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Abstract: The flashover performance of contaminated insulators highly depends on the type of
pollutant and its present concentration. In this paper, important agricultural salts (NaCl, K2SO4,
NaHCO3, CaSO4, KHCO3, MgSO4, NH4), 2Fe(SO4)2, and 6H2O (ferrous ammonium sulphate, dust,
and urea) at different concentrations, and biological contaminants, such as algae and fungi, were taken
as pollutants, and the AC flashover behavior of a porcelain-cap-and-pin-type insulator polluted with
these two different pollutants was investigated. The experiment was carried out by a semi-natural
method, wherein the insulator was first polluted artificially; thereafter, natural fog was applied to
measure the wet flashover voltage. Test results indicated that the flashover voltages were affected by
both soluble salts and non-soluble components deposited on the insulator surface. In the case of the
thickly contaminated layers, non-soluble deposits greatly reduced the flashover voltage. Moreover,
by using regression analysis, four empirical models based on different variables were developed. The
empirical models developed in the present work represented a good degree of relation in predicting
the flashover voltage of naturally contaminated insulators.

Keywords: organic contamination; flashover voltage; high-voltage insulators; ESDD; conductivity
measurement

1. Introduction

Generally, outdoor insulator surfaces are covered by environmental pollutants due
to natural (deposition of salts in coastal areas by condensation, growing of contaminants,
such as algae or fungi, in humid areas) or industrial sources, or even both. After long-term
service, these continuously contaminated insulators start to deteriorate and, as the surface
becomes wet because of light rain, mist, or dew, the polluted surface starts to conduct [1–3].
Due to the different chemical nature of the pollutants deposited on an insulator surface,
the dielectric strength of the insulator is degraded, and sometimes it falls below the
flashover withstand value; insulator flashover may happen at operating voltages only [4,5].
With growing system voltages, the occurrence of flashover due to pollution has become
a severe problem in transmission lines and may cause subsequent line outages and total
blackouts, leading to catastrophe in a region. Therefore, reliable insulation is essential for
the safe and effective operation of an electric power system and, thus, for the socioeconomic
integrity of a nation. Although the phenomenon of pollution-induced flashover has been
studied over the last hundred years, still, the behavior of insulators under pollution is not
completely understood.

K. Stimper [6] pointed out the various reasons for the flashover of insulators. He
noted that a greater amount of dirt collects on the under-surface of insulators, and the
corrugations of which are designed on the bottom surface; hence, a greater percentage of the
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surface area is contaminated, which leads to insulator flashover. The different components
of contaminants, namely electronic conductors, ionic conductors, and non-conductors,
are all listed in [7,8]. Based on their results, one can say that not only the electronic
and ionic conductor but also the non-conductive deposits on the insulators can affect the
electrical properties of insulators. They contribute indirectly to the surface deterioration,
if only by providing a nucleus in the presence of water for condensation. They do not
only increase the absorption of moisture but also restrict its removal. A solid deposit,
usually metals and carbon products, transports current by free electrons, which move from
molecule to molecule and, thus, reduce the breakdown strength of the insulation surface [9].
J. S. Forrest and B. F. Hampton [8,10] suggested that the electrolytic layer permits the flow
of current through the insulator surface, heating as well as drying the pollution layer by
rapid evaporation of the moisture at the local hot spot. Likewise, many types of research
have been carried out related to the testing of insulators. In these studies, the performance
of insulators in typical/distinct locations, such as at high-altitude districts, coastal areas,
agricultural lands, desert areas, highway regions, industrial areas, and tropical wet climate
areas (where biological contaminants, such as fungi, algae, and lichen, are prominent
sources of pollution) were studied [11–14].

Different methods have been adopted to investigate the problem of the pollution-
induced failure of high-voltage insulators, such as natural testing at the field stations,
artificial pollution flashover test in the laboratories, simulation, and analytical and math-
ematical modeling approaches to predict the polluted insulator flashover voltage. The
natural pollution flashover test method is more realistic but less precise because it re-
quires much time to test the insulators and it is not an economical process [15–19]. Hence,
more focus on artificial pollution testing and, in addition, the mathematical approaches
for predicting the flashover performance of the insulators, is preferred, which can be more
precise, accurate, and economical.

The present study has two objectives; the first one is to investigate the performance of
cap-and-pin insulators polluted artificially with agricultural and biological contaminants
by laboratory experimentation. The other is to develop models to predict the flashover
voltages of insulators working in regions having these two specific types of contaminants.

2. Statistical Models

Modeling of flashover has been used in the insulator field over the years. Using the
dimensional analysis technique, researchers derived the mathematical expression between
flashover voltage and equivalent salt deposit density (ESDD) [20]. Various works report
combined experiments and regression analysis for estimating flashover performance of
different insulators by taking different parameters as variables, such as leakage distance,
surface resistance, wind speed, temperature, humidity, etc. [21–23].

Regression analysis is one of the statistical techniques most used to study the nature
of interdependency between variables. The applications of regression are used in multiple
fields, including economics, commerce, and science and engineering. Statistical variables
are distinguished either as a response (dependent) or a regressor (independent) variable.
In this work, the regressor variables are ESDD, non-soluble deposit density (NSDD),
atmospheric pressure, and relative humidity. The soluble component of the contamination
consists of different types of salinity, which can be expressed as the equivalent salt deposit
density (in mg/cm2). The insoluble component of the contamination can be expressed as
a non-soluble deposit density (in mg/cm2). These two approaches have been widely used
to determine the severity of the contamination [21,22]. Flashover voltage (FOV) in kV is
the response variable.

All statistical models proposed in the present work are aimed to predict the flashover
voltage for different values of the ESDD (light-to-heavy contamination level), NSDD,
and their combination for a standard cap-and-pin-type insulator. As per the data, [20–26]
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relate regression models that can be classified either as linear or non-linear. The generalized
form of linear regression is given by Equation (1), as follows:

y = b0 + bixi + ei (1)

where, y is the response variable, bo is the intercept, bi is the slope, xi is the regressor or
independent variable, and ei is the error term (residuals).

In this work, correlation analysis between the experimental values of the contaminated
flashover voltage and ESDD has been performed. The trend is exponential and can be
expressed as.

FOV = A·ESDD−a (2)

It is noted that the relationship between ESDD and FOV is non-linear. Similarly, the
behavior of FOV to NSDD is non-linear.

FOV = B·NSDD−b (3)

where A and B are the coefficients related to the shape and material of the insulator,
and a and b are the exponents that define the influence of ESDD and NSDD, respectively,
on the flashover voltage of the insulator.

To account for the non-linearity, the transformation of the equations by taking the
natural log on both sides was done to perform linear regression analysis.

In the interest of examining the effect of both ESDD and NSDD by taking them as
two separate regressor variables with atmospheric pressure, and relative humidity as
another regressor, multiple regression has also been used in this work to develop the fourth
model (model IV). The developed regression model is valid only when these certain basic
assumptions are satisfied. The three basic assumptions to be checked are as follows:

• Normal distribution of errors. This aspect is inferred through the normal proba-
bility plot of residuals. Corresponding to the normal probability plot of residuals,
the·residual points should lie approximately in a straight line. If this is satisfied,
then the data points can be assumed to be normally distributed [25,26].

• Zero mean and constant variance of errors. This is ensured through the plot of residuals
and predicted data. If the plot between residuals and predicted values does not show
any specific shape, the residual plot is assumed to be structured and the assumptions
of constant variance to be satisfactory [25,26].

• Errors are uncorrelated, which is observed through the plot of the residuals against
run order. Ideally, a horizontal band would enclose all residuals and would fluctuate
arbitrarily within the band [25,26].

In all the models developed in this work, the validity of assumptions was checked
and found to be acceptable.

3. Samples, Experimental Details, and Test Procedure
3.1. Test Samples

In this work, the tests were conducted using standard cap-and-pin-type porcelain disc
insulators, which are widely used in overhead electric power lines in India. The diameter
of the disc outer rib was 254 mm, its height was 146 mm, the leakage distance was 305 mm,
and the total surface area was 1599 cm2.

3.2. Experimental Setup

The pollution flashover tests were carried by using a 391-V/150-kV, 50-Hz, 30-kVA
testing transformer, with 15 Amp of short circuit current at maximum excitation. The input
power to the test transformer was supplied by a voltage regulator. The test transformer and
voltage regulator are connected by cables using controlling feeders. A voltmeter (accuracy
of ±3%) connected on the primary side of the transformer was used to measure low-side
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voltages. Figure 1 shows the test setup, which satisfies the requirements of the pollution
flashover test [4,15].

Figure 1. Experimental setup. (a) Control panel; (b) Transformer connection.

3.3. Test Procedure
3.3.1. Sample Preparation and Polluting

As per IEC 60507 standard [27], the sample insulators were pre-treated to make them
suitable for testing. All the samples were cleaned and washed with de-ionized water to
ensure removing of all traces of dirt and grease and then left to dry naturally indoor to
avoid dust particles.

The behavior of agricultural contaminants and biological contaminants on the high
voltage insulators was also investigated in this study; for this purpose, the chemical salts,
which have been mainly used as agricultural fertilizers, such as NaCl, K2SO4, NaHCO3,
CaSO4, KHCO3, MgSO4, ferrous ammonium sulphate, cultivated field dust, and urea were
selected as agricultural contaminants. Among the agricultural pollutants NaCl, K2SO4,
NaHCO3, KHCO3, MgSO4, ferrous ammonium sulphate are soluble salts, while CaSO4
and dust are partially soluble. The collected field dust is comprised of various sizes of
particulate ranging from 10 microns to 100 microns (PM10 to PM100). The biological group
contained algae and fungi, as they contained inert particles, both of which are partially
soluble. To pollute the sample insulators, one of the standard techniques used is the solid
layer method of artificial pollution, which was used in this work. For this, a contamination
slurry was prepared by adding a particular set of salts to two liters of demineralized water.
Then the pre-treated insulator samples were dipped carefully into the slurry for about 6 h,
so the samples received an approximate uniform pollution layer and conductivity up to
a certain value, after which they were removed. The same procedure was applied to every
group of salt.

For the algal growth (biological pollutant) on the sample insulator, a clump of algae
was taken, then the slurry was prepared with the algae (one part) and water (four parts),
and one cup of yogurt was also added to thicken the mixture. The prepared mixture was
then applied to the samples with the help of a brush. Then, the samples were kept in high
humidity (75–85%) and sunlight. For the better growth of the algae, the sample was misted
regularly (for about one-and-a-half months) until they were fully covered with algae.

To induce fungal growth on sample insulators, their surfaces were covered with
a mixture of molded bread, yeast mixed in mild-warm water, and milk, with the help of
a brush. Mixture-covered samples were then kept in the dark and placed into watered
bowls to maintain the required humidity. After 10 days, the samples were covered with
fungi. All the prepared samples are shown in Figure 2.



Energies 2022, 15, 1297 5 of 14

Figure 2. Prepared polluted samples. (a) Urea and dust; (b) algae; (c) fungus—bottom view;
(d) fungus—top view.

3.3.2. Wetting

Before the wet flashover test, the artificially polluted samples were left to dry in the
sunlight. After complete drying, they were suspended vertically in an open atmosphere
under natural fog and dew for wetting. Night-to-morning fog, in December and January
(the temperature range was 9–11 ◦C), was allowed, as all the tests were conducted during
this period.

4. Measurement System
4.1. Flashover Voltage Measurement

In order to obtain the wet flashover voltage, all the flashover tests were conducted in
the morning hours when the applied pollution layer was completely wetted (The tempera-
ture range varied between 13–16 ◦C). The samples were hung vertically with the help of
a metallic hook connected to the roof of the laboratory, using a rope (see Figure 1).

A conductor with a diameter of 10 mm was used to connect the cap of the insulator and
the transformer’s terminal. The pin of the insulator was grounded. Voltage was applied
across the samples and increased at a constant rate using a voltage regulator, shown in
the test arrangement, until a flashover occurred. The flashover voltage was read from
the low-voltage side of the voltmeter and the corresponding high voltage was calculated
with the help of the calibration curve [4,15]. The same procedure was repeated for every
pollution sample. The mean of four measurements for the same contamination set was
taken as the final measured value of flashover.

4.2. Pressure, Temperature, and Humidity Measurement

The pressure was measured with the help of a barometer. Dry- and wet-bulb ther-
mometers were used to record the temperature in the laboratory to with an accuracy
of ±0.2 degrees Celsius. These temperatures were used to obtain the absolute
humidity from the humidity curve and the relative humidity was calculated from the
absolute humidity [15,23].

4.3. Pollution Severity Measurement

As discussed in Section 2, ESDD and NSDD have been widely used as pollution
severity indicators. To obtain ESDD, the deposit from the whole surface of the insulator
was collected into a plastic tub by washing with 100 mL of distilled water and a small,
fur brush. The pollutants were mixed with washing water properly and complete saturation
was ensured. The collected suspension was then poured into a beaker with the help of
the flask and the conductivity of the suspension was measured using an HQ40d portable
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conductivity meter. The temperature was also recorded. These two parameters were used
to calculate the ESDD. The formula that was used to calculate the ESDD is given as [4].

ESSD =
0.55 × V

A

[
σ

1 + Ct(T − 20 ◦C)

]
(4)

where V is the wash-water volume in mL; A is the area of the contaminated surface in
cm2; σ is the washed suspension conductivity in mS/cm; Ct is the temperature coefficient,
~0.02/◦C; and T is the solution temperature in ◦C.

To calculate NSDD, the collected suspension was filtered (using a fine filter paper and
funnel) after conductivity measurement. The filter paper with non-soluble parts was dried
in an oven and weighed with and without contaminants. By obtaining both initial and final
weighted values of the filter paper, NSDD was calculated using the formula:

NSDD =
W f − Wi

A
× 1000 (5)

where

W f is the weight of filter paper with pollutants under the dry condition in mg;
Wi is the weight of filter paper without pollutants under the dry condition in mg; and
A is the surface area of the insulator in cm2.

5. Experimental Results Analysis and Discussion
5.1. Analysis of Experimental Results of AC-Contaminated Flashover Voltage

The experimental test on AC pollution flashover performance of the cap-and-pin-type
insulators under mentioned contaminants was carried out as described above. The obtained
experimental results are displayed in Table 1. It can be seen from Table 1 that:

1. Since the various international standard classifies the severity of pollution range on
high voltage insulators in terms of ESDD between very-light to extremely-severe levels
i.e., from 0.0 to 1.0 mg/cm2, the concentration of pollutants and their combination
were taken as per the specified ESDD level. Due to strong winds and sand storms,
the dust from agricultural fields are transported to the line insulators. Moreover, when
agricultural fields have been plowed for cultivation, the field dust, with the help of
air or wind, settles down on the line insulators that pass through these agricultural
fields. Under dry conditions, these (dust plus other particles) deposited pollutants
do not much affect the dielectric strength of the high-voltage insulators; but, if these
pollutants get wet in any way, such as by fog, light rain, dew, etc., they can greatly
reduce the insulating capacity of the insulator. As, in the literature. Various kinds
of pollutants are described, including agricultural and biological pollution that can
influence the FOV performance of high voltage insulators, agricultural salts and
biological pollutants were chosen as insulator pollution, here.

2. The tested agricultural pollutants were primarily of conductive salts and soluble in
water. However, the insulators polluted with these contaminants had lower conduc-
tivity. Whereas the existing research and theoretical analysis indicate that, if pollutants
are soluble, they should have higher conductivity [4,28]. Other than this, as the con-
centration of the contaminant will increase, the conductivity should also increase and
the flashover voltage should decrease. Despite this fact, in this work, the flashover of
the insulators contaminated with agricultural pollutants (3 to 9 in Table 1) occurred at
slightly higher values than those with partially soluble biological contaminants, be-
cause of the low level of NSDD measured on the insulators polluted with agricultural
contaminants. The variations of FOV with ESDD for soluble agricultural pollutants
are shown in Figure 3.

3. Under wet conditions, the algae- and fungi-polluted (sets 1 and 2 of the contaminants
in Table 1) insulators, at the same concentration, attained higher surface conductivity
than agricultural pollutants, even though these are partially soluble in water and do
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not contain highly conductive constituents. The main reason behind this is that such
types of contaminants have higher water-retaining capability. Due to this property
of the non-soluble contaminants deposited on the insulator surface, a larger amount
of leakage current could flow for long periods through the insulator surface. Thus,
we can say that the higher values of NSDD could significantly lower the flashover
voltages of the insulator. Flashover voltage variations with ESDD and NSDD for
partially soluble pollutants are shown in Figures 4 and 5 respectively. The soluble
parts in these contaminants may be attributable to the environment in which they
grew; that is, to the material and salts involved in growing these contaminants, and to
pH, temperature, pressure, humidity, etc.

4. Yet, both the agricultural and biological contaminants had a quite high degree of
pollution, which is expressed in terms of the ESDD and NSDD, and presented in
Table 1. Additionally, the FOV decreased with an increase in ESDD and NSDD.
Thus, both types of pollutants could greatly affect the flashover performance of the
insulators. For many years, the use of fertilizers over manure has been increasing to
enhance the fertility of soil and grow increasingly more crops. Thus, to secure the
insulators on lines crossing over agricultural fields from the negative impact of highly
conductive fertilizer salts, condition monitoring of the insulators necessary.

5. The standard deviation of all the test results was lower than 16%, which means that
the dispersion degree of the data achieved by the tests was small and thus the method
is acceptable.

Figure 3. ESDD vs. FOV characteristics of the insulator contaminated with soluble agricultural
pollutants.

Figure 4. ESDD vs. FOV characteristics of the insulator contaminated with partially soluble biological
and agricultural pollutants.
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Table 1. Test results of flashover voltages under biological and agricultural contaminants.

Set of Con-
taminant

Con. of
Pollutants

(gm)

Conductivity
(mS/cm)

ESDD
(mg/cm2)

FOV
(kV) σ% NSDD

(mg/cm2) σ%

algae

20 3.09 0.0822 69.0 −10.11 2.2158 4.45
30 3.31 0.0881 63.0 −10.64 2.2716 3.96
40 4.85 0.1291 59.0 −13.25 3.1071 −1.75
50 5.46 0.1453 56.0 −13.96 3.5014 −3.73

fungi

20 4.22 0.1104 64.0 −9.94 2.4540 2.42
30 4.35 0.1138 63.0 −10.24 2.4947 2.07
40 4.50 0.1177 61.0 −10.57 2.8352 −0.59
50 5.55 0.1446 58.0 −12.43 3.0432 −1.99

dust

20 1.40 0.0393 83.0 −5.15 0.1573 5.91
30 1.44 0.0404 79.0 −5.32 0.1604 5.55
40 1.88 0.0528 76.0 −6.90 0.2008 1.62
50 1.92 0.0540 75.0 −7.01 0.2047 1.29

dust + urea

10 + 10 1.48 0.0379 78.0 −8.36 0.1483 3.50
10 + 20 2.48 0.0637 72.0 −9.99 0.2290 −5.15
10 + 30 3.77 0.0969 65.0 −11.02 0.2607 −7.44
10 + 40 3.80 0.0977 62.0 −11.04 0.2688 −7.96

NaCl +
K2SO4

10 + 10 2.07 0.0823 86.0 9.35
10 + 20 2.78 0.1105 80.0 5.38
10 + 30 2.82 0.1121 78.0 5.20
10 + 40 3.50 0.1392 73.0 2.62

NaHCO3 +
CaSO4

10 + 10 1.95 0.0775 91.0 14.26
10 + 20 2.41 0.0958 87.0 10.15
10 + 30 2.86 0.1137 81.0 7.13
10 + 40 2.91 0.1157 78.0 6.84

K2SO4 +
KHCO3

10 + 10 1.82 0.0705 95.0 15.65
10 + 20 1.93 0.0748 92.0 14.81
10 + 30 2.22 0.0860 90.0 12.89
10 + 40 2.50 0.0968 86.0 11.35

MgCl2 +
NH4Cl

10 + 10 2.45 0.0862 89.0 13.30
10 + 20 3.04 0.1069 84.0 8.20
10 + 30 3.07 0.1080 82.0 7.98
10 + 40 3.21 0.1129 78.0 7.00

FAS +
MgSO4

10 + 10 2.40 0.0826 87.0 10.49
10 + 20 2.85 0.0980 84.0 6.94
10 + 30 2.89 0.0994 80.0 6.67
10 + 40 3.05 0.1049 79.0 5.63

Figure 5. NSDD vs. FOV characteristics of the insulator contaminated with different partially
soluble pollutants.
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5.2. Flashover Voltage Model Based on ESDD

Flashover voltages for distinct values of ESDD lay in the range of 0.038 to 0.145 mg/cm2

and were obtained experimentally by using the aforesaid contaminants. According to the
correlation curve fitting analysis, the FOV and ESDD were shown to have a negative power
function, so the logarithmic values of ESDD were used as regressors and FOV as a response.
Based on these values, Minitab was used for statistical analysis and to develop model 1 to
predict the flashover voltage. The details of the statistical model are given in Table 2.

Table 2. Statistical results of ESDD-based model for both agricultural- and biological-polluted
suspension insulators.

The Regression Equation Is
ln FOV (kV) = 3.941 − 0.161 ln (ESDD)

S = 13.7% R-Sq = 14.69% R-Sq(adj) = 12.19% Multiple R = 0.383 R-Sq(pred) = 5.13%

Regressor Coef SE Coef T-Value p-Value

Constant 3.941 0.163 24.22 0.000
ln ESDD −0.1615 0.0667 −2.42 0.021

Analysis of Variance

Source DF SS MS F P

Regression 1 0.109746 0.109746 5.86 0.021
Residual 34 0.636840 0.018731

Total 35 0.746586

Where:

S—standard deviation
R2—residual sum of squares
R2 (adj)—the adjusted residual sum of squares
R2 (pred)—predicted residual sum of squares
SE Coef—standard error coefficient
T-Value—standard ‘T’ statistic
p-Value—probability of testing the significance of the null hypothesis
F—standard ‘F’ statistic
DF—degrees of freedom
SS—sum of squares
MS—mean-sum of squares

The developed models were validated by the following method

• Analyzing model coefficients, predicting values, and using prior experience and
physical theory.

• Data splitting technique in which some of the original data was not used for model
building but was used to investigate the predictive performance of the model [29].

Generally, the coefficient of determination (R-Sq) lies within a range of zero and one.
When the value of R-Sq is high, that is, close to unity, it indicates that the model fits the
data well. For this model, R-Sq = 0.1469, which means that the variability of the model
was 14.69% of the data accounted for the model. R-Sq can be increased by adding more
regressors to the model, but it does not compulsorily mean that such model is superior to
its predecessor.

Another model coefficient, which is used to assure the closeness of the relationship
between response and regressor, is the multiple correlation coefficient (R). It has a range
between −1 and +1. A high value of R means a strong relationship and a small value means
a weak relationship. In this model R = 0.383, which indicated that the relationship between
FOV and ESDD was fairly strong, and that the model developed was quite significant for
the given data set.

Similarly, the coefficient of adjustment of R-Sq (R-Sq(adj)) measures the proportion of
the variation in the response variable. For this model, R-Sq(adj) = 0.1219, which means that
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the model had a 12.20% ability to explain the variability in the response variable. However,
the statistical results of the model had low R-Sq values, meaning few data points lay on
the model curve; still, it gives the best-fitting curves based on the least sum of squares. On
the other hand, the results showed a low p-value, which indicated that the model still had
a quite significant relationship between FOV and ESDD. Figure 6 shows the fitness of the
model values’ curve of FOV for the given data set of the ESDD with the experimental FOV
values. The results found were reasonable and the close curves indicated the fitness of the
model with the experimental data, which means that this model had suitable validity for
FOV prediction for the tested contaminants.

Figure 6. ESDD based FOV model curve for predicted and experimental values.

5.3. Flashover Voltage Model Based on NSDD

The values of NSDD and their corresponding flashover voltages were collected from
experiments on cap-and-pin-type porcelain insulators under partially soluble agricultural
and biological contamination conditions. Like the ESDD, NSDD also shows the non-
linearity of the flashover voltage. So, here are, also, the logarithmic values of NSDD, used
as a regressor, and of FOV, used as the response. Based on these values, model 2 was
developed. The statistical details of the model are presented in Table 3.

Table 3. Statistical results of NSDD based model for both partially soluble agricultural- and biological-
polluted suspension insulators.

The Regression Equation Is
ln FOV (kV) = 4.185 − 0.074 ln (NSDD)

S = 7.14% R-Sq = 68.34% R-Sq(adj) = 66.08% Multiple R = 0.8266 R-Sq(pred) = 59.56%

Regressor Coef SE Coef T-Value p-Value

Constant 4.1848 0.0183 228.39 0.000
ln NSDD −0.0744 0.0135 −5.50 0.000

Analysis of Variance

Source DF SS MS F P

Regression 1 0.15387 0.153870 30.22 0.000
Residual 14 0.07129 0.005092

Total 15 0.22516

The data in Table 3 shows that all R-Sq values are close to 0.99, which means that the
flashover voltage and NSDD were strongly correlated to each other. Other test parameters
of the model in the above table, such as the high ‘F’ ratio and low p-value, indicated the
good correlation between FOV and NSDD. Thus, it can be concluded that the model had
an acceptable performance with the input values of NSDD in investigating the dependency
of the FOV on NSDD, and NSDD was also a good indicator of pollution monitoring at the
control station.
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5.4. Flashover Voltage Model Based on the Combined Effect of ESDD and NSDD

It was found, in previous research, that both the ESDD and NSDD influence the
pollution flashover voltage independently [21]. However, here an attempt was made to
develop the model by considering that the product of ESDD and NSDD for an individual
set of data is a single regressor variable and that FOV is the response variable. Therefore,
the correlation between FOV and the product of salt deposit densities can be expressed
as follows:

FOV = C × (ESDD × NSDD)−c (6)

where C is a coefficient related to the geometrical configuration of insulators and c is
an exponent representing the effect of the product of salt deposit densities on
flashover voltages.

The details of the model displayed in Table 4 can explain that the model found is
highly significant and had a quite strong relationship between the product of salt deposit
densities and the FOV. Thus, we can say that the product of salt deposit densities may be
taken into account to predict the flashover voltages of polluted insulators. Based on the
least-square criteria that minimize the sum of squares of the deviation, standard deviation
S was as minimal as possible (5.76%). The fitness curve of the prediction model’s values
of flashover voltage with the experimental values is shown in Figure 7, and all the points
are within the limits of less than 10% error, meaning that the fitted model is valid in the
present case.

Table 4. Statistical results of Flashover voltage model based on (ESDD × NSDD).

The Regression Equation Is
ln FOV (kV) = 4.034 − 0.061 ln (ESDD ∗ NSDD)

S = 5.76% R-Sq = 79.36% R-Sq(adj) = 77.88% Multiple R = 0.8908 R-Sq(pred) = 74.41%

Regressor Coef SE Coef T-Value p-Value

Constant 4.0342 0.0277 145.59 0.000
ln NSDD −0.06135 0.0084 −7.34 0.000

Analysis of Variance

Source DF SS MS F P

Regression 1 0.1786 0.1786 53.81 0.000
Residual 14 0.0464 0.0033

Total 15 0.2251

Figure 7. ESDD & NSDD product based FOV model curve for predicted and experimental values.

Therefore, it is seen that the analysis of the FOV performance of the insulators polluted
with agricultural (soluble and partially soluble) and biological pollutants, with respect to
ESDD, NSDD, and their products and ratios characteristics, lead to the following models,
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which can be used to predict flashover voltages and to design insulators for such particular
environmental conditions. The model equations can be expressed as:

FOV = 51.447 × (ESDD)−0.161

FOV = 65.683 × (NSDD)−0.074

FOV = 56.496 × (ESDD × NSDD)−0.061

(7)

5.5. Flashover Voltage Model Based on ESDD, NSDD, Atmospheric Pressure, and Relative Humidity

From the review of the literature, it was found that climatic conditions, such as
atmospheric pressure (AP), air humidity, wind speed, and wind direction are equally
important as salt deposit densities in monitoring and predicting the flashover voltage
performances of field insulators. Here, one more mathematical model was developed
by using multiple linear regressions. In this model ESDD, NSDD, atmospheric pressure,
and relative humidity (RH in %) were taken as regressor variables and FOV as a response
variable. During the experiment done to measure the FOV, ESDD, and NSDD for the
agricultural- and biological-pollution-contaminated insulators, atmospheric pressure and
relative humidity of the air were also recorded. Thus, the experimental data collected for
each variable was used as raw data to build the model. The multiple regression equation
and other statistical parameters of the model for this case are summarized in Table 5.

Table 5. Statistical results of ESDD-, NSDD-, AP-, and RH-based model for agricultural- and
biological-pollution-contaminated insulators.

The Regression Equation Is
FOV = −598 − 233.3 ESDD − 0.140 NSDD + 0.930 AP − 0.1219 RH%

R-Sq = 96.53% R-Sq(adj) = 95.27% R-Sq(pred) = 91.40%

S = 1.8275 R-Sq = 96.53% R-Sq(adj) = 95.27% R-Sq(pred) = 91.40%

Regressor Coef SE Coef T-Value p-Value

Constant −598 343 -1.74 0.110
ESDD −233.3 27.0 −8.63 0.000
NSDD −0.140 0.888 −0.16 0.877

Pressure 0.930 0.460 2.02 0.068
RH % −0.1219 0.0610 −2.00 0.071

Analysis of Variance

Source DF SS MS F P

Regression 4 1022.70 255.674 76.55 0.000
Residual 11 36.74 3.340

Total 15 1059.44

The model coefficients R-Sq, R-Sq(adj) and R-Sq(pred) were very close to unity. From
this, it is clear that the model fit the data well and that there was a very strong relationship
between the regressor variable and response variable. From the model equation in the table,
we can predict the rate of response of FOV to the change in the predictor variables, meaning
that the model was valid for the prediction of flashover voltages for high-humidity areas
where algae and fungi can easily grow, and also for the regions where power lines pass
over agricultural fields.

6. Conclusions

In this study, the influence of biological and agricultural contaminants on the flashover
performance of porcelain insulators has been investigated, because the studies on this
topic are very few. From the experiment, it is observed that the agricultural contaminants,
comprising dust, soluble chemical salts, and inert particles, can reduce the flashover
voltage of the insulators up to 16% for the given case when ESDD yield is in the range of
0.0379–0.1453 mg/cm2. The humidity and thickness of pollutants on the insulators are also
important factors that determine the wet flashover voltage performance of the insulator.
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If the case where humidity on the insulator surface is found less, while the NSDD value
on the insulator is high, it has been found that the insulator flashover performance falls
at a higher rate than in the case where the humidity on the insulator surface is high and
NSDD is low. It is due to the ambient air effect on the insulator; under high moisture and
low humidity, it dries earlier, while the insulator surface with low moisture and high NSDD
dries later because of the higher water retention capability of the inert particles (NSDD). Yet,
due to the higher water retention capacity of the biological contaminants, they can more
affect the insulator flashover performance than can agricultural contaminants. A relative
humidity greater than 85% reduces the flashover voltage abruptly. It is also found that the
conductivity of the contaminated insulator surface and ESDD have a non-linear relationship,
in contrast to that with the amount of salt concentration. Similarly, the relationships of the
ESDD, NSDD, temperature, and pressure with FOV are also found non-linear. By using
regression analysis (simple and multiple) techniques, different models have been developed
to widen the validity of theoretical models for evaluating and determining the flashover
performance of porcelain insulators. The models evolved here are based on contamination
severity approaches (ESDD and NSDD), temperature, atmospheric pressure, and relative
humidity. For all the models developed, the model performance evaluation parameters
i.e., the R-sq, multiple correction coefficients (R), and the p-values, determine the degree
of relationship between the dependent and independent variables. The model based on
ESDD only has R-sq = 0.1559, R (multiple) = 0.383, and p-value = 0.021; for the model that
is based on NSDD, R-sq = 0.684, R (multiple) = 0.827, and p-value = 0.000; for the model
based on the product of NSDD and ESDD, the values of the evaluation parameters are
R-sq = 0.794, R (multiple) = 0.891, and p-value = 0.000; and, for last model, is R-sq = 0.965,
R (multiple) = 0.953, and p-value = 0.000. Values of all these parameters for each developed
model indicate that a good degree of relationship exists between experimental and predicted
values for the given data set. As values of R-sq and R (multiple) are close to 1 and the
p-value is less than 0.05 for all the models (which are the criteria for determining the
accuracy and validity of the model), they fulfill, here, such criteria for the models developed
in this study. It has been illustrated that the model equations developed for the selected
pollutants can be used to estimate and predict the flashover voltage of insulators that are
normally operating in tropical areas, where ambient humidity remains high throughout
the year and such type of pollution is very common. This can be taken as an elementary
reference value also with which to predict the flashover voltage of contaminated insulators.
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