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Abstract: In modern industrial manufacturing processes, induction motors are broadly utilized as
industrial drives. Online condition monitoring and diagnosis of faults that occur inside and/or
outside of the Induction Motor Drive (IMD) system make the motor highly reliable, helping to avoid
unscheduled downtimes, which cause more revenue loss and disruption of production. This can be
achieved only when the irregularities produced because of the faults are sensed at the moment they
occur and diagnosed quickly so that suitable actions to protect the equipment can be taken. This
requires intelligent control with a high-performance scheme. Hence, a Field Programmable Gate
Array (FPGA) based on neuro-genetic implementation with a Back Propagation Neural network
(BPN) is suggested in this article to diagnose the fault more efficiently and almost instantly. It is
reported that the classification of the neural network will provide the output within 2 µs although the
clone procedure with microcontroller requires 7 ms. This intelligent control with a high-performance
technique is applied to the IMD fed by a Voltage Source Inverter (VSI) to diagnose the fault. The
proposed approach was simulated and experimentally validated.

Keywords: condition monitoring; Induction Motor Drive; fault diagnosis; FPGA; Back Propagation
Neural Network; Discrete Wavelet Transforms

1. Introduction

Industrial induction motors are highly reliable and easy to operate; hence, they are
extensively used as industrial drives [1,2]. They work under harsh and severe conditions,
and as a result, they are subject to both internal and exterior faults and breakdowns [3].
These faults must be sensed at the earliest stage; otherwise, catastrophic failure of the
machine may result in disruptions to production [4,5]. It was this need that necessitated
online supervision and fault analysis design to be integrated with the drive system [6,7].

According to conventional wisdom, the maintenance of Induction Motor Drive (IMD)
happens at a certain interval. However, the performance of IMD may decline at irregular
intervals as a result of environmental and operational factors. As a result, online monitoring
of instant messaging is required to increase efficiency. In new evolving methodologies,
predictive maintenance via condition monitoring (CM) is a critical component, intending
to project the maintenance schedule based on the state of the plant or process [8–10]. It is
possible to improve the performance and efficiency of an IMD by using condition-based
monitoring. Such monitoring also extends the life and productivity of the system and
reduces internal and external damages. It has become vital to use CM and fault detection
in IMDs to prevent unexpected failures and reduce unplanned downtime. There are many
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ways for condition monitoring of IM, including Acoustic Emission (AE) monitoring, vibra-
tion signature analysis, and Motor Current Signature Analysis (MCSA). However, these
monitoring techniques are complicated and need costly sensors [10]. When a CM system is
efficient, it is capable of delivering early warning and forecasting errors. The CM system ob-
tains basic data information from the motor via the use of signal processing or data analysis
methods as described before. Although the method does not need human interpretation,
it does have a fundamental downside [11–13]. The automation of the fault detection and
diagnosis process is a natural evolution in the development of CM technologies [14,15]. An
intelligent system, such as artificial intelligence methods, Genetic Algorithms (GA), Fuzzy
Logic (FL), Artificial Neural Networks (ANN), and expert systems, is required for the
autonomous fault detection system [16]. In an industry-based comprehensive assessment
of high voltage IMD failures, multiple types of classification were used to identify the
causes of the failures [17]. These categories included protection system, machine size, age,
number of poles, maintenance regime, and operating hours. Induction machines have been
subjected to an investigation into the causes of both stator and bearing failures, which
together account for about 75% of all failures [18].

To gather information regarding CM and diagnostic measures, a survey on IM drives
for industrial applications was conducted [19]. The research focused on the challenges that
are now being addressed and those that will be addressed in the future in the development
of autonomous diagnostic methods. The LabVIEW platform was used to produce cutting-
edge capabilities for online control of induction motors [20–22]. It has been determined that
the use of stator current analysis-based demodulation methods is the most suited method
for diagnosing bearing faults.

There are many noncontact CM approaches that may be used to diagnose inductor
motor failures. Specifically, it was discovered that the park vector analysis and instanta-
neous power analysis procedures are the most effective methods for recognizing motor
failure signals. The Support Vector Machine (SVM)-based algorithms have demonstrated
that they provide improved results for the classification and fault diagnosis of a three-phase
induction motor [23]. The Bearing Damage Index (BDI), which is based on the wavelet
packet node energy coefficient analysis method, has been proposed not only to detect faults
in bearings but also to detect the severity level of the fault [24]. The Bearing Damage Index
(BDI) is based on the wavelet packet node energy coefficient analysis method. A review of
the most current literature has been published on the automation of condition monitoring
in IMD [25]. When it comes to directing maintenance for electrical machines, one of the
factors that has been identified as a barrier is the cost-to-benefit ratio between capital and
operating expenses [26–28].

In the last two decades or so, condition supervision and fault identification of IMD
attracted the attention of many researchers who developed AI-based control schemes such
as expert systems, fuzzy interference systems, neural network and neuro-fuzzy techniques.
All these techniques when implemented in real time are computationally complex, time-
consuming, and lacking in optimal switching strategies. Hence, a new method, neuro-
genetic design and implementation of fault diagnosis of induction motors based on a FPGA
are proposed in this article [29,30]. The measured signals are processed through DWT
for feature extraction. These features are used to detect the type of fault that occurred in
the system.

The remaining article is structured as follows. The proposed test system model is
presented in Section 2. Section 3 details the proposed method, and Section 4 presents the
experimental results. Lastly in Section 5 the conclusions are presented.

2. Proposed System Description

The schematic diagram of the IMD with a FPGA-based neuro-genetic implementation
is shown in Figure 1. The proposed system consists of a power supply block having an
AC to DC converter node and a DC to AC inverter node, a squirrel cage induction motor,
a flux and signal estimation (Programmable Cascaded Low Pass Filter (PCLPF)) block, a
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neuro-genetic based fault diagnosis block, a controller block, a neuro-genetic-based Space
Vector Pulse Width Modulation (SVPWM) block, and a binary block. The input signals
corresponding to the induction motor’s terminal voltages and currents are transformed
into output signals indicating torque and flux by the lux and signal estimation block. These
signals are sent into the controller block, which creates input signals for the SVPWM block,
which processes and generates suitable pulses for the binary logic block. The fault diagnosis
block receives signals matching the Insulated Gate Bipolar Transistor (IGBT) inverter’s
output voltages.
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Figure 1. Schematic of Neuro-Genetic-based fault diagnosis drive system.

It processes them in the neural network to produce TRIAC signals for the modified
structure of the IGBT inverter. These, together with the output signal of the SVPWM block,
are input to the binary logic block, the output signals of which are utilized to transfer the
jurisdiction from the faulty leg to the backup leg.

2.1. Reconfiguration of Inverter Topology

IGBT inverter topology is shown in Figure 2. The inverter structure has three legs,
with every leg carrying two switches, S1, S2, S3, S4, and S5, S6, correspondingly. The
fourth leg has another two switches, S7 and S8. Three Triacs, T1, T2 and T3, are utilized
for configuring the inverter later fault existence and its elimination. If there is a misfiring in
power switch Sn, the fault identification part finds this fault and separates the correspond-
ing fault leg by disconnecting the gate signals to the switch Sn. The phase current ‘isn’ is
reduced to zero by the freewheeling diodes Dn in the faulted leg. Then the restructuring
module fires Tn which interconnects ‘n’ (Leg) and ‘o’ (C1 and C2).
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2.2. Fault Diagnosis Based on a FPGA

To accurately diagnose the fault when it occurs, the trend or changes in the monitoring
signals must be sensed unambiguously so that the same could be converted into binary
code. These coded signals could be used to translate the fault category and its position.
Then appropriate gate signals can be generated for suitable action on the system. To carry
out the above processes, the control scheme should consist of facilities such as a signal or
feature eradication, neural network regulation, fault identification, and gating signals. For
the drive system under consideration, the fault diagnosis is performed as follows. The
backfire in any one of the switches in a leg of the inverter can be recognized by an error
in the corresponding leg voltage. The neural network is experienced with ordinary and
extraordinary data for the inverter operation, and so outputs of the neural network are
almost ‘0’ and ‘1’ as binary code. Then, corresponding to the error signal of the faulty leg
voltage, binary code is generated and sent to the fault identification structure which senses
and decodes the fault category and its location. Thereupon, the neural network selects the
switches to isolate the faulty leg and bring in the spare leg so that the inverter regains its
normal state as a three phase VSI to supply the IMD, making it fault tolerant. Suppose if
the fault occurred in leg ‘n’, causing a deviation in the leg voltage ±∆Vno. Then, the leg
voltage after fault occurrence can be given as Equation (1),

V′no = Vno± ∆Vno (1)

This signal may not distinguish itself from Vno, and so a signal transformation tech-
nique is required to accurately diagnose the fault. The feature or signal extractor should
be such that it provides adequate and significant details about the trend of the signal to
enable the neural network to diagnose the fault type and its location with a high degree of
accuracy. To achieve this, a feature extractor using a Discrete Wavelet Transform (DWT)
technique is employed. The Register Transfer Language (RTL) schematic diagram of the
DWT technique is shown in Figure 3. Discrete wavelet transformation is good in time
resolution of high frequencies [11].
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3. Neuro-Genetic Approach for Fault Classification

For accurate fault isolation, the signals (voltage, current, and speed) are transformed
with the DWT technique for feature extraction [8]. After transformation, the output voltage
variations are classified by using the neuro-genetic approach which continues to feedback
the signals until desired (target) output is obtained representing the fault situation.

Neuro-Genetic Architecture Design

The structure of the BPN classification based on a FPGA is shown in Figure 4. For
the given drive system fed by a VSI, there are seven states to represent the conditions, i.e.,
normal, fault on S1, fault on S2, fault on S3, fault on S4, fault on S5, fault on S6, and fault
on S7. It requires a seven-layer neural structure. In addition, there are three hidden nodes
and one yield node.
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The neuro-genetic-SVPWM has double subnets. One is the voltage amplitude subnet
with a 1-3-1 structure, and the other is the angle subnet with the architecture of 1-18-3 to
produce a three-phase yield. The sigmoid activation function is used. Every structure is
experienced with one set of normal data and four sets of faulted data.

The use of GA helps achieve an optimized weight value for BPN to obtain the desired
output for the fault situation. Thus, the neuro-genetic technique based on a FPGA when
implemented functions in such a way that the control scheme is capable of fast processing to
achieve fault diagnosis almost instantly [12,13]. Here, the mixed design of neural networks
and genetic algorithms is developed and implemented in the FPGA process as given by
the flow diagram in Figure 5. The idle, birth, selection, crossover, mutation, and store
states are used in GA. Linear feedback shift register (LFSR) is used to produce arbitrary
numbers [13,14]. A fitness value is designated to every part in the community depending
on the discrepancy in the set and original output of the structure. The total number of Pins
in the FPGA appliance is 208 and utilized pins in the suggested structure are only 49. The
experimental setup presented in Figure 6 is verified on the xc3s500e-4-pq208 board (Xilinx,
San Jose, CA, USA). The three-phase induction motor specifications are listed in Table 1.
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Table 1. Induction motor specifications.

Parameter Range

Speed 1390 rpm
Volts 415 V

Frequency 50 Hz
Power 0.75 kW
Pole 4

4. Results and Discussion

The problem associated with ANN concerning weight optimization to train the net-
work is adequately addressed using GA. The use of DWT as a feature extractor provides
significant details in the pattern set to the neural network, enabling it to perform with a
high degree of accuracy in fault diagnosis.

With successful configuration by a FPGA, the neuro-genetic-SVPWM processes the
signals such that the variation of the neural network provides the yield with minimum
and maximum time of 10.85 ns and 11.99 ns. It is reported that the classification of the
neural network will provide the output within 2 µs although the clone procedure with a
microcontroller requires 7 ms [17]. However, the neuro-genetic approach obtained the low
and high period of yield as 10.857 ns (7.440 ns logic, 3.417 ns route, 68.5% for logic and
31.5% for route) and 11.99 ns (8.042 ns for logic, 3.952 ns for route, 67.1% for logic and 32.9%
for route), respectively. The result simulations are performed by using integer numbers.
The selected device power information is shown in Table 2. The prototype requirement of
the proposed method device utilization summary is provided in Table 3. According to the
defective and normal conditions, the output voltage waveform reveals how quickly the
neuro-genetic process will produce the switching wave shape. A total of 173,524 kilobytes
of RAM are used. The suggested design achieves the use of hardware and efficiency to
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minimize power consumption in different aspects. Table 4 shows the full clock reports
and timing summary. The simulation timing and real-time clock utilization by VHDL is a
hardware description language (HDL) software and is tabulated below in Table 5.

Table 2. Power summary.

Parameter Power (W) Voltage Range Icc (A) Iccq (A)

Vccint 0.031 1.20 1.14 to 1.25 0.000 0.026
Vccaux 0.045 2.5 0.000 0.018
Vcco25 0.005 2.5 0.000 0.002

Table 3. Device utilization summary.

Logic Utilization Used Available Range

Total number of slice registers 188 9312 2%
Number used as flip flops 105
Number used as latches 83 2.5
Number of 4 input LUTs 270 9312 2%

Logic Distribution Used Available Range

Number of occupied slices 217 4656 4%
Number of slices containing only related logic 217 217 100%

Number of slices containing unrelated logic 0 217 0%
Total Number of 4 input LUTs 303 9312 3%

Number used as logic 270
Number used as a route-through 33

Number of bonded IOBs 81 159 51%
IOB latches 11

Number of BUFGMUXs 3 24 12%
Number of M|ULT|I18X18SIOs 4 20 20%

Table 4. Clock Report.

Clock Net Resource Locked Fanout Net Skew (ns) Max Delays (ns)

X4/y0_not001 BUFGMUX_X2Y10 No 12 0.011 0.142
Clk1_BUFGP BUFGMUX_X2Y11 No 75 0.076 0.196

State_out1_1_OBUF BUFGMUX_X1Y10 No 11 0.030 0.148
x3/ov4 Local 16 0.045 1.249
x3/ov1 Local 6 0.211 1.988
x3/ov3 Local 5 0.460 1.124
x3/ov2 Local 6 0.224 2.235

Table 5. Timing Summary.

Parameters Frequency

Minimum period 10.857 ns
Maximum frequency 92.108 MHz

Minimum input arrival time before clock 20.18 ns
Maximum output required time after clock 11.99 ns

Maximum combinational path delay 8.610 ns
Total REAL time to Xst completion 11.00 s
Total CPU time to Xst completion 10.41 s

5. Conclusions

Fault diagnosis of IMD has been attempted for fault occurrence in VSI by using a
neuro-genetic technique based on a FPGA. The neuro-genetic algorithm (BPN with GA)
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processes the error to diagnose the fault type and its location to transfer the switching from
faulty leg to spare leg of the IGBT inverter, thereby making the system a fault tolerant
IMD. The implementation of this technique is found to increase the speed of response for
situational observation and fault identification, thereby enhancing the reliability of the
drive system in modern industrial processes. With successful configuration by a FPGA, the
neuro-genetic-SVPWM processes the signals such that the variation of the neural network
provides the yield with minimum and maximum time of 10.85 ns and 11.99 ns. The
proposed techniques can be extended in the near future with various machine-learning
methods and switching response can be improved.
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