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Abstract: In order to formulate the long-term and short-term development plans to meet the energy
needs, there is a great demand for accurate energy forecasting. Energy autonomy helps to decompose
a large-scale grid control into a small sized decisions to attain robustness and scalability through
energy independence level of a country. Most of the existing energy demand forecasting models
predict the amount of energy at a regional or national scale and failed to forecast the demand for
power generation for small-scale decentralized energy systems, like micro grids, buildings, and
energy communities. A novel model called Sailfish Whale Optimization-based Deep Long Short-
Term memory (SWO-based Deep LSTM) to forecast electricity demand in the distribution systems
is proposed. The proposed SWO is designed by integrating the Sailfish Optimizer (SO) with the
Whale Optimization Algorithm (WOA). The Hilbert-Schmidt Independence Criterion (HSIC) is
applied on the dataset, which is collected from the Central electricity authority, Government of
India, for selecting the optimal features using the technical indicators. The proposed algorithm
is implemented in MATLAB software package and the study was done using real-time data. The
optimal features are trained using Deep LSTM model. The results of the proposed model in terms of
install capacity prediction, village electrified prediction, length of R & D lines prediction, hydro, coal,
diesel, nuclear prediction, etc. are compared with the existing models. The proposed model achieves
percentage improvements of 10%, 9.5%,6%, 4% and 3% in terms of Mean Squared Error (MSE) and
26%, 21%, 16%, 12% and 6% in terms of Root Mean Square Error (RMSE) for Bootstrap-based Extreme
Learning Machine approach (BELM), Direct Quantile Regression (DQR), Temporally Local Gaussian
Process (TLGP), Deep Echo State Network (Deep ESN) and Deep LSTM respectively. The hybrid
approach using the optimization algorithm with the deep learning model leads to faster convergence
rate during the training process and enables the small-scale decentralized systems to address the
challenges of distributed energy resources. The time series datasets of different utilities are trained
using the hybrid model and the temporal dependencies in the sequence of data are predicted with
point of interval as 5 years-head. Energy autonomy of the country till the year 2048 is assessed
and compared.
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1. Introduction

Energy autonomy is built on the various dimensions and targets to enable local energy
generation and use and to attain balance between demand and supply in an economically
viable and sustainable manner. The energy management system is tightly coupled with the
monitoring and forecasting of energy generation, energy demand and handling uncertainty
in the system [1]. In addition to the population and economic growth, global energy
consumption has also increased, which poses challenges among the researchers to propose
various optimistic solutions. To solve these issues, an accurate and efficient forecasting
model must be designed. Energy consumption perceived significant growth in the past
decade. India tends to generate surplus power but there is an inadequate infrastructure to
distribute the electricity. To address this issue, the Indian Government launched the “Power
for All” program in the year 2016. The International Energy Agency (IEA) prediction shows
that before 2050, the nation will increase its production and the electricity production will
be between 600 GW to 1200 GW [2]. The Indian national electric grid, as of 31 January
2021, is estimated to have an installed capacity of 371.977 GW. The renewable power
generation plants, constituting hydroelectric plants, contribute to the total installed capacity
of 35.94% [3].

Figure 1 summarizes the installed power generation capacity in India as of 31 January
2021. The per capita consumption of electricity is deemed to be low compared to most
other nations, with India charging a low tariff for electricity. Due to COVID 19 pandemic,
the global energy demand is declined by 3.8% in the first few months of 2020 that leads to
major allusion on the global economies. All the fuels are affected in several countries due
to full lock-down and partial lock-down. The wave of investment is necessary to provide
cleaner and resilient energy infrastructure [4]. The estimated share of coal-based energy
production will be 42–50% in the energy mix. On the other hand, NITI Aayog revealed
that renewable energy penetration would increase up to 11–14% in 2047 from 3.7% in 2012.
Similarly, the jutting production will increase in GW in India from 2015 to 2050. Single
load shape factors and the multiple load shape features are indicated in two groups of
years 2030 and 2050 at the energy distribution systems [5]. Several pieces of literature on
renewable energy integration reveal that there is a need to mix flexible power investments
to render a successful and affordable energy system, which will incorporate the essence of
wind and solar Photo Voltaic (PVs). Such flexibility should come not only from the coal
fleet but also from other energy sources such as natural gas, variable renewable, storage of
energy, power-grids, and demand-side response. To target different drivers systematically,
the policy change mix is required for restructuring the energy market operations [6]. The
electricity demand grew by 3.9 percent Compound Annual Growth Rate (CAGR) between
2000 and 2015 with an elasticity of 0.95. The elasticity can be reduced by 20 percentage with
increasing efficiency and the per capita electricity consumption will be higher for the goals
related to electrification which is likely to be doubled by 2030 when compared to 2015 [7].
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Figure 1. A summary of installed generation capacity in India as of 31 January 2021 [4].

Electricity security in India has improved in recent years due to the creation of a single
national power system, wherein more investments are made on renewable and thermal
capabilities to harness the power. Considering the variable nature of renewable energy,
debates and research are in light which consider the notion of flexibility, priority, and
system integration issues. National governments, research communities, policymakers and
stakeholders are working together to create a sustainable energy system soon. In order
to meet the energy demand, the different countries come up with their own policies to
achieve the goal. The target of 3.2 GW installed capacity by 2022 is set for Gujarat’s policy
framework [8]. The Indian Government supports interconnections across the nation which
necessitates the already existing coal fleet to make flexible operations. Coal would remain
at the center stage in India not declining below 46% in 2047. Hence, a tool is developed to
provide unit costs for all energy sources and different demand-side technologies, resulting
in low usage of energy for equivalent service level. As the tool has its implications during
medium-to-long term run in 2048, there is a need to adopt specific assumptions both on the
future prices and delivering the present cost or savings value [9].

Table 1. Share of the primary energy mix by 2047 [10].

Share in Primary Energy Supply 2012 2022 2030 2047

Coal 47% 52% 51% 52%
Oil 27% 28% 29% 28%
Gas 8% 9% 9% 8%
Nuclear, Renewables and hydro 10% 6% 6% 6%
Others 6% 5% 5% 6%

Table 1 shows the different shares of the primary energy mix by 2047. India has a
target to meet; India strives to meet a target generation of 175 GW renewable energy by
2022. Mr. Narendra Modi, the Prime Minister of India, announced in the year 2019 that
the electricity mix of India will include another 450 GW of renewable energy production
capability. Such progress will require flexibility in the already existing energy production
systems to enable effective energy system integration. Energy system integration could
be achieved by enhancing renewable energy source designs. 100% clean and efficient
power can be achieved only if the above conditions are satisfied in a more corruption-free
approach. Wind Energy Conversion System (WECS) based Permanent Magnet Synchronous
Generator (PMSG) gained attention at the wind energy turbine for increased efficiency in
power conversion [11].
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India is one among the fast-growing economies globally, with a population of above
1.4 billion people. Several reforms are being made by the Government of India towards
providing a sustainable yet affordable and secure energy system that will further promote
the growth of the nation’s economy. The Indian Government has also implemented several
changes in the energy market to encourage renewable energy deployment, specifically solar
energy. It is to be noted that the Indian government, with its ambitious vision, is making
strides to provide affordable, sustainable, and secure energy to all citizens living in the
nation. This is to aid the energy sector to develop long-term and short-term development
plans and strategies that suffice the energy needs of the global nations efficiently. In
order to produce energy efficiently, it is necessary for new and smart technologies to be
incorporated into the energy sector. Energy production in various countries is strongly
related to smart technologies. To overcome the energy crisis, different countries adopt
different frameworks to improve energy production [12]. It is thereby imperative to
consider intelligent decision making, which is critical to provide easiness in electricity and
energy systems soon. Intelligent decision-making requires accurate energy generation and
demand forecasting techniques. In this work, energy forecasting using time series data is
implemented using a novel forecasting model.

On the contrary, complex methods suffer from their own limitations which include
the issues of interpretability. Techniques such as data pre-processing and data-driven
forecasting are suggested which improves accuracy even with partial past power data
information. Such kind of energy forecasting system is deemed to forecast the energy needs
for the future to achieve supply and demand equilibrium. The main objective of the work
is to assess the performance of the proposed forecasting model with the existing models
for forecasting electricity demand in the distribution systems. The optimal energy storage
with big data storage facility to store electricity in large amounts is necessary for a smart
grid environment. There are large-scale energy users, electricity retailers and investment
banks who deal with the trading of electricity. In the research conducted by World Health
Organization (WHO), World bank (2020), it was inferred that the access to electricity for
the global population grew from 83% in 2010 to 90% in 2018. Hence, one can understand
that more than 1 billion people gained access to electricity during this period [13]. Due
to COVID lockdown, the impact of energy demand in the energy sector is high. The
forecasting of energy demand can help the government take necessary mitigation steps
and helps the energy sector to analyze the variations in the energy demand at different
locations [14].

The existing machine learning models like Artificial Neural Network (ANN), mul-
tivariate linear regression model and adaptive boosting models are used for one month
and one year ahead forecasting of energy demand using the energy consumption data
given as input to the model [15]. The statistical and computational intelligence models
like Feed Forward Neural Networks (FFNN), Recurrent Neural Network (RNN), Support
Vector Machines (SVM), etc. for electricity price forecasting are used. The modeling and
forecasting of the trend seasonal components can be done using combined forecasting
techniques like point and probabilistic forecasts [16]. A hybrid approach of Micro Grid Wolf
Optimizer-Sine cosine Algorithm- Crow Search Algorithm (MGWO-SCA-CSA) to forecast
the different types of electricity market prices is used [17]. Moth Flame optimization (MFO)
based on parameter estimation to effectively analyze the characteristics of wind and the
onshore, offshore and near shore assessment is used. Big data analysis with the historical
data and the atmospheric parameters can be trained using time series prediction models
for long term forecasting [18]. Machine learning techniques are also used to forecast proba-
bilistic wind power with parametric models like Fuzzy neural networks [19], Sparse Vector
Auto Regressive (SVAR) [20], Extreme Learning Machine (ELM) [21], and non-parametric
models like adaptive re-sampling [22]. However, the performance measures of probabilis-
tic forecasting are defined using unique skill scores, sharpness, and reliability [23]. The
empirical model types and the Temporally Local Gaussian Process (TLGP) approach define
the future uncertainty that is expressed with the help of witnessed behavior of the point
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prediction model in such a way that the point forecasting error can be used for the next
stages of analysis. However, the other category of interval forecast is specified as a direct
interval forecast. These intervals are defined with no existing knowledge of the forecasting
errors [24,25]. A swarm optimization-based radial basis function neural network [26] is
used to forecast solar generation. This method effectively minimizes the requirement of
sensor investments though the model failed to use the model selection approach. ANN,
SVM [27,28], Seasonal Autoregressive Integrated Moving Average (SARIMA)-based Ran-
dom Vector Functional Link (RVFL) [29] are used to forecast wind power. Feed forward
artificial neural networks based on binary genetic algorithm and Gaussian process regres-
sion are used for the best feature selection process and provides good accuracy in predicting
the electricity demand [30].

The Numerical Weather Prediction (NWP) models to forecast the weather, which plays
a major impact on the energy demand prediction, are used. Deep learning models like
Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and its variants
are used for predicting severe weather events accurately which can help the energy sector
to improve the accuracy of energy forecasting [31]. The economic savings prospect and
the ecological saving prospect are analyzed for increasing user trust and for increasing the
acceptance of recommendations to drive energy efficiency [32]. The various optimization
problems and the improved strategies for solving the optimization problems can be done
using big data and deep learning models. The prediction accuracy of electricity demand
forecasting can be improved using hybrid models for maintaining a balanced and consistent
power grid [33]. Numerical weather data is used for forecasting wind power generation and
can improve the accuracy of the prediction by capturing the spatio-temporal relationships
among the variables [34]. The global policies for promoting renewable energy production
and energy market integration for the nation’s growth are adopted at the three Indian
states like Karnataka, Gujarat and Tamil Nadu. It describes the factors which hinder the
growth of renewable energy production in India and the policies framed by the Indian
Government. This study enables the improved production of renewable energy across
the states in India and different countries since the challenges faced in both scenarios are
quite similar [35]. It is important to identify the different barriers in the energy sector
and extracts valuable information to the policymakers, stakeholders, investors, industries,
innovators and scientists. In addition to conventional sources and energy storage, the
hybrid configuration can be adopted to create a more reliable system. The insights of
renewable energy development in India describe the advancements in the policy and the
regulations, transmission requirements, financing the renewable energy sector etc. [36].
It is important to identify the worldwide electric power capacity and the technologies,
developments of renewable energy sources. Also, it is necessary to address the climatic
change issues related to electricity generation and the improvements in energy efficiency
are analyzed with respect to the global reduction of CO2 emissions [37]. Table 2 presents the
existing literature studies, methodologies, and forecasting models for energy forecasting.

Table 2. Review of existing study and the methodologies adopted in energy forecasting.

Ref. Dataset Used Forecasting Model Methodology Used Outcome

[38] Four years of data from
2014 to 2018 of UK Triads.

Long Short-Term
Memory (LSTM).

The proposed
methodology is used to
produce the triad signals 48
h ahead. 250 number of
epochs with the batch size
of 6 days of data are used
for training the model.

LSTM outperforms other models
like ANN and SVM in electricity
demand forecasting. The model
achieves RMSE (MW) value of
759.66.
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Table 2. Cont.

Ref. Dataset Used Forecasting Model Methodology Used Outcome

[39]

Korea Power Exchange
data from 1 January 2003 to
22 May 2020is used for
forecasting. 11 years of
data from 2003 to 2013 is
used for training.

A hybrid model of
Convolutional Neural
Networks (CNN) and
Recurrent Neural
Network (RNN) is
used.

The proposed hybrid
model is used for electricity
power forecasting like
facility capacity, supply
capacity and power
consumption.

The hybrid model consists of 1D
conv layer with 32 filters
combined with bidirectional
LSTM of 16 nodes and grid search
algorithm. CNN achieves 0.025
for full capacity (MW), 0.214 for
supply capacity (MW) and 0.314
for power capacity (MW).

[40]

Historical power data from
French energy
consumption is taken 2012
to 2020.Weather forecast
data from Action de
Recherche Petite Echelle
Grande Echelle (ARPEGE).

Energy demand
forecasting using
CNN-ANN.

The proposed model
combines the feature
extraction using
Convolutional Neural
Network (CNN) and the
regression capabilities of
ANN.

Accurate energy demand
forecasting achieves lower Mean
Absolute Error MAE (%) value of
1.4934 when compared to other
models. The errors were
uniformly distributed for
monthly forecasting.

[41]
Power demand data set
from Jan 2017–Dec 2017
with 5 min resolution.

Short-term Power
demand forecasting
using LSTM.

Mixed Data Sampling
Technique MIDAS for data
preprocessing and
DeepLearning4J is used for
constructing the power
demand forecasting model.

LSTM+MIDAS model achieves
lower RMSE values of 7.330, 14.4,
53.6 and 36.8 for Residential, City
Hall, Factory and hospital
locations respectively.

[42]

Direct Quantile Regression
(DQR) for Nonparametric
Probabilistic Forecasting of
Wind Power Generation.

Multi-step ahead
forecasting of 10-min
wind power
generation.

The proposed technique is
used to minimize operation
cost and increase the
reliability of power system
with large wind energy
penetration through a
reliable and accurate
forecasting technique.

The forecasting errors are
approximated through different
parametric probability
distribution methods and
achieves computational efficiency
of 63.89(s). Addresses the issues
from the perspective of power
system stability and balance.

[43] Forecasting methods in
energy planning models.

A systematic and
critical review on
forecasting techniques
used in 483 energy
planning models.

The proposed study
emphasizes the various
statistical methods and the
computational intelligence
methods like machine
learning algorithms.

With large scale penetration,
probabilistic forecast is integrated
into different decision-making
activities in the power systems.
Hybrid models and the
computational intelligence
techniques yields higher accuracy
than the other stand-alone
models.

[44]

A review on machine
learning forecasting
growth trends and their
real-time applications in
different energy systems.

A comprehensive and
critical review that
compares the different
forecasting models for
energy consumption
prediction with climate
data were addressed.

The proposed review
analyzes the best models
for forecasting future load
and demand, geothermal,
wind and solar energy
forecasting.

Bayesian regularization back
propagation neural networks
(BRBBNNs) and the Levenberg
Marquardt back propagation
neural networks (LMBNNs)
provides higher accuracy and
achieves the correlation
coefficient of 0.972 and 0.971
respectively.

[45]

Deep Long Short-Term
Memory: A New Price and
Load Forecasting Scheme
for Big Data in Smart
Cities.

Deep Long Short-Term
Memory (DLSTM) for
price and demand
forecasting.

For all the months, 1-day
ahead and 1-week ahead
forecasting was analyzed
using the hybrid
forecasting model.

DNN and LSTM (DLSTM)
outperforms with 1.94 and 0.08
for price forecast and 2.9 and
0.087 for load forecast in terms of
Mean Absolute Error (MAE) and
0.08 for Normalized Root Mean
Squared Error (NRMSE)
respectively.
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Table 2. Cont.

Ref. Dataset Used Forecasting Model Methodology Used Outcome

[46]

Energy load time-series
forecast using
decomposition and
auto-encoder integrated
memory network.

Hybrid approach of
Variational Mode
Decomposition (VMD)
and LSTM model is
used for load and
demand forecasting.

VMD and auto-encoder is
integrated for extracting
the features from the
dataset. LSTM model is
used for training the
extracted features.

Spatio-temporal correlations are
captured using the hybrid model
using agglomerative clustering
algorithm. Hybrid model is
implemented on the energy
consumption data of Himachal
Pradesh (HP) and achieves Mean
Absolute percentage Error
(MAPE) of 3.04%

[47]

Forecasting energy
consumption and wind
power generation using
deep echo state network.

Deep Echo State
Network (Deep ESN) is
used to generate wind
power and forecast
energy consumption
based on the stacked
hierarchy of reservoir.

The non-linear stability of
the echo state network and
the deep learning
capability are combined
using Deep ESN.

Deep ESN outperforms ESN
framework improves the
performance accuracy of 51.56%,
51.53%, and 35.43% in terms of
mean absolute error, root mean
square error, and mean absolute
percentage error respectively.

Research Gap and Motivation

The performance of the existing ANN models is limited when there is a lack of training
datasets and difficult to solve the computationally demanding problems. The two main
processes involved in the deep learning models are feature extraction and forecasting,
which are handled by the structure of the model. Deep learning models like Long Short-
Term Memory (LSTM) and its variants can effectively handle time-series data sets and
capture the complex non-linear relationship between the variables where the information
from the previous states is passed to the current state. Also, the hybrid approach or
sequential coupling of the feature extraction algorithm and the forecasting model will
enhance the performance.

The main aim is to recommend the optimal method to conduct forecasting analysis.
The study has a specific objective i.e., to analyze and assess the methods leveraged to
forecast energy and the real-time application of the forecasting model in different facili-
ties. The current research work discusses the design of an electricity demand forecasting
model, using the proposed Sailfish Whale Optimization (SWO)-based Deep LSTM model
to forecast the power generation in distributed energy systems. The technical indicators
such as Exponential Moving Average (EMA), Simple Moving Average (SMA), Stochastic
Momentum Index (SMI), Chande’s Momentum Oscillator (CMO), Closing Location Value
(CLV), Average True Range (ATR), On Balance Volume (OBV), and Commodity Channel
Index (CCI) are extracted to forecast the power generation demand.

The novelty of the proposed system is as follows:

1. Data preprocessing and extraction of technical indicators is done using Box-Cox
transformation.

2. The optimal features are selected from the extracted features using HSIC.
3. The output of integrated optimization algorithm (SWO) is fed into the Deep LSTM

model for training. This hybrid approach leads to improved accuracy with faster
convergence rate.

4. A detailed analysis of electricity prediction of the proposed model in terms of install
capacity, village electrified prediction, length of R & D lines, the prediction of Hydro,
gas, coal, nuclear, etc. is made, and the results are compared with the existing methods
to show the improved accuracy.

Considering all these implications, Section 2 presents the data preprocessing, feature
extraction techniques and highlights the research contributions. Section 3 describes the
proposed methodology for power generation and electricity demand forecasting. Section 4
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presents the detailed analysis and discussions of forecasting results. Finally, the conclusion
and the future scope are presented in Section 5.

2. Proposed Sailfish Whale Optimization-Based Deep LSTM Approach for Power
Generation Forecasting

The surge in electricity consumption necessitates the forecasting of energy demand.
Therefore, an electricity demand forecasting model SWO-based Deep LSTM is developed
in this study. The proposed approach performs the forecasting process through various
phases such as data transformation, technical indicators’ extraction, feature selection, and
electricity demand forecasting, as it is shown in Figure 2. Initially, the input time series
data is subjected to data transformation phase, where the data is transformed by Box-Cox
transformation. However, the technical indicators such as EMA, SMI, CMO, ATR, SMA,
CLV, CCI, and OBV are effectively extracted, and the features are selected using HSIC.
Finally, the electricity demand forecasting is carried out using a Deep LSTM classifier,
trained by the proposed SWO algorithm. The proposed SWO is a combination of SFO [48]
and WOA [49]. Figure 2 portrays the schematic diagram of the proposed approach.

Figure 2. Schematic diagram of the proposed SWO-based Deep LSTM for power generation forecasting.

2.1. Acquisition of the Input Time-Series Data

The forecasting of power generation or electricity demand using time series data is
performed. Time series data is the data collected at various periods at different points.
Data is collected from data.gov.in (23 December 2021). The plan wise growth of electricity
sector in India is downloaded which contains the utilities like installed capacity, number of
villages electrified, length of T&D lines and per capita energy consumption. The different
annual data plans are collected with varying time periods. The plan-wise and category

data.gov.in
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wise growth of various utilities under different modes like hydro, coal/lignite, gas, diesel,
nuclear and total values are extracted. Also, the power supply position energy wise and
peak wise are considered from 1985 to 2018.

Let us consider the dataset as S with p number of time series data which are mathe-
matically modeled in Equation (1) as,

S = {Rn}; n ∈ {1, 2, . . . , p} (1)

where p denotes the total number of data, R represents the time series data, and Rn
indicates the data located at nth index of dataset such that the data Rn is used to perform
the forecasting process of electricity demand.

Figure 3 shows the architecture diagram of the SWO Deep LSTM model. The prepro-
cessed data is fed to the model with the network architecture of stacked/Deep LSTM layers
with ReLU activation function. The model is trained and tested for long term prediction of
electricity demand forecasting.

Figure 3. Architecture diagram of Proposed SWO Deep LSTM.

2.2. Data Preprocessing and Feature Extraction

The real-world datasets collected may lead to error due to inconsistency. So, it is
necessary to preprocess the data for further analysis. There exist various preprocessing
techniques that handles messy data. Cosine similarity is computed between the vectors
for data normalization. The number of columns in the data are retrieved and are returned
into the respective output variables. The data columns are converted into numbers and
the entire table is converted to matrix by iterating over each column. If any of the record
cannot be converted to a number format, the entire column is returned as a charArray. The
attributes are specified as param-value pairs and the parameter values are not case-sensitive.
Technical analysis tool is used for extracting and calculating the various technical indicators
for further processing. Technical analysis is used for forecasting the future values based on
the history of data.
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2.3. Data Transformation Using Box-Cox Transformation

The scaling of attributes is done using data transformation. Data reduction strate-
gies are used for removing the redundancies in the dataset and to reduce the number of
attributes. To avoid the bias during training process, data should be normalized using
Min-Max scaler. The input time series data Rn is subjected to data transformation phase. In
this phase, the data transformation occurs by following Box-Cox transformation [50] which
is used for measuring the central tendency values represented as in Equations (1)–(30).
Data transformation is the process of preparing data effectively prior to performing the
forecasting process. This procedure is used to transform the data from one form to another
to obtain the most accurate forecasting result. Box-Cox belongs to the power transforma-
tion family, where the transformed values are monotonic functions of time series data.
However, the Box-Cox transformation is performed by considering the discontinuity at
and is expressed as in Equation (2).

Bn =

{
Rδ

n−1
δ ; δ 6= 0

log Rn; δ = 0
(2)

where Rn specifies the input time series data, δ signifies the transformation parameter, and
Bn represents the outcome of data transformation.

2.4. Extraction of Technical Indicators

The output Bn, obtained from the data transformation process, is then fed to the
technical indicators’ extraction phase. During this phase, technical indicators such as SMA,
EMA, SMI, CMO, CLV, ATR, OBV, and CCI [51] are effectively extracted to achieve optimal
prediction results for power generation. The technical indicators are extracted based on
historical time-series data. Moving average is calculated using convolution operation. The
shift for the upper and lower bounds are calculated where shift indicates the standard
deviation of the data. However, the extracted technical indicators are briefly described
as follows:

SMA: It is computed by dividing the total price values over d instant time period such
that the technical SMA indicator is expressed as in Equation (3).

T1 =
∑d

j=1 C

d
(3)

where, d indicates the time period, and C specifies the stock prices.
EMA: It provides high importance to current values and is calculated based on the

recent samples of the time window. EMA is expressed as in Equation (4).

T2 = T2(d− 1) +
2

(d + 1)
C(d) (4)

where (d− 1) indicates the prices on the previous day.
SMI: It is the refinement of a stochastic oscillator and is considered the most reliable

indicator with limited false swings. It computes the distance between the recent closing
prices and relates it to the median of low or high range of values. Accordingly, the SMI
technical indicator is represented using Equation (5) given below.

T3 = 100× M
H
2

(5)

Here, the terms H and M are specified as in Equations (6) and (7),

H = H1 − H2 (6)
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M = Cclose −
H
2

(7)

where Cclose represents the closed price values, H1 indicates the highest high value, H2
specifies the least low value.

CMO: It is computed by dividing the total movement by the net amount and is
expressed in Equation (8) as follows.

T4 = 100×∑d
j=1 Cup −∑d

j=1 Cdown (8)

where Cup indicates the upward price movement and Cdown specifies the downward price
movement.

CLV: It is used to find whether the issues are closed within the trading range and is
represented using Equation (9) given below.

T5 =
(Cclose − Clw)

(
Chg − Cclose

)
Chg − Clw

(9)

where Clw and Chg are the low and high price values.
ATR: It is the measure of volatility such that a higher ATR value indicates high

volatility, and a lower value of ATR specifies low volatility. ATR is represented as in
Equation (10).

T6 =
T(d− 1)× (d− 1) + A

d
(10)

where A indicates true range, Ahg specifies true high value, and Alw represents true low
value. Here, the term A is specified as, in Equation (11).

A = Ahg − Alw (11)

OBV: It is the cumulative total of down and up volumes. If a close value is greater
than the previous value, then the volume is added to the total value. If the volume is lesser
than the previous close value, then the volume is subtracted from the total amount as given
in Equation (12).

T7 = T7(d− 1) + /− D (12)

where D indicates the volume.
CCI: It is used to represent the cyclic trading trend and to denote the beginning and

ending values. It lies in the range of−100 to 100 and the values outside the range specify the
oversold or overbought conditions. CCI indicator is represented as follows in Equation (13).

T8 =
Ctp − Catp

0.015× E
(13)

where, E indicates the mean deviation, Catp represents the typical average price, Ctp
specifies the typical price value and is represented as in Equation (14).

Ctp =
Cclose + Clw(d) + Chg(d)

3
(14)

However, the technical indicators extracted from time-series data are represented as T,
i.e., T = {Ti}; i ∈ {1, 2, . . . , 8}, respectively.

2.5. Feature Selection Using Hilbert-Schmidt Independence Criterion (HSIC)

Once the technical indicators are extracted, the optimal features are selected in the fea-
ture selection stage. Feature selection is a process in which the best and important features
are selected by removing the unimportant features to increase prediction performance. The
feature selection process is carried out using HSIC [52] to select the essential features from
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the extracted technical indicators. The feature selection is done based on the dependency
between the attributes. The feature selection can be done in two ways. The first method is
building up the catalog of features in an incremental manner known as forward selection
and the other way is to remove the irrelevant features from the whole dataset called as
backward feature selection process. While applying a linear kernel function, both the
techniques are equivalent but backward elimination yields better features.

Let Q denote the whole set of features and Q’ denote the subset of features. Q’ is
produced recursively by eliminating the least important features from the original dataset
Q. σ denotes the parameter of the data kernel matrix K. The algorithm for the Hilbert
Schmidt independence criterion is given below (Algorithm 1).

Algorithm 1: HSIC

Input: Entire set of features Q
Output: An ordered set of features Q’
Q’ φ

Repeat
σ ≡

U argmaxu Σsєu HSIC (σ, Q\{s}), U є Q
Q Q\U

Q’ (Q’, U)
Until Q = φ

The different types of kernels like linear kernel, polynomial, radial basis kernel and
graph kernel for HSIC are used. These kernels induce similarity measures on the data and
depend on the various assumptions on the dependency between the random variables. The
final dataset is constructed based on different annual plans of energy sector with respect to
11 different utilities. HSIC helps in effectively analyzing the dependent and independent
features for forecasting electricity generation and consumption.

Let us consider another input data as υn and perform the data transformation process
to extract the technical indicators. The technical indicators extracted as discussed above
from the data υn are represented as G. Let us consider U and V be the support of technical
indicators T and G which define the joint probability distribution of (T, G) as PT,G. Let a be
the separate Reproducing Kernel Hilbert Spaces (RKHS) of the real value functions from
U to M with universal kernel l(., .). Similarly, let b be the separate RKHS of the real value
functions from V to M with universal kernel k(., .). However, the cross-covariance between
the elements a and b is given belowin Equation (15).

cov(λ(T), ρ(G)) = OT,G[λ(T), ρ(G)]−OT [λ(T)]OG[ρ(G)] (15)

where, λ ∈ a, ρ ∈ b, and O denote the expectation functions. The unique operator
NT,G : b→ a maps the elements of b to the elements of a. However, (λ, NT,G(ρ))a =
cov(λ, ρ) for all λ ∈ a and ρ ∈ b, and this operator is termed as cross-covariance operator.
Moreover, the dependence measure between the two technical indicators is specified using
the squared Hilbert-Schmidt norm of the cross-covariance operator and is given below in
Equation (16).

HSIC(PTG, a, b) : = ‖ NTG ‖ 2
ϑ (16)

If ‖ NTG ‖ 2
ϑ is zero, then (λ, NTG(ρ)) is always zero for any λ ∈ a and ρ ∈ b. The

HSIC is defined using the kernel function and is expressed asin Equation (17).

HSIC(PTG, a, b) = OT,T′ ,G,G′ [l(T, T′)k(G, G′)] + OT,T′ [l(T, T′)]OG,G′ [k(G, G′)]
−OT,G[OT′ [l(T, T′)]OG′ [k(G, G′)]]

(17)

where OT,T′ ,G,G′ is the expectation over (T, G) such that (T′, G′) in which G and G′ are
independently taken from PTG. Let Y : = {(T1,G1), . . . , (Tr, Gr)} ⊆ U×V be the collection
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of r different technical indicators. Accordingly, the estimator of HSIC is represented as in
Equation (18).

HSIC(Y, a, b) : = (r− 1)−2o(ZXAX) (18)

where, o denotes the trace operator, Z, X, A ∈ Mr×r, Z = l(T), A = k(G), X = Ir×r −
r−11r1l

r, X is the centering matrix, l, k are the semi-definite kernel functions, Ir×r represents
identity matrix, and 1r is the vector of r ones. To increase the dependence between two
technical indicators, the value of the tracing operator must be increased. However, the
features selected using HSIC are represented as N with the dimensions of u× v, respectively.

3. Forecasting Power Generation Using the Proposed SWO-Based Deep LSTM

The selected feature N is used to forecast power generation or electricity demand
based on a Deep LSTM classifier. However, the training process of Deep LSTM is carried
out using the proposed SWO. SWO is a result of integrating SFO with WOA. The structure
of deep CNN and the training procedure of deep learning classifier are described in the
below section.

3.1. Structure of Deep LSTM

A deep LSTM classifier is highly effective in performing the forecasting process than
the traditional classifiers. This is because only a minimum sample size is required to train
the classifier. It can effectively deal with large datasets and works well with a broad range
of parameters like learning rate, input, and output gate bias. The input given to the Deep
LSTM [53] classifier is N which is the optimal feature selected using HSIC. Deep LSTM is
used to learn long-term dependencies. Further, it is specified with the input state fy, input
gate χy, forget gate FFy, a cell CCy, output gate ηy, and the memory unit Yy, respectively.
For recurrent neurons at this layer, the memory unit Yy is computed based on the input N
and the response Yy−1 from the previous time period which are given asin Equation (19).

Yy = θ
(
QIH fy + QHHYy−1 + ακ

)
(19)

where θ(.) denotes the activation function, ακ represents the bias vector, QIH denotes the
weight between input and hidden layers and QHH specifies the matrix of recurrent weight
connected between the hidden layers, which are used to explore the temporal dependency.
The input gate χy is represented asin Equation (20).

χy = γ
(
Qa1 fy + Qa2Yy−1 + Qa3CCy−1 + αχ

)
(20)

where Qa1 represents the weight matrix that is connected between the input state fy and the
input gates χy. Qa2 represents the weight between the memory unit and the input gate, Qa3
indicates the weight between cell and the input gate, γ specifies the sigmoid function given
as γ

(
fy
)
= 1

(1+e− f )
, and αψ indicates the bias such that ψ ∈ {κ, χ, FF, CC, η}. However,

the input and the forget gate manage the flow of information in the cell. Accordingly, the
output gate is used to control how much information is passed from the cell to the memory
unit Yy. Moreover, the memory cell is associated with the self-connected recurrent edge
with a weight of ‘1’ that ensures to pass the gradient without exploding or vanishing. The
forget gate FF y is expressed as in Equation (21).

FFy = γ
(
Qa4 fy + Qa5Yy−1 + Qa6CCy−1 + αFF

)
(21)

where Qa4 represents the weights of input and forget gates, Qa5 specifies the weights of
the memory unit and forget gate, Qa6 indicates the weight between the cell and forget
gate, and αFF denotes the bias. However, the cell CCy of Deep LSTM is represented as in
Equation (22).
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CCy = FFy ◦ CCy−1 + χy ◦ tanh
(
Qa7 fy + Qa8Yy−1 + αCC

)
(22)

where ◦ represents the element-wise product, Qa7 indicates the weight between input
and the cell, Qa8 is the weight between cell and the memory unit and αCC is the bias.
Finally, the output gate and the output obtained from the memory unit are expressed as in
Equations (23) and (24).

ηy = γ
(
Qa9 fy + Qa10Yy−1 + Qa11CCy + αη

)
(23)

Yy = ηy ◦ tanh
(
CCy

)
(24)

where Qa9 denotes the weights of input and output gates, Qa10 and Qa11 denote the weights
of two entities such as memory unit and output gate, as well as between cell and output
gates. Moreover, the output obtained from the output layer is expressed asin Equation (25).

µy = v
(
Qa12Yy + αµ

)
(25)

where Qa12 specifies the weight between memory unit and output vector, µy denotes the
output vector, and αµ indicates the bias of output vector.

Figure 4 represents the architecture of Deep LSTM classifier, which provides improved
accuracy for prediction using time series datasets with the different gates like input, output
and forget gates and the memory unit.

Figure 4. The architecture of a Deep LSTM classifier.

Figure 5 shows the architecture of LSTM that can effectively capture the temporal
dependencies in the time series dataset using network loops. LSTM processes the input
sequences in the data and is capable of mapping input to output functions effectively.
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Figure 5. Temporal data dependency in Deep LSTM model.

Deep LSTM has a greater number of hidden layers with memory cells in each layer.
Output is generated at every single step and no single output for all the input steps is
generated. Multiple LSTM layers are stacked in more layers which produces deeper high-
level representation. In the sequential modeling, the number of hidden layers can be added.
The return attribute value is set to zero during modeling. For better optimization results,
the previous layers outputs are learned by the higher layers. Deep LSTM selects only the
dependent features from the original dataset. Technical analysis tool is used for extracting
and selecting the best features for modeling. The output is represented as a vector that
produces the predicted values.

3.2. Selection of Nodes and Hyper Parameters for Deep LSTM

The prediction results are obtained depending on the training dataset. Qk denotes the
number of nodes chosen for testing to determine the loss values as in Equation (26).

Qk =
Qs

(α ∗ (Qi + Q0))
(26)

Qi represents the input neurons, Q0 represents the output neurons and Qs represents
the total number of training samples and α denotes the scaling factor. Based on the
estimation of loss values, the optimal model is chosen. 70% of the dataset is taken for
training and the remaining 20% for testing. The statistical features like mean and standard
deviation are computed for the training samples. The number of features, responses and the
number of hidden units are identified for training. Table 3 determines the hyper parameter
settings of Deep LSTM model for training the data samples.
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Table 3. Input parameters for Deep LSTM.

Input Parameters Values

Optimizer Adam
Number of hidden units 200
MaxEpochs 250
Gradient Threshold 1
Initial Learning Rate 0.005
Learn rate schedule Piece-wise
Learn rate drop period 125
Dropout factor 0.2

The data for different annual plans of energy sector are considered for training
and testing.

In order to avoid over-fitting of data, some neurons in the hidden units are not
considered. The complex patterns are discovered using deep LSTM model and drop out
layers are used to neglect few neurons during the training process. For retaining the
accuracy of the model, the drop out layer is added after every LSTM layer and the value
of dropout is set to 0.2. For interpreting the output values, the density layer is added
after every LSTM layer with the ReLU activation function. Sequence of data points are
present in the training samples and last time step output is fed to the next preceding
input sequence. Adam optimizer is used, which is an effective optimization algorithm
with a smaller number of hyper parameter tuning. Adam optimizer produces good result
with minimum loss value than RMSProp optimization [54]. The output of Sailfish Whale
Optimization algorithm is fed as input to the Deep LSTM model.

3.3. Proposed Sailfish Optimization Algorithm

The proposed SWO is used to train the Deep LSTM classifier to obtain the best
prediction accuracy. Being a meta-heuristic optimization algorithm, WOA mimics the
humpback whales’ characteristics. WOA is inspired based on the strategy of the bubble-
net hunting mechanism. The major advantage of using WOA is the hunting behavior of
whales in chasing the prey and using the spiral model to simulate the bubble net model
of humpback whales. SFO is a swarm-based algorithm that was developed based on
the inspiration of sailfish’s hunting behavior. SFO contains two population tips namely
intensification and diversification of search space. The fastest fish in the ocean, i.e., Sailfish,
can reach up to a maximum speed of 100 km per hour. They hunt small fishes called
sardines on the surface. The sailfish makes a slashing motion, injures several sardines,
taps, and destabilizes the sardine. So, the integration of parametric features, for instance,
hunting behavior and the foraging behavior of humpback whales and sailfish increase
the performance of forecasting power generation. The algorithmic steps of the proposed
SWO are explained in Figure A1 (Appendix A). Equations (A1)–(A22) are included in the
Appendix A section.

(i) Initialization: Let us initialize the whales’ population as δ with c number of hump-
back whales J which is expressed as in Equation (A1).

(ii) Compute the fitness function: The fitness measure is used to compute the best
solution to forecast the energy demand and is expressed as in Equation (A2), where F is the
fitness, ℵ indicates the total number of samples, and <ν is the estimated output.

(iii) Update the parameters X, L, ω, s, β and q: Let us specify the parameters X and L
as vectors, s and β as random numbers, and ω as the constant term. However, the vector X
and L are computed as followsin Equations (A3) and (A4), where, q gets linearly decreased
from 2 to 0 with respect to iterations, and z denotes a random vector that ranges in the
interval of [0, 1]. Here, random numbers s and β are in the interval range of [−1, 1] and
[0, 1], respectively.

(iv) Update spiral position: The spiral equation is generated between the location
of prey and whale to mimic the helix-shaped movement of whales which is expressed
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as in Equation (A5), where Z′ = |J∗(m)− J(m)| denotes the distance between the whale
and the prey, ω represents the constant, s indicates the random number, and ′.′ specifies
element-by-element multiplication.

(v) Search for prey: During the exploration phase, every search agent’s position is
updated based on randomly selected search agent rather than the best one. However, the
update process at exploration phase is given as follows in Equations (A6) and (A7).

(vi) Update the position of search agent: The humpback whales find the location of prey
and encircle it. The encircling behavior is used to update the position of search agent towards
the best agent and is mathematically expressed as in Equations (A8)–(A13) by assuming
J∗(m) > J(m). The standard equation of SFO is expressed as in Equations (A14)–(A16).

(vii) Final update equation: The final update equation is obtained by substituting
Equation (A15) in Equation (A12) and is expressed as in Equations (A17)–(A22), where
m specifies the current iteration, X and L are the vectors, x denotes the random number
in the range of 0 to 1, and h denotes the attack power of sailfish at each iteration and is
represented asin Equation (A22), where, g and t are the coefficients that reduce the value of
power attack from g to 0.

(viii) Termination: The above steps are repeated until a better solution is obtained in
the search space.

Figure A1 (Appendix A) portrays the flow chart of the proposed SWO-based Deep LSTM.

3.4. Experimental Setup and Dataset Description

The proposed approach is implemented using MATLAB software tools using a real-
time dataset. The data was collected from data.gov.in [55] (Central Electricity Authority,
Government of India, 2019, accessed on 31 March 2021). Here, 11 different utilities are
considered to predict the energy requirements for the future. The 11 different utilities
considered in this study are install capacity prediction, the number of villages electrified
prediction, length of T&D lines prediction, hydro prediction, coal prediction, gas prediction,
diesel, nuclear, total, renewable energy source, and total prediction. The real-time data was
observed from the digital source of data.gov.in (23 December 2021). With these utilities,
the energy required for the future was predicted using various methods, along with the
proposed SWO-based Deep LSTM approach.

3.5. Inspection of Model Quality

The goodness of the model used for the prediction of electricity demand is analyzed
using different evaluation metrics like Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), normalized Mean Squared Error (nMSE), and normalized Root Mean Squared
Error (nRMSE).

3.5.1. Mean Squared Error (MSE)

MSE is the difference between the actual value and the predicted value. It is extracted
by squaring the MSE of the dataset as in Equation (27).

MSE =
1
ℵ∑ℵ

ν=1[Wν − Rv]
2 (27)

where ℵ denotes the total number of samples, W denotes the actual value, and R indicates
the predicted value.

3.5.2. Root Mean Squared Error (RMSE)

RMSE is the standard deviation of the prediction errors or residuals. It is denoted as
in Equation (28).

RMSE =

√
1
ℵ∑ℵ

ν=1[Wν − Rv]
2 (28)

where ℵ denotes the total number of samples, W denotes the actual value and R indicates
the predicted value.

data.gov.in
data.gov.in
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3.5.3. Normalized Mean Squared Error (nMSE)

The normalized Mean Square Error (nMSE) statistic highlights the scatter in the whole
dataset, and NMSE will not be biased towards the models that under-predict or over-predict.
Lower NMSE values denote the better performance of the model. NMSE is denoted as in
Equation (29).

nMSE =
(Wv − Rv)

2

WvXRv
(29)

3.5.4. Normalized Root Mean Squared Error (nRMSE)

The normalized RMSE is interpreted as a fraction of the overall range that is resolved
by the model. It is used to relate the RMSE to the observed range of the variable as in in
Equation (30).

NRMSE =
RMSE
ℵ (30)

where ℵ denotes the total number of samples, W denotes the actual value and R indicates
the predicted value.

4. Results and Discussion

This section presents the results and discussions for the proposed SWO-based Deep
LSTM based on the predictions.

4.1. Comparative Analysis of Energy Prediction

The existing methods used to compare the performance of the proposed model are
Bootstrap-based ELM approach (BELM) [21], Direct Quantile Regression (DQR) [42], Tem-
porally Local Gaussian Process (TLGP) [24], Deep Echo State Network (Deep ESN) [47] and
Deep LSTM [45].

This section details the comparative analyses of the proposed SWO-based Deep LSTM
for energy prediction until the year 2048.

(a) Comparative analysis of install capacity prediction
Figure 6 depicts the install capacity prediction of the proposed approach. In the year

2018, the original energy was 344.00 GW, whereas the energy prediction outcome using
existing techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed
SWO-based Deep LSTM are 373.10 GW, 394.98 GW, 351.87 GW, 381.01 GW, 389.56 GW
and 345.83 GW. The error between the original energies with respect to prediction outputs
using BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-based Deep
LSTM were 29.10 GW, 50.98 GW, 7.87 GW, 37.01 GW, 45.56 GW, and 1.83 GW, respectively.
The above inference shows that the proposed method yielded better performance than the
existing method due to the improved training of the proposed model.

(b) Comparative analysis of the village electrified prediction
Figure 7 shows the number of villages electrified prediction based on the proposed

approach. In the year 2018, the original energy was 597.121 GW, whereas the energy
prediction outcome using existing techniques such as BELM, TLGP, DQR, Deep ESN, Deep
LSTM, and the proposed SWO-based Deep LSTM were 593.58 GW, 728.54 GW, 702.69 GW,
898.60 GW, 867.900 GW, and 694.50 GW.

The error between the original energies with respect to prediction outputs using
BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-based Deep LSTM
were 3.536 GW, 131.42 GW, 105.57 GW, 301.48 GW, 270.77 GW, and 97.37 GW, respectively.
From the above inference, the study proves that the proposed method achieved better
performance than the existing methods.
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Figure 6. Comparative analysis of proposed SWO-DLSTM model for install capacity prediction.

Figure 7. Comparative analysis of proposed SWO-DLSTM model for village electrified prediction.

(c) Comparative analysis of the length of the L&D lines prediction
Figure 8 depicts the length of L&D lines prediction of the proposed approach. In the

year 2018, the original energy was 11,031.059 GW, whereas the energy prediction outcomes
using existing techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the
proposed SWO-based Deep LSTM were 12,759,557.62 MW, 13,157.239 GW, 11,997.569 GW,
13,965.28 GW, 13,598.33 GW, and 11,809.26 GW.

The error between the original energies with respect to prediction outputs using
BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-based Deep LSTM
were 1728.498 GW, 2126.180 GW, 966.510 GW, 2934.227 GW, 2567.279 GW, and 778.210 GW,
respectively. Due to the performance of the proposed optimization algorithm in deep
learning, the training capability of the method is highly improved and has obtained much
better results compared to the existing algorithms.
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Figure 8. Comparative analysis of proposed SWO-DLSTM model for length of L&D lines utility
prediction.

(d) Comparative analysis of the hydro prediction
Figure 9 depicts the hydro prediction of the proposed approach. In the year 2018, the

original energy was 45.293 GW, whereas the energy prediction outcomes using existing
techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-
based Deep LSTM were 53.91 GW, 56.03 GW, 50.45 GW, 58.87 GW, 57.71 GW, and 49.44 GW.
The error between the original energies with respect to prediction outputs using BELM,
TLGP, DQR, Deep ESN, Deep LSTM, and proposed SWO-based Deep LSTM were 8.62 GW,
10.73 GW, 5.16 GW, 13.58 GW, 12.42 GW, and 4.14 GW respectively.

Figure 9. Comparative analysis of proposed SWO-DLSTM model for hydro utility prediction.
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(e) Comparative analysis of the coal prediction
Figure 10 portrays the coal prediction of the proposed approach. In the year 2018,

the original energy was 197.17GW, whereas the energy prediction outcome using existing
techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-
based Deep LSTM were 218.01 GW, 225.63 GW, 206.56 GW, 224.39 GW, 230.44 GW, and
203.36 GW.

Figure 10. Comparative analysis of proposed SWO-DLSTM model for coal utility prediction.

The error between the original energies with respect to prediction outputs using
BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-based Deep LSTM
were 20.84 GW, 28.46 GW, 9.38 GW, 27.22 GW, 33.27 GW, and 6.19 GW, respectively.

(f) Comparative analysis of the gas prediction
Figure 11 depicts the gas prediction of the proposed approach. In the year 2018,

the original energy was 24.89W, whereas the energy prediction outcomes using existing
techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-
based Deep LSTM were 29.005 GW, 31.45 GW, 27.472 GW, 29.97 GW, 37.51 GW, and
26.99 GW. The error between the original energies with respect to prediction outputs using
BELM, TLGP, DQR, Deep ESN, Deep LSTM, and proposed SWO-based Deep LSTM were
4.108 GW, 6.553 GW, 2.575 GW, 5.077 GW, 12.62 GW, and 2.097 GW, respectively.

(g) Comparative analysis of the diesel prediction
Figure 12 depicts the diesel prediction of the proposed approach. In the year 2018,

the original energy was 0.838GW, whereas the energy prediction outcomes using existing
techniques such as ELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-
based Deep LSTM were 0.867 GW, 1.221 GW, 1.006 GW, 1.192 GW, 1.322 GW, and 0.973 GW.
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Figure 11. Comparative analysis of proposed SWO-DLSTM model for gas utility prediction.

Figure 12. Comparative analysis of proposed SWO-DLSTM model for diesel utility prediction.

The error between the original energies with respect to prediction outputs using BELM,
TLGP, DQR, Deep ESN, Deep LSTM, and proposed SWO-based Deep LSTM were 0.0298
GW, 0.383 GW, 1.68 GW, 0.354 GW, 0.484 GW and 0.135 GW respectively.

(h) Comparative analysis of the nuclear prediction
Figure 13 portrays the nuclear prediction of the proposed approach. In the year 2018,

the original energy was 6.780GW, whereas the energy prediction outcomes using existing
techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-
based Deep LSTM were 248.80GW, 259.49 GW, 235.11 GW, 255.20 GW, 248.58 GW, and
231.24 GW. The error between the original energies, with respect to prediction outputs
using BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-based Deep
LSTM were 242.022 GW, 252.71 GW, 228.33 GW, 248.42 GW, 241.80 GW and 224.46 GW,
respectively.
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Figure 13. Comparative analysis of proposed SWO-DLSTM model for nuclear utility prediction.

(i) Comparative analysis of the total utility prediction
Figure 14 depicts the total prediction of the proposed approach. In the year 2018, the

original energy was 222.90GW, whereas the energy prediction outcomes using existing
Deep LSTM were 8.30 GW, 7.42 GW, 8.28 GW, 10.18 GW, 7.30 GW.

Figure 14. Comparative analysis of proposed SWO-DLSTM model for total utility prediction.

The error between the original energies with respect to prediction outputs using TLGP,
DQR, Deep ESN, Deep LSTM, and the proposed SWO-based Deep LSTM were 214.59 GW,
215.48 GW, 214.61 GW, 212.72 GW and 215.59 GW respectively.

(j) Comparative analysis of the Renewable Energy Source (RES) prediction
Figure 15 depicts the Renewable Energy Source (RES) prediction of the proposed

approach. In the year 2018, the original energy was 69.022 GW, whereas the energy
prediction outcomes using existing techniques such as BELM, TLGP, DQR, Deep ESN, Deep
LSTM, and the proposed SWO-based Deep LSTM were 62.14 GW, 69.89 GW, 58.69 GW,
59.11 GW, 63.23 GW, and 57.95 GW. The error between the original energies with respect to
prediction outputs using BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed
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SWO-based Deep LSTM were 6.87 GW, 8.73 GW, 10.32 GW, 9.90 GW, 5.78 GW, and 11.06
GW, respectively.

Figure 15. Comparative analysis of proposed SWO-DLSTM model for RES prediction.

(k) Comparative analysis of the total prediction
Figure 16 represents the total prediction of the proposed approach. In the year 2018,

the original energy was 344.002 GW, whereas the energy prediction outcomes using existing
techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-
based Deep LSTM were 373.10 GW, 394.98 GW, 351.87 GW, 381.05 GW, 389.564 GW, and
345.83 GW. The error between the original energies with respect to prediction outputs using
BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-based Deep LSTM
were 29.10 GW, 50.98 GW, 7.87 GW, 37.01 GW, 45.56 GW, and 1.83 GW, respectively.

Figure 16. Comparative analysis of proposed SWO-DLSTM model for total prediction.
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4.2. Research Results and Outcome Analysis

For effective research outcomes, the proposed model has been tested for different
facility predictions and recorded the best fitness and mean fitness. In order to prove the
efficiency of the proposed model, the results of the SWO-Deep LSTM are compared with
the various existing models like bootstrap-based ELM, Deep Echo state network, TLGP,
DQR and Deep LSTM.

While analyzing the behavior of ELM, the prediction accuracy of the model is im-
proved by selecting the most important neurons that have an impact on the structure of the
neural network and thereby reducing the over-fitting of data. The optimal set of neurons
are chosen based on the restructuring and re-sampling techniques by applying a pruning
method. The neuron shrinkage technique is used in the ELM based on the bootstrap repli-
cations. The stability of the model selection is improved with the use of the re-sampling
technique through bootstrapping. Although ELM is faster in the training phase, it does
not provide precise and accurate results for non-linear data. To handle highly non-linear
data approximation, the Deep Neural Networks provide improved accuracy. In Tables 4
and 5, the normalized MSE and normalized RMSE values of the different facility prediction
bootstrap-based ELM are poor compared to the other methods.

The TLGP is used to estimate the forecasting uncertainty with the analytical interval
forecasting framework. The local window is defined where the data in the local window is
used for prediction. Instead of maximum likelihood techniques, the least squared technique
is used to optimize the hyperparameters. Using TLGP, the learning procedure is global, and
the prediction process is local. Compared with the Gaussian process, the computational
complexity of the learning and inference stage is reduced using TLGP. TLGP generates
residuals that are like Gaussian and is understood through the statistical error analysis. For
the limited amount of data, TLGP shows the higher prediction uncertainty for one-step
forecasting. Since the training data is moved forward in the time domain, the error values
of the different facility predictions are better than the ELM technique, as shown in Tables 4
and 5. The accuracy is reduced when the size of the dataset increases.

The Direct Quantile Regression technique combines extreme machine learning and
regression for non-parametric probabilistic forecasting of power generation. The condi-
tional densities using the quantile regression technique are described. The quantile of the
response variable is estimated as the function of input variables. The quantile regression
can provide only the description of a particular quantile. The distribution shape assumes,
and the main problem is the lack of information about uncertainty present in the quantile.
At a time, a single quantile function can be estimated, and it provides reasonable accuracy
for the smaller datasets and fails to perform well when the training dataset is increased.
For the energy demand forecasting of different facility prediction, this technique performs
better than the ELM and TLGP as shown in Tables 4 and 5.

A hybrid approach of LSTM and Echo State Network (ESN) provides good prediction
results for energy forecasting. LSTM performs best for handling time-series datasets and
the forecasting process involves training of a hidden layer using one epoch and using the
regression at the output layer. To achieve the target outcome, quantile regression is used in
the echo state network. This approach provides good accuracy with fewer epochs where
one epoch is used for training input and output layers and another epoch for fine-tuning
operation. Although this model can capture the temporal dependencies in the data, for
the increased number of epochs, the accuracy is decreased. This model provides better
performance than the ELM, TLGP and DQR methods in forecasting the different facilities
of energy prediction.

The deep LSTM model excels in short-term as well as medium-term forecasting of
energy demand and efficiently handles big data processing. The model can capture complex
patterns easily. The stability of the network is increased by stacking the multiple LSTM
layers and increasing the number of neurons in the hidden layer. The number of epochs
and the learning rate is set for achieving the minimum normalized RMSE value. The
energy demand prediction for different facility using Deep LSTM achieves lower nRMSE
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values as shown in Tables 4 and 5 when compared to the other models through efficient
data processing and feature extraction techniques. To improve the accuracy of the Deep
LSTM model, the feature extraction techniques can be integrated with the model. A hybrid
approach can still lead to better performance.

For achieving the optimal solution, the proposed model combines the sailfish whale
optimization and the Deep LSTM model. The best search space is updated using the
optimization algorithm where the search occurs in a hyper-dimensional space with variable
position vectors. Through the location update, the good fittest solutions are retained, and,
in each iteration, the best position is saved. This optimization algorithm prevents the local
optimum solution and works well for large-scale global optimization. After the maximum
number of iterations, the best search space is chosen where the selected features are given
as input to the Deep LSTM model to improve the accuracy. As shown in Tables 4 and 5, the
proposed model achieved lower nMSE and lower nRMSE values when compared to the
other models for the different energy facility predictions.

Table 4 represents the comparative table for MSE values. The table shows the average
MSE value obtained by the existing approaches and the proposed approach. By considering
hydro prediction, the normalized MSE values obtained by the existing energy utilized by
the prediction techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the
proposed SWO-based Deep LSTM were 17.094, 16.650, 16.168, 15.664, 14.523, and 13.855,
respectively. When taking diesel prediction into account, the normalized MSE values
obtained by existing energy, utilized by the prediction techniques such as BELM, TLGP,
DQR, Deep ESN, Deep LSTM and the proposed SWO-based Deep LSTM were 11.712,
11.182, 11.066, 10.821, 10.759, and 10.309, respectively.

Table 4. Comparative table for normalized MSE.

Prediction BELM [21] TLGP
[24]

DQR
[42]

Deep ESN
[47]

Deep LSTM
[45]

Proposed
SWO-Based
Deep LSTM

Install capacity prediction 20.792 20.697 20.395 20.129 19.938 19.855

Number of village
electrified prediction 23.830 23.589 22.622 22.076 21.380 20.868

Length of L&D lines
prediction 27.720 27.327 26.949 26.329 25.054 24.415

Hydro prediction 17.094 16.650 16.168 15.664 14.523 13.855

Coal prediction 19.889 19.784 19.583 19.374 19.049 18.975

Gas prediction 16.495 15.777 15.494 15.155 14.446 13.821

Diesel prediction 11.712 11.182 11.066 10.821 10.759 10.309

Nuclear prediction 20.045 19.950 19.657 19.455 19.234 19.149

Total utility prediction 15.083 14.368 12.756 12.420 11.319 10.579

Res prediction 18.246 18.227 18.207 18.168 18.020 17.467

Total prediction 20.791 20.698 20.398 20.128 19.936 19.853

Figure 17 shows the analysis of different utilities of models with respect to normalized
MSE values. The proposed model achieves percentage improvements of 26%, 21%, 16%,
12% and 6% in terms of Root Mean Squared Error compared with the other existing models.
The integration of optimization algorithm and Deep LSTM achieves good accuracy in
different utility predictions that helps to attain the effective utilization of energy resources
at the distribution systems.
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Figure 17. Comparative analysis of nMSE values for different models.

Table 5 represents the comparative analysis for RMSE. The table shows the average
RMSE values obtained by the existing approaches and the proposed approach. By con-
sidering install capacity prediction, the normalized RMSE values obtained by the existing
techniques such as BELM, TLGP, DQR, Deep ESN, Deep LSTM, and the proposed SWO-
based Deep LSTM were 74.5598, 4.5494, 4.5161, 4.4865, 4.4652, and 4.4559, respectively. In
coal prediction, the normalized RMSE value obtained by the existing techniques such as
BELM, TLGP, DQR, Deep ESN, Deep LSTM and the proposed SWO-based Deep LSTM
were 4.4597, 4.4479, 4.4253, 4.4016, 4.3645, and 4.3561 respectively.

Table 5. Comparative table for normalized RMSE.

Prediction BELM [21] TLGP
[24]

DQR
[42]

Deep ESN
[47]

Deep LSTM
[45]

Proposed
SWO-Based
Deep LSTM

Install capacity prediction 4.5598 4.5494 4.5161 4.4865 4.4652 4.4559

Number of village electrified
prediction 4.8816 4.8568 4.7562 4.6985 4.6238 4.5682

Length of L&D lines
prediction 5.2650 5.2276 5.1913 5.1312 5.0054 4.9411

Hydro prediction 4.1345 4.0804 4.0210 3.9578 3.8109 3.7222

Coal prediction 4.4597 4.4479 4.4253 4.4016 4.3645 4.3561

Gas prediction 4.0615 3.9720 3.9362 3.8929 3.8008 3.7177

Diesel prediction 3.4223 3.3440 3.3266 3.2896 3.2801 3.2108

Nuclear prediction 4.4772 4.4665 4.4336 4.4107 4.3856 4.3760

Total utility prediction 3.8837 3.7906 3.5715 3.5242 3.3643 3.2526

Res prediction 4.2715 4.2693 4.2670 4.2623 4.2450 4.1794

Total prediction 4.5599 4.5496 4.5163 4.4864 4.4653 4.4558
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Figure 18 shows the analysis of different utilities of models with respect to normalized
RMSE values. The proposed model achieves percentage improvements of 10%, 9.5%, 6%,
4% and 3% in terms of Mean Squared Error compared with the other existing models. The
hybrid optimization algorithm with Deep LSTM leads to cost effective process with faster
convergence rate thereby minimizing the training time with increased accuracy.

Figure 18. Comparative analysis of nRMSE values for different models.

4.3. Statistical Results Analysis

The statistical analysis is used to determine the selected samples from the entire
distribution. Central tendency is a statistical value that identifies the single value and
provides an accurate description of the entire data. The most commonly used measure
of central tendency is the Mean which determines the overall trend of the dataset and
Variance is used to determine the spread of the data, like how far each variable is from one
another. It is used in hypothesis testing, Monte Carlo methods for best-fit analysis.

Table A1 (Appendix A) shows the statistical analysis of normalized MSE of the pro-
posed model and the existing methods such as BELM, TLGP, DQR, Deep ESN, and Deep
LSTM. Table A2 (Appendix A) shows the statistical analysis of normalized RMSE of the
proposed model and the existing methods such as BELM, TLGP, DQR, Deep ESN, and
Deep LSTM.

5. Conclusions

The primary contribution of the current research work remains the development
of an accurate electricity demand model using the proposed SWO-based Deep LSTM.
The proposed approach forecasted the energy demands through four steps, namely data
transformation, technical indicators’ extraction, feature selection, and electricity demand
forecasting. The data transformation process was accomplished for extracting the technical
indicators such as EMA, SMI, CMO, ATR, SMA, CLV, CCI, and OBV. The optimal feature
selection process is carried out using HSIC to filter and finalize the unique and essential
features for the purpose of accurate forecasting. Finally, the electricity demand forecasting
was carried out using a Deep LSTM classifier, trained by the proposed SWO algorithm.



Sustainability 2022, 14, 1355 29 of 35

The proposed model outperforms the other existing models with the percentage
improvements of 10%, 9.5%,6%, 4% and 3% in terms of Mean Squared Error and 26%, 21%,
16%, 12% and 6% in terms of Root Mean Square Error (RMSE) for Bootstrap-based ELM
approach (BELM), Direct Quantile Regression (DQR), Temporally Local Gaussian Process
(TLGP), Deep Echo State Network (Deep ESN) and Deep LSTM respectively. However,
the electricity predicted by the proposed approach is measured in terms of energy. The
future research-based predictions can be carried out aiming at the following perspectives
such as enhancement in grid and retail operations and improved energy trading practices.
These aspects provide more insights into the revenue forecasts, sales forecasts, and variance
analysis. In the event of long-term forecasting (5–20 years), there is a potential to enhance
the visibility and planning for future energy demand prediction, energy generation and
consumption with load management and frequent monitoring.
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Nomenclature

ANN Artificial Neural Network NWP Numerical Weather Prediction
CNN Convolutional Neural Network OBV On Balance Volume
Deep ESN Deep Echo State Network PMSG Permanent Magnet Synchronous Generator
DQR Direct Quantile Regression PV Photo Voltaic
ELM Extreme Learning Machine RKHS Reproducing Kernel Hilbert Spaces
EMA Exponential Moving Average RMSE Root Mean Square Error
FFNN Feed Forward Neural Networks RNN Recurrent Neural Network
GW Giga Watt SARIMA Seasonal Autoregressive Integrated Moving

Average
HSIC Hilbert-Schmidt Independence Criterion SMA Simple Moving Average
IEA International Energy Agency SMI Stochastic Momentum Index
LMBNN Levenberg Marquardt Back Propagation Neural Networks SO Sailfish Optimizer
LSTM Long Short-Term Memory SVAR Sparse Vector Auto Regressive
MAPE Mean Absolute percentage Error SVM Support Vector Machines
MFO Moth Flame optimization SWO-DLSTM Sailfish Whale Optimization and Deep Long

Short-Term Memory
MGWO-SCA-CSA Micro Grid Wolf Optimizer-Sine cosine Algorithm- Crow TLGP Temporally Local Gaussian Process

Search Algorithm
MSE Mean Squared Error VMD Variational Mode Decomposition
MW Mega Watt WECS Wind Energy Conversion System
nMSE normalized Mean Squared Error WHO World Health Organization
nRMSE normalized Root Mean Squared Error WOA Whale Optimization Algorithm
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Appendix A

Figure A1. Flow diagram of proposed SWO based Deep LSTM.

δ = Tw(w = 1, 2, . . . , c) (A1)

F =
1
ℵ∑ℵ

ν=1

[
µν

y −<ν
]2

(A2)

X = 2qz− q (A3)

L = 2z (A4)

J(m + 1) = Z′.eωs. cos(2πs) + J∗(m) (A5)

J(m + 1) = Jrand(m)− XZ (A6)

Z = |L.Jrand(m)− J(m)| (A7)
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J(m + 1) = J∗(m)− XZ (A8)

Z = |LJ∗(m)− J(m)| (A9)

J(m + 1) = J∗(m)− X|LJ∗(m)− J(m)| (A10)

J(m + 1) = J∗(m)− XLJ∗(m) + XJ(m) (A11)

J(m + 1) = J∗(m)(1− XL) + XJ(m) (A12)

J(m + 1) = x(J∗(m)− J(m) + h) (A13)

J(m + 1) = xJ∗(m)− xJ(m) + xh (A14)

J∗(m) =
J(m + 1) + x.J(m)− xh

x
(A15)

J(m + 1) =
J(m + 1) + x.J(m)− xh

x
(1− XL) + XJ(m) (A16)

J(m + 1) =
J(m + 1)

x
(1− XL) + (J(m)− h)(1− XL) + XJ(m) (A17)

J(m + 1)− J(m + 1)
x

(1− XL) = (J(m)− h)(1− XL) + XJ(m) (A18)

J(m + 1)
(

1− 1− XL
x

)
= (J(m)− h)(1− XL) + XJ(m) (A19)

J(m + 1)
(

x− 1 + XL
x

)
= (J(m)− h)(1− XL) + XJ(m) (A20)

J(m + 1) =
x

x− 1 + XL
[(J(m)− h)(1− XL) + XJ(m)] (A21)

h = g(1− (2 ∗m ∗ e)) (A22)

Table A1. Statistical Analysis for normalized MSE.

Prediction Statistical
Analysis BELM [21] TLGP

[24]
DQR
[42]

Deep ESN
[47]

Deep LSTM
[45]

Proposed
SWO-Based
Deep LSTM

Install capacity
prediction

Best 20.792 20.697 20.395 20.129 19.938 19.855

Mean 20.790 20.694 20.392 20.128 19.936 19.854

Variance 0.002 0.003 0.003 0.001 0.002 0.001

Number of
villages
electrified
prediction

Best 23.830 23.589 22.622 22.076 21.380 20.868

Mean 23.827 23.588 22.620 22.073 21.378 20.866

Variance 0.003 0.001 0.002 0.003 0.002 0.002
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Table A1. Cont.

Prediction Statistical
Analysis BELM [21] TLGP

[24]
DQR
[42]

Deep ESN
[47]

Deep LSTM
[45]

Proposed
SWO-Based
Deep LSTM

Length of L&D
lines prediction

Best 27.720 27.327 26.949 26.329 25.054 24.415

Mean 27.717 27.326 26.947 26.327 25.051 24.414

Variance 0.003 0.001 0.002 0.002 0.003 0.001

Hydro prediction

Best 17.094 16.650 16.168 15.664 14.523 13.855

Mean 17.093 16.648 16.166 15.661 14.521 13.853

Variance 0.001 0.002 0.002 0.003 0.002 0.002

Coal prediction

Best 19.889 19.784 19.583 19.374 19.049 18.975

Mean 19.887 19.781 19.851 19.372 19.047 18.974

Variance 0.002 0.003 0.002 0.002 0.002 0.001

Gas prediction

Best 16.495 15.777 15.494 15.155 14.446 13.821

Mean 16.492 15.775 15.492 15.154 14.442 13.819

Variance 0.003 0.002 0.002 0.001 0.004 0.002

Diesel prediction

Best 11.712 11.182 11.066 10.821 10.759 10.309

Mean 11.710 11.180 11.063 10.820 10.757 10.307

Variance 0.002 0.002 0.003 0.001 0.002 0.002

Nuclear
prediction

Best 20.045 19.950 19.657 19.455 19.234 19.149

Mean 20.042 19.948 19.656 19.453 19.232 19.148

Variance 0.003 0.002 0.001 0.002 0.002 0.001

Total utility
prediction

Best 15.083 14.368 12.756 12.420 11.319 10.579

Mean 15.081 14.365 12.153 12.418 11.317 10.577

Variance 0.002 0.003 0.003 0.002 0.002 0.002

Res prediction

Best 18.246 18.227 18.207 18.168 18.020 17.467

Mean 18.244 18.226 10.205 18.166 18.018 17.466

Variance 0.002 0.001 0.002 0.002 0.002 0.001

Total prediction

Best 20.792 20.697 20.395 20.129 19.938 19.855

Mean 20.790 20.694 20.392 20.127 19.936 19.853

Variance 0.002 0.003 0.003 0.002 0.002 0.002

Table A2. Statistical Analysis for normalized RMSE.

Prediction Statistical
Analysis BELM [21] TLGP

[24]
DQR
[42]

Deep ESN
[47]

Deep LSTM
[45]

Proposed
SWO-Based
Deep LSTM

Install capacity
prediction

Best 4.5598 4.5494 4.5161 4.4865 4.4652 4.4559

Mean 4.5595 4.5492 4.5158 4.4863 4.4650 4.4557

Variance 0.0003 0.0002 0.0003 0.0002 0.0002 0.0002

Number of villages
electrified
prediction

Best 4.8816 4.8568 4.7562 4.6985 4.6238 4.5682

Mean 4.8813 4.8566 4.7560 4.6984 4.6236 4.5681

Variance 0.0003 0.0002 0.0002 0.0001 0.0002 0.0001
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Table A2. Cont.

Prediction Statistical
Analysis BELM [21] TLGP

[24]
DQR
[42]

Deep ESN
[47]

Deep LSTM
[45]

Proposed
SWO-Based
Deep LSTM

Length of L&D
lines prediction

Best 5.2650 5.2276 5.1913 5.1312 5.0054 4.9411

Mean 5.2648 5.2275 5.1910 5.1310 5.0050 4.9409

Variance 0.0002 0.0001 0.0003 0.0002 0.0004 0.0002

Hydro prediction

Best 4.1345 4.0804 4.0210 3.9578 3.8109 3.7222

Mean 4.1342 4.0801 4.0208 3.9576 3.8107 3.7221

Variance 0.0003 0.0003 0.0002 0.0002 0.0002 0.0001

Coal prediction

Best 4.4597 4.4479 4.4253 4.4016 4.3645 4.3561

Mean 4.4596 4.4477 4.4251 4.4013 4.3642 4.3559

Variance 0.0001 0.0002 0.0002 0.0003 0.0003 0.0002

Gas prediction

Best 4.0615 3.9720 3.9362 3.8929 3.8008 3.7177

Mean 4.0613 3.9717 3.9360 3.8928 3.8006 3.7176

Variance 0.0002 0.0003 0.0002 0.0001 0.0002 0.0001

Diesel prediction

Best 3.4223 3.3440 3.3266 3.2896 3.2801 3.2108

Mean 3.4220 3.3438 3.3265 3.2894 3.2800 3.2106

Variance 0.0003 0.0002 0.0001 0.0002 0.0001 0.0002

Nuclear prediction

Best 4.4772 4.4665 4.4336 4.4107 4.3856 4.3760

Mean 4.4770 4.4662 4.4334 4.4105 4.3854 4.3759

Variance 0.0002 0.0003 0.0002 0.0002 0.0002 0.0001

Total utility
prediction

Best 3.8837 3.7906 3.5715 3.5242 3.3643 3.2526

Mean 3.8835 3.7903 3.5712 3.5240 3.3641 3.2524

Variance 0.0002 0.0003 0.0003 0.0002 0.0002 0.0002

Res prediction

Best 4.2715 4.2693 4.2670 4.2623 4.2450 4.1794

Mean 4.2713 4.2692 4.2668 4.2620 4.2448 4.1793

Variance 0.0002 0.0001 0.0002 0.0003 0.0002 0.0001

Total prediction

Best 4.5598 4.5494 4.5161 4.4865 4.4652 4.4559

Mean 4.5596 4.5490 4.5160 4.4862 4.4650 4.4558

Variance 0.0002 0.0004 0.0001 0.0003 0.0002 0.0001
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for efficient spatial forecasting of wind power generation. Electr. Power Syst. Res. 2019, 175, 105891. [CrossRef]

https://www.brookings.edu/wp-content/uploads/2018/10/The-future-of-Indian-electricity-demand.pdf
http://doi.org/10.3390/en13010040
https://niti.gov.in/writereaddata/files/document_publication/Energy%20Booklet.pdf
https://niti.gov.in/writereaddata/files/document_publication/Energy%20Booklet.pdf
https://cea.nic.in/wp-content/uploads/2020/04/nep_jan_2018.pdf
https://cea.nic.in/wp-content/uploads/2020/04/nep_jan_2018.pdf
http://doi.org/10.3390/en12132616
http://doi.org/10.20897/ejosdr/4005
https://www.irena.org/publications/2021/Jun/Tracking-SDG-7-2021
http://doi.org/10.1016/j.rinp.2021.103817
http://doi.org/10.1016/j.energy.2018.07.084
http://doi.org/10.1016/j.ijforecast.2014.08.008
http://doi.org/10.3390/en13123063
http://doi.org/10.1002/int.22326
http://doi.org/10.1109/PTC.2003.1304289
http://doi.org/10.1109/TSG.2015.2424078
http://doi.org/10.1109/TPWRS.2013.2287871
http://doi.org/10.1109/TPWRS.2010.2045774
http://doi.org/10.1002/we.230
http://doi.org/10.1109/TSTE.2018.2841938
http://doi.org/10.1016/j.apenergy.2018.02.069
http://doi.org/10.1016/j.neucom.2019.09.110
http://doi.org/10.1016/j.egypro.2018.12.007
http://doi.org/10.1016/j.energy.2019.05.101
http://doi.org/10.1016/j.renene.2019.03.020
http://doi.org/10.1109/ACCESS.2019.2924685
http://doi.org/10.3390/app11094129
http://doi.org/10.1002/int.22314
http://doi.org/10.1002/er.6679
http://doi.org/10.1016/j.epsr.2019.105891


Sustainability 2022, 14, 1355 35 of 35

35. Elavarasan, R.M.; Shafiullah, G.M.; Padmanaban, S.; Kumar, N.M.; Annam, A.; Vetrichelvan, A.M. A Comprehensive Review
on Renewable Energy Development, Challenges, and Policies of Leading Indian States with an International Perspective. IEEE
Access 2020, 8, 74432–74457. [CrossRef]

36. Kumar, J.C.R.; Majid, M.A. Renewable energy for sustainable development in India: Current status, future prospects, challenges,
employment, and investment opportunities. Energy Sustain. Soc. 2020, 10, 2. [CrossRef]

37. Bilgili, M.; Ozbek, A.; Sahin, B.; Kahraman, A. An overview of renewable electric power capacity and progress in new technologies
in the world. Renew. Sustain. Energy Rev. 2015, 49, 323–324. [CrossRef]

38. Joaquin, J.; Jimenez, M.; Stokes, L.; Moss, C.; Yang, Q.; Livina, V.N. Modelling energy demand response using long short-term
memory neural networks. Energy Effic. 2020, 13, 1263–1280. [CrossRef]

39. Kang, T.; Lim, D.Y.; Tayara, H.; Chong, K.T. Forecasting of Power Demands Using Deep Learning. Appl. Sci. 2020, 10, 7241.
[CrossRef]

40. Real, A.J.D.; Dorado, F.; Durán, J. Energy Demand Forecasting Using Deep Learning: Applications for the French Grid. Energies
2020, 13, 2242. [CrossRef]

41. Choi, E.; Cho, S.; Kim, D.K. Power Demand Forecasting Using Long Short-Term Memory (LSTM) Deep-Learning Model for
Monitoring Energy Sustainability. Sustainability 2020, 12, 1109. [CrossRef]

42. Wan, C.; Lin, J.; Wang, J.; Song, Y.; Dong, Z.Y. Direct Quantile Regression for Nonparametric Probabilistic Forecasting of Wind
Power Generation. IEEE Trans. Power Syst. 2017, 32, 2767–2778. [CrossRef]

43. Debnath, K.; Mourshed, M. Forecasting methods in energy planning models. Renew. Sustain. Energy Rev. 2018, 88, 297–325.
[CrossRef]

44. Ahmad, T.; Chen, H. A review on machine learning forecasting growth trends and their real-time applications in different energy
systems. Sustain. Cities Soc. 2020, 54, 102010. [CrossRef]

45. Mujeeb, S.; Javaid, N.; Ilahi, M.; Wadud, Z.; Ishmanov, F.; Afzal, M. Deep Long Short-Term Memory: A New Price and Load
Forecasting Scheme for Big Data in Smart Cities. Sustainability 2019, 11, 987. [CrossRef]

46. Bedi, J.; Toshniwal, D. Energy load time-series forecast using decomposition and autoencoder integrated memory network. Appl.
Soft. Comput. 2020, 93, 106390. [CrossRef]

47. Hu, H.; Wang, L.; Lv, S.-X. Forecasting energy consumption and wind power generation using deep echo state network. Renew.
Energy 2020, 154, 598–613. [CrossRef]

48. Shadravan, S.; Naji, H.R.; Bardsiri, V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving
constrained engineering optimization problems. Eng. Appl. Artif Intell. 2019, 80, 20–34. [CrossRef]

49. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
50. Raymaekers, J.; Rousseeuw, P.J. Transforming variables to central normality. Mach. Learn 2021, 1–23. [CrossRef]
51. Vaiz, J.S.; Ramaswami, M. Forecasting Stock Trend Using Technical Indicators with R. Int. J. Comput. Intell. Inform. 2016, 6, 3.
52. Gangeh, M.J.; Zarkoob, H.; Ghodsi, A. Fast and Scalable Feature Selection for Gene Expression Data Using Hilbert-Schmidt

Independence Criterion. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 67–81. [CrossRef]
53. Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L. Co-Occurrence Feature Learning for Skeleton Based Action Recognition Using

Regularized Deep LSTM Networks. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence AAAI, Phoenix,
AZ, USA, 12–17 February 2016; pp. 3697–3703.

54. Yu, Y.; Liu, F. Effective Neural Network Training with a New Weighting Mechanism-Based Optimization Algorithm. IEEE Access
2019, 7, 72403–72410. [CrossRef]

55. General Electricity Authority, Government of India M of P. Growth of electricity sector in INDIA from 1947–2020. Available
online: https://cea.nic.in/wp-content/uploads/pdm/2020/12/growth_2020.pdf (accessed on 31 March 2021).

http://doi.org/10.1109/ACCESS.2020.2988011
http://doi.org/10.1186/s13705-019-0232-1
http://doi.org/10.1016/j.rser.2015.04.148
http://doi.org/10.1007/s12053-020-09879-z
http://doi.org/10.3390/app10207241
http://doi.org/10.3390/en13092242
http://doi.org/10.3390/su12031109
http://doi.org/10.1109/TPWRS.2016.2625101
http://doi.org/10.1016/j.rser.2018.02.002
http://doi.org/10.1016/j.scs.2019.102010
http://doi.org/10.3390/su11040987
http://doi.org/10.1016/j.asoc.2020.106390
http://doi.org/10.1016/j.renene.2020.03.042
http://doi.org/10.1016/j.engappai.2019.01.001
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1007/s10994-021-05960-5
http://doi.org/10.1109/TCBB.2016.2631164
http://doi.org/10.1109/ACCESS.2019.2919987
https://cea.nic.in/wp-content/uploads/pdm/2020/12/growth_2020.pdf

	Introduction 
	Proposed Sailfish Whale Optimization-Based Deep LSTM Approach for Power Generation Forecasting 
	Acquisition of the Input Time-Series Data 
	Data Preprocessing and Feature Extraction 
	Data Transformation Using Box-Cox Transformation 
	Extraction of Technical Indicators 
	Feature Selection Using Hilbert-Schmidt Independence Criterion (HSIC) 

	Forecasting Power Generation Using the Proposed SWO-Based Deep LSTM 
	Structure of Deep LSTM 
	Selection of Nodes and Hyper Parameters for Deep LSTM 
	Proposed Sailfish Optimization Algorithm 
	Experimental Setup and Dataset Description 
	Inspection of Model Quality 
	Mean Squared Error (MSE) 
	Root Mean Squared Error (RMSE) 
	Normalized Mean Squared Error (nMSE) 
	Normalized Root Mean Squared Error (nRMSE) 


	Results and Discussion 
	Comparative Analysis of Energy Prediction 
	Research Results and Outcome Analysis 
	Statistical Results Analysis 

	Conclusions 
	Appendix A
	References

