to avoid ever-growing weight
norms for long-running experiments.

Observation 1

Normalize

Embedding (512)

Sum

ReLU

Fully-connected (2048)

LSTM (1024)

ReLU

Action distribution (11x20)

Sum

ReLU

Fully-connected (2048)

LSTM (1024)

ReLU

Value (1)

Observation 2

Normalize

Embedding (512)

Goal

Normalize

Embedding (512)

...
Noisy observation 1

Normalize

Embedding (512)

Noisy observation 2

Normalize

Embedding (512)

...

Inputs available in simulation Inputs available on the real robot

(a) Network architecture for value function (b) Network architecture for agent policy

Figure 12: Neural network architecture for (a) value network and (b) policy network.

10We use 1600 timesteps when training from scratch.

14

Figure 2.6: Neural network architecture for (a) value network and (b) policy network
Figure from [99]

The combination of pixel- and sensory input make out a complex observation space
where the network needs to observe as many perturbations as possible. In the simulator,
parameters to the physics engine, vision and observation modules were randomized according
to a Automatic Domain Randomization formula. When training was reaching convergence,
the system gradually extended the parameters so that training could commence in a broader
environment. The degree of domain randomization was dynamically adjusted according to
the entropy of the parameter distribution. This method allows for no manually engineered
randomizations and hence more efficient system implementation.

21

CHAPTER 2. LITERATURE

2.4 Bioprocess modelling

Advances in reinforcement learning raise the question of whether combining first principle
dynamic models and modern machine learning concepts can be applied to modelling and
control, and whether these models can be explained and tested for significance in the real
world. Reinforcement learning has shown to handle nonlinear stochastic control problems
well and is an attractive implementation alternative [110].

Del Rio‐Chanona et al. [91] presents methods and experiments for improving bioprocess
modelling based on traditional machine learning and dynamic models. The authors
conducted bacterial laboratory experiments and studied the variation and equality between
dynamic kinetic models, artificial neural networks and Gaussian process models. The
intention was to compare control strategies for algae- and bacterial wastewater treatment,
for the sake of efficiency and safety of bioprocesses. They also address the challenge of
building data-driven models from scarce datasets and present a method for augmenting
time series by linear interpolation.

Traditionally, kinetic models have been used for modelling bioprocesses and require
extensive model studies. Kinetic models are basically differential equations that model cell
growth, substrate uptake and end-product. Primarily, most time is used on the construction
of such models and parameter optimization, to be applied to a specific process. These
models need less data for training than machine learning methods but underlying knowledge
of the chemical processes are needed, and the authors report that typical model construction
times are several weeks, as opposed to machine learning methods where construction can
be done in a few days. This, however, requires extensive and continuous sensory data for
training, often not available, or at least limited. The article also refers to several studies
where machine learning methods have been applied, but the problem of scarce datasets in
bioprocesses limits the usefulness.

Laboratory experiments were conducted by the authors to study the effect of numerical
prediction accuracy of glucose, nitrate, phosphate and biomass by the different models. The
article shows that neural networks tend to diverge in prediction compared with traditional
methods and data observations during the longitudinal progression of the experiments.
They used a fully connected neural network without taking the sequence of observations
into account, this would probably influence the results such that false conclusions are made.
The authors point out that while machine learning methods need interpolated training
datasets, sometimes kinetic models are the only choice, e.g. during process scale-up where
no historical data exists. They claim machine learning methods can not replace traditional
methods in every aspect, and so those two paradigms serve different purposes.

Applying reinforcement learning in such a context is particularly interesting since the
long-term drift of such models could possibly be reduced, as well as the potentially positive
economic aspects.

2.4.1 Process optimization on economic factors

Powell et al. [111] investigates the performance of their novel algorithm for process
optimization using reinforcement learning. In their work, economic incentives are included
in the model that directly controls a continuously stirred reactor process. As such, different
external resources may have a differing cost depending on time: when power prices are low,
more heat can be used in exchange for reactants, and vice versa. Economic factors can
include power cost, but also commodity prices or other ambient conditions. Extending RL

22

2.4. BIOPROCESS MODELLING

beyond steady-state control still uses many of the aforementioned methods and techniques.
The article proposes that RL can be used in the real-time optimization domain, extending
from the more traditional regulatory applications that use first-principle models. In
cases where the plant model is unknown, the process is highly uncertain or where skilled
manpower is unavailable, a data-driven methodology for optimization should be possible.
They show that reinforcement learning is a viable alternative to non-linear programming
methods in optimization tasks, although more work is needed to fully compete with them.

The idea is that the model is learnt from contextual data, environmental data and plant
inputs. The model will respond with an optimal learnt policy in a continuous action space.
The authors use the actor-critic method utilizing a deep neural network, and separates
the value- and policy network into two different and standalone networks, where the
value network is trained before the policy network, on process data alone (see Figure 2.7).
Training of the policy network uses a static version of the value network to train discounted
future rewards for a particular state-action pair of the policy network. The value network
is trained using traditional backpropagation of the error derivate using a gradient-based
solver. This is done on the plant’s process data with corresponding decision variables
from a historic recording, or from simulated data, as was done by the authors. The value
network is trained on all available data at once, decreasing the risk of entering local minima
as can happen when iterating on small datasets consisting of recent data only.

B.K.M. Powell, D. Machalek and T. Quah / Computers and Chemical Engineering 143 (2020) 107077 5

Fig. 1. The basic setup for a reinforcement learning configuration, available from (Shin et al., Aug. 2019).

Fig. 2. The Actor-Critic RL design architecture, available from (Shin et al., Aug. 2019).

Fig. 3. The deep neural network structure used for reinforcement learning. The model uses a critic function to predict the reward based on input variables (both measured
disturbances and decision variables) and an actor function, which will ultimately be trained to determine the optimal values of the decision variables when given a specific
set of measured disturbances.

Figure 2.7: Actor-Critic RL design architecture
Figure from [111]

Solving the policy network function need careful consideration: the goal is to maximise
the reward and an error-minimizing algorithm is undesirable. Instead, the authors train
the policy network to select actions that maximise the reward using a non-gradient-based
particle swarm optimization algorithm implemented in Matlab. The reward function was
engineered according to the optimization goal: maximizing profit subject to environmental
conditions. This could lead to actions that are undesirable from a normal plant operation
view, so a penalty term was added so that actions were kept within a secure process
envelope. Having these two goals as part of the reward function is an interesting feature to
investigate in this thesis.

From a simulation perspective, as soon as the networks converge, they can be kept
constant. However, in a real-time application, plant drift or unknown conditions must

23

CHAPTER 2. LITERATURE

be catered to avoid a mismatch between the model and the actual plant. As such, the
networks should be updated as new process data becomes available to compensate for such
plant drift during operation, either in real-time or via asynchronous tasks on separate
computing resources. The penalty term of the reward function should secure that the
actions space does not over-compensate for such drift. The work shows that static learned
policies can be used for real-time execution whereas updating them could be separated
and run in parallel.

Without any knowledge of the system, the actor-critic method was able to learn
strategies so that performance of the system was increased. This alone demonstrates the
effectiveness of reinforcement learning as an alternative to non-linear programming in
control- and optimization tasks.

2.5 Model predictive control

Mathematical models can serve as a basis for control algorithms, as described earlier. A
theoretical model of the application domain is constructed to predict the future given
the inputted actions. Feedback to the model with the state response would then be
used to update the model’s perception of the real world to make better predictions. The
model would allow a selection of optimal control actions if it is able to describe the
application model. In practice, modelling every aspect is not possible due to system drift,
instrumentation noise and unknown system relations, so a feedback signal is used to correct
the model accordingly for such deviations, to some extent. This error signal et is the
measured deviation to some system set point of the monitored and controllable signal,
et = msetpoint −mmeasured.

Many of today’s control applications utilizes Propotional Integral Derivative (PID)
control. PID is widely used in both the industrial and medical domain for basic closed-loop
feedback control [38]. The basic idea is that deviations to the controlled quantity is
corrected by the degree of error and the sum of past deviations. The input is then adjusted
proportionally to the target deviation given a sum of three formulas:

At = Kpet +Ki

∫
etdt+Kd

det
dt

(2.14)

where et is the error signal and the gain coefficients Kp, Ki and Kd are tunable
parameters controlling the weight of each individual formula. Some systems utilize only
the proportional part, while others a combination of two or all parts. This simple system
is widely used due to its simplicity and performance.

A PID controller is reactive in that it will directly respond to the system state, while
other methods allow for predictive control and hence falls under the umbrella Model
Predictive Control. The modern research area picked up speed after World War II and is
an attractive strategy for complex systems [13].

For MPC, the concept of the PID-controller is extended to include [106]:

1. A dynamic simulation model that can predict the future state given a sequence of
control actions.

2. A mathematical solver that can optimize the actions given the control response from
the simulation model.

24

2.5. MODEL PREDICTIVE CONTROL

3. Boundaries of acceptable action dynamics and states

4. Optimization goal that the solver should achieve

An algorithm will iteratively calculate the future states on each time step t, the receding
horizon. The mathematical solver will adjust its parameters to regressively focus on
the states that would achieve the optimization goal and recalculate the receding horizon
prediction whenever new state observations are available and apply the first action to the
environment. The response feedback is then re-evaluated in this iterative fashion.

Identification of the system model is historically exercised by identifying ordinary
differential equations (ODEs) describing a dynamical system, often relying on first principle
physical equations. Identifying the model involves data analysis and data wrangling, and a
deep theoretical understanding of the application domain. In some cases, the staff is not
available for such modelling, or the system complexity makes it economically unattractive.
However, the model could also utilize data-driven methods by using neural networks [106].

In a dynamical system, next state is dependent on the current state, i.e. there is a
Markovian relationship within the states of a sequence. Chen et al. [77] observes that
residual neural networks models this behaviour where the output of a layer is the sum of
the layer activation itself and the input:

ht+1 = ht + f(ht, θt) (2.15)

where t ∈ {0...T} is residual block number and f is a function learned by layers inside
the block. By rewriting to

dht
dt

= f(ht, t, θ) (2.16)

the hidden dynamics of f can be solved with an ODE solver, replacing the network to
a continuous network where the function parameters θ are trained using gradient methods.
The authors claim there are many benefits of learning this function, such as computation
efficiency and constant memory utilization. Honchar [93] demonstrated applications of this
technique using standard non-linear functions, and showed that a multilayer hyperbolic
tangens network as ODE was able to learn a dynamic problem quite well using this method.

Tuor et al. [115] demonstrated the use of a neural network as a replacement of ODEs,
where a system model can be learned by a sparse amount of data. The learnt ODEs are
represented as fully connected layers using a rectified linear unit as activation function.
They demonstrate that such a network can have stability guarantees by constraining the
eigenvalues of the weights of the layers. The result is a network able to generalize physically
consistent ODEs. Look and Kandemir [95] propose a Bayesian version of neural ODEs
where prediction accuracy can be well established.

With relation to reinforcement learning, the MPC receding horizon prediction is
trained within the critic network. That is, the future discounted reward for an action
sequence is continuously updated as changes to both the network parameters and function
approximation is done as new data is trained towards a reward signal. As such, reinforcement
learning has the potential to succeed MPC as it is lightweight, data-driven and computationally
effective and being able to constantly adjust for drift and system dynamics given that it is
properly trained. By focusing on limiting the function dynamics to physically legal actions,
the security of such a data-driven method should be achievable.

25

CHAPTER 2. LITERATURE

2.6 Agent training strategies

Drawing lines back to the early days of TD-learning, the research community has seen
tremendous developments within reinforcement learning. Deep Actor Critic-methods are
now some of the most advanced approximators in this field, involving deep neural networks
in many combinations and utilizing many extensions. A non-exhaustive overview and
relations of some of the current algorithms are shown in Figure 2.8, but many more exists.
The Soft Actor Critic is an algorithm of many reasons applicable to the real world, as
earlier described.

! Edit on GitHub

Next "

Docs » Part 2: Kinds of RL Algorithms

Part 2: Kinds of RL Algorithms
Table of Contents

Part 2: Kinds of RL Algorithms
A Taxonomy of RL Algorithms
Links to Algorithms in Taxonomy

Now that we’ve gone through the basics of RL terminology and nota!on, we can cover a li"le bit of
the richer material: the landscape of algorithms in modern RL, and a descrip!on of the kinds of trade-
offs that go into algorithm design.

A Taxonomy of RL Algorithms

Model-Free RL

RL Algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

A non-exhaus!ve, but useful taxonomy of algorithms in modern RL. Cita!ons below.

We’ll start this sec!on with a disclaimer: it’s really quite hard to draw an accurate, all-encompassing
taxonomy of algorithms in the modern RL space, because the modularity of algorithms is not well-
represented by a tree structure. Also, to make something that fits on a page and is reasonably
diges!ble in an introduc!on essay, we have to omit quite a bit of more advanced material
(explora!on, transfer learning, meta learning, etc). That said, our goals here are

to highlight the most founda!onal design choices in deep RL algorithms about what to learn and
how to learn it,
to expose the trade-offs in those choices,
and to place a few prominent modern algorithms into context with respect to those choices.

Model-Free vs Model-Based RL

One of the most important branching points in an RL algorithm is the ques!on of whether the agent
has access to (or learns) a model of the environment. By a model of the environment, we mean a
func!on which predicts state transi!ons and rewards.

The main upside to having a model is that it allows the agent to plan by thinking ahead, seeing what
would happen for a range of possible choices, and explicitly deciding between its op!ons. Agents can
then dis!ll the results from planning ahead into a learned policy. A par!cularly famous example of this
approach is AlphaZero. When this works, it can result in a substan!al improvement in sample
efficiency over methods that don’t have a model.

The main downside is that a ground-truth model of the environment is usually not available to the
agent. If an agent wants to use a model in this case, it has to learn the model purely from experience,
which creates several challenges. The biggest challenge is that bias in the model can be exploited by
the agent, resul!ng in an agent which performs well with respect to the learned model, but behaves
sub-op!mally (or super terribly) in the real environment. Model-learning is fundamentally hard, so
even intense effort—being willing to throw lots of !me and compute at it—can fail to pay off.

Algorithms which use a model are called model-based methods, and those that don’t are called
model-free. While model-free methods forego the poten!al gains in sample efficiency from using a
model, they tend to be easier to implement and tune. As of the !me of wri!ng this introduc!on
(September 2018), model-free methods are more popular and have been more extensively developed
and tested than model-based methods.

What to Learn

Another cri!cal branching point in an RL algorithm is the ques!on of what to learn. The list of usual
suspects includes

policies, either stochas!c or determinis!c,
ac!on-value func!ons (Q-func!ons),
value func!ons,
and/or environment models.

What to Learn in Model-Free RL

There are two main approaches to represen!ng and training agents with model-free RL:

Policy Op!miza!on. Methods in this family represent a policy explicitly as . They op!mize the
parameters either directly by gradient ascent on the performance objec!ve , or indirectly, by
maximizing local approxima!ons of . This op!miza!on is almost always performed on-policy,
which means that each update only uses data collected while ac!ng according to the most recent
version of the policy. Policy op!miza!on also usually involves learning an approximator for the
on-policy value func!on , which gets used in figuring out how to update the policy.

A couple of examples of policy op!miza!on methods are:

A2C / A3C, which performs gradient ascent to directly maximize performance,
and PPO, whose updates indirectly maximize performance, by instead maximizing a surrogate
objec!ve func!on which gives a conserva!ve es!mate for how much will change as a result
of the update.

Q-Learning. Methods in this family learn an approximator for the op!mal ac!on-value
func!on, . Typically they use an objec!ve func!on based on the Bellman equa!on. This
op!miza!on is almost always performed off-policy, which means that each update can use data
collected at any point during training, regardless of how the agent was choosing to explore the
environment when the data was obtained. The corresponding policy is obtained via the connec!on
between and : the ac!ons taken by the Q-learning agent are given by

Examples of Q-learning methods include

DQN, a classic which substan!ally launched the field of deep RL,
and C51, a variant that learns a distribu!on over return whose expecta!on is .

Trade-offs Between Policy Op!miza!on and Q-Learning. The primary strength of policy op!miza!on
methods is that they are principled, in the sense that you directly op!mize for the thing you want. This
tends to make them stable and reliable. By contrast, Q-learning methods only indirectly op!mize for
agent performance, by training to sa!sfy a self-consistency equa!on. There are many failure
modes for this kind of learning, so it tends to be less stable. But, Q-learning methods gain the
advantage of being substan!ally more sample efficient when they do work, because they can reuse
data more effec!vely than policy op!miza!on techniques.

Interpola!ng Between Policy Op!miza!on and Q-Learning. Serendipitously, policy op!miza!on and
Q-learning are not incompa!ble (and under some circumstances, it turns out, equivalent), and there
exist a range of algorithms that live in between the two extremes. Algorithms that live on this
spectrum are able to carefully trade-off between the strengths and weaknesses of either side.
Examples include

DDPG, an algorithm which concurrently learns a determinis!c policy and a Q-func!on by using
each to improve the other,
and SAC, a variant which uses stochas!c policies, entropy regulariza!on, and a few other tricks to
stabilize learning and score higher than DDPG on standard benchmarks.

What to Learn in Model-Based RL

Unlike model-free RL, there aren’t a small number of easy-to-define clusters of methods for model-
based RL: there are many orthogonal ways of using models. We’ll give a few examples, but the list is
far from exhaus!ve. In each case, the model may either be given or learned.

Background: Pure Planning. The most basic approach never explicitly represents the policy, and
instead, uses pure planning techniques like model-predic!ve control (MPC) to select ac!ons. In MPC,
each !me the agent observes the environment, it computes a plan which is op!mal with respect to
the model, where the plan describes all ac!ons to take over some fixed window of !me a%er the
present. (Future rewards beyond the horizon may be considered by the planning algorithm through
the use of a learned value func!on.) The agent then executes the first ac!on of the plan, and
immediately discards the rest of it. It computes a new plan each !me it prepares to interact with the
environment, to avoid using an ac!on from a plan with a shorter-than-desired planning horizon.

The MBMF work explores MPC with learned environment models on some standard benchmark
tasks for deep RL.

Expert Itera!on. A straigh&orward follow-on to pure planning involves using and learning an explicit
representa!on of the policy, . The agent uses a planning algorithm (like Monte Carlo Tree
Search) in the model, genera!ng candidate ac!ons for the plan by sampling from its current policy.
The planning algorithm produces an ac!on which is be"er than what the policy alone would have
produced, hence it is an “expert” rela!ve to the policy. The policy is a%erwards updated to produce an
ac!on more like the planning algorithm’s output.

The ExIt algorithm uses this approach to train deep neural networks to play Hex.
AlphaZero is another example of this approach.

Data Augmenta!on for Model-Free Methods. Use a model-free RL algorithm to train a policy or Q-
func!on, but either 1) augment real experiences with fic!!ous ones in upda!ng the agent, or 2) use
only fic!tous experience for upda!ng the agent.

See MBVE for an example of augmen!ng real experiences with fic!!ous ones.
See World Models for an example of using purely fic!!ous experience to train the agent, which
they call “training in the dream.”

Embedding Planning Loops into Policies. Another approach embeds the planning procedure directly
into a policy as a subrou!ne—so that complete plans become side informa!on for the policy—while
training the output of the policy with any standard model-free algorithm. The key concept is that in
this framework, the policy can learn to choose how and when to use the plans. This makes model bias
less of a problem, because if the model is bad for planning in some states, the policy can simply learn
to ignore it.

See I2A for an example of agents being endowed with this style of imagina!on.

Links to Algorithms in Taxonomy

Previous

© Copyright 2018, OpenAI. Revision 038665d6.

Built with Sphinx using a theme provided by Read the Docs.

[1] For more informa!on about how and why Q-learning methods can fail, see 1) this classic paper by
Tsitsiklis and van Roy, 2) the (much more recent) review by Szepesvari (in sec!on 4.3.2), and 3)
chapter 11 of Su"on and Barto, especially sec!on 11.3 (on “the deadly triad” of func!on
approxima!on, bootstrapping, and off-policy data, together causing instability in value-learning
algorithms).

[2] A2C / A3C (Asynchronous Advantage Actor-Cri!c): Mnih et al, 2016

[3] PPO (Proximal Policy Op!miza!on): Schulman et al, 2017

[4] TRPO (Trust Region Policy Op!miza!on): Schulman et al, 2015

[5] DDPG (Deep Determinis!c Policy Gradient): Lillicrap et al, 2015

[6] TD3 (Twin Delayed DDPG): Fujimoto et al, 2018

[7] SAC (So% Actor-Cri!c): Haarnoja et al, 2018

[8] DQN (Deep Q-Networks): Mnih et al, 2013

[9] C51 (Categorical 51-Atom DQN): Bellemare et al,
2017

[10] QR-DQN (Quan!le Regression DQN): Dabney et al, 2017

[11] HER (Hindsight Experience Replay): Andrychowicz et al, 2017

[12] World Models: Ha and Schmidhuber, 2018

[13] I2A (Imagina!on-Augmented Agents): Weber et al, 2017

[14] MBMF (Model-Based RL with Model-Free Fine-Tuning): Nagabandi et al, 2017

[15] MBVE (Model-Based Value Expansion): Feinberg et al, 2018

[16] AlphaZero: Silver et al, 2017

[1]

latest

Search docs

USER DOCUMENTATION

INTRODUCTION TO RL

RESOURCES

ALGORITHMS DOCS

UTILITIES DOCS

ETC.

Introduc!on

Installa!on

Algorithms

Running Experiments

Experiment Outputs

Plo'ng Results

Part 1: Key Concepts in RL

$ Part 2: Kinds of RL Algorithms

% A Taxonomy of RL Algorithms

Links to Algorithms in Taxonomy

Part 3: Intro to Policy Op!miza!on

Spinning Up as a Deep RL Researcher

Key Papers in Deep RL

Exercises

Benchmarks for Spinning Up
Implementa!ons

Vanilla Policy Gradient

Trust Region Policy Op!miza!on

Proximal Policy Op!miza!on

Deep Determinis!c Policy Gradient

Twin Delayed DDPG

So% Actor-Cri!c

Logger

Plo"er

MPI Tools

Run U!ls

Acknowledgements

About the Author

& Read the Docs v: latest '

Figure 2.8: A non-exhaustive, but useful taxonomy of algorithms in modern reinforcement
learning

Figure from [87]

Even though the combinations of possible methods and parameters are endless and
somewhat intimidating, a template for actor-critic-algortihms from Bhatnagar, Sutton,
Ghavamzadeh and Lee [37] is still valid under general circumstances. Algorithm 2.6
describes a framework for an agent: input data, calculate action, observe reward, update
value- and policy network. Variations on the algorithm differ between methods, but still,
the general template holds.

2.6.1 Representation learning

Neural networks architectures are roughly divided into generative and discriminative
models. Fawaz et al. [78] reviews the state of research within this area for time series
classification and regression tasks. A generative model tries to find a representation of the
data prior to training. Such networks estimate the output variables through learning the
probabilistic distribution of a set of latent variables. These are often used for data filtering
and reconstruction tasks in multivariate problems, an example is the Auto-Encoder type of
neural networks. Discriminative models directly learn the mapping between the input and
output. For classification tasks, the output would be a probability distribution over the

26

2.6. AGENT TRAINING STRATEGIES

Algorithm 1 A Template for actor-critic algorithms
Input:

Randomized parameterized policy πθ

Value function feature vector fs
Initialization:

Policy parameters θ = θ0
Value function weight vector v = v0
Step sizes α = α0, β = β0, ξ = cα0

Initial state s0
for t = 0, 1, 2, 3... do

Execution:
Draw action at ∼ πθt(st, at)
Observe next state st+1 ∼ P (st, at, st+1

Observe reward rt+1

Average Reward Update
TD Error
Critic Update
Actor Update

end for
return Policy and value function parameters θ, v

class variables of the dataset, in a regression problem, the output is a continuous variable
[78].

Convolutional Neural Networks (CNNs) is a special kind of architecture for handling
image recognition and classification. CNNs are very similar to fully connected networks
but assume input data that has a spatial relationship. This could be 1-dimensional
data in the form of a time series, 2D images and also 3D spatial volumes like Magnetic
Resonance images. A convolution operation is performed on the input data transforming a
matrix to a more abstract representation given parameterized filter matrices, learned by
backpropagation.

A deep network of multiple convolution operations has the ability to learn specific
abstract details of the input and is analogous to how the visual cortex in our brain is
thought to be architectured. The mammalian visual system is in one model described by
two cell types: Simple and Complex [8]. The S-cells identify basic shapes, and the C-cells
combine a larger receptive field without being sensitive to shape positions. The neocortex
is thought to store this information hierarchically, and the concept of the neocognitron used
this analogy to recognise patterns after learning [10].

CNNs are a successor of this research, appearing first in the LeNet-5 CNN [23], describing
a result of merging two sets of information, the input and a filter matrix and sliding this
over the input. At every such location, a matrix multiplication with the filter is performed
which results in a feature map for that location. The filter is designed to react on image
features like edges, horizontal and vertical lines etc., but research has shown that using
several randomly initialized filter matrices can produce better results than hand-designed
filters, especially when followed by a pooling layer after an activation layer [45]. The filter
matrices are the learned parameters in a convolutional layer, and we can apply several
such filters per layer. Randomizing the first weights is a way of letting each filter travel

27

CHAPTER 2. LITERATURE

in different descents. Pooling is effective to make further processing invariant to small
changes in the input and gathers statistics of neighbouring activations.

Today, CNNs are superior within the image classification domain, but the methods can
also be applied to multivariate time series: given a univariate time series X = [x1, x2, ..., xt]
where x ∈ R, a multi-dimensional time series X consists of m different univariate time series
in a matrix: X = [X1, X2, ..., XM] as illustrated in Figure 2.9. An image is also formed
as a matrix, often with several colour channels in addition representing as n matrices per
image.Deep learning for time series classification: a review 5

input
multivariate
time series

non-linear
transformations

of the input
time series

M
dim

ensions

X1

X2

X3
probability
distribution

over K classes

XM

time series
length

univariate
input time

series

Fig. 1: A unified deep learning framework for time series classification.

data. A deep neural network is a composition of L parametric functions referred to as layers where
each layer is considered a representation of the input domain (Papernot and McDaniel, 2018). One
layer li, such as i 2 1 . . . L, contains neurons, which are small units that compute one element of
the layer’s output. The layer li takes as input the output of its previous layer li�1 and applies
a non-linearity (such as the sigmoid function) to compute its own output. The behavior of these
non-linear transformations is controlled by a set of parameters ✓i for each layer. In the context of
DNNs, these parameters are called weights which link the input of the previous layer to the output
of the current layer. Hence, given an input x, a neural network performs the following computations
to predict the class:

fL(✓L, x) = fL�1(✓L�1, fL�2(✓L�2, . . . , f1(✓1, x))) (1)

where fi corresponds to the non-linearity applied at layer li. For simplicity, we will omit the vector
of parameters ✓ and use f(x) instead of f(✓, x). This process is also referred to as feed-forward
propagation in the deep learning literature.

During training, the network is presented with a certain number of known input-output (for
example a dataset D). First, the weights are initialized randomly (LeCun et al., 1998b), although
a robust alternative would be to take a pre-trained model on a source dataset and fine-tune it
on the target dataset (Pan and Yang, 2010). This process is known as transfer learning which we
do not study empirically, rather we discuss the transferability of each model with respect to the
architecture in Section 3. After the weight’s initialization, a forward pass through the model is
applied: using the function f the output of an input x is computed. The output is a vector whose
components are the estimated probabilities of x belonging to each class. The model’s prediction
loss is computed using a cost function, for example the negative log likelihood. Then, using gradient
descent (LeCun et al., 1998b), the weights are updated in a backward pass to propagate the error.
Thus, by iteratively taking a forward pass followed by backpropagation, the model’s parameters
are updated in a way that minimizes the loss on the training data.

During testing, the probabilistic classifier (the model) is tested on unseen data which is also
referred to as the inference phase: a forward pass on this unseen input followed by a class pre-
diction. The prediction corresponds to the class whose probability is maximum. To measure the
performance of the model on the test data (generalization), we adopted the accuracy measure (sim-
ilarly to Bagnall et al. (2017)). One advantage of DNNs over non-probabilistic classifiers (such as
NN-DTW) is that a probabilistic decision is taken by the network (Large et al., 2017), thus allowing
to measure the confidence of a certain prediction given by an algorithm.

Although there exist many types of DNNs, in this review we focus on three main DNN ar-
chitectures used for the TSC task: Multi Layer Perceptron (MLP), Convolutional Neural Network

Figure 2.9: Multivariate time series
Figure from [78]

Networks based on CNNs are divided into a feature extraction part consisting of
several layers of convolution, and a classification/regression part built on fully connected
neurons. Applying convolution filters on a time series results in a new representation with
dimensions equal to the number of filters used. Learning multiple discriminative features is
achieved by stacking several layers of convolution. Applying a global pooling aggregation
before the classification layers, reduces the number of learnable parameters and the risk of
overfitting to the data [78]. Adding Dropout layers is another strategy to avoid overfitting.
Dropout randomly disconnects neurons and is a simple way to introduce regularization [48],
[55]. Such networks play well on all input data formed as matrices and serve as a basic
discriminative neural network.

Adding a global pooling layer would also enable us to utilize class activation maps
that explains a model’s decision for a particular prediction [78]. The CAM method would
identify which parts of the time series matrix is responsible for the prediction and hence
reduce the black-box-effect of neural networks.

The sliding filter needs to be properly sized and is shown to be an important hyper-
parameter known as the kernel size. Tang et al. [114] demonstrates the relation between
larger kernel sizes and their ability to capture more correlations. However, oversized kernels
might have useless features that must be trained to zero, thus requiring more training
data. Under-sized kernels have less frequency resolution and do not capture important data
features. Randomly initializing the filters leads to noise in the data that must be trained,
but is not necessarily so that the training data exhibits features that train all filters. The
authors argue that time-series data has multiple salient signals that require multiple kernel
sizes to capture them. They propose that the kernel size should be part of the learning
process simply by adding several convolution operations with different kernel sizes on each
convolutional layer, visualised in Figure 2.10. The stochastic gradient descent will simply
assign weights to the kernels that best represent the data during backpropagation, and the

28

2.6. AGENT TRAINING STRATEGIES

author’s experiments confirm the performance. We also see that they have added a global
pooling layer for the benefit of Class Activation Mapping and explainability of the model.

where r and � are parameters of batch norm, and E denotes
the mean value of x ⇤ w in a batch. As bias, r, E and � are
all trainable parameters, Eq. 11 has the same analytic form:

LayerOutput = r (x ⇤ w + ✏)

where r is the zoom rate of representation, ✏ = bias � E +
(�/r) is inductive bias that is calculated by four numeric vari-
ables that don’t include any frequency information.

We map the layer output into the frequency domain:

F (LayerOutput) = r [F (x ⇤ w) + F (✏)] (12)

Taking Eq. 9 into Eq. 12, we have:

F (LayerOutput) = r [(A+B) (a+ b) + Cc+ F (✏)]

From the definition of bias and batch norm, ✏ is a real value
vector of constant value. We denote the constant value as
Total bias, so we have:

F (✏) [n] =

⇢
Total bias n = 0

0 n 6= 0

Because Cc is a complex value vector while F (✏) is a real
value vector, the Cc noise cannot be depicted by ✏ in convo-
lution. The example in Fig 1 explains why a bias term cannot
de-noise Cc noise in the time domain.

Conv result with High bias
Conv result

Conv result with Cc noise
Conv result with Low bias

Figure 1: Adding bias convolution can only move the convolution
result as a whole, that is moving it from blue to yellow (when
bias>0), or red (when bias<0). The green line depicts a signal with
Cc noise. For the reason that Cc noise is a term in the frequency
domain, the representation of Cc in the time domain is not a con-
stant value. Therefore, it cannot be removed by adding bias to the
convolution.

The problem of ReLu is similar to that of bias. In the time
domain, the ReLu cuts values under a straight line while the
Cc term is a wave. Thus, we know that bias, bath norm, or
ReLu cannot be used to remove the Cc term. This means
only the kernel can discriminate informative patterns from the
background noise.

3.4 Kernel size and Quality of Representation

Proposition 2: An over-length kernel size will bring extra

noise into the representation therefore reducing the qual-

ity of feature representation, and an under-length kernel

size cannot extract the desired signal exactly as it cannot

hold enough frequencies.

Analysis: We analyse how the learned representations are
impacted by improper kernel size with two scenarios:

Over-sized kernel: A neural network is usually initialized
by random weights. In the frequency domain, the initializa-
tion leads to noise in all frequencies. However, the training
dataset might not have noise on all the other frequencies. This

causes an interesting phenomenon this being that: we expect
the c value is zero in-order to make Cc = 0. However,
Cc = 0 might be caused by C = 0. An example is given
in Sec. 6.2. In a real situation, an over-sized kernel has more
useless frequencies to be trained to zero, therefore requiring
more training data, or it brings more Cc noise while testing.
put simply, the random initialization of kernels requires more
training data to train the kernel to know that the values of the
over-size parts should be zero.

Under-sized kernel: An under-sized kernel has less fre-
quency resolution[12] which negatively impacts the quality of
the feature representation. Moreover, it also brings problem
such as positional information loss if it cannot hold enough
information in A frequencies. In summary, a kernel size of
proper length is preferred to obtain a high-quality representa-
tion to capture the salient signals in a time series.

Input data

1 2 3 5 7 11 …. N

Filter result Concatenation

FC

Average pooling

Batchnorm+ReLu

1 2

Filter result Concatenation

Batchnorm+ReLu

1 2 3 5 7 11 …. N

Filter result Concatenation

Input data

1 2 3 5 7 11 …. N

Filter result Concatenation
Batchnorm+ReLu

1 2 3 5 7 11 …. N

Filter result Concatenation
Batchnorm+ReLu

1 2

Filter result Concatenation
Batchnorm+ReLu

Figure 2: The model architecture of OS-CNN.

4 Our proposed method: Omni-Scale

1D-CNN for TSC

As described in the above analysis, the selection of a proper
kernel size is critical to the 1D-CNN model in TSC scenario.
Most of current 1D-CNN model treats the kernel size as a
hyper-parameter and use a grid search to find the optimal ker-
nel size. However, most time series have multiple salient sig-
nals that require multiple kernel sizes to capture them respec-
tively. The combination of multiple kernel sizes will result in
an exponential increase in computation for a grid search. We
argue that kernel size should be part of the learning process
rather than a hyper-parameters search.

Hence, we design a novel architecture to cover all scales in
1D-CNN, and the optimal kernel size will be automatically
selected during the learning process. The proposed method
is named as the Omni-Scale Convolutional Neural Network
(OS-CNN). It can learn multiple kernel sizes in an efficient
manner, and the proposed method is very easy to implement
by making a tiny modification to the current 1D-CNN.

Figure 2.10: Different kernel sizes (blue box) within each layer
Figure from [114]

Recurrent Neural Networks (RNN) represents another form of networks with memory,
but is seldom used for classification, according to Fawaz et al. [78] due to the problem of
vanishing gradients on training on long time series. Further, the computational resources
needed are greater, making RNNs a complex alternative. RNNs has seen success in
forecasting time series, although another variant, the long-short-term memory (LSTM)
networks have proven better accuracy [101].

2.6.2 Partial observability and physical consistency

Hausknecht and Stone [58] demonstrated that adding recurrency to a convolutional network-
based reinforcement agent would benefit the agent’s possibility to act on partially visible
states. They argue that a single observation is not enough to estimate the state of all
agents, which in case would make them non-Markovian. Such agents should not be limited
to using the current input data frame only. By replacing the fully connected layers in the
classification parts of a network with long-short-term memory blocks (LSTM), the agent
becomes a Partially-Observable Markov Decision Process.

Using LSTM as the classification layer is extensively demonstrated by the architecture
of Dota 2 by OpenAI [98]. In Solving Rubik’s cube with a robotic hand [99], the visual
model and policy network is separated, where the visual model uses CNNs and the policy
network is LSTM-based.

Hausknecht and Stone [58] observe that performance of pure DQN agents decline when
given incomplete state observations, but by adding recurrency, the agent is better able to
capture the underlying system dynamics. However, their experiments show that adding
recurrency has no systematic benefit over stacking input frames to the convolutional network
as separate image channels, where each channel represents a moment in time (xt−2, xt−1, xt)
rather than colours (r, g, b). We must remember that the authors use gameplay with virtual
screens as frame inputs to the agent. Stacking the frames leave a trail of history, and in

29

CHAPTER 2. LITERATURE

the case of games, physical properties of the play can be deducted from this information,
as illustrated in Figure 2.11.

(a) Conv1 Filters

(b) Conv2 Filters

(c) Conv3 Filters

(d) Image sequences maximizing three sample LSTM units

Figure 3: Sample convolution filters learned by 10-frame
DQN on the game of Pong. Each row plots the input frames
that trigger maximal activation of a particular convolutional
filter in the specified layer. The red bounding box illustrates
the portion of the input image that caused the maximal ac-
tivation. Most filters in the first convolutional layer detect
only the paddle. Conv2 filters begin to detect ball movement
in particular directions and some jointly track the ball and
the paddle. Nearly all Conv3 filters track ball and paddle in-
teractions including deflections, ball velocity, and direction
of travel. Despite seeing a single frame at a time, individual
LSTM units also detect high level events, respectively: the
agent missing the ball, ball reflections off of paddles, and
ball reflections off the walls. Each image superimposes the
last 10-frames seen by the agent, giving more luminance to
the more recent frames.

Remarkably, DRQN performs well at this task even when
given only one input frame per timestep. With a single frame
it is impossible for DRQN’s convolutional layers to detect
any type of velocity. Instead, the higher-level recurrent layer
must compensate for both the flickering game screen and
the lack of convolutional velocity detection. Figure 3d con-
firms that individual units in the LSTM layer are capable of
integrating noisy single-frame information through time to
detect high-level Pong events such as the player missing the
ball, the ball reflecting on a paddle, or the ball reflecting off
the wall.

DRQN is trained using backpropagation through time for
the last ten timesteps. Thus both the non-recurrent 10-frame
DQN and the recurrent 1-frame DRQN have access to the
same history of game screens.3 Thus, when dealing with
partial observability, a choice exists between using a non-
recurrent deep network with a long history of observations
or using a recurrent network trained with a single observa-
tion at each timestep. The results in this section show that
recurrent networks can integrate information through time
and serve as a viable alternative to stacking frames in the
input layer of a convoluational network.

Evaluation on Standard Atari Games
We selected the following nine Atari games for evalua-
tion: Asteroids and Double Dunk feature naturally-flickering
sprites making them good potential candidates for recurrent
learning. Beam Rider, Centipede, and Chopper Command

are shooters. Frostbite is a platformer similar to Frogger. Ice

Hockey and Double Dunk are sports games that require po-
sitioning players, passing and shooting the puck/ball, and
require the player to be capable of both offense and defense.
Bowling requires actions to be taken at a specific time in or-
der to guide the ball. Ms Pacman features flickering ghosts
and power pills.

Given the last four frames of input, all of these games
are MDPs rather than POMDPs. Thus there is no reason to
expect DRQN to outperform DQN. Indeed, results in Ta-
ble 1 indicate that on average, DRQN does roughly as well
DQN. Specifically, our re-implementation of DQN performs
similarly to the original, outperforming the original on five
out of the nine games, but achieving less than half the origi-
nal score on Centipede and Chopper Command. DRQN per-
forms outperforms our DQN on the games of Frostbite and
Double Dunk, but does significantly worse on the game of
Beam Rider (Figure 4). The game of Frostbite (Figure 1b)
requires the player to jump across all four rows of moving
icebergs and return to the top of the screen. After traversing
the icebergs several times, enough ice has been collected to
build an igloo at the top right of the screen. Subsequently
the player can enter the igloo to advance to the next level.
As shown in Figure 4, after 12,000 episodes DRQN discov-
ers a policy that allows it to reliably advance past the first
level of Frostbite. For experimental details, see Appendix B.

3However, (Karpathy, Johnson, and Li 2015) show that LSTMs
can learn functions at training time over a limited set of timesteps
and then generalize them at test time to longer sequences.

5Statistical significance of scores determined by independent t-

Figure 2.11: Stacking images leaves trails of history for physical model identification
Figure from [58]

The added information from the time-sequenced frames would indicate that the agent can
learn the physical dynamics of the underlying system. Karpatne et al. [70] demonstrated
that neural networks benefit from implementing physical consistency rules in the loss
function of the stochastic gradient descent algorithm. They argue that sparse datasets
would benefit from constraining the learning rules to be physically consistent. There is no
guarantee that a standard loss function

Loss(Ŷ , Y) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.17)

would be physically consistent. By adding a physical model to the loss term, the
authors were able to demonstrate that a network modelling inland water temperatures
would converge and provide more detailed results than currently available methods. The
physical model would generate a negative or positive number according to the input, and
during inference a standard rectified linear unit would negate data that do not conform to
the physical model, thus pushing the neural network to behave physically consistent.

2.6.3 Pre-training and imitation learning

The effect of randomness in the initialization of neural networks is well established within
supervised learning [45], [63], but Fawaz et al. [78] demonstrated a significant decrease
in accuracy on a classification task given bad randomisation. There might be several
explanations to this effect, like entering into different local minima for each training
session or being exposed for vanishing gradients for long time series. In recent years,
adding rectified linear units (ReLUs) as activation functions has shown to be effective.
Using multiple convolutional layers instead of many fully connected layers is also useful,
however as a general rule, training deep networks with random weight initialisation provide
worse results than shallow networks [101]. One approach to succumb to the challenge of
entering local minima due to bad randomisation, is pre-training the network weights with
a generative model.

30

2.6. AGENT TRAINING STRATEGIES

Sagheer and Kotb [101] propose a method for pre-training a network using an LSTM-
based stacked autoencoder (LSTM-SAE). Stochastic gradient descent has a difficulty of
learning long-term dependencies, but the authors developed a deep-LSTM memory network,
capable of capturing these long-term dependencies in a time series forecasting problem [100].

When training a machine learning model, our aim is that the model capture only
relevant information from the data presented and filters noise, bad samples and unknown
data. Using neural networks, many data samples are necessary to push the weights in the
correct directions. When the network complexity increases due to a increase in number of
trainable parameters, training is demanding as compared to traditional machine learning
algorithms. Further, there is no convergence guarantee for the network.

Sagheer and Kotb [101] train an autoencoder to learn the representation of the data in
an unsupervised manner in a method they call greedy layer-wise pre-training, visualised in
Figure 2.12. They successively add layers to the stack during training, to increase the search
space while preserving the already collected knowledge in the upper layers. Initializing the
upper layers first might push the weights in the direction of high-level abstractions of the
data, an idea that has been proposed earlier by others and investigated by the authors. As
more layers are added, better detail is achieved.

8SCIENTIFIC REPORTS | (2019) 9:19038 | https://doi.org/10.1038/s41598-019-55320-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

namely, four layers for both the encoder and decoder layers. In contrast, the proposed LSTM-AE model uses a
shallow LSTM, namely, one LSTM layer for the encoder and decoder layers. Certainly, this distinguishes the pro-
posed LSTM-AE from a computational complexity point of view.

Learning. !e learning algorithm of the LSTM-SAE model consists of two phases: a pre-training phase and a
"ne-tuning phase.
t� Greedy Layer-wise Pre-training Phase:

In the pre-training phase, we construct a greedy layer-wise structure to train three LSTM-SAE blocks, as
shown inFig. 4. !e pre-training procedure can be summarized in the following four steps:

 1. Train the "rst LSTM-AE block in the stack; then, save its LSTM encoder layer to be used as input for the
second LSTM-AE block in the stack.

 2. Load the saved encoder layer and use it to encode the inputs; then, train the second LSTM-AE block in the
stack with the encoded version of inputs, and train it to reconstruct the original inputs, not the encoded
inputs, in order to enforce the encoder to learn the features of the original inputs. !en, save its LSTM
encoder layer to use it as input for the third LSTM-AE block in the stack.

 3. Load the two saved encoder layers and use them to encode the inputs twice; then, train the third LSTM-
AE block with the encoded version of inputs to reconstruct the original inputs, and save its LSTM encoder
layer.

 4. Use the three saved LSTM encoders to initialize a three-layer DLSTM model5; in the same way described in
the training phase of that model.
Obviously, this phase can be generalized for more than three layers, if needed.

t� Fine-tuning Phase:
At the end of the pre-training phase, we manage to initialize three hidden layers the DLSTM model. !e
"ne-tuning phase starts by adding an output layer on top of the three hidden layers of the DLSTM model,
where the output layer consists of just one neuron, as long as the problem at hand is a regression problem.
!en, we start to "ne-tune the model in a supervised learning fashion, where the input is a sequence of MTS
data in time step t and the label is the value of the corresponding variable (the variable that we need to predict
its future values) from the MTS data in the next time step t + 1. In this phase, we evaluate the prediction of
DLSTM using out-of-sample testing data. !e results that are recorded and compared in the experiments
section in this paper are the results of this phase using the testing data.
It is worth noting here that the proposed model LSTM-SAE is an extension to our previously presented

model DLSTM5 that is shown in Fig. 5. !e di$erence here is that the LSTM-SAE uses unsupervised pre-trained
LSTMs in an autoencoder fashion, rather than the random initialization fashion that was adopted in the DLSTM
model. In the experiments section of this paper, we will compare the performance of the original DLSTM5, with-
out the pre-training phase, with the pre-trained DLSTM proposed in this paper to precisely ascertain how the
pre-training phase enhances the overall DLSTM’s performance.

It is worth mention that, there are some di$erences between the proposed LSTM-SAE model and the hierar-
chical RNN model that early presented by Schmidhuber20, particularly in the unsupervised pre-training phase.
!e "rst di$erence concerns the objective of the prediction task of Schmidhuber’s model, which is predicting
the next input from the previous inputs. In contrast, the LSTM-SAE model tries to reconstruct the inputs by
establishing the LSTM autoencoder. Nevertheless, the major di$erence lies in the way of pre-training scenario;
Schmidhuber’s model starts when the "rst (lowest-level) RNN takes the external input and tries to predict the
next input. !e second (higher-level) RNN can’t be established unless the "rst RNN stops improving its predic-
tions. At a given time step, if the "rst RNN fails to predict the next input, the updating of the "rst RNN’s weights is
stopped. !en, the second RNN takes, as input, the concatenation of this next input plus a unique representation
of the corresponding time step. Following this procedure, higher levels are adding to the hierarchy. In contrast,
the LSTM-SAE model starts by training the "rst LSTM-AE to reconstruct the original inputs, then training the

Figure 4. !e greedy layer-wise pre-training of LSTM-SAE model.
Figure 2.12: Greedy layer-wise pre-training

Figure from [101]

When the pre-training phase ends, the result is encoder-layers of our network with
learned weights for the data representation that we disconnect from the autoencoder-
architecture. An output layer is then added for the classification or regression problem
at hand, and the fine tuning phase starts. In this phase, standard supervised learning is
executed to push the classification layer weights towards the problem solution. The authors
were able to demonstrate improved performance and faster convergence than other models.
They also conclude that this method is suitable for situations of correlated multivariate
input.

Using a layer-wise pre-training on time series could also alleviate the problem of sparse
data by pushing the model in the correct direction earlier in the training process.

Another related method of interest is described by Ho and Ermon [64]: Generative
Adversarial Imitation Learning. Their framework claims to directly extract policy from data
through generative adversarial networks, training a network G to confuse a discriminative
classifier D. When network D cannot see the difference between G and real data (given a
reasonable threshold term), successful cloning of expert behaviour is met. They tested the

31

CHAPTER 2. LITERATURE

algorithm on OpenAI testbench environments and showed that the method was able to
perform close to expert’s behaviour on several physical environment tests.

2.6.4 Latent space training

Ha and Schmidhuber [80] proposes to separate agent models in three parts: vision V,
memory M and controller C in order to effectively train the networks for the parts they
actually focus on. They argue that the vision model could be trained in an unsupervised
fashion using autoencoder convolutional neural networks to represent the complex input
frames in an abstract, compressed world without convergence towards a supervised output.
This model could be trained separate from the task, meaning that excessive computing
power for representing the temporal and spatial properties of the world can be done once,
and reused for several tasks. Continued training of the vision can be done over time
for adding new representations. While the vision model compresses the moment, the
memory model abstract the time axis, abling prediction over what happens in the future
by remembering through recurrent neural networks, or LSTMs.

The last controller layers are deliberately made small and shallow, to keep the complexity
of the problem reside in the V and M models. This means the controller can be retrained
for several tasks in an effective fashion. Figure 2.13 show this architecture in relation to
what the authors call a World Model.

World Models

Encoder z Decoder

Original Observed Frame Reconstructed Frame

Figure 5. Flow diagram of a Variational Autoencoder (VAE).

Here, we use a simple Variational Autoencoder (Kingma
& Welling, 2013; Rezende et al., 2014) as our V model to
compress each image frame into a small latent vector z.

2.2. MDN-RNN (M) Model

While it is the role of the V model to compress what the
agent sees at each time frame, we also want to compress
what happens over time. For this purpose, the role of the
M model is to predict the future. The M model serves as a
predictive model of the future z vectors that V is expected to
produce. Since many complex environments are stochastic
in nature, we train our RNN to output a probability density
function p(z) instead of a deterministic prediction of z.

Figure 6. RNN with a Mixture Density Network output layer. The
MDN outputs the parameters of a mixture of Gaussian distribution
used to sample a prediction of the next latent vector z.

In our approach, we approximate p(z) as a mixture of Gaus-
sian distribution, and train the RNN to output the probability
distribution of the next latent vector zt+1 given the current
and past information made available to it.

More specifically, the RNN will model P (zt+1 | at, zt, ht),
where at is the action taken at time t and ht is the hidden
state of the RNN at time t. During sampling, we can adjust
a temperature parameter ⌧ to control model uncertainty, as
done in (Ha & Eck, 2017) – we will find adjusting ⌧ to be
useful for training our controller later on.

This approach is known as a Mixture Density Net-
work (Bishop, 1994) combined with a RNN (MDN-RNN)
(Graves, 2013; Ha, 2017a), and has been applied in the
past for sequence generation problems such as generating
handwriting (Graves, 2013) and sketches (Ha & Eck, 2017).

Figure 7. SketchRNN (Ha & Eck, 2017) is an example of a MDN-
RNN used to predict the next pen strokes of a sketch drawing. We
use a similar model to predict the next latent vector zt.

2.3. Controller (C) Model

The Controller (C) model is responsible for determining the
course of actions to take in order to maximize the expected
cumulative reward of the agent during a rollout of the en-
vironment. In our experiments, we deliberately make C as
simple and small as possible, and trained separately from V
and M, so that most of our agent’s complexity resides in the
world model (V and M).

C is a simple single layer linear model that maps zt and ht

directly to action at at each time step:

at = Wc [zt ht] + bc (1)

In this linear model, Wc and bc are the weight matrix and
bias vector that maps the concatenated input vector [zt ht]
to the output action vector at.

2.4. Putting V, M, and C Together

The following flow diagram illustrates how V, M, and C
interacts with the environment:

Figure 8. Flow diagram of our Agent model. The raw observation
is first processed by V at each time step t to produce zt. The input
into C is this latent vector zt concatenated with M’s hidden state
ht at each time step. C will then output an action vector at for
motor control, and will affect the environment. M will then take
the current zt and action at as an input to update its own hidden
state to produce ht+1 to be used at time t+ 1.

Figure 2.13: Vision V, memory M and controller C networks forms the World Model
Figure from [80]

The latent space model in the autoencoder of V enables us to separate the real world
from a simulated world. In effect, a controller can be trained on a simulated world and act
accordingly when transferred to the real world, which makes this an interesting architecture
for cases where execution on real actuators is limited, costly or not preferred due to
health or safety. The authors were able to demonstrate superior performance in OpenAI
environments.

Robine et al. [113] further extends this idea by increasing the latent space into the
multidimensional domain to preserve world representations, using a model-free Proximal
Policy Optimization. They demonstrate superior performance in an Atari gameplay context.
Another change is the ability to predict the next latent variable based on the previous
latent variable and action, independent of the observation. The reward should not be
dependent on the next latent variable as well. Further, the policy is trained on the latent
variables.

32

2.6. AGENT TRAINING STRATEGIES

2.6.5 Regularization

According to Thodoroff et al. [89], reinforcement learning in high-dimensional domains
suffers from instability due to high variance. There are many sources for this variance, like
randomness in data collection, state of initial parameters, the complexity of the learner,
hyperparameters and of course sparsity in the reward signal. Regularization is one way to
increase generalisation. An example is to introduce data augmentation on the signal input,
i.e. adding noise of some distribution. However, the authors suggest smoothing the reward
trajectory through temporal regularization. An important assumption is that a state is
dependent on the previous state in a sequence, that is, it occurs after a known state. A
time series is such a sequence where each value is somehow connected to the predecessor
and falls under the umbrella of being a Markov Decision Process.

The goal is to find the policy that maximizes future expected return. The method
is simply to smooth the value estimate of a state with estimates occurring earlier in
the sequence. The smoothing function could use standard methodology from time series
prediction, like exponential smoothing, ARMA etc. The authors demonstrate that this
method reduces variance and helps the learning process. They implemented the algorithm
in a high-dimensional setting using an actor-critic trained by proximal policy optimization
(PPO), exponentially smoothing the target of the critic by temporal regularization,
controlled by a decay factor λ as a hyperparameter. This improves the performance
when testing on a suite of Atari games, reduces variance and increase robustness. The
authors claim the method is particularly appealing for real-world applications where agents
might not observe all states during training, i.e. the data is sparse.

Instead of assuming that rewards are similar for spatially close states, the authors turn
the RL problem around and assume that the rewards are similar for states visited closely
in time. This could prove useful for the exploration of new states.

Antoniou et al. [68] presents a more traditional route to regularization by training
a generative adversarial network to produce data. The model learns to produce data
that are generalised within the same class, exhibiting similar features as expected from a
missing value. The point is to generate more data for training to avoid overfitting to a
small sample space. The generator network G produces samples, and a network D tries
to discriminate the generated samples from real samples according to the Wasserstein
distance. The authors conclude that the method improves the performance of classifiers
and is applicable in low-data settings.

2.6.6 Experience replay

Experience replay is a method to increase the available samples during the training of a
reinforcement learning agent, as we have seen several examples of earlier. Typically, a
circular buffer with a defined capacity keeps the n latest transitions in memory or persistent
storage. When training, random samples from this buffer are mixed with new transitions
and is used to avoid overfitting the network, avoiding a skew towards the last visited states.
The buffer increases the available sample size when training the RL network, and is a way
to avoid the network to forget earlier knowledge. Fedus et al. [105] review several aspects
of this method and studied the effects of different replay buffer parameters towards a DQN
network.

It is worthwhile to draw a line between this method and neuroscience. According
to O’Neill et al. [42], experience replay is suggested to explain hippocampus-dependent

33

CHAPTER 2. LITERATURE

memory formation in the brain. This happens in two phases, slightly analogous to our
usage of experience replay within reinforcement learning. First, memories are encoded
during full wakefulness, that is, added to our buffer. In phase two, sharp wave/ripple events
are fired in the hippocampus, initiating the start of our training. Here, the memories are
either transferred to long-term storage or used for strengthening associations in the brain.
This likely happens during sleep, according to emerging evidence. Several parts of the
brain are active during this time, coordinated by the hippocampus.

Immobility and non-REM sleep are marked by sporadic
bursts of synchronous firing in the CA1 and CA3 regions,
coordinated by SWR events. These events are thought to be
initiated within the CA3 region [17,27], and therefore
ensemble activity during SWR is primarily governed by
the established synaptic weights within the CA3 area, and
between the CA3 and CA1 regions. Thus, firing patterns
during SWR could be shaped by pattern completion so as to
promote the joint firing of hippocampal assemblies repre-
senting a memory trace. In turn, this rehearsal-like ‘reac-
tivation’ of stored memory traces could facilitate their
consolidation [28].

The development of large-scale multi-channel recording
techniques in behaving rodents [29] has provided physio-
logical evidence in support of this conjecture. Using these
techniques, the experimenter can record the firing patterns
of large ensembles of cells in the animal while it explores
and sleeps, making it possible to test whether the waking
activity patterns of place cells are reactivated in sub-
sequent sleep. First shown by Wilson and McNaughton,
CA1 pyramidal cells with overlapping place fields show a
greater tendency to fire together during sleep following
exploration than do cells encoding different locations.
Moreover, this relationship was strongly reduced in the
sleep preceding the exploration [30] . Thus, different
groups of cells fire together from one sleep to another
according to the configuration of place fields in the inter-
vening exploration [31–33] (Figure 1). Importantly, sleep
reactivation was strongest during SWR [31,33,34]. These
techniques have been used extensively to demonstrate how
patterns of waking activity are reflected in sleep SWR,
utilising different kinds of analyses [35]. An important
next step was to show that reactivated patterns reflect
more than just the configuration of place fields in the
previously explored environment.

Reactivated hippocampal firing patterns reflect
exploratory behaviour
If reactivation of hippocampal firing patterns underlies the
consolidation of hippocampus-dependent memories, reac-
tivated patterns ought to reflect not only the environment
the animal explored, but also its recent behaviour. Several

studies have shown that sleep firing patterns reflect the
path taken by the animal during exploration. When
animals run for food on a narrow track, place cells fire
in a controlled order while the animal traverses each place
field in turn. Under these conditions most place cells tend
to fire in one direction only, so that pairs of these cells show
a temporal bias in their joint firing patterns (i.e. one cell
tends to fire before the other). This temporal bias during
exploration is retained into subsequent sleep [36]. More-
over, further studies have demonstrated that entire firing
sequences of cells active during track running are replayed
in following sleep-SWR, but on a faster timescale than
during the track running [37,38] (as represented by the
schematic in Figure 2). It should be noted that such
sequence replay also takes place during REM sleep [39].

Ensemble activity during SWR in rest periods also
reflects the behaviour of the animal in ‘open field’ environ-
ments, where the animal is free to explore an arena and
does not follow a stereotyped path. Here, waking firing
patterns are more reliably reactivated during SWR when
the animal has spent a longer time exploring the recording
arena [32]. Moreover, reactivation improves even on the
linear track if the animal spends more time shuffling back
and forth on the path [40], collectively suggesting that
reactivation improves with experience.

A further indication that SWR firing patterns reflect
behaviour, and not simply the environment, comes from
the fact that more frequently visited places are reactivated
more strongly in subsequent sleep. It was shown that,
during subsequent sleep, the firing synchrony of cells
encoding a particular location increased as a function of
the time spent in that location during the previous explora-
tion period [33]. Thus, reactivated patterns were biased
towards the most visited places (Figure 3).

Together, these findings argue that firing patterns
associated with exploration are reactivated during sleep.
The caveat to all these studies is that no specific learning
paradigm has been performed in these experiments.
Recent work has shown that inhibiting synaptic release
in CA3 pyramidal neurons after learning suppresses
both reactivation in the CA1 region and the consolidation
of context-dependent memory, indicating that these

Figure 1. Reactivation of place-related waking firing patterns. The figure provides a schematic illustration of how neuronal firing patterns associated with visited places are
reactivated during sleep [30,33]. Panels show the location of firing fields from four hippocampal pyramidal cells in two environments. Note that in the circular arena, cells C
and D show overlapping place fields, whereas in the rectangular environment cells A and B overlap. The bottom panels show raster plots for the same 4 cells during a
sequence of exploration and sleep periods in the circular arena and then the rectangle environment. Note that during theta periods in the circular arena, cells C and D fire
together within a single theta cycle, and continue to rigorously fire together during SWR in subsequent sleep. However, during exploration in the rectangle environment,
cells C and D no longer fire together, and consequently do not fire together during the next sleep session. Conversely, cells A and B do fire together in this environment and
fire together in the following sleep session. Thus, the tendency of cells to fire together is reorganised between sleep sessions, depending on the spatial firing patterns of the
pyramidal cells during exploration.

Review Trends in Neurosciences Vol.33 No.5

222

Figure 2.14: Reactivation patterns during sleep after hippocampal reactivation
Figure from [42]

Three important factors determine the experience replay performance, according to
Fedus et al. [105]. The replay capacity is the total number of transactions stored in the
buffer, the age can be expressed in the number of steps since the transition was inserted,
and the replay ratio is the relative frequency between transitions from the buffer and the
environment used for training. Their experiments show that increasing replay capacity
increases performance, although keeping the replay ratio fixed has varying improvements.
They also discovered that using n-step returns on increased capacity buffers is a critical
factor for taking advantage of larger buffers. They tested the extreme where an RL
agent was trained by offline data only, without any environment to interact with, just the
recording. A setting of n > 3 showed very positive results. This discovery would enable us
to architecture agents where training is done separately from the inference platform.

2.6.7 Inverse reinforcement learning

Reinforcement learning is about finding a policy π : S → ∆A that maximizes the future
expected reward for each state-action-pair (s, a) ∈ S ·A. Inverse Reinforcement Learning
(IRL) on the other hand, is about learning the reward function given system dynamics and
expert behaviour. One example is the reward function for autonomous driving that should
capture the desired behaviour of the driver. Such behaviour could be stopping at red lights,
avoiding pedestrians and one-way roads etc. [76]. Engineering these rules would require us
to identify a list of every such situation, as well as each rule’s importance towards other
rules. One example of a very detailed reward function is the one engineered by the Open
AI Dota 2 team.

Within IRL, a policy or sequence of actions embedding some expert behaviour is used
to find a reward function that explains this behaviour. We note that the reward function
completely captures the optimal set of policies in a system. An important assumption
is that the expert acts optimally so that we can estimate the function that led to this
behaviour. This is our first attempt at estimating an actor’s own actions, guided by expert
advice. We might be philosophical at this point and warn about the consequences of

34

2.6. AGENT TRAINING STRATEGIES

learning bad behaviour. How can we alleviate a situation where an agent acts against
human actions?

Ramachandran and Amir [33] considers the problem from a Bayesian perspective where
a probability distribution over the reward space is estimated. Expert behaviour is seen as
the posterior evidence that is used to update the prior using a modified Markov Chain
Monte Carlo (MCMC) algorithm. They claim that this method allows imperfect pieces of
expert advice, as well as multiple expert inputs. However, they assume that an agent X
always choose actions that maximize the future reward, meaning that all actions are perfect
in the sense of being less exploratory. Further, they assume a stationary policy meaning
that any policy for action a is independent of the previous sequence of actions. This would
imply that the expert always exploit his or her knowledge without exploring new paths in
the environment since it is assumed a fully learned expert. However, Bayesian statistics
and the Central Limit theorem assumes normal distributivity, and thus we would accept
some expert noise in that respect. The method makes the following assumption:

PrX(OX |R) = PrX((s1, a1)|R)PrX((s2, a2)|R)...P rX((sk, ak)|R) (2.18)

where the probability distribution of expert behavior OX = (s1, a1), (s2, a2), (sk, ak)
given a reward function R is the individual reward function distributions for each state-
action pair, multiplied through the chain rule of probability [123]. Each product in the chain
is independent, so for each state-action-pair we would estimate the probability of (sk, ak)
given R. Finding the distribution of R would mean we want to find the distribution that
maximizes the value of (sk, ak). This is an optimization problem with calculation of priors
depending on the application. The authors explain reward learning and apprenticeship
learning as methods for such and demonstrated implementations of gameplay using the
framework.

Lopes et al. [39] uses the IRL-perspective in a sense of active learning. The authors argue
that their algorithm query an expert when needed since a policy is unlikely to be completely
specified beforehand, instead of learning from static state samples. The algorithm actively
learns from expert samples when needed, that is when informative decisions for the policy
needs to be taken. The problem space of learning the policy on sampling only is complex,
meaning that the system will likely calculate multiple optimal reward functions and multiple
possible policies for one reward function. In comparison to MCMC, which is an uniform
sampling approach, the active learning algorithm could potentially use the most recent
learnt expert advice for a local control problem not experienced in the general sense.

The agent is given a set of expert demonstrations D = (st, at) and updates an estimate
of possible reward functions P (r|D). When the probability distribution’s standard deviation
is above some threshold, the agent becomes unsure about the policy and can query an
expert for the correct action. Their method reduces the number of samples necessary to
learn the system and they argue that the Markov Chain Monte Carlo-algorithm (MCMC)
from Ramachandran and Amir [33] becomes computationally expensive in large dimensional
spaces. The method was demonstrated on several problems describing a Markov Decision
Problem consisting of a continuous state space and discrete action space. A defined reward
function using some relation to the problem domain where the parameters are estimated
by the algorithm should be a better choice than just defining r : X → [0; 1], i.e. a sparse
reward space. In the latter case, the authors indicate that the problem may be too complex
for active learning due to the computational cost.

35

CHAPTER 2. LITERATURE

A real-world example of IRL active learning is given by Ziebart et al. [36]. They employ
maximum entropy to the IRL problem originating from the stem that expert behaviour has
noise and that a system has difficulties of differencing policies when such noise correlates
to several policies. By maximizing the entropy, the uncertainty of expert behaviour is
reduced. They demonstrate the method in a driver route modelling problem including
route preferences and possible destinations. Destinations for a driver are modelled using
Bayes theorem.

We could relate this problem to Florensa et al. [69] where agent goals are generated
during the course of agent experience. The idea is that an external adversarial network
generates tasks that the agent has the knowledge to achieve, slightly making each new task
more complex. When a task is complete, a new slightly more difficult task is generated.
The authors claim this method allows for sparse reward methods, i.e. where the reward is
either 0 or 1.

2.6.8 Soft Actor Critic

As described by Haarnoja et al. [81], a Soft Actor Critic (SAC) algorithm has shown
sample-efficient attributes and might have less sensitivity to hyper-parameters. SAC
utilizes maximum entropy for choosing exploratory actions that maximize the reward,
with minimum pre-learning. Haarnoja et al. [82], [83] describes an Off-Policy Maximum
Deep Reinforcement Stochastic Actor with continuous state and action spaces and three
distinct characteristics: separate value- and policy networks, off-policy formulation and
entropy maximation. Instead of just acting on future discounted rewards as shown in
Equation 2.8, SAC utilizes maximum entropy in order to act as randomly as possible while
still completing the tasks.

Let J(π) be the value function of a policy, then

J(π) =

T∑
t=0

E(st,at)∼pπ [r(st, at) + αH(π(·|st))] (2.19)

where the temperature parameter α controls the relative importance of the entropy
term against the reward which must be tuned. Further, gradient update of the policy is
done off-policy utilizing the history of available data from a replay buffer. This gradient
update means slower learning of the agent than just replacing the target network as done
earlier by Mnih et al. [51]. The soft policy update alternates between policy evaluation
and policy improvement as described by Sutton and Barto [112]. The stochasticity of the
policy and value update prevents premature convergence and encourages exploration due
to the maximum entropy objective. The authors were able to demonstrate an agent that
quickly learned the underlying dynamical model based on actions in the real world.

36

Chapter 3

Use Case

3.1 Introduction to spray drying

To investigate the main research questions, a delicate industrial drying process is selected
for analysis due to its widespread use and available scientific material. Drying material
substances is widely applied in all types of industries, and there are many technologies
implemented to either reduce moisture content or completely dry out water from a product
liquid stream. Using spray drying technology, a liquid material can be nearly completely
dried to a single material substance in the form of solid particles. This process poses an
interesting problem since the control of the spray drier process equipment directly affects
the end-product quality, and that there is an optimization potential on other factors as
well. Still, the operation of a spray drier involves some manual adjustments and knowledge
for optimum operation.

Liquid feed

Atomizer

Drying chamber

Drying gas

Cyclone

Dry particles collector

Exhaust gas

Scrubber

System boundary

Figure 3.1: A typical spray drier setup

37

CHAPTER 3. USE CASE

Spray driers are used in the production of food and feed, detergents, polymers,
pharmaceuticals and within the pulping industry to convert liquid lignin to powder.
Reducing product moisture content means efficient logistics and transport, as well as
potentially longer storage periods.

By definition, spray drying is the transformation of feed from a fluid state into a dried
form by spraying the feed into a hot drying medium [40]. The technology dates back to
the 1860s and has of course undergone massive development since then, however, the
underlying principle is the same today. The first patent dates back to 1872 by Samuel
Percy, for the production of milk powder by spray drying [75].

Figure 3.1 give a schematic overview of a typical spray drier process and is described in
several sources ([40], [88], [11]): a liquid product feed is discharged into the atomizer, a
critical component that converts the substance into very fine particles. This is done either
using high-pressure nozzles or a spinning disc, where the aim is to increase the surface
area of the liquid through the liquid disintegration phenomenon [88]. The selection of the
design of the atomizer is carefully done according to the type of material to deplete.

When the liquid spray enters the drying chamber, gravity pulls the particles downwards
and turbulent gas flows in the form of heated air either with- or counter-flow the product
stream. This phase is called the particle formation phase [88] where the large droplet area
contributes to efficient energy exchange. As the particle heat is increased due to hot-air
contact, moisture is exchanged due to the evaporation of water inside the particles. At the
bottom of the chamber, moist hot air and dry powder exit through a powder separation
system using vacuumized cyclones. Particles are accepted at the bottom of the cyclones,
whereas the reject stream is the moist and hot air that can be released as emission gases.

The emission gas is most often cleaned through wet scrubbers in order to minimize the
escaped particle content and odours released into the atmosphere. The collected particles
can be re-introduced to the liquid product flow and will as such blend with the liquid and
re-agglomerate.

Hot air is used both as a drying medium and for transport of the product flow. For the
efficient operation of the spray drier, a delicate balance between airflow, air temperature,
feed flow and -temperature as well as atomizer speed and cyclone vacuum level, must
be maintained. Even moisture of the incoming airflow will influence the process, as the
moisture difference between the airflow and product particles directly affects the timing of
the drying process. If the incoming air is moist (as in the summertime when hot weather
increases the air absolute humidity potential), the heat difference between air and product
must be increased to assure a proper level of evaporation. Chamber size must also be
designed such that enough drying time is exerted for the product in question. The feed flow
viscosity and feed temperature also influences the process and is of likewise importance.

Further, the process operation also dictates end-product qualities, mainly the end-
product moisture content, particle size and density. The optimum operation window varies
in time, given the large operational envelope and degrees of freedom.

3.2 Controlling the process

Spray drying is still preferred over other methods mainly due to its continuous and efficient
single-step method that shows great adaptibility [88]. Further, the end-product does not
need any additional processing and the process is excellent for heat-sensitive materials.

38

3.3. MODELING THE PROCESS

By empiric observation, some guiding relationships of the process parameters exist.
Santos et al. [88, p. 16] give an excellent overview over the inherently interconnected
relationships of some major process parameters in Table 3.1.

Parameter Tout Dropletsize hout Efficiency
Drying air flow rate ↑↑ ↓↓ ↑↑
Air humidity ↑ ↑↑ ↓
Inlet temperature ↑↑↑ ↓↓ ↑
Atomizing air flow ↓ ↓↓↓
Feed rate ↓↓ ↑ ↑↑
Solid concentration in feed ↑↑ ↑↑↑ ↓ ↑↑

Table 3.1: Relationships between spray drying parameters
By increasing the parameter in the first column, the rate of increase/decrease in the

related parameter is shown by corresponding arrows Source: [88, p. 16]

These process parameters relate to the outlet temperature, particle size, final product
moisture and overall efficiency of the spray drier. Some parameters can be controlled
through engineering, but some is a consequence of weather, feedstock and equipment design.
The spray drier operational envelope is designed according to the feed type and target
efficiency, so some parameters will also be fixed, like chamber size, atomizer technology,
chamber insulation, cyclone size and efficiency etc. Air heating technology and feed
pre-processing are also fixed according to the application. Inherently, spray drying is an
energy-intensive process and actions for preserving energy, energy recycling and reducing
energy consumption is also part of the equation of designing a plant.

Sensing the important characteristics of the process should be done by careful digitalization
by appropriate sensors and data collection mechanisms. A pilot plant is exemplified by
Pote and Sudit [61]. Here, an architecture for controlling the process via PID regulators is
established with proposals for further work using first-principle models and grey-box models.
Moisture content as a quality parameter could be indirectly controlled by maintaining a
specific outlet temperature. This could be controlled by varying either the feed flow or
the inlet temperature according to Parastiwi and Ekojono [65]. Other product quality
parameters are difficult to control, like product thermal degradation, aroma retention and
structure and size of particles. Parastiwi and Ekojono [65] showed that applying a simple
PID controller using outlet temperature as the feedback signal, greatly stabilizes the spray
drying process, at least when considering the moisture content and outlet temperature
relation.

3.3 Modeling the process

Understanding the underlying process is necessary to develop control schemes that target
specific optimization criteria, like increased quality, less energy consumption or higher
throughput. A mathematical model could be established as a source for finer process
control. However, this is a complex task and according to Azadeh et al. [46], claiming
that traditional regression methods can not model the process. The reason is explained
through the non-linearity of the process as well as the current state of sensor technology.
Zbicinski [75] reviews the state of spray drier modelling and simulation, showing several

39

CHAPTER 3. USE CASE

challenges with mathematical models when scaling up a spray drier design. However,
advances in computer simulation show a positive correlation with physical experiments
and is now considered an established method, involving Computational Fluid Dynamic
simulations (CFD).

The question of creating mathematical models as a universal problem-solving method
comes to a point of available competence, funding and evaluating return-on-investment
within a research area. Oakley [26] describes a layered approach to spray drier modelling
where items can be modelled at different levels:

• Level 0 Heat and Mass Balances.

• Level 1 Heat and Mass Balances with solid-vapour equilibrium.

• Level 2A Rate-based with simplifying assumptions about particle motion.

• Level 2B Rate-based with a simulation of gas flow and particle motion (CFD).

Oakley [26] uses the word fidelity to describe the model quality according to the level.
High fidelity models give detailed predictions with the added cost of work and computation.

Modelling heat and mass balances is an established science field used in many situations.
The core is understanding the physics and making an informed assumption of the necessary
model fidelity according to the application. Hence, the layered approach by Oakley [26] is
important when designing a modelling strategy.

3.3.1 System boundary

We will create a simple level 1 model for our use case as visualised in Figure 3.2. This
model serves several purposes: first, it will be used for creating synthetic process logs for
later generative modelling. Second, the model will act as the environment for our RL agent
when evaluating its performance.

Tout

hout
Dropletsize

Spray drier

pfeedTfeed Zrpm Tin Qgas Tenv hgas

Qfeed

Figure 3.2: System boundary for the model

The model is parameterized by:

• Manipulated variables: Process variables we directly control from the control simulation

• Controlled variables: Process variables we can restrict for the purpose of experiment
design

• Responding variables: Process signals describing the response of the system as a
function of the manipulation

40

3.3. MODELING THE PROCESS

3.3.2 Level 0 Heat and mass balance model

A level 0 spray drier model is established using the fundamental laws of conservation of
mass, stating that the mass of a system remains constant over time and cannot change [124].
Materials can neither be created nor destroyed but can change their form. Further, all
inputs and outputs add or subtract to the total mass balance. Our mass balance formula
considers three compartments of mass, in the form of solids, liquid and gas, adapted from
Oakley [26]:

Ffeed,solids + Fin−gas,solids = Fout−gas,solids + Fproduct,solids (3.1)

Ffeed,liquid + Fin−gas,liquid = Fout−gas,liquid + Fproduct,liquid (3.2)

Ffeed,gas + Fin−gas,gas = Fout−gas,gas + Fproduct,gas (3.3)

where Fi,j is the mass flow (kg/min) of component j in compartment i. To model the
energy balance, we use the first law of thermodynamics [126]:

∆Usystem = Q+W (3.4)

stating that the change of energy in a system is equal to the difference between the
heat supplied to the system (Q) and the work (W) done on the system. We model the
energy balance of our system as:

FfeedHfeed + Fin−gasHin−gas = Fout−gasHout−gas + FproductHproduct +Q (3.5)

where Hi is the enthalpy (J/kg) of compartment i and Q (Watt) is heat exchange
between the system and the environmen, mainly heat loss. The model will ignore the heat
exchange parameter.

Model implementation and results

We rewrite this to model the feed and gas streams we can measure by sensors (or at least
give a good estimate on) by integrating a rate formula for the mass balances:

dy

dt
= −Ffeed + Ḟfeed (3.6)

dy

dt
= −Fin−gas + Ḟin−gas (3.7)

where F (kg) is the state and Ḟ (kg/min) is the rate of state change given by the
formula:

Ḟ =
Q̇× ρ

τ
(3.8)

where Q̇ is the stream rate (m3/h) and ρ the stream density (kg/m3) and τ the
simulation time constant. The stream density can be either measured (for the feed) or
estimated (for gas). The density of air varies with temperature [125], but is not modelled

41

CHAPTER 3. USE CASE

here and set constant. The energy balance considers only an instant heat flux between the
two streams and we apply the first law of thermodynamics to acquire the heat capacity of
the system as:

∆E = mc∆T (3.9)

where m is the mass (kg), c is the heat capacity (J/kg°C) and ∆T is the temperature
difference between the streams. Our heat flux between gas and feed energy is

Ṫ =
∆E

Ḟfeedcfeed
(3.10)

Applied to our differential equations, this gives us

dy

dt
= −Tout + Ṫ (3.11)

where Tout is the estimated temperature of the output product feed.
For the sake of the simulation, and learning the RL agent, we will consider the feed

rate Q̇ as our variable to manipulate, and the Tout as the interesting responding variable.
Keeping the other variables constant, yields the result according to Figure 3.3 and Figure 3.4
when running the simulation in Matlab.

0 10 20 30 40 50 60

t

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

m
3
/h

82

84

86

88

90

92

94

96

98

100

T

Feed
in

 (m
3
/h)

T
out

Figure 3.3: System response with a constant feed rate Q̇ = 8

Intuitively we observe that the temperature decreases as the feed rate is increased, in
line with the reported relationship by Santos et al. [88]. As the feed rate increases, more
solvent needs to be evaporated and the energy flux from the hot air is increased. If the
energy level is kept constant, the temperature drops.

42

3.3. MODELING THE PROCESS

0 10 20 30 40 50 60

t

5

5.5

6

6.5

7

7.5

8

m
3
/h

80

85

90

95

100

105

110

115

120

125

130

T

Feed
in

 (m
3
/h)

T
out

Figure 3.4: System response when ramping up feed rate Q̇ from 5 to 8

3.3.3 Level 1 Droplet size and evaporation dynamics

We extend the model to include droplet formation and evaporation dynamics, by using the
above mass- and heat balances as input. The formula Sauter mean droplet size [35] is an
empiric formula that model the droplet size from a rotating disc atomizer:

Dvs =
1.4× 104M0.24

(Nd)0.83 × (nh)0.12
(3.12)

where Dvs is the mean droplet diameter (µm), d is atomizer disc diameter (m), h is
atomizer disc vane height (m), N=disc rotating speed (rpm) and M is mass feed rate
(kg/h). This formula is found and tested by experiments [35], and one must assume that the
overall design of a spray drier, and the atomizer in particular, heavily influence the model.
Hence, it might not be representative of all spray driers on the market, and one should
carefully implement designed experiments to create a model that suits a particular process.
For our simulations, we assume that the model is sufficient. Figure 3.5 demonstrates the
model output over a feed rate of 5 to 8 m3/h while keeping the atomizer rotating speed
fixed at 7,600 rpm.

Further, modelling the evaporation dynamics can be a daunting task depending on
the level of detail wanted. As each particle flow down the chamber, energy between gas
and the particles are exchanged to an equilibrium. However, as the moisture evaporates
from the particle, the temperature dynamics is altered. The gas flow’s ability to store
moisture is dependent on the gas’ ability to maintain a humidity difference, as a function
of the gas temperature profile. We could also model the particle relative velocity, expressed
through the Reynolds number, to account for the evaporation from the particle surface due
to the airstream velocity. Depending on chamber design, one could easily assume that the

43

CHAPTER 3. USE CASE

0 10 20 30 40 50 60

t

5

5.5

6

6.5

7

7.5

8

m
3
/h

0

20

40

60

80

100

120

140

m

Feed
in

 (m
3
/h)

Droplet size (m)

Figure 3.5: Droplet size when ramping up feed rate Q̇ from 5 to 8

particle evaporation time is not constant for all fractions, as air turbulence would cause
some particles to re-enter the main flow, and also temporary deposit on the walls.

To approximate our model, we make the following assumptions, using the droplet size
model as input:

• The droplet is fully heated before evaporation starts

• Evaporation is linear, as a function of droplet size

• All particles are perfectly dried, e.g. powderized

• Droplet mass is homogenous and relates to the volume and density

• The droplet is dried in atmospheric pressure

Therefore, we create a very simplified evaporation model for our use case, adapted from
the classical constant droplet temperature model (d2-law) stating that the squared value
of the droplet diameter decreases linearly with respect to time. We state that

Edroplet = γ
Tdroplet

Adroplet ×∆h
(3.13)

where E is evaporation, T is the droplet temperature, A is the droplet area and h is
the absolute droplet humidity (grams/mm3), empirically adjusted by the γ parameter.
The model calculates droplet relative humidity. Our model nowhere justifies the amount
of work in the field over the years and is just implemented as a reference for our agent
learning.

44

3.3. MODELING THE PROCESS

Another factor is the glass transition temperature Tg and the problem of sitckyness,
where the material becomes sticky and deposits on the chamber surfaces [27]. Our model
does not take Tg into account.

The model yields the simulation of relative humidity in the end product as shown in
Figure 3.6. The feed rate was ramped from 5 to 8 m3/h while keeping the controlled
variables fixed.

0 10 20 30 40 50 60

t

5

5.5

6

6.5

7

7.5

8

m
3
/h

0.5

1

1.5

2

2.5

3

%
R

H

Feed
in

 (m
3
/h)

Humidity (%RH)

Figure 3.6: Droplet size when ramping up feed rate Q̇ from 5 to 8

Our immediate evaluation is that the humidity increases as the feed rate is increased, a
relationship described by Santos et al. [88] and well preserved in our model.

The model is a very coarse representation of a spray drier and is made for demonstration
of the reinforcement learning concept. It does not capture many of the necessary components
of spray drying physics, as briefly discussed above. As a general model that serves our
purpose of the reinforcement learning agent, the level of detail should be sufficient.

Complete code listing for the spray drier ODE model is in Appendix A.1.

3.3.4 Historical logs

The effort of making a model needs some explanation. First, in order to explore Autonomous
Learning, a lot of process data is needed as we enter the field of Sequence-to-Sequence
modelling with generative networks. It might be tempting to use data from an existing
process plant, but for the sake of explainability of the agent and for developing the concept,
synthetic data will be used for training and testing different model scenarios.

Later, real-world applications of the model will need careful data preparation and access
to a long history of sequential process operation using a quantifiable method. In such a
scenario, the historical dynamics of the process operation will be directly learned by the
generative model and locked to one historic operational scheme. A synthetic model enables

45

CHAPTER 3. USE CASE

us to experiment with several process control strategies and vary the setup of manipulated
and controlled variables.

The model behaves like the physical operation of the central parts of the spray drier.
A rollout framework is made, and the model is encapsulated in a class derived from
matlab.io.Datastore for convenient usage when training the generative network. The
DataStore presents Sequences of data to a compatible DataStore user, i.e. during training
of a memory network in Matlab, as an alternative to raw disc storage.

3.4 Autonomous Modelling
The hypothesis of this report is whether logs of historical data can be used to train an
RL agent for optimization towards more complex feedback schemes, taking into account
other and more sparse parameters than just sensor data. The idea is that the recorded
historical logs will contain enough description of the dynamics in order to properly make a
detailed model. The introduced use case model will serve as a basis for generating such
logs as synthetic runs of a fictive spray drier. Later, an agent is trained on the historical
logs and evaluated by running a control scheme towards the real model.

The next section will present an implementation of such exemplified through the
presented spray drier use case.

46

Chapter 4

Autonomous Learning of Core
Skills

In God we trust, all others bring data.1

4.1 Introduction

Central to training an RL agent is establishing the environment and a reward function for
iterative and exhaustive learning. As presented earlier, a traditional approach would be to
mathematically model the environment using game engines or 3D engines, as presented
by OpenAI’s Solving Rubik’s cube project [99], Dota 2 competition [98] and DQN-based
gameplay [60], amongst others. Time series are data, logs or process signals that are related
in time and as such fit as input to a Markov decision chain concept, which is relevant for
our research.

1 2 3

E

a
Agent

Agent

Real world

aESin Sin

π

π

Figure 4.1: Concept for Autonomous Learning of Core Skills
1. Train a Generative Process Dynamics Model on historical data log sequences Sin. Skills
are stored in latent space of a generative network. 2. Train an RL agent policy π using the
generative model as the environment E applying action a with the model E. 3. Execute
non-linear control in real world proposing action a based on policy π and observation

input E.

1American engineer and statistician William Edwards Deming (1900-1993)

47

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

Using the ideas of multidimensional latent space models [80], [113], we utilize generative
models to passively learn system dynamics. We define a Generative Process Dynamics
Model that is trained for representing the historical data logs, from this point on called
sequences. The training is unsupervised, that is, a generative network is presented with
many sequences and stores latent space vectors in the network. After training, we can
sequentially query the network and change the input parameters according to the action
output of the RL agent. We are then able to estimate the next step in the sequence after any
given action. The RL agent would apply the proper reward- and explore/exploit-scheme
for action proposal. The result is an agent that can be trained on historical logs and
execute dynamic non-linear control in a real-time scenario exhibiting the same dynamics
as described in the logs, a concept visualised in Figure 4.1. Of course, a prerequisite is
that the logs exhibit relevant system dynamics.

For us to explore this idea, the work is divided into the tasks outlined in Table 4.1. The
work is implemented using Matlab and several add-ons: Statistics and Machine Learning,
Deep Learning, Reinforcement Learning and Parallel computing toolboxes. Matlab is also
used for all data engineering and statistics tasks.

All experiments are executed in silico by using Matlab-simulation and the Reinforcement
Learning Toolbox.

Define first principle model Build a dynamic model of an example process,
namely a level of the spray drier process as
described in Chapter 3.

Generate synthetic process data logs Using the dynamic model, create a large
amount of fictious run data applying
traditional control schemes for univariate and
multivariate scenarios.

Establish a predictive baseline Evaluate the power of traditional control
schemes.

Train a Generative Model Train off-line using the process data logs.
Train a Reinforcement Agent Train using the Generative Model as the

Environment. Actions are applied to the
Generative Model and functions as the
Observation space. Explore several agent
types.

Evaluate Agent towards model Use the first principle model designed in the
Use Case chapter as a real time environment
for control evaluation.

Approximate a reward function By transfer learning or according to
optimization. Evaluate performance of sparse
feedback in continuous processes presented in
the use case.

Table 4.1: Implementation tasks

48

4.2. GENERATING SYNTHETIC DATA

4.2 Generating synthetic data
The main part of this chapter will focus on generating data from the spray drier first
principle model as presented in Chapter 3 with the goal of establishing a baseline for
comparison with a reinforcement learning agent. Data could be fetched from disc files as
historical logs, but we choose to generate synthetic data in real-time, to save maintenance
task time, as well as having a short turn-around-cycle for testing new ideas. This means
that we solve the ordinary differential equations when data from the logs are requested, in
real-time.

The real-time rollout mechanism is implemented as class RolloutDatastore descending
from the matlab.io.Datastore class, which makes it compatible with the Deep Learning
toolboxes in Matlab. The class will roll out data using the control scheme and generate
sequences that can be used for neural network training.

First
principle

model

Datastore
sequences

PID
regulator

rollout

Sin

Figure 4.2: Architecture of the RolloutDatastore class

The rollout algorithm is made with two scenarios in mind:

• Univare control of output temperature using PID

• Multivariate control of output temperature and particle size

The first scenario is used for evaluating the generative model concept and for training
univariate RL agents. The second scenario is used for investigating the performance of an
RL agent trained by a multivariate generative model. As such, the system boundary will
be adjusted to be multivariate, that is, the manipulative variable set includes more than
one signal, as shown in Figure 4.3.

Tout

hout
Dropletsize

Spray drier

pfeedTfeed Tin Qgas Tenv hgas

Qfeed

Zrpm

Figure 4.3: System boundary for a multivariate model

We choose the Zrpm signal as the second manipulative variable as this could cater for
some interesting challenges. Droplet size calculation is dependent on both Qfeed and Zrpm

and could be an example of a conflicting control strategy, where an optimum in both signal
paths is not easily achievable. Balancing adversarial optimums by a trained reward model
is of particular interest in fields involving human decision making.

49

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

4.2.1 Connecting to the Environment

The RolloutDatastore is used for training the generative model. To accomplish this, each
rollout of size n is broken into several sequences according to a defined sequence length m.
Figure 4.4 demonstrates this process and the relations. The produced set of sequences is
denoted Sin as they are used for input to the generative model learning process.

Sin

Rollout

1 n

...

S1

S2

S3

S4

S5

S6

S9

Figure 4.4: Generating sequences Sin from a rollout

For each rollout of size n, a sliding window starting at the first position is glided over
the rollout. For each step, a sequence of size m is produced. The process is similar if one
reads a historical data log from a disc file, however in this case the synthetic first principle
model is used as input instead. In a file-based scenario, a continuous-time series with no
time gaps qualifies as one rollout. One could also use any historian data collector with
querying capability as input.

The synthetic rollout does not take into account all faults that can happen in a real
process. Normally, one would need to pre-process any historical data to ensure that all
input values are valid, which might not always be the case in a real process. Instrument
failures, communication failures and calibration errors are common in industrial processes
and will influence the data quality. Further, several types of exceptions occur that do
not contribute to explaining the overall process dynamics. The focus is on synthetically
produced data where we have full control of the data quality to explore the control concept,
and not on engineering a data cleaning strategy. However, to implement these ideas into
real life, the focus must turn into data quality.

4.2.2 Predictive baseline

Our Matlab-model for generating data is flexible in terms of control scheme, but we will
follow the system boundary as presented in Figure 3.2 for the univariate case. Here,
feed flow Qfeed is the manipulated variable and we select Tout responding variable as the
feedback. An overview of the system signals is given in Table 4.2.

By using Tout as a error feedback variable, we can define a setpoint Tsp and use a simple
PID-regulator for control of Qfeed by calculating Q̇, only using the propotional clause. We
define the regulator as:

Q̇t = Kp(Tsp − Tt−1) (4.1)

where the gain coefficient Kp is empirically tuned to 0.1. We can also call this the
damping factor of the process as responses to system dynamics is smoothed by this factor.

50

4.2. GENERATING SYNTHETIC DATA

Manipulated variables Nominal value or range Unit
Qfeed 2-15 m3/h

Controlled variables
Tfeed 95 °C
pfeed 1200 kg/m3

Zrpm 7,000-12,000 rpm

Tin 180 °C
Qgas 100,000 m3/h

Tenv 25 °C
hgas 50-99 %
Responding variables
Tout 90-100 °C
hout 1-5 %
Dropletsize 90-120 µm

Table 4.2: System signals, nominal values and units

By applying the regulator on the spray drier model, the system response is a clean signal
as shown in Figure 4.5.

We observe in Figure 4.5 that the temperature response is a stable signal on t > 10
when Kp = 0.1. The controlled variables are fixed in this scenario, contributing to an
effective regulation by using PID with only the Kp term.

4.2.3 Process noise

However, the controlled variables in a real-world process are not noise-free due to e.g.
sensor drifts and deviation, changes in the environment and material, as well as external
regulators that affect our system, amongst many other sources. The main noise source
we consider is the sensor standard deviations. This noise would be an ideal source for
randomness in training the policy of an RL agent. By introducing random disturbance to
our controlled variables and our feedback source, the Tout responding variable, our model
should behave closer to a real process.

We add random disturbance ±n% the standard deviation, a method proposed by Del
Rio-Chanona et al. [91] and record the mean and standard deviation for some combinations
of n and Kp. Table 4.3 lists the results and an example is given in Figure 4.6.

Variables Results
n Kp µ σ

1% 0.1 100.0 1.5
1% 0.01 101.2 5.4
3% 0.1 100.0 4.5
3% 0.01 100.9 5.6
5% 0.1 100.0 7.3
5% 0.01 101.3 8.6

Table 4.3: Results of applying different noise levels and tuning of Kp

51

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

0 5 10 15 20

t

2.3

2.305

2.31

2.315

2.32

2.325

2.33

2.335

m
3
/h

99.9

99.95

100

100.05

100.1

100.15

100.2

100.25

100.3

100.35

T

Feed
in

 (m
3
/h)

T
out

Figure 4.5: System response using a propotional regulator

We can argue that a controlled process may have a noise level at ±1%, or even less, but
that depends on the instrumentation of the process. The noise level can be estimated or
calculated based on available instrument data and documentation. Using neural networks
in an RL agent might be challenging if the operational window in the data logs is narrow
and the sample space is low. Neural networks do not extrapolate well outside its generalized
data space, and are sample inefficient during training. As such, we can argue that the
rollout mechanism for generative model training should utilize parameters that uses a higher
noise setting than ±1%. This is also the reasoning behind utilizing only a proportional
regulator, as this might introduce regulation of the system where system dynamics is
visible. By adding both integral- and derivative steps to the PID, and tuning the regulator
perfectly to the process, one could probably obtain much finer control over the temperature
profile. However, this is not the goal of the rollout mechanism - we want to assure that the
historical logs exhibit the system dynamics, which is the priority.

Randomizing the noise parameter and selecting different set points for Tout could be
done for each rollout to capture a larger parameter window. We could also measure the
system response according to the same static or variable input.

4.2.4 Randomized input

A randomized Qfeed in the range 3-20 m3/h is input into the model with a varying frequency
of every t. As anticipated, the process is not under control via this scheme with a µ = 75.3
and σ = 30.6, illustrated in Figure 4.7. This gives a coefficient of variance of Cv = 0.41,
the ratio of the standard deviation to the mean, which we can argue should be below 0.10
or less. Of course, other results are obtained for each simulation run.

52

4.2. GENERATING SYNTHETIC DATA

0 20 40 60 80 100

t

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

m
3
/h

95

96

97

98

99

100

101

102

103

104

105

T

Feed
in

 (m
3
/h)

T
out

Figure 4.6: System response using a propotional regulator and added system noise, ±1%
of σ using Kp = 0.1

Result is µ = 100.0 and σ = 1.5.

0 10 20 30 40 50 60

t

2

4

6

8

10

12

14

16

18

20

m
3
/h

20

40

60

80

100

120

140

160

180

200
T

Feed
in

 (m
3
/h)

T
out

Figure 4.7: System response using a random input if Qfeed in the range 3-20
Result is µ = 75.3 and σ = 30.6 for this run.

53

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

It is clear that a randomized control input is not ideal to reveal system dynamics in
the form of controlled sequences.

4.2.5 Sinusoidal input

Varying one manipulated variable at a time and recording the system response is a
traditional method for identifying a system in control theory. A noisy sinusoidal Qfeed is
input into the model, and the system response is visualised in Figure 4.8. We see that the
response is a bit off-phase from the input with an R2 = 0.55, a property of a cooling effect
when increasing the feed of the spray drier, as noted by Santos et al. [88].

0 100 200 300 400 500

t

3

4

5

6

7

8

9

10

11

12

13

m
3
/h

20

40

60

80

100

120

140

160

180

200

T

Feed
in

 (m
3
/h)

T
out

Figure 4.8: System response using a sinusoidal input of Qfeed.

Creating rollouts using sinusoidal inputs could be one way of generating data. Converting
this to the real world, a proper Design-of-Experiments could be conducted to record system
response to varying input, in the case, a process is not under control yet and one need to
create an initial set of data logs for the system.

4.2.6 Randomized step-wise input

A randomized step-wise input strategy changes each manipulative parameter at random
time t, where we observe the dynamics response to the change by recording the responding
variables. The change could either be random or a fixed rate from a baseline. The benefit
of this explorative strategy is the ease of implementation and clear dynamics response.

54

4.3. DESIGN OF GENERATIVE MODEL

4.2.7 Data augmentation

Using the rollout mechanism connected to the first principle model, we can produce many
unique runs because of the randomness introduced through process noise that is added
to the signals, the data augmentation, and the signal input strategy. We can therefore
assume that each sequence being generated holds the property of being more or less unique.
Importing data from an existing real-world process could utilize the same method when
the sample space is scarce, adding noise to each rollout, producing many unique sequences.

4.3 Design of generative model

The generative model captures the dynamics of the data logs. The idea is that this model
can serve as the environment simulator for the RL agent and be able to generate any
process response of an action proposed by the agent.

We can extend the problem formulation to finding a function f that minimizes the
error of estimating the next step of a sequence as opposed to the actual sequence:

min
f

L(f)

L(f) =

N∑
t=t0

L(ŷt, yt)

where
xt+1 = yt

ŷt = f(xt)

(4.2)

Depending on the agent’s exploration scheme, the generative model can perform
unsatisfactory outside its trained data space. When confronted with an action that violates
earlier knowledge, as a random action that the network cannot understand the consequence
of, the network might confuse the agent more than being an informative colleague. We
expect that the choice of the RL agent algorithm must be in line with this prerequisite. A
soft actor-critic utilizing maximum entropy as the exploration scheme is probably a good
candidate, as this agent type is shown to perform well even on a low number of samples [81],
but still explore the environment as randomly as possible. This claim will be challenged as
we choose to train both a soft actor-critic (SAC) agent and a selection of other agent types.

A benefit of training a generative model from process data is the ability to produce
many unique sample sequences for RL training. RL training is sample intensive and requires
many training runs on unique data sets. By encoding the process data in a memory network
by using long short-term memory (LSTM) blocks in a shallow autoencoder architecture,
we capture both the dynamics and signal relationships in function f . The architecture is
visualised in Figure 4.9. Querying the network takes into account the state of the memory
network, and as such, producing data would differ for each RL training pass, given the
randomness introduced in RL exploration. The generative model has a dropoutlayer for
the benefit of intensifying this randomness and provide regularization of the model.

Discovering the latent variables is done by unsupervised training of the memory network.
Our RolloutDatastore produces data for this purpose, and we add another feature to this
class for time series forecasting. Traditionally, in unsupervised training of an autoencoder,

55

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

lstmLayer
h hidden

units

lstmLayer
h hidden

units

DropoutLayer
n = 0.2

SequenceInputLayer fullyConnectedLayer

DecoderEncoder

f

regressionLayer

Figure 4.9: Generative model LSTM-AE neural network architecture. h is estimated by
Bayesian optimization.

the input sequence X is used as output sequence Y where X = Y , to train the latent space.
In our case, we shift the output sequence by one time step to obtain forecasting abilities:

X(xkt , x
k+1
t , ... , xk+m

t) = Y (xkt+1, x
k+1
t+1 , ... , xk+m

t+1) (4.3)

where m is the sequence length and xk is the kth vector of the sequence, where t+ 1
indicates a shift by one time step.

This important addition means that we can input an observation vector into the
generative model and receive an estimate on the next vector of a similar sequence from
history when inferring from the network. This forecasting ability is made possible by
the autoencoder mechanism and the memory ability of the recurrent neural network,
implemented through a chain of LSTM network blocks. Training is done by shifting the
data by one step as described in Equation 4.3. According to the problem formulation in
Equation 4.2, the neural network should learn by minimizing training loss. Evaluating the
loss and prediction RMSE should explain the forecasting ability.

4.3.1 Training and evaluating the Generative Process Dynamics Model

The class GenerativeModel is a tool for model training using the RolloutDatastore class
and tools from the Matlab Deep Learning Toolbox, as well as loading and saving trained
models to disk. The class also handles the normalization and de-normalization of data.
Normalizing data input is recommended for all machine learning methods, especially when
dealing with features with different magnitude of numeric ranges.

The RolloutDatastore class will create a baseline for normalisation parameters by
creating n number of rollouts when first being initialized. The µ and σ is calculated and
stored for global standardisation of all generated datasets, and also for de-standardisation
to each feature’s numeric range.

To estimate relevant dynamics for all responding variables and create the functional
approximation of the problem formulation in Equation 4.2, we design an experiment where
the Tsp for the regulator is randomized in the range 88-92 °C for each rollout every 60th
time step. The generative network is then presented with n number of rollouts. As earlier
mentioned, this is the point where historical logs from the process are input to the model,
but for experimental efficiency, we use the differential equations as presented in the Use
Case chapter implemented in the RolloutDatastore class.

56

4.3. DESIGN OF GENERATIVE MODEL

Hyperparameter optimization

Selecting the proper hyperparameters may greatly impact the performance of a neural
network model. We make educated guesses of many hyperparameters for training the
generative model, however parameters for capturing relevant process dynamics need some
consideration. We identify the following hyperparameters that are relevant to explore:

• Sequence vector length

• Rollouts per epoch

• Number of hidden units in the generative model

• Minibatch size

Minibatch size is a technical way to iterate on smaller parts of the dataset per epoch
before doing backpropagation for all of them. The minibatch size can influence the RMSE
but is mostly tuned for computational reasons [47].

Due to the immense computing power needed to test all combinations of hyperparameters,
we choose to use Bayesian optimization as an alternative to exhaustive hyperparameter
search. Bayesian optimization selects new parameters based on a selection from a Gaussian
distribution of each hyperparameter. The theory is that adaption of the parameters is
done based on their calculated impact on the response.

Further, we train the generative model for only 100 epochs per hyperparameter search
run. There are some implications to this which need some consideration. First, the
number of epochs needed to train a model is greatly influenced by the hyperparameters.
One obvious relation is the number of hidden units: a high number might need several
magnitudes of more training iterations. We restrict here the number of iterations. Second,
due to this restriction, we should not use the found hyperparameters directly. We manually
estimate the direction of the selection of hyperparameters and make an initial set of efficient
parameters to use for one single final run. This assumption is based on the fact that
Bayesian optimization will iterate on the results and narrow the parameter search based
on the Gaussian state. The final run will be set up with more epochs and potentially run
for a longer period.

Matlab Experiment Manager is used for establishing 30 hyperparameter search runs
using Bayesian optimization. The parameters are constrained to ranges that we believe are
relevant to evaluate the parameter trends (see Table 4.4).

Parameter Range
sequence length 1 - 60
rollouts 10 - 50
numhiddenunits 4 - 32
minibatchsize 8 - 128

Table 4.4: Ranges for hyperparameters for generative model

A screenshot of this session can be seen in Figure 4.10.

57

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

Fi
gu

re
4.
10

:
M
at
la
b
Ex

pe
rim

en
t
M
an

ag
er

fo
r
B
ay
es
ia
n
op

tim
iz
at
io
n
of

ge
ne

ra
tiv

e
m
od

el
hy

pe
rp
ar
am

et
er
s

58

4.3. DESIGN OF GENERATIVE MODEL

The parameter search results and RMSE results from the Experiment Manager has
then been analysed to select a final parameter set. First, the results from Figure 4.10 is
entered into Matlab and we smooth the data using a 10-point window moving average as a
pre-treatment technique. This is done to detect trends in the data and remove some of the
stochasticity of the optimization process results. The sequence plot in Figure 4.11 visualises
the optimization process and we can see that the RMSE is decreasing as a function of time.

0 5 10 15 20 25 30

Sequence number

0

20

40

60

80

100

120

140

P
a
ra

m
e
te

r
v
a
lu

e

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

R
M

S
E

Hyperparameter optimization sequence

sequence length

rollouts

numhiddenunits

minibatchsize

validation RMSE

Figure 4.11: Bayesian hyperparameter optimization sequence results from Matlab
Experiment Manager

We then run a 2-component Principal Component Analysis and obtain the plot in
Figure 4.12. We see that the varying components that result in a low RMSE are relatively
clustered around a plane that might resemble the optimization sequence. From this, we
can infer that the parameter selection is not random and that it should be possible to
converge on parameters that affect the RMSE and that we might not need more iterations
of the hyperparameter search to conclude on a final set.

For our final selection of parameters, we scatterplot all pre-treated parameters towards
the validation RMSE and obtain the results in Figure 4.13.

The trends show us the direction of the parameters, and we deduct the following:

• The rollout parameter has less impact on the RMSE but should be higher than 40.

• The minibatch size should be set high. There is a cluster around high values and
should be set larger than 120.

• The number of hidden units in the generative model could be set to more than 20.

• The sequence length should be 25 or less.

59

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

1st Principal Component

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

PCA of bayesian hyperparameter optimization results

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

V
a

lid
a

ti
o

n
 R

M
S

E

Figure 4.12: PCA of Bayesian hyperparameter optimization sequence results

0.2 0.22 0.24 0.26
20

25

30

35

40

S
e
q
u
e
n
c
e
 l
e
n
g
th

r
2
=0.86

0.2 0.22 0.24 0.26
20

25

30

35

40

R
o
llo

u
ts

r
2
=-0.49

0.2 0.22 0.24 0.26

Validation RMSE

10

15

20

25

H
id

d
e
n
 u

n
it
s

r
2
=-0.78

0.2 0.22 0.24 0.26

Validation RMSE

80

90

100

110

120

M
in

ib
a
tc

h
 s

iz
e

r
2
=-0.68

Correlation of hyperparameters

Figure 4.13: Correlation of hyperparameters twoards validation RMSE

As such, we can decide on parameters taking the available dataset and computational
resources into account.

60

4.3. DESIGN OF GENERATIVE MODEL

Training a univariate model

The network is initially trained on 300 epochs with the Adam optimizer using 60 unique
rollouts per epoch, resulting in a training session equivalent to 18,000 unique rollouts. Each
rollout is then presented to the network using the skewing mechanism with a sequence
length of 20 time steps resulting in a magnitude of increase in data input. The minibatch
size is set to 128 and the number of hidden units is set to 32. Further, we step down the
learning rate from an initial setting of lr = 0.05 by a factor of 0.2 for every 50th epoch.
The RolloutDatastore is also used for validation using another set of randomized rollouts
and the same standardisation settings.

The training session is done using Matlab running the Parallel Computing toolbox on a
dedicated NVIDIA Quadro T1000 GPU. We evaluate the generative model by letting the
model predict the next step in a sequence, given 20 steps of data from a random rollout.
Based on these steps, the next step should be estimated. The RMSE of the training, and
the evaluation, should be as low as possible. Low numbers close to 0 means that the model
has predictive ability and that the network has converged to the dynamic model. This is an
important discovery, as a higher RMSE will not enable predictive power of the generative
model. Figure 4.14 show four random runs and their results.

61

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

8
9

9
0

9
1

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

(a
)

M
A

E
0.

04
,R

M
SE

0.
09

,r
2
=

1.
00

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

8
9

9
0

9
1

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

(b
)

M
A

E
0.

03
,R

M
SE

0.
09

,r
2
=

1.
00

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

8
9

9
0

9
1

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

(c
)

M
A

E
0.

02
,R

M
SE

0.
09

,r
2
=

1.
00

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

8
9

9
0

9
1

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

(d
)

M
A

E
0.

01
,R

M
SE

0.
11

,r
2
=

0.
99

Fi
gu

re
4.
14

:
R
es
ul
ts

of
qu

er
yi
ng

th
e
ge
ne

ra
tiv

e
m
od

el
fo
r
ne

xt
st
ep

s
of

ra
nd

om
te
st

ru
ns

62

4.3. DESIGN OF GENERATIVE MODEL

Simulating sequences

The input to the prediction is the previous sequence from the random rollout, so to test
the predictive ability, we input skewed estimated sequences from the generative model itself
instead of the random rollout. We need to start with an initial sequence from the rollout
and add the model’s output to a historical sequence. These outputs will then be used as
an input to the next prediction step. This process will resemble the RL agent training
mechanism explained later. We choose a randomly step-wise change of the manipulative
variable Q and record the dynamic response from the model. Figure 4.15 show four random
runs and their results, where the initial Q is changed by 5% at some random t.

We see that the model responds by decreased temperature when the flow rate is
increased, which corresponds to our earlier beliefs of the physical process. This method of
replacing values during sequence prediction will be our method of simulation. Simulation is
done by querying the environment using the current state as input, and a proposed action.

63

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
56789

1
0

1
1

1
2

8
8

8
8

.5

8
9

8
9

.5

9
0

9
0

.5

9
1

9
1

.5

9
2

G
e

n
e

ra
ti

v
e

 m
o

d
e

l
p

re
d

ic
ti

o
n

Q changed

at t=228

Q
in

T
o
u
t

(a
)

R
an

do
m

ru
n

1,
Q

ch
an

ge
d

at
t
=

2
2
8

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
56789

1
0

1
1

1
2

8
8

8
8

.5

8
9

8
9

.5

9
0

9
0

.5

9
1

9
1

.5

9
2

G
e

n
e

ra
ti

v
e

 m
o

d
e

l
p

re
d

ic
ti

o
n

Q changed

at t=191

Q
in

T
o
u
t

(b
)

R
an

do
m

ru
n

2,
Q

ch
an

ge
d

at
t
=

1
9
1

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
56789

1
0

1
1

1
2

8
8

8
8

.5

8
9

8
9

.5

9
0

9
0

.5

9
1

9
1

.5

9
2

G
e

n
e

ra
ti

v
e

 m
o

d
e

l
p

re
d

ic
ti

o
n

Q changed

at t=421

Q
in

T
o
u
t

(c
)

R
an

do
m

ru
n

3,
Q

ch
an

ge
d

at
t
=

2
4
1

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
56789

1
0

1
1

1
2

8
8

8
8

.5

8
9

8
9

.5

9
0

9
0

.5

9
1

9
1

.5

9
2

G
e

n
e

ra
ti

v
e

 m
o

d
e

l
p

re
d

ic
ti

o
n

Q changed

at t=365

Q
in

T
o
u
t

(d
)

R
an

do
m

ru
n

4,
Q

ch
an

ge
d

at
t
=

3
6
5

Fi
gu

re
4.
15

:
R
es
ul
ts

of
qu

er
yi
ng

th
e
ge
ne

ra
tiv

e
m
od

el
fo
r
ne

xt
st
ep

s
of

ra
nd

om
te
st

ru
ns

64

4.3. DESIGN OF GENERATIVE MODEL

4.3.2 Querying the Environment

A feature of our GenerativeModel class is to act as input to the Environment for RL
agents created in Matlab, querying the trained generative model. As such, we also create
a class SyntheticEnvironment descendant from class rl.env.MATLABEnvironment. This
class will receive step-signals from the RL agent where the Agent’s action proposal is
a parameter, based on previous calls to the step-function. The class responds with an
Observation from the Enviroment based on a query towards the generative model.

The query process needs a little explanation: when we trained the generative model,
the Y -sequence is a shifted version of the X resulting in a time series forecasting ability.
We now utilize this property by actually replacing the feature for the Action with the
proposal from the RL agent, and forecast the generative model based on the observation
from the last step. The new forecast contains both Action and Observation, but we return
only the Observation vector to the environment. However, the complete sequence with
historical Action proposals, is stored in the environment class instance. This way, new
queries will take into account the earlier states of combined Actions and Observations.

1 2 3

at

Et−1

T

T P

Et

Figure 4.16: Querying the generative model
1. The previous Observation-vector is concatinated with the policy action proposal from
the RL agent into vector T . 2. Vector T is predicted by the generative model, which

returns P , which is the next step estimate. 3. The subset of the P -vector representing the
Observation is stored for next step as well as returned to the RL Agent for processing.

Figure 4.16 explains the process, also outlined in Code 4.1. Figure 4.15 visualises an
example of the model response when changing the input.

Within the SyntheticEnvironment class, we also define a reward-function where the
system reward and termination conditions are evaluated.

4.3.3 Process model as RL environment

For us to evaluate the performance of the concept of training an RL agent with a generative
model, another class, ProcessEnvironment is developed as a connector between the real
process as implemented in the ordinary differential equations and the Matlab Reinforcement
Learning framework. The ProcessEnvironment class can be connected to an RL agent
for performance evaluation of the learned policy. During such execution, the termination

65

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

1 function this = step(this, actions)
2 % Predict next step by changing action but keep observation
3 % input to the network
4 T = [actions this.Observation ']';
5
6 % Predict one step
7 [this.net, P] = predictAndUpdateState(this.net,{T});
8 P = P{1};
9

10 % Update states
11 act_size = size(this.datastore.MV, 2);
12 this.Action = actions;
13 this.Observation = double(P(1+act_size:end));
14 end

Listing 4.1: Querying the generative model (Matlab code)

criterion is disabled since the environment will be used for evaluation and simulation, and
not learning. By disabling termination, we can observe the full length of the consequences
of a learnt policy. This resembles the situation of executing the policy in real life, where
process restarts are not always feasible.

4.3.4 Training a multivariate generative model

Droplet size optimization is added for the multivariate case, as presented in Figure 4.3.
The term for controlling the atomizer speed, Zrpm, is promoted from being a controlled
variable to a manipulative variable in parallel with Qfeed. To train the generative model
in the multivariate case, we do the following additions and changes:

• Rollouts are made from a set of four fixed rpm values in the range from 7600 - 9200,
in addition to the Qfeed rollout scheme

• Huber loss function is introduced

Further, we train a model using 1024 hidden nodes (in two layers), trained for 3,000
epochs and compare performance with a model using 32 hidden nodes trained for 300
epochs. Both versions utilize the same learning rate decay, however, the length of the steps
vary according to the number of epochs.

To learn the dynamics from the multivariate case, we present 60 unique rollouts per
epoch, resulting in a training session equivalent to 180,000 unique rollouts. Total training
time is 54 hours on a dedicated NVIDIA Quadro T1000 GPU for 3,000 epochs. The
learning rate decay scheme is adjusted to accommodate for longer training sessions as
illustrated in Figure 4.17.

We can see from Figure 4.18 the results of querying the generative model for random
rollouts. The input is the previous sequence (20 steps) from a random rollout slid over the
time frame. We see a positive correlation of the model compared to the real signal.

Further, we test the model’s predictive performance by letting the model free-run by
sliding the predictions. We do this to test the model’s behaviour in a simulation scenario.
By randomly step-wise changing the manipulative variables, and recording the sequence
predictions, we can evaluate if the model has captured the process dynamics. Figure 4.19(a)
show the results of keeping the manipulative variables constant and changing them at
specific times t. Qfeed is changed (increased) at t = 192 and we see a temperature drop.

66

4.3. DESIGN OF GENERATIVE MODEL

10
-5

10
-4

10
-3

10
-2

10
-1

L
e
a
rn

in
g
 r

a
te

 -
 l
o
g
 s

c
a
le

Learning rate decay

0 500 1000 1500 2000 2500 3000

Epoch

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

L
e
a
rn

in
g
 r

a
te

Figure 4.17: Step-wise learning rate decay

Further, at t = 444, Zrpm is changed, affecting the particle size. The particle size is affected
by both the feed rate and the atomizer speed.

0 100 200 300 400 500 600
6.5

7

7.5

8

8.5
Q sequence input prediction

Q
pred

Q
test

0 100 200 300 400 500 600
88

90

92
T sequence output prediction

T
pred

T
test

0 100 200 300 400 500 600

8000

8500

9000

Z sequence output prediction

Z
pred

Z
test

Figure 4.18: Results of querying the generative model, multivariate scneario

67

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

To evaluate if the generative model has captured any real process dynamics, we re-run
the scenario towards the process model (the ODEs), employing the same input scheme
and changes as we did towards the generative model. As we see from Figure 4.19(b), the
process model response is in lieu with the generative model.

The scatter plots in Figures 4.20(a) and 4.20(b) visualises the correlation between the
models. Some intermittent dynamics is not captured exactly, but we can conclude that the
multivariate generative model has been able to replicate most of the dynamics.

68

4.3. DESIGN OF GENERATIVE MODEL

0 100 200 300 400 500 600

6

8

10

12

m
3
/h

88

89

90

91

92

°C

Generative model prediction

Q
 c

h
a

n
g

e
d

a
t

t=
1

9
2 Q

in

T
out

0 100 200 300 400 500 600

t

7000

8000

9000

10000

rp
m

100

110

120

130

m

Z sequence

Q
 c

h
a

n
g

e
d

a
t

t=
1

9
2

Z
 c

h
a

n
g

e
d

a
t

t=
4

4
4

Z

Particle size

(a) Results of querying the generative model for next steps of random test run,
multivariate scenario

0 100 200 300 400 500 600

6

8

10

12

m
3
/h

88

89

90

91

92

°C

Process model

Q
 c

h
a

n
g

e
d

a
t

t=
1

9
2 Q

in

T
out

0 100 200 300 400 500 600

t

7000

8000

9000

10000

rp
m

100

110

120

130

m

Z sequence

Q
 c

h
a

n
g

e
d

a
t

t=
1

9
2

Z
 c

h
a

n
g

e
d

a
t

t=
4

4
4

Z

Particle size

(b) Results of querying the process model for next steps of random test run, multivariate
scenario

Figure 4.19: Multivariate query of the generative model vs. process model

69

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

88 88.5 89 89.5 90 90.5 91 91.5

Process model

88

88.5

89

89.5

90

90.5

91

91.5

G
e

n
e

ra
ti
v
e

 m
o

d
e

l

Predicted T
out

 vs. process T
out

(a) Correlation between generative model and process model for Tout, first sequence
clipped

112 114 116 118 120 122 124 126 128

Process model

112

114

116

118

120

122

124

126

128

G
e

n
e

ra
ti
v
e

 m
o

d
e

l

Predicted Z
rpm

 vs. process Z
rpm

(b) Results of querying the process model for next steps of random test run, multivariate
scenario

Figure 4.20: Comparison of generative model and process model

70

4.3. DESIGN OF GENERATIVE MODEL

Huber loss function

As an alternative to Matlab’s standard loss function based on calculated RMSE, we create
a custom loss layer based on Huber loss estimation [9]. Huber loss is less sensitive for
outliers in data than RMSE and essentially select either mean absolute error (MAE) or
RMSE based on whether the residual a is large or small when calculating the loss:

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,
δ (|a| − δ/2) otherwise. (4.4)

Code for the custom layer is presented in Listing 4.2. Here, we implement a forward
loss function by using Matlab’s own Huber loss function implementation.

1 classdef huberRegressionLayer < nnet.layer.RegressionLayer
2 % Custom regression layer with Huber loss.
3
4 methods
5 function layer = huberRegressionLayer(name)
6 layer.Name = name;
7 layer.Description = 'Huber loss';
8 end
9

10 function loss = forwardLoss(layer, Y, T)
11 % Calculate Huber loss of the mini-batch between
12 % the predictions Y and the training targets T.
13 loss = huber(Y,T,"DataFormat","CB");
14 end
15 end
16 end

Listing 4.2: Custom Huber loss regression layer (Matlab code)

The benefit of using a built-in huber-function, is that we do not need to implement
the derivative of the Huber loss due to Matlab’s automatic differentiation technique. The
backward pass error derivative function is automatically determined by the framework
during gradient descent.

The custom loss layer replaces the RegressionLayer in the neural network. The final
generative model supporting both univariate and multivariate cases is listed in Code 4.3.

1 function layers = lstm_network(this, numHiddenUnits)
2 layers = [
3 sequenceInputLayer(this.datastore.featureDimension)
4 lstmLayer(numHiddenUnits)
5 dropoutLayer(0.2)
6 lstmLayer(numHiddenUnits, "OutputMode", "last")
7 dropoutLayer(0.2)
8 fullyConnectedLayer(this.datastore.featureDimension)
9 huberRegressionLayer('huber')

10];
11 end

Listing 4.3: Generative model neural network layers (Matlab code)

Effect of changing number of epochs and hidden nodes

Increasing the number of nodes to 1024 and the number of epochs to 3,000 also results in an
increased computation time. On an NVIDIA Quadro T1000 GPU, the computation time is

71

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

54 hours for 3,000 epochs of the selected rollout configuration. However, by recalculating
the model using the original setup of 32 hidden nodes and 300 epochs, we gain performance.
Figure 4.21 is the result of running 30 test sessions for each of the models: training a larger
model results in a higher mean RMSE than a smaller model.

0 5 10 15 20 25 30

Test run

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
R

M
S

E

Larger model

Smaller model

Figure 4.21: RMSE of larger model vs. smaller model
The larger model has a higher mean RMSE and standard deviation than the smaller.

The larger model has an average RMSE of 0.82 and σ = 0.57, while the smaller model
has µ = 0.65 and σ = 0.43. We can probably explain this difference from the fact that the
smaller model, due to its smaller size, has a higher grade of generalisation. The smaller
multivariate model will be used for the later experiments.

Effect of learning rate decay

The initial learning rate is according to Bengio [47] the single most important hyperparameter
in a deep neural network and should be the first parameter to be tuned. The learning
rate is a factor describing how much the network weights and other parameters should
be changed on each iteration pass by the derivative error of the optimization function. A
large initial learning rate avoids entering into spurious local minima and results in faster
training. It is also a common belief that stepping down the learning rate avoids oscillation
around a non-relevant parameter set, mathematically analyzed by Kleinberg and Yuan [85].

There are a few ways to decay the learning rate, most notably and simplest to implement,
are step-wise and exponential learning rate decay schedules. However, other methods exist
that can converge faster, on the cost of complexity. Lecun et al. [23] introduces the
stochastic diagonal Levenberg–Marquardt procedure. Here, a Hessian matrix of second
derivatives of the errors is used to calculate learning rates for each individual parameter.

72

4.3. DESIGN OF GENERATIVE MODEL

For our problem, we select a step-wise approach due to its simplicity and path of least
resistance.

Using the gradient descent explanation of the effect of the learning rate, we start with
a high initial value lr = 0.05 and decay by a factor r = 0.2 on every n epoch, as illustrated
in Figure 4.17. The total number of total decay steps is set to an empirical value s = 6.
To see the effect of the stepping, training is halted at the end of each decay step and a
query towards the generative model is done. This is compared to the test data produced
by the process model. Figure 4.22 illustrates the results after the first four decay steps.

We observe the following interesting phenomena:

• Noise is suppressed after the first decay step

• Patterns are identified after the second decay step

Our training progresses by constantly tweaking the network parameters in the right
direction, updating in smaller steps as we decay the learning rate. After breaking the initial
loss wall during the first iterations, we observe a stable learning process where noise is
suppressed and patterns are more precisely recognised. Either, our dataset gently conforms
to the gradient descent theory, where few parameter valleys exist, or we see a different
effect.

You et al. [102] introduces an alternative explanation than gradient descent that fits
the observation from our data. Their view is that;

• an initially large learning rate suppresses the memorization of noisy data

• while decaying the learning rate improves the learning of complex patterns

Through experiments, they challenge the original theory of gradient descent and
attribute this to the fact that deeper networks need other explanations, than what is
developed for simpler neural networks. They also argue that the focus on minimas must be
turned towards the data; noisy data is suppressed by a high learning rate, and the learning
rate decay step learns complex patterns only after this noise suppression.

Our generative model’s ability to learn is in either case accomplished by utilizing
learning rate decay scheduling. Although we can support their idea by data, we cannot
falsify the gradient descent theory.

73

CHAPTER 4. AUTONOMOUS LEARNING OF CORE SKILLS

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

9
0

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
0
0
0

8
5
0
0

9
0
0
0

Z
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

Z
p
re

d

Z
te

s
t

(a
)

St
ep

1:
lr

=
0
.0
5

af
te

r
50

ep
oc

hs

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

9
0

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
0
0
0

8
5
0
0

9
0
0
0

Z
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

Z
p
re

d

Z
te

s
t

(b
)

St
ep

2:
lr

=
0
.0
1

af
te

r
10

0
ep

oc
hs

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

9
0

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
0
0
0

8
5
0
0

9
0
0
0

Z
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

Z
p
re

d

Z
te

s
t

(c
)

St
ep

3:
lr

=
0
.0
0
2

af
te

r
15

0
ep

oc
hs

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

6
.57

7
.58

8
.5

Q
 s

e
q

u
e
n

c
e
 i
n

p
u

t
p

re
d

ic
ti

o
n

Q
p
re

d

Q
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
8

9
0

9
2

T
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

T
p
re

d

T
te

s
t

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

8
0
0
0

8
5
0
0

9
0
0
0

Z
 s

e
q

u
e
n

c
e
 o

u
tp

u
t

p
re

d
ic

ti
o

n

Z
p
re

d

Z
te

s
t

(d
)

St
ep

4:
lr

=
0
.0
0
0
4

af
te

r
20

0
ep

oc
hs

Fi
gu

re
4.
22

:
Eff

ec
t
of

fir
st

fo
ur

le
ar
ni
ng

ra
te

st
ep

s
in

tr
ai
ni
ng

th
e
ge
ne

ra
tiv

e
m
od

el

74

Chapter 5

Autonomous Control

The road to wisdom?—Well, it’s plain and simple to express: Err and err
and err again but less and less and less1

5.1 Design of the Reinforcement Learning agent
This chapter is dedicated to the concept of learning for control by using a reinforcement
learning agent, trained by the generative model. Several experiments are conducted to
reflect the performance of the concept.

Three different agent types are evaluated for learning a control strategy: the Soft Actor-
Critic (SAC) agent, Proximal Policy Optimization (PPO) agent and the Deep Deterministic
Policy Gradient (DDPG) agent. They all share the common idea of learning from an
environment based on rewards. Whereas SAC is sample efficient, PPO excels in stochastic
high-dimensional environments. DDPG is the deep learning’s equivalent of Q-learning in
continuous action spaces.

5.1.1 Soft Actor-Critic (SAC)

The soft actor-critic (SAC) algorithm is described as a model-free, online, off-policy, actor-
critic reinforcement learning method by Haarnoja et al. [83]. The algorithm calculates a
policy that maximizes the long-term expected reward, but also the entropy of the policy.
We can think of entropy as the measure of uncertainty of a state, and the higher the entropy
value, the more exploration of this uncertain state is promoted. Balancing exploration
and exploitation of the environment is done by both maximizing the cumulative long term
reward and the entropy.

SAC operates stochastically, meaning that we try to act as random as possible while
still completing the task. For a process control problem, this might be a good fit: we want
to minimize training time and we might have limited data available for off-line training.
Maximizing the usage of the available data means that exploration of the state-space is
limited to the area surrounding the process mid-point, meaning that the agent should learn
the dynamics only within the available data window. This is an important pre-requisite,
as the data window should describe possible process logs only, and not that of greatly
exaggerated excitements. Selecting an agent that is compatible with the view of the
generative model’s inability to extrapolate outside the process window seems important.

1Danish poet and scientist Piet Hein (1905-1996)

75

CHAPTER 5. AUTONOMOUS CONTROL

To illustrate this point, let us denote π∗ as the optimal policy that has the highest
expected reward for every action:

π∗ = argmax
π

E
τ∼π

[∞∑
t=0

γt[r(st, at)]

]
(5.1)

where trajectory τ has been sampled from the probability distribution of the policy
π. In this scenario, the cumulative expected reward for the trajectory forces the agent
to select actions that it might have visited before, but knowingly leads to a state of high
reward. The SAC adds the entropy term H:

π∗ = argmax
π

E
τ∼π

[∞∑
t=0

γt[r(st, at) + αH(π(·|st))]
]

(5.2)

where the temperature parameter α controls the relative importance of the entropy
term against the reward [83]. This forces the agent to consider the uncertainty, not only
the reward associated with the state and selecting actions it has not yet seen. This would
mean that the agent stochasticity is somewhat controlled, at least when it comes to the
degree of randomness introduced.

Further, gradient update of the policy is done off-policy utilizing the history of available
data from a replay buffer. This gradient update means slower learning of the agent than
just replacing the target network, as described earlier by Mnih et al. [51]. The soft policy
update alternates between policy evaluation and policy improvement as described by Sutton
and Barto [112].

Matlab Reinforcement Learning Toolbox includes an implementation of the Soft Actor-
Critic algorithm and will be used in the experiments. The setup of the actor and critic
networks is done by following the example SAC RL agent from Matlab.2 We utilize long
short-term recurrent memory blocks for Critic output and Actor input. Figure 5.3 visualises
the two network architectures. The temperature parameter α was in the first publication of
the SAC-algorithm an adjustable hyperparameter, although recent updates of the algorithm
involve an automatic optimization of this α. Matlab includes this updated algorithm and
is therefore not included in the hyperparameter search.

(a) Actor (b) Critic

Figure 5.1: Network architectures of the Soft Actor Critic (SAC) agent

2https://se.mathworks.com/help/reinforcement-learning/ref/rlsacagent.html

76

5.1. DESIGN OF THE REINFORCEMENT LEARNING AGENT

Input to the networks is standardised by normalising the data (subtract the mean
and divide by the standard deviation). Setting up training involves selecting a few
hyperparameters, mainly:

• Discount factor γ

• Target smooth factor τ

• Experience buffer length

The entropy weight parameter α is automatically optimized by the algorithm.

5.1.2 Proximal Policy Optimization (PPO)

The Proximal Policy Optimization (PPO) algorithm, and its sibling Trust Region Policy
Optimization (TRPO), seek to maximize the parameter steps to be taken when evaluating
the next policy update. PPO and TRPO try to operate as stochastic as possible and
step as long as possible, without stepping too far. PPO does this by evaluating the
Kullback–Leibler (KL) divergence when optimizing the next policy update through a clipped
surrogate objective function [73]. The KL-divergence is the relative entropy between two
probability distributions and is somewhat related to the entropy term of the SAC agent.

PPO is a less complex implementation than TRPO and is included in Matlab as a
parameterizable RL agent. We adjust the networks of the actor and critics to be compatible
with the PPO agent while still keeping a similar configuration, as illustrated in Figure 5.3.

One notable drawback of the PPO algorithm is reduced performance in deterministic
environments with few dimensions, which may cause a challenge utilizing our process model
based on a few time series.

(a) Actor (b) Critic

Figure 5.2: Network architectures of the Proximal Policy Optimization (PPO) agent

5.1.3 Deep Deterministic Policy Gradient (DDPG)

The Deep Deterministic Policy Gradient (DDPG) algorithm is deep Q-learning for continuous
action spaces [54], [59] as visited and covered in Chapter 2.3.1. DDPG updates the target
network by averaging and adding noise to the proposed actions as an exploration mechanism.

The networks for the DDPG agent has a similar configuration profile as for the SAC
and PPO agents, and are visualised in Figure 5.3.

77

CHAPTER 5. AUTONOMOUS CONTROL

(a) Actor (b) Critic

Figure 5.3: Network architectures of the Deep Deterministic Policy Gradient (DDPG)
agent

5.2 Initial conditions

Whenever we start training an episode, we restart the environment to a known state, our
initial condition. This operation places the agent at a known place in the environment and
resets the generative model. Any steps taken by the agent will be evaluated solely from the
episode actions, and not the accumulative state of the generative model. Depending on
the application at hand, we might want to change this condition whenever the RL agent
has gained enough learning. This is might be important in situations where we consider
that there are significantly different conditions at other positions.

We can compare this to an autonomous driving simulator that provides environment
feedback to an agent. At every episode start, we are placed at the same road intersection.
But when we have learnt to handle the environment to some degree, we may want to rotate
the starting point to a different place in the simulation, and even change the weather- or
traffic conditions. In a time series approach, we could restart the environment to any point
in time, so that the agent learns how to escape from the situation and into the action path
that corresponds to the reward policy.

The generative model provides the initial data set at the beginning of each episode, and
for the experiments, we choose to always start training at the same time series position
for the current training session. A new initial observation is created during training of
the generative model and is used for all subsequent RL training sessions. This way, we
can compare agent performances at fair grounds. Figure 5.4 show a plot of the stored
initial observation for the 300 epoch-version of the generative model we have used for RL
agent training. The figure shows the five observation vectors in the same normalized plot,
visualising the first 20 steps of a training sequence, to be used as our starting point. Initially,
this vector was sampled from a random rollout from our process model. During learning,
only the last time step vector is returned to the agent as the environment observation.

However, when simulating towards the process model, we draw a new rollout for each
episode. This way, we make sure that the agent can escape any situation and enter the
envelope satisfying the reward policy. Figure 5.5 visualises two random episode starts
where we rotate the initial conditions on episode start.

78

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

0 5 10 15 20

Sequence step

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

N
o
rm

a
liz

e
d
 v

a
lu

e

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Figure 5.4: Normalized initial observation data for an instance of the generative model

5.3 Reward functions and terminal conditions
The reward function directly affects the behaviour of an RL agent. Ideally, we would
like to incorporate several information types into one scalar rewarding signal: is the
current state allowed and sound? Are the applied actions within tolerances? Do we
have enough information to shape the agent’s decision on the best way forward? The
work of engineering a proper reward function can be an iterative task involving a lot
of experimentation. According to the research questions, the role of a trainable reward
function is investigated.

We will implement several strategies when engineering the reward function:

• Direct response reward from equation with γ = 0.99, univariate scenario

• Sparse reward from result distribution with γ = 0.05, multivariate scenario

• Trained reward model with γ = 0.99, multivariate scenario

We prepare the generative model as described above but simplify the datasets by not
introducing noise to the manipulative variables, and excluding all controlled variables.
Some noise (0.5%) is added to the responding variables, as instrument noise.

The training is done towards the generative model, while the simulation is done on the
process model with no termination criteria. The process model environment represents
the real system, so the agent cannot restart simulation even if the termination criterion is
breached. This resembles the situation in the real world where the agent has no second
chance for selecting a control strategy. Further, we add 0.5% noise to all controlled variables
in the process model for increased realism of the simulator. The controlled variables are
not part of the generative model training.

79

CHAPTER 5. AUTONOMOUS CONTROL

0 5 10 15 20

Sequence step

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 v

a
lu

e

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

(a)

0 5 10 15 20

Sequence step

-1.5

-1

-0.5

0

0.5

1

1.5

N
o
rm

a
liz

e
d
 v

a
lu

e

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

(b)

Figure 5.5: Normalized initial observation data for two random instances of the process
model

5.3.1 Direct response reward, univariate scenario

The first strategy involves crafting a reward function that resembles the proportional
PID-regulator in the process simulator. The aim is that the agent can behave similarly to
the PID-regulator by calculating the inverse error between a Tsp and Tout and using that
for maximizing the reward r. We also add a penalty term as a dampening factor for the
selected action, taking the previous action into account (∆a):

robservation =
1

|Tsp − Tout|+ ε

raction = −β · |∆a|
r = robservation + raction

(5.3)

A starting point for the action dampening reward is set to β = 0.05. The action
dampening will reward slowly changing the system over sudden moves in actions. Further,
we add a small number ε = 1 × 10−5 to the denominator in robservation to avoid any
potential divide-by-zero errors. This reward function is implemented as part of the RL
Agent step-function in Matlab:

Since the generative model is trained on rollouts in the range of an output temperature
of 88-92 °C, we set the Tsp to a middle 90 °C and a termination condition where we do
not allow the system to continue training on the current rollout if the error is greater than
the process window of 2 degrees. These are the process conditions and boundaries we have
trained for from the historical logs. Since the reward function is targeted towards nearly
immediate feedback, the discount factor γ is set high, typically γ = 0.99.

The following experiments are run using the univariate generative model trained for
300 epochs.

Experiment 0: Initial baseline

We need a way to identify when to stop agent training, the point where we assume that
a suitable policy has been found. An easy method is to stop training when a certain
average reward count has been reached. The theoretical total reward can be calculated by

80

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

1 function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
2 epsilon = 1e-5;
3
4 (... clipped ...)
5
6 % Setpoint offset penalty
7 setpoint = 90;
8 errTout = abs(setpoint - scaled_world(2)) + epsilon; % MV + CV + RV vectors
9 rT = (1 / errTout);

10
11 % Penalize control effort
12 rA = -0.05*abs(previous_action - action_scaled);
13
14 % Get reward
15 Reward = rT + rA;
16
17 % Check terminal condition
18 IsDone = errTout > 2;
19 notifyEnvUpdated(this);
20 end

Listing 5.1: Direct response reward function (Matlab code)

multiplying the maximum step reward by the number of steps per episode. For the direct
response reward function, this would mean that the total reward is

robservation =
1

ε
raction = 0

r = robservation + raction

r =
1

ε
r = 1× 105

rtotal =

600∑
i=1

ri

rtotal = 6× 107

(5.4)

We would never reach this total reward due to the stochasticity of the system, so our
first experiment is to find the point where a suitable policy has been found at the minimum
training time. Beforehand, we do not know where this point might be, and it might vary
with the application, environment parameters and the type of RL agent.

The average reward expected from one episode might dictate the threshold value we
use for stopping training. As we see in Figure 5.3.1, a SAC agent has been running for
1323 episodes so that we can identify the step where the agent has identified the policy.

We can see that the agent policy is identified after ∼ 700 episodes for the SAC agent
and that the average reward threshold for stopping training could be set to 1.2×104 for the
following experiments, for a value of 600 rollout steps per episode. We see that by training
for an extended time, we might accomplish greater policy accuracy. For the experiments,
we choose to select a lower number. Further, we set another stopping condition where we
abort the training if more than 5000 episodes have been running without reaching the
convergence criteria.

A secondary observation is that the SAC RL agent has identified a control policy by
using the generative model as a dynamic process simulator. This is an important and

81

CHAPTER 5. AUTONOMOUS CONTROL

0 200 400 600 800 1000 1200 1400

Episode

0

0.5

1

1.5

2

2.5

3

3.5
10

4

0

50

100

150

200

250

300

350

400

Average reward

Episode value

(a)

0 200 400 600 800 1000 1200 1400

Episode

10
-4

10
-2

10
0

10
2

10
4

10
6

lo
g
-s

c
a
le

Average reward

Episode value

(b)

Figure 5.6: Experiment 0: SAC agent training progress (a) and log-scaled (b)
We clearly see the step where a policy is identified (around step 700).

positive discovery in the direction of supporting the hypothesis claim. We also see that
training performance increases beyond the stopping criteria, which could indicate that the
agent is a continuous learner.

Experiment 1: Train & simulate a Soft Actor-Critic (SAC) agent with direct
response reward, univariate scenario

A SAC agent with the following hyperparameters is executed until reaching the total
reward criteria:

• Discount factor γ = 0.99

• Target smooth factor = 1× 10−3

• Experience bufffer length = 1× 106

This results in the results visualised in Figure 5.7 and Table 5.1.

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

SAC 868 18.76 600 23796.83 90.21 1.11

Table 5.1: Experiment 1: SAC training and simulation results

In Figure 5.7, we see that the agent action for the control signal for Q (blue line)
successfully controls the observation of output temperature (red line) with an overall
µ = 90.2 and σ = 1.11, not far from the setpoint of the agent training towards the
generative model.

Experiment 2: Train & simulate a Proximal Policy Optimization (PPO) agent
with direct response reward, univariate scenario

We exchange the agent type with a PPO agent with the following parameters:

• MiniBatchSize = 20 (the sequence length)

82

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

0 100 200 300 400 500 600 700 800 900

Episode

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 100 200 300 400 500

t

5

6

7

8

9

10

11

12

m
3
/h

80

82

84

86

88

90

92

94

96

98

100

T

Feed
in

 (m
3
/h)

T
out

(b)

Figure 5.7: Experiment 1: SAC agent training progress on generative model (a) and
simulated process model response (b)

• ExperienceHorizon = 1× 106

• Discount factor γ = 0.99

0 500 1000 1500 2000

Episode

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 100 200 300 400 500

t

5

6

7

8

9

10

11

12

m
3
/h

80

82

84

86

88

90

92

94

96

98

100

T

Feed
in

 (m
3
/h)

T
out

(b)

Figure 5.8: Experiment 2: PPO agent training progress on generative model (a) and
simulated process model response (b)

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

PPO 1801 80.7 600 12191.0 90.40 0.86

Table 5.2: Experiment 2: PPO training and simulation results

From Figure 5.8, we can see that the PPO reaches a more stable temperature signal, but
need more than the double number of episodes compared to SAC for reaching convergence.
This observation supports the claim that PPO is sample intensive. However, this might
come with a positive side, since the generative model can produce any number of samples
for training, given its learnt system dynamics.

83

CHAPTER 5. AUTONOMOUS CONTROL

Experiment 3: Train & simulate a Deep Deterministic Policy Gradient (DDPG)
agent with direct response reward, univariate scenario

0 100 200 300 400 500 600

Episode

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 100 200 300 400 500

t

5

6

7

8

9

10

11

12

m
3
/h

80

82

84

86

88

90

92

94

96

98

100

T

Feed
in

 (m
3
/h)

T
out

(b)

Figure 5.9: Experiment 3: DDPG agent training progress on generative model (a) and
simulated process model response (b)

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

PPO 598 283.28 600 12319.0 89.92 1.03

Table 5.3: Experiment 3: DDPG training and simulation results

Figure 5.9 show the results from DDPG training. We observe a performance close to
that of the SAC agent.

5.3.2 Sparse reward and learning from failure

The second strategy is more involved and is set up to evaluate the performance of using
sparse rewards for process control. The idea is that the agent should learn from its failures
and only be rewarded when the results fall into an acceptable range. The agent will not
get any accumulated reward during a sequence, which means that the control strategy is
entirely up to the agent to develop. The reward scheme will not give any hints towards
how the process is to be controlled. The agent should learn how to control the process to
meet a specific end result that is sparsely presented.

The particle size calculations that are part of the responding variables and calculated
by the empirical Sauter mean droplet size formula as presented in Equation 3.12 by Huang
and Mujumdar [35], is used as sources for the sparse reward scheme. The end result might
typically be a laboratory test result which often is a delayed parameter in real processes.
In our experiments, we use the particle size distribution from the Sauter mean droplet size
calculations to resemble this relationship. We define an acceptable normally distributed
end result and the desired centre volume, where the reward function is a statistic evaluated
to resemble the sparsity of the reward. We use a low discount factor of γ = 0.05 to promote
long-term planning.

To evaluate this strategy, we analyse the particle size records from the multivariate test
case above. A histogram of the result from this test case is demonstrated in Figure 5.10.

84

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

We also calculate an overlaid normally distributed curve by using the normpdf-function,
where the distribution µ and σ are parameters. This curve represents our desired particle
size distribution.

Figure 5.10: Particle size distribution from multivariate test case
µ = 116.36, σ = 5.07, Anderson-Darling-test failed with p = 1.07× 10−6

Our sparse reward scheme should evaluate whether a distribution is close to normality
or not, and we select Matlab’s Anderson-Darling-test3 for this evaluation purpose. The
Anderson-Darling-test returns a decision for a null hypothesis indicating that the test data
is from a population of normal distribution within a 5% significance level. The dataset
for Figure 5.10 fails this test, but when we create a randomized demonstration dataset
with 351 samples based on the same µ and σ, we pass a re-run of the test, as visualised in
Figure 5.11. This would be our desired process result during episode training.

The statistical comparison function results in a sparse reward: 1 if the conditions for
normality and volumes are satisfied, otherwise 0. Whenever the conditions are not present
during learning, we terminate the episode. We start the reward evaluation after collecting
some samples during the start of an episode, so the first few samples will receive 0 reward
and termination will be inhibited until we start the evaluation.

To be able to accomplish learning to control by sparse rewards, the agent would need
to learn how to change parameters dynamically to meet the distribution criteria, in our
case the Qfeed parameter and the speed of the atomizer Zrpm, which is part of the formula
for mean droplet size. This means that Zrpm will be changed from a controlled variable
to a manipulative variable in those experiments, as presented through the multivariate
generative model discussion. Further, we do not employ any control restrictions, meaning

3https://se.mathworks.com/help/stats/adtest.html

85

CHAPTER 5. AUTONOMOUS CONTROL

Figure 5.11: Randomized particle samples
Sample size: 351, µ = 116.36, σ = 5.07, Anderson-Darling-test pass with p = 0.81

that the agent is free to control the system to any temperature and speed levels necessary.
The designed reward function is listed in Code 5.2.

Experiment 4: Train & simulate a Soft Actor-Critic (SAC) agent with sparse
reward, multivariate scenario

A SAC agent is trained using sparse reward for 327 episodes using manual termination.
We can see from Figure 5.12 that a policy was identified after roughly 50 episodes.

When simulating the agent towards the generative model, we see from Figure 5.13
an interesting policy. The agent rapidly varies both Qfeed and Zrpm in order to create a
particle distribution that satisfies the sparse reward scheme. This behaviour is repeatable
across several retries of learning and simulation.

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

SAC 327 0.17 33 33.8 90.79 5.74

Table 5.4: Experiment 4: SAC training and simulation results

We then test the agent in a free-running process environment (the ODEs), and we see
the same pattern of rapid action control, in Figure 5.14 with more exaggerated responding
variables.

The policy seems to be a good example of the Cobra effect [25], where our control
scheme has unintended effects we originally did not design it for: high temperature variation
and rapidly exaggeration of control signals in order to reach the goal as quickly as possible.

86

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

1 function [Reward, IsDone] = sparse_reward(logged_signals, sequence_length)
2
3 % Sparse reward
4 dist = makedist('normal','mu',122,'sigma',5); % target distribution
5 rS = 0;
6 h = 0;
7 if size(logged_signals ,1) > sequence_length
8 theset=logged_signals(sequence_length:end,4);
9 [h,p,adstat,cv] = adtest(theset',"Distribution", dist);

10 rS = ~h;
11 end
12
13 % Get reward
14 Reward = rS;
15
16 % Check terminal condition
17 IsDone = h;

Listing 5.2: Sparse reward function (Matlab code)

0 50 100 150 200 250 300 350

Episode

0

5

10

15

20

25

30

35

40

45

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Average reward

Episode value

Figure 5.12: Episode data for training an agent based on a sparse reward scheme

A human operator would probably ease the operating envelope for the machinery, as well
as distribute the controls over longer intervals for more controlled production. A sparse
reward scheme for the multivariate case is probably not suitable for real-life control without
adding penalty terms for the control efforts.

Employing a reward shaping process, in which we further tweak and redesign the direct
response reward in an iterative fashion, can be an alternative. Reward shaping can take
other properties such as control dampening, process enveloping and soft ramping into
account. This quickly becomes a manual multivariate optimization task, an engineering
effort we hope to avoid.

87

CHAPTER 5. AUTONOMOUS CONTROL

0 5 10 15 20 25 30 35

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 5 10 15 20 25 30 35

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(a) Simulation result sequence, µ = 90.06,
σ = 0.93

(b) Particle size distribution

Figure 5.13: Simulation towards generative model

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(a) Simulation result sequence, µ = 90.79,
σ = 5.74

(b) Particle size distribution

Figure 5.14: Simulation towards process model

5.3.3 Trained reward model, multivariate scenario

The goal of the agent is to control the process within operating limits, the envelope of
dynamics, and reach some kind of specified target. We have seen in the former experiments
examples of reward functions that can control the process. However, the reward strategy
we choose can either involve tedious detailed work as done by the team for the Dota 2
competition [98], or we could introduce a level of imitation learning in which the manual
efforts could be lower.

In classical imitation learning, the policy is learnt directly and replaces the agent
model during simulation. Hence, a reward strategy is not necessary. If we would enable
the agent to evolve by continuous training during execution, we need to employ some
kind of reward model. As we have visited earlier, Inverse Reinforcement Learning is an
example of imitation learning where the agent needs to identify a reward model based on
demonstration examples. This could be by intervention from an expert, where we assume
the demonstration is correct. Or, it could be by sampling from function approximators
that are trained towards the desired behaviour.

88

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

We could use the learnt generative model as a reward model. By calculating the inverse
error ∆E between the normalized versions of observation estimate and actual observation,

∆E = Eestimate − Eactual

r =
1

|∆E|
(5.5)

reward r would continuously update the reward according to visited states. This way,
the agent will learn to replicate the behaviour exhibited in the logs and in theory reward
any action that conforms to the generative model.

However, there might be a conflict between the recorded logs and the goal of the
agent. The logs might include dynamics outside the required process envelope, and data
that comes from an uncontrolled process, in that sense it does not follow the goals of our
requirements. By introducing a classification learner, we can build a reward model where
only desired behaviour is recorded. For example, only sequences that contain dynamics
that are manually marked as desired could be used for learning the reward model. The
difference between the environment and the state of the reward model would dictate a
lower reward. Hence, an agent exhibiting similar dynamics as the reward model is trained.
This way, we do not employ static limits but rather learn from examples of good processes.

To set up an experiment for such a reward model, we create a new subclass RewardModel
which share the functionality of the parent class GenerativeModel, although the parameter
values to initialize the class instance might be different. This model will then be trained
on good examples only and queried in the reward function. The inverse error between the
model estimate and the actual observation is returned as the action reward. The above
equation and reward model query is implemented as a reward function in Code 5.3.

1 function [Reward, IsDone, RewardModel] = learnt_reward(previous_action, ...
2 action_scaled, scaled_world, logged_signals, sequence_length, ...
3 generative_model, reward_model)
4 % Extract sequence
5 trail_length = min(size(logged_signals ,1), sequence_length)-1;
6 data = logged_signals(end-trail_length:end-1,:);
7
8 % Query the reward model
9 data = reward_model.scale(data);

10 [reward_model.net, Y] = predictAndUpdateState(reward_model.net,{data'});
11 Y = reward_model.inverse_scale(Y);
12
13 % Scale to similar range
14 Y = generative_model.scale(Y);
15 X = generative_model.scale(scaled_world);
16 err = abs(sum(X-Y));
17
18 % Get reward
19 Reward = 1/err;
20
21 % Check terminal condition
22 IsDone = 0;
23 if size(logged_signals ,1) > sequence_length*2
24 IsDone = err > 2;
25 end
26
27 RewardModel = reward_model;

Listing 5.3: Reward function for querying the reward model (Matlab code)

89

CHAPTER 5. AUTONOMOUS CONTROL

When training the reward model, we use the same network parameters as the generative
model, but the rollout function is changed to produce good samples only, that is, the
temperature setpoint Tout is restricted to a stable level (90°). Further, the Zrpm is fixed at
7600 rpm with a 0.1% added noise. The controlled variables are fixed and removed in this
model. We instantiate, train and save the reward model by:

1 rewardmodel = RewardModel(filename, @spray_rollout_pid_stable , 60, 120, ...
2 128, 32, sequence_length, environment_length)
3 [rewardmodel ,~] = rewardmodel.train_model
4 rewardmodel.save_model

The environment is instantiated after training by refering the reward function and
reward model:

1 env = SyntheticEnvironment(genmodel, true, @learnt_reward, rewardmodel);
2 validateEnvironment(env);

Experiment 5: Train & simulate a Soft Actor-Critic (SAC) agent with reward
model, multivariate scenario

A SAC agent with the following hyperparameters is executed until reaching the total
reward criteria (set to 12,000):

• Discount factor γ = 0.99

• Target smooth factor = 1× 10−3

• Experience bufffer length = 1× 106

The agent reach the termination criteria after 1695 episodes, whereby the deterministic
policy was applied to the process model. The results are visualised in Figure 5.15 and
Table 5.5.

0 200 400 600 800 1000 1200 1400 1600 1800

Episode

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(b)

Figure 5.15: Experiment 5: SAC agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

In Figure 5.15, we see that the agent action for the control signal for Qin has been
identified with a reward model strategy.

We need to evaluate whether the policy is sane by setting up new experiments 6-7.
Here, we will evolve the agent by switching the training environment from the generative
model, to the process model.

90

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

SAC 1695 87.42 480 19158 90.55 0.84

Table 5.5: Experiment 5: SAC training and simulation results

Experiment 6: Evolving the SAC agent from Experiment 5

The trained policy has been shown to control a simulated process environment by its
deterministic policy. In this experiment, we evolve the agent by using the process
environment directly during training and using the trained reward model for the reward
function. The process environment is instantiated with a reference towards the reward
model and its query function;

1 envProcess = ProcessEnvironment(genmodel, true, @learnt_reward, rewardmodel);
2 validateEnvironment(envProcess);

We add 0.1% noise to the controlled variables and train the agent for additional number
of episodes, reaching termination criteria after 79 episodes:

1 trainStats = train(agent,envProcess,opt);

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

Figure 5.16: Training SAC agent towards process model, µ = 90.56 and σ = 0.19

We see from Figure 5.16 that the agent keeps the process in control according to the
reward model.

91

CHAPTER 5. AUTONOMOUS CONTROL

Experiment 7: Exaggerated process environment on SAC agent from Experiment 5

This experiment introduces increased process noise (0.1%) on the controlled variables and
further trains the SAC agent from experiment 5, within the process environment. Training
is terminated after 106 episodes when reaching the termination criteria.

0 100 200 300 400 500 600 700

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 100 200 300 400 500 600 700

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

Figure 5.17: Training SAC agent towards process model with 0.1% noise on controlled
variables, µ = 90.54 and σ = 1.71

We can see from Figure 5.17 that the agent does not control the temperature at all,
but seeks to reduce the error from the reward model by increasing the atomizer speed and
compensating with process noise by rapidly changing the speed. The feed rate Qin is not
touched by the agent. According to the synthetic process model, the dynamics for the
atomizer has faster response times than regulating the feed rate. This might be the reason
for this behaviour.

Experiment 8: Train & simulate a Proximal Policy Optimization (PPO) agent
with reward model, multivariate scenario

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

PPO 200 15.98 480 17203 90.00 0.28

Table 5.6: Experiment 8: PPO training and simulation results

A PPO agent identifies a policy after a short amount of episodes, and we see that
conformance is reached after a stable learning process.

92

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

0 50 100 150 200

Episode

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(b)

Figure 5.18: Experiment 8: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

Experiment 9: Train & simulate a Deep Deterministic Policy Gradient (DDPG)
agent with reward model, multivariate scenario

A DDPG agent was trained but was automatically terminated after 5000 episodes, on
several attempts. Figure 5.19 show that the reward level stays stable and that the agent
is not able to control the process. Further, we see that when adding 0.1% noise to the
controlled variables, the agent has no policy for a countermeasure.

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

DDPG 5000 28.04 480 15.72 90.00 0.23

Table 5.7: Experiment 9: DDPG training and simulation results

The policy of the agent has not reached convergence within the limit for the experiment
training.

93

CHAPTER 5. AUTONOMOUS CONTROL

0 1000 2000 3000 4000 5000

Episode

10
-1

10
0

10
1

10
2

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(b)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105
T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(c)

Figure 5.19: Experiment 9: DDPG agent training progress on generative model (a) and
simulated process model response (b), and introducing 0.1% noise on controlled variables
(c), using trained reward model

94

5.3. REWARD FUNCTIONS AND TERMINAL CONDITIONS

5.3.4 Trained reward model with an inverse mean squared error as
reward

As the reward model seems promising in itself, the reward calculation can be improved
by replacing the inverse mean absolute error, with the mean squared error, so that ∆E
becomes:

∆E = (Eestimate − Eactual)
2

r =
1

|∆E|
(5.6)

and the termination critera T (∆E) is updated to:

T (∆E) =

{
1 for

√
∆E > δ,

0 otherwise. (5.7)

where δ = 2, to leave room for evolving the episodes. RMSE = 1.5 when training
the reward model, so the environment could possibly reach this error level. A theoretical
maximum reward per episode will in this case be 1

ε = 1× 105, but we establish a baseline
by first training the agents for several runs. The PPO agent was able to reach an average
reward on several trials at 1, 800 which was set as the termination criteria for training SAC,
PPO and DDPG agents. This reward corresponds to an RMSE of 1800−1 = 5.6× 10−4.

The reward model should penalize larger control efforts by using the squared error and
ease the compensation of slow dynamics by faster dynamic control signals.

Experiment 10: Train & simulate a PPO agent with reward model, MSE
evaluation, multivariate scenario

A PPO agent was trained using the MSE method of evaluating the result from the reward
model. We see from Figure 5.21 that the PPO agent has identified a policy, and according
to Table 5.8, the µ and σ are well inside the original data range of ±1°.

0 100 200 300 400 500 600

Episode

10
-1

10
0

10
1

10
2

10
3

10
4

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(b)

Figure 5.20: Experiment 10: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

95

CHAPTER 5. AUTONOMOUS CONTROL

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

SAC 502 20.91 480 1804 89.95 0.24

Table 5.8: Experiment 10: PPO training and simulation results

Experiment 11: Train & simulate a SAC agent with reward model, MSE
evaluation, multivariate scenario

A SAC agent was attempted trained but never reached the termination goal for average
reward. Training was automatically terminated when reaching 5, 000 episode counts.

The maximum average reward for the training pass was 233.07, well beyond the
termination criteria.

0 1000 2000 3000 4000 5000

Episode

0

50

100

150

200

250

-2

0

2

4

6

8

10

12

14

16

Average reward

Episode value

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

mZ
rpm

Particle size

(b)

Figure 5.21: Experiment 11: SAC agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

Experiment 12: Train & simulate a DDPG agent with reward model, MSE
evaluation, multivariate scenario

A DDPG agent was attempted trained but never reached the goal for the reward. Training
was automatically terminated when reaching 5, 000 episode counts.

5.3.5 Training towards the process model using the reward model

An alternative approach to train our RL agent is to utilize the process model directly,
and the learnt reward model. In such a scenario, the agent is directly connected to a
real-time process, in our case the ordinary differential equations. In this particular case,
we disconnect the generative model and focus on the reward model only.

Experiment 13: Train & simulate a PPO agent towards process model and
synthetic reward model, MSE evaluation, multivariate scenario

A PPO agent was trained reaching the termination criteria of an average reward of 1800.
We can see from Figure 5.22 and Table 5.9 that converge was reached after only 194

96

5.4. COVERING UNMODELED DYNAMICS

Agent type Episodes Value µ Steps Total Reward Observation µ Observation σ

SAC 194 26.28 480 1893.7 90.00 0.22

Table 5.9: Experiment 13: PPO training and simulation results

episodes. This experiment demonastrates the RL concept validity and that an agent can
learn from a process model.

0 50 100 150 200

Episode

10
-1

10
0

10
1

10
2

10
3

10
4

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

85

90

95

100

105

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(b)

Figure 5.22: Experiment 13: PPO agent training progress on generative model (a) and
simulated process model response (b) using trained reward model

5.4 Covering unmodeled dynamics

The experiments show us that the agent quickly learns the system dynamics from the
process and that the mean and standard deviation is comparable to when training the
agent towards the generative model. An important discovery is that a PPO agent trained
with the generative model performs similar to an agent trained on the real process. Further,
a reward model trained on time series representing a class of data can be used for agent
training towards behaviour that resembles such classes, e.g. good data, or other sets of
data classes. However, we also see from experiments that the agent has limited knowledge
of proper countermeasures when presented with cases representing time series data outside
the dynamics envelope it was trained for. We also see that the agent compensates for
changes in the environment by selecting fast-moving dynamics Zrpm instead of slowly
moving the control signal, which in the real world might be a more costly strategy than
regulating with the Qin due to the mass transport involved in changing the rotation speed
of the atomizer. These are both examples of the Cobra effect discussed earlier and a set of
conflicting objectives which to the agent only has one solution: the path of least resistance
to reach the reward.

The background for this behaviour might descend from the process data’s properties:

• There is synthetic instrument noise we add to the responding variables which might
be mistaken by the agent, in our human sense, as a selectable action space

97

CHAPTER 5. AUTONOMOUS CONTROL

• The synthetic model of the atomizer is not taking the cost of speed change into
account

• A change of dynamics in the controlled variables has not been trained for in the
generative model and the reward model

• There is no difference in cost taking action A over action B

To robustify the model, we increase the process model space by exciting the process
parameters slightly. This will involve adding the controlled variables to the process model,
which we model as stable with added noise. The process model is already developed for
these signals, so adding them means that we clear the suppression of them.

5.4.1 Retraining the generative model

We turn our attention towards training the generative model for an excited process. This
means that we expand the trained range for the temperature setpoints to 88− 142°C and
add increased normally distributed instrument noise to the controlled variables to 0.5%.
This way, we produce data that should lie outside the process operational window so that
the generative model can learn policies to escape such situations. We also change the
process model for the atomizer to accommodate for slower dynamics, by a factor of 0.01.
Exciting the process this way is similar to the model identification steps in classic control
theory.

With these changes implemented, we do a new hyperparameter search by Bayesian
optimization. This time, the minibatch (60), the number of rollouts (128) and the number
of epochs (30) is kept constant. We will optimize the neural network architecture: number
of hidden units, number of layers and sequence length. Also, we add the number of hidden
layers to the search, to see the effect of stacked LSTM layers.

The RolloutDatastore class is extended to support parallel processing by also subclassing
matlab.io.datastore.Partitionable and implementing the required methods. This way,
the parameter search can utilize Matlab’s Parallel Computing Toolbox and increase the
throughput of our experiments by running several workers in parallel, either locally or by
using a cloud service. An example of parallel hyperparameter search is shown in Figure 5.23,
which is a screenshot for the Matlab Experiment Manager. Here, we see that three workers
have completed their search run, while six other workers are active.

Figure 5.23: Running Matlab Experiment Manager: parallel bayesian hyperparameter
search of the generative model

There is a danger here that every time a worker is finished, the framework calculates a
new set of parameters for the next available worker. Since the smaller parameter space is
more computationally efficient, we will naturally get an unbalanced result set since more

98

5.4. COVERING UNMODELED DYNAMICS

experiment evaluation is done on smaller parameter sets. Fewer workers testing larger
parameter sets are able to finish, and could therefore compromise the results since their
share in the bayesian calculation is low. We need to evaluate the results with this in mind
and distribute our weights taking the unbalanced result set into account. An alternative
approach is to do an exhaustive parameter search if we assume it is important to cover
the whole parameter space, or discard the parallel search altogether and apply sequential
search.

As seen by the screenshot results in Appendix B, the results from the hyperparameter
search show us that the validation RMSE for all 30 runs is ∼ 2.5. We can infer that the
network architecture has less impact on the result, as well as the sequence length.

The sequences could be adjusted to the length we believe captures important start-
and ends of dynamics, e.g. a time series containing data from one recipe run, or from a
block of residence time in the process. Due to the slowly varying dynamics of the atomizer
speed, we therefore select a sequence length of 60 time steps. Clearly, we would need a
better method to estimate the sequence length as this directly influences the reinforcement
learning performance, more than the generative model.

We also see from the hyperparameter search that the validation loss is lower for a
higher number of hidden nodes, using no hidden layers. We select 64 hidden nodes in two
layers as our architecture.

0 1 2 3 4 5 6

Iteration 104

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

R
M

S
E

0

0.01

0.02

0.03

0.04

0.05

0.06

lr

Validation loss
Learning rate

Figure 5.24: Generative model retraining with modifications, RMSE=2.5

With these modifications, the generative model is retrained during 300 epochs. The
process is visualised in Figure 5.24 utilizing the learning rate decay schedule as discussed
earlier.

5.4.2 Retraining the reward model

We establish a new instance of the reward model by training the network over sequences
generated from rollouts created from good process data. In this case, we establish 110℃
as the setpoint for the PID regulator and present the reward model with these sequences.

99

CHAPTER 5. AUTONOMOUS CONTROL

0.1% noise is also added to the controlled variables as well as the temperature sensor
output. The resulting RMSE is 2.7 for the dataset.

5.4.3 Retraining the agents

Using the new generative model and the new reward model, we retrain our agents. Further,
we complexify the agent training by randomly sampling a new rollout for every initial
observation where the added noise is 0.5%. This way, all episodes are provided with an
initial observation that is completely new, although taken from the Gaussian distribution
of the prior. Further, we set the discount factor γ = 0.98 to accommodate for a longer
sequence length.

Experiment 14: Train & simulate a PPO agent towards noisy generative model
and reward model, multivariate scenario with initial observation rotation

The PPO agent did not reach the convergence criteria of an average reward of 1800 and
terminated on the episode count of 5000. However, as we can see from the training plot in
Figure 5.25, the agent has repeatedly identified several policies, although they are discarded
in favour of a new search branch when not terminating.

0 1000 2000 3000 4000 5000

Episode

10
0

10
1

10
2

10
3

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 1000 2000 3000 4000 5000

Episode

0

50

100

150

200

250

300

350

400

450

500

0

5

10

15

20

25

30

35

40

45

Average reward

Episode value

(b)

Figure 5.25: Experiment 14: PPO agent training progress on (a) log sccale and (b) normal
scale

The agent cycles from valley to valley and ends with a policy with an average reward
of 460.15 and a value of 38.44, which also is the average maximum value for all attempts.
We then simulate the agent both towards the generative environment as well as the process
environment.

In Figure 5.26, we can see that the agent policy reaches the reward model stable signal
at 110℃ with a σ > 1. However, the performance might be a good starting point for
evolving the agent on a real process.

Experiment 15: Train & simulate a SAC agent towards noisy generative model
and reward model, multivariate scenario with initial observation rotation

A SAC agent was trained towards the complex model and reached convergence after 188
episodes with an average reward of 3564.7 and value of 5.72.

100

5.4. COVERING UNMODELED DYNAMICS

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

100

120

140

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

100

120

140

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(b)

Figure 5.26: Experiment 14: PPO agent simulation towards (a) the generative model
(µ = 107.73, σ = 1.76) and (b) the process model (µ = 111.20, σ = 1.67)

0 50 100 150 200

Episode

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 50 100 150 200

Episode

0

500

1000

1500

2000

2500

3000

3500

4000

0

1

2

3

4

5

6

7

8

9

10

Average reward

Episode value

(b)

Figure 5.27: Experiment 15: SAC agent training progress on (a) log scale and (b) normal
scale

However, the results when simulating are not that impressive, as seen in Figure 5.28. It
might seem that the agent has locked on to the noise distribution and generated a gaussian
policy that resembles the noise.

The high reward given might just be that the random policy and random noise is
randomly in phase. However, we could anticipate the situation by also evaluating the
discounted future reward, which is lower than that for the PPO agent policy and setting this
as the termination criteria. However, the Matlab framework does not allow for explicitly
setting value as a termination criterion. Another method could be to increase the average
reward termination criteria, to avoid what seems to be a phase locked loop.

Experiment 16: Train & simulate a DDPG agent towards noisy generative
model and reward model, multivariate scenario with initial observation rotation

A DDPG agent was attempted trained for several sessions but never reached any termination
criteria before being manually stopped. The computation resources needed exceeded the
quotas multiple times, as only a few hundred episodes were evaluated after > 14 hours with

101

CHAPTER 5. AUTONOMOUS CONTROL

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

100

120

140

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(a)

0 50 100 150 200 250 300 350 400 450 500

t

6

8

10

12

m
3
/h

80

100

120

140

T

Feed
in

 (m3/h)

T
out

0 50 100 150 200 250 300 350 400 450 500

t

6000

7000

8000

9000

10000

11000

rp
m

100

110

120

130

140

150

m

Z
rpm

Particle size

(b)

Figure 5.28: Experiment 15: SAC agent simulation towards (a) the generative model
(µ = 119.4, σ = 4.18) and (b) the process model (µ = 121.67, σ = 9.67)

GPU training each time. The operator-observable average reward for these non-evaluated
sessions was in the range of 10− 15, a low number compared to the other agents.

The bad performance on DDPG for our experiments can be explained by DDPG’s
exploration strategy being non-compliant with our data augmentation policy and model
dynamics. DDPG explore the environment by randomly changing the action on every step,
whilst the environment dynamics might not respond in time for this agent to evaluate the
policy correctly.

5.5 Estimating uncertainty

In the preceding experiments, we have demonstrated the capability to learn dynamics
from recorded data and train a reinforcement learning agent on these data, eliminating
the need for environment modelling in such cases. The culprit remains that we still must
excite the process, or at least use data from such sessions, in order to be able to learn all
facets of the process. When increasing the size of the observation space, such as when
adding more sensor observations or incorporating image- or spectroscopic data, the data
dimensionality increase becomes a combinatorial problem where the optimum is visitation
of all relevant states during training. If the observation space is Gaussian, the policy could
have a conformed uncertainty across states. However, in high-dimension non-linear systems
with long time-dependent seasonality variations, we must ensure we have balanced datasets
from these periods.

Ideally, we should have training data and real-world data that are exchangable in terms
of sequences, meaning that we capture all relevant dynamics we can foresee in the real
world. Let Z denote sequences of state-action-pairs, and we have

Zhistory ∼ Zfuture (5.8)

What we have observed during the experiments, is that the agent action proposal does
not always lead us to the correct reward situation, if the current situation is not trained
for, as demonstrated in Experiment 15. We should have tools to remedy the situation

102

5.5. ESTIMATING UNCERTAINTY

by estimating the uncertainty during operation, indicating situations where the agent is
uncertain. As such, we should be able to estimate the uncertainty as a prediction interval:

[ŷ − α·σ, ŷ + α · σ] (5.9)

where α is the desired level of confidence. Neural networks capture non-linear data, so
applying a global statistic calculated from training data might not always hold, at least
when considering sequence-to-sequence regression. We present here three popular methods,
and our own method.

5.5.1 Monte Carlo simulation

One simple method that has shown its importance in light ray-trace rendering optimization,
is the use of Monte Carlo simulations [31], [32]. Translated to our problem, we assume that
the uncertainty of the non-linearity is already modelled as part of the neural network’s
latent spaces. By randomly perturbating the input from a distribution of choice, the
prediction result of the network varies according to this uncertainty.

5

8

6

Predict

Predict

Predict

...

σ µ σ

Dataset

Perturbate

Perturbate

Perturbate

Figure 5.29: Monte Carlo simulation of neural prediction, a dataset is perturbated with a
distribution of choice to produce a set of distributed predictions

As visualised in Figure 5.29, by running several perturbations per prediction cycle, we
capture a prediction set where we can extract the mean and variance of the prediction.
Depending on the sequence length, dimensionality and network architecture, the process
might be computationally expensive in the inference phase. It has no impact on the training
phase.

5.5.2 Variational inference

Another Monte Carlo simulation method is described by Gal and Ghahramani [56], [57]
where we utilize Dropout layers during the inference phase. Dropout layers are normally
active during training, where outputs are stochastically disconnected by setting their
weights to 0. Using Dropouts is a simple and effective way of preventing overfitting in
neural networks [55], and is used in our versions of both the generative model and the RL
agents.

103

CHAPTER 5. AUTONOMOUS CONTROL

By changing the behaviour of the Dropout layer to also disconnect outputs during
inference, we explore the uncertainty space of a model, as described by Gal and Ghahramani [57].
Instead of perturbating the input, the input is static for a repeated number of prediction
passes through the network, where the Dropout will randomly disconnect weights according
to some probability setting. In a sequence-to-sequence scenario, this would mean fewer
iterations since we do not need to change the input data according to its length and
structure.

We can implement a forward-pass/inverse Dropout layer in Matlab easily, as demonstrated
in Code 5.4. Here, we draw a binary mask from some probability distribution by the
randsrc-function and apply 0 weight to the outputs on each pass.

1 classdef inverseDropoutLayer < nnet.layer.Layer
2 properties
3 Probability
4 end
5
6 methods
7 function layer = inverseDropoutLayer(name, probability)
8 layer.Name = name;
9 layer.Probability = probability;

10 layer.Description = 'Inverse dropout';
11 end
12
13 function Z = predict(~, X)
14 % generate an inverse binary matrix whos bit value is
15 % drawn with a probability
16 mask = randsrc(size(X,1), size(X,2), ...
17 [1,0; layer.Probability, 1-layer.Probability]);
18 mask = logical(mask);
19
20 % set weights to zero and return
21 X(mask) = 0;
22 Z = X;
23 end
24 end
25 end

Listing 5.4: Inverse dropout layer (Matlab code)

In an LSTM scenario, we need to ensure that each pass is done on copies of the initial
network so that the recurrent state is not altered. The result from multiple passes can be
summarized statistically. This method is computationally less intensive than the previous
example, although it scales linearly according to the training passes selected (e.g. 30 passes
per prediction).

5.5.3 Conformal prediction

The area of conformal prediction involves estimating the uncertainty during inference,
described by Vovk and Balasubramanian et al. [30], [52]. The concept applies to any type
of regression or classification algorithm, but in essence, we add estimation of the statistical
parameters to the regression method as long as the datasets for training and testing are
exchangable as described earlier. In addition to predicting the mean, we add prediction
and training towards another distribution metric, like the variance, standard deviation or
other quantile descriptors.

104

5.5. ESTIMATING UNCERTAINTY

We can apply this method in several ways. One method described by Mendels [96]
involves building two models: mµ and mσ2, where mµ is first trained the usual way:

Eµ(x) =
N∑
i

(yi −mµ(xi))
2 (5.10)

This model is trained on one part of our training data set. The other part is used for
training mσ2 with the squared error as the dependent variables:

Eσ2(x) =

N∑
i

((yi −mµ(xi))
2)−mσ2(xi)

2 (5.11)

This involves two passes our one dataset during training, and as relatively small impact
on the inference, although prediction of the confidence interval must be done separately, as
shown in Code 5.5.

1 % Prerequisite:
2 % x_test, x_train, y_train and x_var is given in workspace
3
4 % Normalization parameter calculation
5 x_mean = mean(x_train);
6 x_std = std(x_train);
7
8 % Train the mean network
9 options = trainingOptions('adam', 'MaxEpochs',1000);

10 mu_net = trainNetwork(x_train, y_train, model_fc(x_mean, x_std), options)
11
12 % Train sigma network based on mean network predictions
13 y_varpred = predict(mu_net, x_var);
14 y_se = (y_var - y_varpred).^2; % squared residuals
15 sigma_net = trainNetwork(x_var,y_se,model_fc(x_mean, x_std),options)
16
17 % Predict test network
18 y_pred_mu = predict(mu_net,x_test);
19 y_pred_sigma = predict(sigma_net,x_test);

Listing 5.5: Our understanding of conformal prediction (Matlab code)

If the framework allows, it is also possible to implement the prediction into one network,
as demonstrated by Thorn [90]. Here, the number of outputs from the network is increased
to accommodate for the statistics prediction. During a custom training pass, a custom loss
function is called on each minibatch to update the dataset statistics.

5.5.4 Value-based uncertainty

In an actor-critic reinforcement learning problem, we have all the information available for
our uncertainty estimation, although in a slightly different form. An RL agent draws the
action from a Gaussian distribution in the policy, and this distribution is described by the
value learnt by the critic from its action probability distribution. By querying the critic
by the observation sequence, we receive a representation loss value approximated from the
critic network trained towards the long-term reward.

The received value cannot be unpacked to represent each signal’s contribution to the
reward, but by keeping the training statistics from the RL agent training, we can find
the maximum value obtained during training. Hence, we can calculate a probability value

105

CHAPTER 5. AUTONOMOUS CONTROL

representing the agent’s confidence of being able to reach the goal given the current state
observations, given that the agent converged:

plevel =
vt

max(Vtrain)
(5.12)

To utilize this concept, we create a new method sim_confident that replaces the
sim-function in Matlab with a custom simulation function, based on the template given
from the Matlab documentation.4 This would give us an indication on the certainty of
agent state, and hence the following multivariate action proposals.

There are several ways to utilize this level, for instance in the secure evaluation of the
agent, as we will see in the next chapter. We could also use the Datastore’s values for
normalization to infer that we are plevel sure that the actions are within 5 · σ of the actions.
This is a simple calculation that can be used to create the confidence bands we can show
to the user:

[ŷ − 5 · σ(1− plevel), ŷ + 5 · σ(1− plevel)] (5.13)

Selecting 5 ·σ corresponds to a p-value of 3 · 10−7 and statistically covers almost all real
results. We then add the error bars to the plots and simulate with the modified function
to extract the value vector. Figure 5.30 show the results from the uncertainty estimation
for simulating towards the generative model, and Figure 5.31 show for the process model.
Both simulations were done on randomly initial conditions and run for 50 time steps on
the PPO agent from Experiment 14.

80

100

120

140

T

0 5 10 15 20 25 30 35 40 45 50

t

6

8

10

12

m
3
/h

Feed
in

 (m3/h)

T
out

100

110

120

130

140

150

m

0 5 10 15 20 25 30 35 40 45 50

t

6000

7000

8000

9000

10000

11000

rp
m

Z
rpm

Particle size

Figure 5.30: Value-based uncertainty simulated on the generative model

We can see that the process model has slightly elevated uncertainty during the initial
sequence but quickly gain confidence.

4https://se.mathworks.com/help/reinforcement-learning/ug/train-reinforcement-learning-policy-using-
custom-training.html

106

5.6. VARYING CONDITIONS

80

100

120

140

T

0 5 10 15 20 25 30 35 40 45 50

t

6

8

10

12

m
3
/h

Feed
in

 (m3/h)

T
out

100

110

120

130

140

150

m

0 5 10 15 20 25 30 35 40 45 50

t

6000

7000

8000

9000

10000

11000

rp
m

Z
rpm

Particle size

Figure 5.31: Value-based uncertainty simulated on the process model

5.6 Varying conditions
Using the plevel metric is a sensible way of evaluating agent performance on varying
conditions. We already know that the agents are capable of generalising a policy given
different instances of initial conditions. Although not shown earlier, the initial condition
we see as the first observation, is in fact a sequence of n observations, depending on the
selected sequence length for the training. These are not shown to the agent, which only
uses the last observation of the initial sequence, but resides as part of the generative model.
The state of the generative model at restart, is an unknown, or undefined, process situation
within the operational envelope. The process model is somewhat linked to the generative
model, by actually using this randomized initial sequence as its initial conditions.

Experiment 17: Value-based performance of RL agent on varying conditions

We can therefore assume that by restarting an agent several times, and generating random
initial condition rollouts, we can evaluate an agent performance by value-based uncertainty.
The evaluation is done by running 30 instances of an agent and recording the results for
one sequence length period, running towards the real-time process model. However, we
select only the PPO agent from the Experiment 15 for this evaluation due to its stable
training performance and highest value of the three agents from Experiments 14-16.

We can see from the surface plot in Figure 5.32, that although the agent starts with a
randomized initial condition, it will quickly converge in all runs and settle on an uncertainty
of ∼ 4.5% of 5 · σ.

107

CHAPTER 5. AUTONOMOUS CONTROL

Figure 5.32: Uncertainty estimation of 30 initial sequences of a PPO agent running towards
the process model

108

Chapter 6

Evaluation

There are two kinds of people:
1) Those who cannot extrapolate from incomplete data

6.1 Method

We have explored the area of autonomous learning by asking a set of research questions
that have guided the research and experimentation process. The experiments have been
conducted exploratory, where results from one experiment have dictated both the content
and development of a succeeding set of experiments. As such, the experimentation has been
both for evaluation of the methods and for the development of an innovative framework in
this field.

Evaluating experiment performances have been done both quantitatively and qualitatively
and is summarized here.

6.2 Research questions

To evaluate the research questions, we have set up a framework for compressing historical
time-series by a generative model, realized through a shallow recurrent memory neural
network (LSTM-based), whose parameters were set by a Bayesian optimization evaluation.
This model was then used for generating succeeding time series from an initial set of data
sequences. We were also able to demonstrate a technique for generating time-series for
the purpose of simulating a response from this compressed model, given a set of either
univariate- or multivariate manipulative variables. The generative model was realized as a
Matlab Reinforcement Learning Environment, making it suitable for use in training any
reinforcement learning agent supporting continuous action- and observation spaces.

To train the generative model, we first established a classic simulation model based on
first principle ordinary differential equations of an industrial spray drier process where both
energy- and thermal dynamics were modelled. The generative model was trained by querying
time step states from these ODEs using a classic PID regulator. The generative model
predictions and actual rollouts show a high correlation, as demonstrated in Chapter 4.3.4.

For all experiments, we would evaluate a σ ≤ 1 as an acceptable result. The best results
within each research question are written in bold text.

109

CHAPTER 6. EVALUATION

RQ 1 Can an RL Agent be efficiently trained on historical data logs?

Experiments 1-3 addressed this question and the results are summarized in Table 6.1.

Experiment Agent type Episodes µ σ

Experiment 1 SAC 868 90.21 1.11
Experiment 2 PPO 1801 90.40 0.86
Experiment 3 DDPG 598 89.92 1.03

Table 6.1: RQ 1 Results

The agents were trained on a univariate goal of attaining a process output temperature
of 90℃ from a direct response reward function. As we see from the results, all agent types
are able to regulate the temperature within approximately ±1℃. These results confirm
that we can train all tested agents on historical data logs.

RQ 1.1 Which choice of RL Agent realizations would be a generic solver for
the problem?

Experiments 14-16 addressed this question and the results are summarized in Table 6.2.

Experiment Agent type Episodes µ σ

Experiment 15 SAC 188 121.67 9.67
Experiment 14 PPO 5000* 111.20 1.67
Experiment 16 DDPG **

Table 6.2: RQ 1.1 Results
*Terminated with a high value **Did not converge

The agents were trained on a multivariate goal using a reward model trained for a
temperature output of 110℃ and a stable atomizer speed. As we see from the table, only
the PPO agent was able to produce results near the acceptable limit. Of the three agents,
the increased complexity of the multivariate case was only solvable by the PPO agent.

RQ 2 Can a reward function be approximated and learned without supervision?

Experiments 10-12 addressed this question and the results are summarized in Table 6.3.

Experiment Agent type Episodes µ σ

Experiment 11 SAC *
Experiment 10 PPO 502 89.95 0.24
Experiment 12 DDPG *

Table 6.3: RQ 2 Results
*Did not converge

The agents were trained on a multivariate goal using a reward model trained for a
temperature output of 90℃ and a stable atomizer speed. As we see from the table, only
the PPO agent was able to produce results, and in range.

110

6.2. RESEARCH QUESTIONS

RQ 2.1 What are the implications of trained reward-functions: will they
behave differently given the state of the system?

Experiment 17 addressed this question using the trained PPO agent from Experiment 14.
As we see from Figure 6.1, the PPO agent converged to a policy with a mean stable
uncertainty after less than 10 time steps, at an uncertainty of ∼ 4.5% of 5 · σ, when
repeating the experiment 30 times. We conclude that using trained reward functions are
viable alternatives due to the good performance demonstrated upon changing the system
state. The agent is able to bring the system state into equilibrium from any of the random
initial conditions.

0 10 20 30 40 50 60

Sequence

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
e
a
n
 u

n
c
e
rt

a
in

ty

Figure 6.1: Mean uncertainty estimation of 30 initial sequences of a PPO agent running
towards the process model

6.2.1 Limitations

The generative model was trained by a synthetic model where stochasticity was added
at several levels. One limitation of the experiments is their inability to describe the
performance of the agents when used on real-world data. However, we do believe that the
synthetic model is a comparable descriptor of real-world processes, based on the available
literature. Using data from a real-world process involves data quality engineering and is
briefly discussed in the next chapter.

Further, we have only experimented with time-series data. There are no spatial
data involved, which could leverage the performance of the agents. However, adding
measurements that are relevant should positively increase the performance further.

6.2.2 Advantages

The resulting framework used for experimentation has been developed in such a way
that fosters further expansion, compatible with the Machine Learning and Reinforcement
Learning toolboxes in Matlab. We also see the disruptive power of using reinforcement
learning within process control optimization.

111

CHAPTER 6. EVALUATION

6.3 Building experience
All the aforementioned experiments are conducted with specific termination criteria based
on the average reward and total number of episodes. However, we see from the results of
Experiments 14-16 that the PPO agent has reached a policy that has better performance
than the SAC agent. The PPO agent terminated on a total episode count (5000), while
the SAC agent terminated based on the average reward criteria after 188 episodes.

From this result, it is evident that training RL agents cannot be solely based on the
reward criteria, but should be done by evaluating the value function result in addition. The
value function is a slower moving target but is our actual target that should be evaluated
in training.

This observation makes sense, since training an RL agent is not only about finding a
policy, but for making a robust agent, we want to find multiple policies satisfying the goal
for a high future expected reward (the value) so that the agent builds experience that can
be used on different situations in the real world.

We will use this insight to construct agents in the next chapter that satisfies this
condition.

112

Chapter 7

Applied Use

Many are stubborn in pursuit of the path they have chosen, few in pursuit
of the goal.1

7.1 Introduction

In Chapters 4 and 5, we constructed a framework for autonomous learning and control
and demonstrated that both PPO and SAC agents can gain experience at such a level that
enables data-driven control- and optimization operations. The DDPG agent showed less
performance in this respect. The key to proper agent training is a generative model that
has learnt enough dynamics of the system in question, and that forecasting is possible to a
necessary degree. We also demonstrated the ability to train for sparse rewards, but with
an indication that the agent needs directional hints to keep training performance high. We
were not able to conclude on a pure sparse reward scheme.

We have demonstrated the concept using synthetic data from a set of ordinary differential
equations, simulating an industrial spray drier using mass- and energy balance calculations.
In this chapter, we will use a direct response reward scheme and train RL agents on data
originating from a commercial spray drier to validate the concept in the real world.

Using real-world data needs careful considerations of the sensors involved, measurement
confidence and filtering data from periods that we do not want to model. Equipment can
run several products and recipes, as well as maintenance periods, cleaning-in-place periods,
inactive downtime etc., and depending on our application, data quality considerations must
be made in each specific case. However, as this chapter show, modelling dynamics in a
generative model actually relies on inputting as much dynamics as possible. In contrast
to linear modelling, like OLS and PLS that relies on filtering away unwanted dynamics,
the success of the generative model relies on our ability to learn from periods of great
interaction between the model variables, e.g during equipment startup- and shutdown
periods or where the processing conditions change. Filtering away this data leads to
models of less knowledge and predictive ability. We were also able to identify a method
for zero-vector bias estimation that can be a method to evaluate what actually enough
dynamics is.

1German philosopher Friedrich Nietzsche (1844-1900)

113

CHAPTER 7. APPLIED USE

7.2 Architecture
Figure 7.1 show an overview of the complete system architecture. Training the generative
model has earlier been done using the RolloutDatastore connected to a synthetic ODE
model, regulated by PID. This generative model is then the simulator for a SyntheticEnvironment
class using the rollout mechanism described in Chapter 4. A compatible RL agent uses
this environment for training a policy. New in this architecture is that we use the policy to
generate future actions and responding variable forecasts, using updated real-time data,
that is, purely new data from the process.

Our success criteria are to be able to propose an action that will lead the process from
its current state on a path towards a Tout of 100℃. We know that the process reacts quickly
to manipulations, indicating that the agent should learn a policy with equal reaction time.

There are few changes necessary to enable usage of real data, mainly developing a new
class deriving from the matlab.io.Datastore, sharing the interface of the datastore. We
develop a new class HistorianDatastore that enables us to read historical process data
directly from a plant, in this case using the commercial OSISoft PI Web API.2 The PI
system and API is in operation at an industrial pulping site, enabling historical access to
all process data on-site.

Generative model Synthetic
environment

ForecastPolicy

H
is

to
ri

an
da

ta
st

or
e

Sy
nt

he
ti

c
m

od
el

RL
agent

Live
data

Figure 7.1: System architecture for training and executing agent policy

7.2.1 HistorianDatastore design

A generic class HistorianDatastore is developed and can be a framework for connection
to any source of time-series data, either flat files or queriable tabular databases. In this
particular case, we develop a connector to the OSISoft PI Web API which let us query
the time-series database for tags, time periods and method of interpolation interval. In
the case of PI, time-series are stored in a compressed format where each query to the API
reconstructs the data to the time-scale in the query.

We also provide a filter function to the datastore, that contains simple rules for data
inclusion. The datastore queries all data first, and then filter away the data by the filter

2https://docs.osisoft.com/bundle/pi-web-api-reference

114

7.3. SYSTEM DESIGN

function. In a big data world, this method is exhaustive and not particularly fine-tuned for
use cases with more data than can fit in memory, and should be technically enhanced if
the need arise.

Instantiating the datastore is done by:
1 source_interval = '1m';
2 resample_interval = 1; % minute
3 pidatastore = HistorianDatastore(sequence_length, @tag_function, ...
4 @data_filter_function , start_date, end_date, source_interval, ...
5 resample_interval, '00:01:00');

where we supply the generative model sequence length, tags- and filter function pointers,
as well as the start date and end date. The interval is supplied to the API for data
reconstruction. The last two parameters control the internal resample interval and the
threshold for identifying gaps in time.

When data is filtered, we have gaps in the time series. To avoid merging incompatible
time-series sequences, we identify these gaps as borders for establishing sequences as
illustrated by data queried in Figure 7.4. We ensure that each sequence length is twice
the requested length for training so that we have space for the sliding window mechanism
described earlier. Sequences that are too short to satisfy this condition, are discarded. The
last parameter to the class constructor is our gap threshold time, namely how long a period
of missing data in the source is treated as a border for the gap calculation. Missing data
below this threshold are interpolated using the resample_interval numerical parameter.
By splitting the data into sequences, we can divide the data source into shuffable blocks of
training-, test- and validation data without losing the time-dependency of the data.

From this point on, data sequences are provided in a sequence-to-one forecasting
method, as described and implemented in Chapter 4. Whenever the datastore user issues
a read request on the datastore, the datastore provides the next data window available as
a sequence, and the next data vector. Subsequent requests of data will be returned as a
slid set of sequences.

As the last processing step, 0.1% noise is added to all signals for each read request.
During training, all data will be visited for each epoch. By adding noise, we incorporate
the knowledge discussed in Chapter 2.3.1, effectively ensuring a data augmentation scheme
on every epoch.

7.3 System design

7.3.1 System boundary

When selecting the system boundary, we need to ask ourselves which potential influencers
of the observable dynamics a system might have, based on knowledge of the physical system
and available literature. Then, we need to identify what can be measured to estimate the
state of these dynamics. We have earlier described the relation between Qfeed and Tout,
and also how the temperature of the inflow gas influences the process. We have seen that
even the environmental temperature and humidity affect the dynamics.

Figure 7.2 show our defined system boundary for the real-world model. This is an
over-simplified version of an actual plant, which involves more equipment, systems and
process measurements. However, for our case, this simplification is beneficial due to its
simplicity of explanation, and still presumably a high level of dynamics capture.

115

CHAPTER 7. APPLIED USE

ToutSpray drier

Tfeed Tgas

Qfeed

RHenvironmentTenvironment

Figure 7.2: System boundary for the real world model

We have included only environmental measurements as controlled variables. This is
related to the fact that the process is mostly modelled using energy- and mass balances,
dynamics that are observable in these measurements. The dataset used does not reveal
any information regarding the products themselves, their recipes or any disclosed IP
information.

7.3.2 Data exploration

First, we select process tags that correspond to the system boundary variables and extract
data for a period of seven months with 10-minute intervals. In Figure 7.3, we see a cloud
plot of the data distributions and correlation between variables. It is not easy to identify
any clear correlations from this plot, however, we see that data distributions are mostly
normally distributed with different levels of skewness and kurtosis. The requirement of
normality is important in machine learning. Unbalanced datasets need more treatment,
commonly by log-scale transforms or oversampling the data to create a balance between
the predictors.

We have included all operational data from the period, making visual identification
of any correlations tricky, since we might assume that variables are highly non-linear
during startup- and shutdown periods. The only filtering we do is removing all data
where the equipment has been at a complete standstill, that is, we filter away data where
Qfeed < 1m3/h. We have not removed periods of cleaning or when the system runs without
product, e.g. only water spray. We see that we have a dataset that describes all areas of
the data distributions.

In Figure 7.4, we see the complete dataset in a sequence plot. Using the filtering criteria
of Qfeed < 1m3/h, some gaps in the data are identified and used as sequence delimiters for
the datastore. The plot visualises the input that the HistorianDatastore has calculated
and uses as input to generative model training. Before training, dataset mean and standard
deviation is calculated and stored for normalization of training- and real-time test data,
using the same method as for the synthetic model. After the processing steps, we have a
dataset of 27,693 sample vectors, distributed on 52 different time-series sequences.

7.3.3 Generative model training

We use the same parameters for the generative model as earlier, but reduce the number of
epochs to 60. We are looping all data for each epoch, in contrast to the selectable rollout

116

7.3. SYSTEM DESIGN

Figure 7.3: Cloud plot of data distributions and variable correlations

count when using the RolloutDatastore, and therefore we limit the time used at each
learning rate step.

When tweaking the network architecture, the Matlab documentation takes an interesting
view on how to select the number of neurons in an LSTM network for dynamics capture:

The number of hidden units required for modelling a system is related to
how long the dynamics take to damp out. [...] there are two distinct parts to
the response: a high-frequency response and a low-frequency response. A higher
number of hidden units are required to capture the low-frequency response. If a
lower number of units are selected the high-frequency response is still modelled.
However, the estimation of the low-frequency response deteriorates.3

This view corresponds with our experienced beliefs during work on the experiments: we
try to minimize the number of layers and neurons to such a level that the dynamics are still
captured. We do this in order to generalize the model. Increasing the number of neurons
results in a network where more parameters must be learned and should be compensated
with either more available data, or by increasing the number of epochs. By smoothing input
data, the high-frequency dynamics is lost, and part of the lower frequencies might also be
filtered. It is advisable to train the network using raw data sequences without any data
smoothing contrary to what we would apply to linear system modelling. However, as noted
by Thodoroff et al. [89], smoothing reduces variance and helps the learning process. We
believe that the amount of smoothing necessary must be tested to suit the data available.

In Figure 7.5 we see the result of a one-step forecast for real-world data, estimated by a
trained generative model. The data has been adjusted for bias found using zero-vector bias

3https://se.mathworks.com/help/ident/ug/use-lstm-for-linear-system-identification.html

117

CHAPTER 7. APPLIED USE

estimation, as we will discuss in the next section. Our impression is that the generative
model provides estimates in lieu of system dynamics.

118

7.3. SYSTEM DESIGN

05

1
0

Q
fe

e
d

0

5
0

1
0
0

T
fe

e
d

1
0
0

1
5
0

2
0
0

T
g

a
s

0

2
0

4
0

T
e
n

v
ir

o
n

m
e
n

t

0

5
0

1
0
0

R
H

e
n

v
ir

o
n

m
e
n

t

0
0
.5

1
1
.5

2
2
.5

3

1
0

4

8
0

1
0
0

1
2
0

T
o

u
t

Fi
gu

re
7.
4:

D
at
as
et

se
qu

en
ce
s
fo
r
ge
ne

ra
tiv

e
m
od

el
tr
ai
ni
ng

119

CHAPTER 7. APPLIED USE

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

2468

Q
fe

e
d

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

0

5
0

1
0
0

T
fe

e
d

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
7
0

1
7
5

1
8
0

T
g

a
s

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

0

1
0

2
0

T
e
n

v
ir

o
n

m
e
n

t

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

0

5
0

1
0
0

R
H

e
n

v
ir

o
n

m
e
n

t

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
0
0

1
0
5

1
1
0

T
o

u
t

P
re

d
ic

ti
o
n

A
c
tu

a
l

Fi
gu

re
7.
5:

O
ne

-s
te
p
fo
re
ca
st

fr
om

th
e
ge
ne

ra
tiv

e
m
od

el
fo
r
re
al

w
or
ld

da
ta

120

7.3. SYSTEM DESIGN

7.3.4 Zero-vector bias estimation

Our intuition tells us that when supplying a vector of zero-values to an autoencoder, we
should receive an estimate of zero. Any deviation from zero would be the network error,
given that the training has crossed the zero centre vector. By predicting on a network
trained by normalized values, any deviation from the population mean and standard
deviation is represented as positive or negative scores, indicating that the middle value of
a network is zero. This assumption would indicate that a zero-vector estimate is directly
in the centre of the neural network.

In a recurrent network scenario, we can use the subsequent estimation of zero-vectors
to initialize a model correctly and record the baseline zero-vector estimation error, an idea
taken from the Matlab documentation.4 By non-formal experimentation, there seems to
be a two-way-relation between a network’s ability to forecast dynamics, and the dynamics
of the zero-vector estimation. These relations could be used to automatically evaluate the
generative model’s predictive power, and correct each prediction before de-normalization:

ŷ = N(x)− b (7.1)

where b is the recorded bias vector, and N is the network prediction function. We
assume the following:

• A shorter stabilization time indicates more accurate dynamics capture

• A small zero-vector error indicates more accurate dynamics capture

Whether these assumptions hold, is an interesting future work. However, initial testing
shows positive results and we apply this method to evaluate the selection of sequence length
of the generative model. In a multivariate scenario, like the autoencoder, the RMSE does
not vary much in favour of selecting the sequence length, as seen in our initial experiments
and the Bayesian optimization run in Figure 4.10. By evaluating the zero-vector bias, we
might have another evaluation criteria for our generative model.

To test these assumptions, we train two generative models using two different sequence
lengths: 3 and 12. Each model is then initialized with zero vectors in a loop of 150 steps
according to Code 7.1.

1 % Find the zeromapping where the network is stable
2 results = [];
3 for steps=1:150
4 initializationSignal = zeros(genmodel.datastore.featureDimension, ...
5 sequence_length*steps);
6 genmodel.net = resetState(genmodel.net);
7 genmodel.net = predictAndUpdateState(genmodel.net, initializationSignal);
8 zeroMapping_mu = mean(predict(genmodel.net,initializationSignal));
9 results = [results; zeroMapping_mu];

10 end

Listing 7.1: Calculating zero-vector bias (Matlab code)

Each loop predicts n number of zero-vectors of length sequence length. We then plot the
mean of the results vector and visually evaluate based on when the mean differentiated
signal is approaching infinity, which indicates that the base signal, the bias, is stable. Based

4https://se.mathworks.com/help/ident/ug/use-lstm-for-linear-system-identification.html

121

CHAPTER 7. APPLIED USE

on empiri, we assume this step number should be as low as possible, i.e. we assume that a
shorter stabilization time indicates more accurate dynamics knowledge. Figure 7.6(b) and
7.7(b) show the dynamics of the tests. Figure 7.6(a) and 7.7(a) is the bias vector from the
first loop, and we see that the model with the lowest sequence length has one decade more
error than the model of sequence length 12.

1 2 3 4 5 6

Predictor

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(a)

0 50 100 150

Step

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Infinity

Mean error

1st derivative

(b)

Figure 7.6: Zero-vector bias estimation for sequence length of 3

1 2 3 4 5 6

Predictor

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(a)

0 50 100 150

Step

-12

-11

-10

-9

-8

-7

-6
10

-3

-1

0

1

2

3

4

5
10

-3

Infinity

Mean error

1st derivative

(b)

Figure 7.7: Zero-vector bias estimation for sequence length of 12

Our comparison of the two schemes reveals that a generative model with a short sequence
length has limited forecasting capability if we follow our assumptions above. Based on
our knowledge of the data and system, this observation strengthens our assumptions. We
select 12 as the sequence length for the further tests.

7.3.5 Evaluating forecasting capability

We can evaluate the captured dynamics by forecasting beyond a horizon of one time
step. Ideally, we would want to be able to simulate all dynamics indefinitely. This would
mean that the generative model is an exact replica of the system dynamics. In reality, we
must expect to see lower performance when working on real-world stochastic systems with
unknown state estimators and non-linear noise and relations.

122

7.3. SYSTEM DESIGN

We believe that the experiments done earlier using the synthetic model has forecasting
ability beyond one step, given the positive results from agent testing. Evaluating the
generative model’s forecasting capability is an important input to the considerating of the
reward function and for how long we can expect the agent to calculate the future expected
reward in agent training.

To evaluate the dynamics captured by the generative model, we randomly select a
sequence from the datastore and test the forecasting for steps 1 to 6. That means we
forecast every datapoint 1 step, 2 steps, 3 steps etc. and compare with the original sequence
data. The deviation will give us information on what to expect from the generative model
using the selected sequence length.

0 500 1000

100

105

110

Forecast step #1

0 500 1000

100

105

110

Forecast step #2

0 500 1000

100

105

110

Forecast step #3

0 500 1000

100

105

110

Forecast step #4

0 500 1000

100

105

110

Forecast step #5

0 500 1000

100

105

110

Forecast step #6

Figure 7.8: Generative model forecasting of steps 1-6, original data (blue) and forecast
(red)

In Figure 7.8 we see six forecasts of about 1,100 data points, where the forecast (red)
is overlaid the original data. We can see that the generative model starts to deviate from
step 3 onwards. For most of the dataset, the forecast is within the expected range, and
the deviation could originate from a combination of unknown dynamics, lack of data, lack
of training or inability to model. Figure 7.9 summarizes this run, and we see that after 6
steps, the correlation between the test set and the forecast is about r2 ∼ 0.76, with a linear
descending trend. This means that we enter a negative correlation after approximately
30 steps, but to have any forecasting power, we would like to set a threshold of r2 ≥ 0.80.
This means that we can expect on average that the model can forecast 4 steps ahead with
known correlation. This would imply that the applicable use cases for the spray drier
generative model should be limited to reward schemes utilizing four time steps lookahead
horizon.

123

CHAPTER 7. APPLIED USE

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

r2

1 2 3 4 5 6

Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

o
r

RMSE

Correlation

Figure 7.9: Generative model forecasting of steps 1-6, recorded RMSE and correlation

7.4 Training RL agents

Two agents, a SAC and a PPO, are trained with the generative model as the synthetic
environment. We apply a direct response reward using the inverse absolute error as reward:

∆E = Eestimate − Eactual

r =
1

|∆E|
(7.2)

and a termination critera of T (∆E):

T (∆E) =

{
1 for ∆E > δ,
0 otherwise. (7.3)

where δ = 1. The termination criteria is evaluated when i > s, where i is the current
step number and s the sequence length (12). We do this in order for the agent to have
time for policy evaluation and building before a strict termination criteria occurs.

7.4.1 Soft Actor-Critic agent

A SAC agent was trained for 2000 episodes using manual termination due to resource quota
constraints. We can see from Figure 7.10 that the value growth indicates steady knowledge
gain from the generative model. We also see that the value fluctuates when approaching
termination, indicating that the agent might have reached a global error minima.

Table 7.1 summarizes the results, and we can see that the policy on average can provide
accurate action prediction for 2.1 steps beyond the sequence length of 12. Considering the

124

7.4. TRAINING RL AGENTS

0 500 1000 1500 2000 2500

Episode

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 500 1000 1500 2000 2500

Episode

0

200

400

600

800

1000

1200

1400

-10

0

10

20

30

40

50

60

Average reward

Episode value

(b)

Figure 7.10: SAC agent training progress on (a) log scale and (b) normal scale

above evaluation of the generative model forecasting ability, we would expect the agent to
forecast up to 16 steps.

Agent type Episodes Max value Reward µ Steps µ Max Steps
SAC 2000 53.62 56.97 14.1 377

Table 7.1: SAC training and simulation results

7.4.2 Proximal Policy Optimization agent

A PPO agent was trained for 5000 episodes using manual termination. In comparison to
the SAC agent, there is a substantial difference in computation time between the two agent
types, where the PPO requires less resources. However, from our experience, the PPO
agent tends to lock itself into a minima. Restarting the training is often necessary in cases
where the agent cannot identify any policy.

We can see from Figure 7.11 that the value cycles from valley-to-valley as described
earlier for the PPO agent. In the end, the maximum gained value is less than that for the
SAC agent. However, in Table 7.2 we see that the average number of steps has reached 16,
indicating that the PPO agent is able to be trained for the maximum forecast of four steps
beyond the grace period of 12 steps.

Agent type Episodes Max value Reward µ Steps µ Max Steps
PPO 5000 8.76 124.37 16.1 209

Table 7.2: PPO training and simulation results

7.4.3 Simulating with real-time data

Each policy is simulated with real time data from the process. Another instance of
the HistorianDatastore class fetches the latest process data and simulate with the
sim_confident function, utilizing the policy state value as an estimation of uncertainty. We
observe from several runs that both agents successfully proposes similar action manipulation

125

CHAPTER 7. APPLIED USE

0 1000 2000 3000 4000 5000

Episode

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

lo
g
-s

c
a
le

Average reward

Episode value

(a)

0 1000 2000 3000 4000 5000

Episode

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

4

0

1

2

3

4

5

6

7

8

9

Average reward

Episode value

(b)

Figure 7.11: PPO agent training progress on (a) log scale and (b) normal scale

for Qfeed for the process to reach a state toward Tout ∼ 100℃, as exemplified by Figures 7.12
and 7.13.

However, even though the SAC agent completed training with a higher maximum value,
the confidence interval for the action manipulation is narrower than that of the PPO. This
would indicate that the SAC agent is more confident that the proposed action will lead the
process in the correct direction.

126

7.4. TRAINING RL AGENTS

Q
fe

e
d

0
5

1
0

1
5

2
0

2
5

-505

1
0

1
5

Forecast

T
fe

e
d

0
5

1
0

1
5

2
0

2
5

-1
0

00

1
0

0

2
0

0

Forecast

T
g

a
s

0
5

1
0

1
5

2
0

2
5

1
6

0

1
8

0

2
0

0

2
2

0

Forecast

T
e

n
v

ir
o

n
m

e
n

t

0
5

1
0

1
5

2
0

2
5

-2
00

2
0

4
0

Forecast

R
H

e
n

v
ir

o
n

m
e

n
t

0
5

1
0

1
5

2
0

2
5

-5
00

5
0

1
0

0

1
5

0

Forecast

T
o

u
t

0
5

1
0

1
5

2
0

2
5

8
0

1
0

0

1
2

0

Forecast

Fi
gu

re
7.
12

:
R
ea
lt

im
e
sim

ul
at
io
n
w
ith

SA
C

ag
en
t

127

CHAPTER 7. APPLIED USE

Q
fe

e
d

0
5

1
0

1
5

2
0

2
5

-505

1
0

1
5

Forecast

T
fe

e
d

0
5

1
0

1
5

2
0

2
5

-1
0

00

1
0

0

2
0

0

Forecast

T
g

a
s

0
5

1
0

1
5

2
0

2
5

1
6

0

1
8

0

2
0

0

2
2

0

Forecast

T
e

n
v

ir
o

n
m

e
n

t

0
5

1
0

1
5

2
0

2
5

-2
00

2
0

Forecast

R
H

e
n

v
ir

o
n

m
e

n
t

0
5

1
0

1
5

2
0

2
5

0

1
0

0

2
0

0

Forecast

T
o

u
t

0
5

1
0

1
5

2
0

2
5

8
0

1
0

0

1
2

0

Forecast

Fi
gu

re
7.
13

:
R
ea
lt

im
e
sim

ul
at
io
n
w
ith

PP
O

ag
en
t

128

7.5. EVALUATING SIMULATION RUNS

7.5 Evaluating simulation runs
Figures 7.12 and 7.13 visualises one random simulation run with confidence interval for both
agents on the latest real-world data. The current state of the agents at this point is that
they are only trained by the generative model. A natural extension is to further train the
agents by applying them to the real process and update their experience buffers and policies
accordingly, a task not covered in this report. Petsagkourakis, Sandoval and Bradford et
al. [110] mentions transfer learning of the weights of the agents to accommodate for the
real system. However, in our case, we have trained the agents not on a stoichiometric
model, but by the original process data itself, through the generative model. The agents
should behave within the same scale of numbers as the real process, so a particular process
of transfer learning should not be necessary.

It is not possible for us to explicitly evaluate the performance of the agents. As we have
identified earlier, the real world training set we use has limited forecasting ability, probably
due to a more stochastic process and unmodeled dynamics than what we experienced using
the process simulator. We must also remember that no pre-processing and data quality
engineering of the measurement variables is done. We expect that the agents at this point
only can recommend a direction of the manipulated variables due to this limitation, but as
the agents evolve on a real system, they will behave more in lieu of the reward scheme.
Evolving the agents is a task for further work.

0 5 10 15 20 25

5

6

7

8

Q
feed

F
o
re

c
a

s
t

0 5 10 15 20 25

t

95

100

105

110

T
out

F
o

re
c
a

s
t

Figure 7.14: Five simulation runs for the PPO agent towards setpoint of 100℃

We can see this effect by running the agents multiple times, where each run is initialized
with a new set of initial conditions from the process data. Data from both agents are
visualised in Figure 7.14 and 7.15. The SAC agent seems to be more aligned towards the
setpoint than the PPO agent, even though the number of training episodes is less than a
half (2000 vs. 5000).

129

CHAPTER 7. APPLIED USE

0 5 10 15 20 25

4

5

6

7

8

Q
feed

F
o

re
c
a

s
t

0 5 10 15 20 25

t

95

100

105

110

T
out

F
o

re
c
a
s
t

Figure 7.15: Five simulation runs for the SAC agent towards setpoint of 100℃

We know from empiri covered by Santos et al. [88] discussed in Chapter 3.2, that
increasing the feed rate will lower the outlet temperature. By visual inspection, both agents
comply with this evaluation requirement. They are able to propose actions that will guide
the process towards the setpoint, although we see signs of policies that are not accurate
enough for finer control at this point of agent experience level.

130

Chapter 8

Discussion

Once there is the slightest suggestion of combinational possibilities on the
board, look for unusual moves. Apart from making your play creative and
interesting, it will help you get better results.1

8.1 Introduction

Training neural networks for dynamics crosses the lines between science, art and philosophy.
We have yet to invent appropriate methods to design network architectures with a
prescriptive quantitative performance. Much of the selection of choices depends on a
trial-and-error approach to designing a system, and we have no performance guarantee
until we have calculated a set of data on a selected architecture. Still, we cannot be sure
on the future outcome. Although we think and act mathematically in the context of neural
networks, can we be sure that we are operating within the fundamental mathematical
domain, or that we, due to the randomness and stochasticity involved, observe and act
based on universal randomness? The anthropic probability principle [50] can be applied to
the problem domain: by setting a lower bound on the statistical probability of the outcome,
we can deduct that our observations of the performance are within the pre-described world
of neural networks. This statement implies that our trial-and-error results are within
context and that we select amongst possible outcomes already part of the population. Any
choice of architecture will give results within our range of presumable outcomes if we follow
this principle.

The analogy is a chess player that acts according to a rule set on a chessboard. In
comparison with neural networks, the board and the chess rules are our architectural
opportunity space. The player has seemingly endless options of winning the game and must
employ either a mathematical view, use earlier training and intuition, or a combination
of both. His or her actions have a tint of strategy involved, adjusted by the level of the
opponent, or a higher goal in the tournament. Still, the concept of the game entails the
universe to explore.

In the case of reinforcement learning agents, assuring the outcome can only be done
by exploring the known universe: hence, from a philosophical standpoint, we should be
able to select the best solution if we explore the whole environment. In practice, this
means that the more we explore, the more experience we capture. Reaching all parts of the

1Russian chess player and author Alexander Kotov (1913-1981)

131

CHAPTER 8. DISCUSSION

environment is not always achievable, mostly from a practical and computational view and
is a founding principle to why our agents implement different strategies to explore vital
parts of the environment, as early as possible. Our problem lies in the nature of perception
bias: at one point we believe the environment is fully discovered, whereas we indeed have
not covered the parts we do not see. This masking of data heavily influences science and
often lead to misconceptions. In the survivorship dilemma, our occluded observation of the
world also makes us falsely conclude based on the set of data we can see. In a population,
weak organisms do not survive, and by observing only the strongest and most prominent
remaining samples, we risk falsely making assumptions of the past. In a neural network,
weak parts will diminish in the same way, leaving the survivors for us to observe.

8.2 Contribution

Can reinforcement learning be applied as a general optimization concept and trained
on historical logs of data? In Chapter 6, we evaluated the research questions and draw
conclusions that support our hypothesis. We also explored the necessary techniques to
develop a framework that can be implemented in real-world processes based on time-series
data. By training a shallow recurrent LSTM autoencoder network on historical time-series
data, we can reconstruct the dynamics of a system in a forecasting scenario. We have also
tested methods to evaluate the performance of such a model and expanded the typical
RMSE calculations with the zero vector estimate toolset and showcased techniques for
forecasting evaluation. With these methods, we have power tools at hand to make informed
decisions on the capabilities of a generative model to support a specific optimization
scenario.

We call the contribution a generative model. This is a compressed model of a system
and is an efficient way of exchanging, storing and simulating system dynamics. Being
generative implies that the model generates data that in lieu with system dynamics, albeit
not necessarily a copy of the data it has seen before. We have shown that by manipulating
the network, we are able to produce new data that describes the dynamic response of a
system given the manipulation. This generative model can sufficiently train a multivariate
reinforcement learning agent and respond to action proposals towards a new and higher
goal set. The agent reward function has also been shown to be trainable by a static neural
network.

Pitfalls have been identified and validated, the most prominent is that data-driven
models declines in performance when extrapolating to unknown state-spaces, also reported
by Del Rio-Chanona et al. [91] and others. Our experiments support the observation of
this phenomenon, and we have learned that the generative model should be exposed to
varying system conditions, also those resulting in faulty states or bad outcomes. Learning
the generative agent on successful time-series only will lead to a model with less knowledge
of the dynamics.

One might further raise the question of why we detour training an RL agent on a trained
dynamics model, instead of jumping directly to direct training of the RL agent policy by
representation learing, as demonstrated by Powell et al. [111]. This is a viable question,
raised by the fact that the generative model learning introduces noise and biases, which is
then amplified by agent training. However, to deal with the fact that the agent strategy
might be different than what we have data available on, we cannot divert to representation
learning only. If we have a specific optimization goal where the data logs do not represent

132

8.3. AGENT SELECTION

this goal, we cannot train the policy directly. Hence, we must develop a reward scheme
that satisfies the optimization goal and simulate the environment, demonstrated by our
generative model.

8.3 Agent selection
Of the three agents we chose to experiment with, PPO and SAC have shown to be trainable
within the problem domain and specified termination. The DDPG agents did not converge
to solutions within the criterion we set. The agent might need longer training time than
we catered for, and our longer model dynamics might be incompatible with the stochastic
action exploration scheme in DDPG. We can neither conclude on which of PPO and SAC
are most suitable since they exhibit different performances given different training scenarios.
In general, it should be advisable to train both agent types when working on a problem, to
compare their performance.

To verify this conclusion, we have trained each of the three agents on a set of known
transition functions for a propotional cascade control of two processes. This setup is a
typical use of industrial PID control where an outer loop controls the process and a faster
inner loop achieve rejection of disturbances, as visualised in Figure 8.1.

C1 C2 P1P2

d1d2

sp y1y2

Inner loop

Outer loop

+ +

Figure 8.1: Cascade control of two processes with disturbance model

This cascade controlled process is implemented in an environmental class CascadeEnvironment
that can be trained on any of the three agents. We define two fictual sequential processes
P2 and P1, where the inner loop process P2 is

P2(s) =
3

s+ 2
(8.1)

and P1

P1(s) =
10

(10 + s)3
(8.2)

Each of the processes are disturbed by d1 and d2, which are two phase shifted sine-
functions. We utilize the same network configuration for each of the three agents as we
have used in all preceding experiments and implement a linear-quadratic reward function
for penalizing large control efforts outside the set point of 1. The demonstration code is
available in Appendix C.

Figure 8.2 visualises the results. The cascade P-controller in Figure 8.2(a) is manually
tuned using the Ziegler–Nichols method [2], and we see an initial ring oscillation before it

133

CHAPTER 8. DISCUSSION

stabilizes around the setpoint. Of all agents, SAC is the only agent capable of performing
similar or better than PID control in this case. The DDPG agent does not converge at all,
and the PPO agent policy behaves oscillatory.

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

Inner-P2

Out-P1

(a)

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

Inner-P2

Out-P1

(b)

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

Inner-P2

Out-P1

(c)

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

Inner-P2

Out-P1

(d)

Figure 8.2: RL for control of non-linear functions
(a) cascade control using two P-regulators, (b) PPO agent solution after 4254 episodes, (c)
DDPG agent solution after 2802 episodes, (d) SAC agent solution after 1019 episodes

In Figure 8.3 we can see the performance of the agent training by plotting the average
reward per episode for the first 1000 episodes tested. Clearly, the SAC agent converges
faster than PPO and DDPG, and was terminated after 1019 episodes. PPO exposes a
valley-to-valley effect which it never escapes from, while the DDPG agent does not converge.

As general rules, we have found from our experiments that

• PPO agents have short training times, but do not always converge and might
necessarily be restarted. PPO finds the first policy fast but might discard it in favour
of others. This is visible in a valley-to-valley effect. Restarting the agent means
resetting the internal weights and biases to a new randomized set. PPO converged in
the multivariate cases using a trained reward model.

• SAC agents are stable in their training performance but requires substantially more
computing power than PPO. SAC seems to gather more and more experience and
steadily increase its value estimation and is not particularly sensitive to restarts.
The stochasticity of the policy and value update prevents premature convergence

134

8.3. AGENT SELECTION

and encourages exploration due to the maximum entropy objective. SAC did not
converge in the multivariate cases, but its performance in univariate action spaces is
similar to PPO.

• DDPG agents does not converge easily within complex continuous observation-
and action spaces, and as noted by Lillicrap et al. [59], the DDPG algorithm requires
a large number of episodes to converge. Being patient using DDPG and running for
many thousand episodes, is also noted in the Matlab documentation for DDPG.2

0 200 400 600 800 1000

Episode

0

1

2

3

4

5

6

7

8

9

R
e
w

a
rd

10
4

SAC

PPO

DDPG

Figure 8.3: Average reward per episode per agent, first 1000 episodes for demonstration
case

The case that restarting the PPO agent training increases its likelihood to identify a
policy, can be an issue with the weight initialization of the actor and critic neural networks.
By restarting, a new set of random weights are issued which might turn out to be especially
effective for training. This trait is by Frankle and Carbin [79] described as winning the
initialization lottery. We might then indicate that SAC is a more stable learner since we
have not seen the same behaviour here.

We might criticize our experiments on the fact that the agent runs were terminated
after 5000 episodes. However, depending on the horizon of the long-term reward and the
complexity of the problem domain, we would probably see results within this training
frame for time series like ours. For pure sparse reward scenarios, our generative model
must first be able to forecast over the horizon before we can set the agent to train using the
generative model as a simulator. In such a case, we expect that the number of episodes to

2https://se.mathworks.com/help/reinforcement-learning/ug/create-policy-and-value-function-
representations.html

135

CHAPTER 8. DISCUSSION

train for must be increased, in order to explore more of the environment and dependency
paths.

An actor-critic reinforcement learning agent operates under the assumption that the
system is Markovian and that any particular state has an expected future reward for taking
an action, expressed through the Bellman equation:

V (s) = maxa(R(s, a) + γV (s′)) (8.3)

In systems describable by thermodynamics, mass balances and mechanical physics, any
state is expected to be Markovian. The error between the real state and the measured state
used for training, is the sensors inability to measure, their errors or that state measurements
are not available. Extrapolating for unknown state spaces is crucial, and is why we need to
excite the system to extreme values, to be able to generalize the model. Any process not
described by the sensors, cannot be dynamically identified.

A central concept to environment exploration is information entropy as defined by
Shannon [3] and others as:

H = −
∑
i

pilog2(pi) (8.4)

used in the value function for a SAC agent [82] as:

J(π) =
T∑
t=0

E(st,at)∼pπ [r(st, at) + αH(π(·|st))] (8.5)

The entropy of a learnt policy’s state and action pairs π(st, at) affects the value of the
state, influencing an agent’s inclination to select which parts of the environment to explore.
The PPO agent uses a variant of the entropy loss and estimation of information gain using
the Kullback–Leibler divergence [73]. The SAC agent trains a temperature factor α for the
entropy term, which is not done in the PPO agent. This might be one of the elements that
diverge the results between the two seemingly similar agents.

8.4 Reward engineering

The key to a successful agent policy is the reward scheme, given a balanced dataset for the
process data. We have shown that both a manual reward scheme as well as a learnt model
utilizing inverse reinforcement learning, can be used for training an agent. Depending
on the application, the desired reward function will be the main focus of any practical
RL-powered application. The reward function’s role is not only to give direct feedback
on the current actions but the path to a future reward. Designing the reward function
when dealing with future rewards should involve a feedback mechanism on the trajectory
towards this reward. Without it, training becomes a computationally intensive problem.
We can also combine manual rewards with a learnt reward model. Powell et al. [111] added
a penalty term to aid the direction of the reward, a term we have included in the reward
functions tested. We saw early that an action penalty was crucial for the trainability of the
agents. Further, we added a quadratic term to the penalty in order to accelerate learning.

136

8.4. REWARD ENGINEERING

The reward function is one scalar value that aids the agent action selection in the
correct direction combined with several parameters. These parameters should be internally
weighted so that they are on the same scale, calculated by the reward function R:

R(x) = [w1r1 + wp1p
2
1 + wp2p

2
2 + wg] (8.6)

where x is the observation vector and

• r1, w1 = Reward and weigth of primary observation (on responding variables)

• p21, wp1 = Penalty and weigth of action effort (on manipulative variables)

• p22, wp2 = Penalty and weigth of secondary observation (on controlled variables)

• g, w = Distance and weigth to future reward / goal

Designing a reward function that transforms to a new function when reaching a specific
goal is also possible, for instance, when we have received one goal and need to transit
to another goal, as demonstrated by the Dota 2 team by OpenAI [98] and Florensa et
al. [69]. This is specifically useful in situations of mode shifts from production to cleaning,
or change of recipes, products etc. in a continuous process. The dynamics of the generative
model will propose actions to shift from one situation to another given the current state of
the system. One important prerequisite is that we have process logs that exhibit these
dynamics from earlier runs and that the model has process signals relevant for the task.

Reward engineering and the agent termination criteria are closely related in terms
of being the factors that directly affect training. We have used the termination criteria
actively to both limit the agent training to a narrow result set, and to indicate when
the proper goal has been achieved. Both ways are equal in the sense that they lead the
agent on the state-action trajectory to success, faster. In terms of computing efforts, it is
advisable to terminate an episode as early as possible, when it is clear that the long-term
goal cannot be reached. A proper goal state and reward scheme should reflect this.

(a) (c)(b)

Figure 8.4: Three modes of rewards
(a) continuous, (b) sparse and (c) directed

We have at least three general modes of agent reward types as illustrated in Figure 8.4:
a continuous, a long-term based on sparse rewards (episodic), and a directed sparse reward.
In the episodic, or long-term mode, we want the agent to accomplish a greater goal, like

137

CHAPTER 8. DISCUSSION

winning a game or reaching a specific laboratory measurement result as a sparse reward.
We have shown that the generative model is less likely to perform in a pure sparse reward
scenario and that the reward scheme should lead the agent towards the sparse reward.
With this, we mean that the agent should be able to optimize long-term reward trajectories
if a consistent way of expressing the future goal in a current reward context exists. This
observation is really dependent on the specific trained generative model’s ability to forecast
over the horizon. If the system state can be estimated accurately in the future, the
generative model should be able to support the pure sparse reward scenario. In a pure
continuous reward scheme, we have demonstrated that the concept can produce action
proposals similar to the performance of the PID-regulator that generated the original
training data.

8.5 Autoencoder and recurrency

The foundation for our generative model is the combination of the properties of the
autoencoder and network recurrency. An autoencoder stores a latent representation of the
learnt world, enabling the regeneration of data. Recurrency is about using earlier states
for inference in the current state. Those two methods combined, we can forecast the future
based on the past [116]–[118]. By changing the state as described in Chapter 4, we have
also demonstrated simulation capabilities from a learnt model.

An important prerequisite for the autoencoder is that the system is generalisable,
i.e. that we have sufficiently trained the network for its domain. In a fully connected
autoencoder network, we construct the network with a limited number of hidden nodes,
with input- and output nodes being of similar dimensions. We call the input layer the
encoder while the output is the decoder, as exemplified in Figure 8.5.

x1

x2

x3

x4

y1

y2

y3

y4

Encoder Decoder
Latent
space

Figure 8.5: A simplified autoencoder

During training, the latent space nodes are gradually adjusted to minimize the error of
the output compared to the input. The trained weights are a Gaussian representation of
the problem, capable of reproducing data within the same domain. Autoencoders are one
popular method for anomaly detection, where the neural network’s generalisation properties
are exploited. Trained on normal operation, autoencoders can recreate the current situation,

138

8.5. AUTOENCODER AND RECURRENCY

if the input is within the latent space of the autoencoder. The autoencoder sum of errors
will increase when confronted with data outside its training range, indicating anomalies.
This method is becoming a usual method in equipment monitoring and system health
surveillance.3

A recurrent neural network (RNN) uses past state to infer the next state. At each step
in a sequence, we update the state and output according to a set of equations. In a plain
RNN as described by Goodfellow et. al [63], forward pass through one node is as expressed
in Equation 8.7:

at = b + Wht−1 + Uxt

ht = σ(at)
ŷt = c + Vht

(8.7)

where U,V,W are trainable weight matrices, b, c are trainable biases, x is the input
vector and ŷ the output vector. We can use either tanh or sigmoid activation function
based on whether we have a classification or regression problem. The persistent state
across the data is represented by h. Backward passing is done by the derivative of the
above functions, used for training through time with backpropagation and gradient descent.
We traverse the training sequences backwards for each epoch when updating the error
derivative.

We can demonstrate the capabilities of this simple method by training this algorithm
to learn the dynamics of a sinus curve. The goal is to recreate and forecast future dynamics
based on a sequence input. By using only four RNN nodes each implementing Equation 8.7,
we are able to learn the dynamics both for a one-step forecast and a horizon forecast, as
illustrated in Figure 8.6.

0 20 40 60 80 100

t

-1

-0.5

0

0.5

1

1.5

Actual

Prediction

(a)

0 20 40 60 80 100

t

-1.5

-1

-0.5

0

0.5

1

1.5

Actual

Forecast

(b)

Figure 8.6: RNN for one-step forecast and horizoned forecast

Complete demonstration of the code is given in Appendix D. We see that recurrent
memory is a powerful technique for dynamics learning. A limited set of equations and
training is able to recreate the dynamics of the problem. Scaling the problem in time
and variables, we are able to learn real-world system dynamics in a similar way, and
combined with the powers of neural network frameworks, we can mix and combine different
architectural components and numerical solvers to suit our problem.

3Honeywell Uniformance®Asset Sentinel, Intelecy AS and others

139

CHAPTER 8. DISCUSSION

In recurrent training, gradients are backpropagated by walking through the sequences
backwards in time (Backpropagation Through Time, BPTT). In standard RNN we encounter
the problem of vanishing gradients. Hence, it is customed to implement a clipping
mechanism on the gradients and as a consequence limit the number of steps to walk
backwards (Truncated BPTT). RNN tends therefore to forget the past and is not especially
effective for problems with long-term dependencies. One example is text prediction, where
the grammar is heavily dependent on earlier events in a sentence.

The Long Short-Term Memory (LSTM) [21] has gradually evolved into a set of equations
that is able to remember earlier events and by far surpasses the vanilla RNN model. We
have earlier shown projects that use LSTM for dynamics in Chapter 2, and our generative
model and the actor and critic networks are all made using LSTM. The internals of such a
cell is illustrated in Equation 8.8 from Ismail et al. [84].

it = σ(Wxixt + Whiht−1 + bt)
ft = σ(Wxfxt + Whfht−1 + bf)
ot = σ(Wxoxt + Whoht−1 + bo)
c̃t = tanh(Wxcxt + Whcht−1 + bc)
ct = ft � ct−1 + it � c̃t
ht = tanh(ot � ct)

(8.8)

Here, we introduce the concept of gated cells, where the recurrent unit control what
information is passed through. LSTM contain computational blocks that control the
flow of information through many time steps. The LSTM cell consists of four sequential
computing steps during the forward pass: the forget stage, where we execute what we
have learned to forget, storing relevant new information to the state, selectively update
the cell state, and finally the output gate that controls the information sent to the next
state. There are several versions of the recurrent node with additions of functionality, or
simpler implementations for specific purposes, like the Gated Recurrent Unit (GRU) or
Linear Antisymmetric Recurrent Neural Networks (LARNN) [109], [121].

Per the documentation, the default initialisation of weights in the Matlab implementation
of LSTM is done according to the findings of Glorot and Bengio [41]. Our RNN regression
example demonstrator above uses the same method when initializing by drawing the initial
weights from a normally distributed population.

8.6 Network design

By stacking LSTM layers, as we do in the generative model, we are able to capture more
detailed information about the dynamics as we pass through the network if we have enough
data coverage. However, by Bayesian optimization in Chapter 4, we have seen that the
network need not be deep at all, we can obtain quite accurate results only with one LSTM
layer, as demonstrated in Chapter 7.

Even though a single layer LSTM network per definition is not an autoencoder, we
predict the same number of outputs as inputs. Per se, the encoder and decoder part of
the autoencoder is embedded within the LSTM cells, effectively creating the illusion of an
autoencoder.

During the experiments, we have observed some anomalous effects that should be
addressed during engineering the generative model:

140

8.6. NETWORK DESIGN

• Estimating the mean When the LSTM network start forecasting the mean, the
network has probably no data coverage for the particular region, and assumes the
mean is the best option for the lowest loss

• Shifted estimates The LSTM network outputs shifted/skewed estimates, usually
an indication of estimating the last value only and thus the network has no predicting
ability

• Bias on estimates The estimates are lower or higher than the real values and may
be an indication that the bias values are not trained properly or that the network is
not properly initialized

• Instability The estimates have a high-frequency component. This instability is
visible just before resorting to mean estimation

Addressing these effects are done by adjusting the hyperparameters like the sequence
length, the number of layers and the number of nodes per layer, as well as assuring training
data is sufficient for modelling. For our model to generalize, we aim to simplify the
architecture as much as possible. We have also observed that increasing the number of
neurons and layers might lead to models with less predictive powers. We expect this to
happen as a combination of not being able to generalize and not having enough training
passes and training data.

We have also shown that a learning rate decay scheme is important for network training.
By stepping down the learning rate, we see that the network have more accurate dynamics
predictions. Increasing the number of epochs must be done according to the decay ratio.

Depending on the amount of training data available, the number of epochs should
be selected wisely, and we have demonstrated that increasing the epoch count does not
necessarily have a positive effect on the result. During one epoch, all training data are
passed through the network once. If we augment the data by adding a noise component,
each epoch is presented with slightly altered data to help the error update process, but noise
itself could make the network unstable for a high number of epochs due to the integrated
component. An alternative to our used function is the Ornstein-Uhlenbeck process [1] that
generates noise correlated with previous noise in order to prevent degradation of overall
dynamics. In DDPG, this process is used as enviornment exploration method, and should
be implemented in our framework as well.

In Matlab, training data is broken into minibatches, mainly for computation efficiency
purposes. However, Matlab updates the network weights after each minibatch. Randomizing
the block sequence of training data for each epoch should be advisable, but is not tested
here and remains a future work.

We can also use other methods and network elements to create models, like the Bi-
LSTM [62]. In Bi-LSTM, we divide in forward- and backward layers when presented with
an enclosed time series. Since our training of the generative model is based on presenting
sequences of data to the network, we have the possibility to traverse the data in both
directions. Potentially, this could increase the dynamics description capability of the
network and should be tested as further work. Switching LSTM for one-dimensional CNNs
is also an architecture that should be tested, as demonstrated by Lang et al. [94].

Entering the real-time domain involves many considerations of data quality and sampling.
Ideally, we need to retain the sample time for process data in real-time, as during training.
However, we might experience an irregular sampling of data in a real process, which

141

CHAPTER 8. DISCUSSION

recurrent neural networks are particularly sensitive to due to their dependency on the
state matrices. Habiba and Pearlmutter [108] combine neural network training and neural
layers based on the training of ODE functions within the network to overcome this issue.
From this knowledge, one idea could involve introducing an autoencoder layer between
process data and the agent environment interface using ODE neural networks to pertain
the sample rate. A positive side effect of this would be inherent data filtering and anomaly
detection on the input.

8.7 Use cases

We have used the industrial spray drier as an example system due to its simplicity in
explanation, available literature and various possibilities for control as detailed in Chapter 3.
However, we should not limit ourselves to controlling industrial processes. Time-series
data are everywhere and in all businesses. The current value of a stock is a result of a
time series of events, and the current price of electric power is the result of a multivariate
chain of events and capacity forecasts. Optimization and planning are everywhere, and the
method presented by this thesis could be seen as a recommender system for humans to
make informed decisions.

The problem of human-computer interaction is a broad area of science in both
computational fields and cognitive psychology. In his book The Design of Everyday
Things, Norman [14] uses the metaphor of the Gulf of Evaluation and Execution to frame
the problem of operators of a system making errors. He argues that an operator’s inability
to comprehend a system leads to suboptimal system manipulations, i.e. there is a broader
or narrower gulf between what an operator think is his or her evaluation of the system
state is, as compared to the actual system state. The system state might be more complex
than humans can handle, in terms of multivariate parameters and path dependencies. We
tend to break the state into manageable pieces, losing the big picture.

Within evolutionary game theory and evolutionary economics, this term is called
bounded rationalty [43]. Players in a multi-agent simulation game act according to the
information and knowledge provided to them, although in a broader essence, the players act
wrong according to some global strategy. Bridging the gulf of evaluation using recommender
systems could make the operator situational awareness increase, as a generative model is
able to forecast the consequences of actions. The gulf of execution describes the sequence of
actions necessary to reach a goal and our reduced understanding of being able to reach this
state rationally. In essence, this describes the reasoning behind the reinforcement learning
concept and long-term rewards. The distance between a system state and the desired state
is expressed as the gulf, whereas the action sequence is expressed through the policy. If an
agent has the policy to move from one state to another, this action sequence is a rational
answer to the problem. Being able to identify when the agent is wrong or uncertain, is key
to a successful human-computer trust relationship. In Chapter 5.5 we briefly discussed
some popular methods for estimating uncertainty and demonstrated some of the principles
and uses.

Bridging this gulf is the target for many of the applications within optimization and
control. However, the method we have presented in this thesis differs when it comes
to how we model the world when compared to classic control theory. Due to neural
networks inherent black box property, we cannot state proof on the outcome. There are
some initiatives within Explainable AI, namely through the calculation and evaluation of

142

8.8. FRONTIER IN RESEARCH

SHapley Additive exPlanations [72] and Local Interpretable Model-Agnostic Explanations
(LIME) [66]. It is an interesting future work to apply these methods to our framework.
However, the methods presented can be used as-is in a secure setting. Below we present
some other ideas for exploration:

• Scenario simulation Given the current state of a system, we should be able to
use the simulation method presented in Chapter 4 to let an operator simulate the
consequences of an action on a system.

• Advisory and recommendation Given the current state, we could also utilize a
trained RL agent to propose the next recommended action on a system, as presented in
the example in Chapter 7. This particular method of system-operator communication
has also been implemented by Google Deepmind for proper datacenter cooling.4

• Long term optimization Given a properly trained generative model able to forecast
beyond the horizon, we could build a system that optimizes a strategy for long term
rewards, for example within energy use and capacity planning, as well as forecasting
and alleviating emissions from a multi-step process. This could also be used for
balancing a steam energy system, or for adjustments of windmill parameters like
blade pitch, relative headings etc. according to weather prognosis and individual
features of each windmill.

• Chemical reactions Chemical reactions and other mixing problems could use this
method to derive the most optimal policy for reactant addition and process control,
for example in a pulping process where the acidic bleaching step uses chlorine dioxide
(ClO2) and hydrogen peroxide (H2O2) in a mix depending on the material quality,
recipe and various other parameters [24], [28], [34], [44]

• Batch processes Batch processes possess an interesting problem area where we can
expect that each batch has an outcome known upon completion. This would map
to the pure sparse reward discussed earlier. In such a problem, we must be able to
train a generative model to forecast longer than one step. If we can do so, a batch
process contains time series of the process from start till finish. Training on batch
time series could for example be used in crystallization processes where we want to
predict the best time for process termination.

• Model for MPC with Kalman filter We could also use the generative model in
a more traditional context where we apply the model within a Kalman filter, for use
with Model-Predictive Control (MPC)

As a summary, we believe that this method could be applied to overcome many of the
industrial challenges as presented in Chapter 1.2.

8.8 Frontier in research
It is not known to the author a similar method used to train an RL agent for process
control. As we introduced earlier, Petsagkourakis et al. [110] demonstrated and proposed a

4https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-
control

143

CHAPTER 8. DISCUSSION

framework for learning the dynamics by hybrid methods: first by defining a mechanistic
model based on historical data, and then train the agent using this model and real-time
data. We have also seen research on data-driven modelling within process control [86],
[91], [122], [128], but not a combination as we have presented. However, we expect that
the method eventually will be discovered by many scientists and refined for different
applications.

There are many research projects working in the field of machine learning, reinforcement
learning and industry. One such research project is Towards Autonomy in Process Industries
(TAPI)5 where scientists and industry experts cooperate on several aspects within data-
driven modelling. Of relevancy to our project, compressed sensing is a technique for
modelling the un-measured part of a signal, as demonstrated by Lundby et al. [120] for
an aluminium electrolysis process. The method could provide more stable learning due to
measurement stabilization.

A successor of the LSTM network node, the Linear Antisymmetric Recurrent Neural
Network node (LARNN) [109], [121] adapts an ODE function approximation within the
recurrent node for stability reasons. We expect that a LARNN node is particularly suitable
within the field of time series for process dynamics, as the mass-, energy- and mechanistic
balances have a strong dependency in time and towards a Markovian function.

Handling uncertainty in both data and method is for the moment at least, a human
task. In a recent article, Gawlikowski et al. [119] review many of the methods available for
uncertainty estimation. One takeaway is to differentiate between epistemic noise, which
originates from variability in the real world, and aleatoric noise, where the sensors or
measurement variable’s inability to reflect the state accurately introduces noise. The
combination of these two main factors make up the complete noise picture, but we must
handle each of them differently. We cannot throw bad data on a neural network and expect
it to deliver top results.

8.9 Further work

Based on the findings in Chapter 7.3.4, an interesting and presumably powerful technique for
zero-vector bias estimation is to dynamically compensate for state drift during estimation.
This could be done by keeping a copy of the current state of a network and estimating the
bias correction for the current state. This estimation could then be used for correcting
the output dynamically. We have also observed that erroneous bias estimations are an
indication of network instability, which could help in uncertainty estimations.

As an alternative to compressed sensing and data augmentation by noise addition,
Yang et al. [127] proposes Feature distribution smoothing (FDS) for imbalanced datasets.
Within classification, it is vital that the training dataset is balanced across the classes to
predict, and a similar requirement for regression is to assure as normally distributed input
data as possible. However, combinations of input data might not present the whole picture
across the numeric range for the prediction.

Deep Imbalanced Regression (DIR) is a method to generate data by Feature distribution
smoothing (FDS) for missing data areas. Our generative model is trained by datasets of
unknown quality in this respect, and to limit the amount of uncontrolled interpolation, we
could introduce this method for datasets when training the generative model.

5https://www.sintef.no/en/projects/2019/tapi-towards-autonomy-in-process-industries/

144

8.10. LIMITATIONS AND THREATS TO VALIDITY

Of particular interest within RL research, is to find a viable method to restrict an
agent’s actions so that a process can be run securely, with respect to the environment,
health and safety (EHS). A basic method would be to limit the action range and dampening
when the process is under direct control from an agent, or by estimating the unknown
dynamics for robust control [129]. Another possibility is to let the agent estimate process
set points and let the process be controlled by traditional means. Google Deepmind6

introduced a layered approach with several control barriers between the agent and the
process. The integration of an RL agent into real-world control is an obvious further work
based on the findings in this work.

Evolving the generative model, and the RL agent needs to be considered when
monitoring reveals drift in the system. Drift comes from changed process conditions,
unmodelled dynamics and changes in system requirements, amongst others. Introducing
new data would either mean a complete recalculation of either model or train each model
on new data with a low learning rate. Handling drift identification and compensation is a
supportive task to the initial modelling to assure continuous operation over time. Further,
we see that when a learnt reward approximation is used as a reward function, the operation
monitoring must include this model as well. Handling this area correctly is considered to
be one of the key success criteria for user acceptance.

An alternative implementation of the generative model’s recurrent network could be a
variant of the Generative Adversarial Network for time-series forecasting, discovered by
Goodfellow et al. [53]. GANs are powerful neural networks for the recreation of highly
credible copies of the real world, mainly within image- and audio recreation. However, we
have also seen that GANs can be used for heart signal electrocardiogram synthesis [107].
It would be interesting to consider GANs for the generative model, and how to adapt the
concept for simulation.

When considering cooperation between multiple RL agents working in isolation within
their specific process, devising a scheme for agent cooperation could be beneficial. The
ideas of evolutionary game theory have been applied to economical models, surveyed by
Safarzynska et al. [43], but recently multiple agent simulation has surfaced using the
same ideas. According to Tuyls and Nowé [29], agents working in their own Markovian
space cannot converge when set to cooperate, since their joint action spaces are different.
Evolutionary game theory is about the strategies employed when conflicting objectives
make any action sub-optimal. By mathematical study, these strategies can be evaluated
and an optimum can be found.

8.10 Limitations and threats to validity

This thesis has used both synthetic- and real-world data in the evaluation of the research
questions. The use case tested is a limited and dynamically simple process. It could be
considered a limitation to the conclusions as other systems would cater for more complex
dynamics. We believe simplicity is part of the reason for our results.

Further, we have briefly touched on the neural network design of the tested agents,
but have not optimized them in any way. Our intention has been to create the network
architectures as similar as possible for agent comparison.

6https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-
control

145

CHAPTER 8. DISCUSSION

The research area is in constant motion, and our hope is that the ideas and culprits
presented here would be criticised, undermined and improved by others.

146

Chapter 9

Conclusion

For all the justified concern over automation gone wrong, surveillance, and
all the other tech-enabled horrors, it’s easy to forget that at its core, technology
is about the triumph of humanity.1

The initial motivation of this thesis has been to demonstrate the theory and methods
that lead us towards a higher stage of autonomy. The fundamental question of how we
can formalize all knowledge of the world and utilize the data we have gathered in order to
learn more remains a guiding star for this science field.

We have presented the foundation of research within reinforcement learning from the
early days of Q-learning to the commonly used actor-critic methods of today, used for
continuous action spaces with recurrent neural networks as function approximators. We
have answered research questions that support the claim that reinforcement learning can
be applied as a general optimization concept and trained on historical logs of data towards
new goal sets. Evolving the agent on the target system seems necessary for finer control.

A generative model has been proposed for learning the compressed dynamics of a
system. We have used an industrial spray drier as an example of a Markovian system
well suitable for modelling. A spray drier can be explained in terms of mass- and energy
balances, and we have constructed a synthetic model for training a generative model
based on a recurrent autoencoder network. This generative model is able to reproduce the
dynamics of a system, and by modification of the model input, we are able to demonstrate
simulation and forecasting characteristics.

This generative model is then used as a synthetic environment for training a reinforcement
agent. It is demonstrated that a reinforcement learning agent can be sufficiently trained in
a multivariate scenario and propose actions towards a new goal set, making it particularly
suitable for optimization scenarios as an alternative to traditional control mechanisms. We
have also shown that the reward function of an agent can be trained based on a specified class
of time-series data enabling efficient reward engineering and human behaviour replication.

Finally, we were able to extract data from a real spray drier and demonstrate the
method’s applicability in the real world domain. It is not known to the author any current
initiatives demonstrating the combination of these features, although all building blocks
are known and available.

Initially, we raised the concern on how to build experience with an example of crashing
a self-driving car. In a simulator, insecure actions lead to negative rewards, in the real

1Bionic Eye, Emily Mullin, medium.com

147

CHAPTER 9. CONCLUSION

world an agent acts according to a learnt policy and value function. Training the critic
is crucial, and resembles the human morale engine. What constitutes negative rewards
in the scenario of agent training, depends on the human engineer. Those who train the
critic, copy their morality into the digitized agent. One of the findings of Chapter 5.3.2
demonstrates this dilemma clearly: we need data from failures in order to learn.

How can we be sure that the agent acts according to human morality standards? It is
a danger that in the world of AI-operated decision-makers, we will cross borders and use
autonomous technology to harm humanity. History is full of examples, the grimmest ones
can be found in the military drone industry and in the seemingly never-ending cyber-attacks
on process plants and other actuators connected to the internet. The challenges for AI
and humanity is not necessarily technological but remains to be a question of morality and
cultural imbalance.

We will conclude this thesis by stating the three laws of robotics from the Handbook of
Robotics, 56th Edition, 2058 A.D. transcribed by science fiction writer and professor Isaac
Asimov [4] which may serve as a guiding light for agent training:

• First Law A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

• Second Law A robot must obey the orders given it by human beings except where
such orders would conflict with the First Law.

• Third Law A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

Or, as nicely summoned by Google: Don’t be evil.

148

Bibliography

[1] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Phys.
Rev., vol. 36, no. 5, pp. 823–841, Sep. 1930.

[2] J. G. Ziegler, N. B. Nichols, et al., “Optimum settings for automatic controllers,”
Trans. ASME J. Appl. Mech., vol. 64, no. 11, 1942.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[4] I. Asimov, “Runaround. i, robot (the isaac asimov collection ed.),” New York City:
Doubleday. (first published 1942), 1950.

[5] A. M. Turing, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind,
vol. LIX, no. 236, pp. 433–460, 1950.

[6] F. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain, 1958.

[7] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM
J. Res. Dev., vol. 3, no. 3, pp. 210–229, Jul. 1959.

[8] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” en, J. Physiol., vol. 160, pp. 106–154, Jan.
1962.

[9] P. J. Huber, “Robust estimation of a location parameter,” en, aoms, vol. 35, no. 1,
pp. 73–101, Mar. 1964.

[10] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network model
for a mechanism of visual pattern recognition,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-13, no. 5, pp. 826–834, Sep. 1983.

[11] K. Masters et al., “Spray drying handbook,” Spray drying handbook., 1985.
[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations

by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science,
Tech. Rep., 1985.

[13] J. G. Balchen and K. I. Mummé, Process control: Structures and applications. Kluwer
Academic Pub, 1988.

[14] D. A. Norman, The design of everyday things. Currency Doubleday, 1988.
[15] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Mach.

Learn., vol. 3, no. 1, pp. 9–44, Aug. 1988.
[16] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

149

BIBLIOGRAPHY

[17] G. Tesauro, “Practical issues in temporal difference learning,” Mach. Learn., vol. 8,
no. 3, pp. 257–277, May 1992.

[18] C. J. C. Watkins and P. Dayan, “Q-Learning,” Tech. Rep., 1992, pp. 279–292.
[19] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Mach. Learn., vol. 8, no. 3, pp. 229–256, May 1992.
[20] G. Tesauro, “TD-Gammon, a self-teaching backgammon program, achieves master-

level play,” en, Neural Comput., vol. 6, no. 2, pp. 215–219, Mar. 1994.
[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” en, Neural Comput.,

vol. 9, no. 8, pp. 1735–1780, Nov. 1997.
[22] T. Fukuda and T. Arakawa, “Intelligent systems: Robotics versus mechatronics,”

Annu. Rev. Control, vol. 22, pp. 13–22, Jan. 1998.
[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.
[24] J. Gullichsen, C.-J. Fogelholm, and O. Fapet, “Chemical pulping, papermaking

science and technology,” Book 6B, 2000.
[25] H. Siebert, Der Kobra-effekt: Wie man irrwege der Wirtschaftspolitik vermeidet. Dt.

Verlag-Anst., 2001.
[26] D. E. Oakley, “Spray dryer modeling in theory and practice,” Drying Technol.,

vol. 22, no. 6, pp. 1371–1402, Jun. 2004.
[27] B. Adhikari, T. Howes, D. Lecomte, and B. R. Bhandari, “A glass transition

temperature approach for the prediction of the surface stickiness of a drying droplet
during spray drying,” Powder Technol., vol. 149, no. 2, pp. 168–179, Jan. 2005.

[28] D. Major, M. Perrier, S. Gendron, and B. Lupien, “Pulp bleaching control and
optimization,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 466–476, Jan. 2005.

[29] K. Tuyls and A. Nowé, “Evolutionary game theory and multi-agent reinforcement
learning,” Knowl. Eng. Rev., vol. 20, pp. 63–90, Mar. 2005.

[30] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World.
Springer, Boston, MA, 2005.

[31] Y.-C. L. A i, S. H. Fan, S. Chenney, and C. Dyer, “Photorealistic image rendering
with population monte carlo energy redistribution,” Eurographics Symposium on
Rendering, 2007.

[32] S. H. Fan, “Population monte carlo samplers for rendering,” Tech. Rep., Sep. 2007.
[33] D. Ramachandran and E. Amir, Bayesian inverse reinforcement learning, https:

//www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf, Accessed: 2021-4-24,
2007.

[34] P. W. Hart and D. Connell, “Improving chlorine dioxide bleaching efficiency by
selecting the optimum ph targets,” Tappi J., vol. 7, no. 7, pp. 3–11, Jul. 2008.

[35] L. X. Huang and A. S. Mujumdar, “The effect of rotary disk atomizer RPM on
particle size distribution in a Semi-Industrial spray dryer,” Drying Technol., vol. 26,
no. 11, pp. 1319–1325, Oct. 2008.

150

https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf

BIBLIOGRAPHY

[36] B. D. Ziebart, A. Maas, J. Andrew Bagnell, and A. K. Dey, Maximum entropy inverse
reinforcement learning, https://www.aaai.org/Papers/AAAI/2008/AAAI08-
227.pdf, Accessed: 2021-2-20, 2008.

[37] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor–critic
algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482, Nov. 2009.

[38] M. Hoekstra, M. Vogelzang, E. Verbitskiy, and M. W. N. Nijsten, “Health technology
assessment review: Computerized glucose regulation in the intensive care unit–how
to create artificial control,” en, Crit. Care, vol. 13, no. 5, p. 223, Oct. 2009.

[39] M. Lopes, F. Melo, and L. Montesano, “Active learning for reward estimation in
inverse reinforcement learning,” in Machine Learning and Knowledge Discovery in
Databases, Springer Berlin Heidelberg, 2009, pp. 31–46.

[40] GEA Process Engineering, “Milk powder Technology-Evaporation and spray drying,”
Tech. Rep. Fifth edition, Feb. 2010.

[41] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” 2010.

[42] J. O’Neill, B. Pleydell-Bouverie, D. Dupret, and J. Csicsvari, “Play it again:
Reactivation of waking experience and memory,” en, Trends Neurosci., vol. 33,
no. 5, pp. 220–229, May 2010.

[43] K. Safarzynska and J. C. van den Bergh, Evolutionary modelling in economics: a
survey of methods and building blocks. Max Planck Institute of Economics, Jena,
2010.

[44] V. Tarvo et al., Modeling chlorine dioxide bleaching of chemical pulp. Aalto-yliopiston
teknillinen korkeakoulu, 2010.

[45] A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, “On random
weights and unsupervised feature learning,” in ICML, vol. 2, cl.uni-heidelberg.de,
2011, p. 6.

[46] A. Azadeh, N. Neshat, A. Kazemi, and M. Saberi, “Predictive control of drying
process using an adaptive neuro-fuzzy and partial least squares approach,” en, Int.
J. Adv. Manuf. Technol., vol. 58, no. 5-8, pp. 585–596, Jan. 2012.

[47] Y. Bengio, “Practical recommendations for Gradient-Based training of deep architectures,”
in Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and
K.-R. Müller, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 437–478.

[48] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors, 2012.

[49] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp,” in
Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and
K.-R. Müller, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48.

[50] N. Bostrom, Anthropic Bias : Observation Selection Effects in Science and Philosophy,
1st Edition. Routledge, May 2013.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” Dec. 2013. arXiv:
1312.5602 [cs.LG].

151

https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://arxiv.org/abs/1312.5602

BIBLIOGRAPHY

[52] V. Balasubramanian, S.-S. Ho, and V. Vovk, Conformal Prediction for Reliable
Machine Learning: Theory, Adaptations and Applications, en. Newnes, Apr. 2014.

[53] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Jun. 2014. arXiv:
1406.2661 [stat.ML].

[54] D. Silver, “Deterministic policy gradient algorithms,” in Proceedings of the 31st
International Conference on MachineLearning, 2014.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A simple way to prevent
neural networks from overfitting,” The journal of machine, 2014.

[56] Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout in
recurrent neural networks,” Dec. 2015. arXiv: 1512.05287 [stat.ML].

[57] ——, “Dropout as a bayesian approximation: Representing model uncertainty in
deep learning,” Jun. 2015. arXiv: 1506.02142 [stat.ML].

[58] M. Hausknecht and P. Stone, “Deep recurrent Q-Learning for partially observable
MDPs,” Jul. 2015. arXiv: 1507.06527 [cs.LG].

[59] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” Sep. 2015.
arXiv: 1509.02971 [cs.LG].

[60] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” en, Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015.

[61] S. Pote and S. Sudit, Automatic control system for spray drier pilot plant, https:
//www.erpublication.org/published_paper/IJETR032111.pdf, Accessed: 2021-
8-21, May 2015.

[62] S. Cornegruta, R. Bakewell, S. Withey, and G. Montana, “Modelling radiological
language with bidirectional long Short-Term memory networks,” Sep. 2016. arXiv:
1609.08409 [cs.CL].

[63] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, en. MIT Press, Nov.
2016.

[64] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Jun. 2016. arXiv:
1606.03476 [cs.LG].

[65] A. Parastiwi and Ekojono, “Design of spray dryer process control by maintaining
outlet air temperature of spray dryer chamber,” in 2016 International Seminar on
Intelligent Technology and Its Applications (ISITIA), Jul. 2016, pp. 619–622.

[66] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”: Explaining
the predictions of any classifier,” Feb. 2016. arXiv: 1602.04938 [cs.LG].

[67] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” en, Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

152

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1512.05287
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1509.02971
https://www.erpublication.org/published_paper/IJETR032111.pdf
https://www.erpublication.org/published_paper/IJETR032111.pdf
https://arxiv.org/abs/1609.08409
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1602.04938

BIBLIOGRAPHY

[68] A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative adversarial
networks,” Nov. 2017.

[69] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation for
reinforcement learning agents,” May 2017. arXiv: 1705.06366 [cs.LG].

[70] A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physics-guided neural networks
(PGNN): An application in lake temperature modeling,” Oct. 2017. arXiv: 1710.
11431 [cs.LG].

[71] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234,
pp. 11–26, 2017.

[72] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30,
Curran Associates, Inc., 2017, pp. 4765–4774.

[73] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” Jul. 2017. arXiv: 1707.06347 [cs.LG].

[74] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” en, Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[75] I. Zbicinski, “Modeling and scaling up of industrial spray dryers: A review,” J.
Chem. Eng. Jpn., vol. 50, no. 10, pp. 757–767, Oct. 2017.

[76] J. Alexander, Learning from humans: What is inverse reinforcement learning? https:
//thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-
learning/, Accessed: 2021-4-27, Jun. 2018.

[77] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary
differential equations,” Jun. 2018. arXiv: 1806.07366 [cs.LG].

[78] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning
for time series classification: A review,” Sep. 2018. arXiv: 1809.04356 [cs.LG].

[79] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” Mar. 2018. arXiv: 1803.03635 [cs.LG].

[80] D. Ha and J. Schmidhuber, “World models,” Mar. 2018. arXiv: 1803.10122 [cs.LG].
[81] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning to walk

via deep reinforcement learning,” Dec. 2018. arXiv: 1812.11103 [cs.LG].
[82] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy

maximum entropy deep reinforcement learning with a stochastic actor,” arXiv
[cs.LG], Jan. 2018.

[83] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic algorithms and applications,”
Dec. 2018. arXiv: 1812.05905 [cs.LG].

[84] A. A. Ismail, T. Wood, and H. C. Bravo, “Improving Long-Horizon forecasts with
Expectation-Biased LSTM networks,” Apr. 2018.

153

https://arxiv.org/abs/1705.06366
https://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1710.11431
https://arxiv.org/abs/1707.06347
https://thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-learning/
https://thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-learning/
https://thegradient.pub/learning-from-humans-what-is-inverse-reinforcement-learning/
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1809.04356
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1812.11103
https://arxiv.org/abs/1812.05905

BIBLIOGRAPHY

[85] B. Kleinberg, Y. Li, and Y. Yuan, “An alternative view: When does SGD escape
local minima?” In Proceedings of the 35th International Conference on Machine
Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Research,
vol. 80, PMLR, 2018, pp. 2698–2707.

[86] S. Moe, A. M. Rustad, and K. G. Hanssen, “Machine learning in control systems:
An overview of the state of the art,” in Artificial Intelligence XXXV, Springer
International Publishing, 2018, pp. 250–265.

[87] OpenAI, Part 2: Kinds of RL algorithms — spinning up documentation, https:
//spinningup.openai.com/en/latest/spinningup/rl_intro2.html, Accessed:
2021-5-2, 2018.

[88] D. Santos, A. C. Maurı́cio, V. Sencadas, J. D. Santos, M. H. Fernandes, and
P. S. Gomes, “Spray drying: An overview,” in Biomaterials, R. Pignatello and
T. Musumeci, Eds., Rijeka: IntechOpen, 2018, ch. 2.

[89] P. Thodoroff, A. Durand, J. Pineau, and D. Precup, “Temporal regularization in
markov decision process,” Nov. 2018. arXiv: 1811.00429 [cs.LG].

[90] S. Thorn, Predicting uncertainty with neural networks, https://medium.com/
@steve_thorn/predicting-uncertainty-with-neural-networks-aec0217eb37d,
Accessed: 2021-10-31, Mar. 2018.

[91] E. A. Del Rio‐Chanona, X. Cong, E. Bradford, D. Zhang, and K. Jing, “Review of
advanced physical and data‐driven models for dynamic bioprocess simulation: Case
study of algae–bacteria consortium wastewater treatment,” Biotechnol. Bioeng.,
vol. 116, no. 2, pp. 342–353, Feb. 2019.

[92] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world reinforcement
learning,” Apr. 2019. arXiv: 1904.12901 [cs.LG].

[93] A. Honchar, Neural ODEs: Breakdown of another deep learning breakthrough,
https : / / towardsdatascience . com / neural - odes - breakdown - of - another -
deep-learning-breakthrough-3e78c7213795, Accessed: 2021-4-20, Jun. 2019.

[94] C. Lang, F. Steinborn, O. Steffens, and E. W. Lang, “Electricity load forecasting –
an evaluation of simple 1D-CNN network structures,” Nov. 2019. arXiv: 1911.11536
[cs.LG].

[95] A. Look and M. Kandemir, “Differential bayesian neural nets,” Dec. 2019. arXiv:
1912.00796 [cs.LG].

[96] G. Mendels, Estimating uncertainty in machine learning models — part 3, https:
//towardsdatascience.com/estimating-uncertainty-in-machine-learning-
models-part-3-22b8c58b07b, Accessed: 2021-10-31, Oct. 2019.

[97] S. Minaee, E. Azimi, and A. Abdolrashidi, “FingerNet: Pushing the limits of
fingerprint recognition using convolutional neural network,” Jul. 2019. arXiv: 1907.
12956 [cs.CV].

[98] OpenAI, : C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson,
J. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter,
J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang, “Dota 2 with
large scale deep reinforcement learning,” Dec. 2019. arXiv: 1912.06680 [cs.LG].

154

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://arxiv.org/abs/1811.00429
https://medium.com/@steve_thorn/predicting-uncertainty-with-neural-networks-aec0217eb37d
https://medium.com/@steve_thorn/predicting-uncertainty-with-neural-networks-aec0217eb37d
https://arxiv.org/abs/1904.12901
https://towardsdatascience.com/neural-odes-breakdown-of-another-deep-learning-breakthrough-3e78c7213795
https://towardsdatascience.com/neural-odes-breakdown-of-another-deep-learning-breakthrough-3e78c7213795
https://arxiv.org/abs/1911.11536
https://arxiv.org/abs/1911.11536
https://arxiv.org/abs/1912.00796
https://towardsdatascience.com/estimating-uncertainty-in-machine-learning-models-part-3-22b8c58b07b
https://towardsdatascience.com/estimating-uncertainty-in-machine-learning-models-part-3-22b8c58b07b
https://towardsdatascience.com/estimating-uncertainty-in-machine-learning-models-part-3-22b8c58b07b
https://arxiv.org/abs/1907.12956
https://arxiv.org/abs/1907.12956
https://arxiv.org/abs/1912.06680

BIBLIOGRAPHY

[99] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek,
P. Welinder, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solving rubik’s cube
with a robot hand,” Oct. 2019. arXiv: 1910.07113 [cs.LG].

[100] A. Sagheer and M. Kotb, “Time series forecasting of petroleum production using
deep LSTM recurrent networks,” Neurocomputing, vol. 323, pp. 203–213, Jan. 2019.

[101] ——, “Unsupervised pre-training of a deep LSTM-based stacked autoencoder for
multivariate time series forecasting problems,” en, Sci. Rep., vol. 9, no. 1, p. 19 038,
Dec. 2019.

[102] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learning rate decay help
modern neural networks?,” Aug. 2019. arXiv: 1908.01878 [cs.LG].

[103] D. Zhang, E. A. Del Rio‐Chanona, P. Petsagkourakis, and J. Wagner, “Hybrid
physics‐based and data‐driven modeling for bioprocess online simulation and optimization,”
Biotechnol. Bioeng., vol. 116, no. 11, pp. 2919–2930, Nov. 2019.

[104] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik, A.
Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F.
Herrera, “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI,” Inf. Fusion, vol. 58, pp. 82–115, Jun. 2020.

[105] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland,
and W. Dabney, “Revisiting fundamentals of experience replay,” Jul. 2020. arXiv:
2007.06700 [cs.LG].

[106] T. A. Gaffoor, AI for industrial process control (part 2): Model predictive control deep
dive, https://www.innovyze.com/en-us/blog/ai-for-industrial-process-
control-part-2-model-predictive-control-deep-dive, Accessed: 2021-4-17,
Nov. 2020.

[107] T. Golany, D. Freedman, and K. Radinsky, “SimGANs: Simulator-Based generative
adversarial networks for ECG synthesis to improve deep ECG classification,” Jun.
2020. arXiv: 2006.15353 [eess.SP].

[108] M. Habiba and B. A. Pearlmutter, “Neural ordinary differential equation based
recurrent neural network model,” May 2020. arXiv: 2005.09807 [cs.LG].

[109] S. Moe, F. Remonato, E. I. Grøtli, and J. T. Gravdahl, “Linear antisymmetric
recurrent neural networks,” in Proceedings of the 2nd Conference on Learning for
Dynamics and Control, A. M. Bayen, A. Jadbabaie, G. Pappas, P. A. Parrilo,
B. Recht, C. Tomlin, and M. Zeilinger, Eds., ser. Proceedings of Machine Learning
Research, vol. 120, PMLR, 2020, pp. 170–178.

[110] P. Petsagkourakis, I. O. Sandoval, E. Bradford, D. Zhang, and E. A. del Rio-Chanona,
“Reinforcement learning for batch bioprocess optimization,” Comput. Chem. Eng.,
vol. 133, p. 106 649, Feb. 2020.

[111] B. K. M. Powell, D. Machalek, and T. Quah, “Real-time optimization using
reinforcement learning,” en, Comput. Chem. Eng., vol. 143, no. 107077, p. 107 077,
Dec. 2020.

[112] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction.
2020.

155

https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/1908.01878
https://arxiv.org/abs/2007.06700
https://www.innovyze.com/en-us/blog/ai-for-industrial-process-control-part-2-model-predictive-control-deep-dive
https://www.innovyze.com/en-us/blog/ai-for-industrial-process-control-part-2-model-predictive-control-deep-dive
https://arxiv.org/abs/2006.15353
https://arxiv.org/abs/2005.09807

BIBLIOGRAPHY

[113] J. Robine, T. Uelwer, and S. Harmeling, “Discrete latent space world models for
reinforcement learning,” Oct. 2020. arXiv: 2010.05767 [cs.LG].

[114] W. Tang, G. Long, L. Liu, T. Zhou, J. Jiang, and M. Blumenstein, “Rethinking
1D-CNN for time series classification: A stronger baseline,” Feb. 2020. arXiv: 2002.
10061 [cs.LG].

[115] A. Tuor, J. Drgona, and D. Vrabie, “Constrained neural ordinary differential
equations with stability guarantees,” Apr. 2020. arXiv: 2004.10883 [eess.SY].

[116] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos, “Learning the
effective dynamics of complex multiscale systems,” Jun. 2020. arXiv: 2006.13431
[physics.comp-ph].

[117] T. Xayasouk, H. Lee, and G. Lee, “Air pollution prediction using long Short-Term
memory (LSTM) and deep autoencoder (DAE) models,” en, Sustain. Sci. Pract.
Policy, vol. 12, no. 6, p. 2570, Mar. 2020.

[118] M. Elsaraiti and A. Merabet, “A comparative analysis of the ARIMA and LSTM
predictive models and their effectiveness for predicting wind speed,” Oct. 2021.

[119] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe,
R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu,
“A survey of uncertainty in deep neural networks,” Jul. 2021. arXiv: 2107.03342
[cs.LG].

[120] E. T. B. Lundby, A. Rasheed, J. T. Gravdahl, and I. J. Halvorsen, “A novel hybrid
analysis and modeling approach applied to aluminum electrolysis process,” J. Process
Control, vol. 105, pp. 62–77, Sep. 2021.

[121] S. Moe and C. Sterud, “Decoupling dynamics and sampling: RNNs for unevenly
sampled data and flexible online predictions,” Learning for Dynamics and Control,
2021.

[122] C. Sterud, S. Moe, M. V. Bram, S. Roberts, and J.-P. Calliess, “Recurrent neural
network structures for learning control valve behaviour,” Automation, Robotics &
Communications for Industry 4. 0, p. 20, 2021.

[123] Wikipedia contributors, Chain rule (probability), https://en.wikipedia.org/
w/index.php?title=Chain_rule_(probability)&oldid=1017757604, Accessed:
2021-4-27, Apr. 2021.

[124] ——, Conservation of mass, https://en.wikipedia.org/w/index.php?title=
Conservation_of_mass&oldid=1036600537, Accessed: 2021-8-1, Aug. 2021.

[125] ——, Density of air, https://en.wikipedia.org/w/index.php?title=Density_
of_air&oldid=1031055600, Accessed: 2021-6-29, Jun. 2021.

[126] ——, Laws of thermodynamics, https://en.wikipedia.org/w/index.php?
title=Laws_of_thermodynamics&oldid=1039497430, Accessed: 2021-8-19, Aug.
2021.

[127] Y. Yang, K. Zha, Y.-C. Chen, H. Wang, and D. Katabi, “Delving into deep
imbalanced regression,” Feb. 2021. arXiv: 2102.09554 [cs.LG].

[128] S. Moe, B. Myhre, A. M. Rustad, H. Helness, and F. Batey, “Neural network to
analyze wastewater treatment plant with CEPT,”

156

https://arxiv.org/abs/2010.05767
https://arxiv.org/abs/2002.10061
https://arxiv.org/abs/2002.10061
https://arxiv.org/abs/2004.10883
https://arxiv.org/abs/2006.13431
https://arxiv.org/abs/2006.13431
https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/2107.03342
https://en.wikipedia.org/w/index.php?title=Chain_rule_(probability)&oldid=1017757604
https://en.wikipedia.org/w/index.php?title=Chain_rule_(probability)&oldid=1017757604
https://en.wikipedia.org/w/index.php?title=Conservation_of_mass&oldid=1036600537
https://en.wikipedia.org/w/index.php?title=Conservation_of_mass&oldid=1036600537
https://en.wikipedia.org/w/index.php?title=Density_of_air&oldid=1031055600
https://en.wikipedia.org/w/index.php?title=Density_of_air&oldid=1031055600
https://en.wikipedia.org/w/index.php?title=Laws_of_thermodynamics&oldid=1039497430
https://en.wikipedia.org/w/index.php?title=Laws_of_thermodynamics&oldid=1039497430
https://arxiv.org/abs/2102.09554

BIBLIOGRAPHY

[129] C. Sterud, S. Moe, and J. T. Gravdahl, “Stable and robust neural network controllers,”

157

Appendix A

Matlab Code

A.1 Spray drier ODE function

A function pointer to this function is used for the ode451 ordinary differential equation
solver in Matlab, called by the PID regulator in spray_rollout_pid for training the
generative model, spray_rollout_pid_stable for training the reward model and within
ProcessEnvironment as a real time process simulator. This ODE function models the
spray drier mass- and energy balances.

1 function dydt = spray_f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,tau)
2
3 dydt = zeros(6,1); % Qstate Qgstate Tout Dropletsz Hum bv
4
5 % specific heat capacity
6 cfeed = 4000; % Empiric unknown % water 4184, Joules per kilogram per degree Celsius (J/kg°C).
7 %pfeed = 1200; % density feed, kg/m3
8
9 cgas = 600; % air, Joules per kilogram per degree Celsius (J/kg°C)

10 % density, kg/m3 (table), varies with temp/RH: https://en.wikipedia.org/wiki/Density_of_air
11 pgas = 0.7; % Empiric unknown, 1.225 (20*C);
12
13 % Mass balance
14 mwrate = (Q * pfeed) / tau; % water rate m3/h to mass kg/min
15 mgrate = (Qg * pgas) / tau; % gas rate m3/h to mass kg/min
16 dydt(1) = -y(1) + mwrate;
17 dydt(2) = -y(2) + mgrate;
18
19 % Atomizer rpm
20 dydt(3) = (-y(3) + rpm) * 0.05;
21
22 % Energy balance, instant heat flux
23 beta = 0.9;
24 deltat_gas = Tin - Tfeed; % gas - feed, diff temp (K)
25 energy_gas = mgrate * cgas * deltat_gas * beta;
26 dydt(4) = -y(4) + (energy_gas / mwrate / cfeed); % Celsius
27
28 % Droplet size from atomizer
29 % Sauter mean droplet size formula, L. X. Huang and A. S. Mujumdar
30 M = (Q * pfeed);
31 nom = 1.4e4*(M^0.24);
32 d = 0.7; % diameter m
33 n = 0.1; % height m
34 h = 1; % unkown
35 denom = ((y(3) * d)^0.83) * ((n * h)^0.12);
36 droplet_size = nom / denom;
37 dydt(5) = -y(5) + droplet_size; % micrometer (um)
38

1https://se.mathworks.com/help/matlab/ref/ode45.html

159

APPENDIX A. MATLAB CODE

39 % Evaporation dynamics, assumptions:
40 % The droplet is heated before evaporation starts
41 % Near-linear evaporation (as a function of droplet size)
42 time = 2; % s
43 temp = 1/y(4); % C
44 area = 1/y(5); % um
45
46 % Convert relative humidity to absolute humidity
47 % https://carnotcycle.wordpress.com/2012/08/04...
48 % /how-to-convert-relative-humidity-to-absolute-humidity/
49 deltaRH = (6.112 * exp((17.67 * 25)/(25+243.5)) * RHg * 2.1674) / (273.15+25);
50 deltaRH = deltaRH / 1000;
51 gamma = 1.8;
52 evap = time * temp * area * 1/deltaRH * 100 * gamma;
53 dydt(6) = -y(6) + evap;
54
55 % Bulk weight linear model r^2=0.76
56 dydt(7) = -y(7) + y(6) * 0.0276 + 0.5088;
57 end

Listing A.1: spray_f.m

A.2 Datastores
The datastores are used for training the generative- or reward models as pluggable classes
for training and validation data according to the moving window skewing mechanism
described in Chapter 4. There are two datastores implemented; the RolloutDatastore
and HistorianDatastore.

 HistorianDatastore

 RolloutDatastore

 Datastore
matlab.io

 Partitionable
matlab.io.datastore

Figure A.1: Class diagram of datastores

The RolloutDatastore takes a PID function as input and calls this function to calculate
in real time the process data, which otherwise could come from timeseries log files.

Instantiating the class is done by:
1 datastore = RolloutDatastore(@rollout_func, rollouts, sequence_length);

160

A.2. DATASTORES

where @rollout_func is a function pointer to one of the implemented rollout functions:

• spray_rollout_pid

• spray_rollout_pid_stable

The HistorianDatastore connects to a Historian database and queries for the tag
data available.

A.2.1 RolloutDatastore.m

1 % A custom datastore for generating data from specified ODE function rollout
2 % Data is scaled based on an initial dataset and pre-processed accordingly
3 classdef RolloutDatastore < matlab.io.Datastore & ...
4 matlab.io.datastore.Partitionable
5
6 properties
7 featureDimension
8 Mean
9 Std

10 Rollouts
11 Sequence_length
12 Empty_columns
13 MV % manipulated variables
14 CV % controlled variables
15 RV % responding variables
16 end
17
18 properties (Access = private)
19 rollout_func
20 counts
21 end
22
23 methods
24
25 function this = RolloutDatastore(rollout_func, rollouts, sequence_length)
26 this.rollout_func = rollout_func;
27 this.Rollouts = rollouts; % number of calculated rollouts per session/epoch
28 this.Sequence_length = sequence_length;
29 reset(this);
30
31 % Establish parameters for scaling by creating random
32 % rollout distributions. This will be overwritten if loading a model from
33 % disk (GenerativeModel.m)
34 Tt = [];
35 for i=1:rollouts
36 [T, MV, CV, RV] = this.rollout_func();
37 Tt = [Tt;T];
38 end
39 this.Mean = mean(T);
40 this.Std = std(T);
41
42 % Identify columns with standard deviation of zero (or some
43 % other threshold, need to verify
44 this.Empty_columns = ~any(std(T),1);
45 this.Mean(:, this.Empty_columns) = [];
46 this.Std(:, this.Empty_columns) = [];
47 this.featureDimension = size(this.Mean,2);
48
49 % Remove those columns from metadata
50 mask = mat2cell(this.Empty_columns, 1, [numel(MV) numel(CV) numel(RV)]);
51 this.MV = MV(~mask{1});
52 this.CV = CV(~mask{2});
53 this.RV = RV(~mask{3});
54 end
55
56 function [rollout, legend] = inverse_scale(this, rollout)

161

APPENDIX A. MATLAB CODE

57 rollout = (rollout .* this.Std) + this.Mean;
58 legend = {this.MV this.CV this.RV};
59 end
60
61 function [rollout, legend] = scale(this, rollout)
62 rollout = (rollout - this.Mean) ./ this.Std;
63 legend = {this.MV this.CV this.RV};
64 end
65
66 function [mv_std, mv_mean, legend] = inverse_scale_params_mv(this)
67 mv_std = this.Std(1:numel(this.MV));
68 mv_mean = this.Mean(1:numel(this.MV));
69 legend = {this.MV};
70 end
71
72 function tf = hasdata(this)
73 tf = this.counts <= this.Rollouts;
74 end
75
76 function [data,info] = read(this)
77 T = this.rollout_func();
78
79 % Remove columns with standard deviation of zero
80 T(:, this.Empty_columns) = [];
81
82 % normalize
83 T = (T - this.Mean) ./ this.Std;
84
85 % To forecast the values of future time steps of a sequence,
86 % specify the responses to be the training sequences with values
87 % shifted by one time step. That is, at each time step of the input sequence,
88 % the LSTM network learns to predict the value of the next time step.
89 forecast_window = 1;
90
91 % Separate the data into chunks of sequence length (skewed by forecast_window
92 sequence_length = this.Sequence_length;
93
94 % The predictors are the training sequences without the final time step.
95 % Transform data to be supervised learning
96 pointer = 1;
97 data = [];
98 room = 2*sequence_length-forecast_window;
99 while pointer < size(T,1)-room

100 % Many to many (OutputMode = sequence)
101 %x_end = pointer+sequence_length-forecast_window;
102 %y_end = x_end+sequence_length;
103 %X = T(pointer:x_end,:)';
104 %Y = T(x_end+forecast_window:y_end,:)';
105
106 % Many to one (OutputMode = last)
107 x_end = pointer+sequence_length-forecast_window;
108 X = T(pointer:x_end,:)';
109 Y = T(x_end+forecast_window ,:)';
110
111 data = [data; {X Y}];
112 pointer = pointer + forecast_window;
113 end
114
115 info = [];
116 this.counts = this.counts + 1;
117 end
118
119 function reset(this)
120 this.counts = 0;
121 end
122
123 function subds = partition(ds,n,ii)
124 subds = copy(ds);
125 reset(subds);
126 end
127

162

A.2. DATASTORES

128 end
129
130 methods(Access = protected)
131 function n = maxpartitions(ds)
132 n = 30;
133 end
134 end
135
136 methods (Hidden = true)
137 function frac = progress(this)
138 frac = this.counts / this.Rollouts;
139 end
140 end
141
142 end

Listing A.2: RolloutDatastore.m

A.2.2 HistorianDatastore.m

1 % A custom datastore for reading and presenting data from Osisoft PI Historian
2 % Data is scaled based on the largest dataset and pre-processed accordingly
3 classdef HistorianDatastore < matlab.io.Datastore & ...
4 matlab.io.datastore.Partitionable
5
6 properties
7 featureDimension
8 Mean
9 Std

10 Sequence_length
11 MV % manipulated variables
12 CV % controlled variables
13 RV % responding variables
14 end
15
16 properties %(Access = private)
17 sequence_counter
18 T
19 currentT
20 pointer
21 forecast_window
22 tag_function
23 filter_function
24 source_data
25 miniBatchSize
26 created
27 mirrored_output
28 ipredictors
29 iresponses
30 add_noise
31 end
32
33 methods
34
35 function this = HistorianDatastore(sequence_length, tag_function, filter_function, ...
36 starttime, endtime, interval, resample_interval, gap_threshold, ...
37 mirrored_output, add_noise)
38 this.Sequence_length = sequence_length;
39 this.tag_function = tag_function;
40 this.filter_function = filter_function;
41 this.created = datetime('now');
42 this.mirrored_output = mirrored_output;
43 this.add_noise = add_noise;
44
45 if endtime == '*'
46 [D, MV, CV, RV] = this.read_data_single(starttime, endtime, ...
47 interval, resample_interval);
48 else
49 [D, MV, CV, RV] = this.read_data(starttime, endtime, ...
50 interval, resample_interval);
51 end

163

APPENDIX A. MATLAB CODE

52 this.source_data = D;
53
54 % Separate predictors and responses
55 if mirrored_output % autoencoder
56 this.ipredictors = 1:size(D,2);
57 this.iresponses = 1:size(D,2);
58 else
59 this.ipredictors = 1:numel([MV' CV']);
60 this.iresponses = numel(this.ipredictors)+1:numel(this.ipredictors)+numel(RV');
61 end
62
63 % Find time gaps in data
64 gap = diff(D.Timestamp);
65 idx = find(gap > gap_threshold);
66 if numel(idx) == 0 % if no gaps, treat as one sequence
67 idx = [size(D,1)];
68 end
69
70 % Break into sequences
71 X={};
72 prev = 1;
73 for i = 1:length(idx)
74 X{i,1} = cell2mat(table2cell(D(prev:idx(i),:)))';
75 prev = idx(i)+1;
76 end
77
78 % Get the sequence lengths for each observation.
79 sequenceLengths = [];
80 for i=1:numel(X)
81 sequence = X{i};
82 sequenceLengths(i) = size(sequence ,2);
83 end
84 [this.miniBatchSize, max_index] = max(sequenceLengths);
85 idx = 1:numel(sequenceLengths);
86
87 % Normalization parameter calculation on all data
88 this.Mean = cell2mat(table2cell(varfun(@mean,D)));
89 this.Std = cell2mat(table2cell(varfun(@std,D)));
90 this.featureDimension = size(this.Mean,2);
91
92 % Remove short sequences
93 mask = sequenceLengths < (this.Sequence_length*2);
94 idx(mask) = [];
95 this.T = X(idx);
96
97 % Stop if we have no sequences
98 if numel(idx) == 0
99 error("No sequences satisfying conditions the found")

100 end
101
102 % Set initial pointers
103 reset(this);
104
105 this.MV = MV';
106 this.CV = CV';
107 this.RV = RV';
108 end
109
110 function [D, MV, CV, RV] = read_data(this, starttime, endtime, interval, resample_interval)
111 % Read data from PI in chunks
112 [MV, CV, RV] = this.tag_function();
113
114 D = [];
115 currentt = datetime(starttime);
116 while currentt < endtime
117 stt = datestr(currentt,'yyyy-mm-dd');
118 ent = datestr(currentt + calmonths(1) - days(1),'yyyy-mm-dd');
119 d = get_data([MV;CV;RV],'startTime', stt, 'endTime', ent, ...
120 'interval', interval, 'resample_interval', resample_interval);
121 D = [D;d];
122 currentt = currentt + calmonths(1);

164

A.2. DATASTORES

123 end
124 D = this.post_process_data(D);
125 end
126
127 function [D, MV, CV, RV] = read_data_single(this, starttime, endtime, interval, resample_interval)
128 % Read data from PI
129 [MV, CV, RV] = this.tag_function();
130 D = get_data([MV;CV;RV],'startTime', starttime, 'endTime', endtime, ...
131 'interval', interval, 'resample_interval', resample_interval);
132 D = this.post_process_data(D);
133 end
134
135 function D = post_process_data(this, data)
136 % Filter unwanted data
137 [D, smoothing, fill] = this.filter_function(data);
138
139 % Smooth data
140 if smoothing
141 D = smoothdata(D);
142 end
143
144 % Fill missing data
145 if fill
146 D = fillmissing(D,'constant',0);
147 end
148 end
149
150 function this = replace_data(this, starttime, endtime, interval, resample_interval)
151 [D, ~, ~, ~] = read_data_single(this, starttime, endtime, interval, resample_interval);
152
153 %TODO Calculate starttime
154 %This function's intention is to replace sequencelength amount
155 %of data back in time, for resetting the generative model with
156 %live data
157
158 this.T = [];
159 this.T{1,1} = cell2mat(table2cell(D))';
160
161 % Set initial pointers
162 reset(this);
163 end
164
165 function [rollout, legend] = inverse_scale(this, rollout)
166 rollout = (rollout .* this.Std) + this.Mean;
167 legend = {this.MV this.CV this.RV};
168 end
169
170 function [rollout, legend] = scale(this, rollout)
171 rollout = (rollout - this.Mean) ./ this.Std;
172 legend = {this.MV this.CV this.RV};
173 end
174
175 function [rollout, legend] = scale_predictors(this, rollout)
176 rollout = (rollout - this.Mean(this.ipredictors)) ./ this.Std(this.ipredictors);
177 legend = {this.MV this.CV};
178 end
179
180 function [rollout, legend] = inverse_scale_responses(this, rollout)
181 rollout = (rollout .* this.Std(this.iresponses)) + this.Mean(this.iresponses);
182 legend = {this.RV};
183 end
184
185 function [mv_std, mv_mean, legend] = inverse_scale_params_mv(this)
186 mv_std = this.Std(1:numel(this.MV));
187 mv_mean = this.Mean(1:numel(this.MV));
188 legend = {this.MV};
189 end
190
191 function tf = hasdata(this)
192 % return true if there are more sequences available
193 tf = this.sequence_counter < size(this.T,1);

165

APPENDIX A. MATLAB CODE

194 end
195
196 function tf = hasdata_in_sequence(this)
197 room = this.Sequence_length - this.forecast_window;
198 tf = this.pointer < size(this.currentT ,1) - room;
199 end
200
201 function [data,info] = read(this)
202 % Noise to be added to the signals
203 sigma = 0.001;
204
205 data = [];
206
207 if ~hasdata_in_sequence(this)
208 next_sequence(this);
209 end
210
211 if hasdata_in_sequence(this)
212 % Many to one (OutputMode = last)
213 x_end = this.pointer + this.Sequence_length - this.forecast_window;
214 X = this.currentT(this.pointer:x_end,this.ipredictors)';
215 Y = this.currentT(x_end + this.forecast_window,this.iresponses)';
216
217 % Add noise to all signal channels
218 if this.add_noise
219 for i=1:size(X,1)
220 X(i,:) = addNoise(sigma, X(i,:));
221 end
222 for i=1:size(Y,1)
223 Y(i,:) = addNoise(sigma, Y(i,:));
224 end
225 end
226
227 data = [{X Y}];
228 this.pointer = this.pointer + this.forecast_window;
229 end
230
231 info = [];
232 end
233
234 function reset(this)
235 this.sequence_counter = 0;
236 this.forecast_window = 1;
237
238 this.next_sequence();
239 end
240
241 function next_sequence(this)
242 this.pointer = 1;
243 this.sequence_counter = this.sequence_counter + 1;
244
245 % Randomly select a sequence
246 this.currentT = randsample(this.T,1);
247 this.currentT = this.currentT{1}';
248
249 % normalize
250 this.currentT = this.scale(this.currentT);
251 end
252
253 function subds = partition(ds,n,ii)
254 subds = copy(ds);
255 reset(subds);
256 end
257
258 end
259
260 methods(Access = protected)
261 function n = maxpartitions(ds)
262 n = 30;
263 end
264 end

166

A.3. GENERATIVE MODEL

265
266 methods (Hidden = true)
267 function frac = progress(this)
268 frac = this.sequence_counter / size(this.T,1);
269 end
270 end
271
272 end

Listing A.3: HistorianDatastore.m

A.2.3 get_data.m

The get_data function is a low level call towards the OSISoft Web API 2 used by the class
HistorianDatastore.

1 function T = get_data(tags, varargin)
2 api = <url to pi web api server>;
3 options = weboptions('CertificateFilename',<certificate>,'ContentType','json');
4
5 % Parse input arguments
6 narginchk(1,inf)
7 params = inputParser;
8 params.CaseSensitive = false;
9 params.addParameter('startTime', '-1h', @(x) ischar(x));

10 params.addParameter('endTime', '*', @(x) ischar(x));
11 params.addParameter('interval', '1m', @(x) ischar(x));
12 params.addParameter('resample_interval', 1, @(x) isnumeric(x));
13 params.parse(varargin{:});
14
15 T = [];
16 for i = 1:length(tags)
17 points = webread([api '/points'],'path',tags{i},options);
18 response = webread([api '/streamsets/interpolated'],'webId',points.WebId,...
19 'startTime',params.Results.startTime,'endTime',params.Results.endTime,'interval',...
20 params.Results.interval,options);
21
22 for j = 1:numel(response.Items.Items);
23 if ~isnumeric(response.Items.Items(j).Value)
24 response.Items.Items(j).Value = nan;
25 end
26 end
27 D = struct2table(response.Items.Items);
28
29 D.Properties.VariableNames{2} = tags{i};
30 D.Timestamp = erase(D.Timestamp, 'Z');
31 D.Timestamp = datetime(D.Timestamp);
32 D = removevars(D,{'UnitsAbbreviation','Good',...
33 'Questionable','Substituted','Annotated'});
34
35 D = table2timetable(D);
36 if isempty(T)
37 T = D;
38 else
39 T = synchronize(T,D,'regular','linear','TimeStep',...
40 minutes(params.Results.resample_interval));
41 end
42 end
43 end

A.3 Generative Model
The GenerativeModel class is used as environment simulator for the SyntheticEnvironment
class.

The model uses the choice of datastore during instantiation:
2https://docs.osisoft.com/bundle/pi-web-api-reference

167

APPENDIX A. MATLAB CODE

1 genmodel = GenerativeModel(name, datastore, epochs, minibatchsize, numHiddenUnits, ...
2 numHiddenLayers, numLatent, sequence_length, environment_length)

 GenerativeModel

 RewardModel

Figure A.2: Class diagram of generative models

A class RewardModel inherits all properties and methods from the GenerativeModel
class.

A.3.1 GenerativeModel.m

1 % Class for handling training of generative model (historical process data)
2 classdef GenerativeModel
3
4 properties
5 Name
6 Action
7 Observation
8 ObservationSequence
9 end

10
11 properties %(Access = protected)
12 layers
13 options
14 net
15 info
16 filename
17 datastore
18 sequence_length
19 environment_length
20 initial_observation
21 zeroMapping % bias of network
22 end
23
24 methods
25 % Contructor method
26 function this = GenerativeModel(name, datastore, epochs, minibatchsize, ...
27 numHiddenUnits, numHiddenLayers, numLatent, sequence_length, environment_length)
28 this.Name = name;

168

A.3. GENERATIVE MODEL

29 this.datastore = datastore;
30 this.sequence_length = sequence_length;
31 this.environment_length = environment_length;
32 this.initial_observation = [];
33
34 % Define autoencoder network
35 this.layers = this.lstm_network(numHiddenUnits, numHiddenLayers, numLatent);
36
37 % Set Training Options
38 this.options = this.train_options(epochs, minibatchsize);
39
40 % Load existing file
41 this.filename = [name '.mat'];
42 if isfile(this.filename)
43 load(this.filename, 'net', 'datastore', 'initial_observation', 'info');
44 this.net = net;
45 this.datastore = datastore; % override the above init
46 this.info = info;
47 this.initial_observation = initial_observation;
48 end
49
50 % read the initial sequence, our starting point for RL
51 if isempty(this.initial_observation)
52 this.initial_observation = read(this.datastore);
53 this.initial_observation{1,1};
54 end
55 end
56
57 function [this, info] = train_model(this)
58 % Train the mean network
59 % Assume that the mean response, �(y|x), is normally distributed
60 [this.net, info] = trainNetwork(this.datastore, this.layers, this.options);
61 this.info = info;
62 end
63
64 function this = plot_training(this)
65 figure
66 x = linspace(1,numel(this.info.TrainingLoss),numel(this.info.TrainingLoss));
67 plot(x, this.info.TrainingRMSE ,"LineWidth",0.1)
68 ylabel("RMSE")
69 yyaxis right
70 plot(x, this.info.BaseLearnRate ,"LineWidth",1)
71 legend(["Validation loss", "Learning rate"])
72 ylabel("lr")
73 xlabel("Iteration")
74 end
75
76 function [this, info] = continue_train_model(this, initial_lr)
77 this.options.InitialLearnRate = initial_lr;
78 [this.net, info] = trainNetwork(this.datastore, this.net.Layers, this.options);
79 this.info = info;
80 end
81
82 function valError = test_model(this, rollout_func)
83 [T, MV, CV, RV] = rollout_func();
84
85 T = T(:,[1 2 9 10 11]); % TODO column selection net<-->ode
86 [T,~] = this.datastore.scale(T);
87
88 resetState(this.net);
89 err=[];
90 for i=1:size(T,1)-this.sequence_length
91 X = T(i:i+this.sequence_length ,:);
92 Y = T(this.sequence_length+this.environment_length ,:);
93 [this.net, pred] = predictAndUpdateState(this.net,{X'});
94 err(i) = sum(Y) - sum(pred);
95 end
96 valError = sqrt(mean(err).^2);
97 end
98
99 function save_model(this, info)

169

APPENDIX A. MATLAB CODE

100 net = this.net;
101 datastore = this.datastore;
102 initial_observation = this.initial_observation;
103 info = this.info;
104 save(this.filename, 'net', 'datastore', 'initial_observation', 'info');
105 end
106
107 function [ObservationInfo,ActionInfo] = get_environment(this)
108 obs = [this.datastore.MV this.datastore.CV this.datastore.RV];
109 obs_size = size(obs, 2);
110 act_size = size(this.datastore.MV, 2);
111
112 ObservationInfo = rlNumericSpec([obs_size this.environment_length]);
113 ObservationInfo.Name = [this.Name ' Observation'];
114 ObservationInfo.Description = strjoin(obs);
115
116 % Initialize Action settings
117 ActionInfo = rlNumericSpec([act_size 1],'LowerLimit',-15,'UpperLimit',15);
118 ActionInfo.Name = [this.Name ' Action'];
119 ActionInfo.Description = strjoin(this.datastore.MV);
120 end
121
122 function this = reset(this)
123 this = initialize_network(this, 60);
124
125 % Reset initial observation
126 this.datastore.reset();
127 this.initial_observation = read(this.datastore);
128
129 O = this.initial_observation{1,1};
130 A = this.initial_observation{1,2};
131
132 % split into action and observation space
133 act_size = size(this.datastore.MV, 2);
134 this.Observation = O(:,end-this.environment_length+1:end);
135 this.ObservationSequence = O; % towards generative model
136 this.Action = A(1:act_size);
137 end
138
139 function this = step(this, actions)
140 this.Action = actions;
141
142 % Predict next step by changing action but keep observation
143 % input to the network
144 act_size = size(this.datastore.MV, 2);
145 T = this.ObservationSequence;
146 T(1:act_size,end) = this.Action; % replace last action vector in observation
147
148 % Predict one step, network accepts sequence input only
149 [this.net, pred] = predictAndUpdateState(this.net,{T});
150 pred = pred - this.zeroMapping;
151
152 % Add some noise
153 sigma = 0.005;
154 pred = addNoise(sigma, pred);
155
156 pred = pred'; % for many-to-one models
157
158 % Update states, slide window one step.
159 %pred(1:act_size) = this.Action; % uncomment for disabling dynamics prediction
160 this.ObservationSequence(:,this.sequence_length+1) = pred;
161 this.ObservationSequence(:,1) = [];
162 this.Observation = this.ObservationSequence(:,end);
163 end
164
165 function [rollout, legend] = inverse_scale(this, rollout)
166 [rollout, legend] = this.datastore.inverse_scale(rollout);
167 end
168
169 function [rollout, legend] = scale(this, rollout)
170 [rollout, legend] = this.datastore.scale(rollout);

170

A.3. GENERATIVE MODEL

171 end
172
173 % Return parameters needed for inverse scaling of Manipulated Variables
174 function [mv_std, mv_mean, legend] = inverse_scale_params_mv(this)
175 [mv_std, mv_mean, legend] = this.datastore.inverse_scale_params_mv();
176 end
177
178 function this = initialize_network(this, initialization_period)
179 initializationSignal = zeros(this.datastore.featureDimension, ...
180 this.sequence_length * initialization_period);
181 this.net = resetState(this.net);
182 this.net = predictAndUpdateState(this.net, initializationSignal);
183 this.zeroMapping = predict(this.net, initializationSignal);
184 end
185 end
186
187 methods %(Access = protected)
188 function layers = lstm_network(this, numHiddenUnits, numHiddenLayers, numLatent)
189 % Define input
190 layers = [
191 sequenceInputLayer(this.datastore.featureDimension)
192];
193
194 % Define decoder
195 for i=1:numHiddenLayers
196 layers = [
197 layers
198 lstmLayer(numLatent)
199 dropoutLayer(0.2)
200];
201 end
202
203 % Define output
204 layers = [
205 layers
206 lstmLayer(numHiddenUnits, "OutputMode", "last")
207 dropoutLayer(0.2)
208 fullyConnectedLayer(this.datastore.featureDimension)
209 huberRegressionLayer('huber')
210];
211
212 end
213
214 function options = train_options(this, epochs, minibatchsize)
215 numberOfWorkers = 1;
216 minisize = minibatchsize * numberOfWorkers;
217 initialLearnRate = 0.05 * minisize/minibatchsize;
218
219 options = trainingOptions('adam', ...
220 'Plots', 'training-progress', ...
221 'Verbose', true, ...
222 'GradientThreshold',1, ...
223 'InitialLearnRate',initialLearnRate, ...
224 'LearnRateSchedule','piecewise', ...
225 'LearnRateDropPeriod',epochs/6, ...
226 'LearnRateDropFactor',0.2, ...
227 'MaxEpochs',epochs,...
228 'Shuffle','never', ...
229 'MiniBatchSize',minisize);
230 end
231 end
232
233 end

Listing A.4: GenerativeModel.m

A.3.2 RewardModel.m

1 classdef RewardModel < GenerativeModel
2
3 methods

171

APPENDIX A. MATLAB CODE

4
5 end
6
7 end

Listing A.5: RewardModel.m

A.4 Rollout functions
A function pointer to any of the rollout functions is inputted as argument to the instantiation
of the RolloutDatastore.

A.4.1 spray_rollout_pid.m

1 % Generate process data table T with stoichrometic model
2 % The process step response is recorded
3 function [T, MV, CV, RV] = spray_rollout_pid
4
5 % Manipulated variables: Q, 10-minute steps
6 MV = ["Q","rpm"];
7
8 t = linspace(1,60*10,60*10)';
9

10 a = 2;
11 b = 20;
12 r = (b-a).*rand(1,1) + a;
13 Q = repelem(r, length(t))'; % start value is randomized
14
15 % Tsp-scenario, randomize sp every n step
16 Tsp = repelem(1, length(t))';
17 n_step_r = 60;
18 for i=1:n_step_r:length(t)
19 r = getrandom(88, 142); % orig: 88-92
20 Tsp(i:i+n_step_r -1) = repelem(r, n_step_r);
21 end
22
23 % rpm-scenario, randomize sp
24 rpm = repelem(7600, length(t))';
25 n_step_r = floor(length(t)/3);
26 for i=1:n_step_r:length(t)
27 r = randsample([7600, 8000, 8600, 9200],1);
28 rpm(i:i+n_step_r -1) = repelem(r, n_step_r);
29 end
30
31 % Controlled variables
32 CV = ["Tin", "Qg", "Tg", "RHg", "pfeed", "Tfeed"]; %, "tsignal"];
33 sigma = 0.005;
34 %rpm = addNoise(sigma, repelem(7600,length(Q)))'; % atomizer rpm
35 Tin = addNoise(sigma, repelem(180,length(Q)))'; % gas temp in
36 Qg = addNoise(sigma, repelem(100000,length(Q)))'; % gas flow in m3/h
37 Tg = addNoise(sigma, repelem(25,length(Q)))'; % outside temp
38 RHg = addNoise(sigma, repelem(88,length(Q)))'; % gas RH in
39 pfeed = addNoise(sigma, repelem(1200,length(Q)))'; % density feed
40 Tfeed = addNoise(sigma, repelem(95,length(Q)))'; % feed temperature
41 %tsignal = repmat(getsine(1, 1, 0),[1 6])';
42
43 % Responding variables
44 RV = ["Tout", "DropletSZ", "Hum"];
45 Tout = repelem(nan,length(Q))';
46 DropSZ = repelem(nan,length(Q))';
47 Hum = repelem(nan,length(Q))';
48
49 T = table(Q, rpm, Tin, Qg, Tg, RHg, pfeed, Tfeed, Tout, DropSZ, Hum); %, tsignal);
50 T = table2array(T);
51
52 tStep = linspace(1,numel(Q),numel(Q));
53 y0 = [1 1 7600 95 100 5 0.65]; % Qstate Qgstate rpmstate Tout Dropletsz Hum bv
54 T(1,9) = y0(4); % Tout

172

A.4. ROLLOUT FUNCTIONS

55 T(1,10) = y0(5); % Dropletsz
56 T(1,11) = y0(6); % Hum
57
58 tau = 60;
59
60 for index = 2:numel(tStep)
61 % select row
62 Q = T(index-1,1); % previous one
63 rpm = T(index,2);
64 Tin = T(index,3);
65 Qg = T(index,4);
66 Tg = T(index,5);
67 RHg = T(index,6);
68 pfeed = T(index,7);
69 Tfeed = T(index,8);
70
71 % Regulate Q against Tsp and Tactual
72 %MV = Kp * (SP - PV)
73 Qdot = -0.01 * (Tsp(index) - T(index-1,9));
74 Q = Q + Qdot;
75
76 % Integrate
77 af = @(t,y) spray_f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,tau);
78 t = tStep(index-1:index); % 1 minute
79 [t, y] = ode45(af, t, y0);
80
81 % Final value of x is initial value for next step
82 y0 = y(end, :);
83
84 % Collect the results
85 sigmaR = 0.001; % noise on Responding
86 T(index,1) = Q;
87 T(index,2) = y(end, 3);
88 T(index,9) = addNoise(sigmaR, y(end, 4));
89 T(index,10) = y(end, 5);
90 T(index,11) = y(end, 6);
91 end
92 T=T(60:end,:); % clip first frames (warmup)
93
94 end

Listing A.6: spray_rollout_pid.m

A.4.2 spray_rollou_pid_stable.m

For reward model
1 % Generate process data table T with stoichrometic model
2 % The process step response is recorded
3 function [T, MV, CV, RV] = spray_rollout_pid_stable
4
5 % Manipulated variables: Q, 10-minute steps
6 MV = ["Q","rpm"];
7
8 t = linspace(1,60*10,60*10)';
9

10 a = 2;
11 b = 20;
12 r = (b-a).*rand(1,1) + a;
13 Q = repelem(r, length(t))'; % start value is randomized
14
15 % Stable Tsp-scenario
16 Tsp = repelem(110, length(t))';
17
18 % Controlled variables
19 CV = ["Tin", "Qg", "Tg", "RHg", "pfeed", "Tfeed"]; %, "tsignal"];
20 sigma = 0.001;
21 rpm = addNoise(sigma, repelem(7600,length(Q)))'; % atomizer rpm
22 sigma = 0.001;
23 Tin = addNoise(sigma, repelem(180,length(Q)))'; % gas temp in
24 Qg = addNoise(sigma, repelem(100000,length(Q)))'; % gas flow in m3/h

173

APPENDIX A. MATLAB CODE

25 Tg = addNoise(sigma, repelem(25,length(Q)))'; % outside temp
26 RHg = addNoise(sigma, repelem(88,length(Q)))'; % gas RH in
27 pfeed = addNoise(sigma, repelem(1200,length(Q)))'; % density feed
28 Tfeed = addNoise(sigma, repelem(95,length(Q)))'; % feed temperature
29 %tsignal = repmat(getsine(1, 1, 0),[1 6])';
30
31 % Responding variables
32 RV = ["Tout", "DropletSZ", "Hum"];
33 Tout = repelem(nan,length(Q))';
34 DropSZ = repelem(nan,length(Q))';
35 Hum = repelem(nan,length(Q))';
36
37 T = table(Q, rpm, Tin, Qg, Tg, RHg, pfeed, Tfeed, Tout, DropSZ, Hum); %, tsignal);
38 T = table2array(T);
39
40 tStep = linspace(1,numel(Q),numel(Q));
41 y0 = [1 1 7600 95 100 5 0.65]; % Qstate Qgstate rpmstate Tout Dropletsz Hum bv
42 T(1,9) = y0(4); % Tout
43 T(1,10) = y0(5); % Dropletsz
44 T(1,11) = y0(6); % Hum
45
46 tau = 60;
47
48 for index = 2:numel(tStep)
49 % select row
50 Q = T(index-1,1); % previous one
51 rpm = T(index,2);
52 Tin = T(index,3);
53 Qg = T(index,4);
54 Tg = T(index,5);
55 RHg = T(index,6);
56 pfeed = T(index,7);
57 Tfeed = T(index,8);
58
59 % Regulate Q against Tsp and Tactual
60 %MV = Kp * (SP - PV)
61 Qdot = -0.01 * (Tsp(index) - T(index-1,9));
62 Q = Q + Qdot;
63
64 % Integrate
65 af = @(t,y) spray_f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,tau);
66 t = tStep(index-1:index); % 1 minute
67 [t, y] = ode45(af, t, y0);
68
69 % Final value of x is initial value for next step
70 y0 = y(end, :);
71
72 % Collect the results
73 sigmaR = 0.001; % noise on Responding
74 T(index,1) = Q;
75 T(index,2) = y(end, 3);
76 T(index,9) = addNoise(sigmaR, y(end, 4));
77 T(index,10) = y(end, 5);
78 T(index,11) = y(end, 6);
79 end
80 T=T(60:end,:); % clip first frames (warmup)
81
82 end

Listing A.7: spray_rollout_pid_stable.m

A.5 RL Environments

The RL environment classes are used for training an RL agent. The SyntheticEnvironment
class is a bridge between the GenerativeModel and the environment, where action proposals
from the agent is comitted through the generative model.

174

A.5. RL ENVIRONMENTS

 ProcessEnvironment

 SyntheticEnviron…

 MATLABEnvironm…
rl.env

Figure A.3: Class diagram of implemented RL environments

Instantiating the class is done by first specifying the generative model, the reward
function and any reward model, if one exists:

1 env = SyntheticEnvironment(genmodel, doplot, @reward_func, reward_model);validateEnvironment(env);

where @reward_func is a function pointer to one of the implemented reward functions:

• direct_response_reward

• sparse_reward

• learnt_reward

The ProcessEnvironments uses the spray_f function for real time simulation towards
the spray drier ordinary differential equations, and can be used for both training and agent
validation:

1 envProcess = ProcessEnvironment(genmodel, false, sigma, @reward_func, reward_model);
2 validateEnvironment(envProcess);

In a case where no process data exists, but a model of the process is implemented as
solvable ODE’s, the ProcessEnvironment can be used as the primary training environment
for an agent.

A.5.1 SyntheticEnvironment.m

1 classdef SyntheticEnvironment < rl.env.MATLABEnvironment
2
3 properties
4 Rollout
5 end
6

175

APPENDIX A. MATLAB CODE

7 properties %(Access = protected)
8 generative_model
9 plot_sequence

10 save_sequence
11 Figure
12 filename
13 m
14 reward_function
15 reward_model
16 end
17
18 methods
19 % Contructor method creates an instance of the environment
20 function this = SyntheticEnvironment(generative_model, plot_sequence, reward_function, reward_model)
21 % Query the generative model for the environment
22 [ObservationInfo,ActionInfo] = generative_model.get_environment;
23 this = this@rl.env.MATLABEnvironment(ObservationInfo,ActionInfo);
24 this.generative_model = generative_model;
25 this.plot_sequence = plot_sequence;
26 this.save_sequence = plot_sequence;
27 this.reward_function = reward_function;
28 this.reward_model = reward_model;
29
30 %time = datestr(now, 'yyyy_mm_dd_hh_MM_ss ');
31 %this.filename = sprintf('savedEpisodes\\training_%s.mat',time);
32 %m = matfile(filename, 'Writable', true);
33 end
34
35 % Apply system dynamics and simulates the environment with the
36 % given action for one step.
37 function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
38 LoggedSignals = [];
39
40 % Scale incoming action
41 [mv_std, mv_mean, ~] = this.generative_model.inverse_scale_params_mv();
42 action_scaled = (Action .* mv_std') + mv_mean';
43
44 % Apply action to the generative model
45 previous_action = (this.generative_model.Action .* mv_std') + mv_mean';
46 this.generative_model = this.generative_model.step(Action);
47 Observation = this.generative_model.Observation;
48
49 scaled_world = [this.generative_model.Observation(:,end)'];
50 [scaled_world, ~] = this.generative_model.inverse_scale(scaled_world);
51 this.Rollout = [this.Rollout;scaled_world];
52
53 [Reward, IsDone, this.reward_model] = this.reward_function(previous_action, action_scaled, ...
54 scaled_world, this.Rollout, this.generative_model.sequence_length, ...
55 this.generative_model, this.reward_model);
56
57 notifyEnvUpdated(this);
58 end
59
60 % Reset environment to initial state and output initial observation
61 function InitialObservation = reset(this)
62 % plot previous (and complete) episode
63 if this.plot_sequence
64 plotSequence(this);
65 end
66 if this.save_sequence
67 saveSequence(this);
68 end
69
70 % reset model
71 this.generative_model = this.generative_model.reset;
72 InitialObservation = this.generative_model.Observation;
73
74 scaled_world = [this.generative_model.Observation(:,end)'];
75 [scaled_world, ~] = this.generative_model.inverse_scale(scaled_world);
76 this.Rollout = scaled_world;
77

176

A.5. RL ENVIRONMENTS

78 if ~isempty(this.reward_model)
79 this.reward_model = this.reward_model.initialize_network(10); % TODO param!
80 end
81
82 notifyEnvUpdated(this);
83 end
84 end
85
86 methods
87 % (optional) Visualization method
88 function plot(this)
89 % Initiate the visualization
90
91 % Update the visualization
92 envUpdatedCallback(this)
93 end
94
95 function plotSequence(this)
96 if ~isempty(this.Rollout)
97 %tiledlayout(2,1);
98 %nexttile
99 plot(this.Rollout(:,end)) %3

100 ylim([80 150]);
101 yyaxis right
102 plot(this.Rollout(:,1))
103 ylim([1 20]);
104 yyaxis left
105 end
106 end
107
108 function saveSequence(this)
109 if ~isempty(this.Rollout)
110 %m = matfile(this.filename, 'Writable', true);
111 %[nrows,ncols] = size(m,'episode');
112 %m.episode(end+1,:) = this.Rollout;
113 end
114 end
115
116 function plotRollout(this)
117 if ~isempty(this.Rollout)
118 stackedplot(this.Rollout)
119 end
120 end
121 end
122
123 methods (Access = protected)
124 % update visualization everytime the environment is updated
125 % (notifyEnvUpdated is called)
126 function envUpdatedCallback(this)
127 %if ~isempty(this.Figure) && isvalid(this.Figure)
128
129 %end
130 end
131 end
132 end

Listing A.8: SyntheticEnvironment.m

A.5.2 ProcessEnvironment.m

1 classdef ProcessEnvironment < rl.env.MATLABEnvironment
2
3 properties
4 Rollout
5 end
6
7 properties(Access = protected)
8 generative_model
9 plot_sequence

10 Figure
11 %tStep

177

APPENDIX A. MATLAB CODE

12 y0
13 observation
14 index
15 tau
16 previous_action
17 reward_function
18 reward_model
19 sigma
20 end
21
22 methods
23 % Contructor method creates an instance of the environment
24 function this = ProcessEnvironment(generative_model, plot_sequence, sigma, ...
25 reward_function, reward_model)
26 % Query the generative model for the environment
27 [ObservationInfo,ActionInfo] = generative_model.get_environment;
28 this = this@rl.env.MATLABEnvironment(ObservationInfo,ActionInfo);
29 this.generative_model = generative_model;
30 this.plot_sequence = plot_sequence;
31 this.tau = 60;
32 this.sigma = sigma;
33 this.reward_function = reward_function;
34 this.reward_model = reward_model;
35 end
36
37 % Apply system dynamics and simulates the environment with the
38 % given action for one step.
39 function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
40 LoggedSignals = [];
41 epsilon = 1e-5;
42 this.index = this.index + 1;
43
44 % Scale incoming action (cannot find bug, network should do it)
45 [mv_std, mv_mean, ~] = this.generative_model.inverse_scale_params_mv();
46 action_scaled = (Action .* mv_std') + mv_mean';
47 Q = action_scaled(1);
48 rpm = action_scaled(2);
49
50 % Action damping
51 %alfa = 0.9;
52 %this.Q = (alfa * this.Q) + ((1-alfa) * Qp);
53 %this.Q = Qp;
54
55 % Step with Action
56 %sigma = 0.001;
57 %rpm = addNoise(sigma, 7600); % atomizer rpm
58 Tin = addNoise(this.sigma, 180); % gas temp in
59 Qg = addNoise(this.sigma, 100000); % gas flow in m3/h
60 Tg = addNoise(this.sigma, 25); % outside temp
61 RHg = addNoise(this.sigma, 88); % gas RH in
62 pfeed = addNoise(this.sigma, 1200); % density feed
63 Tfeed = addNoise(this.sigma, 95); % feed temperature
64
65 % Integrate
66 af = @(t,y) spray_f(t,y,Q,Qg,Tfeed,Tin,RHg,pfeed,rpm,this.tau);
67 t = [this.index this.index+1]; %this.tStep(this.index:this.index+1); % 1 minute
68 [t, y] = ode45(af, t, this.y0);
69
70 % Final value of x is initial value for next step
71 this.y0 = y(end, :);
72
73 % Collect the results
74 this.observation(1) = Q;
75 this.observation(2) = rpm;
76 this.observation(9) = y(end, 4); %addNoise(sigma, y(end, 3));
77 this.observation(10) = y(end, 5);
78 this.observation(11) = y(end, 6);
79 Observation = this.generative_model.scale(this.observation)';
80 this.Rollout = [this.Rollout;this.observation];
81
82 [Reward, IsDone, this.reward_model] = this.reward_function(this.previous_action, ...

178

A.5. RL ENVIRONMENTS

83 action_scaled, this.observation, this.Rollout, this.generative_model.sequence_length, ...
84 this.generative_model, this.reward_model);
85 this.previous_action = action_scaled;
86 IsDone = 0; % do not stop the process simulator
87
88 notifyEnvUpdated(this);
89 end
90
91 % Reset environment to initial state and output initial observation
92 function InitialObservation = reset(this)
93 % plot previous (and complete) episode
94 if this.plot_sequence
95 plotSequence(this);
96 end
97
98 % Reset model
99 % randomized

100 initial_observation = read(this.generative_model.datastore);
101 this.observation = (initial_observation{1}(:,end))';
102 % static from genmodel
103 %this.observation = (this.generative_model.initial_observation{1}(:,end))';
104 [this.observation, ~] = this.generative_model.inverse_scale(this.observation);
105
106 act_size = size(this.generative_model.datastore.MV, 2);
107 this.previous_action = [this.observation(1:act_size)'];
108
109 Q = this.observation(1);
110 rpmstate = this.observation(2);
111 Tout = this.observation(3);
112 Dropletsz = this.observation(4);
113 hum = this.observation(5);
114 % Qstate Qgstate Tout Dropletsz Hum bv
115 this.y0 = [Q 100000 rpmstate Tout Dropletsz hum 0.65];
116 InitialObservation = this.observation ';
117 %this.Q = Q;
118 this.index = 0;
119
120 % Make a log
121 this.Rollout = [this.observation];
122 notifyEnvUpdated(this);
123 end
124 end
125
126 methods
127 % (optional) Visualization method
128 function plot(this)
129 % Initiate the visualization
130
131 % Update the visualization
132 envUpdatedCallback(this)
133 end
134
135 function plotSequence(this)
136 if ~isempty(this.Rollout)
137 tiledlayout(2,1);
138 nexttile
139 plot(this.Rollout(:,3))
140 ylim([80 100]);
141 yyaxis right
142 plot(this.Rollout(:,1))
143 ylim([5 12]);
144 yyaxis left
145
146 %multivariate:
147 %nexttile
148 %histogram(this.Rollout(20:end,4))
149
150 nexttile
151 plot(this.Rollout(:,4))
152 ylim([100 150]);
153 yyaxis right

179

APPENDIX A. MATLAB CODE

154 plot(this.Rollout(:,2))
155 ylim([7000 10000]);
156 yyaxis left
157 end
158 end
159
160 function plotRollout(this)
161 if ~isempty(this.Rollout)
162 stackedplot(this.Rollout)
163 end
164 end
165 end
166
167 methods (Access = protected)
168 % (optional) update visualization everytime the environment is updated
169 % (notifyEnvUpdated is called)
170 function envUpdatedCallback(this)
171 %if ~isempty(this.Figure) && isvalid(this.Figure)
172
173 %end
174 end
175 end
176 end

Listing A.9: ProcessEnvironment.m

A.6 Reward functions

A choice of reward function is inputed to the instantiation of the RL environment classes.

A.6.1 direct_response_reward.m

1 function [Reward, IsDone, RewardModel] = direct_response_reward(previous_action, action_scaled, ...
2 scaled_world, logged_signals, sequence_length, generative_model, reward_model)
3
4 epsilon = 1e-5;
5
6 % Setpoint offset penalty
7 setpoint = 90;
8 errTout = abs(setpoint - scaled_world(3)) + epsilon; % MV + CV + RV vectors
9 rT = (1 / errTout);

10
11 % Penalize control effort
12 rA = -0.05*abs(previous_action(1) - action_scaled(1));
13
14 % Get reward
15 Reward = rT + rA;
16
17 % Check terminal condition
18 IsDone = errTout > 2;
19
20 RewardModel = reward_model;

Listing A.10: direct_response_reward.m

A.6.2 sparse_reward.m

1 function [Reward, IsDone, RewardModel] = sparse_reward(previous_action, action_scaled, ...
2 scaled_world, logged_signals, sequence_length, generative_model, reward_model)
3
4 epsilon = 1e-5;
5
6 % Shaped Sparse reward
7 dist = makedist('normal','mu',122,'sigma',5); % target distribution
8 rS = 0;
9 h = 0;

10 if size(logged_signals ,1) > sequence_length+4

180

A.7. AGENT NEURAL NETWORKS

11 theset=logged_signals(sequence_length:end,4);
12 [h,p,adstat,cv] = adtest(theset',"Distribution", dist);
13 rS = (~h);
14 end
15
16 % Get reward
17 Reward = rS;
18
19 % Check terminal condition
20 IsDone = h;
21
22 RewardModel = reward_model;

Listing A.11: sparsereward.m

A.6.3 learnt_reward.m

1 function [Reward, IsDone, RewardModel] = learnt_reward(previous_action, action_scaled, scaled_world, logged_signals, sequence_length, generative_model, reward_model)
2 % Extract sequence
3 trail_length = min(size(logged_signals ,1), sequence_length)-1;
4 data = logged_signals(end-trail_length:end-1,:);
5
6 % Query the reward model
7 data = reward_model.scale(data);
8 [reward_model.net, Y] = predictAndUpdateState(reward_model.net,{data'});
9 Y = reward_model.inverse_scale(Y);

10
11 % Scale to similar range
12 Y = generative_model.scale(Y);
13 X = generative_model.scale(scaled_world);
14 err = abs(sum(X-Y));
15 mse = abs(sum((X-Y).^2));
16
17 % Get reward
18 Reward = 1/mse; %err
19
20 % Check terminal condition
21 IsDone = 0;
22 if size(logged_signals ,1) > sequence_length*2
23 %IsDone = err > 2;
24 IsDone = sqrt(mse) > 5;
25 % reward model RMSE is lower
26 end
27
28 RewardModel = reward_model;

Listing A.12: learnt_reward.m

A.7 Agent neural networks
The SAC, PPO and DDPG agents uses similar network architectures for the actor and
critics, adjusted for framework specific requirements. To train the different actors, the
neural network functions below are used.

Example of creating a SAC Agent:
1 [actor, critic1, critic2] = agent_sac_v1_norm(genmodel);agentOptions =

rlSACAgentOptions(..."SequenceLength",
sequence_length,..."DiscountFactor",0.98,..."TargetSmoothFactor",1e-
3,..."ExperienceBufferLength", 1e6,..."UseDeterministicExploitation", false,
..."ResetExperienceBufferBeforeTraining", false,..."SaveExperienceBufferWithAgent", true);agent
= rlSACAgent(actor,[critic1 critic2],agentOptions);

Example of creating a PPO Agent:
1 [actor, critic] = agent_ppo_v1_norm(genmodel);
2 agentOpts = rlPPOAgentOptions(...
3 "MiniBatchSize", sequence_length,...
4 'ExperienceHorizon',1e6,...

181

APPENDIX A. MATLAB CODE

5 'DiscountFactor',0.98,...
6 "UseDeterministicExploitation", false);
7 agent = rlPPOAgent(actor,critic,agentOpts);

Example of creating a DDPG Agent:
1 [actor, critic] = agent_ddpg_v1_norm(genmodel);
2
3 agentOpts = rlDDPGAgentOptions(...
4 "SequenceLength", sequence_length,...
5 'TargetSmoothFactor',1e-3,...
6 'ExperienceBufferLength',1e6,...
7 'DiscountFactor',0.98,...
8 "ResetExperienceBufferBeforeTraining", false,...
9 "SaveExperienceBufferWithAgent", true);

10 agent = rlDDPGAgent(actor,critic,agentOpts);

All agents can then be trained in a similar way:
1 opt = rlTrainingOptions(...
2 'MaxEpisodes',5000, ...
3 'MaxStepsPerEpisode',600,... % minutes
4 'Verbose', false, ...
5 'Plots','training-progress',...
6 'StopTrainingCriteria',"AverageReward",'StopTrainingValue',1800);
7
8 trainStats = train(agent,env,opt)

A.7.1 agent_sac_v1_norm.m

1 function [actor, critic1, critic2] = agent_sac_v1_norm(genmodel)
2
3 % Datastore sequence: MV, CV, RV
4 [obsInfo, actInfo] = genmodel.get_environment;
5 numObs = obsInfo.Dimension(1);
6 numAct = actInfo.Dimension(1);
7
8 action_mean = genmodel.datastore.Mean(1:numAct)';
9 action_std = genmodel.datastore.Std(1:numAct)';

10 observation_mean = genmodel.datastore.Mean';
11 observation_std = genmodel.datastore.Std';
12
13 % Critic
14 statePath1 = [
15 sequenceInputLayer(numObs,'Normalization','zscore', 'Mean', observation_mean, ...
16 'StandardDeviation', observation_std,'Name','observation')
17 fullyConnectedLayer(400,'Name','CriticStateFC1')
18 reluLayer('Name','CriticStateRelu1')
19 fullyConnectedLayer(300,'Name','CriticStateFC2')
20];
21 actionPath1 = [
22 sequenceInputLayer(numAct,'Normalization','zscore', 'Mean', action_mean, ...
23 'StandardDeviation', action_std,'Name','action')
24 fullyConnectedLayer(300,'Name','CriticActionFC1')
25];
26 commonPath1 = [
27 additionLayer(2,'Name','add')
28 lstmLayer(8,'OutputMode','sequence','Name','lstm')
29 reluLayer('Name','CriticCommonRelu1')
30 fullyConnectedLayer(1,'Name','CriticOutput')
31];
32
33 criticNet = layerGraph(statePath1);
34 criticNet = addLayers(criticNet,actionPath1);
35 criticNet = addLayers(criticNet,commonPath1);
36 criticNet = connectLayers(criticNet,'CriticStateFC2','add/in1');
37 criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');
38
39 criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...

182

A.7. AGENT NEURAL NETWORKS

40 'UseDevice',"gpu",...
41 'GradientThreshold',1,'L2RegularizationFactor',2e-4);
42 critic1 = rlQValueRepresentation(criticNet,obsInfo,actInfo ,...
43 'Observation',{'observation'},'Action',{'action'},criticOptions);
44 critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo ,...
45 'Observation',{'observation'},'Action',{'action'},criticOptions);
46
47 % Actor
48 statePath = [
49 sequenceInputLayer(numObs,'Normalization','zscore', 'Mean', observation_mean, ...
50 'StandardDeviation', observation_std,'Name','observation')
51 fullyConnectedLayer(400, 'Name','commonFC1')
52 lstmLayer(8,'OutputMode','sequence','Name','lstm')
53 reluLayer('Name','CommonRelu')];
54 meanPath = [
55 fullyConnectedLayer(300,'Name','MeanFC1')
56 reluLayer('Name','MeanRelu')
57 fullyConnectedLayer(numAct,'Name','Mean')
58];
59 stdPath = [
60 fullyConnectedLayer(300,'Name','StdFC1')
61 reluLayer('Name','StdRelu')
62 fullyConnectedLayer(numAct,'Name','StdFC2')
63 softplusLayer('Name','StandardDeviation')];
64
65 concatPath = concatenationLayer(1,2,'Name','GaussianParameters');
66
67 actorNetwork = layerGraph(statePath);
68 actorNetwork = addLayers(actorNetwork,meanPath);
69 actorNetwork = addLayers(actorNetwork,stdPath);
70 actorNetwork = addLayers(actorNetwork,concatPath);
71 actorNetwork = connectLayers(actorNetwork,'CommonRelu','MeanFC1/in');
72 actorNetwork = connectLayers(actorNetwork,'CommonRelu','StdFC1/in');
73 actorNetwork = connectLayers(actorNetwork,'Mean','GaussianParameters/in1');
74 actorNetwork = connectLayers(actorNetwork,'StandardDeviation','GaussianParameters/in2');
75
76 actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
77 'UseDevice',"gpu",...
78 'GradientThreshold',1,'L2RegularizationFactor',1e-5);
79
80 actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo, ...
81 actorOptions,'Observation',{'observation'});

Listing A.13: agent_sac_v1_norm.m

A.7.2 agent_ppo_v1_norm.m

1 function [actor, critic] = agent_ppo_v1_norm(genmodel)
2
3 % Datastore sequence: MV, CV, RV
4 [obsInfo, actInfo] = genmodel.get_environment;
5 numObs = obsInfo.Dimension(1);
6 numAct = actInfo.Dimension(1);
7
8 action_mean = genmodel.datastore.Mean(1:numAct)';
9 action_std = genmodel.datastore.Std(1:numAct)';

10 observation_mean = genmodel.datastore.Mean';
11 observation_std = genmodel.datastore.Std';
12
13 % Critic
14 criticNet = [
15 sequenceInputLayer(numObs,'Normalization','zscore', 'Mean', observation_mean, ...
16 'StandardDeviation', observation_std,'Name','observation')
17 fullyConnectedLayer(400,'Name','CriticStateFC1')
18 reluLayer('Name','CriticStateRelu1')
19 fullyConnectedLayer(300,'Name','CriticStateFC2')
20 reluLayer('Name','CriticRelu2')
21 lstmLayer(8,'OutputMode','sequence','Name','lstm')
22 fullyConnectedLayer(1,'Name','CriticOutput')
23 regressionLayer('Name','RepresentationLoss')
24];

183

APPENDIX A. MATLAB CODE

25
26 criticNet = layerGraph(criticNet);
27
28 criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
29 'UseDevice',"cpu",...
30 'GradientThreshold',1,'L2RegularizationFactor',2e-4);
31 critic = rlValueRepresentation(criticNet,obsInfo,'Observation',{'observation'},criticOptions);
32
33 % Actor
34 actorNetwork = layerGraph();
35 tempLayers = [
36 sequenceInputLayer(numObs,'Normalization','zscore', 'Mean', observation_mean, ...
37 'StandardDeviation', observation_std,'Name','observation')
38 fullyConnectedLayer(400,"Name","fc_1")
39 reluLayer("Name","relu_body")
40 fullyConnectedLayer(300,"Name","fc_body")
41 reluLayer("Name","body_output")
42 lstmLayer(8,"Name","lstm")];
43 actorNetwork = addLayers(actorNetwork,tempLayers);
44
45 tempLayers = [
46 fullyConnectedLayer(numAct,"Name","fc_std")
47 softplusLayer("Name","std")];
48 actorNetwork = addLayers(actorNetwork,tempLayers);
49
50 tempLayers = [
51 fullyConnectedLayer(numAct,"Name","fc_mean")
52 tanhLayer("Name","tanh")
53];
54 actorNetwork = addLayers(actorNetwork,tempLayers);
55
56 tempLayers = [
57 concatenationLayer(1,2,"Name","output")
58 regressionLayer("Name","RepresentationLoss")];
59 actorNetwork = addLayers(actorNetwork,tempLayers);
60
61 actorNetwork = connectLayers(actorNetwork ,"lstm","fc_std");
62 actorNetwork = connectLayers(actorNetwork ,"lstm","fc_mean");
63 actorNetwork = connectLayers(actorNetwork ,"std","output/in2");
64 actorNetwork = connectLayers(actorNetwork ,"tanh","output/in1"); %scale
65
66 actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
67 'UseDevice',"cpu",...
68 'GradientThreshold',1,'L2RegularizationFactor',1e-5);
69
70 actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo, ...
71 'Observation',{'observation'},actorOptions);

Listing A.14: agent_ppo_v1_norm.m

A.7.3 agent_ddpg_v1_norm.m

1 function [actor, critic] = agent_ddpg_v1_norm(genmodel)
2
3 % Datastore sequence: MV, CV, RV
4 [obsInfo, actInfo] = genmodel.get_environment;
5 numObs = obsInfo.Dimension(1);
6 numAct = actInfo.Dimension(1);
7
8 action_mean = genmodel.datastore.Mean(1:numAct)';
9 action_std = genmodel.datastore.Std(1:numAct)';

10 observation_mean = genmodel.datastore.Mean';
11 observation_std = genmodel.datastore.Std';
12
13 % Critic
14 statePath1 = [
15 sequenceInputLayer(numObs,'Normalization','zscore', 'Mean', observation_mean, ...
16 'StandardDeviation', observation_std,'Name','observation')
17 fullyConnectedLayer(400,'Name','CriticStateFC1')
18 reluLayer('Name','CriticStateRelu1')
19 fullyConnectedLayer(300,'Name','CriticStateFC2')

184

A.8. RL SIMULATION FUNCTION

20];
21 actionPath1 = [
22 sequenceInputLayer(numAct,'Normalization','zscore', 'Mean', action_mean, ...
23 'StandardDeviation', action_std,'Name','action')
24 fullyConnectedLayer(300,'Name','CriticActionFC1')
25];
26 commonPath1 = [
27 additionLayer(2,'Name','add')
28 lstmLayer(8,'OutputMode','sequence','Name','lstm')
29 reluLayer('Name','CriticCommonRelu1')
30 fullyConnectedLayer(1,'Name','CriticOutput')
31];
32
33 criticNet = layerGraph(statePath1);
34 criticNet = addLayers(criticNet,actionPath1);
35 criticNet = addLayers(criticNet,commonPath1);
36 criticNet = connectLayers(criticNet,'CriticStateFC2','add/in1');
37 criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');
38
39
40 criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
41 'UseDevice',"gpu",...
42 'GradientThreshold',1,'L2RegularizationFactor',2e-4);
43 critic = rlQValueRepresentation(criticNet,obsInfo,actInfo ,...
44 'Observation',{'observation'},'Action',{'action'},criticOptions);
45
46 % Actor
47 actorNetwork = [
48 sequenceInputLayer(numObs,'Normalization','zscore', 'Mean', observation_mean, ...
49 'StandardDeviation', observation_std,'Name','observation')
50 fullyConnectedLayer(400,'Name','ActorFC1')
51 reluLayer('Name','ActorRelu1')
52 fullyConnectedLayer(300,'Name','ActorFC2')
53 reluLayer('Name','ActorRelu2')
54
55 lstmLayer(8,'OutputMode','sequence','Name','lstm')
56 reluLayer('Name','ActorCommonRelu1')
57 fullyConnectedLayer(numAct,'Name','ActorFC3')
58 softplusLayer('Name','ActorOutput')
59];
60
61 actorNetwork = layerGraph(actorNetwork);
62 actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
63 'UseDevice',"gpu",...
64 'GradientThreshold',1,'L2RegularizationFactor',1e-5);
65
66 actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo, ...
67 'Observation',{'observation'},'Action',{'ActorOutput'},actorOptions);

Listing A.15: agent_ddpg_v1_norm.m

A.8 RL Simulation function
When agent training is terminated, we can simulate its performance using the sim_confident
function:

1 values = sim_confident(agent, envProcess, trainStats, sequence_length);

towards a selected environment, e.g. the ProcessEnvironment as shown here.
1 function values = sim_confident(agent, env, trainStats, maxStepsPerEpisode)
2 obs = reset(env);
3 actor = getActor(agent);
4 critic = getCritic(agent);
5 maxQValue = max(trainStats.EpisodeQ0);
6 values = zeros(1,maxStepsPerEpisode);
7
8 for stepCt = 1:maxStepsPerEpisode
9

10 % Select action according to trained policy

185

APPENDIX A. MATLAB CODE

11 action = getAction(actor,{obs});
12
13 if isa(agent,'rl.agent.rlSACAgent')
14 value = getValue(critic(1),{obs},action); % SAC
15 end
16 if isa(agent,'rl.agent.rlPPOAgent')
17 value = getValue(critic,{obs}); % PPO
18 end
19 values(stepCt) = value / maxQValue;
20
21 % Step the environment
22 [nextObs,reward,isdone] = step(env,action{1});
23
24 % Check for terminal condition
25 % if isdone
26 % break
27 % end
28
29 obs = nextObs;
30 end

Listing A.16: sim_confident.m

A.9 Cascade demonstration environment

1 classdef CascadeEnvironment < rl.env.MATLABEnvironment
2
3 properties
4 sp
5 s
6 s1
7 s2
8 s1l
9 s2l

10 d1
11 d2
12 u1
13 u2
14 t
15 end
16
17 methods
18 % Contructor method creates an instance of the environment
19 function this = CascadeEnvironment()
20 ObservationInfo = rlNumericSpec([2 1]);
21 ActionInfo = rlNumericSpec([2 1],'LowerLimit',-3,'UpperLimit',3);
22 this = this@rl.env.MATLABEnvironment(ObservationInfo,ActionInfo);
23 end
24
25 function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
26 LoggedSignals = [];
27 this.t = this.t + 1;
28
29 u1 = Action(1); % outer regulator P
30 u2 = Action(2); % inner regulator P
31
32 this.s = this.s + u1 + u2;
33
34 this.s = this.P2(this.s) + this.d2(this.t);
35 this.s2 = this.s;
36 Observation(1) = this.s;
37 this.s2l = [this.s2l this.s];
38
39 this.s = this.P1(this.s) + this.d1(this.t);
40 this.s1 = this.s;
41 Observation(2) = this.s;
42 this.s1l = [this.s1l this.s];
43

186

A.9. CASCADE DEMONSTRATION ENVIRONMENT

44 Reward=1/abs(((this.sp - this.s)^2) + (0.01*(Action(1)^2)) + (0.001*(Action(2)^2)));
45 IsDone = 0;
46
47 Observation = Observation ';
48 notifyEnvUpdated(this);
49 end
50
51 % Reset environment to initial state and output initial observation
52 function InitialObservation = reset(this)
53 if ~isempty(this.s1l)
54 clf
55 hold on
56 plot(this.s2l,'--',"LineWidth",1)
57 plot(this.s1l,"LineWidth",1)
58 ylim([0 (this.sp*3)])
59 legend("Inner-P2","Out-P1")
60 grid
61 end
62
63
64 this.sp = 1;
65 this.s = 0;
66 this.s1l = [];
67 this.s2l = [];
68 this.s1=0;
69 this.s2=0;
70 this.d1 = getsine(1,0.1,1);
71 this.d2 = getsine(1,0.1,0.5); % phase shift
72 this.u1 = 0;
73 this.u2 = 0;
74 this.t = 0;
75
76 InitialObservation = {[this.s2; this.s1]};
77
78 notifyEnvUpdated(this);
79 end
80
81 function y=P2(this, x)
82 y=3./(x+2);
83 end
84 function y=P1(this, x)
85 y=10./((x+1).^3);
86 end
87 end
88
89 end

Listing A.17: CascadeEnvironment.m

187

Appendix B

Bayesian optimization run

189

APPENDIX B. BAYESIAN OPTIMIZATION RUN

Fi
gu

re
B
.1
:
M
at
la
b
Ex

pe
rim

en
t
M
an

ag
er

fo
r
B
ay
es
ia
n
op

tim
iz
at
io
n
of

ge
ne

ra
tiv

e
m
od

el
hy

pe
rp
ar
am

et
er
s

190

Appendix C

Demonstration of cascade
implementation

191

Cascade control
https://se.mathworks.com/help/control/ug/designing-cascade-control-system-with-pi-controllers.html

https://se.mathworks.com/help/reinforcement-learning/ug/tune-pi-controller-using-td3.html

We define two fictual sequential processes P2 and P1, where the inner loop process P2 is

and P1

Each of the processes as disturbed by d1 and d2, which are two phase shifted sine-functions.

Regulate by P
figure, hold on
sp = 1;
s = 0;
s1l = [];
s2l = [];
s1=0;
s2=0;
d1 = getsine(1,0.1,1);
d2 = getsine(1,0.1,0.5); % phase shift
u1 = 0;
u2 = 0;
regulate = true;
for t=1:100

 if regulate
 % manually tuned from unregulated process
 u1 = (2.5286*(sp-s1)); % outer regulator P
 u2 = (0.5666*(sp-s2)); % inner regulator P

1

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION

192

 end

 s = s + u1 + u2;

 s = P2(s) + d2(t);
 s2 = s;
 s2l = [s2l s];

 s = P1(s) + d1(t);
 s1 = s;
 s1l = [s1l s];

end

plot(s2l,'--',"LineWidth",1)
plot(s1l,"LineWidth",1)
legend("Inner-P2","Out-P1")
grid

Process disturbances
figure, hold on
plot(d2,'--',"LineWidth",1)
plot(d1,"LineWidth",1)
legend("P2 disturbance","P1 disturbance")
grid

2

193

Train agent
env = CascadeEnvironment();
validateEnvironment(env);
env.reset;
sequence_length = 10;

SAC agent
[actor, critic1, critic2] = agent_sac_v1(env);
agentOptions = rlSACAgentOptions(...
 "SequenceLength", sequence_length,...
 "DiscountFactor",0.99,...
 "TargetSmoothFactor",1e-3,...
 "ExperienceBufferLength", 1e6,...
 "UseDeterministicExploitation", true, ...
 "ResetExperienceBufferBeforeTraining", false,...
 "SaveExperienceBufferWithAgent", true);
agent = rlSACAgent(actor,[critic1 critic2],agentOptions);

PPO agent
[actor, critic] = agent_ppo_v1(env);
agentOpts = rlPPOAgentOptions(...
 "MiniBatchSize", sequence_length,...
 'ExperienceHorizon',1e6,...

3

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION

194

 'DiscountFactor',0.99,...
 "UseDeterministicExploitation", true);
agent = rlPPOAgent(actor,critic,agentOpts);

DDPG agent
[actor, critic] = agent_ddpg_v1(env);
agentOpts = rlDDPGAgentOptions(...
 "SequenceLength", sequence_length,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 "ResetExperienceBufferBeforeTraining", false,...
 "SaveExperienceBufferWithAgent", true);
agent = rlDDPGAgent(actor,critic,agentOpts);

opt = rlTrainingOptions(...
 'MaxEpisodes',5000, ...
 'MaxStepsPerEpisode',100);
trainStats = train(agent,env,opt);

Episode plots
figure
plot(trainStats.AverageReward,'LineWidth',1); hold on;
plot(trainStats.EpisodeQ0,'LineWidth',1); hold off;
xlabel("Episode")

4

195

ylabel("log-scale")
set(gca, 'YScale', 'log')
legend(["Average reward","Episode value"])

Warning: Negative data ignored

figure
plot(trainStats.AverageReward,'LineWidth',1);
yyaxis right;
plot(trainStats.EpisodeQ0,'LineWidth',1);
xlabel("Episode")
legend(["Average reward","Episode value"])

5

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION

196

numel(trainStats.EpisodeIndex) % episodes
trainStats.EpisodeQ0(end) % value
trainStats.AverageReward(end) % total reward

%save("savedAgents/2021-12-11-cascade-sac.mat",'agent','trainStats')
%load("savedAgents/2021-12-10-cascade-ppo.mat",'agent','trainStats')
%save("savedAgents/2021-12-10-cascade-ddpg.mat",'agent','trainStats')

Simulate
env.reset;
simOpts = rlSimulationOptions('MaxSteps',100);
experience = sim(env,agent,simOpts);
env.reset;

6

197

function y=P2(x)
 y=3./(x+2);
end
function y=P1(x)
 y=10./((x+1).^3);
end

7

APPENDIX C. DEMONSTRATION OF CASCADE IMPLEMENTATION

198

Appendix D

Demonstration of RNN
implementation

199

Recurrent Neural Network from Scratch
References:

• https://www.analyticsvidhya.com/blog/2019/01/fundamentals-deep-learning-recurrent-neural-networks-
scratch-python/

• https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85

Unfold:

rng(0);
figure
sin_wave = sin([1:200]);
plot(sin_wave(1:50))

1

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION

200

Prepare dataset
X = {};
Y = {};

seq_len = 50;
num_records = numel(sin_wave) - seq_len;

for i=1:num_records - seq_len
 X(i) = {sin_wave(i:i+seq_len-1)};
 Y(i) = {sin_wave(i+seq_len)};
end

Create the Architecture for RNN model
learning_rate = 0.0001;
nepoch = 25;
T = seq_len; % length of sequence
hidden_dim = 4; % neurons
output_dim = 1;

bptt_truncate = 5;
min_clip_value = -10;
max_clip_value = 10;

Define the weights of the network

2

201

avg = 0;
sigma = 1;

U = normrnd(avg, sigma, hidden_dim, T);
W = normrnd(avg, sigma, hidden_dim, hidden_dim);
V = normrnd(avg, sigma, output_dim, hidden_dim);

Train model
for epoch=1:nepoch
 loss = 0.0;

 for i=1:size(Y,2)
 x = X{i};
 y = Y{i};
 prev_h = zeros(hidden_dim, 1);
 layers = {};

 dU = zeros(size(U));
 dV = zeros(size(V));
 dW = zeros(size(W));

 dU_t = zeros(size(U));
 dV_t = zeros(size(V));
 dW_t = zeros(size(W));

 dU_i = zeros(size(U));
 dW_i = zeros(size(W));

 % do a forward pass to get prediction
 for t=1:T
 new_input = zeros(size(x))';
 new_input(t) = x(t);
 mulu = (U * new_input);
 mulw = (W * prev_h);
 add = mulw + mulu;
 h = sigmoid2(add);
 o = V * h;
 layers{t} = {h, prev_h};
 prev_h = h;
 end

 % Truncated back propagation through time (TBPTT)

 % derivative of pred

3

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION

202

 dmulv = (o - y);

 % backward pass
 for t=1:T
 l = layers{t};
 dV_t = dmulv * l{1}'; % s
 dsv = V' * dmulv;

 ds = dsv;
 dadd = add .* (1 - add) .* ds;

 dmulw = dadd .* ones(size(mulw));

 dprev_s = W' * dmulw;

 for i=t-1:-1:max(-1, t-bptt_truncate-1)
 ds = dsv + dprev_s;
 dadd = add .* (1 - add) .* ds;

 dmulw = dadd .* ones(size(mulw));
 dmulu = dadd .* ones(size(mulu));

 dW_i = W * l{2}; % prev_s
 dprev_s = W' * dmulw;

 new_input = zeros(size(x))';
 new_input(t) = x(t);
 dU_i = U * new_input;
 dx = U' * dmulu;

 dU_t = dU_t + dU_i;
 dW_t = dW_t + dW_i;
 end

 dV = dV + dV_t;
 dU = dU + dU_t;
 dW = dW + dW_t;

 if max(dU) > max_clip_value
 dU(dU > max_clip_value) = max_clip_value;
 end
 if max(dV) > max_clip_value
 dV(dV > max_clip_value) = max_clip_value;
 end
 if max(dW) > max_clip_value
 dW(dW > max_clip_value) = max_clip_value;
 end

 if min(dU) < min_clip_value
 dU(dU < min_clip_value) = min_clip_value;
 end
 if min(dV) < min_clip_value
 dV(dV < min_clip_value) = min_clip_value;
 end

4

203

 if min(dW) < min_clip_value
 dW(dW < min_clip_value) = min_clip_value;
 end

 end

 % update
 U = U - (learning_rate * dU);
 V = V - (learning_rate * dV);
 W = W - (learning_rate * dW);

 % calculate error
 loss_per_record = (y - o).^2 / 2;
 loss = loss + sum(loss_per_record);
 end

 loss = loss / size(y,2);
 disp(['Epoch ' num2str(epoch) ' loss ' num2str(loss)])
end

Epoch 1 loss 39.4363
Epoch 2 loss 38.2377
Epoch 3 loss 36.5682
Epoch 4 loss 35.6673
Epoch 5 loss 35.2582
Epoch 6 loss 35.0073
Epoch 7 loss 34.8418
Epoch 8 loss 34.7373
Epoch 9 loss 34.6772
Epoch 10 loss 34.6488
Epoch 11 loss 34.6437
Epoch 12 loss 34.6551
Epoch 13 loss 34.678
Epoch 14 loss 34.7085
Epoch 15 loss 34.7437
Epoch 16 loss 34.7814
Epoch 17 loss 34.82
Epoch 18 loss 34.8582
Epoch 19 loss 34.8953
Epoch 20 loss 34.9307
Epoch 21 loss 34.964
Epoch 22 loss 34.9949
Epoch 23 loss 35.0234
Epoch 24 loss 35.0495
Epoch 25 loss 35.0732

Predictions
One-step prediction
preds = [];
for i=1:size(Y,2)
 x = X{i};
 prev_h = zeros(hidden_dim, 1);

 % Forward pass
 for t=1:T
 mulu = U * x';

5

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION

204

 mulw = W * prev_h;
 add = mulw + mulu;
 h = sigmoid2(add);
 mulv = V * h;
 prev_h = h;
 end

 preds(i) = mulv;
end

figure
ass = cell2mat(Y);
plot(ass,"LineWidth",1); hold on;
plot(preds,"LineWidth",1);
legend("Actual","Prediction")
xlabel("t")

U

U = 4×50
 0.5237 0.3048 3.5644 0.7114 -0.1381 0.6575 0.4749 0.2799
 1.8361 -1.3055 2.7716 -0.0608 1.4919 -1.2053 1.0369 -0.7851
 -2.2491 -0.4239 -1.3402 0.7245 1.4187 0.7270 0.7366 0.8981
 0.8622 0.3426 3.0349 -0.2050 1.4172 1.6302 -0.3034 -1.1471

W

W = 4×4

6

205

 0.3630 0.3149 0.0174 -0.6960
 -0.7421 0.8030 0.1417 -0.1961
 0.9570 0.2692 -0.5242 -0.7042
 0.3392 -0.9093 1.7142 -1.1421

V

V = 1×4
 -0.3851 -0.4618 1.3429 -0.4377

Forecast
preds = X{1}; % start sequence
length=size(preds,2);
for i=length:length+50
 prev_h = zeros(hidden_dim, 1);
 x = preds(end-length+1:end);

 % Forward pass
 for t=1:T
 mulu = U * x';
 mulw = W * prev_h;
 add = mulw + mulu;
 h = sigmoid2(add);
 mulv = V * h;
 prev_h = h;
 end

 preds(i+1) = mulv;
end

figure
% ass = cell2mat(Y);
plot(1:50, X{1},"LineWidth",1); hold on;
plot(50:100,preds(50:100),'-o', "LineWidth",1);
legend("Actual","Forecast")
xlabel("t")

7

APPENDIX D. DEMONSTRATION OF RNN IMPLEMENTATION

206

function sig = sigmoid2(x)
 sig = 1 ./ (1 + exp(-x));
end

8

207

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Code
	Introduction
	Background and motivation
	Applications
	Research questions
	Method
	Hypothesis formulation and testing
	Experiment modelling
	Architecture

	Contribution
	Report Outline

	Literature
	Foundations
	Markov processes
	Temporal differences
	Delayed reinforcement learning
	Q-learning

	Rediscovery
	Deep Q-learning
	Value networks
	Memory networks

	Physical control
	Simulated environment
	Transfer to the physical environment

	Bioprocess modelling
	Process optimization on economic factors

	Model predictive control
	Agent training strategies
	Representation learning
	Partial observability and physical consistency
	Pre-training and imitation learning
	Latent space training
	Regularization
	Experience replay
	Inverse reinforcement learning
	Soft Actor Critic

	Use Case
	Introduction to spray drying
	Controlling the process
	Modeling the process
	System boundary
	Level 0 Heat and mass balance model
	Level 1 Droplet size and evaporation dynamics
	Historical logs

	Autonomous Modelling

	Autonomous Learning of Core Skills
	Introduction
	Generating synthetic data
	Connecting to the Environment
	Predictive baseline
	Process noise
	Randomized input
	Sinusoidal input
	Randomized step-wise input
	Data augmentation

	Design of generative model
	Training and evaluating the Generative Process Dynamics Model
	Querying the Environment
	Process model as RL environment
	Training a multivariate generative model

	Autonomous Control
	Design of the Reinforcement Learning agent
	Soft Actor-Critic (SAC)
	Proximal Policy Optimization (PPO)
	Deep Deterministic Policy Gradient (DDPG)

	Initial conditions
	Reward functions and terminal conditions
	Direct response reward, univariate scenario
	Sparse reward and learning from failure
	Trained reward model, multivariate scenario
	Trained reward model with an inverse mean squared error as reward
	Training towards the process model using the reward model

	Covering unmodeled dynamics
	Retraining the generative model
	Retraining the reward model
	Retraining the agents

	Estimating uncertainty
	Monte Carlo simulation
	Variational inference
	Conformal prediction
	Value-based uncertainty

	Varying conditions

	Evaluation
	Method
	Research questions
	Limitations
	Advantages

	Building experience

	Applied Use
	Introduction
	Architecture
	HistorianDatastore design

	System design
	System boundary
	Data exploration
	Generative model training
	Zero-vector bias estimation
	Evaluating forecasting capability

	Training RL agents
	Soft Actor-Critic agent
	Proximal Policy Optimization agent
	Simulating with real-time data

	Evaluating simulation runs

	Discussion
	Introduction
	Contribution
	Agent selection
	Reward engineering
	Autoencoder and recurrency
	Network design
	Use cases
	Frontier in research
	Further work
	Limitations and threats to validity

	Conclusion
	Bibliography
	Matlab Code
	Spray drier ODE function
	Datastores
	RolloutDatastore.m
	HistorianDatastore.m
	get_data.m

	Generative Model
	GenerativeModel.m
	RewardModel.m

	Rollout functions
	spray_rollout_pid.m
	spray_rollou_pid_stable.m

	RL Environments
	SyntheticEnvironment.m
	ProcessEnvironment.m

	Reward functions
	direct_response_reward.m
	sparse_reward.m
	learnt_reward.m

	Agent neural networks
	agent_sac_v1_norm.m
	agent_ppo_v1_norm.m
	agent_ddpg_v1_norm.m

	RL Simulation function
	Cascade demonstration environment

	Bayesian optimization run
	Demonstration of cascade implementation
	Demonstration of RNN implementation

