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Abstract: The paper proposes a novel hybrid feature selection (FS) method for day-ahead electricity
price forecasting. The work presents a novel hybrid FS algorithm for obtaining optimal feature set
to gain optimal forecast accuracy. The performance of the proposed forecaster is compared with
forecasters based on classification tree and regression tree. A hybrid FS method based on the elitist
genetic algorithm (GA) and a tree-based method is applied for FS. Making use of selected features,
aperformance test of the forecaster was carried out to establish the usefulness of the proposed
approach. By way of analyzing and forecasts for day-ahead electricity prices in the Australian
electricity markets, the proposed approach is evaluated and it has been established that, with the
selected feature, the proposed forecaster consistently outperforms the forecaster with a larger feature
set. The proposed method is simulated in MATLAB and WEKA software.

Keywords: price forecasting; feature selection; elitist genetic algorithm; SMO regression;
confidence interval

1. Introduction

Efficient and consistent electricity price forecasting is vital for market participants in
the preparation of appropriate risk management plans in an electricity market. The higher
the complexity in the market, the greater the peril of producing an error in forecast. An
appropriate forecasting method allows suppliers and buyers to detail the bidding strategies
for moderate losses and to increase profit. The research for developing price forecasting
tools in non-intervention markets is at an intermediary stage and a variety of forecasting
models covering many free trade markets have emerged in recent years [1–6]. Since a
price chain is extremely volatile with non-constant mean and variance, because of the
mobile nature and inflexible condition of establishing real-time stability of demand and
supply of electricity, short-term price prediction is a difficult task. Market clearing prices
(MCP) are volatile in a deregulated power market because of being an auction market
price forecasting is an important tool for such markets. The companies that do business
in electricity markets make broad use of price forecasting methods either to propose or to
evade against volatility while auctioning in a pool system. Market contenders are requested
to communicate the bids in terms of quantities and prices. A corporation can regulate its
own production/price schedule on its own cast and hourly pool prices. A good quality
MCP forecast and its confidence interval evaluation can help utilities and autonomous
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power producers to present efficient bids. Electricity price forecasting has been focussed
of several researchers in the field of electricity and various authors and researchers have
published on this topic.

Time series, artificial neural networks (ANNs), regression, semi-parametric and non-
parametric methods [7–14] are well known approaches used for electricity price forecasting.
W K. Hubicka et al. [15] suggested a novel idea in vitality forecasting and have shown that
averaging next day electricity price forecasts of a prescient model across 28- to 728-day
alignment windows yields preferred outcomes over choosing only one ’ideal’ window
length. A. Y. Alanis et al. [16] presented, a recurrent neural network for forecasting
electricity price based on the extended Kalman filter with both cases one step ahead and
n-step ahead and also include the stability proof using the Lyapunov methodology.

L. Wang et al. [17] represented a model for day ahead hourly price forecasting using
stacked denoising autoencoders (SDA) and deep neural networks. The data used are from
the market of Arkansas, Texas, Louisiana, Nebraska, and Indiana hub of US. Authors in [17]
used forecasting of two types: day ahead hourly forecasting and the online forecasting. The
results show that the SDA model is competent in forecasting the electricity prices accurately.
H. Mosbah et al. [18] used a multilayer neural network in composite topologies for accurate
forecasting using data of 2005 as a training set while predicting prices of January 2006 in
the Australian market. MAPE and MSE are calculated to compare the best performance
indices using diverse composite topologies.

P. Sarikprueck et al. [19] proposed a hybrid method for both spike and non-spike
power market prices using clustering methods of three types including CART, stratification
and K-means methods and validated the performance of the proposed model with the
Electric Reliability Commission of Texas wholesale market price. The outcomes given
in the suggested technique show a vital up-gradation over other usual methodologies.
J. P. González et al. [20] introduced a recently developed forecasting technique which
strives to generalize the ARMAX time series method to the L2Hilbert space. The proposed
model consists of linear regression where useful parameters work on functional variables.
The variables used are either historical values, or exogenous variables, or past observed
innovations. German and Spanish electricity markets are considered for forecasting in
the work.

Anamika et al. [21] presented, a combination of various methodology like feed for-
ward neural networks (FFNN), wavelet transform (WT), fuzzy adaptive particle swarm
optimization (FA-PSO) for price forecasting on Spanish electricity markets for the year
2002. K. Wang et al. [22] suggested a novel approach for electricity price forecasting which
consists of three models, first they combined the relief-F algorithm and random forest (RF)
and proposed a hybrid FS method based on GCA to remove the feature redundancy. Sec-
ondly, a combination of KPCA was utilized in feature extraction procedure to understand
the dimensionality reduction. Finally, a support vector machine (SVM) classifier based on
differential evolution (DE) was used to predict electricity price.

P. Li et al. [23] addressed the dynamic similar sub-series technique for the consider-
ation of cumulative effect which is due to collection of effecting factors during several
consecutive time intervals and which makes relatively large forecasting errors. R. Tah-
masebifar et al. [24] considered the probabilistic interval variables which can affect future
electricity price forecasting. The method consists of two steps, in the initial step, a new
hybrid method is introduced to predict point forecasts which is a combination of ELM,
WT, FS based on mutual information (MI), and bootstrap approaches and in second step,
PSO algorithm is used for improving the forecast accuracy and evaluating the variance of
the model.

O. Abedinia et al. [25] suggested an FS approach based on criteria of informationtheory
with important contribution of modeling interaction in combination with redundancy and
relevancy. The hybrid filter-wrapper approach is another fundamental outcome of this
work. C. González et al. [26] proposed a method to efficiently find the important variables
that dominate the forecasting of electricity price forecasting. CART, RF and bagging
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approaches were used for the accurate forecasting of electricity price in Iberian market.
Historical data of 22 dominating factor such as load, price, hydro wind energy production,
thermal generation hours etc., are used to efficiently forecast electricity price.

In this work electricity price forecasting is done using sequential minimization opti-
mization (SMO) regression. The SMO regression algorithm followed by regression anal-
ysis is a powerful tool of decomposition for training SVM without the requirement of a
quadratic programming (QP) solver. It is probable that SMO is the only SVM optimizer
that exclusively exploits the quadratic form of the objective function and simultaneously
uses the analytic solution of the size two cases. Since most of the objective functions have
minimization criteria characteristics with set of constraints, for optimization purposes, such
objective functions are represented in the form of Lagrange’s multipliers. These Lagrange
multipliers contain a dual form of the primal set of the predefined objective functions
minus linear constraints. The only problem with SMO is its convergence accuracy for
non-sparse data sets, but a few modifications have been suggested by the researchers to
cope with such limitations. The novel contributions made in this work are:

1. A novel hybrid method based on elitist GA and tree based method for input FS in
price prediction,

2. SMO regression base SVM is used for prediction of price and result obtained is
compared with classification tree (J48) [27] and regression tree [28] (bagging and M5P)
with and without feature selection,

3. Fixing the error margins during price prediction by applying the confidence
interval, and

4. Season-wise optimize FS to have a better forecasting accuracy.

The paper is organized as follows. The proposed methodology for price forecasting
is summarized in Section 2. Section 3 of the paper explains the SMO regression. The
methodology adopted for input FS using a novel hybrid method based on elitist GA and
tree-based method is explained briefly in Section 4. Section 5 shows the outcomes and
performance of the proposed methodology. Findings and concluding remarks are provided
in Section 6.

2. Proposed Methodology

Forecasting of day-ahead prices with FS and without feature selection (WoFS) has
been considered in this work. The present work emphasizes on an elitist GA and tree-based
FS method for price forecasting. Forecast of electricity price on half hourly basis and for
each day and all season, week-wise is considered. A comparison of forecasting accuracy
has been made by using full feature set and that of reduce feature set, which validates the
usefulness of the forecasting with a reduced feature set. The proposed methodology for
comparison of different methods is shown in Figure 1. Figure 1 shows that electricity price
forecasting is performed using SMO regression employing a full feature set and in parallel
the same SMO regression is used with selected feature set. These two forecasting modes
were compared to ascertain the superiority of FS. The result obtained from SMO Regression,
WoFS and with FS methods is also compared with classification tree and regression tree.
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Figure 1. Proposed methodology.

3. Sequential Minimal Optimization (SMO) Regression Algorithm

SMO regression was proposed by J. Platt (1998) as the SVM classifier design for the
training of SVM (Vladimir Vapnik, 1979) by using the LIBSVM tool. SMO is used to
optimize solutions of large QP without using extra matrix storage and QP optimization
steps. It is probable that SMO is the only SVM optimizer that exclusively exploits the
quadratic form of the objective function and it breaks large QP into sets of the smallest
possible QP by using Osuna’s theorem. SMO consist two components one is analytic
method and another is heuristic process. During the computation, at every step SMO
uses only two Lagrange’s multiplier and solves it by using analytic method. Then by
heuristic process it selects the best result to update the system to get new optimal value.
This selection method needs very short and simple C coding. Therefore, it fastens the
speed and omits the requirement of numerical QP optimization which requires an entire
QP library routine or complex matrix algorithms.

3.1. Methodology

The SMO algorithm basically works with two steps and until convergence, the algo-
rithm keeps repeating these steps in each iteration:

Step 1: Breaking of large QP problems into series of smallest possible QP problem.
Find the most promising pair (µ1 and µ2).

Step 2: It solves small QP problems in a very fast manner compared to the QP
optimization process because it consumes more time due to inner loops. It is important
point to consider that it requires memory in proportion to the smallest possible samples
taken under step 1. This enables it to handle a lot of training sets i.e., very large QP
problems. Optimize µ1 and µ2 keeping other µ’s fixed.

A general quadratic problem has a quadratic objective function with linear constraints.
A basic form is expressed by Equation (1).

minimize
A

1
2
∗AM

j ∗B ∗ Aj + dM∗Aj; subject to 0 ≤ Aj ≤ C, j = 1, 2, . . . , n. (1)
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where, A =

∣∣∣∣ a1
a2

∣∣∣∣ is a vector of decision variable, C =

∣∣∣∣ c11 c12
c21 c22

∣∣∣∣ contain the constant

coefficients that would multiply the squared term and the a1 times a2 terms. Therefore,
C needs to be multiplied two times by the column vector A. the linear term of model is

defined by d =

∣∣∣∣ d1
d2

∣∣∣∣ the coefficients are d1 and d2 in the vector. 0 defines the lower bound

C is higher bound or upper bound in the constraint.

3.2. Calculation of SMO Regression

See Appendix A.

4. Input Feature Selection Using Proposed Algorithm

GA is based on the Darwinian theory of natural evolution. It is basically a heuristic
search technique. In this approach no assumptions are made for relationship among
features, while searching the space for feature selection. The genetic algorithm, when
selecting any feature as per their importance to define the given data, decides by giving
a sequence of Boolean values, allowing exploration of the feature space. It retains the
features that benefit the classification task. By doing this it simultaneously avoids any local
optima due to their intrinsic randomness. By using operators inspired by natural evolution
such as selection, mutation and crossover, GA finds the solutions to optimize the problems.
For any given dataset, FS is used to select dominating features among the pool of various
feature so that handled data would be less and efficient. It is performed using an elitist
technique of GA and tree based method.

In this method we select the dominant features of the input data set, which affects the
process of forecasting on a priority basis. The 20% elite data from the large dataset to be
presented in next generation has been selected, so that the next population is with features
having classification accuracy not less than the previous generation. For the purpose of FS
string of ‘0’ and ‘1’ are used in the manner of chromosome segments. In this chromosome ‘0’
shows that the specific feature corresponding to that index is not chosen and ‘1’ shows that
the specific features is chosen. Here, the length of the chromosome is same as the number
of features in given dataset. Computation is undertaken using data mining workbench
WEKA. The fitness function is derived through tree and will be the stratified with 10-fold
cross validation (10-FCV) classification accuracy. Consequently, we apply genetic operators,
iteration by iteration until we met the stopping criteria. The set of selected features is the
obtained chromosomes with optimal fitness function.

The mathematical definition of the fitness function for the proposed approach for
feature selection is given below:

Fitness function = Classification accuracy

Classification accuracy =

(
No.o f instancescorrectlyclassified

Totalno. ofinstanceinthedataset

)
∗ 100 (2)

In this work, single site crossover with 0:5 probabilities is performed in every step
through roulette wheel selection. The mutation is performed with probability of 0:005.
Further, we include the elite chromosomes by keeping 20% elite chromosomes for the
next generation. In this way it can be seen that the resulting population has the best
chromosomes which have optimal or, best classification accuracy of the given data set. The
flowchart of elitist GA and the tree-based method for FS is shown in Figure 2.
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5. Result and Discussion

The half hourly historical load and price data of New South Wales, Australia (taken
from Australian Energy Market Operator (AEMO)), and weather data of Sydney City
(www.weatherzone.com/au, accessed on 18 August 2019) has been taken from January
2014 to June 2016 for the forecasting. The elitist GA algorithm is performed in MATLAB
software, whereas the formation of optimal regression tree was performed in WEKA
software. The WEKA software was interfaced with MATLAB for performing all regression
tree calculations. The final forecast was made using MATLAB Software. Electricity price,
load, wind speed, temperature, and humidity are considered as input variable in the
present study. Table 1 shows the list of input variables that may affect day ahead price
forecasting. Table 1 shows the input feature set and the time delay relative to forecast hour.
The input feature set is taken on the basis of various literatures.

www.weatherzone.com/au
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Table 1. List of input variables which affect electricity price forecasting.

Name of Variable Name of Input Timing of Variable

Load (Lo)

Lo6 Lo(D-23:00)
Lo5 Lo(D-23:30)
Lo4 Lo(D-24:00)
Lo3 Lo(D-01:30)
Lo2 Lo(D-01:00)
Lo1 Lo(D-00.30)

Price (Pr)

Pr6 Pr(D-23:00)
Pr5 Pr(D-23:30)
Pr4 Pr(D-24:00)
Pr3 Pr(D-01:30)
Pr2 Pr(D-01:00)
Pr1 Pr(D-00.30)

Wind Speed (Wi)

Wi6 Wi(D-23:00)
Wi5 Wi(D-23:30)
Wi4 Wi(D-24:00)
Wi3 Wi(D-01:30)
Wi2 Wi(D-01:00)
Wi1 Wi(D-00.30)

Temperature (Te)

Te6 Te(D-23:00)
Te5 Te(D-23:30)
Te4 Te(D-24:00)
Te3 Te(D-01:30)
Te2 Te(D-01:00)
Te1 Te(D-00.30)

Humidity (Hu)

Hu6 Hu(D-23:00)
Hu5 Hu(D-23:30)
Hu4 Hu(D-24:00)
Hu3 Hu(D-01:30)
Hu2 Hu(D-01:00)
Hu1 Hu(D-00.30)

Day Timing (Hto) Hto Hto(D-00.00)

Each data set consists of 31 input features. 2016 data sets are used in the one training
set to predict the electricity price. The results obtained from the proposed work are
explained in two sections. The importance of FS is discussed in first section and forecast
accuracy in second section. The input variables for FS of electricity price forecasting are
taken from Table 1 as input feature set. FS is performed in a weekly manner. 2016 data sets
are used in the one training set to forecast the electricity price and was considered on the
concept of similar weeks. Every data set consists of five similar weeks of the months of
the previous year and the preceding week of the same year, e.g., if the input FS for price
forecasting is to be done for the week of 22–28 August 2015, the training set would consist
of the data corresponding to 15–21 August 2015, 22–28 August 2014, 15–21 August 2014,
8–14 August 2014, 29 August–04 September 2014, 05–11 September 2014. For obtaining the
FS the classification accuracy of data for the classifier is calculated using 10-FCV. It means
at least once complete data is tested by this method. In this way FS is the only method
that can be used for conducting feature analysis. By the present studies a detailed feature
analysis can be undertaken.

From Table 2 it is clear that the input variable price of present-day (Pr1) was selected in
all the runs i.e., 36 times. At the same time, the price of the previous day (Pr4) was selected
22 times and the hour type (Hto) 24 times, which shows their relative importance accord-
ingly. The load of immediate hour (Lo1) and previous day load (Lo4) was an important
feature and selected 20 and 23 times respectively. The temperatures of the present day (Te1)
selected more times than on the previous day. Wind speed of the previous day (Wi6) was
selected more number of times than the same day. The humidity of the previous day (Hu6)
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was selected more times than on the same day. Effects of features can also be analyzed
according to seasons. Table 2 also indicates the top 10 features selected most times.

Table 2. Number of feature selected year wise highlighted on the top 10 features selected most times.

Feature Name Number of Time Selected Feature Name Number of Time Selected

Lo6 16 Wi2 20
Lo5 10 Wi1 17
Lo4 23 Te6 14
Lo3 16 Te5 19
Lo2 18 Te4 19
Lo1 20 Te3 11
Pr6 15 Te2 16
Pr5 18 Te1 21
Pr4 22 Hu6 23
Pr3 17 Hu5 20
Pr2 18 Hu4 15
Pr1 36 Hu3 10
Wi6 21 Hu2 18
Wi5 13 Hu1 18
Wi4 18 Hto 24
Wi3 15

Table 3 indicates the season-wise importance of different features. From the Table 3 it
is observed that Lo6 and Lo1 etc. are features which are assumed to have more importance
during the winter season. Hu6 and Pr5 etc. are features which are assumed to have more
importance during the spring season. Lo4 and Te5 etc. are features which are assumed to
have more importance during the summer season. Pr1 is seem to be feature regardless of
the season. These analysis indicated the relative importance of feature in terms of seasonal
variations.

In this work, numerous error measures like root-mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE) and error variance (EV) are
used for numerical accuracy assessment of the price forecasting as follows:

MAE =
1
K

K

∑
p=1

∣∣(AP − Fp)
∣∣ (3)

RMSE =

√√√√ 1
K

K

∑
p=1

(Ap − Fp)
2 (4)

MAPE =
100
K

K

∑
p=1

∣∣Ap − Fp
∣∣

Ap
(5)

σ2
e , week =

1
K

K

∑
p=1

(

∣∣Ap − Fp
∣∣

Aweek
− (eweek))

2

(6)

eweek =
1
K

K

∑
p=1

∣∣Ap − Fp
∣∣

Aweek
(7)

where Ap and Fp are actual and forecasted value of electricity price at time p and K is the

length of forecast horizon and Aweek =
1
K

K
∑

p=1
Ap.
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Table 3. Number of times a feature selected season wise.

Feature Name Winter Spring Summer

Lo6 8 4 4
Lo5 3 4 3
Lo4 5 8 10
Lo3 4 6 6
Lo2 3 7 8
Lo1 9 5 6
Pr6 3 6 6
Pr5 4 8 6
Pr4 9 7 6
Pr3 7 5 5
Pr2 5 7 6
Pr1 12 12 12
Wi6 7 7 7
Wi5 4 5 4
Wi4 7 6 5
Wi3 6 4 5
Wi2 5 7 8
Wi1 5 7 5
Te6 3 7 4
Te5 6 5 8
Te4 6 6 7
Te3 4 2 5
Te2 6 7 3
Te1 6 7 8
Hu6 6 10 7
Hu5 6 7 6
Hu4 6 3 6
Hu3 4 3 3
Hu2 6 5 7
Hu1 7 6 5
Hto 7 9 8

The electricity price forecasting is undertaken using SMO regression with the FS
method for the New South Wales (NSW) electricity market. The average errors of each
method for all seasons are calculated week-wise. Table 4 shows comparison between the
SMO regression approach and seven other approaches (SMO regression, M5P, M5P +FS,
Bagging, Bagging +FS, J48, J48+FS), in terms of different error measures in terms of MAPE,
RMSE, MAE and EV. It also summarizes the overall mean performance for each method, in
the last column. Results show that the SMO regression + FS methods perform well over all
other methods used for the comparison. The error of four prior weeks are evaluated and
arranged at the regular interval of half an hour from 00:00, 00:30, 01:00,...., up to 23:30 to
evaluate the confidence interval for a day. Then, hourly standard deviation (δ) and 2δ are
calculated for 95% confidence interval. The upper limit and lower limit calculation is as
given below:

Upper Limit = Forecasted value + 2δ (8)

Lower Limit = Forecasted value − 2δ (9)
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Table 4. Comparison of forecast accuracy using different error measures.

Sr. No. Error Measures Methods
Season

AverageWinter
(22–28 August 2015)

Spring
(22–28 October 2015)

Summer
(22–28 January 2016)

1 Mean Absolute Percentage Error
(MAPE)

J48 12.45 9.30 10.42 10.72
J48+ FS 11.40 8.41 8.86 9.56
Bagging 7.86 7.67 8.61 8.05

Bagging+ FS 7.98 7.31 8.43 7.91
M5P 6.40 6.12 7.68 6.73

M5P+ FS 6.05 5.77 6.47 6.10
SMO regression 5.25 5.73 5.35 5.44

SMO regression+FS 4.85 5.26 5.28 5.13

2 Mean Absolute Error
(MAE)

J48 4.09 3.34 3.88 3.77
J48+ FS 3.74 3.07 3.29 3.37
Bagging 2.62 2.76 3.24 2.87

Bagging+ FS 2.68 2.57 3.19 2.81
M5P 2.14 2.19 3.65 2.66

M5P+ FS 2.03 2.07 2.74 2.28
SMO regression 1.75 1.99 2.11 1.95

SMO regression+ FS 1.60 1.82 2.07 1.83

3
Root Mean Square Error

(RMSE)

J48 5.37 4.35 6.91 5.55
J48+FS 4.96 4.05 5.20 4.74

Bagging 3.47 3.67 5.10 4.08
Bagging+FS 3.55 3.54 5.12 4.07

M5P 3.56 2.96 13.06 6.53
M5P+FS 3.04 2.86 6.83 4.24

SMO regression 2.62 2.75 4.07 3.15
SMO regression+FS 2.39 2.49 4.00 2.96

4 Error Variance
(EV)

J48 0.0102 0.0062 0.0271 0.0145
J48+FS 0.009 0.0055 0.0134 0.0093

Bagging 0.0044 0.0046 0.0129 0.0073
Bagging+FS 0.0046 0.0047 0.0133 0.0075

M5P 0.0068 0.0032 0.1307 0.0469
M5P+FS 0.0043 0.0031 0.0325 0.0133

SMO regression 0.0032 0.0029 0.01 0.0054
SMO regression+FS 0.0027 0.0023 0.0097 0.0049

The results of proposed model for winter, spring summer of NSW electricity market is
depicted in Figures 3–5 respectively. From the Table 4 it is clear that the proposed method
(SMO regression+FS) outperforms other methods in all seasons and for all error measures.
Table 5 shows percentage improvement achieved by SMO+FS over the considered ap-
proaches. It is observed that the SMO Reg + FS gives 52.16% improvement over the J48
method. It can be seen that the SMO Reg + FS has improved forecasting accuracy over all
the methods considered for comparison.
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Figure 3. Forecasting for 22–28 August 2015 in winter with SMO regression+FS.
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Figure 4. Forecasting for 22–28 October 2015 in spring with SMO regression+ FS.
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Figure 5. Forecasting for 22–28 January 2016 in summer with SMO regression+ FS.
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Table 5. Improvement of error measures using SMO regression+ FS over other approaches.

Sr. No. Method Average MAPE Improvement (%)

1. SMO regression+ FS 5.13 -
2. J48 10.72 52.16
3. J48+ FS 9.55 46.32
4. Bagging 8.086 36.27
5. Bagging+ FS 7.86 35.15
6. M5P 6.73 23.77
7. M5P+ FS 6.09 15.90
8. SMO regression 5.44 5.75

Sr. No. Method Average MAE Improvement (%)

1. SMO regression+ FS 1.83 -
2. J48 3.76 51.33
3. J48+FS 3.36 45.54
4. Bagging 2.87 36.24
5. Bagging+FS 2.81 34.89
6. M5P 2.66 31.20
7. M5P+FS 2.28 19.74
8. SMO regression 1.95 6.15

Sr. No. Method Average RMSE Improvement (%)

1. SMO regression+ FS 2.96 -
2. M5P 6.53 54.68
3. J48 5.55 46.64
4. J48+ FS 4.74 37.51
5. M5P+ FS 4.24 30.23
6. Bagging 4.08 27.44
7. Bagging+ FS 4.07 27.29
8. SMO regression 3.15 5.97

Table 6 summarizes the daily MAPE corresponding to SMO regression and SMO
regression +FS. The daily errors for the winter, spring and summer seasons, using the SMO
regression and SMO regression + FS are depicted in Figures 6–8. These results indicate that
the performance of the SMO regression + FS is generally better than the performance of the
SMO regression.

Table 6. Comparative daily MAPE corresponding to SMO regression and SMO regression +FS.

Sr. No. Days
Winter (22–28 August 2015) Spring (22–28 October 2015) Summer (22–28 January 2016)

SMO Reg SMO Reg+FS SMO Reg SMO Reg+FS SMO Reg SMO Reg+FS

1 Day1 5.49 5.32 4.60 4.18 10.96 10.72
2 Day2 4.32 4.21 6.24 5.69 4.86 4.85
3 Day3 6.74 6.62 5.30 4.58 3.1 3.01
4 Day4 5.18 4.36 5.94 5.72 4.37 4.20
5 Day5 6.51 5.80 5.85 5.50 3.3 3.29
6 Day6 4.48 3.82 5.92 5.47 4.64 4.62
7 Day7 4.01 3.80 6.27 5.66 6.27 6.24

Average 5.25 4.85 5.73 5.26 5.35 5.28
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6. Conclusions

In this paper, a novel hybrid method for day ahead electricity price forecasting is
presented. The elitist GA and tree-based method is used for input features selection.
The forecasting is done for whole year with FS and WoFS. MAPE, RMES, MAE and EV
have been calculated day-wise, week-wise and season-wise. The result obtained from
SMO regression is compared with the results of classification tree (J48) and regression tree
(bagging and M5P). It can be observed from the experimental results that SMO regression
with FS method provides better forecast results of electricity prices than WoFS and SMO
regression outperforms classification tree (J48) and regression tree (bagging and M5P)-
based forecasters. It was observed that SMO regression + FS could give improved accuracy
(MAPE) in the range of 23.77 and 36.27 (for M5P and bagging) to 52.16 (for J48).
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Abbreviations

FS Feature Selection
GA Genetic Algorithm
MCP Market Clearing Prices
ANN Artificial Neural Network
SDA Stacked Denoising Autoencoders
FFNN Feed Forward Neural Networks
WT Wavelet Transform:
FA-PSO Fuzzy Adaptive Particle Swarm Optimization:
RF Random Forest
SVM Support Vector Machine
DE Differential Evolution
MI Mutual Information
SMO Sequential Minimization Optimization
QP Quadratic Programming
WoFS Without Feature Selection
KKT Karush–Kuhan–Tucker
10-FCV 10-Fold Cross Validation
AEMO Australian Energy Market Operator
RMSE Root-Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
EV Error Variance

Appendix A

Calculation of SMO regression:
For a typical SMO algorithm, the dual form of the SVM minimized function and

related calculations are given below from Equations (A1) to (A6).

W(α+, α−) = ε.
l

∑
i=1

(αi
+ + αi

−)−
l

∑
i=1

yi(αi
+ + αi

−)+

1
2

l
∑

i=1

l
∑

j=1
yi(αi

+ + αi
−)(αj

+ + αj
−).k(xi, xj)

(A1)

where, α+, α− = PositiveandnegativeLagrange′ s Multiplier; K = kernel function subject
to constraints:

l

∑
i=1

(α+i + α−i ) = 0; α+i ≥ 0; α−i ≤ −C f or ∀i (A2)

Transforming the above sets of equations by,

λi = α+i − α−i ;
∣∣λi
∣∣ = α+i + α−i ; kij = k(xi, xj)

Then the model objective function can be represented as,

W(λ) = ε.
l

∑
i=1
|λi

∣∣∣∣∣ − l

∑
i=1

λiyi +
1
2

l

∑
i=1

l

∑
i=1

λiλjkij such that
l

∑
i=1

λi = 0; (A3)

www.weatherzone.com/au
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To express analytically, the minimum of model objective function as a function of two
parameters i.e., u and v, we have:

W(λu, λv) = ε. (
∣∣∣λu

∣∣∣ + ∣∣∣λv

∣∣∣) − λuyu − λvyv + 1
2 λ2

ukuu + 1
2 λ2

vkvv

+ λuλvkuv + λuz∗u + λvz∗v + Wc
(A4)

where λu, λv are two constants, and

λ∗i =
l

∑
j 6=u,v

λ∗j .kij = f ∗i − λ∗u.kui − λ∗v . kvi − b∗ ; f ∗i = f (xi, λ∗, b)

Representing the model objective function in terms of a single Lagrange’s multiplier
by substituting s∗ = λu + λv = λ∗u + λ∗v for the constraint to be true after a step in
parametric space keeping summative values of ‘λ’ be fixed:

W (λv) = ε.
∣∣∣s ∗ − λv

∣∣∣ + ε
∣∣∣λv

∣∣∣ − (s ∗ − λv)yu − λvyv
1
2 (s ∗ − λv)2kuu +

1
2 λ2

vkvv + (s ∗ −λv)λvkuv + (s ∗ −λv)z∗u + λvz∗v + W
(A5)

Taking partial derivative w.r.t.λv and equating to zero, dW(λv)
dx = 0, we obtain:

λv = λ∗v +
1
η
(yv − yu + f ∗u − f ∗v + ε ( sgn ( λu ) − sgn (λv))) (A6)

where η = kvv − kuu − 2 kuv; sgn(λu) = d|λu |
dx ; sgn(λv) = d|λv |

dx
The steps involved will minimize the global objective function, if any of the parameter

violates the KKT (Karush–Kuhan–Tucker) conditions of regression i.e.,

λi = 0 ⇔ |yi − fi | ≤ ε− C < λi 6= 0 < C ⇔ |yi − fi | = ε and |λi| = C ⇔|yi − fi | ≤ ε

If none of the parameters violates the KKT condition, the global minima have been reached.
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