
Maneuver 
Autonomous 
Vehicles with 
Arm Gestures 
via a Smartphone

William Svea-Lochert

Master’s thesis

Generate steering signals from 
human poses

Østfold University Collage

May 26, 2022

Faculty of Computer Science

Halden, Norway

(!j)Østfold University College

Maneuver
Autonomous
Vehicles with
Arm Gestures
via a Smartphone
Generate steering signals from
human poses

William Svea-Lochert

Master's thesis
Faculty of Computer Science

Østfold University Collage
Halden, Norway

May 26, 2022



á



Maneuver Autonomous Vehicles
with Arm Gestures via a

Smartphone
Generate steering signals from human poses

Master’s Thesis

William Svea-Lochert

Faculty of Computer Sciences
Østfold University College

Halden
May 26, 2022

MANEUVER AUTONOMOUS VEHICLES
WITH A R M GESTURES VIA A

SMARTPHONE
G E N E R A T E STEERING SIGNALS FROM HUMAN POSES

Master's Thesis

William Svea-Lochert

Faculty of Computer Sciences
Østfold University College

Halden
May 26, 2022



á



Abstract

Forsvarets Forskningsinstitutt (FFI) is currently looking into the development of a system
for steering autonomous vehicles with arm gestures from a smartphone camera. A system
like this would impact everyday life within the military by saving time and resources.
This thesis continues the work from the previously written bachelor thesis Maneuver
Autonomous Vehicles with Arm Gestures (BO20G38)[31] by looking into their findings for
improving their prototype and implementing it into a smartphone application.

Developing a system like this required researching the topic of human pose estimation
and Android development and implementation of machine learning models to Android
applications. The system developed for this project serves as a prototype and foundational
work for a fully developed system.

To see how a human pose estimation model could be developed, we researched previous
work that has been conducted. After evaluating the research, the process of creating data
labeling tools and augmentation pipelines was started to create custom keypoint datasets.

After creating datasets, architecture searches and hyperparameter tuning were conducted
to find four different model architectures to try and find an optimal machine learning model
architecture. The best-performing model is our MobileNetV2-based architecture. In testing
with our testset 1, the model performs with a 17.930 mean overall pixel distance from ground
truth on 15 keypoint values on 224x224 pixels images, outperforming MoveNet.SinglePose
Thunder in testing.

To run the machine learning models, we created a smartphone application that opens
an image stream and runs inference on the machine learning models to get a pose which is
used to generate steering signals by looking at the angle between the hips, elbows, and
wrists, to signal: forwards, reverse, left, right, and stop. The poses and current steering
signal are drawn to the screen for the vehicle operator to get a visual cue of what the system
is seeing. When running inference with our MobileNetV2-based model, the inference time
is at 50 ms while running on a Huawei P30 Pro CPU.

The reliability testing of the system shows a massive improvement over the previous
work done by BO20G38, where the system can generate correct steering signals at a much
higher speed than previously. The research done throughout the project period confirms
that a system for maneuvering vehicles with arm gestures from a smartphone is a realistic
opportunity to pursue. This thesis lays the foundation for developing a fully operational
system implementation and can be used as a reference point.
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Chapter 1

Introduction

In today’s society, technology is quickly evolving, leading to a more modernized society
as we live in today. By utilizing automation, one can be able to reduce human resources
and at the same time have an increase in productivity which can benefit organizations and
corporations1. Automation creates opportunities and benefits for the civilian population
and governmental agencies like the military. It can increase productivity, consistency, as
well as costs. Forsvarests forskningsinstitutt (FFI) is already developing and has already
developed systems for autonomous vehicles that can benefit the military sector and society2.
The boundaries of automation are constantly evolving and being pushed.

This thesis will primarily focus on the development stages of the steering/control
system to maneuver an autonomous vehicle, such as an unmanned ground vehicle (UGV)
or a Spot robot dog via a smartphone. The motivation behind the project is to make it
easier for a soldier to keep their focus on the situation they are in and control the vehicle
simultaneously. For the system to be viable, it has to run on a device like a smartphone as
close to real-time as possible. The smartphone ought to capture an image stream, process
and interpret the data with the help of a neural network and give the correct output to
maneuver the vehicle.

FFI wants to continue with the research that was conducted in the previously written
bachelor thesis Maneuver Autonomous Vehicles with Arm Gestures (B20G38)[31], by
improving the system with the findings from that thesis as well as implementing it to run
on a smartphone. The findings from B20G38 will be utilized as well as a new literature study
will be conducted as new papers has been published and techniques and implementations
will differ from B20G38.

This project proposes multiple machine learning models for human pose estimation
developed through architecture searches and hyperparameter tuning that lays the foundation
for further developing a fully functional maneuvering system for autonomous vehicles. In
Addition to the machine learning models, we propose a method of creating datasets for
human pose estimation with custom labeling tools and a data augmentation pipeline for
generating large datasets from a small amount of base data. Finally, we have implemented
the machine learning models into a smartphone application that runs inference with the
models and generates steering signals by computing the angle between a set of joint
locations.

1https://en.wikipedia.org/wiki/Automation#Advantages,_disadvantages,_and_limitations
2https://www.ffi.no/publikasjoner/arkiv/den-autonome-framtid
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CHAPTER 1. INTRODUCTION

1.1 Background and motivation
Forsvarets Forskningsinstitutt (FFI)
FFI was established in 1946 after the second world war3. It was commonly recognized

that technology played a big part in the war’s outcome. The Norwegian army had to
be rebuilt with modern weaponry. FFI was given three main goals; to help modernize
the army, modernize the industry, and, lastly, to modernize the scientific environment in
Norway.

Today FFI is the chief advisor for science and technology in the defense-related matter
for the Ministry of Defence and the Norwegian Armed Force’s military organization. The
institute is also responsible for defense-related research in Norway. They consist of five
research divisions: Defence systems, Strategic Analyses and Joint Systems, Sensor and
Surveillance Systems, Total Defence, Innovation, and Industrial Development. As the
official research institution for the Norwegian Defence Department, they have high-tech
expertise, military, and political insight. They work in close conjunction with the Norwegian
Armed Forces, The Norwegian Defence Department, other political sectors, national and
international research institutions, and other countries through partnerships.

Motivation
As previously mentioned, FFI has been researching autonomous vehicle solutions for

a long time. Previously, a bachelor thesis created a proof of concept for maneuvering
autonomous vehicles with arm gestures[31]. FFI wants to continue the research and improve
the systems and implement it on a smartphone. The reason for the project is to let soldiers
focus on the situation they are currently in rather than having to give all their attention
to the vehicle they are maneuvering.

1.1.1 Research questions

This study will attempt to create a system for maneuvering autonomous vehicles with arm
gestures via a smartphone. The smartphone will utilize a deep-learning model to detect
key-point on an image stream. From the key-point detection, we can calculate body joint
angles, which can be used as steering signals for the vehicle.

My research question(RQ) consists of 3 parts. First I wish to shed some
light on the performance of the neural networks that are going to be developed:

RQ 1 What type neural network architecture yields the best keypoint detection
accuracy for human pose estimation?
RQ 1.1 Which neural network architecture yields the best performance in

terms of accuracy and speed?

Secondly, I wish to look at the performance numbers of the architectures
on a smartphone:

RQ 2 How close to real-time can a keypoint detection model run on a smartphone?

Thirdly, I wish to research:

RQ 3 What methods can be used for sending steering signals from a smartphone
to a vehicle?

3https://www.ffi.no/en/about-ffi
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1.2. REPORT OUTLINE

1.1.2 Method

In order to answer the research question, an introduction to the required technologies and
research areas; Human Pose Estimation(HPE), Machine learning(ML), and fundamental
Android development. A literature review will have to be conducted, and the findings
will be analyzed and summarized to understand the final system implementation better.
Furthermore, the approach and methodology will be explained to help solve the problem
at hand.

1.1.3 Deliverables

This study will have two main deliverables:

• Thesis paper.
• Smartphone application for generating vehicle steering input.

The project will also contain some helper code for creating our deep learning models. If
time allows it, the application will be tested with a vehicle such as a Spot robot dog4.

1.2 Report Outline
Chapter 2 begins with a description of the research topic of this thesis, followed by an
in-depth project description. The following section gives an overview of the thesis research
topic Human Pose Estimation, its different approaches, methods, and concepts. The next
section looks at related works, and the following section looks into related technologies.
Chapter 2 ends with an overview of the tools and hardware that can be used for this
project.

Chapter 3 covers the planning of the project. The first section covers the project’s initial
plans: datasets, testsets, machine learning model, and Android applications development.
The chapter concludes with how the proper framework and plans were selected.

Chapter 4 covers the implementation phase of the project. The first section explains
how the data and testing -sets were created. The following section covers the development
of the HPE models, which will contain the basic architectures of the models and their
performance data in training, validation, and testing. The last section of chapter 4 describes
the development and implementation of our HPE model into an Android application.

Chapter 5 presents and evaluates the results of chapter 4. It covers the initial tests and
their results and reliability testing of the system.

Chapter 6 discusses the implementations and results, and the chapter concludes with
suggestions for improving the system.

Chapter 7 concludes the project, where we will come to a conclusion of the project.

4https://www.bostondynamics.com/spot
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Chapter 2

Analysis

This chapter starts with a brief explanation of the research topic and an in-depth project
description in section 2.1. Section 2.2 gives an overview of the different approaches, methods,
and concepts of HPE. Section 2.3 takes a look at related works. To finish the chapter
section 2.5 Gives an overview of the tools that are relevant to this project.

2.1 Research topic: Human Pose Estimation

Human pose estimation (HPE) is the task of obtaining the posture of the human body
from the given sensor inputs. One of the most common vision-based approaches is using
cameras[29]. In simpler terms, HPE can be described as the task of localizing human
joints[8]. With the recent rapid development in computer vision, we can go further than
the classic tasks like bounding boxes and get a more detailed understanding of people in
unconstrained environments[22].

2.1.1 An in-depth project description

As previously mentioned, FFI has been working on autonomous vehicles for quite some
time. In 2020 they gave out the bachelor’s assignment; Maneuver Autonomous Vehicles
with Arm Gestures (BO20G38) [31], which laid the grounds for this project with proof of
concept. For this assignment, FFI wants to take a step forward from the proof of concept
that was previously created, implement the HPE software on a smartphone, and explore
the improvements for future works discussed in BO20G38. An example of a vehicle that
the system would be used on is shown in Figure 2.1, which is currently controlled by remote
control.

Due to the vehicle being maneuvered with remote control, the soldier is bound to that
task, making this person a nonactive team member. This problem can be solved with a
HPE system, which makes it simpler to maneuver the vehicle, thus making the soldier a
more active member of the team.
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CHAPTER 2. ANALYSIS

Figure 2.1: The tracked vehicle (UGV) FFI wants to use HPE for steering, image captured
by: FFI, Espen Hofoss

2.2 HPE approaches, methods and concepts

HPE can be classified in to the following categories: generative, discriminative, top-down,
bottom-up, regression-based, detection-based, one-/single- stage, multi-stage, skeleton-
based model, contour-based model and finally volume-based model[29].

When one is talking about multi-person pose estimation, we can classify the approaches
into; top-down or bottom up[22], [29].

Top-down

The top-down approach begins with a rough localization and identification of a person or
persons instance by using techniques such as bounding box object detection (high-level
abstraction), which in turn is followed by a single-person pose estimation[22], [29]. This
pose estimation process is then repeated for each person that was localized in the first
stage.

Bottom-up

Bottom-up differs from top-down in the way that it will start by predicting all joints/body
parts for each person that is in the sensor input[29]. It will group them using either a
human body model fitting or some other algorithm.

Multi-stage

Multi-stage is a method that tries to produce a increasingly refined estimation[26]. They
can be both bottom-up (2.2) and top-down( 2.2).

Multi-stage with bottom-up starts like the typical bottom-up approach with predicting
the individual joints and then stitching them together [26]. The bottom-up multi-stage
approach can be used as a 3D HPE method in the way that it starts with predicting the
joint location on the 2D surface as a typical bottom-up approach, but where it differs is
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2.2. HPE APPROACHES, METHODS AND CONCEPTS

that it then extends them into 3-dimensional space[29]. The results of this can, for example,
be heat maps[26].

The top-down multi-stage approach starts with the location of the persons of interest,
using classic methods like high-level abstraction (bounding box object detection)[22], [26],
[29]. Then it utilizes a single pose estimation to predict the keypoint locations. The authors
of Rethinking on Multi-Stage Networks for Human Pose Estimation propose a solution
where they use the top-down approach [26]. The first stage utilizes what they call an
off-the-shelf human detector. In the second step, a Multi-Stage Pose Network is applied to
all the human detection to produce a pose result.
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Skeleton-based model

Skeleton-based model or kinematic model is represented as a set of joint locations with a
corresponding limb orientation that follows the human body skeletal structure[29]. Another
way to describe a skeleton-based model is to compare it to a graph where all vertices are
specifying joints or prior connections of joints within a skeleton structure[2]. Commonly
used human body models can be seen in Figure 2.2.

Contour-based model

Contoure-based models was a highly used method in early HPE methods[29]. It uses the
rough width and contour information of limbs and torso.

Volume-based model

In general, with volume-based models, body shapes and poses are represented in 3D with
meshes or geometric shapes[29]. Modern volume-based models are typically represented as
a mesh generally captured with 3D scans.

Generative and Discriminative

What mainly sets generative and discriminative methods apart is whether the method
uses a human body model[29]. A discriminative method takes the mapping from an input
source and learns directly from it, and this is called learning-based. Alternatively, they
can learn by searching in pre-existing examples without a human body model.
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2.3 Related work
The following section gives an overview of previous work that has been done that relates
closely to this project.

2.3.1 PersonLab: Person Pose Estimation and Instance Segmentation
with a Bottom-Up, Part-Based, Geometric Embedding Model

The authors of PersonLab: Person Pose Estimation and Instance Segmentation with a
Bottom-Up, Part-Based, Geometric Embedding Model[22], propose a bottom-up (section
2.2) approach. Their method starts with a set of keypoint predictions for all people found
in the image, which is done in a fully convolutional way. They also propose a method of
greatly improving accuracy for long-range predictions with a novel recurrent scheme; adding
to this, they managed to predict the relative displacement between each keypoint pair. In
addition, their keypoint predictions approach can create a dense instance segmentation
mask for all the detected people in the input image.

To train their model, they used a subset of the standard COCO keypoint 2017 training
dataset (64115 images). For validation, they used the COCO keypoint 2017 validation set
(5000 images). The datasets contain images of people, single or multiple, with 12 body
keypoints, five facial keypoints, and a segmentation mask.

The authors utilized the standard COCO keypoint task and COCO instance segmentation
for the person class to evaluate their experiment. To set the initial weights for their model,
they utilized ImageNet.

Their reported experimental results are with models using either Resnet-101 or ResNet-
152 CNN as the backbone of the model, and these were pre-trained on the ImageNet
classification task. They also removed the last layer of the ImageNet classification layer to
then add a 1x1 convolutional layer for each of their model-specific layers.

The reported results of the experiment show that their model is outperforming other
bottom-up and top-down methods. However, their average precision of 0.687 is lacking
behind the COCO 2017 keypoint challenge winners. They obtained a COCO test-dev
keypoint average precision of 0.665 using single-scale inference.

The authors concluded that their models address the problem of person detection, HPE,
and instance segmentation.
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2.3.2 A Top-down Approach of articulate Human Pose Estimation and
Tracking

The authors of A Top-down Approach of articulate Human Pose Estimation and Tracking
propose a top-down (section 2.2) approach to the HPE problem[21]. Their approach starts
with performing a human candidate detection, followed by a single-person pose estimation,
and finally, a pose tracking step by step.

To perform the human candidate detection they adopted a state-of-the-art object
detector that was trained with ImageNet1 and COCO datasets2, more specifically they
used pre-trained models from deformable ConvNets[17].

The single pose estimation module the authors used was an adoption of Cascade
Pyramid Networks that was somewhat modified. A cascade Pyramid network is based
on the Stacked Hourglass approach 2.3.4 where instead of eight stacked hourglasses, it is
reduced to two[20]. The model was trained with a combined dataset of PoseTrack 20183

and a COCO dataset. They also describe their implementation performs a non-maximum
suppression4 in the detection phase on the bounding boxes that were set in the first
module. Then pose estimation is performed on all the possible person detections. For all
the candidates, they perform a post-process on the heatmaps from the prediction with
cross-heatmap pose non-maximum suppression to get a more accurate keypoint position.

The last module is their Pose tracking module. The authors chose to use a flow-based
pose tracker[24]. By associating poses that indicate that the same person is still in the
frame, pose flows are built. The tracking process is started in the first frame, where a
human candidate is detected, and each detection is assigned an ID. To prevent the IDs
of people who have left the frame, the IDs are only kept for a limited number of frames;
eventually, they are discarded.

Their approach resulted in a total Average precision of 69.4 on single-frame pose
estimation on the PoseTrack 2018 test set.

1https://en.wikipedia.org/wiki/ImageNet
2https://cocodataset.org/#home
3https://posetrack.net/
4https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c
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2.3. RELATED WORK

2.3.3 DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev and his colleague Christian Szegedy propose a holistic view of the human
pose estimation method that is based on deep neural networks[8]. Their pose estimation
problem is formulated to be a joint regression problem and shows how to correctly cast it
in deep neural network settings. To find each location of the body joints in a person of
interest, they utilize a 7-layered generic convolutional deep neural network. Furthermore,
they explain two advantages of their formulation/approach; a deep neural network can see
the full context of each body joint, meaning that each regressor uses a full-size image as a
signal. Secondly, the approach is much simpler to formulate than other methods such as
graphical models, as there is no need to explicitly design representations and detectors,
meaning no need to design a distinct model topology and interactions between each joint.
Lastly, the authors propose a cascade of deep neural network-based pose predictors and
explain that it allows for increased precision of joint localization.

The authors conclude their paper by stating that their approach can get state-of-the-art
or better results on several challenging academic datasets and further explains that they
are showing that a generic convolutional neural network that was designed for classification
tasks can be applied to localization tasks.

2.3.4 Stacked Hourglass Networks for Human Pose Estimation

The authors of Stacked Hourglass Networks for Human Pose Estimation present a novel
convolutional neural network architecture to tackle the task of human pose estimation[15].
Their network design approach for pose estimation is made up of several stacked hourglass
modules, and by stacking them this way allows for repeated bottom-up, top-down(bottom-
up and top-down explained in section 2.2) inference. The network can capture and
consolidate information across all scales of an image. The hourglass design refers to the
visualization of the pooling and subsequent up-sampling steps used to get their network’s
final output. Like other convolutional networks that give pixel-wise outputs, the stacked
hourglass network pools down to a meager resolution and afterward up-samples and then
combines features across multiple resolutions. The hourglass network stands out from
previous approaches primarily in the symmetric topology.

The network expands from a single hourglass by placing multiple hourglass modules
together end-to-end. As previously mentioned this allows for repeated bottom-up(section
2.2), top-down(section 2.2) inference across all the scales of an image. The authors
used Percentage of Correct Keypoints (PCK) to evaluate their results, which reports
the percentage of keypoint detection’s within a normalized distance of the ground truth
keypoint. The authors state that the network can show a significant improvement on the
state-of-the-art for two standard pose estimation benchmarks such as MPII[6] where they
achieve over 2% average accuracy improvements on all body joints.

To conclude their paper, the authors state that they have demonstrated the stacked
hourglass network design’s effectiveness and robustness.

11

2.3. RELATED WORK

2.3.3 DeepPose: Human Pose Estimation via D e e p Neural Networks

Alexander Toshev and his colleague Christian Szegedy propose a holistic view of the human
pose estimation method that is based on deep neural networks[8]. Their pose estimation
problem is formulated to be a joint regression problem and shows how to correctly cast it
in deep neural network settings. To find each location of the body joints in a person of
interest, they utilize a 7-layered generic convolutional deep neural network. Furthermore,
they explain two advantages of their formulation/approach; a deep neural network can see
the full context of each body joint, meaning that each regressor uses a full-size image as a
signal. Secondly, the approach is much simpler to formulate than other methods such as
graphical models, as there is no need to explicitly design representations and detectors,
meaning no need to design a distinct model topology and interactions between each joint.
Lastly, the authors propose a cascade of deep neural network-based pose predictors and
explain that it allows for increased precision of joint localization.

The authors conclude their paper by stating that their approach can get state-of-the-art
or better results on several challenging academic datasets and further explains that they
are showing that a generic convolutional neural network that was designed for classification
tasks can be applied to localization tasks.

2.3.4 Stacked Hourglass Networks for Human Pose Estimation

The authors of Stacked Hourglass Networks for Human Pose Estimation present a novel
convolutional neural network architecture to tackle the task of human pose estimation[15].
Their network design approach for pose estimation is made up of several stacked hourglass
modules, and by stacking them this way allows for repeated bottom-up, top-down(bottom-
up and top-down explained in section 2.2) inference. The network can capture and
consolidate information across all scales of an image. The hourglass design refers to the
visualization of the pooling and subsequent up-sampling steps used to get their network's
final output. Like other convolutional networks that give pixel-wise outputs, the stacked
hourglass network pools down to a meager resolution and afterward up-samples and then
combines features across multiple resolutions. The hourglass network stands out from
previous approaches primarily in the symmetric topology.

The network expands from a single hourglass by placing multiple hourglass modules
together end-to-end. As previously mentioned this allows for repeated bottom-up(section
2.2), top-down(section 2.2) inference across all the scales of an image. The authors
used Percentage of Correct Keypoints (PCK) to evaluate their results, which reports
the percentage of keypoint detection's within a normalized distance of the ground truth
keypoint. The authors state that the network can show a significant improvement on the
state-of-the-art for two standard pose estimation benchmarks such as MPII[6] where they
achieve over 2 average accuracy improvements on all body joints.

To conclude their paper, the authors state that they have demonstrated the stacked
hourglass network design's effectiveness and robustness.

11



CHAPTER 2. ANALYSIS

2.3.5 Deep High-Resolution Representation Learning for Human Pose
Estimation

Ke Sun and colleagues explain that most human pose estimation methods use a high-to-low
resolution network, meaning that the methods get high-resolution representations from a
low-resolution representation[28]. The paper’s authors propose a different approach; their
solution HRNet keeps the high-resolution representation throughout the whole process.
They start with a high-resolution subnetwork as the first stage. Step by step, they add high
to low-resolution subnetworks for more stages and connect the multi-resolution subnetworks
in parallel. The authors conclude that they have presented a high-resolution network for
human pose estimation that predicts accurate and spatially precise keypoint heatmaps.
They argue that the success comes from the following two reasons; By maintaining the high
resolution through the whole process, there is no need for recovering the high resolution.
Secondly, fusing multi-resolution representations repeatedly gives reliable representations
with a high resolution.
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2.3.6 Maneuver autonomous vehicles with arm gestures

Ralf S. Sjøvold Leistad and colleagues paved the way for this project with their proof of
concept[31]. The project’s goal was to make a proof of concept for maneuvering autonomous
vehicles with arm gestures. The authors’ approach was a classic image classification task
with a convolutional neural network (CNN). To begin with, the group collected small
datasets but quickly discovered that they needed more training data. Their model was
trained on 3 937 800 100x100 pixel images spanning over six categories and tested with
testsets totaling 984 450 images. The group collected the images, and they utilized a
greenscreen and data augmentation to scale the production of their datasets. A base set of
images had some basic transformations done to them and changed their background to
create the datasets. Examples of their data can be seen in Figure 2.3. The transformations
done to the data move the person around in the image and scale them up and down.

(a) Left (b) Forwards

Figure 2.3: Example data from BO20G38. Obtained from Maneuver autonomous vehicles
with arm gestures

As previously mentioned, the model that the authors used was a CNN model. The
model went through 4 iterations, and they also experimented with a dense neural network,
eventually reaching a final CNN architecture. When testing with their test data, the
model performed remarkably with an average accuracy of 99.9%. Later in their thesis,
they evaluated the datasets that were created, and the evaluation resulted in finding flaws
that could have implications later. One of their main concerns was the lack of diversity.
Only one person was used for the data, which led to problems when another person tried
to use the system. An even bigger issue was the strictness of the data, with how precise
one has to be when handling the different steering signals. Both issues were later found
to be a problem in real-world reliability testing leading to the author’s conclusion that a
proof of concept was established, yet to further develop the system, an HPE model or a
combination of model implementations such as Guanghan Ning and colleagues[21] proposes
should yield superior results compared to the Leistad and colleagues implementation.
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CHAPTER 2. ANALYSIS

2.3.7 Related works summary

The research that has been conducted shows excellent work from many talented developers.
Alexander Toshev and his colleague propose a solution that relates to the approach we
are using in this project by utilizing a generic convolutional deep neural network[8]. At
the same time, the approach of others, such as the authors of Stacked Hourglass Networks
for Human Pose Estimation where they, are stacking modules. Ralf S. Sjøvold Leistad
and his colleagues made a simple CNN approach to classify poses as steering signals for a
vehicle. However, they also introduced an efficient way of mass-producing custom datasets.
Their greenscreen technique is one of the methods that also will be utilized in this project.
The other articles explored for this project also give good explanations of the human pose
estimation research field and the different methods and approaches that can be used in a
project such as this one.

2.4 Related Technologies

This section gives an overview of some of the related technologies to this project.

2.4.1 Machine learning

The study of computer algorithms that can learn and improve automatically from data and
experience is called machine learning or ML for short 5. ML algorithms build models; these
models are made to make predictions and decisions. For an ML model to make a good
prediction, it has to be trained with sample data, also known as training data. Machine
learning is commonly considered a part of artificial intelligence.

Machine learning has several approaches: Supervised learning, Unsupervised learning,
Semi-supervised learning, reinforcement learning, dimensionality reduction as well as others.
The two most commonly discussed methods are supervised and unsupervised learning.
Supervised learning is when an input pattern has a known label[4]. A feature can, for
example, be continuous, categorical, or binary, such as an image of a dog can be labeled as
a dog while an image of a cat is labeled as a cat. Unsupervised learning is when a given
feature is unlabeled.

Neural networks

Artificial neural networks, also called neural networks, are classified as a model approach
within machine learning and a central part of deep learning algorithms6[5]. Both the name
and structure of neural networks are inspired by biological brains like the human brain.
Neural networks have drawn inspiration from our understanding of the brain; it is essential
to emphasize that neural networks are not models of our brain[16]. Neural networks are
designed to mimic how a biological neuron in a brain sends signals to another neuron. In
neural networks these are called artificial neurons7. A neural network is built up of these
artificial neurons. They receive a signal, then process it and send it to adjacent connected
neurons. The connection between these neurons is referred to as an edge. Each of the

5https://en.wikipedia.org/wiki/Machine_learning
6https://www.ibm.com/cloud/learn/neural-networks
7https://en.wikipedia.org/wiki/Artificial_neural_network
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2.4. RELATED TECHNOLOGIES

neurons and edges typically has a weight associated with them. The weights are being
adjusted during the network training; by doing this, the accuracy of the network increases.

Each signal between the connected neurons is an actual number. However, the output
of a neuron is the calculated sum of a non-linear function that has been predetermined,
commonly referred to as an activation function. In a conventional neural network, the
neurons are collected into different layers. The signal starts in the first layer of the network,
commonly known as the input layer. The signal crosses through the network’s hidden
layers from the input layer until it reaches the output layer. The signal traveling through
the network can be passed through in many different ways, depending on the architecture
design of the network. A simple example of a neural network can be seen in Figure 2.4

Figure 2.4: Common structure for neural networks.

Deep learning

Deep learning is classified as a family member of machine learning methods that utilize
neural networks8. There are several different deep-learning architectures, such as Convolutional
Neural networks which are covered in section 2.4.1. The meaning of ”deep” in deep learning
refers to the idea of successive/continuous layers[16]. The number of layers in a deep
learning model is referred to as the depth of the model. A modern model can consist of tens
and, in some cases, even hundreds of layers. All the layers in a deep learning model learn
automatically from exposure to training data. Deep learning differs from other machine
learning approaches with the number of layers that are being trained. In contrast, other
approaches concentrate on training one or two layers.

Convolutional Neural networks (CNN or ConvNet)

Convolutional neural networks, or CNN for short, are a class of deep learning neural
networks9. ConvNets process data in a grid-like fashion[13]. CNNs are most commonly
used to process visual input such as video or image data. One of the main advantages with
ConvNets is that they can learn features from the input, rather than engineers/developers

8https://en.wikipedia.org/wiki/Deep_learning
9https://en.wikipedia.org/wiki/Deep_learning
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having to hand-make these filters/features10. A significant difference between ConvNets
and Dense networks is that convolutional layers learn local patterns, while dense networks
learn global patterns[16]. An example would be an image of a car; a CNN would, for
example, see the mirrors, while a dense network would have to look at all the pixels of the
car. An example of this can be seen in Figure 2.5.

Figure 2.5: Common structure for CNN.

CNNs use the same structure as many other typical neural networks, with an input
layer followed by hidden layers and concluding with an output layer. A visual example
of a typical neural network structure can be seen in Figure 2.4. The hidden layers of
a ConvNet generally consist of convolutional layers, which are normally used with an
activation function such as ReLU, pooling, batch normalization, dropout, and dense -layers.

SeparableConv2D layers

A separableConv2D layer is a type of convolutional layer that can used in TensorFlow(subsection
2.5.2). Where a traditional convolutional layer uses kernels that convolve over the height
and width of the image11, a separableConv2D layer firstly performs a depth-wise spatial
convolution that works on each input channel individually, and a point-wise convolution
then follows this. The point-wise convolution mixes the consequential output channels12.

2.4.2 Pooling layers

A significant part of convolutional neural networks is pooling. Pooling is described as a
non-linear form of down-sampling, where max pooling is the most common. Max pooling
works so that the input image is partitioned into groups of rectangles. For each sub-region,
the maximum is outputted. An example of max pooling with a 2x2 filter and stride set to
2, see Figure 2.6.

10https://en.wikipedia.org/wiki/Convolutional_neural_network
11https://en.wikipedia.org/wiki/Convolutional_neural_network#Convolutional_layers
12https://www.tensorflow.org/api_docs/python/tf/keras/layers/SeparableConv2D
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Figure 2.6: A simple example of max pooling with a filter of 2x2 and stride set to 2.

Residual blocks

As earlier mentioned in Section 2.4.1 each layer feeds data to the next layer until it reaches
the output layer. Networks like ResNet[34] introduce the concept of residual blocks. In
short, a residual block feeds the data into the next layer as well as directly into layers
further down in the network; this is called skip connections or shortcuts[23]. An example
of a residual neural network can be seen in Figure 2.7.

Figure 2.7: A simple example of residual neural network where layer 2 is skipped by layer
1.

The main reasons why we use residual blocks are the vanishing gradient problem or
the degradation problem[34].

In each epoch of training a neural network, all the weights in the network are updated[35].
The updated value is calculated proportionally from the partial derivative of the used error
function relative to the current weight of that given epoch. The vanishing gradient problem
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occurs when the gradient becomes too small, meaning that the value will be so small that
the weights are prevented from changing their values, which can cause the network not to
be able to learn anymore.

As noted, the other main issue that residual blocks tackle is the degradation problem;
this is when adding more layers to a deep model gives a higher training error[34].

2.4.3 Batch normalization (Batch norm)

Sergey Loffe and Christian Szegedy introduced batch normalization as a method of
normalizing a layer input by re-centering and re-scaling; the method is used to speed
up and stabilize artificial neural networks by making normalization a part of the model
architecture[10]. Batch normalization is applied for each training mini-batch and allows
for a higher learning rate and less careful initialization.

Transfer learning

Transfer learning is a commonly used technique in machine learning13. At its core, transfer
learning is when we can use a previously trained model to gain an advantage in a new but
similar task. By using a pre-trained model, we can significantly reduce the time required
with model training14. To apply transfer learning, we first have to select a model to use;
the model is trained on a large dataset that has similarities to the new task that its going
to be applied to. When training the model, a good practice is to do some fine-tuning,
meaning that we can train some of the top layers of the frozen model15. Usually, when
using transfer learning, the model we are applying to our new model is frozen. However,
the model can usually benefit from training some of the top layers of the network, especially
convolutional neural networks, as the layers that are higher up in the network are more
specialized than the lower layers.

2.5 Tools
This section gives an overview of the tools that are used or considered for use for this
project.

2.5.1 Data labeling tool

To train a CNN, one first has to start with gathering sample data. There is a need for a
tool for this project that makes it easy to set keypoint positions in an image. There are
several good options; use a pre-made tool such as www.makesense.ai or LabelImg. There
is an option to use a pre-made dataset such as the COCO dataset. The final option is to
create our own custom data and labeling tool.

makesense.ai

makesense.ai is a free to use online labeling tool16. The tool supports many label types,
such as keypoints which is vital for this project. With makesense.ai, one still has to collect

13https://research.aimultiple.com/transfer-learning/
14https://deepai.org/machine-learning-glossary-and-terms/transfer-learning
15https://www.tensorflow.org/tutorials/images/transfer_learning
16https://github.com/SkalskiP/make-sense
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the images independently since there is no pre-made data with the tool. This makes
makesense.ai a viable tool for this project.

LabelImg

LabelImg as makesense.ai is a free-to-use tool, but rather than being an online tool, it
runs locally17. LabelImg lacks its functionality; it only supports labeling bounding boxes,
rendering it not viable for this project.

COCO

COCO is a widely used dataset in the community and is a viable option for this project.
One of the significant downsides with COCO is the lack of flexibility; the data is already
labeled, which is fantastic for saving time, yet we have no control in altering the data to
our needs without making a custom tool for labeling.

Gathering our own data and creating a labeling tool

Using a tool like makesense.ai or COCO is undoubtedly a good option. As previously
noted, with a tool like makesense.ai, we still have to collect our own data. However, the
data formatting is something we do not have control over. So if we already have to collect
our own data, another good option is to create a custom labeling tool that can handle all
our needs. Since we are using BO20G38’s data gathering methods with a greenscreen will
be utilized, data augmentation can be built into the labeling tool pipeline. This makes
gathering our data and creating a labeling tool a viable option and will be used for this
project.

2.5.2 TensorFlow (TF) and TensorFlow Lite (TFLite)

TensorFlow is a free open-source machine learning and artificial intelligence library created
by the Google Brain team18 19[12]. TensorFlow has a big and flexible ecosystem of tools for
creating state-of-the-art machine learning models. TensorFlow also has a lighter framework
TensorFlow Lite for running on mobile and IoT devices, making it a perfect option for this
project.

2.5.3 KerasTuner

KerasTuner is a hyperparameter optimization framework that makes it easy to search
for the correct hyperparameters when tuning TensorFlow/Keras model[27]. To use the
package, the user defines a search space, and KerasTuner will run through the search space
and find the best models by the process of elimination.

As KerasTuner is such an easy package to use, it makes a perfect candidate for this
project when we will be conducting architecture searches and hyperparameter tuning.

17https://github.com/tzutalin/labelImg
18https://www.tensorflow.org/
19https://en.wikipedia.org/wiki/TensorFlow
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2.5.4 imgaug

imgaug is an image augmentation library for machine learning [30]. The library contains a
wide range of augmentation techniques. It also supports augmenting images with keypoints,
bounding boxes, and more. These features are essential for when we are later going to
augment images with keypoints when we are creating our datasets; this is further discussed
in section 3.1.3.

2.5.5 Smartphone/Android

Android is a mobile operating system and is developed by the Open Handset Alliance that
is commercially sponsored by Google20. Android is the OS that runs on the smartphone
that will be used for this project (Huawei p30 pro). TensorFlow and TensorFlow Lite
integrate nicely with Android devices, boosting the confidence in choosing TensorFlow and
TensorFlow Lite for this project.

2.5.6 MoveNet.SinglePose.Thunder

MoveNet is a Human pose estimation model built on MobileNetV2, with a Feature Pyramid
Network decoder and CenterNet[36]. A Feature Pyramid Network is a feature extractor that
outputs proportionally sized feature maps from a single scale image at multiple levels[19].
CenterNet is a object detector that strays from the norm by using triplets, instead of a
pair of keypoints[25].

MoveNet was built to run in a browser using TensorFlow.js21 or using TF Lite on a
mobile device. MoveNet outputs 17 keypoints with a confidence score for each keypoint, a
list of the keypoints the model outputs can be seen in Table 5.1. For this project MoveNet
can be used for Model assisted labeling (section 4.2.3), as well as comparing it to our own
models for precision testing (section 5.3).

20https://en.wikipedia.org/wiki/Android_(operating_system)
21https://www.tensorflow.org/js
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Chapter 3

Design and Planning

This chapter covers the planning and designing phase of the project. Section 3.1 gives
an overview of the different options for data collection and creating datasets. Section 3.2
Looks into the planning of how the models for this project will be created and tested. The
final section 3.3 concludes the chapter with the planning of the implementation of our
model on the smartphone.

3.1 Datasets

This section covers the planning regarding collecting, labeling, and techniques for the
datasets needed for this project.

With the experience gained from BO20G38[31], the plan is to implement some of the
key findings in data generation with greenscreen and data augmentation techniques.

3.1.1 Collecting images

When planning started for the datasets, the first thing to be decided was how the images
would be collected. Several options can be viable.

Option 1 - Using a pre-made dataset

As earlier mentioned in section 2.5.1, there are pre-made datasets out there, such as the
COCO datasets. However, using a pre-made dataset brought a concern about the flexibility,
the images, and future training of HPE models.

The concern with flexibility in using a dataset like COCO is that the keypoints they
are using might not be optimal for use in this project.

The images in COCO and other pre-made datasets bring apprehension about how the
images look. All camera sensors are a bit different; thus, the images from one camera will
look different from another. This makes it so that we are less in control of the data and
what our model learns.

The organization behind COCO state that there are 250 000 instances of people with
keypoints in their dataset 1. A concern with this is whether or not this will be enough
data for further training of our models.

1https://cocodataset.org/#home
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Because of these concerns using a pre-made dataset was deemed not viable for this
project.

Option 2 - Scraping the web for images

Since using a pre-made dataset is out of the picture, we must create a custom dataset. An
option to collect images is to scrape the web for images of people and then label those
images.

However, scraping the web for images brings up a major concern that was previously
discussed in section 3.1.1 (option 1) about the lack of control over the images.

Because of this Option 2 was deemed not viable for this project.

Option 3 - Capturing our own images

The method that works around all the previously discussed issues is to capture our own
images. This can be accomplished in multiple ways. A high-quality camera can be used,
or we can use the same device that we are later using to implement our model. For this
project Option 3 was deemed the best approach for collecting image data for our datasets.

3.1.2 Data labeling

After the image collection process, they have to be labeled/marked with the coordinates
of the joints needed to form a pose. As discussed in section 2.5.1 makesense.ai, there are
already made tools for labeling images and setting keypoints. Makesense.ai is a viable tool
for this project. However, after some testing, it turned out to be a complicated tool to use,
making labeling images more complicated and time-consuming than it needs to be.

Therefore, we decided to custom make a tool for labeling images. By making our tool,
we can have more control over the data and how it is formatted. One of the most significant
upsides to making our tool is that it can be tailored to our workflow.

3.1.3 Creating datasets

To create the datasets, we selected to capture our images on the device that we are later
implementing our HPE model; this is to control how the training data looks to be as close
as possible to the real-world data when the software is in use. A key feature of capturing
our datasets is the use of a greenscreen. By having a person pose with a greenscreen
background, we can create a vast amount of data from a small set of images.

Custom image labeling tools were created with our tools; we have total control over
the workflow, data, and formatting.

When a set of greenscreen images have been labeled, we can change their backgrounds.
From the images that have then been created with the new backgrounds, we can then use
them and create an even more extensive set of labeled images by using data augmentation,
with the help of frameworks like imgaug (2.5.4). Data augmentation is a crucial part of
how the datasets for this project are made. The augmentation techniques that are used in
this project are further explained in Chapter 4

When all the images have been captured, labeled, background swapped and augmented
the data- set/sets are ready to be used to train an HPE model. These steps make the
dataset vast in size, and we can adjust the complexity of the data.
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3.2. MODELS

3.2 Models
This section gives an overview of the planning phase of the HPE models training, and
testing.

The first step in planning how to make the HPE models for this project was to research
how to create keypoint detectors. Luckily there are many good examples online, such
as Keras’s guide: Keypoint Detection with Transfer Learning 2. The research quickly
discovered that models such as MobileNet and ResNet are commonly used for keypoint
detection tasks. However, other model architectures have to be considered to answer the
set of research questions.

3.2.1 Initial plan

To answer RQ 1, RQ 1.1, RQ 2, and RQ 2.1 a range of pre-made models such as
MobilNet, ResNet50, shall be trained and tested with the data made for this project. In
addition to the pre-defined models, architecture searches and hyperparameter tuning shall
be conducted to check if a different model architecture can yield better performance in
terms of accuracy and speed. The search and Tuning shall utilize the Keras Tuner tool
[27].

Since the models are intended to run on a smartphone, they shall be converted to a
TensorFlow Lite model to run on this device, and in turn, they will be tested on how
close to real-time they can run on this device. All models shall be tested on test data
and real-life testing to find the best-performing model. The model that performs the best
overall will be selected for the final build.

3.3 Smartphone
This section gives an overview of the planning regarding the implementations of image
capture, and HPE model on the smartphone.

3.3.1 Selection of device

There is a wide range of Android smartphone devices on the market3. This project utilizes
a Huawei P30 Pro, running Android 10. The device choice is somewhat simple as that was
the phone we had at hand.

3.3.2 Image capture for datasets

After looking into the different image gathering/capture methods, the smartphone was
selected to capture the dataset images. The primary camera sensor on the phone captures
images in a resolution of 2736x3648, which is too large. An app was created to capture
images and down-sample them to a lower resolution locally on the device for data capture.
However, this was a slow process as the phone needed to process all the images locally
and then write them to disk. Therefore the standard camera app was used with its burst
capture, which captures 100 images in the standard 2736x3648 resolution. After the images
are captured, they can be scaled down to a more reasonable resolution on a computer.

2https://keras.io/examples/vision/keypoint_detection/
3https://en.wikipedia.org/wiki/List_of_Android_smartphones

23

3.2. MODELS

3.2 Models

This section gives an overview of the planning phase of the H P E models training, and
testing.

The first step in planning how to make the HPE models for this project was to research
how to create keypoint detectors. Luckily there are many good examples online, such
as Keras 's guide: Keypoint Detection with Transfer Learning 2. T h e research quickly
discovered tha t models such as MobileNet and ResNet are commonly used for keypoint
detection tasks. However, other model architectures have to be considered to answer the
set of research questions.

3.2.1 Initial plan

To answer RQ l, RQ l . l , RQ 2, and RQ 2.1 a range of pre-made models such as
MobilNet, ResNet50, shall be trained and tested with the da ta made for this project. In
addition to the pre-defined models, architecture searches and hyperparameter tuning shall
be conducted to check if a different model architecture can yield better performance in
terms of accuracy and speed. The search and Tuning shall utilize the Keras Tuner tool
p27.

Since the models are intended to run on a smartphone, they shall be converted to a
TensorFlow Lite model to run on this device, and in turn , they will be tested on how
close to real-time they can run on this device. All models shall be tested on test data
and real-life testing to find the best-performing model. The model that performs the best
overall will be selected for the final build.

3.3 Smartphone

This section gives an overview of the planning regarding the implementations of image
capture, and HPE model on the smartphone.

3.3.1 Selection of device

There is a wide range of Android smartphone devices on the market3. This project utilizes
a Huawei P30 Pro, running Android 10. The device choice is somewhat simple as that was
the phone we had at hand.

3.3.2 Image capture for datasets

After looking into the different image gathering/capture methods, the smartphone was
selected to capture the dataset images. The primary camera sensor on the phone captures
images in a resolution of 2736x3648, which is too large. An a p p was created to capture
images and down-sample them to a lower resolution locally on the device for data capture.
However, this was a slow process as the phone needed to process all the images locally
and then write them to disk. Therefore the standard camera app was used with its burst
capture, which captures 100 images in the standard 2736x3648 resolution. After the images
are captured, they can be scaled down to a more reasonable resolution on a computer.

h t t p s : / / k e r a s . i o / e x a m p l e s / v i s i o n / k e y p o i n t _ d e t e c t i o n /
h t t p s : / / e n . w i k i p e d i a . o r g / v i k i / L i s t _ o f _ A n d r o i d _ s m a r t p h o n e s

23

https://keras.io/examples/vision/keypoint_detection/
https://en.wikipedia.org/wiki/List_of_Android_smartphones


CHAPTER 3. DESIGN AND PLANNING

3.3.3 HPE model implementation

An app must be created to implement the HPE model on the smartphone. The must
app handles the input stream of images, which are then fed to the model. For the app to
interpret the poses returned by the model predictions, the app shall compute the angle for
a set of selected joints. The specified joint angles are then interpreted as steering signals
such as left, right, and so on. This application will also be used for performance testing on
the smartphone to find what models yield the best results in terms of speed.

3.3.4 Sending steering signal to vehicle

For this project, our primary focus is on developing our Human Pose estimation models
and implementing them into a smartphone application. If time allows, we will look into
the connection between the smartphone and a vehicle; however, this topic will be explored
in Section 4.4.5.

3.4 Framework, and plan selection
For the project to succeed, we have to select what frameworks and which plans to use
moving forward. As mentioned in subsection 3.1.3, we chose Option 3 3.1.1 to capture and
label the images ourselves for maximum control over the data.

After deciding to gather our data, we also chose to create a custom data labeling tool
to implement all the tools that we feel necessary. Ultimately we ended up with two labeling
tools which are described in subsections 4.2.2 and 4.5.

To train our HPE models, we used the machine learning framework TensorFlow 2.5.2
as we have previous experience with the framework.

As discussed in section 3.3.1, the smartphone selection was a simple process as we only
had one at hand.

For a complete list of the primary packages and tools used for this project, see Table
3.1.

Tools Use case
TF & TFLite[12] Training and using ML models
imgaug[30] Augmenting training data
KerasTuner[27] Architecture search and hyperparameter tuning
Matplotlib[3] Visualizing images and keypoints
TKinter[1] Build custom labeling tool for Python
Numpyharris2020array Data handling
Pillow[38] Converting array to image
Android[37] smartphone development
Open-cv[11][7] Reading images from disk, and simple image transformation
MoveNet[36] Model assisted labeling, and precision testing

Table 3.1: The packages used for this project
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Chapter 4

Implementation

This chapter describes how the group found what seems to be the best solution for creating
datasets, labeling tools, and Human Pose Estimation models by doing experiments with
multiple model architectures, hyperparameter tuning, datasets, and labeling tools. The
chapter starts with section 4.1 describing the framework implemented for pre-processing
data, dataset handling, architecture search, hyperparameter search, training-, tuning-,
converting-, and testing- TensorFlow models, and interpreting model predictions. Section
4.2 gives an in-depth description of how the datasets and data labeling tools were made.
Section 4.3 covers how the different HPE models were found with architecture searches,
and hyperparameter tuning, as well as training the models. The final section of the chapter
4.4 describes how the smartphone application was built, interpreting pose predictions from
our models, and a look at different options for sending steering signals to a vehicle.

4.1 Creating a framework/package (Quantium)
We chose to develop a framework/package that contains all the logic for data pre-processing,
model- training, testing, converting, architecture search/hyperparameter tuning, and
visualization for this project. The package was created to have easy and quick access to
functionality when needed to increase productivity. The package contains sub-packages
that handle their respective parts of the project; the following subsection covers the package
modules.

4.1.1 Firebolt - dataset pre-processing

Firebolt is our data pre-processing module, it handles everything needed for getting
our dataset ready for training: background swapping (section 4.2.4), data augmentation
(described in Section 4.2.5), auto dataset balancing, image resizing, and dataset splitting
(used in Section 4.2.6). To see the code for Quantium’s Firebolt module see Appendix E.2,
E.5, E.3, E.4, E.6, and E.1.

4.1.2 Filch - Utility’s functionality

Filch is our utility’s module that handles all functionality used by more than one Quantium
module, such as reading JSON files, parsing pose coordinates from datasets, loading trained
models for use, and renaming files. To see the code for Quantium’s Filch module, see
Appendix D.1.

25

Chapter 4

Implementation

This chapter describes how the group found what seems to be the best solution for creating
datasets, labeling tools, and Human Pose Estimation models by doing experiments with
multiple model architectures, hyperparameter tuning, datasets, and labeling tools. The
chapter starts with section 4.1 describing the framework implemented for pre-processing
data, dataset handling, architecture search, hyperparameter search, training-, tuning-,
converting-, and testing- TensorFlow models, and interpreting model predictions. Section
4.2 gives an in-depth description of how the datasets and data labeling tools were made.
Section 4.3 covers how the different HPE models were found with architecture searches,
and hyperparameter tuning, as well as training the models. The final section of the chapter
4.4 describes how the smartphone application was built, interpreting pose predictions from
our models, and a look at different options for sending steering signals to a vehicle.

4.1 Creating a framework/package (Quantium)

We chose to develop a framework/package that contains all the logic for data pre-processing,
model- training, testing, converting, architecture search/hyperparameter tuning, and
visualization for this project. The package was created to have easy and quick access to
functionality when needed to increase productivity. The package contains sub-packages
that handle their respective parts of the project; the following subsection covers the package
modules.

4.1.1 Firebolt - dataset pre-processing

Firebolt is our data pre-processing module, it handles everything needed for getting
our dataset ready for training: background swapping (section 4.2.4), data augmentation
(described in Section 4.2.5), auto dataset balancing, image resizing, and dataset splitting
(used in Section 4.2.6). To see the code for Quantium's Firebolt module see Appendix E.2,
E.5, E.3, E.4, E.6, and E.l .

4.1.2 Filch - Util ity's functionality

Filch is our utility's module that handles all functionality used by more than one Quantium
module, such as reading JSON files, parsing pose coordinates from datasets, loading trained
models for use, and renaming files. To see the code for Quantium's Filch module, see
Appendix D.l.

25



CHAPTER 4. IMPLEMENTATION

4.1.3 Albus - Architecture search and hyperparameter tuning

Albus is our architecture search and hyperparameter tuning module, the module utilizes
Keras Tuner (section 2.5.3) to run architecture searches as well as hyperparameter tuning.
Albus is used to find all the model architectures and hyperparameter tuning for all the
models used in this project. To see the code for Quantium’s Albus module see Appendix
G.1, G.2, G.6, G.4, and G.5.

4.1.4 Dobby - dataset handler and single model training

The Dobby module has two purposes; it is responsible for training a single model and
loading and delivering data to that model training.

For handling our dataset, Dobby has a class, DobbyDataset (Appendix F.2), that
inherits from the Tensorflow.Keras.utils.Sequence module. Sequence is a base object used
to fit a sequence of data, such as a dataset1[12][9]. Using this way of delivering data to the
training session, we can augment the data further if we desire, and have a reliable method
of data delivery. The module also uses utility from Filch (section 4.1.2) to parse the data
correctly. DobbyDataset also use imgaug[30] for augmentation.

DobbyAugmentation (Appendix F.1) is responsible for returning augmentation parameters
for training and validation data; the module uses imgaug[30] to augment the data.

To deliver a DobbyDataset to training, we use a DobbyDelivery (Appendix F.3), which
is responsible for reading all the data from the disk and creating a DobbyDataset. The
module also uses DobbyAugmentation to collect augmentation parameters to augment
images and keypoints before the data is delivered to the training session.

DobbyTrainer (Appendix F.4) is responsible for creating all the callbacks used during
training; the callbacks used can be seen in section 4.3.2, as well as compiling the model
and train that model as well as saving it when the training is finished.

4.1.5 Alastor - multiple model training session

Alastor is a module created to train all our models without stopping. The module utilizes
Dobby (section 4.1.4) for training each model and Filch (section 4.1.2) for loading each
model to make them ready for training.

To train all the models, Alastor loops through our dataset splits and trains each of the
models; when all the models have been trained on one split, it loads the next split, and
models are trained on the prior split/s trains them again. To see the code for Quantium’s
Alastor module, see Appendix H.1.

4.1.6 ModelBuilder - creating model architectures

The ModelBuilder module is a simple module that is responsible for building our finished
model architectures to prepare them for the initial training session. To see the code for
Quantium’s ModelBuilder module see Appendix I.1, I.4, I.2, and I.3.

1https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence
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4.1. CREATING A FRAMEWORK/PACKAGE (QUANTIUM)

4.1.7 Sirius - TFlite converter

Sirius (Appendix J.1) is responsible for converting our models from a TensorFlow/Keras
model into a TensorFlow Lite model, in order to run our models on a smartphone. The
module utilizes functionality from Filch (section 4.1.2) to load our TensorFlow model.

4.1.8 Lupin - model testing

Lupin is our model testing module; the module loads our testset with images and ground
truth keypoints. To test our models, we use our models to predict on the testset; from
the predictions, we can measure how precise the models are by looking at the distance
from the predicted keypoints to the ground truth keypoints. Lupin uses functionality from
Filch (section 4.1.2) for loading models, and visualizing keypoints. To see the code for
Quantium’s Lupin module, see Appendix K.1.

4.1.9 James - Interpreting poses

James is the signal interpretation prototype; the module looks at the angle from three
keypoints and compares that to a set of predetermined angle ranges for generating a
steering signal, as well as determining if the subject is facing the camera or not. James
uses functionality from Filch to load models, visualize keypoints, and loading images for
predictions. To see the code for Quantium’s James module see Appendix L.2 and L.1.
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CHAPTER 4. IMPLEMENTATION

4.2 Dataset
This section describes how the process of manufacturing the custom HPE datasets used for
this project and building the tools needed. To create a dataset, there are five steps until
they are ready for training and testing an ML model. The following subsections describe
these four steps:

4.2.1 Image capture

Since we are not using a pre-made dataset for this project, we had to capture the images of
people ourselves. The smartphone camera from our Huawei P30 Pro was utilized for image
capture. To create unique datasets, the subject was placed in front of a greenscreen so
that we could later change the background of the images and further augment them. The
subject performed random poses while the camera on the phone used its burst capture
function to capture 100 images over a period of approximately 15-20 seconds. This step is
repeated until the desired amount of images is captured. After all the images have been
captured, they are then transferred to a computer, ready for the next step. An example of
a raw image from the smartphone camera can be seen in Figure 4.1

Figure 4.1: Raw dataset image example (2736x3648 pixels).
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4.2. DATASET

4.2.2 Image Labeling tool (C3P0-JavaScript)

To label images, we needed a tool. As we were not satisfied with other tools on the market,
we chose to build our own. We chose to build it as a web-based solution so that image
labeling can be done anywhere. The code and installation guide can be seen in Appendix A.
To store the images and their keypoint we chose to use Firebase because of its ease of use
and good implementation of a real-time store option than can be exported, which is key for
the later steps. The Firebase console was set up with authentication for security, Storage to
hold our image files, and their Realtime Database to store each individual image’s keypoints
(label).

Firebase’s Realtime Database stores the data in a JSON format that can easily be
exported. An example of how we store our data can be seen in Figure 4.2.

Figure 4.2: Example of how the datasets are stored from Firebase Realtime Database or
C3P0-python 4.2.3.

Upload module

So with the Firebase tools in place, the React part of the system was created. Firstly the
secure login with Firebase Authentication was implemented. After the login module was
finished, we had to create an upload module to upload the images captured in the image
capture process to be labeled.

The upload logic was created so that each image in the dataset is uploaded to Firebase
Storage so that we can render those to the web page, but at the same time, each dataset
gets a record in Firebase Realtime storage; this is where the keypoints are stored. A
screenshot of the upload module can be seen in Figure 4.3(b).
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To store the images and their keypoint we chose to use Firebase because of its ease of use
and good implementation of a real-time store option than can be exported, which is key for
the later steps. The Firebase console was set up with authentication for security, Storage to
hold our image files, and their Realtime Database to store each individual image's keypoints
(label).

Firebase's Realtime Database stores the data in a JSON format tha t can easily be
exported. An example of how we store our data can be seen in Figure 4.2.
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Figure 4.2: Example of how the datasets are stored from Firebase Realtime Database or
C3P0-python 4.2.3.

Upload module

So with the Firebase tools in place, the React part of the system was created. Firstly the
secure login with Firebase Authentication was implemented. After the login module was
finished, we had to create an upload module to upload the images captured in the image
capture process to be labeled.

The upload logic was created so that each image in the dataset is uploaded to Firebase
Storage so that we can render those to the web page, but at the same time, each dataset
gets a record in Firebase Realtime storage; this is where the keypoints are stored. A
screenshot of the upload module can be seen in Figure 4.3(b).
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(a) Dashboard

(b) Upload

Figure 4.3: Screenshot of the dashboard and upload module in C3P0

Dashboard module

Next, the dashboard module was created. The dashboard is where all the datasets in the
systems are listed and can be accessed and see the labeling progress of each dataset. A
screenshot of the dashboard module can be seen in Figure 4.3(a).

Label module

Next, the labeling module was created. The label module renders the image to the screen.
The image is placed underneath a canvas module, to which we will come back later in
this section. The label module contains a set of buttons for each joint we want to place.
An important thing we had to keep in mind here is that joints belonging on the left side
will always have to be placed on the true left side of the subject in the picture, and the
same with the joints for the right side of the body. The module also contains a button
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systems are listed and can be accessed and see the labeling progress of each dataset . A
screenshot of the dashboard module can be seen in Figure 4.3(a).
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Next, the labeling module was created. The label module renders the image to the screen.
The image is placed underneath a canvas module, to which we will come back later in
this section. The label module contains a set of buttons for each joint we want to place.
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for getting the previous pose, meaning that it will place all the joints in the same place
as the previous image was. This was added to make the tool more productive as we are
capturing images at such a fast rate that some of the joints may stay in the same place
as the previous image so that the joints that move can then be adjusted. There are also
tools for moving the entire pose up, down, left or right, and a button to save the current
keypoints that have been placed.

To make the labeling logic work, we had to place a canvas module on top of the image
rendered from Firebase Storage. The canvas module consists of a classic HTML/JavaScript
canvas element 2. This module listens to the current position of the mouse pointer on the
image. When a joint in the label module is selected, and the mouse is clicked at a point
on the image/canvas, a local React useState variable is updated for that joint. When all
the joints have been labeled, the user can save the current pose. That pose will then be
written to the Firebase Realtime Database as a record for that image. A screenshot of the
label and canvas module can be seen in Figure 4.4.

Figure 4.4: Screenshot of C3P0-JavaScript image labeling tool GUI.

Labeling images

Before uploading the images to Firebase, they have to be resized. Uploading images in the
resolution of 2736x3648 is a waste of storage space and too large. Therefore we use a simple
python script from Quantium’s Firebolt module (section 4.1.1) to resize all the images
to 1000x1000. After the images have been resized, we then upload the images. When
the images are uploaded, the labeling process can begin. The users access the dataset
through the dashboard, which redirects them to the labeling module. When in the labeling
module, the user selects the joints and places them on the image, and uses the tools as they
see fit. For this project we are using 15 joints; head, neck, torso, left and right -shoulder,
-elbow, -wrist, -hip, -knee, and -ankle with x and y values ranging between 0 and 224. One
important note is that if a joint is not visible, we are placing the join in x=0 and y=0 to
mark them as unlabeled. When the joints for all the images have been placed and saved,
we then export the JSON file that the Firebase Realtime database generates and move
into the next steps of changing the background and data augmentation.

2https://www.w3schools.com/html/html5_canvas.asp
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Labeling images

Before uploading the images to Firebase, they have to be resized. Uploading images in the
resolution of 2736x3648 is a waste of storage space and too large. Therefore we use a simple
python script from Quantium's Firebolt module (section 4.1.1) to resize all the images
to lO00xlO00. After the images have been resized, we then upload the images. When
the images are uploaded, the labeling process can begin. The users access the dataset
through the dashboard, which redirects them to the labeling module. When in the labeling
module, the user selects the joints and places them on the image, and uses the tools as they
see fit. For this project we are using 15 joints; head, neck, torso, left and right -shoulder,
- elbow, -wrist, -hip, -knee, and -ankle with x and y values ranging between 0 and 224. One
important note is that if a joint is not visible, we are placing the join in z = 0 a n d y=0 to
mark them as unlabeled. When the joints for all the images have been placed and saved,
we then export the JSON file tha t the Firebase Realtime database generates and move
into the next steps of changing the background and data augmentation.
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4.2.3 Image Labeling tool (C3P0-Python)

In combination with the labeling tool made with JavaScript that was made to run in the
browser, we also made a simple yet even more powerful Python version of the labeling tool.
Developing a Python version of the labeling software was to have a more accessible version
to tweak and add functionality as needed and have the opportunity to work offline.

C3P0-Python is built with the Python framework Tkinter, which is the standard
interface/GUI toolkit for Python 3. The tool also utilizes the image package Pillow4 for
loading images and doing some processing such as rotating the images. The final Package
that the software depends on is TensorFlow for Model Assisted Labeling (section 4.2.3).

One of the significant upsides to developing a Python version is that we are then able
to utilize the powerful TensorFlow version made for Python to utilize Model Assisted
Labeling(MAL) (section 4.2.3). Since the development of C3P0-Python, we fully transitioned
out our JavaScript version of the tool and chose not to implement TensorFlow JS to that
version of the software for MAL.

Figure 4.5: Screenshot of C3P0-Python image labeling tool GUI.

C3P0-Python behaves the same as the JavaScript version (section 4.2.2) when labeling
images, except for some quality of life functionality, such as moving keypoints with keyboard
shortcuts for more precise and faster labeling of the data. The user interface looks different,
as seen in Figure 4.5. As previously mentioned, the JavaScript version of the tool was
utilizing Firebase, and the tools that come with that database suite, the Python version of
the software removes that extra dependency for a separate database and instead stores
everything locally on the machine the software is running on. To see a user guide and code
for C3P0-Python see Appendix C.

3https://docs.python.org/3/library/tkinter.html
4https://pillow.readthedocs.io/en/stable/
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Model Assisted Labeling(MAL)

Model-assisted labeling is functionality where we use a previously trained model to help
place keypoints in our images to speed up the labeling process. To help us place rough
estimates of most keypoints, we use MoveNet Thunder 2.5.6. After implementing MoveNet,
we quickly noticed that the model was easily confused with our data and returned too rough
joint positions. For this project, we are also using keypoints for neck and torso; therefore,
we could only use MoveNet for rough estimations on images that we were struggling to
place keypoints.

4.2.4 Greenscreen

When all the images have been labeled with keypoints, the datasets are relatively small, as
seen in table 4.1. However, since we want to have a lot of data for our model to generalize
and learn from, we need to create more data. Earlier in this section, we discussed utilizing
a greenscreen when capturing the images. To increase the dataset sizes, we replace the
greenscreen background with a set amount of images to get the desired size we are after. To
do this, we created a background replacement script. Nevertheless, before the backgrounds
are changed, we again use our resize script to scale the images to their final size of 224x224.

The script works in the way that it masks out a set of pixels within an RGB range; in
our case, the range is [0, 100, 0] to [120, 255, 130], where index 0 is red values, index 1
is green values, and index 2 is blue values. The mask that was just created is applied to
the new background, and an inverted version of the mask is applied to the original image.
These new images are then merged. To not have identical backgrounds for every image, we
move the background image around for each iteration using the same background.

To keep the keypoint labels, the script takes the keypoints from the original greenscreen
image and writes the new image to a new folder and these keypoints to a new JSON file
that will become the base of the new dataset before further data augmentation. These
steps are repeated for all the images in the original dataset. This means that a dataset
with an original size of 2500 can be increased based on the number of new background
images and augmentations one wants to apply.

33

4.2. DATASET

Model Assisted Labeling(MAL)

Model-assisted labeling is functionality where we use a previously trained model to help
place keypoints in our images to speed up the labeling process. To help us place rough
estimates of most keypoints, we use MoveNet Thunder 2.5.6. After implementing MoveNet,
we quickly noticed that the model was easily confused with our data and returned too rough
joint positions. For this project, we are also using keypoints for neck and torso; therefore,
we could only use MoveNet for rough estimations on images that we were struggling to
place keypoints.

4 .2 .4 Greenscreen

When all the images have been labeled with keypoints, the datasets are relatively small, as
seen in table 4.1. However, since we want to have a lot of data for our model to generalize
and learn from, we need to create more data. Earlier in this section, we discussed utilizing
a greenscreen when capturing the images. To increase the dataset sizes, we replace the
greenscreen background with a set amount of images to get the desired size we are after. To
do this, we created a background replacement script. Nevertheless, before the backgrounds
are changed, we again use our resize script to scale the images to their final size of 224x224.

The script works in the way that it masks out a set of pixels within an RGB range; in
our case, the range is [0, 100, OJto [120, 255, 130}, where index O is red values, index l
is green values, and index 2 is blue values. The mask that was just created is applied to
the new background, and an inverted version of the mask is applied to the original image.
These new images are then merged. To not have identical backgrounds for every image, we
move the background image around for each iteration using the same background.

To keep the keypoint labels, the script takes the keypoints from the original greenscreen
image and writes the new image to a new folder and these keypoints to a new JSON file
that will become the base of the new dataset before further data augmentation. These
steps are repeated for all the images in the original dataset. This means that a dataset
with an original size of 2500 can be increased based on the number of new background
images and augmentations one wants to apply.

33



CHAPTER 4. IMPLEMENTATION

4.2.5 Data Augmentation (DA)

To make the datasets bigger and more complex, we utilize data augmentation. To help
with data augmentation, we are utilizing the framework imgaug5. Imgaug makes it easy to
work with keypoint datasets.

One of the main reasons that Imgaug was used for this step is how it handles the
image transformations in combination with keypoints; even as we are rotating, scaling, or
shearing the images with the help of Imgaug’s KeyPointsOnImage module6, we can move
the keypoints to the correct location in the new augmented image. An example of how the
images are before and after data augmentation can be seen in Figure 4.6.

(a) Before (b) After (dataset 2) (c) After (dataset 2)

Figure 4.6: Data augmentation before and after.

4.2.6 Finished dataset

After all the image capture, labeling, background swapping, and data augmentation, we
apply one last step to help with performance when we train our models. This step came
about after some experimenting and crashes. Originally we modified the keypoint dataset
code found in the Keras guide; Keypoint Detection with Transfer Learning7.

However, this turned out to be highly inefficient with RAM usage, requesting over
128Gb with an image count of 206 346; this turned out to be too much for our hardware.
Therefore we wrote a script to compile our datasets into a TensorFlow dataset8. The
datasets are saved9 so that we can load them into memory later when we are training our
models on a server10.

We reduce the ram usage from what was previously stated to around a third, and
sometimes less with the same sized dataset. In Table 4.1 we are showing a complete list of
our datasets and their size throughout their background and augmentation processes.

After using the newly formatted dataset for some training sessions, we returned to the
original data approach. Rather than loading all the data at once, we split the datasets into
eight parts and run separate training’s on each of the splits. This was due to an issue we

5https://imgaug.readthedocs.io/en/latest/
6https://imgaug.readthedocs.io/en/latest/source/api_imgaug.html?highlight=keypointsOnIm

age#imgaug.imgaug.KeypointsOnImage
7https://keras.io/examples/vision/keypoint_detection/#prepare-data-generator
8https://www.tensorflow.org/api_docs/python/tf/data/Dataset
9https://www.tensorflow.org/api_docs/python/tf/data/experimental/save

10https://www.tensorflow.org/api_docs/python/tf/data/experimental/load
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found when visualizing the data from a TensorFlow dataset that the data looked radically
different compared to the original data. The main contribution that made it possible to
use this dataset implementation method was that we got access to more powerful hardware
that was able to run it.

Name Initial size Bg swap size DA size Batch size
Dataset 1 2023 103 173 206 346 64
Valset 1 414 19 004 38 088 64
Dataset 2 11000 330 000 660 000 flexible
testset 1 600 - - flexible

Table 4.1: List of data, validation, and test -sets throughout their creation phases, til
completed sets. Initial size referrers to the data size from image capture. Bg swap size
referrers to the size of the set after the backgrounds of the images has been swapped. DA
size referrers to the number of images in the set after data augmentation has been applied.
Batch size referrers to the size of each batch used in training during an epoch.

Dataset 1

Dataset 1 is our simplest dataset, which was produced to ensure that our approach would
work as intended. We were calling it a simple dataset because it contains one person and
the angle of the image is relatively the same. The person is rotating around and moving a
bit, but the camera is relatively stationary.

After testing and training with dataset 1, we chose to retire it as a training set and
instead use it as a test set.

Dataset 2

Dataset 2 contains more complex and realistic data compared to Dataset 1 (section 4.2.6).
This dataset contains two people with multiple camera perspectives compared to dataset
1’s static camera placement. An issue with dataset 2 is the sheer size of it, as seen in Table
4.1. Because of hardware limitations, we had to split the dataset into eight smaller sets.
For dataset 2 we used the data augmentation parameters seen in table 4.2. An example of
how the data looks after augmentation for can be seen in Figure 4.6(b) and 4.6(c).

Dataset 2 was experimented with to see if flipping the images and keypoints would help
with getting more data for each joint, but after trying a few training runs with flipped
images, the results was worse than without flipping.

Testset 1

Testset 1 is a simple testset containing 600 images of a subject in various poses and images
containing no person. The set has not been background swapped nor augmented in any
way. Examples of the data can be seen in Figure 4.7. This set is meant for testing the
accuracy of our models so that we can measure their precision when predicting keypoints.
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Augmentation Parameters Applied to data (%)
Rotate Range(-20, 40) 100
Brightness Range(0.7, 1.2) 100
Translate x: Range(-50, 50) , y: Range(-50, 50) 100
Sheer Range(-2, 2) 100
Scale Range(0.5, 1.6) 100
Gaussian blur Sigma(0, 1.9) 10
Linear contrast range(0.75, 1.5) 10
Gaussian noise (scale=(0.0, 0.05 * 255), per_channel=0.1)) 10
Motion blur Severity(1) 10
Snow filter Severity(1) 10
Rain Filter Severity(1) 10

Table 4.2: Augmentations for dataset 2, their parameters, and the amount of images the
augmentations are applied to.

(a) Before (b) After (Testset 1) (c) After (Testset 1)

Figure 4.7: Example data from testset 1.

4.3 Models

This section covers how the different models for this project is created, and trained.

4.3.1 Input and Output shapes

Before we started creating our models, we had to determine the input shape of the data
and how we wanted the model to output its predictions. A commonly used image size in
the community is 224x224 pixels; therefore, we are going to be using that for input, as well
as the three color channels RGB. The shape of the input data will then be 224x224x3.

For the output shape, we have to take into account that we are looking for 15 joints with
two values, X and Y, meaning that our model will output 30 values. We are making two
approaches; one fully convolutional approach, where the output layer is a SeparableConv2D
layer. The reasoning behind this is that Convolutional layers are less sensitive to parameters.
The second approach utilizes a Dense layer as the output layer. Both approaches are tested
with all the different models discussed in this chapter.

Therefore it was decided that the output layers shape is (1, 1, 30) for ease of use.
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Augmenta t ion Parameters Applied to data (%)
Rotate Range(-20, 40) 100
Brightness Range(0.7, 1.2) 100
Translate x: Range(-50, 50) , y: Range(-50, 50) 100
Sheer Range(-2, 2) 100
Scale Range(0.5, 1.6) 100
Gaussian blur Sigma(0, 1.9) 10
Linear contrast range(0.75, 1.5) 10
Gaussian noise (scale=(0.0, 0.05 255), per channel=0.1)) 10
Motion blur Severity(1) 10
Snow filter Severity(1) 10
Rain Filter Severity(1) 10

Table 4.2: Augmentations for dataset 2, their parameters, and the amount of images the
augmentations are applied to.

(a) Before (b) After (Testset l) (c) After (Testset l)

Figure 4.7: Example data from testset l.

4 .3 Models

This section covers how the different models for this project is created, and trained.

4.3.1 Input and Output shapes

Before we started creating our models, we had to determine the input shape of the data
and how we wanted the model to output its predictions. A commonly used image size in
the community is 22z22/ pixels; therefore, we are going to be using that for input, as well
as the three color channels RGB. The shape of the input data will then be 224x224x3.

For the output shape, we have to take into account that we are looking for 15 joints with
two values, X and Y, meaning that our model will output 30 values. We are making two
approaches; one fully convolutional approach, where the output layer is a SeparableConv2D
layer. The reasoning behind this is that Convolutional layers are less sensitive to parameters.
The second approach utilizes a Dense layer as the output layer. Both approaches are tested
with all the different models discussed in this chapter.

Therefore it was decided that the output layers shape is (1, 1, 30) for ease of use.
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4.3.2 Callbacks

When training all our models, we are using a set of callbacks. A callback is used on the fit
function so that we can tap into the various stages of the training sycle11. The callbacks
we discuss in this section are applied in the same manner for all our models.

Tensorboard

Tensorboard is what we are using for logging and visualizing the different training sessions.
We have set the callback to log training and validation loss, as well as training and
validation, mean absolute error(MAE) 12.

CustomLRCallback

To try and optimize the training as much as possible, we implemented a custom learning
rate callback. With this callback, we can adjust the learning rate to a lower or higher value
as we see fit for each epoch during a training session. It works by listening to changes in a
specific file at the beginning of each epoch, and adjusts the learning rate accordingly for
the next epoch. The code for the callback can be seen in Figure 4.8.

Figure 4.8: Custom learning rate modifier callback.

ReduceLROnPlateau

To get the best possible training results, we are using the ReduceLROnPlateau callback13.
This callback looks at a parameter set by the user. If there are no improvements over a
specified amount of epochs, it reduces the learning rate. In our case, we set it to look at
validation loss with the patience of 5 epochs and a reduced factor of 0.5. By default, the
learning rate of our starts at 0.005.

11https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/Callback
12https://www.tensorflow.org/tensorboard
13https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau
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ModelCheckpoint

ModelCheckpoint is used in conjunction with the fit function to save either the entire
model or just the weights at some interval so that the model can be loaded later for further
training14.

We are using the callback to get the model at its best-performing state to take it into
the next training. At the end of each epoch, the callback monitors the validation loss. If
the current epoch performs better than the previous checkpoint saved, it overrides the last
one with the new model. At the end of a training session, we have the checkpoint of the
model where it performs at its best on that training data, and this checkpoint is what we
are using for the next training.

EarlyStopping

EarlyStopping monitors a given value, such as loss, to check if the model is still improving
during training. If the model is not improving, the training is stopped15. We have set the
callback to monitor the validation loss to see if the value keeps decreasing. If it has not
decreased for ten epochs, the training is stopped.

4.3.3 Transfer learning models

This section covers the implementations of MobileNet and ResNet50. These are well-
known machine learning models in the community for their performance. For these model
implementations we are going to be utilizing transfer learning (section 2.4.3).

MobileNetV2

MobileNet is the most relevant pre-made model for this project. MobileNet is a lighter-
weight model than other models such as ResNet50. The network we are using for this project
has 2 257 984 parameters, compared to VGG16’s 138 357 544 parameters. MobileNet was
created for mobile devices [18], meaning that it will perform better on devices such as
smartphones that we are using in this project.

We are using MobileNet in a fully convolutional manner for this project, meaning there
are no dense layers in the architecture. The architecture is set up for this project as follows;
the Input layer taking in the shape (224x224x3), then the main Architecture of MobileNet.
The MobileNet architecture is set to not include the fully-connected layer at the top of the
network16.

To find the rest of the architecture and hyperparameters for this model, we utilized
Quantium’s Albus module (section 4.1.3). The dataset that was used during the search
was the first 147 015 images of dataset 2 (section 4.2.6). An important note is that we set
the MobileNet backbone of the model to be non-trainable during the search. The search
was structured in the following way:

14https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint
15https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
16https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet/MobileNet
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I Input layer I with an input shape of 224x224x3.

Mob MobileNet set as the backbone of the network.

SL0 (Table 4.3) Search loop 0, Containing 1 Conv2D layer, batch normalization, ReLU as
activation, Dropout.

SL1 (Table 4.3) Search loop 1, Containing 1 SeparableConv2D layer, batch normalization,
ReLU as activation, Dropout.

MP MaxPooling, pool size (2, 2), strides 1.

D Dropout with a value of 0.2

SC SeparableConv2D layer with 30 units, ReLU as its activation function.

O SeparableConv2D output layer.

The layers in the model architecture search is connected in the following order:

I −Mob− SL0 − SL1 −MP −D0 − SC2 −O

Conv2D units SepConv2D units Dropout DOPS Batch norm Num layers
32-128 32-128 0.2-0.7 [True, False] [True, False] 0-6

Table 4.3: Search loop 0 and 1 parameters for MobileNet, and ResNet architecture search.
Conv2D units, SepConv2D units have a range of values with a step size of 32. Dropout is a
range of values with a step size of 0.1. DOPS(dropout status) and Batch norm indicates if
the given layer is active in the block or not. Num layers how many layers is created, range
value with stepping size of 1.

After the search was completed we were left with the architecture that we were going
to be using. The finished model architecture is as follows:

I Input layer I with an input shape of 224x224x3.

Mob MobileNet set as the backbone of the network.

C2D0 Conv2D layer with 64 units, with ReLU as its activation function.

C2D1 Conv2D layer with 128 units, using ReLU as its activation layer.

BN Batch normalization

MP MaxPooling, pool size (2, 2), strides 1.

DO Dropout set to 0,2.

SC2D0 SeparableConv2D layer with 30 units, using batch normalization, and ReLU as
activation.

O SeparableConv2D Output layer, with Sigmoid as its activation function.
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The layers in the final model architecture is connected in the following order:

I −Mob− C2D0 − C2D1 −BN −MP −DO − SC2D0 −O

For code building the search space see Appendix G.6.
When the architecture search was completed, we proceeded to train the model with the

entirety of dataset 2 (section 4.2.6). To train the network, we first un-froze the first 100
layers of the MobileNet backbone to get more model performance; this is commonly known
as fine-tuning. After the training was complete, we were left with the training plots seen
in Figure 4.9. In the plots we see that the loss and MAE are steadily decreasing showing
no signs of overfitting.

Figure 4.9: Plots from all MobileNet training sessions on dataset 2
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ResNet50

ResNet is a remarkably robust model architecture. The model is well known for its ability
to skip layers using so-called shortcuts or skip connections [14]. In most cases, ResNet
models are implemented with either double or triple layer shortcuts, depending on the
architecture 17. ResNet50, the architecture we are using for this project, is based on
the model ResNet-34. As the name suggests, ResNet50 is a 50-layer deep network, and
compared to ResNet-34, it uses triple-layer shortcuts.

For this project, we are utilizing ResNet50, which has 23 587 712 parameters. Due to
this model’s sheer size, we are not expecting it to be the fastest performer in the later
steps of this project. To find the architecture and hyperparameters for this model, we
utilized Quantium’s Albus module 4.1.3. The parameters used in the search can be seen in
Table 4.3. During the search, we are using the first 147 015 images of our dataset 2 4.2.6
for training. The architecture search is set up in the following manner:

I Input layer I with an input shape of 224x224x3.

ResNet ResNet50 set as the backbone of the network.

SL0 (Table 4.3) Search loop 0, Containing 1 Conv2D layer, batch normalization, ReLU as
activation, Dropout.

SL1 (Table 4.3) Search loop 1, Containing 1 SeparableConv2D layer, batch normalization,
ReLU as activation, Dropout.

MP MaxPooling, pool size (2, 2), strides 1.

D Dropout with a value of 0.2

SC SeparableConv2D layer with 30 units, ReLU as its activation function.

O SeparableConv2D output layer.

The layers in the model architecture search is connected in the following order:

I −ResNet− SL0 − SL1 −MP −D0 − SC2 −O

To see the code for building the search space see Appendix G.5

17https://viso.ai/deep-learning/resnet-residual-neural-network/
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When the architecture search was finished we were left with the following model:

I Input layer I with an input shape of 224x224x3.

ResNet ResNet50 set as the backbone of the network.

C2D0 Conv2D layer with 96 units, with ReLU as its activation function.

BN Batch normalization

C2D1 Conv2D layer with 64 units, using ReLU as its activation layer.

C2D2 Conv2D layer with 96 units, using ReLU as its activation layer.

MP MaxPooling, pool size (2, 2), strides 1.

SC2D0 SeparableConv2D layer with 64 units, using batch normalization, and ReLU as
activation.

DO Dropout set to 0,2.

SC2D1 SeparableConv2D layer with 30 units, using batch normalization, and ReLU as
activation.

O SeparableConv2D Output layer, with Sigmoid as its activation function.

The layers in the final model architecture is connected in the following order:

I −ResNet− C2D0 −BN − C2D1 − C2D2 −MP − SC2D0 −DO − SC2D1 −O
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When the ResNet model architecture was found, we moved on to training the model
with all eight splits of our dataset 2, and unfreezing the top of the model, in the same
manner as we did with MobileNet. The plots of the training sessions can be seen in Figure
4.10. In the plots we that the loss and MAE are steadily decreasing, and showing no signs
of overfitting.

See Appendix I.3 for the model building code.

Figure 4.10: Plots from all ResNet training sessions on dataset 2
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Figure 4.10: Plots from all ResNet training sessions on dataset 2
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4.3.4 Full CNN architecture

To find the architecture and hyperparameters for this model, we utilized Quantium’s Albus
module (section 4.1.3). The search utilized our dataset 1 (section 4.2.6) containing 206346
training samples and 38088 validation samples. The parameters for the search are listed
below in Table 4.4, and Table 4.5. The structure of the search was as follows:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with tuner units_Input, using batch normalization, and ReLU as its
activation function.

MP0 MaxPooling, pool size (2, 2), strides 2.

SL0 (Table 4.4) Search loop 0, Containing 1 Conv2D layer, batch normalization, ReLU as
activation, Dropout.

MP1 MaxPooling, pool size (2, 2), strides 2.

SL1 (Table 4.4) Search loop 1, Containing 1 SeparableConv2D layer, batch normalization,
ReLU as activation, Dropout.

MP2 MaxPooling, pool size (3, 3), strides 3.

SC0 (Table 4.5) SeparableConv2D layer with tuner SOU0, ReLU as its activation function.

MP3 MaxPooling, pool size (2, 2), strides 2.

SC1 (Table 4.5) SeparableConv2D layer with tuner SOU1, ReLU as its activation function.

MP4 MaxPooling, pool size (2, 2), strides 2.

SC2 (Table 4.5) SeparableConv2D layer with tuner SOU2, ReLU as its activation function.

MP5 MaxPooling, pool size (2, 2), strides 2.

O Output layer, with Sigmoid as its activation function.

The layers in the model architecture search is connected in the following order:

I−CI−MP 0−SL0−MP 1−SL1−MP 2−SC0−MP 3−SC1−MP 4−SC2−MP 5−O

To see the code of running building the search space, see. Appendix G.2
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4.3 .4 Full C N N architecture

To find the architecture and hyperparameters for this model, we utilized Quantium's Albus
module (section 4.1.3). The search utilized our dataset l (section 4.2.6) containing 206346
training samples and 38088 validation samples. The parameters for the search are listed
below in Table 4.4, and Table 4.5. The structure of the search was as follows:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with tuner units_Input, using batch normalization, and ReLU as its
activation function.

MP MaxPooling, pool size (2, 2), strides 2.

SL (Table 4.4) Search loop 0, Containing l Conv2D layer, batch normalization, ReLU as
activation, Dropout.

M P , MaxPooling, pool size (2, 2), strides 2.

SL1 (Table 4.4) Search loop l, Containing l SeparableConv2D layer, batch normalization,
ReLU as activation, Dropout.

MP MaxPooling, pool size (3, 3), strides 3.

SC (Table 4.5) SeparableConv2D layer with tuner SOU0, ReLU as its activation function.

M P a MaxPooling, pool size (2, 2), strides 2.

SC (Table 4.5) SeparableConv2D layer with tuner SOUl, ReLU as its activation function.

MP 4 MaxPooling, pool size (2, 2), strides 2.

SC (Table 4.5) SeparableConv2D layer with tuner SOU2, ReLU as its activation function.

M P , MaxPooling, pool size (2, 2), strides 2.

0 Output layer, with Sigmoid as its activation function.

The layers in the model architecture search is connected in the following order:

To see the code of running building the search space, see. Appendix G.2
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After the search was competed we were left this the following model:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with 352 units, using batch normalization, and ReLU as its activation
function.

MP0 MaxPooling, pool size (2, 2), strides 2.

C2D0 Conv2D layer with 384 units, using batch normalization, and ReLU as its activation
layer.

DO0 Dropout set to 0,5.

C2D1 Conv2D layer with 352 units, using ReLU as its activation layer.

C2D2 Conv2D layer with 416 units, using batch normalization, and ReLU as its activation
layer.

DO2 Dropout set to 0,2.

C2D3 Conv2D layer with 96 units, using batch normalization, and ReLU as its activation
layer.

C2D4 Conv2D layer with 128 units, using batch normalization, and ReLU as its activation
layer.

DO3 Dropout set to 0,3.

MP1 MaxPooling, pool size (2, 2), strides 2.

SC2D0 SeparableConv2D layer with 320 units, using batch normalization, and ReLU as
activation.

SC2D1 SeparableConv2D layer with 352 units, using ReLU as activation.

SC2D2 SeparableConv2D layer with 128 units, using ReLU as activation.

DO4 Dropout set to 0,5.

SC2D3 SeparableConv2D layer with 256 units, using ReLU as activation.

SC2D4 SeparableConv2D layer with 352 units, using batch normalization, and ReLU as
activation.

SC2D5 SeparableConv2D layer with 416 units, using ReLU as activation.

MP2 MaxPooling, pool size (3, 3), strides 3.

SC0 SeparableConv2D layer with 448 units, ReLU as its activation function.

MP3 MaxPooling, pool size (2, 2), strides 2.

SC1 SeparableConv2D layer with 224 units, ReLU as its activation function.

MP4 MaxPooling, pool size (2, 2), strides 2.
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After the search was competed we were left this the following model:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with 352 units, using batch normalization, and ReLU as its activation
function.

MP MaxPooling, pool size (2, 2), strides 2.

C2D Conv2D layer with 384 units, using batch normalization, and ReLU as its activation
layer.

DOo Dropout set to 0,5.

C2D1 Conv2D layer with 352 units, using ReLU as its activation layer.

C2D2 Conv2D layer with 416 units, using batch normalization, and ReLU as its activation
layer.

DO Dropout set to 0,2.

C2D3 Conv2D layer with 96 units, using batch normalization, and ReLU as its activation
layer.

C2D4 Conv2D layer with 128 units, using batch normalization, and ReLU as its activation
layer.

DOa Dropout set to 0,3.

M P , MaxPooling, pool size (2, 2), strides 2.

SC2D SeparableConv2D layer with 320 units, using batch normalization, and ReLU as
activation.

SC2D, SeparableConv2D layer with 352 units, using ReLU as activation.

SC2D SeparableConv2D layer with 128 units, using ReLU as activation.

DO Dropout set to 0,5.

SC2Da SeparableConv2D layer with 256 units, using ReLU as activation.

SC2D SeparableConv2D layer with 352 units, using batch normalization, and ReLU as
activation.

SC2D5 SeparableConv2D layer with 416 units, using ReLU as activation.

M P 2 MaxPooling, pool size (3, 3), strides 3.

SC SeparableConv2D layer with 448 units, ReLU as its activation function.

M P a MaxPooling, pool size (2, 2), strides 2.

SC1 SeparableConv2D layer with 224 units, ReLU as its activation function.

MP 4 MaxPooling, pool size (2, 2), strides 2.
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SC2 SeparableConv2D layer with 480 units, ReLU as its activation function.

MP5 MaxPooling, pool size (2, 2), strides 2.

O Output layer, with Sigmoid as its activation function.

Num blocks Conv2D SepConv2D Dense Batch norm DPO DPOS
2-6 32-512 32-512 32-512 [True, False] 0.1-0.7 [True, False]

Table 4.4: Parameters for Search loop 1. Num blocks: How many blocks of layers are
added to the model. Conv2d, SepConv2D, Dense: The number of neurons/units in
the specified layer of a single block. BatchNorm: True if BatchNormalization layer is
present in the block, otherwise false. DPO: percent of the input units to drop in single
block dropout layer. DPOS: True if dropout is present in the block, otherwise false.

units_Input SOU0 SOU1 SOU2 DOPS
32-512 32-512 32-512 32-512 [True, False]

Table 4.5: Parameters for all single layers outside of search blocks. Range steps set to 32.
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SC} SeparablConv2D layer with 480 units, ReLU as its activation function.

M P , MaxPooling, pool size (2, 2), strides 2.

0 Output layer, with Sigmoid as its activation function.

N u m blocks
2-6

Conv2D
32-512

SepConv2D
32-512

Dense Batch norm D P O
32-512 [True, False] 0.1-0.7

D P O S
[True, False]

Table 4.4: Parameters for Search loop l. N u m blocks: How many blocks of layers are
added to the model. Conv2d, SepConv2D, Dense: The number of neurons/units in
the specified layer of a single block. B a t c h N o r m : True if BatchNormalization layer is
present in the block, otherwise false. D P O : percent of the input units to drop in single
block dropout layer. DPOS: True if dropout is present in the block, otherwise false.

units_Input SOU0 S O U l SOU2 D O P S
32-512 32-512 32-512 32-512 [True, False]

Table 4.5: Parameters for all single layers outside of search blocks. Range steps set to 32.
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To see the code for building the model see Appendix I.1.
After the search was completed, we trained the architecture from scratch with our

dataset 2 (section 4.2.6). The model was trained on all eight splits of dataset 2; in Figure
4.11 are the training, validation, loss, and MAE plots for all eight training sessions. From
the plots we see that the loss and MAE values are decreasing we see that the validation
values are following the training values, and showing no sighs of overfitting.

Figure 4.11: Plots from all Full CNN training sessions on dataset 2
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4.3.5 CNN with dense layers

After completing our search for a fully convolutional architecture, we moved on to a CNN
architecture utilizing dense layers. To find the architecture and hyperparameters for this
model, we utilized Quantium’s Albus module (section 4.1.3). As with our Fully CNN model
(section 4.3.4) we are used our dataset1 (Table 4.1) containing 206346 training samples
and 38088 validation samples. The CNN with dense layers search utilizes the same search
loops as our Full CNN search and a search loop for the dense layers. The parameters for
the dense search loop can be seen in Table 4.4. To see the code for building the search
space, see Appendix G.3

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with tuner units_Input, using batch normalization, and ReLU as its
activation function.

MP0 MaxPooling, pool size (2, 2), strides 2.

SL0 (Table 4.4) Search loop 0, Containing 1 Conv2D layer, batch normalization, ReLU as
activation, Dropout.

MP1 MaxPooling, pool size (2, 2), strides 2.

SL1 (Table 4.4) Search loop 1, Containing 1 SeparableConv2D layer, batch normalization,
ReLU as activation, Dropout.

Flatten0 Flatten from Conv2D to dense layers.

SL2 (Table 4.4) Search loop 1, Containing 1 dense layer, batch normalization, ReLU as
activation, Dropout.

O Output layer, with Sigmoid as its activation function.

The layers in the model is connected in the following order:

I − CI −MP 0 − SL0 −MP 1 − SL1 − Flatten0 − SL2 −O

The initial observation training CNN with dense layers is that the models are much more
sensitive to parameters and becomes significantly larger than the fully CNN architecture
that was previously trained (section 4.3.4). We did anticipate this but still wanted to
research if CNN with dense layers was an option.

When the search was completed, we were left with an under-fitted model that was
unnecessarily large that would not be adequate for this project.

Because of the results from the search we decided to run the search without SL1, to
see if that would make any difference to the model performance. The model was then
connected in the following way:

I − CI −MP 0 − SL0 −MP 1 − Flatten0 − SL2 −O

Even after changing the search space, the models reached as many as 200 million
parameters, resulting in a shutdown of the training. Even though the search was stopped,
the earlier models showed the same tendencies as the previous attempt.

To combat the issues, we continued to try and tune the architecture search without
success. The models kept under-fitting. Due to these issues, CNN with dense layers was
not further explored.
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4.3.5 C N N with dense layers

After completing our search for a fully convolutional architecture, we moved on to a CNN
architecture utilizing dense layers. To find the architecture and hyperparameters for this
model, we utilized Quantium's Albus module (section 4.1.3). As with our Fully CNN model
(section 4.3.4) we are used our datasetl (Table 4.1) containing 206346 training samples
and 38088 validation samples. The CNN with dense layers search utilizes the same search
loops as our Full CNN search and a search loop for the dense layers. The parameters for
the dense search loop can be seen in Table 4.4. To see the code for building the search
space, see Appendix G.3

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with tuner units_Input, using batch normalization, and ReLU as its
activation function.

MP MaxPooling, pool size (2, 2), strides 2.

SL (Table 4.4) Search loop 0, Containing l Conv2D layer, batch normalization, ReLU as
activation, Dropout.

M P , MaxPooling, pool size (2, 2), strides 2.

SL1 (Table 4.4) Search loop l, Containing l SeparableConv2D layer, batch normalization,
ReLU as activation, Dropout.

Flatten Flatten from Conv2D to dense layers.

SL (Table 4.4) Search loop 1, Containing I dense layer, batch normalization, ReLU as
activation, Dropout.

0 Output layer, with Sigmoid as its activation function.

The layers in the model is connected in the following order:

I - C I - MP SL M P , SL F l a t t e n SL O

The initial observation training CNN with dense layers is that the models are much more
sensitive to parameters and becomes significantly larger than the fully CNN architecture
that was previously trained (section 4.3.4). We did anticipate this but st i l l wanted to
research if CNN with dense layers was an option.

When the search was completed, we were left with an under-fitted model that was
unnecessarily large that would not be adequate for this project.

Because of the results from the search we decided to run the search without S L , to
see if that would make any difference to the model performance. The model was then
connected in the following way:

I - C I - MP SL M P , F l a t t e n o SL O

Even after changing the search space, the models reached as many as 200 million
parameters, resulting in a shutdown of the training. Even though the search was stopped,
the earlier models showed the same tendencies as the previous attempt.

To combat the issues, we continued to t ry and tune the architecture search without
success. The models kept under-fitting. Due to these issues, CNN with dense layers was
not further explored.
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4.3.6 Residual CNN

After training our full CNN architecture and CNN with dense layers, we moved on to a
CNN with residual blocks. This architecture search and hyperparameter tuning also used
Quantium’s Albus module (section 4.1.3). The data that was used in this search were our
Dataset 1 (section 4.2.6). For search space code see Appendix G.4.

The search was structured in the following way:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with tuner units_Input, with choice to use or not to use batch
normalization, and ReLU as its activation function.

C0 Conv2D layer with tuner units set to range(32-512), with choice to use or not to use
batch normalization, and ReLU as its activation function.

RES_BLOCKS0 Residual blocks search space containing batch normalization and
separable Conv2D layers with relu as activation. See Table 4.6 and Figure 4.12

MP0 MaxPooling, pool size (2, 2), strides 4.

SC0 (Table 4.5) SeparableConv2D layer with 30 units, with batch normalization, and
ReLU as its activation function.

MP1 MaxPooling, pool size (2, 2), strides 4.

O Output layer, with Sigmoid as its activation function.

The architecture search is connected in the following order:

I − CI − C0 −RES_BLOCKS −MP 0 − SC0 −MP 1 −O

Units Batch norm Number of blocks
32-512 [True, False] 2-6

Table 4.6: parameters for residual block search space. Units indicates how many units
a SparableConv2D layer has, with a step size of 32. Batch norm, indicates if batch
normalization is active or not for that block. Number of blocks indicates how many residual
blocks is included in the architecture
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After training our full CNN architecture and CNN with dense layers, we moved on to a
CNN with residual blocks. This architecture search and hyperparameter tuning also used
Quantium's Albus module (section 4.1.3). The data that was used in this search were our
Dataset l (section 4.2.6). For search space code see Appendix G.4.

The search was structured in the following way:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer with tuner uni t s_Input , with choice to use or not to use batch
normalization, and ReLU as its activation function.

Co Conv2D layer with tuner units set to range(32-512), with choice to use or not to use
batch normalization, and ReLU as its activation function.

RES_BLOCKSo Residual blocks search space containing batch normalization and
separable Conv2D layers with relu as activation. See Table 4.6 and Figure 4.12

M P o MaxPooling, pool size (2, 2), strides 4.

sC (Table 4.5) SeparableConv2D layer with 30 units, with batch normalization, and
ReLU as its activation function.

MP MaxPooling, pool size (2, 2), strides 4.

0 Output layer, with Sigmoid as its activation function.

The architecture search is connected in the following order:

I - C I - - C o - R E S _ B L O C K S - M P - SC MP O

Units Batch norm N umber of blocks
32-512 [True, False] 2-6

Table 4.6: parameters for residual block search space. Units indicates how many units
a SparableConv2D layer has, with a step size of 32. Batch norm, indicates if batch
normalization is active or not for that block. Number of blocks indicates how many residual
blocks is included in the architecture
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Figure 4.12: Architecture of the residual blocks used in the Residual CNN model.
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Figure 4.12: Architecture of the residual blocks used in the Residual CNN model.
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After the search was completed we were left with the following architecture containing
six residual blocks:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer 416 units, using ReLU as its activation function.

C Conv2D layer with 224 units, using batch normalization, and ReLU as its activation
function.

Block 0 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 0 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 1 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 2 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 3 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 4 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 5 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

MP0 MaxPooling, pool size (2, 2), strides 4.

SC0 SeparableConv2D layer with 30 units, with batch normalization, and ReLU as its
activation function.

MP1 MaxPooling, pool size (2, 2), strides 4.

O Output layer, with Sigmoid as its activation function.

The blocks in the model is connected in the following order:

I−CI−C−Block0−Block1−Block2−Block3−Block4−Block5−MP 0−SC0−MP 1−O

For model building code see Appendix I.2

Layers Block 0 Block 1 Block 2 Block 3 Block 4 Block 5
SepConv2D (units) 320 416 256 160 416 32
Batch Normalization Active Active Active Active Active Active
Activation ReLU ReLU ReLU ReLU ReLU ReLU
SepConv2D (units) 320 416 256 160 416 32
MaxPooling2D Active Active Active Active Active Active
Residual Conv2d (units) 320 416 256 160 416 32

Table 4.7: Layers and their parameters for each residual block in our residual model.
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After the search was completed we were left with the following architecture containing
six residual blocks:

I Input layer I with an input shape of 224x224x3.

CI Conv2D layer 416 units, using ReLU as its activation function.

C Conv2D layer with 224 units, using batch normalization, and ReLU as its activation
function.

Block O Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block O Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block l Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 2 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 3 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 4 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

Block 5 Residual block containing SeparableConv2D layers and MaxPooling2D, see Table
4.7 for parameters for each layer, and Figure 4.12 to see how the layers are connected.

MPo MaxPooling, pool size (2, 2), strides 4.

SC SeparableConv2D layer with 30 units, with batch normalization, and ReLU as its
activation function.

MP MaxPooling, pool size (2, 2), strides 4.

0 Output layer, with Sigmoid as its activation function.

The blocks in the model is connected in the following order:

I - - C I - - C - Block0- Block1 B l o c k 2B l o c k 3 Block4 B l o c k 5 - M P - S C - -M P - O

For model building code see Appendix I.2

Layers Block 0 Block l Block 2 Block 3 Block 4 Block 5
SepConv2D (units) 320 416 256 160 416 32
Batch Normalization Active Active Active Active Active Active
Activation ReLU ReLU ReLU ReLU ReLU ReLU
SepConv2D (units) 320 416 256 160 416 32
MaxPool ing2D Active Active Active Active Active Active
Residual Conv2d (units) 320 416 256 160 416 32

Table 4.7: Layers and their parameters for each residual block in our residual model.
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After the model architecture was found, we trained it on the eight splits of dataset
2. After the training session was completed, we were left with the plots seen in Figure
4.13.We see from the training plots that the training sessions did not go as smoothly as
the previous model training sessions of our MobileNet, ResNet, and full CNN models. The
validation loss and MAE in training split seven jumps at epoch eight before decreasing
and falling below the training values.

Figure 4.13: Plots from all Residual CNN training sessions on dataset 2.
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4.4 Smartphone application - Luke

We will need to run our models on a smartphone; we need an application to capture images
and feed those to our models. This section covers the implementation of the models on the
smartphone and the development of the smartphone application.

4.4.1 Image capture

A core feature of our application is image capture. As we are running Android, we are
going to be using the CameraX Library18. To get our application started, we utilized the
CameraX tutorial Getting Started with CameraX[32] released by the Android team. In
the tutorial, the developers talk about the functionality of the ImageAnalysis (IA) tool
that is built into CameraX. Image Analysis(IA) provides CPU accessible images in our
application 19.

After implementing the foundation for our application, we had to implement our
ImageAnalysis functionality. To utilize IA, we are overriding the analyze function. As we
want our prediction to start when the application starts, we are starting our IA in the
startCamera function.

The analyze function uses an ImageProxy object that we will be utilizing as input data
to our models. However, before we can use it, we have to convert it into a TensorBuffer
object. To do the conversion we have to firstly convert our ImageProxy object into a
bitmap, To do this conversion we are using so functionality from a TensorFlow Lite example
Pose Estimation [39] namely their YuvToRGBConverter functionality, and their toBitmap
function. The toBitmap function converts the ImageProxy from a YUV format and returns
an RBG bitmap of our ImageProxy; we then create a ImageProcessor object that will make
sure that the finished image is the correct size for our models. After the ImageProcessor
object is ready we initialize a TensorImage object that holds FLOAT32 values, and load
the bitmap into that TensorImage. After the bitmap is loaded we initialize a TensorBuffer
and load the buffer from our TensorImage object into it. When the buffer has been loaded,
it is ready for our model to make a prediction on the image.

4.4.2 Implementation of models on device

Implementing a TF Lite model into an android app is relatively simple. However, before
we implement our models, we have to convert them to a TFLite model. To handle the
conversion process, we are using Qunatium’s Sirius module seen in Appendix J.1.

After the TensorFlow models have been converted to TFLite models, we can import
them into our Android Studio project, which takes care of all the TF lite dependences.
After importing the models, we are then ready to load them and feed the images in our
analyze function.

When a model has made a prediction, it returns a list of coordinates in a specific order
that was decided when the training data was created. From there, we take the coordinates
the model prediction returned and display them to the screen with our drawing module, as
well as interpret the poses into steering signals (section 4.4.3) that can be sent to a vehicle.

18https://developer.android.com/jetpack/androidx/releases/camera
19https://developer.android.com/reference/androidx/camera/core/ImageAnalysis
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4.4.3 Interpreting the poses

Before implementing the pose interpretation into our android application, we prototyped
it in Python. This section describes Quantium’s James module (section 4.1.9) and the
translation from Python to Kotlin.

We chose to employ angle calculations to interpret the primary signals from the poses,
namely between the hips and their corresponding arms on that side of the body. By
following this approach, we can get five different signals from two angle calculations:
forwards, reverse, left, right, and stop.

To find what signal to send at specific angles, we used our C3P0-python tool; we added
a feature for finding angles for the joints in question. From that, we were able to find the
range for each signal to use for pose interpretation. In Table 4.8 we see the angle range
for the different signals. To calculate the angles in Python, we used the function seen in
Figure 4.14.

Figure 4.14: Function for getting the angle of three coordinates. First get the difference of
a and b, c and b, then calculate the cosine of the angle, get the radians of the angle, and
finally get the angle in degrees.

To ensure that the signal is correct if the subject is facing the camera or having their
back to it, we check what side of the image each shoulder is. From that, we can adjust if
the signal given with an arm should mean the opposite. An example of this can be seen in
Figure 4.15.

In addition to the primary steering signal interpretation we have implemented a
prototype for throttle input that looks at the angle between the shoulder, elbow and wrist.
For now the feature is only added to the left and right signal while forward and reverse will
have the default throttle value of 10%. This feature reuses the angle computing function,
and the angle ranges can be seen in Table 4.9.
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Calculates the angle between three points .

r . a r r a y ( p o t n t l I

b= r p . , a r r a y ( p o i n t 2 )
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ba
be c - D
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Figure 4.14: Function for getting the angle of three coordinates. First get the difference of
a and b, c and b, then calculate the cosine of the angle, get the radians of the angle, and
finally get the angle in degrees.

To ensure that the signal is correct if the subject is facing the camera or having their
back to it , we check what side of the image each shoulder is. From tha t , we can adjust if
the signal given with an arm should mean the opposite. An example of this can be seen in
Figure 4.15.

In addition to the primary steering signal interpretation we have implemented a
prototype for throttle input that looks at the angle between the shoulder, elbow and wrist.
For now the feature is only added to the left and right signal while forward and reverse will
have the default throttle value of 10%. This feature reuses the angle computing function,
and the angle ranges can be seen in Table 4.9.
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(a) Back to camera (b) Facing camera

Figure 4.15: Both signals in this image indicates ’left’.

Signal Angle range
Left 50, 110
right 50, 110
Forward 110, 180
Reverse 110, 180

Table 4.8: Angle ranges for each primary signal in degrees.

After we were finished with testing in Python, we translated the code into Kotlin, our
Android application with Kotlin, and implemented it into our Android application as a
separate class. A Kotlin translated version of our Python angle calculation function can be
seen in Figure 4.16.

Throttle Angle range
10% 140, 180
25% 135, 100
50% 90, 40

10% default <40, 180 <

Table 4.9: Angle ranges for throttle input in degrees

55

4.4. SMARTPHONE APPLICATION - LUKE

(a) Back to camera (b) Facing camera

Figure 4.15: Both signals in this image indicates 'left'.

Signal Angle range
Left 50, 110
right 50, 110
Forward 110, 180
Reverse 110, 180

Table 4.8: Angle ranges for each primary signal in degrees.

After we were finished with testing in Python, we translated the code into Kotlin, our
Android application with Kotlin, and implemented it into our Android application as a
separate class. A Kotlin translated version of our Python angle calculation function can be
seen in Figure 4.16.

Thrott le Angle range
10% 140, 180
25% 135, 100
50% 90, 40

10% default <40, 180 <

Table 4.9: Angle ranges for throttle input in degrees

55



CHAPTER 4. IMPLEMENTATION

Figure 4.16: Python function for angle calculation (Figure 4.14) translated to Kotlin.

To see an installation guide and code for the smartphone application see Appendix M

4.4.4 Application user interface (UI)

The UI of our app consists of one screen; The camera preview takes up the primary part of
the screen. It is there to give a visual clue to the users and see what the HPE models are
seeing.

The model selector is a drop-down menu in the top left corner of the screen (Figure
4.17(b)) that shows the currently selected model; if clicked on, it shows a list of the available
models to use in the application.

Next is the keypoint toggle button. By toggling the button, the user can choose if the
15 predicted keypoints will be drawn onto the camera preview.

Bellow, the keypoint button is an inference timer, showing how much time is elapsing
for the currently selected model to make a prediction.

The last element of the application is the signal text-view showing the current detected
steering signal; all signals have their respective color code, meaning if that particular signal
is detected, the signal text is drawn in the respective color. A list of the different color
codes can be seen in the list below.

• stop - red

• left - green

• right - blue

• forward - yellow

• reverse - magenta

A screenshot showing the application in use can be seen in Figure 4.17(a), during
testing in an environment our machine learning models have never seen.
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Figure 4.16: Python function for angle calculation (Figure 4.14) translated to Kotlin.
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A screenshot showing the application in use can be seen in Figure 4.17(a), during
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(a) Live image view (b) Model selection menu

Figure 4.17: Figure 4.17(a) showing smartphone application in live testing in an unseen
environment for our machine learning model. Figure 4.17(b) showing model parts of the
model selection drop-down menu

4.4.5 Sending signals to vehicles

There are multiple ways to send the steering signals from the smartphone to a vehicle
depending on the vehicle. For us to send a signal, we have to consider the hardware running
on the vehicle and the capabilities of that hardware.

API

Much like BO20G38’s [31] approach with their API that uploads images to a remote
computer, we could create a REST service that listens for a steering signal from the
smartphone app. BO20G38’s experiments with their API showed that uploading an image
with their approach took 100ms, which is a respectable time with the hardware they used.
As the data we would be sending would be smaller than an image file, we can technically
speed this process up.

Firebase Real-time database

Another option is to utilize the Firebase Real-Time database, which we have previously
used for this project. The smartphone application would send the steering signal to the
database while the vehicle is listening for changes in the database. Firebase can easily be
implemented into an Android application20, and could also potentially be used for model
hosting and added compute power.

20https://firebase.google.com/docs/android/setup#kotlin+ktx_2
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There are multiple ways to send the steering signals from the smartphone to a vehicle
depending on the vehicle. For us to send a signal, we have to consider the hardware running
on the vehicle and the capabilities of that hardware.

API

Much like BO20G38's [31] approach with their API tha t uploads images to a remote
computer, we could create a REST service tha t listens for a steering signal from the
smartphone app. BO20G38's experiments with their API showed that uploading an image
with their approach took lO0ms, which is a respectable time with the hardware they used.
As the data we would be sending would be smaller than an image file, we can technically
speed this process up.

Firebase Real-time database

Another option is to utilize the Firebase Real-Time database, which we have previously
used for this project. The smartphone application would send the steering signal to the
database while the vehicle is listening for changes in the database. Firebase can easily be
implemented into an Android applicat ion", and could also potentially be used for model
hosting and added compute power.
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Bluetooth data transfer

A different approach is to use an Android BluethoothSocket21, where we can send data
between two devices. With this approach, we have some concerns about speed, as we have
to split the resources on the smartphone and make sure that buffers do not fill up if the
vehicle machine cannot read the data quickly enough.

Cable Connection

The final option we looked into is a cable connection. Our smartphone application can
write the steering signal to a local file on the phone. The phone can then have a cable
connection to the machine running on the vehicle. The vehicle will then have a script
running that is listening for changes in that specific file which contains the steering signals,
and run by the commands in that file.

A concern we have with this approach is that writing to a file on a phone can demand
a lot of resources which can slow down the entire process.

21https://developer.android.com/guide/topics/connectivity/bluetooth/transfer-data
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Chapter 5

Testing and Evaluation

This chapter covers the testing and evaluation of our HPE models and reliability testing
with our smartphone application. The chapter starts with section 5.3 which covers the
accuracy testing of each of our models and comparing them against MoveNet thunder
SinglePose. The following section 5.4.3 looks at how our models are performing on our
smartphone. The last section 5.5 summarises the overall results of the project.

5.1 Evaluation of datasets
When developing machine learning models, it is necessary to have suitable datasets for the
models to learn from. Because of this, it is necessary to evaluate the datasets made for
this project before any conclusion is drawn about our models.

5.1.1 Dataset 1 & Valset 1

Dataset 1 and Valset 1 is our initial dataset and has apparent drawbacks, some of which
are addressed by dataset 2 (section 5.1.2). The dataset contains images of one person in
one outfit; this may cause the models trained on this set not to generalize well, meaning
they will struggle with different people. The second issue with the dataset is that the
camera is stationary, meaning it is not getting multiple perspectives of the subject in the
image. These are the main reasons the dataset was migrated into a simple testing set.

5.1.2 Dataset 2

Dataset 2 is the main set used for training our models, and it is our largest and most
complex dataset. The set addresses the issues of the fixed camera angle. It also contains
two people in various outfits to try and tackle more of the generalization issue. However,
it is not an optimal dataset compared to something like COCO (section 2.5.1). An issue
with dataset 2 is its sheer size; depending on the hardware used to train the models, we
needed to split the dataset into smaller sets of data to run model training.
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5.2 Testset 1

Testset 1 is our main testing set. it resembles dataset 1 (section 4.2.6), but also dataset
2 (Section 4.2.6). The set contains 600 images of one person performing poses in various
complexity, both natural and some fairly unnatural poses. This set is also made with a
greenscreen so that the set can be increased in complexity.

5.3 Model accuracy testing

This section covers how the model accuracy testing was measured, conducted, evaluated
and compared against MoveNet.

5.3.1 Mean keypoint distance from ground truth (MKDGT)

To test our models accuracy, we are using Quantium’s Lupin module (Appendix K.1, section
4.1.8) for calculating the distance from predicted keypoints to ground truth keypoints.
Lupin uses the euclidean distance formula, which is an application of the Pythagorean
theorem 1 and can be written as the following:

Distance =

√
(Xp −Xgt)

2 + (Yp − Ygt)
2

To test our models we run predictions on 500 samples from a given testset. We
then calculate the distance of each predicted keypoint to their corresponding ground
truth keypoint and summarise them, and divide them by the number of samples to get a
MKDGT.

5.3.2 MoveNet Thunder

To see how our model is performing we are going to compare it to MoveNet Thunder
SinglePose (section 2.5.6), as this model is referred to in TensorFlow’s documentation2 as
a Ultra fast and accurate pose detection model. MoveNet does differ from our models as
it outputs 17 keypoints and confidence in those keypoint predictions, whereas our model
outputs 15 keypoints and no confidence score. The joints used by MoveNet and the models
made in this project can be seen in Table 5.1. To see how our models perform, we are
looking at the joints that our models have in common with MoveNet and the two other
joints we are using; torso and neck.

1https://www.khanacademy.org/math/geometry/hs-geo-analytic-geometry/hs-geo-distance-and
-midpoints/v/distance-formula

2https://www.tensorflow.org/hub/tutorials/movenet
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- m i d p o i n t s / v / d i s t a n c e - f o r m u l a

h t t p s : / / w w . t e n s o r f l o w . o r g / h u b / t u t o r i a l s / m o v e n e t
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5.3. MODEL ACCURACY TESTING

MoveNet Keypoints Project models keypoints
nose head

left eye left ankle
right eye left elbow
left ear left hip
right ear left knee

left shoulder left shoulder
right shoulder left wrist
left elbow neck
right elbow right ankle
left wrist right elbow
right wrist right hip
left hip right knee
right hip right shoulder
left knee right writs
right knee torso
left ankle -
right ankle -

Table 5.1: Joints used by MoveNet Thunder, and joints used by the models in this project.

MoveNet is trained and tested on a significantly more diverse set of data. For the
testing we are performing for this project, our models are at an advantage as they have
seen the person in the test data. However, they have never seen these images, and they
differ from the training and validation data.

Joint Distance
Head 26.649
R shoulder 58.86
R elbow 69.4
R wrist 86.42
L shoulder 35.76
L elbow 30.35
L wrist 87.47
R hip 21.702
R knee 40.102
R ankle 64.89
L hip 21.091
L knee 24.289
L ankle 18.384
Mean overall 45.028

Table 5.2: MoveNet Thunder single pose distance from ground truth on 500 samples from
dataset 1, with an image size of 256x256
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CHAPTER 5. TESTING AND EVALUATION

5.3.3 MobileNetV2 architecture

Our MobileNet architecture is the model we thought from the beginning would be the
best performer; this is due to the previous work that has been done with MobileNet with
models such as MoveNet, and the fact that it is made for mobile devices. From Table 5.3
we see that the version of our MobileNet model with the lowest overall mean is split 5 with
a value of 18.403 overall mean pixel distance from ground truth keypoints.

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8
Head 9.784 11.603 13.186 13.822 10.076 8.300 9.384 7.143
Neck 3.728 3.760 3.819 3.932 3.803 3.610 3.420 3.263
R shoulder 37.103 38.857 40.741 40.707 36.426 37.179 36.694 38.466
R elbow 27.929 28.002 27.830 30.708 23.251 25.409 24.058 25.260
R wrist 34.410 38.749 37.304 37.858 34.214 35.527 34.098 34.114
L shoulder 5.509 7.389 6.038 7.755 5.835 6.759 8.055 9.160
L elbow 11.937 13.619 10.969 14.668 12.044 13.566 10.517 9.696
L wrist 13.432 16.988 17.238 16.360 13.473 13.217 18.975 12.195
Torso 8.802 9.045 9.036 9.083 9.258 8.893 9.188 9.148
R hip 10.647 11.194 10.794 10.970 10.591 10.450 10.133 10.439
R knee 38.531 37.663 36.083 36.167 38.047 39.349 39.362 38.677
R ankle 65.114 64.314 64.119 63.996 65.531 66.413 66.051 66.228
L hip 3.605 3.941 4.384 4.547 4.089 3.764 3.733 3.314
L knee 4.930 7.806 5.671 5.844 4.956 4.640 4.372 4.679
L ankle 4.629 4.838 5.409 4.919 4.451 4.106 4.418 4.396
Overall mean 18.672 19.851 19.508 20.089 18.403 18.745 18.830 18.411

Table 5.3: MobileNet testing on 500 224x224 pixel image samples from our dataset 1. Each
value in split 1 - 8 represents the prediction average distance in pixels from the ground
truth for each joint.
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5.3. MODEL ACCURACY TESTING

5.3.4 ResNet50 Architecture

We had high hopes for the ResNet architecture in terms of accuracy as the ResNet50
architecture is know for doing well in many image based tasks, but by looking at Table
5.4 we see that the accuracy is lacking compared to our MobileNet-based model. We
observe the same issue with this architecture as we did with MobileNet, that there is a
clear difference in accuracy between the left and the right sides. We see that the model
that is trained for six splits has the best overall mean keypoint distance from ground truth.

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8
Head 14.092 11.420 12.306 12.998 13.992 9.479 12.667 13.411
Neck 3.752 3.570 4.237 4.312 4.110 3.571 4.375 4.130
R shoulder 39.904 38.701 40.602 37.860 40.073 37.022 38.300 38.317
R elbow 31.376 29.472 34.029 30.510 33.615 26.089 29.533 26.071
R wrist 45.652 45.942 48.831 44.829 50.217 38.709 47.042 40.069
L shoulder 9.981 5.625 14.864 7.435 8.223 8.748 11.705 8.566
L elbow 12.045 10.455 16.732 13.914 11.861 14.577 16.688 15.870
L wrist 18.259 17.350 18.388 19.007 17.120 16.051 22.615 16.993
Torso 8.513 9.159 8.684 9.182 9.098 9.246 9.057 9.041
R hip 11.920 11.074 11.080 11.976 11.128 11.659 11.857 10.840
R knee 38.512 36.408 38.127 38.539 37.123 39.144 39.665 38.565
R ankle 66.115 64.125 64.772 64.979 64.374 66.832 67.266 65.568
L hip 4.406 4.420 4.498 4.951 5.131 3.787 5.232 4.454
L knee 5.486 5.996 6.442 6.109 6.446 4.856 6.511 4.901
L ankle 5.198 5.390 5.590 6.207 6.440 4.963 6.278 4.557
Overall mean 21.014 19.940 21.945 20.853 21.263 19.648 21.919 20.090

Table 5.4: ResNet testing on 500 224x224 pixel image samples from our dataset 1. Each
value represents the prediction average distance in pixels from the ground truth for each
joint.
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CHAPTER 5. TESTING AND EVALUATION

5.3.5 Full CNN architecture

Full CNN was the architecture we were hoping could show good potential. However, after
running the tests on the models from the training splits, we observe that the accuracy is
lacking compared to our MobileNet-based model. The model that was trained on four splits
shows the best MKDGT score with an overall average of 26.111 pixels. When looking at
the test results in Table 5.5 we see a reoccurring result that there is a significant difference
between the left and right sides.

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8
Head 33.431 27.179 26.669 25.137 21.810 19.621 19.072 26.415
Neck 27.777 21.824 21.804 13.157 12.148 15.163 15.981 22.374
R shoulder 48.172 46.556 45.886 39.155 39.085 44.254 44.615 46.558
R elbow 48.250 56.637 55.534 39.403 44.196 47.397 44.315 42.359
R wrist 66.272 65.723 65.219 47.895 58.927 62.506 59.616 52.309
L shoulder 30.013 21.791 22.257 15.371 15.920 18.941 20.119 29.595
L elbow 39.723 31.515 31.367 27.234 35.967 36.166 36.789 37.372
L wrist 47.300 48.428 48.482 40.229 44.354 52.193 46.576 50.038
Torso 27.990 20.885 20.939 11.250 10.793 14.693 16.548 24.578
R hip 31.820 27.452 27.383 14.541 14.918 18.476 21.017 27.185
R knee 49.114 44.099 43.773 35.924 37.681 37.555 38.914 44.996
R ankle 66.177 62.799 63.013 58.879 60.021 59.295 60.264 60.476
L hip 28.047 19.096 18.936 7.864 8.145 11.258 14.424 22.813
L knee 27.108 20.112 19.502 8.072 9.200 13.300 15.793 26.282
L ankle 29.501 21.361 20.796 7.559 9.635 14.480 16.086 27.723
Overall mean 40.046 35.697 35.437 26.111 28.186 31.019 31.341 36.071

Table 5.5: Fully CNN testing on 500 224x224 pixel image samples from our dataset 1.
Each value represents the prediction average distance in pixels from the ground truth for
each joint.
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5.3. MODEL ACCURACY TESTING

5.3.6 Residual CNN

Residual CNN is the last trained model and showed good potential in training. In Table
5.6 we see the testing results of all eight splits model training splits. We observe that
the model shows a significant difference in keypoint prediction’s distance between the left
and right sides. By looking at the training plots in Figure 4.13, it looks like sporadic and
unstable training sessions in a majority of the splits. Residual CNN is our worst performing
model, with a minimum overall mean distance from the ground truth value of 27.695 pixels
at split 4.

Split 1 Split2 Split3 Split 4 Split 5 Split 6 Split 7 Split 8
Head 15.564 34.619 69.217 31.247 53.079 72.536 58.395 57.385
Neck 9.3913 10.887 38.217 11.711 44.769 54.086 50.933 47.081
R shoulder 56.561 51.103 60.271 41.634 117.46 108.18 118.78 80.092
R elbow 73.605 63.483 55.914 29.557 51.328 54.377 73.973 54.683
R wrist 76.861 69.588 84.305 48.949 75.563 88.085 101.60 82.992
L shoulder 56.677 26.096 21.524 14.456 81.963 62.219 54.625 49.638
L elbow 79.995 41.643 27.918 26.678 106.29 81.985 77.304 63.056
L wrist 53.227 54.414 47.131 40.843 64.728 51.164 65.469 53.794
Torso 13.385 14.476 27.823 14.576 36.578 39.820 36.981 36.969
R hip 16.042 16.010 35.696 17.455 44.296 46.137 50.901 43.748
R knee 35.084 31.667 48.653 38.955 40.997 43.397 45.601 40.228
R ankle 56.854 53.457 61.939 58.597 52.913 51.415 51.260 52.108
L hip 16.000 14.837 19.350 11.418 29.638 33.931 28.389 32.027
L knee 22.551 18.829 10.575 12.627 22.920 23.065 22.763 23.386
L ankle 20.221 20.509 13.578 16.723 27.624 22.809 29.967 26.808
Overall mean 40.135 34.775 41.474 27.695 56.677 55.547 57.797 49.600

Table 5.6: Residual CNN testing on 500 224x224 pixel image samples from our dataset
1. Each value in split 1 - 8 represents the prediction average distance in pixels from the
ground truth for each joint.

65

5.3. MODEL ACCURACY TESTING

5.3.6 Residual C N N

Residual CNN is the last trained model and showed good potential in training. In Table
5.6 we see the testing results of all eight splits model training splits. We observe tha t
the model shows a significant difference in keypoint prediction's distance between the left
and right sides. By looking at the training plots in Figure 4.13, it looks like sporadic and
unstable training sessions in a majority of the splits. Residual CNN is our worst performing
model, with a minimum overall mean distance from the ground truth value of 27.695 pixels
at split 4.

Split l Spl i t2 Spl i t3 Split 4 Split 5 Split 6 Split 7 Split 8
Head 15.564 34.619 69.217 31.247 53.079 72.536 58.395 57.385
Neck 9.3913 10.887 38.217 11.711 44.769 54.086 50.933 47.081
R shoulder 56.561 51.103 60.271 41.634 117.46 108.18 118.78 80.092
R elbow 73.605 63.483 55.914 29.557 51.328 54.377 73.973 54.683
R wrist 76.861 69.588 84.305 48.949 75.563 88.085 101.60 82.992
L shoulder 56.677 26.096 21.524 14.456 81.963 62.219 54.625 49.638
L elbow 79.995 41.643 27.918 26.678 106.29 81.985 77.304 63.056
L wrist 53.227 54.414 47.131 40.843 64.728 51.164 65.469 53.794
Torso 13.385 14.476 27.823 14.576 36.578 39.820 36.981 36.969
R hip 16.042 16.010 35.696 17.455 44.296 46.137 50.901 43.748
R knee 35.084 31.667 48.653 38.955 40.997 43.397 45.601 40.228
R ankle 56.854 53.457 61.939 58.597 52.913 51.415 51.260 52.108
L hip 16.000 14.837 19.350 11.418 29.638 33.931 28.389 32.027
L knee 22.551 18.829 10.575 12.627 22.920 23.065 22.763 23.386
L ankle 20.221 20.509 13.578 16.723 27.624 22.809 29.967 26.808
Overal l m e a n 40.135 34.775 41.474 27.695 56 .677 55.547 57 .797 49 .600

Table 5.6: Residual CNN testing on 500 224x224 pixel image samples from our dataset
l. Each value in split 1 - 8 represents the prediction average distance in pixels from the
ground t ru th for each joint.

65



CHAPTER 5. TESTING AND EVALUATION

5.3.7 Testing best model splits

In Table 5.7 and 5.8, we see the best splits from all the different models tested on testset 1
and dataset 1 (section 4.2.6 and 4.2.6), where we observe that the MobileNet model has the
lowest pixel distance out of the four models created for this project and MoveNet Thunder.

MobileNet s5 ResNet s6 Full CNN s4 Residual CNN s4 MoveNet
Head 4.945 7.452 12.57 20.653 97.646
Neck 2.541 2.267 6.357 12.691 -
R shoulder 36.32 37.73 35.56 38.906 39.986
R elbow 17.19 24.78 17.17 22.807 24.593
R wrist 24.31 30.79 26.21 36.666 34.061
L shoulder 13.95 7.831 7.381 22.319 86.053
L elbow 15.97 12.48 10.32 38.685 71.748
L wrist 13.83 12.85 16.94 33.270 94.166
Torso 10.46 10.35 13.03 10.781 -
R hip 8.592 9.656 10.30 11.389 9.7600
R knee 39.13 37.58 38.94 41.990 35.355
R ankle 67.78 65.11 65.61 66.908 67.048
L hip 3.780 4.496 3.052 10.356 20.343
L knee 4.679 5.555 4.427 12.765 34.211
L ankle 5.433 5.927 7.637 14.369 74.364
Overall mean 17.930 18.326 18.370 26.304 53.025

Table 5.7: The best splits from each model mean predicted keypoint distance from ground
truth on testset 1.

MobileNet s5 ResNet s6 Full CNN s4 Residual CNN s4 MoveNet
Head 10.076 9.479 25.137 31.247 26.649
Neck 3.803 3.571 13.157 11.711 -
R shoulder 36.426 37.022 39.155 41.634 58.86
R elbow 23.251 26.089 39.403 29.557 69.4
R wrist 34.214 38.709 47.895 48.949 86.42
L shoulder 5.835 8.748 15.371 14.456 35.76
L elbow 12.044 14.577 27.234 26.678 30.35
L wrist 13.473 16.051 40.229 40.843 87.47
Torso 9.258 9.246 11.250 14.576 -
R hip 10.591 11.659 14.541 17.455 21.702
R knee 38.047 39.144 35.924 38.955 40.102
R ankle 65.531 66.832 58.879 58.597 64.89
L hip 4.089 3.787 7.864 11.418 21.091
L knee 4.956 4.856 8.072 12.627 24.289
L ankle 4.451 4.963 7.559 16.723 18.384
Overall mean 18.403 19.648 26.111 27.695 45.028

Table 5.8: The best splits from each model mean predicted keypoint distance from ground
truth on dataset 1.
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Table 5.8: The best splits from each model mean predicted keypoint distance from ground
truth on dataset l.
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5.4. RELIABILITY TESTING ON DEVICE

5.4 Reliability testing on device

This section covers the reliability testing of our model’s on our smartphone as well as
reliability testing the application.

5.4.1 Screen drawing module

The drawing module in the smartphone app is meant as a visual aid for the system user.
When testing the app, we see some bugs in the way the predicted keypoints are scaled up
from the normalized model output and drawn to the screen. The module is also not the
fastest; the drawing lags a bit behind before catching up when moving the phone around
fast.

5.4.2 Models

During the reliability testing on our smartphone, we are seeing varying results, which
corresponds to earlier discussed problems such as our datasets (section 5.1), and which
shows in our models accuracy (section 5.3).

As previously mentioned, our models are trained on our dataset 2 (section 4.2.6); when
testing with the person that is in the majority of the images in that set, we see that the
models are making predictions that are reflecting the accuracy testing scores, and steering
signals are generated accordingly.

We see that the MobileNet and ResNet based models are generally generating the
correct steering signal, where as the Full CNN and Residual CNN models are not usable.
Throttle input is not calculated correctly due to the lack of accuracy on the wrists and
elbow keypoints for all the models.

When testing with a different person, we see that the models are struggling to make
good predictions emphasising our concerns about our datasets.

Another issue discovered when testing is that if multiple people enter the frame, the
models are not always ignoring the other person in the image but making a single prediction
from both people.

5.4.3 Model performances on device

When testing models on the device, we are looking at the inference time, meaning the
time it takes for the models to make a prediction. By looking at Table 5.9 we see how
much time each of the model architectures is using to make a single prediction. The results
clearly show that the MobileNet architecture has a speed advantage over the other models.

Model Inference time
MobileNet 50 ms
ResNet 0.3 sec
CNN 5.2 sec
Residual 1.4 sec
MoveNet Thunder 100 ms[33]

Table 5.9: Inference speed of our model architectures running on the CPU of a Huawei
P30 Pro, while MoveNet is Running on a Google Pixel 5 CPU.
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5.5 Results
This section looks at the overall results from model testing and testing the smartphone
application.

5.5.1 Overall model evaluation

We have created four different models with significantly different architectures in the span
of this project; one MobileNetV2 based architecture, one ResNet50 based architecture, a
Fully convolutional model, and a residual model that can be described as a toy/mini version
of ResNet. After training and testing the models, our MobileNetV2-based architecture
outperforms all the other models in speed (Table 5.9) and accuracy (Table 5.3).

However, we see a significant problem with all of our models when looking at the
difference in accuracy between the left and right sides of the person in the images. We
observe that the left side is more precise than the right by a substantial margin.

Even though the MobileNet-based model is the best performer, we still chose to
implement all the different models from all the architectures into our smartphone application.

5.5.2 Overall smartphone application evaluation

Overall, the smartphone application performs well and does what it is intended to do. One
of the primary functionalities the application is currently missing; the ability to send the
steering signal to a vehicle, as discussed in section 4.4. The app itself is performing well
but there are still improvements and application optimization that can be done for speed
gains as we are discussing in section 6.3.
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Chapter 6

Discussion

This chapter discusses the project results, if the project has answered the research questions,
and what can be done with further development. Section 6.1 looks at the results from
Chapter 5. Next is section 6.2 which looks at the research questions set in the beginning
of the project. Lastly is section 6.3 discussing what can be done in further development of
the project.

6.1 Results discussion

This section discusses the results from chapter 5, starting with subsection 6.1.1 looking
at our datasets. Next is subsection 6.1.2 looking at the results of our models. Lastly is
subsection 6.1.3 looking discussing our implementation of the smartphone application.

6.1.1 Datasets

We chose to create custom datasets to train our machine learning models for this project.
The data collection process is based on BO20G38’s approach of using a greenscreen to
mass-produce data [31]. We chose to develop our dataset because we wanted the flexibility
of having control over how the data is made through the entire pipeline, such that we can
data augment the data as we see fit.

To label, our approach differs from BO20G38’s as they were dealing with classification;
we are dealing with a keypoint regression task. Therefore we looked into existing labeling
tools but ultimately decided to create two proprietary labeling tools. Firstly developing a
web-based tool that did the job but was difficult to modify. Because of that, we developed
a second tool made in Python, which proved to be faster and more flexible.

Initially, we created our dataset 1 (section 4.2.6), which is a simple dataset that was
mainly used to see if the approach would work for this project. The dataset proved that
the approach was a valid method of data collection. However, the set itself was too specific,
meaning that there was little variation due to having one person in a single outfit. We
deemed the dataset not usable for training because of the mentioned issues, and it was
migrated to be a testset, the set is not used for training any of the final models for this
project.

To try to fix the variation issue, we created dataset 2 (section 4.2.6), which only contains
images of 2 people, but this time with different outfits and camera angles. Dataset 2 is not
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optimal as there are only two people present, making the data biased towards the subjects
compared to a dataset such as COCO (section 2.5.1).

The final set of data we created was Testset 1 (section 4.2.6) for model evaluation in
conjunction with our dataset 1. The set shares its simplicity with dataset 1, but it also
contains poses of varying difficulty.

Even though we can mass-produce data with the approach that we used for this project,
there are some apparent issues with the dataset that was created, where the primary issue
being the lack of diversity in people being present in the datasets, as we struggled to find
volunteers for our data collection process.

6.1.2 Models

We observe a clear difference in the left and right sides of the body when the model is
predicting keypoints. We believe that the issue stems from the lack of diversity in our data
and the general similarity of the left and right sides of the body. In retrospect, we should
also have trained our models with the COCO dataset to see if there would be a substantial
difference between training on our datasets and COCO.

MobileNet

As previously stated, MobileNet is a robust model architecture that is designed to run
on mobile devices, and that shows in our precision testing as well (section 5.3) as our
MobileNet architecture is our best performing model both precision and speed wise. As
this is the model that shows the most potential for working in a fully developed system, we
would choose to focus on this model primarily. After the testing of the model we deemed it
the best out of the four made in this project, where as it is the fastest and the most precise.

ResNet

Our ResNet architecture was the one that we initially thought would be the best performing
model precision-wise, but not speed-wise, as it is a large and complex model architecture.
After testing the model both with test data and reliability testing we deemed the model
usable but not in a environment where high speed is a big concern.

Full CNN

Initially, we thought that the Full CNN architecture would be a good valid option, but
testing the precision (section 5.3 and Table 5.7) and speed (section 5.4.3) of the model we
found the model not to be as precise as the other options as well as being a slow model.
After the testing on test data and reliability testing we deemed the model not usable as
the inference time is so slow and the precision is to low.

Residual

Our Residual CNN model did not perform as we had hoped. The precision of the model is
lacking, and it is also too slow when making a prediction. Therefore, the model was used as
an exercise to learn more about TensorFlow’s Functional API1 for creating more-complex

1https://www.tensorflow.org/guide/keras/functional
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model architectures. After the testing on test data and reliability testing we deemed the
model not usable as the inference time is so slow and the precision is to low.

Known issues

As mentioned in section 5.4, the models struggle if there are multiple people in the image
frame. What can be done with this issue will be further discussed in section 6.3. It also
seems to be an issue with the drawing module of the smartphone app where we are not
getting the keypoints scaled to the correct screen size; therefore, the keypoint is drawn at
a different screen resolution than the actual resolution is.

While testing, we also found that the optimal distance for the models to make a
prediction is 2-4 meters, with decreasing precision beyond that.

6.1.3 Smartphone application

For this project, we created a purpose-built smartphone application based on Androids
Getting started with CameraX Guide2, to handle loading machine learning models, capture
images, run inference on those images with our machine learning models, draw the keypoint
predictions to the screen, and generate steering signals through calculating angles of selected
joints. From the results in chapter 5, we see that the application does perform in the
intended manner but is missing one prominent feature, namely the passing steering signals
to a vehicle. As stated earlier in section 3.3.4 if there was available time, we would have
looked into an actual implementation of sending signals, but as time was limited, we chose
to explore the different options but not to implement it (section 4.4.5).

As mentioned in section 4.4, we are using Android’s ImageAnalysis module, which
captures images directly to the CPU instead of having to save an image to disk, as well as
running our inference on the CPU of the phone. We are potentially leaving performance
on the table by following this CPU-based approach, as many new smartphones today have
a GPU.

The reliability testing of the application showed a great improvement to the signal
interpretation from the previous work done by BO20G38[31], were we are able to generate
the steering signals quicker and more accurately.

2https://developer.android.com/codelabs/camerax-getting-started
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6.2 Goals
In this section we will discuss the research questions that was set at the beginning of the
project in section 1.1.1.

6.2.1 RQ 1 What type neural network architecture yields the best keypoint
detection precision for human pose estimation?

Having conducted architecture searches and hyperparameter tuning and exploring existing
human pose estimation models using real-time image/video -streams, we have developed
a lightweight solution utilizing MobileNet as the head of a Convolutional neural network
architecture that has been tweaked and tuned over time. The MobileNetV2-based
architecture shows that there are some issues with the training data. However, comparing
the architecture presented in this project to an existing solution (MoveNet) on our testsets
shows good potential in the presented MobileNet-based model created for this project.

6.2.2 RQ 1.1 Which neural network architecture yields the best performance
in terms of precision and speed?

Through testing the models that were made for this project, we found that our MobileNet-
based convolutional neural network model yields the best performance for both precision
and speed, with a inference time of 50 ms and overall the best precision scores of our
models. Nevertheless, it is essential to note that there are models such as MoveNet that
are trained on more diverse data, and if tested in such an environment, we are confident
that it would out-preform the models made in this project as they currently stand.

6.2.3 RQ 2 How close to real-time can a keypoint detection model run
on a smartphone?

During the testing of our models, we see that our MobileNet-based convolutional neural
network architecture manages to perform inference on our Huawei P30 Pro in 50 ms, giving
it a frame rate of 20; this means that the MobileNet-based model created in this project
outputs 20 predictions per second.

6.2.4 RQ 3 What methods can be used for sending steering signals from
a smartphone to a vehicle?

As previously discussed in section 4.4.5, we have researched four different means of sending
steering signals to a vehicle; API service, Firebase Real-time database, Bluetooth data
transfer, and cable connection. However, we have not concluded which of the approaches is
the superior one as we have not been able to test them, and the connection method would
depend on the type of vehicle it would be implemented on.
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6.3 Further development

This section covers potential improvements that can be done to the different modules of
the projects in further development.

6.3.1 Datasets

As previously stated, our datasets are not optimal. However, it proves to be an efficient
approach to quickly generate a large amount of data. To further improve our datasets,
we would primarily collect images of more people, add new annotations for confidence
scores for each keypoint, and a method of isolating a person in the image if there were
to be multiple people in a frame; this could be bounding boxes or some type of image
segmentation.

The pipeline for processing the data also has potential for further optimization and
development; examples of this would be the following:

• Integrating Background swapping into labeling tool.

• Integrating data augmentation into labeling tool.

• Visualizing data augmentation parameters into labeling tool.

• User interface optimization/redesign.

6.4 Models

The models made for this project show potential for further improvement. The main issue
for the models is the data, but also that most of them are relatively slow when running on
a phone. To further develop the models, we would suggest the following:

• Taking measures to speed up inference time of models such as the Residual CNN
model, ResNet model, and Full CNN model.

• Run hyperparameter tuning for new datasets.

• Consistent use of datasets during architecture searches.

6.5 Smartphone application

Even though the smartphone application is running as intended for the boundaries set for
this project, some apparent flaws with the app can be improved upon.

The primary feature to be added to the app is the ability to send steering signals to a
vehicle.

Further, the application could utilize the GPU of a phone if there is a GPU available
to speed up the inference time.

Lastly, a general code clean-up for optimizing the app to be even faster than it is today.
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6.6 Added features
Some safety features should be implemented for this system to be entirely usable in a
completely uncontrolled environment. This section discusses some of the potential features
that can be added to the system to make it safer for both the driver and the vehicle and a
quality of life function like a ”follow me” feature.

6.6.1 System logging

Logging is a must-have tool for seeing what the system is doing, especially if it does
something unexpected. A logging feature would give a driver or developer the means
to diagnose the system in case of a malfunction and further improve the system. Some
key things that can be logged are; pose estimation at intervals, vehicle connection, and
inference time for checking system stability.

6.6.2 Obstacle detection and avoidance

Since the price of a vehicle can get quite expensive, there should be a safety module for
obstacle avoidance. An example of this would be if a soldier and a UGV are in a forest,
the vehicle should be able to steer away from oncoming obstacles if detected, but it would
also have to return to the given path after the obstacle is avoided.

6.6.3 Driver safety

For the system to be safe there has to be some sort of driver safety module that looks at
different scenarios. We suggest the following driver safety features:

• Minimum distance to driver. A safety function to make sure the driver is never run
over.

• System arming. A feature that looks for a specific pose or gesture to arming and
disarming the system.

6.6.4 Follow me

The current system implementation always requires some driver input for steering a vehicle.
To make the system hands-free, a follow-me feature could be implemented. This feature
would let the user signal the vehicle to follow them and stop following them. This feature
would make the system genuinely hands-free; the user’s responsibility then would be to
walk in a route that the vehicle would be able to drive. In addition to the follow-me feature,
the system could be running the obstacle detection and avoidance module (section 6.6.2)
to make sure it would not crash.
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6.6 .4 Follow me

The current system implementation always requires some driver input for steering a vehicle.
To make the system hands-free, a follow-me feature could be implemented. This feature
would let the user signal the vehicle to follow them and stop following them. This feature
would make the system genuinely hands-free; the user's responsibility then would be to
walk in a route that the vehicle would be able to drive. In addition to the follow-me feature,
the system could be running the obstacle detection and avoidance module (section 6.6.2)
to make sure it would not crash.
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Chapter 7

Conclusion

This project aimed to continue the research from the previously written bachelor thesis
written by Leistad and colleagues[31] by improving the system with their findings and
implementing them on a smartphone. To accomplish the goals set for the project, we
started researching human pose estimation as it would be a vital element of the system
and getting a deeper understanding of the research field. We quickly discovered there are
numerous research papers on the subject with many different approaches to the problem of
human pose estimation.

Next, we had to research what type of data is available or what tools can be used for
labeling custom data. We found labeling tools like makesense.ai and pre-made datasets
like COCO, which are commonly used in the community.

Ultimately, we decided to make our own datasets and labeling tools to completely
control the data. To make the data, we adopted BO20G38’s greenscreen image capture
approach for generating large quantities of data from a small set of data. We developed
two separate data labeling tools, the first one being web-based and the second one being
Python-based, running locally.

In the end, we had one training set that we used and two sets for testing. All the sets
have flaws with a lack of subject diversity. The dataset used in training contains only two
people, and the test data contains images of one person. These issues are reflected in the
machine learning models’ performance when seeing new people.

We developed four machine learning models with different architectures for the project
through architecture searches and hyperparameter tuning using KerasTuner. From running
the searches, we ended up with four architectures. Our MobileNetV2-based model
architecture is the top performer with a mean pixel distance from ground truth of 17.930
on our testset 1 and 18.403 on dataset 1. In terms of speed, the inference time for the
model is 50 ms running on the CPU of our Huawei P30 Pro in our smartphone application.

To run our human pose estimation model, we had to develop a smartphone application
to handle image capture, model inference, and signal interpretation. The app was developed
as a native Android application using Kotlin. The app does miss the feature of sending a
steering signal to a vehicle as we could not implement it due to time constraints. However,
the feature was discussed in section 4.4.5.

During the reliability testing of the machine learning models running in our smartphone
app, we did find the issues that were brought up with data diversity which caused our
models not to perform as hoped when seeing new people. We also discovered that the
keypoint drawing module of the smartphone application is not as fast as it should be.
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CHAPTER 7. CONCLUSION

There is also a bug with the scaling to screen size of the keypoint from the normalized
output from our models.

We believe that more time should be invested in the image capture phase to improve
the model performance. Getting more subjects is essential to create a better dataset that
the models can use to train and become more precise and better at generalizing. We would
also want to implement the feature for sending steering signals to a vehicle, as this is an
essential feature for the system to be operational. We would also suggest implementing
system-wide logging for diagnostics to enhance the system’s quality. Finally, we would
like to add safety features for both the vehicle and the vehicle operators with obstacle
avoidance and minimum distance to driver features. However, as the vehicle autonomy is
outside this project’s scope, we only mention them as possible improvements for a fully
developed system.

We conclude that our project serves as an excellent next step from BO20G38’s approach,
showing significant improvements in model accuracy in a live environment, quicker model
inference times, and more consistent steering signal interpretation. The MobileNet-based
architecture presented in this project shows great potential as a starting foundation
for building simple pose estimation models for steering autonomous vehicles as well as
outperforming MoveNet Thunder in our testing. Even though the models created are
sub-optimal, the project serves as a good foundation for building a final system.
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Glossary

Batch norm Batch normalization is a method used with artificial neural networks to
normalize the a layers input to make them more stable and faster (section 2.4.3. 39

Conv2D Convolutional2D is a layer definition for a convolution layer in TensorFlow. 39

data augment A means of altering data to create more data from a sample.. 69

DOPS Dropout stats, an indication if a dropout layer is present or not.. xv, 39

FFI Forsvarets forskningsinstitutt, the Norwegian defence sector’s own research institution..
i

HPE Human Pose Estimation. xiii, 5, 6

inference The process of making a trained machine learning model predict on previously
unseen data.. 56, 71

inference time The time it takes for a machine learning model to make a prediction.. 72

Kotlin Kotlin is the programming language that is used when developing native Android
applications.. 54

MAL Model Assisted Labeling. 32, 33

MKDGT mean keypoint distance from ground truth, used to reassure a HPE models
precision.. ix, 60

Python Python is a programming language, commonly used for machine learning.. 54

SepConv2D SeparableConv2D, is a deep learning convolutional layers used in TensorFlow
(section 2.4.1).. 39

UGV Unmanned tracked vehicle.. xiii, 6
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Appendix A

C3P0-JS Code, installation, and
usage

A.1 What is C3P0-JS

C3P0-JS is a web-based keypoint labeling tool for machine learning applications. It is a
React service that provides a high-level interface that is easy to use and intuitive.

Link to Code on GitHub: https://github.com/wsvea-lochert/c3po-js

A.2 Installation

A.2.1 Step 1: git clone

Run the command in Figure A.1 to download the package:

Figure A.1: Command for cloning C3P0-JS from GitHub.

A.2.2 Step 2: install dependencies

Before trying to install the dependencies, make sure Node.js is installed on your system. If
it is not installed follow the guide in this link: https://nodejs.org/en/

After Node.js is installed run the terminal command in Figure A.2 to install all project
dependencies:
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Figure A. l : Command for cloning C3P0-JS from GitHub.

A.2.2 Step 2: install dependencies

Before trying to install the dependencies, make sure Node.js is installed on your system. If
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After Node.js is installed run the terminal command in Figure A.2 to install all project
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Figure A.2: Command for installing C3P0-JS dependencies.

A.3 Firebase Connection

Before you are able to use the package you have to set up a Firebase instance with Firebase
Storage, authentication (Email/password sign in method) and Real-Time database. To get
started with Firebase follow this link: https://firebase.google.com/

When your Firebase instances you have to get the Firebase Config, an example of how
it looks can be seen in Figure A.3.

Figure A.3: fire.js, containing what is needed for the service to connect to your Firebase
instance.

This has to be saved as fire.js in C3PO-js/src/ directory to be able to connect to
Firebase.
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• • •
: : D i r e c t y c 3 p o js npm i n s t a l l

Figure A.2: Command for installing C3P0-JS dependencies.

A . 3 Firebase Connection

Before you are able to use the package you have to set up a Firebase instance with Firebase
Storage, authentication (Email/password sign in method) and Real-Time database. To get
started with Firebase follow this link: https:/ /firebase.google.com/

When your Firebase instances you have to get the Firebase Config, an example of how
it looks can be seen in Figure A.3.

op·.h•: 1: "AlzasdtyBbUllASemtz7EKtaSF789_VaeXASLKKNJTdfg0",
dU -.1 ::,_.,, 1 u 1: "c 3po-g8as2 . f t rebaseapp.com" ,
pr-:-i,:-::Id c3poJS-g8as2".
storageBucket "c3p0JS-es@0. appspot . com''

5 a q n q s e « a 1 d : " 1 1 8 2 0 2 0 5 6 8 7 2 .
a p p I d : " 1 : 22143246056098:web: 56f t72d56114c876c9c59g",
mnea5aremend "L- /l 39AKSl::W''

c o n s t ' r e = f r e b a s e . n t a l z e A p p { f r e b a s e C o n t g ) ;

s t o r a g e - f i r e b a s e . s t o r a g e f );
const database - firebase.database :
f i r e b a s e . a n a l y t i c s {

Figure A.3: fire.js, containing what is needed for the service to connect to your Firebase
instance.

This has to be saved as fire.js in C3PO-js/src/ directory to be able to connect to
Firebase.
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A.4. PREPARE THE DATA

A.4 Prepare the data
To use the tool, you first have to locate your images folder and make sure they are 1000x1000
pixels. To resize images Quantium’s FireboltResizer (Appendix E.4) module can be used.

A.5 Run the tool
You are now ready to run the tool. To run the tool, run the command in Figure A.4

Figure A.4: Command for running C3P0-JS.

The service will start up and run on localhost:3000 by default, if you have another
service running on that port you will automatically be prompted if you want the service to
run on another port.

A.6 Start labeling
After the service is up and running you can now login, upload you data and start labeling!
When the labeling process is finished go into your Firebase Console and download the data
from you Real-Time database by selecting your your_dataset/dataset, and then Export
JSON as seen in Figure A.5.

Figure A.5: Export JSON from Firebase Real-Time database.
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service running on that port you will automatically be prompted if you want the service to
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A.6 Start labeling

After the service is up and running you can now login, upload you data and start labeling!
When the labeling process is finished go into your Firebase Console and download the data
from you Real-Time database by selecting your your_dataset / dataset , and then Export
JSON as seen in Figure A.5.
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e l
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Figure A.5: Export JSON from Firebase Real-Time database.
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Appendix B

Install Quantium

B.1 What is Quantium
Quantium is our primary data pre-processing and machine learning package that handles
everything python related for this project.

Link to Code on GitHub: https://github.com/wsvea-lochert/Quantium

B.2 prerequisites
• Python 3.8 =<

• IDE like PyCharm or vs code

• Python venv package, to get the package run the following command in a terminal
window: pip install virtualenv

B.3 Download
Run the command in Figure B.1 to download the package:

Figure B.1: Command for cloning Quantium from GitHub.

B.4 install dependencies
After you have cloned the git repo, open the project folder in your IDE, and a terminal
window in the IDE. If you IDE has not created and activated a virtual environment you
can create one and activate it with the command seen in Figure B.2

After your virtual environment is created and activated, run the command seen in
Figure B.3 in the same terminal window you just used to activate the venv.

You are now ready to start using Quantium!
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Figure B.l: Command for cloning Quantium from GitHub.

B . 4 install dependencies

After you have cloned the git repo, open the project folder in your IDE, and a terminal
window in the IDE. If you IDE has not created and activated a virtual environment you
can create one and activate it with the command seen in Figure B.2

After your virtual environment is created and activated, run the command seen in
Figure B.3 in the same terminal window you just used to activate the venv.
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Figure B.2: Commands for creating and activating your virtual environment

Figure B.3: Command for installing Quantium’s dependencies.
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•••
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Figure B.2: Commands for creating and activating your virtual environment

•••
g e https //gthub.com/wsvea lochert /quantum g i t

Figure B.3: Command for installing Quantium's dependencies.
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Appendix C

C3P0-Python Code, installation,
and usage

C.1 What is C3P0-Python

C3P0-Python is a keypoint labeling tool for machine learning applications. It is a Python
library that provides a high-level interface that is easy to use and intuitive.

Link to Code on GitHub: https://github.com/wsvea-lochert/C3P0-python

C.2 Installation

C.2.1 Step 1: git clone

Run the command in Figure C.1 to download the package:

Figure C.1: Command for cloning C3P0-Python from GitHub.

C.2.2 Step2: install dependencies

If you are using a Python virtual environment, you can install the dependencies by running
the command in Figure C.2 to isolate the package:

C.3 Prepare the data

To use the tool, you first have to locate your images folder and make sure they are 1000x1000
pixels. To resize images Quantium’s FireboltResizer (Appendix E.4) module can be used.

After you have located you image folder add the path to line 18 in MainWindow.py.
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C.2 Installation
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Run the command in Figure C.l to download the package:

•••
qt l o n e , he +

Figure C . l : Command for cloning C3P0-Python from GitHub.

C.2 .2 Step2: instal l dependenc ies

If you are using a Python virtual environment, you can install the dependencies by running
the command in Figure C.2 to isolate the package:

C.3 Prepare the data

To use the tool, you first have to locate your images folder and make sure they are lO00xlO00
pixels. To resize images Quantium's FireboltResizer (Appendix E.4) module can be used.

After you have located you image folder add the path to line 18 in MainWindow.py.

91

https://github.com/wsvea-lochert/C3P0-python


APPENDIX C. C3P0-PYTHON CODE, INSTALLATION, AND USAGE

Figure C.2: Command for installing C3P0-Python dependencies.

Next create an empty JSON file and add the path to that file on line 24 in MainWindow.py.

C.4 Run the tool
You are now ready to run the tool. To run the tool, run the command in Figure C.3

Figure C.3: Command for running C3P0-Python.

C.5 Keyboard shortcuts
See the available keyboard shortcuts for C3P0-Python in Table C.1
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•••
p r s t a l t e n s o r l p e n u - t h o n nimy y l o t e r s r c t o . _ n u b

Figure C.2: Command for installing C3P0-Python dependencies.

Next create an empty JSON file and add the path to that file on line 2 / i n MainWindow.py.

C.4 Run the too l

You are now ready to run the tool. To run the tool, run the command in Figure C.3

•••
python3 main .py

Figure C.3: Command for running C3P0-Python.

C.5 Keyboard shortcuts

See the available keyboard shortcuts for C3P0-Python in Table C.l
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C.5. KEYBOARD SHORTCUTS

Key Function
R Save current pose
E Next image
Q Previous image
J Next joint
L Previous joint
G Get previous pose
1 Move entire pose left
2 Move entire pose up
3 Move entire pose down
4 Move entire pose right
F Get predicted pose from MoveNet
W Move current keypoint up
S Move current keypoint down
A Move current keypoint left
D Move current keypoint right
Z Set current keypoint to 0, 0
V Swich left and right side
T Get next pose

Table C.1: Keyboard shortcuts for C3P0-Python
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l Move entire pose left
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3 Move entire pose down
4 Move entire pose right
F Get predicted pose from MoveNet
w Move current keypoint up
s Move current keypoint down
A Move current keypoint left
D Move current keypoint right
z Set current keypoint to 0, 0
v Swich left and right side
T Get next pose

Table C.l: Keyboard shortcuts for C3PO-Python
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Appendix D

Filch

D.1 FilchUtils.py

1 # Author : William Svea−Lochert
2 # Importing a l l necessary l i b r a r i e s
3 import os
4 import cv2
5 import j son
6 import numpy as np
7 import pandas as pd
8 from PIL import Image
9 from tensor f low import keras

10 import matplot l ib . pyplot as p l t
11

12

13 def get_model ( path : s t r ) :
14 ”””
15 : param path : Path to model f o l d e r / f i l e .
16 : return :
17 ”””
18 model = keras . models . load_model ( path )
19 return model
20

21

22 def get_models_from_folder ( path : s t r ) :
23 ”””
24 : param path : Path to models f o l d e r .
25 : return : a l i s t o f model names from f o l d e r
26 ”””
27 models = [ ]
28 f o r f i l e in os . l i s t d i r ( path ) :
29 models . append ( f i l e )
30

31 i f l en ( models ) == 0:
32 r a i s e Exception ( ”No models found in f o l d e r . ” )
33 e l s e :
34 pr int ( f ’Found { len ( models ) } models in {path} ’ )
35 return models
36

37

38

39
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D . l FilchU tils.py

# A u t h o r : W i l l i a m S v e a - L o c h e r t
2# I m p o r t i n g a l l n e c e s s a r y l i b r a r i e s
3 i m p o r t os
4 i m p o r t c v 2
5 i m p o r t j s o n
6 i m p o r t numpy as np
7 i m p o r t p a n d a s as pd
8 f rom P I L i m p o r t Image
o f rom t e n s o r f l o w i m p o r t k e r a s

10 i m p o r t m a t p l o t l i b . p y p l o t as p i t
11

12

13 d e f g e t _ m o d e l ( p a t h : s t r ) :
14

15

16

17

18

19

20

21

22 d e f
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

: p a r a m p a t h : P a t h to model f o l d e r / f i l e .
: r e t u r n :

model = k e r a s . m o d e l s . l o a d _ m o d e l ( p a t h )
r e t u r n model

g e t _ m o d e l s _ f r o m _ f o l d e r ( p a t h : st r) :

: pa ram p a t h : P a t h to mode l s f o l d e r .
: r e t u r n : a l i s t of model names f rom f o l d e r

mode l s = []
f o r f i l e in o s . l i s t d i r ( p a t h ) :

m o d e l s . a p p e n d ( f i l e )

if l e n ( m o d e l s ) = 0:
r a i s e E x c e p t i o n ( " N o mode l s f o u n d in f o l d e r . " )

e l s e :
p r i n t ( f ' F o u n d { l e n ( m o d e l s ) } mode l s in { p a t h } ')
r e t ur n mode l s
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40

41

42 def get_pose (name : str , j son_dict : d ict , img_dir : s t r ) :
43 ”””
44 Function f o r ge t t ing a image and i t s keypoints .
45 Function Col l ected from : https :// keras . i o /examples/ v i s i o n / keypoint_detection / .
46 : param name : image name
47 : param json_dict : j son d i c t i onary
48 : param img_dir : image d i r e c to ry
49 : return : Image data .
50 ”””
51 data = json_dict [ name ]
52 img_data = p l t . imread ( os . path . j o i n ( img_dir , data [ ”image_path” ] ) )
53

54 i f img_data . shape [ −1] == 4: # I f the image i s RGBA convert i t to RGB.
55 img_data = img_data . astype (np . uint8 )
56 img_data = Image . fromarray ( img_data )
57 img_data = np . array ( img_data . convert ( ”RGB” ) )
58 data [ ”img_data” ] = img_data
59

60 return data
61

62

63 def get_train_params ( j son_f i l e , kp_def_location ) :
64 ””” ”
65 Get the t ra in ing parameters from the json f i l e .
66 : param j s o n _ f i l e : The json f i l e conta in ing the t ra in ing parameters .
67 : param kp_def_location : The l o ca t i on o f the keypoint d e f i n i t i o n f i l e .
68 : return : The t ra in ing parameters .
69 ”””
70 with open ( j s o n _ f i l e ) as i n f i l e :
71 j son_dict = json . load ( i n f i l e )
72

73 f o r i in json_dict :
74 f o r j in range (15) :
75 x = f l o a t ( json_dict [ i ] [ ’ j o i n t s ’ ] [ j ] [ 0 ] )
76 y = f l o a t ( json_dict [ i ] [ ’ j o i n t s ’ ] [ j ] [ 1 ] )
77 j son_dict [ i ] [ ’ j o i n t s ’ ] [ j ] = [ x , y ]
78

79 keypoint_def = pd . read_csv ( kp_def_location )
80 keypoint_def . head ( )
81

82 c o l o r s = keypoint_def [ ”Hex” ] . va lues
83 c o l o r s = [ ’#’ + co lo r f o r co l o r in c o l o r s ]
84 l a b e l s = keypoint_def [ ”Name” ] . va lues . t o l i s t ( )
85

86 samples = l i s t ( json_dict . keys ( ) )
87 return samples , json_dict , keypoint_def , co lo r s , l a b e l s
88

89

90 def get_json_to_split ( j s o n _ f i l e : s t r ) :
91 ””” ”
92 Get the t ra in ing parameters from the json f i l e .
93 : param j s o n _ f i l e : The json f i l e conta in ing the t ra in ing parameters .
94 : return : The t ra in ing parameters .
95 ”””
96 with open ( j s o n _ f i l e ) as i n f i l e :
97 j son_dict = json . load ( i n f i l e )

96

APPENDIX D. FILCH

40

41

42 d e f g e t p o s e ( n a m e : s t r , j s o n d i c t : d i c t , i m g d i r : s t r ) :
43

44

45

46

47

48

49

50

51

52

53

54 i f i m g d a t a . s h a p e [ - 1 ] = 4: # If t h e i m a g e is RGBA c o n v e r t i t to RGB.
55 i m g d a t a i m g d a t a . a s t y p e ( n p . u i n t 8 )
56 i m g _ d a t a = I m a g e . f r o m a r r a y ( i m g _ d a t a )
s7 i m g d a t a = n p . a r r a y ( i m g d a t a . c o n v e r t ( " R G B " ) )
58 da ta [ " i m g d a t a " ] = i m g d a t a

F u n c t i o n f o r g e t t i n g a i m a g e a n d i ts k e y p o i n t s .
F u n c t i o n C o l l e c t e d f r o m : h t t p s : / / k e r a s . io / e x a m p l e s / v i s i o n / k e y p o i n t _ d e t e c t i o n /.
: p a r a m n a m e : i m a g e n a m e
: p a r a m j s o n _ d i c t : j s o n d i c t i o n a r y
: p a r a m i m g _ d i r : i m a g e d i r e c t o r y
: r e t u r n : I m a g e d a t a .

d a t a = j s o n _ d i c t [ n a m e ]
i m g d a t a = pl t . i m r e a d ( o s . p a t h . j o i n ( i m g d i r , d a t a [ " i m a g e p a t h " ] ) )

59

60 r e t u r n d a t a
61

62

63 d e f g e t _ t r a i n _ p a r a m s ( j s o n _ f i l e , kp d e f l o c a t i o n ) :
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90 d e f
91

92

93

94

95

96

97

96

G e t t h e t r a i n i n g p a r a m e t e r s f r o m t h e j s o n f i l e .
: p a r a m j s o n _ f i l e : T h e j s o n f i l e c o n t a i n i n g t h e t r a i n i n g p a r a m e t e r s .
: p a r a m k p _ d e f _ l o c a t i o n : T h e l o c a t i o n of t h e k e y p o i n t d e f i n i t i o n f i l e .
: r e t u r n : T h e t r a i n i n g p a r a m e t e r s .
" " "
w i t h o p e n ( j s o n _ f i l e ) as i n f i l e :

j s o n _ d i c t = j s o n . l o a d ( i n f i l e )

f o r i in j s o n _ d i c t :
f o r j in r a n g e ( 1 5 ) :

x= f l o a t ( i s o n d i e t [ i ] [ ' j o i n t s ' ] [ i ] [ 0 ] )
y= f l o a t ( i s o n _ d i e t [ i ] [ ' j o i n t s ' ] [ i ] [ 1 ] )
i s o n _ d i e t [ i ] [ ' j o i n t s ' ] [ i ] = [ x , y]

k e y p o i n t _ d e f = p d . r e a d _ c s v ( k p _ d e f _ l o c a t i o n )
k e y p o i n t _ d e f . h e a d ()

c o l o r s
c o l o r s
l a b e l s

k e y p o i n t _ d e f [ " H e x " ] . v a l u e s
[ ' # ' + c o l o r f o r c o l o r in c o l o r s ]
k e y p o i n t _ d e f [ " N a m e " ] . v a l u e s . t o l i s t ( )

s a m p l e s = l i s t ( j s o n _ d i c t . k e y s ( ) )
r e t u r n s a m p l e s , j s o n _ d i c t , k e y p o i n t _ d e f , c o l o r s , l a b e l s

g e t j s o n to s p l i t ( j s o n f i l e : s t r ) :
" " " "

G e t t h e t r a i n i n g p a r a m e t e r s f r o m t h e j s o n f i l e .
: p a r a m j s o n _ f i l e : T h e j s o n f i l e c o n t a i n i n g t h e t r a i n i n g p a r a m e t e r s .
: r e t u r n : T h e t r a i n i n g p a r a m e t e r s .
" " "

w i t h o p e n ( j s o n _ f i l e ) as i n f i l e :
j s o n _ d i c t = j s o n . l o a d ( i n f i l e )
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98

99 f o r i in json_dict :
100 f o r j in range (15) :
101 x = f l o a t ( json_dict [ i ] [ ’ j o i n t s ’ ] [ j ] [ 0 ] )
102 y = f l o a t ( json_dict [ i ] [ ’ j o i n t s ’ ] [ j ] [ 1 ] )
103 j son_dict [ i ] [ ’ j o i n t s ’ ] [ j ] = [ x , y ]
104

105 samples = l i s t ( json_dict . keys ( ) )
106 return samples , json_dict
107

108

109 def __rename_files ( path : str , name : s t r ) :
110 ”””
111 : param path :
112 : return :
113 ”””
114 f i l e _ l i s t = os . l i s t d i r ( path )
115 pr int ( f i l e _ l i s t )
116 f o r file_name in f i l e _ l i s t :
117 os . rename ( path+file_name , path+f ’ {name} . jpg ’ )
118

119

120 def load_image ( image_path ) :
121 ”””
122 load image and make i t ready f o r pred i c t i on .
123 : param image_path : path to image
124 : return : np . array o f image
125 ”””
126 img_in = cv2 . imread ( image_path )
127 image_color = cv2 . cvtColor ( img_in , cv2 .COLOR_BGR2RGB)
128 image_resize = cv2 . r e s i z e ( image_color , (224 , 224) )
129 img = np . array ( image_resize ) . reshape (−1, 224 , 224 , 3)
130 return img
131

132

133 def v i sua l i ze_keypo ints ( keypoints , image_fi le , rot=False ) :
134 ”””
135 Function f o r v i s u a l i z i n g keypoints p red i c t i on
136 : param keypoints : pred icted keypoints
137 : param image_f i le : path to image
138 : param rot : i f image should be rotated
139 : return : nothing
140 ”””
141 co lour s = [ ’F633FF ’ , ’ 00FF1B ’ , ’ 00FF1B ’ , ’ 00FF1B ’ , ’ 00FF1B ’ , ’ 00FF1B ’ , ’ 00FF1B ’ , ’F633FF ’ ,
142 ’FF0000 ’ , ’FF0000 ’ , ’FF0000 ’ , ’FF0000 ’ , ’FF0000 ’ , ’FF0000 ’ , ’F633FF ’ ]
143 co lour s = [ ’#’ + co lo r f o r co l o r in co lour s ]
144 f i g , ax = p l t . subplots ( )
145

146 f o r current_keypoint in keypoints :
147 # img = Image . fromarray ( images )
148 image = p l t . imread ( image_f i le )
149 ””” rotate image 45 degrees to the r i gh t ”””
150 # remove the next 3 l i n e s i f you don ’ t want to rotate the image
151 i f rot :
152 image = np . rot90 ( image , k=1, axes =(0 , 1) )
153 image = np . f l i p u d ( image )
154 image = np . f l i p l r ( image )
155
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98

99 f o r in j s o n _ d i c t :
1 0 0 f o r j in r a n g e ( 1 5 ) :
1o x= f l o a t ( i s 0 n _ d i e t [ i ] [ ' j o i n t s ' ] [ i ] [ 0 ] )
1 0 2 y = f l o a t ( jso n_ d i c t[ i ] [ ' j o i n ts ' ] [ j ] [ l ] )
1 0 3 i s o n d i e t [ i ] [ ' j o i n t s ' ] [ i ] = [ x , y]
1 0 4

1 0 5 s a m p l e s = l i s t ( j s o n _ d i c t . k e y s ( ) )
1 0 6 r e t u r n s a m p l e s , j s o n _ d i c t
1 0 7

108

1 0 9 d e f r e n a m e f i l e s ( p a t h : s t r , n a m e : s t r ) :
1 1 0

1 1 1

1 1 2

1 1 3

: p a r a m p a t h :
: r e t u r n :

1 1 4 f i l e l i s t = o s . l i s t d i r ( p a t h )
1 1 5 p r i n t ( f i l e_ l is t )
1 1 6 f o r f i l e _ n a m e in f i l e l i s t :
1 1 7 o s . r e n a m e ( p a t h + f i l e _ n a m e , p a t h + f ' { n a m e } . j p g ' )
118

1 1 9

1 2 0

1 2 1

1 2 2

1 2 3

1 2 4

1 2 5

1 2 6

1 2 7

128

1 2 9

1 3 0

1 3 1

d e f l o a d _ i m a g e ( i m a g ep a t h ) :

l o a d i m a g e a n d make i t r e a d y f o r p r e d i c t i o n .
: p a r a m i m a g e p a t h : p a t h to i m a g e
: r e t u r n : n p . a r r a y of i m a g e

%

i m g in = c v 2 . i m r e a d ( i m a g ep a t h )
i m a g e _ c o l o r = c v 2 . c v t C o l o r ( i m g _ i n , c v 2 .CDIDR_BGR2RGB)
i m a g e _ r e s i z e = c v 2 . r e s i z e ( i m a g e _ c o l o r , ( 2 2 4 , 2 2 4 ) )
i m g = n p . a r r a y ( i m a g e _ r e s i z e ) . r e s h a p e ( - 1 , 2 2 4 , 2 2 4 , 3)
r e t u r n i m g

1 3 2

1 3 3 d e f
1 3 4

1 3 5

1 3 6

1 3 7

138

1 3 9

1 4 0

1 4 1

1 4 2

1 4 3

1 4 4

1 4 5

1 4 6

1 4 7

148

1 4 9

1 5 0

1 5 1

1 5 2

1 5 3

1 5 4

1 5 5

v i s u a l i z e k e y p o i n t s ( k e y p o i n t s , i m a g e f i l e , r o t = F a l s e ) :
%

F u n c t i o n f o r v i s u a l i z i n g k e y p o i n t s p r e d i c t i o n
: p a r a m k e y p o i n t s : p r e d i c t e d k e y p o i n t s
: p a r a m i m a g e _ f i l e : p a t h to i m a g e
: p a r a m r o t : i f i m a g e s h o u l d be r o t a t e d
: r e t u r n : n o t h i n g
" " "
c o l o u r s [ ' F 6 3 3 F F ' , ' O O F F l B ' , ' O O F F l B ' , ' O O F F l B ' , ' O O F F l B ' , ' O O F F l B ' , ' O O F F l B ' , ' F 6 3 3 F F ' ,

'FFOOOO', 'FFOOOO', 'FFOOOO', 'FFOOOO', 'FFOOOO', 'FFOOOO', ' F 6 3 3 F F ' ]
c o l o u r s [ ' # ' + c o l o r f o r c o l o r in c o l o u r s ]
f i g , ax p l t . s u b p l o t s ( )

f o r c u r r e n t _ k e y p o i n t in k e y p o i n t s :
##img = I m a g e . f r o m a r r a y ( i m a g e s )
i m a g e = pl t . i m r e a d ( i m a g e _ f i l e )

" r o t a t e i m a g e 45 d e g r e e s to t h e r i g h t " " "
# r e m o v e t h e n e x t 3 l i n e s if y o u d o n ' t w a n t to r o t a t e t h e i m a g e
if r o t :

i m a g e
i m a g e
i m a g e

n p . r o t 9 0 ( i m a g e , k = l , a x e s = ( 0 , 1 ) )
n p . f l i p u d ( i m a g e )
n p . fl i p l r ( i m a g e )
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156 ax . imshow( image )
157

158 current_keypoint = np . array ( current_keypoint )
159 # Since the l a s t entry i s the v i s i b i l i t y f l ag , we d i scard i t .
160 current_keypoint = current_keypoint [ : , : 2 ]
161 f o r idx , (x , y ) in enumerate ( current_keypoint ) :
162 # ax . s c a t t e r ( [ x ∗12 .214 ] , [ y ∗16 .285 ] , c=co lour s [ idx ] ,
163 marker=”x” , s =50, l inewidths =5)
164 ax . s c a t t e r ( [ x ] , [ y ] , c=co lour s [ idx ] , marker=”x” , s =50, l inewidths =5)
165 # ax . s c a t t e r ( [ x ∗ 2 . 2 3 ] , [ y ∗ 2 . 2 3 ] , c=co lour s [ idx ] ,
166 marker=”x” , s =50, l inewidths =5)
167

168 p l t . t ight_layout (pad=2.0)
169 p l t . show ()

Listing D.1: FilchUtils.py, Python script containing functionality used by multiple modules
in Quantium 4.1
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156

157

158

159

160

161

162

163

164

165

166

167

168 p l t . t i g h t l a y o u t ( p a d = 2 . 0 )
169 p l t . s h o w ( )

a x . ims how ( i m a g e )

c u r r e n t _ k e y p o i n t = n p . a r r a y ( c u r r e n t _ k e y p o i n t )
# Si n c e t h e l as t e n t ry is t h e v i s i b i l i t y fl a g , we d is c a r d i t .
c u r r e n t _ k e y p o i n t = c u r r e n t _ k e y p o i n t [: , : 2]
f o r i d x , ( x , y) in e n u m e r a t e ( c u r r e n t _ k e y p o i n t ) :

# ax . s c a t t e r ( [ x + 1 2 . 2 1 4 ] , [ y + 1 6 . 2 8 5 ] , c= co lo u rs [ id x ] ,
m a r k e r = " " , s = 5 0 , l i n e w i d t h s = 5 )

a x . s c a t t e r ( [ x ] , [ y ] , c = c o l o u r s [ i d x ] , m a r k e r = " " , s = 5 0 , l i n e w i d t h s = 5 )
# a x . s c a t t e r ( [ x x 2 . 2 3 ] , [ y + 2 . 2 3 ] , c = c o l o u r s [ i d x ] ,

m a r k e r = " x " , s = 5 0 , l i n e w i d t h s = 5 )

Listing D.l : FilchUtils.py, Python script containing functionality used by multiple modules
in Quantium 4.1
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Appendix E

Firebolt

E.1 FireboltUtils.py

1

2 import j son
3 from imgaug . augmentables import Keypoint , KeypointsOnImage
4

5

6 def get_json_dict ( input_json : s t r ) :
7 ”””
8 Function f o r ge t t ing the json d i c t i onary .
9 : param input_json :

10 : return : A json d i c t i onary conta in ing a l l image names and t h e i r keypoints .
11 ”””
12

13 with open ( input_json ) as i n f i l e :
14 json_data = json . load ( i n f i l e )
15

16 j son_dict = {}
17

18 f o r i in range ( len ( json_data ) ) :
19 tmp_obj = json_data [ ’ image ’ + s t r ( i ) ]
20 y = {tmp_obj [ ’ image ’ ] : { ’ image_path ’ : tmp_obj [ ’ image ’ ] ,
21 ’ j o i n t s ’ : [ [ tmp_obj [ ’ head ’ ] [ ’ x ’ ] , tmp_obj [ ’ head ’ ] [ ’ y ’ ] ] ,
22 [ tmp_obj [ ’ l e f t_ank le ’ ] [ ’ x ’ ] , tmp_obj [ ’ l e f t_ank le ’ ] [ ’ y ’ ] ] ,
23 [ tmp_obj [ ’ le ft_elbow ’ ] [ ’ x ’ ] , tmp_obj [ ’ le ft_elbow ’ ] [ ’ y ’ ] ] ,
24 [ tmp_obj [ ’ l e f t_hip ’ ] [ ’ x ’ ] , tmp_obj [ ’ l e f t_hip ’ ] [ ’ y ’ ] ] ,
25 [ tmp_obj [ ’ le f t_knee ’ ] [ ’ x ’ ] , tmp_obj [ ’ le f t_knee ’ ] [ ’ y ’ ] ] ,
26 [ tmp_obj [ ’ l e f t_shou lder ’ ] [ ’ x ’ ] , tmp_obj [ ’ l e f t_shou lder ’ ] [ ’ y ’ ] ] ,
27 [ tmp_obj [ ’ l e f t_wr i s t ’ ] [ ’ x ’ ] , tmp_obj [ ’ l e f t_wr i s t ’ ] [ ’ y ’ ] ] ,
28 [ tmp_obj [ ’ neck ’ ] [ ’ x ’ ] , tmp_obj [ ’ neck ’ ] [ ’ y ’ ] ] ,
29 [ tmp_obj [ ’ r ight_ankle ’ ] [ ’ x ’ ] , tmp_obj [ ’ r ight_ankle ’ ] [ ’ y ’ ] ] ,
30 [ tmp_obj [ ’ right_elbow ’ ] [ ’ x ’ ] , tmp_obj [ ’ right_elbow ’ ] [ ’ y ’ ] ] ,
31 [ tmp_obj [ ’ r ight_hip ’ ] [ ’ x ’ ] , tmp_obj [ ’ r ight_hip ’ ] [ ’ y ’ ] ] ,
32 [ tmp_obj [ ’ right_knee ’ ] [ ’ x ’ ] , tmp_obj [ ’ right_knee ’ ] [ ’ y ’ ] ] ,
33 [ tmp_obj [ ’ r ight_shoulder ’ ] [ ’ x ’ ] , tmp_obj [ ’ r ight_shoulder ’ ] [ ’ y ’ ] ] ,
34 [ tmp_obj [ ’ r ight_writs ’ ] [ ’ x ’ ] , tmp_obj [ ’ r ight_writs ’ ] [ ’ y ’ ] ] ,
35 [ tmp_obj [ ’ to r so ’ ] [ ’ x ’ ] , tmp_obj [ ’ to r so ’ ] [ ’ y ’ ] ]
36 ] }}
37 j son_dict . update (y)
38

39 return json_dict
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E. l FireboltUtils.py

2 i m p o r t j s o n
3 f rom i m g a u g . a u g m e n t a b l e s i m p o r t K e y p o i n t , K e y p o i n t s O n i m a g e
4

5

6 d e f g e t _ j s o n _ d i c t ( i n p u t _ j s o n : s t r ) :
7

8

9

10

11

12

13 w i t h o p e n ( i n p u t _ j s o n ) as in f i l e :
14 j s o n _ d a t a = js o n . l o a d ( i n f i l e )

F u n c t i o n f o r g e t t i n g t h e js o n d i c t i o n a r y .
: pa ram i n p u t _ j s o n :
: r e t u r n : A js o n d i c t i o n a r y c o n t a i n i n g a l l image names and t h e i r k e y p o i n t s .

15

16 j s o n _ d i c t = {}
17

18 f o r i in r a n g e ( l e n ( j s o n _ d a t a ) ) :
1o t m po b j = j s o n _ d a t a [ ' i m a g e ' + s t r ( i ) ]
20 y = { t m p_ o b j [ ' i m a g e ' ] : { ' i m a g e p a t h ' : tmp o b j [ ' i m a g e ' ] ,
21 ' j o i n ts ' : [ [ t m p_ o b j [ ' h e a d ' ] [ ' x ' ] , t m p o b j [ ' h e a d ' ] [ ' y ' ] ] ,
22 [ t m p o b j [ ' l e f t a n k l e ' ] [ ' x ' ] , tmp o b j [ ' l e f ta n k l e ' ] [ ' y ' ] ] ,
23 [ t m po b j [ ' l e f t e l b o w ' ] [ ' x ' ] , tmp o b j [ ' l e f t e l b o w ' ] [ ' y ' ] ] ,
24 [ t m p o b j [ ' l e f t _ h i p ' ] [ ' x ' ] , tmp o b j [ ' l e f t _ h i p ' ] [ ' y ' ] ] ,
2 [ t m po b j [ ' l e f t k n e e ' ] [ ' x ' ] , tmp o b j [ ' l e f t k n e e ' ] [ ' y ' ] ] ,
26 [ t m p _ o b j [ ' l e f t _ s h o u l d e r ' ] [ ' x ' ] , tmp o b j [ ' l e f t s h o u l d e r ' ] [ ' y ' ] ] ,
27 [tmp o b j [ ' l e f t _ w r i s t ' ] [ ' x ' ] , tmp o b j [ ' l e f t _ w r i s t ' ] [ ' y ' ] ] ,
28 [ t m p _ o b j [ ' n e c k ' ] [ ' x ' ] , tmp o b j [ ' n e c k ' ] [ ' y ' ] ] ,
29 [ t m p _ o b j [ ' r i g h t _ a n k l e ' ] [ ' x ' ] , t m p o b j [ ' r i g h t _ a n k l e ' ] [ 'y ' ] ] ,
30 [ t m p _ o b j [ ' r i g h t _ e l b o w ' ] [ ' x ' ] , t m p o b j [ ' r i g h t _ e l b o w ' ] [ ' y ' ] ] ,
31 [ t m p_ o b j [ ' r i g h t h i p ' ] [ ' x ' ] , t m po b j [ ' r i g h t h i p ' ] [ ' y ' ] ] ,
32 [ t m p _ o b j [ ' r i g h t _ k n e e ' ] [ ' x ' ] , tmp _ o b j [ ' r i g h t k n e e ' ] [ ' y ' ] ] ,
33 [tmp o b j [ ' r i g h t s h o u l d e r ' ] [ ' x ' ] , tmp o b j [ ' r i g h t s h o u l d e r ' ] [ ' y ' ] ] ,
34 [ t mp ob j [ ' r ig h t_ w r i ts ' ] [ ' x ' ] , t mp ob j [ ' r ig h t_ w r i ts ' ] [ ' y ' ] ] ,
36 [ t m p o b j [ ' t o r s o ' ] [ ' x ' ] , tmp o b j [ ' t o r s o ' ] [ ' y ' ] ]
36 l } }
37 j s o n _ d i c t . u p d a t e ( y )
38

39 r e t u r n j s o n _ d i c t
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40

41

42 def get_kpsoi ( keypoints , img_shape ) :
43 kps = KeypointsOnImage ( [
44 Keypoint (x=keypoints [ 0 ] [ 0 ] , y=keypoints [ 0 ] [ 1 ] ) ,
45 Keypoint (x=keypoints [ 1 ] [ 0 ] , y=keypoints [ 1 ] [ 1 ] ) ,
46 Keypoint (x=keypoints [ 2 ] [ 0 ] , y=keypoints [ 2 ] [ 1 ] ) ,
47 Keypoint (x=keypoints [ 3 ] [ 0 ] , y=keypoints [ 3 ] [ 1 ] ) ,
48 Keypoint (x=keypoints [ 4 ] [ 0 ] , y=keypoints [ 4 ] [ 1 ] ) ,
49 Keypoint (x=keypoints [ 5 ] [ 0 ] , y=keypoints [ 5 ] [ 1 ] ) ,
50 Keypoint (x=keypoints [ 6 ] [ 0 ] , y=keypoints [ 6 ] [ 1 ] ) ,
51 Keypoint (x=keypoints [ 7 ] [ 0 ] , y=keypoints [ 7 ] [ 1 ] ) ,
52 Keypoint (x=keypoints [ 8 ] [ 0 ] , y=keypoints [ 8 ] [ 1 ] ) ,
53 Keypoint (x=keypoints [ 9 ] [ 0 ] , y=keypoints [ 9 ] [ 1 ] ) ,
54 Keypoint (x=keypoints [ 1 0 ] [ 0 ] , y=keypoints [ 1 0 ] [ 1 ] ) ,
55 Keypoint (x=keypoints [ 1 1 ] [ 0 ] , y=keypoints [ 1 1 ] [ 1 ] ) ,
56 Keypoint (x=keypoints [ 1 2 ] [ 0 ] , y=keypoints [ 1 2 ] [ 1 ] ) ,
57 Keypoint (x=keypoints [ 1 3 ] [ 0 ] , y=keypoints [ 1 3 ] [ 1 ] ) ,
58 Keypoint (x=keypoints [ 1 4 ] [ 0 ] , y=keypoints [ 1 4 ] [ 1 ] )
59 ] , shape=img_shape )
60

61 return kps

Listing E.1: FireboltUtils.py, Python script containing functionality used by the Firebolt
module.
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40

41

42 d e f
43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

g e t _ k p s o i ( k e y p o i n ts , i m g _ s h a p e ) :
k p s = K e y p o i n t s O n i m a g e ( [

K e y p o i n t ( x = k e y p o i n t s [OJ[OJ , y = k e y p o i n t s [ 0 ] [l J) ,
K e y p o i n t ( x = k e y p o i n t s [l J[OJ , y = k e y p o i n t s [l J[l J) ,
K e y p o i n t ( = k e y p o i n t s [ 2 ] [ 0 ] , yv=keypoints [ 2 ] [ 1 ] ) ,
K e y p o i n t ( = k e y p o i n t s [ 3 ] [OJ , y = k e y p o i n t s [ 3 ] [l J) ,
K e y p o i n t ( = k e y p o i n t s [ 4 ] [ 0 ] , y = k e y p o i n t s [ 4 ] [ 1 ] ) ,
K e y p o i n t ( = k e y p o i n t s [ 5 ] [ 0 ] , yv=keypoints [ 5 ] [ 1 ] ) ,
K e y p o i n t ( = k e y p o i n t s [ 6 ] [ 0 ] , yv=keypoints [ 6 ] [ 1 ] ) ,
K e y p o i n t ( = k e y p o i n t s [ 7 ] [ 0 ] , y = k e y p o i n t s [ 7 ] [ 1 J) ,
K e y p o i n t ( = k e y p o i n t s [ 8 ] [ 0 ] , yv=keypoints [ 8 ] [ 1 ] ) ,
K e y p o i n t ( = k e y p o i n t s [ 9 ] [ 0 ] , yv=keypoints [ 9 ] [ 1 ] ) ,
K e y p o i n t ( x = k e y p o i n t s [1 OJ[OJ , y = k e y p o i n t s [ l OJ[l J) ,
K e y p o i n t ( = k e y p o i n t s [ 1 1 ] [ 0 ] , y = k e y p o i n t s [ 1 1 ] [ 1 ] ) ,
K e y p o i n t ( x = k e y p o i n t s [ 1 2 ] [ 0 ] , y = k e y p o i n t s [ 1 2 ] [ 1 ] ) ,
K e y p o i n t ( = k e y p o i n t s [ 1 3 ] [ 0 ] , y = k e y p o i n t s [ 1 3 ] [ 1 ] ) ,
K e y p o i n t ( = k e y p o i n t s [ 1 4 ] [ 0 ] , y = k e y p o i n t s [ 1 4 ] [ 1 J)

J , s h a p e = i m g _ s h a p e )

r e t u r n kps

Listing E . l : FireboltUtils.py, Python script containing functionality used by the Firebolt
module.

100



E.2. FIREBOLTBACKGROUND.PY

E.2 FireboltBackground.py

1

2 import os
3 import cv2
4 import j son
5 import uuid
6 import numpy as np
7 from tqdm import tqdm
8 from random import randint
9 from typing import Optional

10 from Fi r ebo l t . F i r e b o l t U t i l s import get_json_dict , get_kpsoi
11 from Fi lch . F i l c h U t i l s import get_pose
12

13

14 c l a s s FireboltBackground :
15 def __init__( s e l f , img_dir : s t r , input_json : str , output_dir : s t r ,
16 output_json_path : str , bg_dir : s t r , blanks_dir :
17 Optional [ s t r ] = None , num_blanks : Optional [ i n t ] = None ,
18 blank_bg : Optional [ s t r ] = None) :
19 ”””
20 : param img_dir : d i r e c to ry with images
21 : param input_json : Path to the input json f i l e
22 : param output_dir : Path to the output d i r e c to ry
23 : param output_json_path : Path to the output json f i l e
24 : param bg_dir : Path to the backgrounds d i r e c to ry .
25 ”””
26 s e l f . img_dir = img_dir
27 s e l f . input_json = input_json
28 s e l f . output_dir = output_dir
29 s e l f . output_json_path = output_json_path
30 s e l f . bg_dir = bg_dir
31 s e l f . j son_dict = get_json_dict ( s e l f . input_json )
32 s e l f . samples = l i s t ( s e l f . j son_dict . keys ( ) )
33 s e l f . bg_dict = {}
34 s e l f . blanks_dir = blanks_dir
35 s e l f . num_blanks = num_blanks
36 s e l f . blank_bg = blank_bg
37 s e l f . image_counter = 0
38

39 def swap( s e l f ) :
40 ”””
41 Run a l l proces s ing on images .
42 : return :
43 ”””
44 s e l f . __process ( )
45 s e l f . __create_blanks ( )
46

47 with open ( s e l f . output_json_path , ’w ’ ) as o u t f i l e :
48 j son .dump( s e l f . bg_dict , o u t f i l e , indent=2)
49

50 def __process ( s e l f ) :
51 ”””
52 Process the images to c reate background swapped images .
53 : return :
54 ”””
55

56 f o r sample in tqdm( s e l f . samples ) :
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E.2 FireboltBackground.py

2 i m p o r t os
3 i m p o r t c v 2
4 i m p o r t j s o n
5 i m p o r t u u i d
6 i m p o r t numpy as np
7 f rom tqdm i m p o r t tqdm
8 f rom random i m p o r t r a n d i n t
o f rom t y p i n g i m p o r t O p t i o n a l

10 f rom F i r e b o l t . F i r e b o l t U t i l s i m p o r t g e t _ j s o n _ d i c t , g e t _ k p s o i
11 f rom F i l c h . F i l c h U t i l s i m p o r t ge t p o s e
12

13

14 c l a s s F i r e b o l t B a c k g r o u n d :
15 d e f i n i t ( s e l f , img d i r : s t r , i n p u t _ j s o n : s t r , o u t p u t _ d i r : s t r ,
16 o u t p u t j s o n p a t h : s t r , bg d i r : s t r , b l a n k s _ d i r :
17 O p t i o n a l [ s t r ] = None , n u m _ b l a n k s : O p t i o n a l [ i n t ] = None ,
18 b lankb g : O p t i o n a l [ s t r ] = N o n e ) :
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

: pa ram img d i r : d i r e c t o r y w i t h i m a g e s
: p a r a m i n p u t _ j s o n : P a t h to t h e i n p u t j s o n f i l e
: pa ram o u t p u t _ d i r : P a t h to t h e o u t p u t d i r e c t o r y
: param o u t p u t _ j s o n _ p a t h : P a t h to t h e o u t p u t j s o n f i l e
: param bg d i r : P a t h to t h e b a c k g r o u n d s d i r e c t o r y .
1 1 9 19

s e l f . i m g d i r = img d i r
s e l f . i n p u t _ j s o n = i n p u t _ j s o n
s e l f . o u t p u t _ d i r = o u t p u t _ d i r
s e l f . o u t p u t _ j s o n _ p a t h = o u t p u t _ j s o n _ p a t h
s e l f . b g d i r = bg d i r
s e l f . j s o n _ d i c t = g e t _ j s o n _ d i c t ( s e l f . i n p u t _ j s o n )
s e l f . s a m p l e s = l i s t ( s e l f . j s o n _ d i c t . k e y s ( ) )
s e l f . b g d i c t = {}
s e l f . b l a n k s d i r = b l a n k s d i r
s e l f . n u m _ b l a n k s = n u m _ b l a n k s
se l f . b l a n k _ b g = b l a n k _ b g
s e l f . i m a g e _ c o u n t e r = 0

d e f s w a p ( s e l f ) :

Run a l l p r o c e s s i n g on i m a g e s .
: r e t u r n :

s e l f . p r o c e s s ()
se l f. __ c r e a t e _ b l a n k s ()

w i t h o p e n ( s e l f . o u t p u t _ j s o n _ p a t h , ' w ' ) as o u t f i l e :
j s o n . d u m p ( s e l f . b g d i c t , o u t f i l e , i n d e n t = 2 )

d e f p r o c e s s ( s e l f ) :

P r o c e s s t h e i m a g e s to c r e a t e b a c k g r o u n d swapped i m a g e s .
: r e t u r n :

f o r s a m p l e in t q d m ( s e l f . s a m p l e s ) :
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57 data = get_pose ( sample , s e l f . json_dict , s e l f . img_dir )
58 image = data [ ”img_data” ]
59 keypoint = data [ ” j o i n t s ” ]
60 kps = get_kpsoi ( keypoint , image . shape )
61

62 f o r bg in os . l i s t d i r ( s e l f . bg_dir ) :
63 new_image_name = s t r ( os . path . s p l i t e x t (bg ) [ 0 ] ) + ’− ’ + s t r ( sample )
64 s e l f .__swap_bg( sample , bg , new_image_name , False )
65

66 s e l f . bg_dict . update ({ ’ image ’ + s t r ( s e l f . image_counter ) :
67 { ’ image ’ : new_image_name ,
68 ’ head ’ : { ’x ’ : kps . keypoints [ 0 ] . x ,
69 ’ y ’ : kps . keypoints [ 0 ] . y} ,
70 ’ l e f t_ank le ’ : { ’x ’ : kps . keypoints [ 1 ] . x ,
71 ’ y ’ : kps . keypoints [ 1 ] . y} ,
72 ’ le ft_elbow ’ : { ’x ’ : kps . keypoints [ 2 ] . x ,
73 ’ y ’ : kps . keypoints [ 2 ] . y} ,
74 ’ l e f t_hip ’ : { ’x ’ : kps . keypoints [ 3 ] . x ,
75 ’ y ’ : kps . keypoints [ 3 ] . y} ,
76 ’ l e f t_knee ’ : { ’x ’ : kps . keypoints [ 4 ] . x ,
77 ’ y ’ : kps . keypoints [ 4 ] . y} ,
78 ’ l e f t_shou lder ’ : { ’x ’ : kps . keypoints [ 5 ] . x ,
79 ’ y ’ : kps . keypoints [ 5 ] . y} ,
80 ’ l e f t_wr i s t ’ : { ’x ’ : kps . keypoints [ 6 ] . x ,
81 ’ y ’ : kps . keypoints [ 6 ] . y} ,
82 ’ neck ’ : { ’x ’ : kps . keypoints [ 7 ] . x ,
83 ’ y ’ : kps . keypoints [ 7 ] . y} ,
84 ’ r ight_ankle ’ : { ’x ’ : kps . keypoints [ 8 ] . x ,
85 ’ y ’ : kps . keypoints [ 8 ] . y} ,
86 ’ right_elbow ’ : { ’x ’ : kps . keypoints [ 9 ] . x ,
87 ’ y ’ : kps . keypoints [ 9 ] . y} ,
88 ’ r ight_hip ’ : { ’x ’ : kps . keypoints [ 1 0 ] . x ,
89 ’ y ’ : kps . keypoints [ 1 0 ] . y} ,
90 ’ right_knee ’ : { ’x ’ : kps . keypoints [ 1 1 ] . x ,
91 ’ y ’ : kps . keypoints [ 1 1 ] . y} ,
92 ’ r ight_shoulder ’ : { ’x ’ : kps . keypoints [ 1 2 ] . x ,
93 ’ y ’ : kps . keypoints [ 1 2 ] . y} ,
94 ’ r ight_writs ’ : { ’x ’ : kps . keypoints [ 1 3 ] . x ,
95 ’ y ’ : kps . keypoints [ 1 3 ] . y} ,
96 ’ to r so ’ : { ’x ’ : kps . keypoints [ 1 4 ] . x ,
97 ’ y ’ : kps . keypoints [ 1 4 ] . y}}
98 })
99 s e l f . image_counter += 1

100

101 def __swap_bg( s e l f , img , background , name : str , blank : bool ) :
102 ”””
103 : param img : image name
104 : param background : background image .
105 : param blank : check i f we are making blank images or not .
106 : return :
107 ”””
108 i f blank :
109 image = cv2 . imread ( s e l f . blanks_dir + img)
110 background_image = cv2 . imread ( s e l f . blank_bg + background )
111 e l s e :
112 image = cv2 . imread ( s e l f . img_dir + img)
113 background_image = cv2 . imread ( s e l f . bg_dir + background )
114
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57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7
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1 0 9

1 1 0

1 1 1

1 1 2

1 1 3

1 1 4

d a t a = g e t p o s e ( s a m p l e , s e l f . j s o n _ d i c t , s e l f . i m g d i r )
i m a g e = d a t a [ " i m g d a t a " ]
k e y p o i n t = d a t a [ " j o i n t s " ]
k p s = g e t _ k p s o i ( k e y p o i n t , i m a g e . s h a p e )

f o r bg in o s . l i s t d i r ( s e l f . b g _ d i r ) :
n e w _ i m a g e _ n a m e = s t r ( o s . p a t h . s p l i t e x t ( b g ) [ 0 ] ) + '' 4 s t r ( s a m p l e )
s e l f . s w a pb g ( s a m p l e , b g , n e w _ i m a g e _ n a m e , F a l s e )

se l f . b g d i c t . u p d a t e ({ ' i m a g e ' + st r ( s e l f. i m a g e _ c o u n t e r ) :
{ ' i m a g e ' : new_ i m a g e _ n a m e ,

' h e a d ' : { ' x ' : k p s . k e y p o i n t s [ 0 ] . x ,
' y ' : k p s . k e y p o i n t s [ 0 ] . y } ,

' l e f t a n k l e ' : { ' x ' : k p s . k e y p o i n t s [ 1 ] . x ,
' y ' : k p s . k e y p o i n t s [ l ] . y } ,

' l e f t e l b o w ' : { ' x ' : k p s . k e y p o i n t s [ 2 ] . x ,
' y ' : k p s . k e y p o i n t s [ 2 ] . y } ,

' l e f t _ h i p ': { ' x ' : k p s . k e y p o i n t s [ 3 ] . ,
' y ' : k p s . k e y p o i n t s [ 3 ] . y }

' l e f t _ k n e e ': { ' x ' : k p s . k e y p o i n t s [ 4 ] . ,
' y ' : k p s . k e y p o i n t s [ 4 ] . y } ,

' l e f t _ s h o u l d e r ' : { ' x ' : k p s . k e y p o i n t s [ 5 ] . ,
' y ' : k p s . k e y p o i n t s [ 5 ] . y } ,

' l e f t w r i s t ' : { ' x ' : k p s . k e y p o i n t s [ 6 ] . x ,
' y ' : k p s . k e y p o i n t s [ 6 ] . y } ,

' n e c k ' : { ' x ' : k p s . k e y p o i n t s [ 7 ] . x ,
' y ' : k p s . k e y p o i n t s [ 7 ] . y } ,

' r i g h t _ a n k l e ' : { ' x ' : k p s . k e y p o i n t s [ 8 ] . x ,
' y ' : k p s . k e y p o i n t s [ 8 ] . y } ,

' r i g h t _ e l b o w ' : { ' x ' : k p s . k e y p o i n t s [ 9 ] . x ,
' y ' : k p s . k e y p o i n t s [ 9 ] . y }

' r i g h t _ h i p ' : { ' x ' : k p s . k e y p o i n t s [ 1 0 ] . x ,
' y ' : k p s . k e y p o i n t s [ l O ] . y } ,

' r i g h t _ k n e e ' : { ' x ' : k p s . k e y p o i n t s [ 1 1 ] . x ,
' y ' : k p s . k e y p o i n t s [ l l ] . y } ,

' r i g h t _ s h o u l d e r ' : { ' x ' : k p s . k e y p o i n t s [ 1 2 ] . x ,
' y ' : k p s . k e y p o i n t s [ 1 2 ] . y } ,

' r i g h t _ w r i t s ' : { ' x ' : k p s . k e y p o i n t s [ 1 3 ] . x ,
' y ' : k p s . k e y p o i n t s [ 1 3 ] . y } ,

' t o r s o ' : { ' x ' : k p s . k e y p o i n t s [ 1 4 ] . x ,
' y ' : k p s . k e y p o i n t s [ 1 4 ] . y } }

})
s e l f . i m a g e _ c o u n t e r += l

d e f s w a pb g ( s e l f , i m g , b a c k g r o u n d , n a m e : s t r , b l a n k : b o o l ) :
" " "
: p a r a m i m g : i m a g e name
: p a r a m b a c k g r o u n d : b a c k g r o u n d i m a g e .
: p a r a m b l a n k : c h e c k i f we a r e m a k i n g b l a n k i m a g e s or n o t .
: r e t u r n :

i f b l a n k :
i m a g e = c v 2 . i m r e a d ( s e l f . b l a n k s _ d i r + i m g )
b a c k g r o u n d _ i m a g e = c v 2 . i m r e a d ( se l f. b l a n k _ b g + b a c k g r o u n d )

e l s e :
i m a g e = c v 2 . i m r e a d ( s e l f . i m g _ d i r + i m g )
b a c k g r o u n d _ i m a g e = c v 2 . i m r e a d ( s e l f . b g d i r + b a c k g r o u n d )
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115 image_color = cv2 . cvtColor ( image , cv2 .COLOR_BGR2RGB)
116

117 image_copy = np . copy ( image_color )
118 image_copy = cv2 . r e s i z e ( image_copy , (224 , 224) )
119

120 lower_green = np . array ( [ 0 , 100 , 0 ] ) # [R value , G value , B value ]
121 upper_green = np . array ( [ 120 , 255 , 130 ] )
122

123 mask = cv2 . inRange ( image_copy , lower_green , upper_green )
124 masked_image = np . copy ( image_copy )
125 masked_image [ mask != 0 ] = [ 0 , 0 , 0 ]
126

127 background_image_color = cv2 . cvtColor ( background_image , cv2 .COLOR_BGR2RGB)
128

129 # I f the background image need to be r e s i z e d uncomment t h i s l i n e .
130 bg_size = randint (224 , 600)
131 background_image_resize = cv2 . r e s i z e ( background_image_color , ( bg_size , bg_size ) )
132 # Depending on the width of the background image change randint parameters
133 background_image = np . r o l l ( background_image_resize , 3 ∗ randint(−bg_size , bg_size ) )
134

135 crop_background = background_image [ 0 : 2 2 4 , 0 : 224 ]
136

137 crop_background [ mask == 0] = [ 0 , 0 , 0 ]
138

139 f inal_image = crop_background + masked_image
140 f inal_image = cv2 . r e s i z e ( final_image , (224 , 224) )
141 f inal_image = cv2 . cvtColor ( final_image , cv2 .COLOR_BGR2RGB)
142

143 # write image to f o l d e r
144 cv2 . imwrite ( s e l f . output_dir + name , f inal_image )
145

146 def __create_blanks ( s e l f ) :
147 ”””
148 This funct ion c r ea t e s blanks images .
149 : r e turns : nothing
150 ”””
151 pr int ( f ’ Creating { s e l f . num_blanks} blank images , to balance dataset . ’ )
152 counter = 0
153 backgrounds = os . l i s t d i r ( s e l f . bg_dir )
154 blanks = os . l i s t d i r ( s e l f . blanks_dir )
155

156 f o r i in range ( s e l f . num_blanks ) :
157 bg = backgrounds [ randint (0 , l en ( backgrounds ) − 1) ]
158 img = blanks [ randint (0 , l en ( blanks ) − 1) ]
159 name = f ’ {uuid . uuid4 ( )}−{img} ’
160 s e l f .__swap_bg( img , bg , name , True )
161

162 s e l f . bg_dict . update (
163 { ’ image ’ + f ’ { s t r ( s e l f . image_counter ) } ’ : {
164 ’ image ’ : name ,
165 ’ head ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
166 ’ l e f t_ank le ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
167 ’ le ft_elbow ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
168 ’ l e f t_hip ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
169 ’ l e f t_knee ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
170 ’ l e f t_shou lder ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
171 ’ l e f t_wr i s t ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
172 ’ neck ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
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1 1 5

1 1 6

1 1 7

118

1 1 9

1 2 0

1 2 1

1 2 2

1 2 3

1 2 4

1 2 5

1 2 6

1 2 7

128

1 2 9

1 3 0

1 3 1

1 3 2

1 3 3

1 3 4

1 3 5

1 3 6

1 3 7

138

1 3 9

1 4 0

1 4 1

1 4 2

1 4 3

1 4 4

1 4 5

1 4 6

1 4 7

148

1 4 9

1 5 0

1 5 1

1 5 2

1 5 3

1 5 4

1 5 5

1 5 6

1 5 7

158

1 5 9

1 6 0

1 6 1

1 6 2

1 6 3

1 6 4

1 6 5

1 6 6

1 6 7

168

1 6 9

1 7 0

171

1 7 2

i m a g e _ c o l o r = c v 2 . c v t C o l o r ( i m a g e , cv2.COLOR_BG2RGB)

i m a g e _ c o p y
i m a g e _ c o p y

l o w e r _ g r e e n
u p p e r _ g r e e n

n p . c o p y ( i m a g e _ c o l o r )
c v 2 . r e s i z e ( i m a g e c o p y , ( 2 2 4 , 2 2 4 ) )

n p . a r r a y ( [ 0 , 1 0 0 , 0 ] ) # [R v a l u e , G v a l u e , B v a l u e ]
n p . a r r a y ( [ 1 2 0 , 2 5 5 , 1 3 0 ] )

mask = c v 2 . i n R a n g e ( i m a g e _ c o p y , l o w e r _ g r e e n , u p p e r g r e e n )
m a s k e d _ i m a g e = n p . c o p y ( i m a g e _ c o p y )
m a s k e d _ i m a g e [ m a s k != 0] = [ 0 , 0, 0]

b a c k g r o u n d _ i m a g e _ c o l o r = c v 2 . c v t C o l o r ( b a c k g r o u n d _ i m a g e , cv2.COLOR_BGF2RGB)

# I t h e b a c k g r o u n d i m a g e n e e d to be r e s i z e d uncomment t h i s l i n e .
bg s i z e = r a n d i n t ( 2 2 4 , 6 0 0 )
b a c k g r o u n d _ i m a g e _ r e s i z e = c v 2 . r e s i z e ( b a c k g r o u n d _ i m a g e _ c o l o r , ( b g s i z e , bg s i z e ) )
##D e p e n d i n g on t h e w i d t h of t h e b a c k g r o u n d i m a g e c h a n g e r a n d i n t p a r a m e t e r s
b a c k g r o u n d _ i m a g e = n p . ro 11 ( b a c k g r o u n d _ i m a g e _ r e s i z e , 3 * r a n d i n t ( - b g s i z e , bg s i z e ) )

c r o p b a c k g r o u n d = b a c k g r o u n d i m a g e [ 0 : 2 2 4 , 0 : 2 2 4 ]

c r o p b a c k g r o u n d [ m a s k = 0 ] = [ 0 , 0, 0]

f i n a l _ i m a g e
f i n a l _ i m a g e
f i n a l _ i m a g e

c r o p b a c k g r o u n d + m a s k e d _ i m a g e
c v 2 . r e s i z e ( f i n a l i m a g e , ( 2 2 4 , 2 2 4 ) )
c v 2 . c v t C o l o r ( f i n a l _ i m a g e , cv2.COLOR_BGR2RGB)

##w r i t e i m a g e to f o l d e r
c v 2 . i m w r i t e ( s e l f . o u t p u t _ d i r + n a m e , f i n a l _ i m a g e )

d e f __ c r e a t e _ b l a n k s ( s e l f) :

T h i s f u n c t i o n c r e a t e s b l a n k s i m a g e s .
: r e t u r n s : n o t h i n g
" " "
p r i n t ( f ' C r e a t i n g { s e l f . n u m _ b l a n k s } b l a n k i m a g e s , to b a l a n c e d a t a s e t . ' )
c o u n t e r = 0
b a c k g r o u n d s = o s . l i s t d i r ( s e l f . b g _ d i r )
b l a n k s = o s . l i s t d i r ( s e l f . b l a n k s _ d i r )

f o r i in r a n g e ( s e l f . n u m _ b l a n k s ) :
bg = b a c k g r o u n d s [ r a n d i n t ( 0 , l e n ( b a c k g r o u n d s ) 1 ) ]
img = b l a n k s [ r a n d i n t ( 0 , l e n ( b l a n k s ) 1 ) ]
n a m e = f ' { u u i d . u u i d 4 ( ) } - { i m g } '
s e l f . s w a pb g ( i m g , b g , n a m e , T r u e )

s e l f . b g d i c t . u p d a t e (
{ ' i m a g e ' + f ' { s t r ( s e l f . i m a g e _ c o u n t e r ) } ' : {

' i m a g e ' : n a m e ,
' h e a d ' : { ' x ' : 0, ' y ' : O } ,
' l e f t _ a n k l e ' : { ' ' : 0, ' y : O},
' l e f t _ e l b o w ' : { ' ' : 0, ' y : O},
' l e f t _ h i p ' : { ' x ' : 0, ' y ' : O} ,
' l e f t _ k n e e ' : { ' x ' : 0, ' y ' : O } ,
' l e f t _ s h o u l d e r ' : { ' x ' : 0, ' y ' : O} ,
' l e f t w r i s t ' : { ' x ' : 0, ' y ' : O} ,
' n e c k ' : { ' x ' : 0, ' y ' : O } ,
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173 ’ r ight_ankle ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
174 ’ right_elbow ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
175 ’ r ight_hip ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
176 ’ right_knee ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
177 ’ r ight_shoulder ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
178 ’ r ight_writs ’ : { ’x ’ : 0 , ’ y ’ : 0} ,
179 ’ to r so ’ : { ’x ’ : 0 , ’ y ’ : 0}
180 }
181 })
182 counter += 1
183 s e l f . image_counter += 1

Listing E.2: FireboltBackground.py, Python script for swapping greenscreen backgrounds to
new backgrounds. The scrip uses both Filch (Appendix D.1 and FireboltUtils.py (Appendix
E.1)
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173

174

175

176

177

178

179

180

181

182

183

' r i g h t _ a n k l e ' : { ' x ' : 0, ' y ' : O},
' r i g h t _ e l b o w ' : { ' x ' : 0, ' y : O},
' r i g h t _ h i p ' : { ' x ' : 0, ' y ' : O},
' r i g h t _ k n e e ' : { ' x ' : 0, ' y : O},
' r i g h t _ s h o u l d e r ' : { ' x ' : 0, ' y ' : O},
' r i g h t _ w r i t s ' : { ' x ' : 0, ' y ' : O},
' t o r s o ' : { ' x ' : 0, ' y : O}
}

})
c o u n t e r += l
se l f. i m a g e _ c o u n t e r += l

Listing E.2: FireboltBackground.py, Python script for swapping greenscreen backgrounds to
new backgrounds. The scrip uses both Filch (Appendix D.l and FireboltUtils.py (Appendix
E . l )
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E.3 FireboltImageFlipper.py

1

2 import j son
3 import numpy as np
4 from PIL import Image
5 from tqdm import tqdm
6 import imgaug . augmenters as iaa
7 from Fi lch . F i l c h U t i l s import get_pose
8 from Fi r ebo l t . F i r e b o l t U t i l s import get_json_dict , get_kpsoi
9

10

11 c l a s s Firebolt ImageFl ipper :
12 ”””
13 Class to f l i p images , poses and keep the o r i g i n a l images ,
14 as we l l as expanding the output json f i l e .
15 ”””
16

17 def __init__( s e l f , img_dir : s t r , input_json : str ,
18 output_dir : s t r , output_json_path : s t r ) :
19 ”””
20 I n i t i a l i z e s the c l a s s .
21 : param img_dir : s t r Path to the d i r e c to ry conta in ing the images .
22 : param input_json : Path to the input json f i l e .
23 : param output_dir : Path to the image output d i r e c to ry .
24 : param output_json_path : Path to the output json f i l e .
25 ”””
26

27 s e l f . img_dir = img_dir
28 s e l f . input_json = input_json
29 s e l f . output_dir = output_dir
30 s e l f . output_json_path = output_json_path
31 s e l f . j son_dict = get_json_dict ( s e l f . input_json )
32 s e l f . samples = l i s t ( s e l f . j son_dict . keys ( ) )
33 s e l f . f l i p_j son = {}
34

35 def f l i p ( s e l f ) :
36 ”””
37 Fl ips the images , poses and keeps the o r i g i n a l images .
38 ”””
39

40 s e l f . __process ( )
41

42 with open ( s e l f . output_json_path , ’w ’ ) as o u t f i l e :
43 j son .dump( s e l f . f l ip_json , o u t f i l e , indent=2)
44

45 def __process ( s e l f ) :
46 ”””
47 Processes the images and poses .
48 ”””
49 counter = 0
50

51 f o r sample in tqdm( s e l f . samples ) :
52 data = get_pose ( sample , s e l f . json_dict , s e l f . img_dir )
53 image = data [ ”img_data” ]
54 keypoint = data [ ” j o i n t s ” ]
55 kps = get_kpsoi ( keypoint , image . shape )
56 rot = np . rot90 ( image , k=1, axes =(1 , 0) )
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E.3 FireboltlmageFlipper.py

2 i m p o r t j s o n
3 i m p o r t numpy as np
4 f rom P I L i m p o r t Image
5 f rom tqdm i m p o r t tqdm
6 i m p o r t i m g a u g . a u g m e n t e r s as i a a
7 f rom F i l c h . F i l c h U t i l s i m p o r t ge t p o s e
8 f rom F i r e b o l t . F i r e b o l t U t i l s i m p o r t g e t _ j s o n _ d i c t , g e t _ k p s o i
9

10

11 c l a s s F i r e b o l t i m a g e F l i p p e r :
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

C l a s s to f l i p i m a g e s , p o s e s and keep t h e o r i g i n a l i m a g e s ,
as w e l l as e x p a n d i n g t h e o u t p u t j s o n f i l e .

39 3%

d e f i n i t ( s e l f , img d i r : s t r , i n p u t _ j s o n : s t r ,
o u t p u t _ d i r : s t r , o u t p u t j s o n p a t h : s t r ) :

I n i t i a l i z e s t h e c l a s s .
: pa ram img d i r : s t r P a t h to t h e d i r e c t o r y c o n t a i n i n g t h e i m a g e s .
: p a r a m i n p u t _ j s o n : P a t h to t h e i n p u t j s o n f i l e .
: pa ram o u t p u t _ d i r : P a t h to t h e image o u t p u t d i r e c t o r y .
: pa ram o u t p u t _ j s o n _ p a t h : P a t h to t h e o u t p u t j s o n f i l e .
1 1 9 19

s e l f . i m g d i r = img d i r
s e l f . i n p u t _ j s o n = i n p u t _ j s o n
s e l f . o u t p u t _ d i r = o u t p u t _ d i r
s e l f . o u t p u t _ j s o n _ p a t h = o u t p u t _ j s o n _ p a t h
s e l f . j s o n _ d i c t = g e t _ j s o n _ d i c t ( s e l f . i n p u t _ j s o n )
s e l f . s a m p l e s = l i s t ( s e l f . j s o n _ d i c t . k e y s ( ) )
se l f . fli p _j so n = {}

d e f f l i p ( s e l f ) :
9 19 19

F l i p s t h e i m a g e s , p o s e s and k e e p s t h e o r i g i n a l i m a g e s .
9 19 19

s e l f . p r o c e s s ()

w i t h o p e n ( s e l f . o u t p u t _ j s o n _ p a t h , ' w ' ) as o u t f i l e :
j s o n . d u m p ( s e l f . f l i p j s o n , o u t f i l e , i n d e n t = 2 )

d e f p r o c e s s ( s e l f ) :

P r o c e s s e s t h e i m a g e s and p o s e s .
9 19 19

c o u n t e r = 0

f o r s a m p l e in t q d m ( s e l f . s a m p l e s ) :
d a t a = ge t p o s e ( s a m p l e , se l f. js o n _ d i c t , se l f . i m g d i r )
image = d a t a [ " i m g d a t a " ]
k e y p o i n t = d a t a [ " j o i n t s " ]
k p s g e t _ k p s o i ( k e y p o i n t , i m a g e . s h a p e )
r o t = n p . r o t 9 0 ( i m a g e , k = 1 , a x e s = ( 1 , 0 ) )
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57 o r i g i n a l = Image . fromarray ( rot )
58

59 o r i g i n a l . save ( s e l f . output_dir + sample )
60

61 s e l f . f l i p_j son . update ({ ’ image ’ + s t r ( counter ) : { ’ image ’ : s t r ( sample ) ,
62 ’ head ’ : { ’x ’ : kps . keypoints [ 0 ] . x , ’ y ’ : kps . keypoints [ 0 ] . y} ,
63 ’ l e f t_ank le ’ : { ’x ’ : kps . keypoints [ 1 ] . x , ’ y ’ : kps . keypoints [ 1 ] . y} ,
64 ’ le ft_elbow ’ : { ’x ’ : kps . keypoints [ 2 ] . x , ’ y ’ : kps . keypoints [ 2 ] . y} ,
65 ’ l e f t_hip ’ : { ’x ’ : kps . keypoints [ 3 ] . x , ’ y ’ : kps . keypoints [ 3 ] . y} ,
66 ’ l e f t_knee ’ : { ’x ’ : kps . keypoints [ 4 ] . x , ’ y ’ : kps . keypoints [ 4 ] . y} ,
67 ’ l e f t_shou lder ’ : { ’x ’ : kps . keypoints [ 5 ] . x , ’ y ’ : kps . keypoints [ 5 ] . y} ,
68 ’ l e f t_wr i s t ’ : { ’x ’ : kps . keypoints [ 6 ] . x , ’ y ’ : kps . keypoints [ 6 ] . y} ,
69 ’ neck ’ : { ’x ’ : kps . keypoints [ 7 ] . x , ’ y ’ : kps . keypoints [ 7 ] . y} ,
70 ’ r ight_ankle ’ : { ’x ’ : kps . keypoints [ 8 ] . x , ’ y ’ : kps . keypoints [ 8 ] . y} ,
71 ’ right_elbow ’ : { ’x ’ : kps . keypoints [ 9 ] . x , ’ y ’ : kps . keypoints [ 9 ] . y} ,
72 ’ r ight_hip ’ : { ’x ’ : kps . keypoints [ 1 0 ] . x , ’ y ’ : kps . keypoints [ 1 0 ] . y} ,
73 ’ right_knee ’ : { ’x ’ : kps . keypoints [ 1 1 ] . x , ’ y ’ : kps . keypoints [ 1 1 ] . y} ,
74 ’ r ight_shoulder ’ : { ’x ’ : kps . keypoints [ 1 2 ] . x , ’ y ’ : kps . keypoints [ 1 2 ] . y} ,
75 ’ r ight_writs ’ : { ’x ’ : kps . keypoints [ 1 3 ] . x , ’ y ’ : kps . keypoints [ 1 3 ] . y} ,
76 ’ to r so ’ : { ’x ’ : kps . keypoints [ 1 4 ] . x , ’ y ’ : kps . keypoints [ 1 4 ] . y}
77 }
78 })
79 counter += 1
80

81 s e l f . __flipper ( rot , kps , sample , counter )
82 counter += 1
83

84

85 def __flipper ( s e l f , image , kps , name : str , counter : i n t ) :
86 ”””
87 Fl ips the image and the keypoints .
88 : param image : The image that i s to be f l i p p e d .
89 : param kps : Keypoints f o r the current image .
90 : param name : Name of the current image being augmented .
91 : return : New keypoints f o r the f l i p p e d image .
92 ”””
93 seq = iaa . Sequent ia l ( [
94 # f l i p image
95 i aa . F l i p l r ( 1 . 0 ) , # h o r i z o n t a l l y f l i p 100% of the images
96 ] , random_order=True )
97

98 image_aug , kps_aug = seq ( image=image , keypoints=kps )
99

100 new_image_name = s t r ( f ’ f l i p −{name} ’ )
101

102 s e l f . f l i p_j son . update ({ ’ image ’ + f ’ { s t r ( counter ) } ’ : { ’ image ’ : new_image_name ,
103 ’ head ’ : { ’x ’ : kps . keypoints [ 0 ] . x , ’ y ’ : kps . keypoints [ 0 ] . y} ,
104 ’ l e f t_ank le ’ : { ’x ’ : kps . keypoints [ 8 ] . x , ’ y ’ : kps . keypoints [ 8 ] . y} ,
105 ’ le ft_elbow ’ : { ’x ’ : kps . keypoints [ 9 ] . x , ’ y ’ : kps . keypoints [ 9 ] . y} ,
106 ’ l e f t_hip ’ : { ’x ’ : kps . keypoints [ 1 0 ] . x , ’ y ’ : kps . keypoints [ 1 0 ] . y} ,
107 ’ l e f t_knee ’ : { ’x ’ : kps . keypoints [ 1 1 ] . x , ’ y ’ : kps . keypoints [ 1 1 ] . y} ,
108 ’ l e f t_shou lder ’ : { ’x ’ : kps . keypoints [ 1 2 ] . x , ’ y ’ : kps . keypoints [ 1 2 ] . y} ,
109 ’ l e f t_wr i s t ’ : { ’x ’ : kps . keypoints [ 1 3 ] . x , ’ y ’ : kps . keypoints [ 1 3 ] . y} ,
110 ’ neck ’ : { ’x ’ : kps . keypoints [ 7 ] . x , ’ y ’ : kps . keypoints [ 7 ] . y} ,
111 ’ r ight_ankle ’ : { ’x ’ : kps . keypoints [ 1 ] . x , ’ y ’ : kps . keypoints [ 1 ] . y} ,
112 ’ right_elbow ’ : { ’x ’ : kps . keypoints [ 2 ] . x , ’ y ’ : kps . keypoints [ 2 ] . y} ,
113 ’ r ight_hip ’ : { ’x ’ : kps . keypoints [ 3 ] . x , ’ y ’ : kps . keypoints [ 3 ] . y} ,
114 ’ right_knee ’ : { ’x ’ : kps . keypoints [ 4 ] . x , ’ y ’ : kps . keypoints [ 4 ] . y} ,
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57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85 d e f __ f l i p p e r ( s e l f , i m a g e , k p s , n a m e : s t r , c o u n t e r : i n t ) :

o r i g i n a l = I m a g e . f r o m a r r a y ( r o t )

o r i g i n a l . s a v e ( s e l f . o u t p u t _ d i r + s a m p l e )

s e l f . f l i p _ j s o n . u p d a t e ( { ' i m a g e ' + s t r ( c o u n t e r ) : { ' i m a g e ' : s t r ( s a m p l e ) ,
' h e a d ' : { ' x ' : k p s . k e y p o i n t s [ 0 ] . x , ' y ' : k p s . k e y p o i n t s [ 0 ] . y } ,
' l e f t _ a n k l e ' : { ' x ' : k p s . k e y p o i n t s [ 1 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 ] . y } ,
' l e f t _ e l b o w ' : { ' x ' : k p s . k e y p o i n t s [ 2 ] . x , ' y ' : k p s . k e y p o i n t s [ 2 ] . y } ,
' l e f t _ h i p ' : { ' x ' : k p s . k e y p o i n t s [ 3 ] . x , ' y ' : k p s . k e y p o i n t s [ 3 ] . y } ,
' l e f t _ k n e e ' : { ' x ' : k p s . k e y p o i n t s [ 4 ] . x , ' y ' : k p s . k e y p o i n t s [ 4 ] . y } ,
' l e f t _ s h o u l d e r ' : { ' x ' : k p s . k e y p o i n t s [ 5 ] . x , ' y ' : k p s . k e y p o i n t s [ 5 ] . y } ,
' l e f t _ w r i s t ' : { ' x ' : k p s . k e y p o i n t s [ 6 ] . x , ' y ' : k p s . k e y p o i n t s [ 6 ] . y } ,
' n e c k ' : { ' x ' : k p s . k e y p o i n t s [ 7 ] . x , ' y ' : k p s . k e y p o i n t s [ 7 ] . y } ,
r i g h t a n k l e ' : { ' x ' : k p s . k e y p o i n t s [ 8 ] . x , ' y ' : k p s . k e y p o i n t s [ 8 ] . y } ,
' r i g h t _ e l b o w ' : { ' x ' : k p s . k e y p o i n t s [ 9 ] . x , ' y ' : k p s . k e y p o i n t s [ 9 ] . y } ,
' r i g h t _ h i p ' : { ' x ' : k p s . k e y p o i n t s [ 1 0 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 0 ] . y } ,
' r i g h t _ k n e e ' : { ' x ' : k p s . k e y p o i n t s [ l l ] . x , ' y ' : k p s . k e y p o i n t s [ l l ] . y } ,
' r i g h t _ s h o u l d e r ' : { ' x ' : k p s . k e y p o i n t s [ 1 2 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 2 ] . y } ,
' r i g h t _ w r i t s ' : { ' x ' : k p s . k e y p o i n t s [ 1 3 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 3 ] . y } ,
' t o r s o ' : { ' x ' : k p s . k e y p o i n t s [ 1 4 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 4 ] . y }
}
})

c o u n t e r += l

s e l f . __ f l i p p e r ( r o t , k p s , s a m p l e , c o u n t e r )
c o u n t e r += l

86

87

88

89

90

91

92

93

94

95

96

97

98

99

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7
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1 0 9

1 1 0

1 1 1

1 1 2

1 1 3

1 1 4

F l i p s t h e i m a g e a n d t h e k e y p o i n t s .
: p a r a m i m a g e : T h e i m a g e t h a t is to be f l i p p e d .
: p a r a m k p s : K e y p o i n t s f o r t h e c u r r e n t i m a g e .
: p a r a m n a m e : Name of t h e c u r r e n t i m a g e b e i n g a u g m e n t e d .
: r e t u r n : New k e y p o i n t s f o r t h e f l i p p e d i m a g e .
" " "
s e q = i a a . S e q u e n t i a l ( [

# f l i p i m a g e
i a a . F l i p l r ( 1 . 0 ) , # h o r i z o n t a l l y f l i p 100% of t h e i m a g e s

], r a n d o m _ o r d e r = T r u e )

i m a g e _ a u g , k p s _ a u g = s e q ( i m a g e = i m a g e , k e y p o i n t s = k p s )

n e w _ i m a g e _ n a m e = s t r ( f ' f l i p - { n a m e } ' )

s e l f . f l i p _ j s o n . u p d a t e ( { ' i m a g e ' + f ' { s t r ( c o u n t e r ) } ' : { ' i m a g e ' : n e w _ i m a g e _ n a m e ,
' h e a d ' : { ' x ' : k p s . k e y p o i n t s [ 0 ] . x , ' y ' : k p s . k e y p o i n t s [ 0 ] . y } ,
l e f t a n k l e ' : { ' x ' : k p s . k e y p o i n t s [ 8 ] . x , ' y ' : k p s . k e y p o i n t s [ 8 ] . y } ,
' l e f t e l b o w ' : { ' x ' : k p s . k e y p o i n t s [ 9 ] . x , ' y ' : k p s . k e y p o i n t s [ 9 ] . y } ,
' l e f t _ h i p ' : { ' x ' : k p s . k e y p o i n t s [ 1 0 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 0 ] . y } ,
' l e f t _ k n e e ' : { ' x ' : k p s . k e y p o i n t s [ l l ] . x , ' y ' : k p s . k e y p o i n t s [ l l ] . y } ,
' l e f t _ s h o u l d e r ' : { ' x ' : k p s . k e y p o i n t s [ 1 2 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 2 ] . y } ,
' l e f t _ w r i s t ' : { ' x ' : k p s . k e y p o i n t s [ 1 3 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 3 ] . y } ,
' n e c k ' : { ' x ' : k p s . k e y p o i n t s [ 7 ] . x , ' y ' : k p s . k e y p o i n t s [ 7 ] . y } ,
' r i g h t _ a n k l e ' : { ' x ' : k p s . k e y p o i n t s [ 1 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 ] . y } ,
' r i g h t _ e l b o w ' : { ' x ' : k p s . k e y p o i n t s [ 2 ] . x , ' y ' : k p s . k e y p o i n t s [ 2 ] . y } ,
' r i g h t _ h i p ' : { ' x ' : k p s . k e y p o i n t s [ 3 ] . x , ' y ' : k p s . k e y p o i n t s [ 3 ] . y } ,
' r i g h t _ k n e e ' : { ' x ' : k p s . k e y p o i n t s [ 4 ] . x , ' y ' : k p s . k e y p o i n t s [ 4 ] . y } ,
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115 ’ r ight_shoulder ’ : { ’x ’ : kps . keypoints [ 5 ] . x , ’ y ’ : kps . keypoints [ 5 ] . y} ,
116 ’ r ight_writs ’ : { ’x ’ : kps . keypoints [ 6 ] . x , ’ y ’ : kps . keypoints [ 6 ] . y} ,
117 ’ to r so ’ : { ’x ’ : kps . keypoints [ 1 4 ] . x , ’ y ’ : kps . keypoints [ 1 4 ] . y}
118 }
119 })
120

121 save_img = Image . fromarray ( image_aug )
122 save_img . save ( f ’ { s e l f . output_dir }{new_image_name} ’ )

Listing E.3: FireboltImageFlipper.py, Python script for flipping images and keypoints
horizontally. The scrip uses both Filch (Appendix D.1 and FireboltUtils.py (Appendix
E.1)

107

E.3. FIREBOLTIMAGEFLIPPER.PY

1 1 5

1 1 6

1 1 7

1 1 8

1 1 9

120

121

122

' r i g h t _ s h o u l d e r ' : { ' x ' : k p s . k e y p o i n t s [ 5 ] . x , ' y ' : k p s . k e y p o i n t s [ 5 ] . y } ,
' r i g h t _ w r i t s ' : { ' x ' : k p s . k e y p o i n t s [ 6 ] . x , ' y ' : k p s . k e y p o i n t s [ 6 ] . y } ,
' t o r s o ' : { ' x ' : k p s . k e y p o i n t s [ 1 4 ] . x , ' y ' : k p s . k e y p o i n t s [ 1 4 ] . y }
}

})

s a v e _ i m g = I m a g e . f r o m a r r a y ( i m a g e _ a u g )
s a v e _ i m g . s a v e ( f ' { s e l f. o u t p u t _ d i r }{ new_imagen a m e } ')

Listing E.3: FireboltlmageFlipper.py, Python script for flipping images and keypoints
horizontally. The scrip uses both Filch (Appendix D.l and FireboltUtils.py (Appendix
E . l )
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E.4 FireboltResizer.py

1

2 import os
3 from PIL import Image
4

5

6 c l a s s F i r ebo l tRes i z e r :
7 def __init__( s e l f , d i rectory , output , s i z e ) :
8 s e l f . d i r e c to ry = d i r e c to ry
9 s e l f . output = output

10 s e l f . s i z e = s i z e
11

12 def r e s i z e ( s e l f ) :
13 images = os . l i s t d i r ( s e l f . d i r e c to ry )
14 f o r image in images :
15 img = Image . open ( s e l f . d i r e c to ry + ’ / ’ + image )
16 r e s i z e d = img . r e s i z e ( ( s e l f . s i z e , s e l f . s i z e ) )
17 r e s i z e d . save ( s e l f . output + ’ / ’ + image )

Listing E.4: FireboltResizer.py, Python script for resizing images in a directory.
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E.4 FireboltResizer.py

2 i m p o r t os
3 f rom P I L i m p o r t Image
4

5

6 c l a s s F i r e b o l t R e s i z e r :
7 d e f i n i t ( s e l f , d i r e c t o r y , o u t p u t , s i z e ) :
8 s e l f . d i r e c t o r y = d i r e c t o r y
o s e l f . o u t p u t = o u t p u t

10

11

12 d e f r e s i z e ( s e l f ) :
13 i m a g e s = o s . l i s t d i r ( s e l f . d i r e c t o r y )
14 f o r image in i m a g e s :
15 img = I m a g e . o p e n ( s e l f . d i r e c t o r y + ' / ' + i m a g e )
16 r e s i z e d = i m g . r e s i z e ( ( s e l f . s i z e , s e l f . s i z e ) )
11 r e s i z e d . s a v e ( s e l f . o u t p u t + ' / ' + i m a g e )

s e l f . s i z e = s i z e

Listing E.4: FireboltResizer.py, Python script for resizing images in a directory.
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E.5 FireboltDatasetCreator.py

1

2 import j son
3 from tqdm import tqdm
4 from PIL import Image
5 import imgaug . augmenters as iaa
6 from Fi lch . F i l c h U t i l s import get_pose
7 from Fi r ebo l t . F i r e b o l t U t i l s import get_json_dict , get_kpsoi
8

9

10 c l a s s FireboltDatasetCreator :
11 ”””
12 Firebo l tDataset c l a s s f o r c r ea t ing f i n a l j son f i l e f o r dataset .
13 ”””
14

15 def __init__( s e l f , img_dir : s t r , input_json : str ,
16 output_dir : s t r , output_json_path : s t r ) :
17 ”””
18

19 : param img_dir : Path to image d i r e c to ry .
20 : param input_json : Path to input json f i l e .
21 : param output_dir : Path to output d i r e c to ry .
22 : param output_json_path : Path to output json f i l e .
23 ”””
24 s e l f . img_dir = img_dir
25 s e l f . input_json = input_json
26 s e l f . output_dir = output_dir
27 s e l f . output_json_path = output_json_path
28 s e l f . j son_dict = get_json_dict ( s e l f . input_json )
29 s e l f . samples = l i s t ( s e l f . j son_dict . keys ( ) )
30 s e l f . tra in_json = {}
31

32 def c reate ( s e l f , augment : bool = False ) :
33 ”””
34 Creates the dataset .
35 : param augment : Boolean to augment or not .
36 : return :
37 ”””
38 s e l f . __process ( augment )
39

40 with open ( s e l f . output_json_path , ’w ’ ) as o u t f i l e :
41 j son .dump( s e l f . train_json , o u t f i l e , indent=2)
42

43 def __process ( s e l f , aug : bool ) :
44 ”””
45 Processes the dataset .
46 : param aug : Boolean to augment or not .
47 ”””
48 f o r sample in tqdm( s e l f . samples ) :
49 data = get_pose ( sample , s e l f . json_dict , s e l f . img_dir )
50 image = data [ ”img_data” ]
51 keypoint = data [ ” j o i n t s ” ]
52 kps = get_kpsoi ( keypoint , image . shape )
53

54 i f aug :
55 seq = iaa . Sequent ia l ( [
56 i aa . Sometimes (
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E.5 FireboltDatasetCreator.py

2 i m p o r t j s o n
3 f rom tqdm i m p o r t tqdm
4 f rom P I L i m p o r t Image
5 i m p o r t i m g a u g . a u g m e n t e r s as i a a
6 f rom F i l c h . F i l c h U t i l s i m p o r t ge t p o s e
7 f rom F i r e b o l t . F i r e b o l t U t i l s i m p o r t g e t _ j s o n _ d i c t , g e t _ k p s o i
8

9

10 c l a s s F i r e b o l t D a t a s e t C r e a t o r :
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

F i r e b o l t D a t a s e t c l a s s f o r c r e a t i n g f i n a l j s o n f i l e f o r d a t a s e t .
1 1 9 19

d e f i n i t ( s e l f , img d i r : s t r , i n p u t _ j s o n : s t r ,
o u t p u t _ d i r : s t r , o u t p u t j s o np a t h : s t r ) :

: pa ram img d i r : P a t h to image d i r e c t o r y .
: p a r a m i n p u t _ j s o n : P a t h to i n p u t j s o n f i l e .
: pa ram o u t p u t _ d i r : P a t h to o u t p u t d i r e c t o r y .
: pa ram o u t p u t j s o np a t h : P a t h to o u t p u t j s o n f i l e .
1 1 1 9 19

s e l f . i m g d i r = img d i r
s e l f . i n p u t _ j s o n = i n p u t _ j s o n
s e l f . o u t p u t _ d i r = o u t p u t _ d i r
s e l f . o u t p u t _ j s o n _ p a t h = o u t p u t _ j s o n _ p a t h
s e l f . j s o n _ d i c t = g e t _ j s o n _ d i c t ( s e l f . i n p u t _ j s o n )
s e l f . s a m p l e s = l i s t ( s e l f . j s o n _ d i c t . k e y s ( ) )
s e l f . t r a i n j s o n = {}

d e f c r e a t e ( s e l f , a u g m e n t : boo!
1 1 1 9 19

F a l s e ) :

C r e a t e s t h e d a t a s e t .
: pa ram a u g m e n t : B o o l e a n to augment or n o t .
: r e t u r n :

se l f · p r o c e s s ( a u g m e n t )

w i t h o p e n ( s e l f . o u t p u t _ j s o n _ p a t h , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . t r a i n j s o n , o u t f i l e , i n d e n t = 2 )

d e f p r o c e s s ( s e l f , a u g : b o o l) :
3

P r o c e s s e s t h e d a t a s e t .
: pa ram a u g : B o o l e a n to augment or n o t .
1 1 9 19

f o r s a m p l e in t q d m ( s e l f . s a m p l e s ) :
d a t a = ge t p o s e ( s a m p l e , se l f. js o n _ d i c t , se l f . i m g d i r )
image = d a t a [ " i m g d a t a " ]
k e y p o i n t = d a t a [ " j o i n t s " ]
k p s = g e t _ k p s o i ( k e y p o i n t , i m a g e . s h a p e )

if a u g :
s e q = i a a . S e q u e n t i a l ( [

i a a . S o m e t i m e s (
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57 0 .5 ,
58 i aa . Multiply ( ( 0 . 9 0 , 1 .10) ) ,
59 i aa . Af f ine ( ro tate =(−20, 20) ,
60 translate_px={”x” : [ −30 , 30 ] ,
61 ”y” : [ −30 , 30 ]} , shear =(−10, 10) ,
62 s c a l e =(0.80 , 1 . 3 ) )
63 ) ,
64 i aa . Sometimes (
65 0 .1 ,
66 i aa . imgcorrupt l ike . MotionBlur ( s e v e r i t y =1)
67 # iaa . GaussianBlur ( sigma=(0 , 0 . 6 ) )
68 ) ,
69 i aa . Sometimes (
70 0 .1 ,
71 i aa . imgcorrupt l ike . Snow( s e v e r i t y =1)
72 ) ,
73 i aa . Sometimes (
74 0 .1 ,
75 i aa . Rain ( drop_size =(0.10 , 0 .20) )
76 ) ,
77

78 ] , random_order=True )
79 image_aug , kps_aug = seq ( image=image , keypoints=kps )
80 save_img = Image . fromarray ( image_aug )
81 save_img . save ( f ’ { s e l f . output_dir }{sample} ’ )
82

83 f o r i in range (15) : # Check i f the keypoints are out o f bounds .
84 i f kps . keypoints [ i ] . x == 0 and kps . keypoints [ i ] . y == 0:
85 kps_aug . keypoints [ i ] . x = 0
86 kps_aug . keypoints [ i ] . y = 0
87

88 i f kps_aug . keypoints [ i ] . x < 0 or kps_aug . keypoints [ i ] . y < 0 :
89 kps_aug . keypoints [ i ] . x = 0
90 kps_aug . keypoints [ i ] . y = 0
91

92 i f kps_aug . keypoints [ i ] . x > 224 or kps_aug . keypoints [ i ] . y > 224:
93 kps_aug . keypoints [ i ] . x = 0
94 kps_aug . keypoints [ i ] . y = 0
95

96 s e l f . __update_json (kps_aug , sample )
97

98 e l s e :
99 save_img = Image . fromarray ( image )

100 save_img . save ( f ’ { s e l f . output_dir }{sample} ’ )
101

102 f o r i in range (15) : # Check i f the keypoints are out o f bounds .
103 i f kps . keypoints [ i ] . x == 0 and kps . keypoints [ i ] . y == 0:
104 kps . keypoints [ i ] . x = 0
105 kps . keypoints [ i ] . y = 0
106

107 i f kps . keypoints [ i ] . x < 0 or kps . keypoints [ i ] . y < 0 :
108 kps . keypoints [ i ] . x = 0
109 kps . keypoints [ i ] . y = 0
110

111 i f kps . keypoints [ i ] . x > 224 or kps . keypoints [ i ] . y > 224:
112 kps . keypoints [ i ] . x = 0
113 kps . keypoints [ i ] . y = 0
114
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57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7
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1 0 9

1 1 0

1 1 1

1 1 2

1 1 3

1 1 4

0 . 5 ,
i a a . M u l t i p l y ( ( 0 . 9 0 , 1 . 1 0 ) ) ,
i a a . A f f i n e ( r o t a t e = ( - 2 0 , 2 0 ) ,

t r a n s l a t e _ p x = { " x " : [ - 3 0 , 3 0 ] ,
" y " : [ - 3 0 , 3 0 ] } , s h e a r = ( - 1 0 , 1 0 ) ,
s c a l e = ( 0 . 8 0 , 1 . 3 ) )

) '
ia a. S o m e t i m e s (

0 . 1 ,
ia a. i m g c o r r u p t l i k e . M o t i o n B l u r ( s e v e r i t y = l )
## i a a . G a u s s i a n B l u r ( s i g m a = ( 0 , 0 . 6 ) )

) '
ia a. S o m e t i m e s (

0 . 1 ,
i a a . i m g c o r r u p t l i k e . S n o w ( s e v e r i t y = l )

) '
ia a. S o m e t i m e s (

0 . 1 ,
i a a . R a i n ( d r o p s i z e = ( 0 . 1 0 , 0 . 2 0 ) )

) '

], r a n d o m _ o r d e r = T r u e )
i m a g e _ a u g , k p s _ a u g = s e q ( i m a g e = i m a g e , k e y p o i n t s = k p s )
s a v e _ i m g = I m a g e . f r o m a r r a y ( i m a g e _ a u g )
s a v e _ i m g . s a v e ( f ' { s e l f. o u t p u t _ d i r } { s a m p l e } ')

f o r i in r a n g e ( 1 5 ) : # C h e c k if t h e k e y p o i n t s a r e o u t of b o u n d s .
if k p s . k e y p o i n t s [ i ] . x = 0 a n d k p s . k e y p o i n t s [ i ] . y 0:

k p s _ a u g . k e y p o i n t s [ i ] . x 0
k p s a g . k e y p o i n t s [ i ] . y = 0

if kpsa u g . k e y p o i n t s [ i ] . x < 0 or kpsa u g . k e y p o i n t s [ i ] . y < 0:
k p s _ a u g . k e y p o i n t s [ i ] . x 0
k p s a g . k e y p o i n t s [ i ] . y = 0

if kpsa u g . k e y p o i n t s [ i ] . x > 224 or k p s _ a u g . k e y p o i n t s [ i ] . y > 2 2 4 :
k p s _ a u g . k e y p o i n t s [ i ] . x 0
k p s a g . k e y p o i n t s [ i ] . y = 0

s e l f . __ u p d a t e _ j s o n ( k p s _ a u g , s a m p l e )

e l s e :
s a v e _ i m g = I m a g e . f r o m a r r a y ( i m a g e )
s a v e _ i m g . s a v e ( f ' { s e l f. o u t p u t _ d i r } { s a m p l e } ')

f o r i in r a n g e ( 1 5 ) : # C h e c k if t h e k e y p o i n t s a r e o u t of b o u n d s .
if k p s . k e y p o i n t s [ i ] . x = 0 a n d k p s . k e y p o i n t s [ i ] . y 0:

k p s . k e y p o i n t s [ i ] . x 0
k p s . k e y p o i n t s [ i ] . y = 0

if k p s . k e y p o i n t s [ i ] . x <<0 or k p s . k e y p o i n t s [ i ] . y < 0:
k p s . k e y p o i n t s [ i ] . x 0
k p s . k e y p o i n t s [ i ] . y = 0

if k p s . k e y p o i n t s [ i ] . x > 224 or k p s . k e y p o i n t s [ i ] . y > 2 2 4 :
k p s . k e y p o i n t s [ i ] . x 0
k p s . k e y p o i n t s [ i ] . y = 0
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115 s e l f . __update_json ( kps , sample )
116

117 def __update_json ( s e l f , kps , sample ) :
118 ”””
119 Updates the json d i c t i onary .
120 : param kps : The keypoints f o r the current image
121 : param sample : The name of the current image .
122 : return :
123 ”””
124 s e l f . tra in_json . update ({ sample :
125 { ’ image_path ’ : sample ,
126 ’ j o i n t s ’ :
127 [ [ kps . keypoints [ 0 ] . x , kps . keypoints [ 0 ] . y ] ,
128 [ kps . keypoints [ 1 ] . x , kps . keypoints [ 1 ] . y ] ,
129 [ kps . keypoints [ 2 ] . x , kps . keypoints [ 2 ] . y ] ,
130 [ kps . keypoints [ 3 ] . x , kps . keypoints [ 3 ] . y ] ,
131 [ kps . keypoints [ 4 ] . x , kps . keypoints [ 4 ] . y ] ,
132 [ kps . keypoints [ 5 ] . x , kps . keypoints [ 5 ] . y ] ,
133 [ kps . keypoints [ 6 ] . x , kps . keypoints [ 6 ] . y ] ,
134 [ kps . keypoints [ 7 ] . x , kps . keypoints [ 7 ] . y ] ,
135 [ kps . keypoints [ 8 ] . x , kps . keypoints [ 8 ] . y ] ,
136 [ kps . keypoints [ 9 ] . x , kps . keypoints [ 9 ] . y ] ,
137 [ kps . keypoints [ 1 0 ] . x , kps . keypoints [ 1 0 ] . y ] ,
138 [ kps . keypoints [ 1 1 ] . x , kps . keypoints [ 1 1 ] . y ] ,
139 [ kps . keypoints [ 1 2 ] . x , kps . keypoints [ 1 2 ] . y ] ,
140 [ kps . keypoints [ 1 3 ] . x , kps . keypoints [ 1 3 ] . y ] ,
141 [ kps . keypoints [ 1 4 ] . x , kps . keypoints [ 1 4 ] . y ]
142 ] }
143

144 }
145 )

Listing E.5: FireboltDatasetCreator.py, Python script creating the final JSON output file
for our datasets. The script also augments the images of the set. The scrip uses both Filch
(Appendix D.1 and FireboltUtils.py (Appendix E.1)
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1 1 5

1 1 6

1 1 7

1 1 8

1 1 9

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

se l f. u p d a t e_ j s o n ( k p s , s a m p l e )

d e f u p d a t e j s o n ( s e l f , k p s , s a m p l e ) :

U p d a t e s t h e js o n d i c t i o n a r y .
: pa ram k p s : The k e y p o i n t s f o r t h e c u r r e n t image
: param s a m p l e : T h e name of t h e c u r r e n t i m a g e .
: r e t u r n :

s e l f . t r a i n _ j s o n . u p d a t e ( { s a m p l e :
{ ' i m a g ep a t h ': s a m p l e ,

' j o i n t s ' :
[ [ k p s . k e y p o i n t s [ 0 ] . x , k p s . k e y p o i n t s [ 0 ] . y ] ,
[ k p s . k e y p o i n t s [ 1 ] . x , k p s . k e y p o i n t s [ 1 ] . y ] ,
[ k p s . k e y p o i n t s [ 2 ] . x , k p s . k e y p o i n t s [ 2 ] . y ] ,
[ k p s . k e y p o i n t s [ 3 ] . x , k p s . k e y p o i n t s [ 3 ] . y ] ,
[ k p s . k e y p o i n t s [ 4 ] . x , k p s . k e y p o i n t s [ 4 ] . y ] ,
[ k p s . k e y p o i n t s [ 5 ] . x , k p s . k e y p o i n t s [ 5 ] . y ] ,
[ k p s . k e y p o i n t s [ 6 ] . x , k p s . k e y p o i n t s [ 6 ] . y ] ,
[ k p s . k e y p o i n t s [ 7 ] . x , k p s . k e y p o i n t s [ 7 ] . y ] ,
[ k p s . k e y p o i n t s [ 8 ] . x , k p s . k e y p o i n t s [ 8 ] . y ] ,
[ k p s . k e y p o i n t s [ 9 ] . x , k p s . k e y p o i n t s [ 9 ] . y ] ,
[ k p s . k e y p o i n t s [ 1 0 ] . x , k p s . k e y p o i n t s [ 1 0 ] . y ]
[ k p s . k e y p o i n t s [ 1 1 ] . x , k p s . k e y p o i n t s [ 1 1 ] . y ] ,
[ k p s . k e y p o i n t s [ 1 2 ] . x , k p s . k e y p o i n t s [ 1 2 ] . y ] ,
[ k p s . k e y p o i n t s [ 1 3 ] . x , k p s . k e y p o i n t s [ 1 3 ] . y ] ,
[ k p s . k e y p o i n t s [ 1 4 ] . x , k p s . k e y p o i n t s [ 1 4 ] . y ]
]}

}
)

Listing E.5: FireboltDatasetCreator.py, Python script creating the final JSON output file
for our datasets. The script also augments the images of the set. The scrip uses both Filch
(Appendix D.l and FireboltUtils.py (Appendix E . l )
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E.6 FireboltDataSplitter.py

1

2 import os
3 import j son
4 from colorama import Fore
5 from Fi lch . F i l c h U t i l s import get_json_to_split
6

7

8 c l a s s F i r ebo l tDataSp l i t t e r :
9 def __init__( s e l f , json_path , out_dir ) :

10 ”””
11 I n i t i a l i z e the c l a s s .
12 : param json_path : path to big j son f i l e .
13 : param out_dir : path to output d i r e c to ry where the f i l e s w i l l be saved .
14 ”””
15 s e l f . json_path = json_path
16 s e l f . out_dir = out_dir
17 s e l f . samples , s e l f . j son_dict = get_json_to_split ( s e l f . json_path )
18 s e l f . sp l i t_va lue = int ( len ( s e l f . samples ) ) /8
19 s e l f . s p l i t 1 , s e l f . s p l i t 2 , s e l f . s p l i t 3 , s e l f . s p l i t 4 , s e l f . s p l i t 5 ,
20 s e l f . s p l i t 6 , s e l f . s p l i t 7 , s e l f . s p l i t 8 = {} , {} , {} , {} , {} , {} , {} , {}
21

22 def sp l i t_data ( s e l f ) :
23 ”””
24 S p l i t the data into 8 parts then run the
25 __dump_json method to save the data into f i l e s .
26 : return :
27 ”””
28 pr int ( Fore .GREEN, f ’ S p l i t value : { s e l f . sp l i t_va lue }\n ’
29 f ’Number o f samples : { len ( s e l f . samples ) } ’ )
30

31 f o r i in range ( len ( s e l f . samples ) ) :
32 i f i < s e l f . sp l i t_va lue :
33 s e l f . s p l i t 1 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
34 e l i f s e l f . sp l i t_va lue ∗ 1 < i <= s e l f . sp l i t_va lue ∗ 2 :
35 s e l f . s p l i t 2 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
36 e l i f s e l f . sp l i t_va lue ∗ 2 < i <= s e l f . sp l i t_va lue ∗ 3 :
37 s e l f . s p l i t 3 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
38 e l i f s e l f . sp l i t_va lue ∗ 4 >= i > s e l f . sp l i t_va lue ∗ 3 :
39 s e l f . s p l i t 4 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
40 e l i f s e l f . sp l i t_va lue ∗ 4 < i <= s e l f . sp l i t_va lue ∗ 5 :
41 s e l f . s p l i t 5 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
42 e l i f s e l f . sp l i t_va lue ∗ 5 < i <= s e l f . sp l i t_va lue ∗ 6 :
43 s e l f . s p l i t 6 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
44 e l i f s e l f . sp l i t_va lue ∗ 6 < i <= s e l f . sp l i t_va lue ∗ 7 :
45 s e l f . s p l i t 7 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
46 e l i f s e l f . sp l i t_va lue ∗ 8 >= i > s e l f . sp l i t_va lue ∗ 7 :
47 s e l f . s p l i t 8 [ s e l f . samples [ i ] ] = s e l f . j son_dict [ s e l f . samples [ i ] ]
48

49 pr int ( Fore .CYAN, f ’Number o f samples in s p l i t 1 : { len ( s e l f . s p l i t 1 ) }
50 \nNumber o f samples in s p l i t 2 : { len ( s e l f . s p l i t 2 ) }
51 \nNumber o f samples in s p l i t 3 : { len ( s e l f . s p l i t 3 ) }
52 \nNumber o f samples in s p l i t 4 : { len ( s e l f . s p l i t 4 ) } ’ )
53 pr int ( Fore .CYAN, f ’Number o f samples in s p l i t 5 : { len ( s e l f . s p l i t 5 ) }
54 \nNumber o f samples in s p l i t 6 : { len ( s e l f . s p l i t 6 ) }
55 \nNumber o f samples in s p l i t 7 : { len ( s e l f . s p l i t 7 ) }
56 \nNumber o f samples in s p l i t 8 : { len ( s e l f . s p l i t 8 ) } ’ )
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E.6 FireboltDataSplitter.py

2 i m p o r t os
3 i m p o r t j s o n
4 f rom c o l o r a m a i m p o r t F o r e
5 f rom F i l c h . F i l c h Ut i l s i m p o r t g e t _ j s o n _ t o _ s p l i t
6

7

8 c l a s s F i r e b o l t D a t a S p l i t t e r :
o d e f i n i t ( s e l f , json p a t h , o u t d i r ) :

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

I n i t i a l i z e t h e c l a s s .
: pa ram json p a t h : p a t h to b i g j s o n f i l e .
: p a r a m o u t _ d i r : p a t h to o u t p u t d i r e c t o r y where t h e f i l e s w i l l be s a v e d .
9 19 19

s e l f . j s o n p a t h = json p a t h
s e l f . o u t d i r = o u t d i r
s e l f . s a m p l e s , s e l f . j s o n _ d i c t = g e t _ j s o n _ t o _ s p l i t ( s e l f . j s o n _ p a t h )
s e l f . s p l i t _ v a l u e = i n t ( l e n ( s e l f . s a m p l e s ) ) / 8
s e l f . s p l i t l , s e l f . s p l i t 2 , s e l f . s p l i t 3 , s e l f . s p l i t 4 , s e l f . s p l i t 5 ,
s e l f . s p l i t 6 , s e l f . s p l i t 7 , s e l f . s p l i t 8 = { } , { } , { } , { } , { } , { } , { } , {}

d e f s p l i t _ d a t a ( se I f ) :

S p l i t t h e d a t a i n t o 8 p a r t s t h e n r u n t h e
_ d u m p _ j s o n method to s a v e t h e d a t a i n t o f i l e s .
: r e t u r n :

p r i n t ( F o r e . G R E E N , f ' S p l i t v a l u e : { s e l f . s p l i t _ v a l u e } \ n '
f ' N u m b e r of s a m p l e s : { l e n ( s e l f . s a m p l e s ) } ' )

f o r i in r a n g e ( l e n ( s e l f . s a m p l e s ) ) :
if i < s e l f . s p l i t v a l u e :

s e l f . s p l i t l [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]
e l i f s e l f . s p l i t v a l u e k 1 < i < = s e l f . s p l i t v a l u e + 2:

s e l f . s p l i t 2 [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]
e l i f s e l f . s p l i t _ v a l u e 2<< i < = s e l f . s p l i t v a l u e * 3:

s e l f . s p l i t 3 [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]
e l i f s e l f . s p l i t_ v a l u e * 4 >= i > s e l f . s p l i t_ v a l u e * 3 :

s e l f . s p l i t 4 [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]
e l i f s e l f . s p l i t _ v a l u e * 4<< i < = s e l f . s p l i t v a l u e * 5:

s e l f . s p l i t 5 [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]
e l i f s e l f . s p l i t _ v a l u e * 5 < i <= s e l f . s p l i t v a l u e * 6:

s e l f . s p l i t 6 [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]
e l i f s e l f . s p l i t _ v a l u e * 6< i <= s e l f . s p l i t v a l u e * 7:

s e l f . s p l i t 7 [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]
e l i f s e l f . s p l i t_ v a l u e * 8 >= i > s e l f . s p l i t_ v a l u e * 7 :

s e l f . s p l i t 8 [ s e l f . s a m p l e s [ i ] ] = s e l f . j s o n _ d i c t [ s e l f . s a m p l e s [ i ] ]

p r i n t ( F o r e .CYAN, f 'Number of s a m p l e s in s p l i t l: { l e n ( s e l f . s p l i t 1 ) }
\nNumber of s a m p l e s in s p l i t 2: { l e n ( s e l f . s p l i t 2 ) }
\nNumber of s a m p l e s in s p l i t 3: { l e n ( s e l f . s p l i t 3 ) }
\nNumber of s a m p l e s in s p l i t 4: { l e n ( s e l f . s p l i t 4 ) } ')

p r i n t ( F o r e .CYAN, f 'Number of s a m p l e s in s p l i t 5: { l e n ( s e l f . s p l i t 5 )}
\nNumber of s a m p l e s in s p l i t 6: { l e n ( s e l f . s p l i t 6 ) }
\nNumber of s a m p l e s in s p l i t 7: { l e n ( s e l f . s p l i t 7 ) }
\nNumber of s a m p l e s in s p l i t 8: { l e n ( s e l f . s p l i t 8 ) } ')
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57

58 s e l f . __dump_json( )
59

60 def __dump_json( s e l f ) :
61 ”””
62 Dump the data into f i l e s .
63 : return :
64 ”””
65 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 1 . j son ’ , ’w ’ ) as o u t f i l e :
66 j son .dump( s e l f . s p l i t 1 , o u t f i l e , indent=2)
67

68 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 2 . j son ’ , ’w ’ ) as o u t f i l e :
69 j son .dump( s e l f . s p l i t 2 , o u t f i l e , indent=2)
70

71 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 3 . j son ’ , ’w ’ ) as o u t f i l e :
72 j son .dump( s e l f . s p l i t 3 , o u t f i l e , indent=2)
73

74 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 4 . j son ’ , ’w ’ ) as o u t f i l e :
75 j son .dump( s e l f . s p l i t 4 , o u t f i l e , indent=2)
76

77 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 5 . j son ’ , ’w ’ ) as o u t f i l e :
78 j son .dump( s e l f . s p l i t 5 , o u t f i l e , indent=2)
79

80 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 6 . j son ’ , ’w ’ ) as o u t f i l e :
81 j son .dump( s e l f . s p l i t 6 , o u t f i l e , indent=2)
82

83 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 7 . j son ’ , ’w ’ ) as o u t f i l e :
84 j son .dump( s e l f . s p l i t 7 , o u t f i l e , indent=2)
85

86 with open ( f ’ { s e l f . out_dir} t ra in_sp l i t 8 . j son ’ , ’w ’ ) as o u t f i l e :
87 j son .dump( s e l f . s p l i t 8 , o u t f i l e , indent=2)

Listing E.6: FireboltDataSplitter.py, Python script for splitting a JSON file into 8 new
JSON files. The module uses Filch D.1
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57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

se l f . _ d u m p _ j s o n ()

d e f _ d u m p _ j s o n ( s e l f ) :

Dump t h e d a t a i n t o f i l e s .
: r e t u r n :

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t l . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t l , o u t f i l e , i n d e n t = 2 )

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t 2 . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t 2 , o u t f i l e , i n d e n t = 2 )

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t 3 . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t 3 , o u t f i l e , i n d e n t = 2 )

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t 4 . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t 4 , o u t f i l e , i n d e n t = 2 )

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t 5 . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t 5 , o u t f i l e , i n d e n t = 2 )

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t 6 . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t 6 , o u t f i l e , i n d e n t = 2 )

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t 7 . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t 7 , o u t f i l e , i n d e n t = 2 )

w i t h o p e n ( f ' { s e l f . o u t _ d i r } t r a i n _ s p l i t 8 . j s o n ' , ' w ' ) as o u t f i l e :
js o n .dump( s e l f . s p l i t 8 , o u t f i l e , i n d e n t = 2 )

Listing E.6: FireboltDataSplitter.py, Python script for splitting a JSON file into 8 new
JSON files. The module uses Filch D.l
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Appendix F

Dobby

F.1 DobbyAugmenter.py

1

2 import imgaug . augmenters as iaa
3

4

5 def get_augmentation_parameters ( ) :
6 ”””
7 : return : Returns the augmentation parameters f o r the DobbyAugmentert .
8 ”””
9 return iaa . Sequent ia l ( [

10 i aa . Sometimes (
11 0 .5 ,
12 i aa . Multiply ( ( 0 . 9 0 , 1 .10) ) ,
13 i aa . Af f ine ( ro tate =(−20, 20) ,
14 translate_px={”x” : [ −30 , 30 ] , ”y” : [ −30 , 30 ]} ,
15 shear =(−10, 10) ,
16 s c a l e =(0.80 , 1 . 3 ) )
17 ) ,
18 i aa . Sometimes (
19 0 .1 ,
20 i aa . imgcorrupt l ike . MotionBlur ( s e v e r i t y =1)
21 # iaa . GaussianBlur ( sigma=(0 , 0 . 6 ) )
22 ) ,
23 i aa . Sometimes (
24 0 .1 ,
25 i aa . imgcorrupt l ike . Snow( s e v e r i t y =1)
26 ) ,
27 i aa . Sometimes (
28 0 .1 ,
29 i aa . Rain ( drop_size =(0.10 , 0 .20) )
30 ) ,
31 i aa . Sometimes (
32 0 .1 ,
33 i aa . GaussianBlur ( sigma=(0 , 0 . 6 ) )
34 ) ,
35 i aa . Sometimes (
36 0 ,1
37 i aa . LinearContrast ( ( 0 . 7 5 , 1 . 5 ) ) ,
38 )
39 i aa . Sometimes (

115

Appendix F

Dobby

F. l D o b b y Augmenter .py

2 i m p o r t i m g a u g . a u g m e n t e r s as i a a
3

4

5 d e f g e t _ a u g m e n t a t i o n _ p a r a m e t e r s () :
6

7

8

: r e t u r n : R e t u r n s t h e a u g m e n t a t i o n p a r a m e t e r s f o r t h e D o b b y A u g m e n t e r t .
1 1 9 19

o r e t u r n i a a . S e q u e n t i a l ( [
10 i a a . S o m e t i m e s (
11 0 . 5 ,
12 i a a . M u l t i p l y ( ( 0 . 9 0 , 1 . 1 0 ) ) ,
13 i a a . A f f i n e ( r o t a t e = ( - 2 0 , 2 0 ) ,
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

t r a n s l a t e p x = { " " : [ - 3 0 , 3 0 ] , " y " : [ - 3 0 , 3 0 ] } ,
s h e a r = ( - 1 0 , 1 0 ) ,
s c a l e = ( 0 . 8 0 , 1 . 3 ) )

) ,
i a a . S o m e t i m e s (

0 . 1 ,
i a a . i m g c o r r u p t l i k e . M o t i o n B l u r ( s e v e r i t y = 1 )
# i a a . G a u s s i a n B l u r ( s i g m a = ( 0 , 0 . 6 ) )

) ,
i a a . S o m e t i m e s (

0 . 1 ,
i a a . i m g c o r r u p t l i k e . S n o w ( s e v e r i t y = 1 )

) ,
i a a . S o m e t i m e s (

0 . 1 ,
i a a . R a i n ( d r o p _ s i z e = ( 0 . 1 0 , 0 . 2 0 ) )

) ,
i a a . S o m e t i m e s (
0 . 1 ,
i a a . G a u s s i a n B l u r ( s i g m a = ( 0 , 0 . 6 ) )
) ,
i a a . S o m e t i m e s (
0 , 1
i a a . L i n e a r C o n t r a s t ( ( 0 . 7 5 , 1 . 5 ) ) ,
)
i a a . S o m e t i m e s (
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40 0 ,1
41 i aa . AdditiveGaussianNoise ( l o c =0, s c a l e =(0.0 , 0 .05 ∗ 255) ,
42 per_channel =0.1)
43 )
44

45 ] , random_order=True )
46

47

48 def get_validation_augmentation_parameters ( ) :
49 ”””
50 : return : Returns the augmentation parameters f o r the DobbyAugmentert .
51 ”””
52 return iaa . Sequent ia l ( [
53 i aa . Sometimes (
54 0 .5 ,
55 i aa . Multiply ( ( 0 . 9 0 , 1 .10) ) ,
56 i aa . Af f ine ( ro tate =(−20, 20) ,
57 translate_px={”x” : [ −30 , 30 ] , ”y” : [ −30 , 30 ]} ,
58 shear =(−10, 10) ,
59 s c a l e =(0.80 , 1 . 3 ) )
60 ) ,
61 i aa . Sometimes (
62 0 .1 ,
63 i aa . imgcorrupt l ike . MotionBlur ( s e v e r i t y =1)
64 # iaa . GaussianBlur ( sigma=(0 , 0 . 6 ) )
65 ) ,
66 i aa . Sometimes (
67 0 .1 ,
68 i aa . imgcorrupt l ike . Snow( s e v e r i t y =1)
69 ) ,
70 i aa . Sometimes (
71 0 .1 ,
72 i aa . Rain ( drop_size =(0.10 , 0 .20) )
73 ) ,
74

75 ] , random_order=True )

Listing F.1: DobbyAugmenter.py, Python script for returning imgaug augmentation
parameters.
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40

41

42

43

44

45

46

47

48 d e f
49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

0 , 1
i a a . A d d i t i v e G a u s s i a n N o i s e ( l o c = 0 , s c a l e = ( 0 . 0 , 0 . 0 5 2 5 5 ) ,

p e rc h a n n e l = 0 . 1 )

], r a n d o mo r d e r = T r u e )

g e t _ v a l i d a t i o n _ a u g m e n t a t i o n _ p a r a m e t e r s ( ) :
9 19 19

: r e t u r n : R e t u r n s t h e a u g m e n t a t i o n p a r a m e t e r s f o r t h e D o b b y A u g m e n t e r t .
9 $9 $9

r e t u r n i a a . S e q u e n t i a l ( [
i a a . S o m e t i m e s (

0 . 5 ,
i a a . M u l t i p l y ( ( 0 . 9 0 , 1 . 1 0 ) ) ,
i a a . A f f i n e ( r o t a t e = ( - 2 0 , 2 0 ) ,

t r a n s l a t e p x = { " " : [ - 3 0 , 3 0 ] , " y " : [ - 3 0 , 3 0 ] } ,
s h e a r = ( - 1 0 , 1 0 ) ,
s c a l e = ( 0 . 8 0 , 1 . 3 ) )

) '
i a a . S o m e t i m e s (

0. l,
i a a . i m g c o r r u p t l i k e . M o t i o n B l u r ( s e v e r i t y = 1 )
# i a a . G a u s s i a n B l u r ( s i g m a = ( 0 , 0 . 6 ) )

) '
i a a . S o m e t i m e s (

0. l,
i a a . i m g c o r r u p t l i k e . S n o w ( s e v e r i t y = l )

) '
i a a . S o m e t i m e s (

0. l,
i a a . R a i n ( d r o p _ s i z e = ( 0 . 1 0 , 0 . 2 0 ) )

) '

], r a n d o mo r d e r = T r u e )

Listing F . l : DobbyAugmenter.py, Python script for returning imgaug augmentation
parameters.
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F.2 DobbyDataset.py

1 import gc
2 import numpy as np
3 from typing import Optional
4 from tensor f low import keras
5 from Fi lch . F i l c h U t i l s import get_pose
6 from imgaug . augmentables . kps import KeypointsOnImage , Keypoint
7

8

9 c l a s s DobbyDataset ( keras . u t i l s . Sequence ) :
10 ”””
11 A c l a s s that r epre s ent s a dataset o f keypoints .
12 ”””
13 def __init__( s e l f , image_keys , aug , json_dict , image_dir : s t r ,
14 batch_size : Optional [ i n t ] = 32 , t r a in : Optional [ bool ] = True ) :
15 ”””
16 I n i t i a l i z e s a DobbyDataset ob ject .
17 : param image_keys : Names o f the images
18 : param aug : Augmentation p i p e l i n e . expect ing iaa . Sequent ia l ( )
19 : param json_dict : Dict ionary conta in ing the keypoints and image names .
20 : param image_dir : Path to image d i r e c to ry
21 : param batch_size : Batch s i z e f o r the dataset .
22 : param tra in : I f i t i s a t r a in ing se t or not .
23 ”””
24 s e l f . image_keys = image_keys
25 s e l f . aug = aug
26 s e l f . batch_size = batch_size
27 s e l f . t r a in = tra in
28 s e l f . image_dir = image_dir
29 s e l f . j son_dict = json_dict
30 s e l f . on_epoch_end ( )
31

32 def __len__( s e l f ) :
33 return len ( s e l f . image_keys ) // s e l f . batch_size
34

35 def on_epoch_end( s e l f ) :
36 s e l f . indexes = np . arange ( len ( s e l f . image_keys ) )
37 i f s e l f . t r a in :
38 np . random . s h u f f l e ( s e l f . indexes )
39 gc . c o l l e c t ( )
40 keras . backend . c l ea r_se s s i on ( )
41

42 def __getitem__( s e l f , index ) :
43 indexes = s e l f . indexes [ index ∗ s e l f . batch_size : ( index + 1) ∗ s e l f . batch_size ]
44 image_keys_temp = [ s e l f . image_keys [ k ] f o r k in indexes ]
45 ( images , keypoints ) = s e l f . __data_generation ( image_keys_temp)
46

47 return images , keypoints
48

49 def __data_generation ( s e l f , image_keys_temp) :
50 batch_images = np . empty ( ( s e l f . batch_size , 224 , 224 , 3) , dtype=” in t ” )
51 batch_keypoints = np . empty(
52 ( s e l f . batch_size , 1 , 1 , 30) , dtype=” f l o a t 3 2 ”
53 )
54

55 f o r i , key in enumerate ( image_keys_temp) :
56 data = get_pose ( key , s e l f . json_dict , s e l f . image_dir )
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F.2 DobbyDataset .py

1 i m p o r t ge
2 i m p o r t numpy as np
3 f rom t y p i n g i m p o r t O p t i o n a l
4 f rom t e n s o r f l o w i m p o r t k e r a s
5 f rom F i l c h . F i l c h U t i l s i m p o r t ge t p o s e
6 f rom i m g a u g . a u g m e n t a b l e s . k p s i m p o r t K e y p o i n t s O n i m a g e , K e y p o i n t
7

8

o c l a s s D o b b y D a t a s e t ( k e r a s . u t i l s . S e q u e n c e ) :
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 d e f len ( s e l f ) :
33 r e t u r n l e n ( s e l f . i m a g e _ k e y s ) // s e l f . b a t c h s i z e

A c l a s s t h a t r e p r e s e n t s a d a t a s e t of k e y p o i n t s .

d e f i n i t ( s e l f , i m a g e _ k e y s , a u g , j s o n _ d i c t , i m a g e _ d i r : s t r ,
b a t c h _ s i z e : O p t i o n a l [ i n t ] = 3 2 , t r a i n : O p t i o n a l [ b o o l

I n i t i a l i z e s a D o b b y D a t a s e t o b j e c t .
: pa ram i m a g e _ k e y s : Names of t h e i m a g e s
: param a u g : A u g m e n t a t i o n p i p e l i n e . e x p e c t i n g i a a . S e q u e n t i a l ( )
: pa ram j s o n _ d i c t : D i c t i o n a r y c o n t a i n i n g t h e k e y p o i n t s and image n a m e s .
: pa ram i m a g e _ d i r : P a t h to image d i r e c t o r y
: param b a t c h s i z e : B a t c h s i z e f o r t h e d a t a s e t .
: pa ram t r a i n : If i t is a t r a i n i n g s e t or n o t .

se l f. i m a g e _ k e y s
s e l f . a u g = a u g
s e l f . b a t c h s i z e
s e l f . t r a i n = t r a i n

i m a g e _ k e y s

b a t c h s i z e

s e l f . i m a g e _ d i r = i m a g e _ d i r
s e l f . j s o n _ d i c t = j s o n _ d i c t
se l f. o n _ e p o c h _ e n d ()

T r u e ) :

34

35 d e f o n _ e p o c h _ e n d ( s e l f ) :
36 s e l f . i n d e x e s = n p . a r a n g e ( l e n ( s e l f . i m a g e _ k e y s ) )
37 if s e l f . t r a i n :
38 n p . r a n d o m . s h u f f l e ( s e l f . i n d e x e s )
39 g e . c o l l e c t ( )
40 k e r a s . b a c k e n d . c l e a r _ s e s s i o n ()
41

42 d e f g e t i t e m ( s e l f , i n d e x ) :
43 i n d e x e s = s e l f . i n d e x e s [ i n d e x k s e l f . b a t c h s i z e : ( i n d e x + l) k s e l f . b a t c hs i z e ]
44 i m a g e _ k e y s _ t e m p = [ s e l f . i m a g e _ k e y s [ k ] f o r k in i n d e x e s ]
45 ( images , k e y po in t s ) = se l f. d a t a g e n e r a t i o n ( i m a g e _ k e y s _ t e m p )
46

47

48

49 d e f d a t a g e n e r a t i o n ( s e l f , image keyst e m p ) :
50 b a t c h _ i m a g e s = n p . e m p t y ( ( s e l f . b a t c h _ s i z e , 2 2 4 , 2 2 4 , 3 ) , d t y p e = " i n t " )
51 b a t c h _ k e y p o i n t s = n p . e m p t y (
52 ( s e l f . b a t c h _ s i z e , l, 1, 3 0 ) , d t y p e = " f l o a t 3 2 "

r e t u r n i m a g e s , k e y p o i n t s

53

54

55

56

f o r i, key in e n u m e r a t e ( i m a g e _ k e y s _ t e m p ) :
d a t a = ge t p o s e ( k e y , s e l f . j s o n d i c t , s e l f . i m a g e _ d i r )
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57 current_keypoint = np . array ( data [ ” j o i n t s ” ] ) [ : , : 2 ]
58 kps = [ ]
59

60 # To apply our data augmentation p ipe l ine , we f i r s t need to
61 # form Keypoint ob j e c t s with the o r i g i n a l coord inates .
62 f o r j in range (0 , l en ( current_keypoint ) ) :
63 kps . append ( Keypoint (x=current_keypoint [ j ] [ 0 ] , y=current_keypoint [ j ] [ 1 ] ) )
64

65 # We then pro j e c t the o r i g i n a l image and i t s keypoint coord inates .
66 current_image = data [ ”img_data” ]
67 kps_obj = KeypointsOnImage ( kps , shape=current_image . shape )
68

69 # Apply the augmentation p i p e l i n e .
70 (new_image , new_kps_obj ) = s e l f . aug ( image=current_image , keypoints=kps_obj )
71 batch_images [ i , ] = new_image
72

73 # Parse the coord inates from the new keypoint ob ject .
74 kp_temp = [ ]
75 f o r keypoint in new_kps_obj :
76 kp_temp . append (np . nan_to_num( keypoint . x ) )
77 kp_temp . append (np . nan_to_num( keypoint . y ) )
78

79 # More on why t h i s reshaping l a t e r .
80 batch_keypoints [ i , ] = np . array (kp_temp) . reshape (1 , 1 , 15 ∗ 2)
81

82 # Scale the coord inates to [ 0 , 1 ] range .
83 batch_keypoints = batch_keypoints / 224
84

85 return batch_images , batch_keypoints

Listing F.2: DobbyDataset.py, Python script for returning dataset to training function.
The class inherits from Keras.utils.Sequence, the module uses Filch (Appendix D.1)
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57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

c u r r e n t _ k e y p o i n t
k p s = []

n p . a r r a y ( d a t a [ " j o i n t s " ] ) [ : , : 2 ]

# To a p p l y o u r d a t a a u g m e n t a t i o n p i p e l i n e , we f i r s t need to
##form K e y p o i n t o b j e c t s w i t h t h e o r i g i n a l c o o r d i n a t e s .
f o r j in r a n g e ( 0 , l e n ( c u r r e n t k e y p o i n t ) ) :

k p s . a p p e n d ( K e y p o i n t ( x = c u r r e n t k e y p o i n t [ j ] [ 0 ] , y = c u r r e n t k e y p o i n t [ j ] [ 1 ] ) )

# We t h e n p r o j e c t t h e o r i g i n a l image and i t s k e y p o i n t c o o r d i n a t e s .
c u r r e n t _ i m a g e = d a t a ["img data"]
k p s _ o b j = K e y p o i n t s O n i m a g e ( kps , s h a p e = c u r r e n t i m a g e . s h a p e )

# Apply t h e a u g m e n t a t i o n p i p e l i n e .
( n e w _ i m a g e , n e w _ k p s _ o b j ) = s e l f . a u g ( i m a g e = c u r r e n t i m a g e , k e y p o i n t s = k p so b j )
b a t c h _ i m a g e s [ i , ] = new_image

# P a r s e t h e c o o r d i n a t e s f rom t h e new k e y p o i n t o b j e c t .
kpt e m p = []
f o r k e y p o i n t in n e w _ k p s _ o b j :

kp t e m p . a p p e n d ( n p . n a n _ t o _ n u m ( k e y p o i n t . x ) )
kp t e m p . a p p e n d ( n p . n a n _ t o _ n u m ( k e y p o i n t . y ) )

#¥More on why t h i s r e s h a p i n g l a t e r .
b a t c h _ k e y p o i n t s [ i , ] = n p . a r r a y ( k p _ t e m p ) . r e s h a p e ( l , l, 15 * 2)

# S c a l e t h e c o o r d i n a t e s to [ 0 , 1] r a n g e .
b a t c h _ k e y p o i n t s = b a t c h _ k e y p o i n t s / 224

r e t u r n b a t c h _ i m a g e s , b a t c h _ k e y p o i n t s

Listing F.2: DobbyDataset.py, Python script for returning dataset to training function.
The class inherits from Keras.utils.Sequence, the module uses Filch (Appendix D. l )
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F.3 DobbyDelivery.py

1 import numpy as np
2 from Fi lch . F i l c h U t i l s import get_pose
3 from Dobby . DobbyDataset import DobbyDataset
4 from Fi lch . F i l c h U t i l s import get_train_params
5 from Dobby . DobbyAugmenter import get_augmentation_parameters ,
6 get_validation_augmentation_parameters
7 from colorama import Fore
8

9 c l a s s DobbyDelivery :
10 def __init__( s e l f , j son : str , kp_def in i t ions : str , img_dir : s t r ) :
11 s e l f . j son = json
12 s e l f . kp_def = kp_def in i t ions
13 s e l f . img_dir = img_dir
14 s e l f . images = [ ]
15 s e l f . keypoints = [ ]
16 s e l f . samples , s e l f . json_dict , s e l f . kp_def , s e l f . co lo r s ,
17 s e l f . l a b e l s = get_train_params ( s e l f . json , s e l f . kp_def )
18

19 s e l f . train_aug = get_augmentation_parameters ( )
20 s e l f . val idation_aug = get_validation_augmentation_parameters ( )
21 s e l f . __get_images_and_keypoints ( )
22 s e l f . train_set , s e l f . val_set = s e l f . __deliver_datasets ( )
23

24 def __get_images_and_keypoints ( s e l f ) :
25 f o r sample in s e l f . samples :
26 data = get_pose ( sample , s e l f . json_dict , s e l f . img_dir )
27 image = data [ ’ img_data ’ ]
28 keypoint = data [ ’ j o i n t s ’ ]
29

30 s e l f . images . append ( image )
31 s e l f . keypoints . append ( keypoint )
32

33 def __deliver_datasets ( s e l f ) :
34 np . random . s h u f f l e ( s e l f . samples )
35 train_keys , val_keys = (
36 s e l f . samples [ i n t ( l en ( s e l f . samples ) ∗ 0 .20) : ] ,
37 s e l f . samples [ : i n t ( l en ( s e l f . samples ) ∗ 0 .20) ] ,
38 )
39 return DobbyDataset ( train_keys , s e l f . train_aug ,
40 s e l f . json_dict , s e l f . img_dir , 32 , True ) ,
41 DobbyDataset ( val_keys , s e l f . validation_aug ,
42 s e l f . json_dict , s e l f . img_dir , 32 , False )
43

44 def __print_data_info ( s e l f ) :
45 pr int ( Fore .GREEN, f ’ Dataset de l i v e r ed by DobbyDelivery se rv i c e ,
46 current img_dir : { s e l f . img_dir } , current j son : { s e l f . j son } ’ )
47 pr int ( Fore .CYAN, f ” Total batches in t r a in ing se t : { len ( s e l f . t ra in_set ) }” )
48 pr int ( Fore .CYAN, f ” Total batches in va l i da t i on se t : { len ( s e l f . val_set ) }” )

Listing F.3: DobbyDelivery.py, Python script responsible to collect the dataset from
DobbyDataset(Appendix F.2), and deliver it to the training session.
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F.3 DobbyDelivery.py

1 i m p o r t numpy as np
2 f rom F i l c h . F i l c h U t i l s i m p o r t ge t p o s e
3 f rom Dobby. D o b b y D a t a s e t i m p o r t D o b b y D a t a s e t
4 f rom F i l c h . F i l c h U t i l s i m p o r t ge t t r a i n p a r a m s
5 f rom Dobby. DobbyAugmenter i m p o r t g e t _ a u g m e n t a t i o n _ p a r a m e t e r s ,
6 g e t _ v a l i d a t i o n _ a u g m e n t a t i o n _ p a r a m e t e r s
7 f rom c o l o r a m a i m p o r t F o r e
8

o c l a s s Do b by D e l i v e r y :
10 d e f i n i t ( s e l f , js o n : s t r , kp d e f i n i t i o n s : s t r , img d i r : s t r ) :
11 s e l f . js o n = js o n
12 s e l f . k p _ d e f = k p _ d e f i n i t i o n s
13 s e l f . i m g d i r = img d i r
14 s e l f . i m a g e s = []
15 s e l f . k e y p o i n t s = []
16 s e l f . s a m p l e s , s e l f . j s o n _ d i c t , s e l f . k p _ d e f , s e l f . c o l o r s ,
17 s e l f . l a b e l s = ge t t r a i n p a r a m s ( s e l f . j s o n , s e l f . k pd e f )
18

19

20

21

22

23

24 d e f g e t images a n d keypoin ts ( s e l f) :
25 f o r s a m p l e in s e l f . s a m p l e s :
26 d a t a = ge t p o s e ( s a m p l e , se l f. js o n _ d i c t , se l f . i m g d i r )
27 image = d a t a [ ' i m g d a t a ' ]
28 k e y po i n t = d a t a [ ' j o i n ts ' ]

se l f. t r a i n _ a u g = g e t _ a u g m e n t a t i o n _ p a r a m e t e r s ()
s e l f . v a l i d a t i o n _ a u g = g e t _ v a l i d a t i o n _ a u g m e n t a t i o n _ p a r a m e t e r s ()
se l f. g e t images a n d keypoin ts ()
s e l f . t r a i n _ s e t , s e l f . v a l _ s e t = s e l f . d e l i v e r d a t a s e t s ()

29

30

31

32

33 d e f d e l i v e r d a t a s e t s ( s e l f ) :
34 n p . r a n d o m . sh uf f i e ( s e l f . s a m p l e s )
35 t r a i n _ k e y s , v a l _ k e y s = (
36 s e l f . s a m p l e s [ i n t ( l e n ( s e l f . s a m p l e s ) * 0 . 2 0 ) :] ,
37 s e l f . s a m p l e s [ : i n t ( l e n ( s e l f . s a m p l e s ) 0 . 2 0 ) ] ,

se l f. i m a g e s . a p p e n d ( i m a g e )
s e l f . k e y p o i n t s . a p p e n d ( k e y p o i n t )

38

39

40

41

42

43

44 d e f p r i n t d a t a i n f o ( s e l f ) :
45 p r i n t ( F o r e .GREEN, f ' D a t a s e t d e l i v e r e d by D o b b y D e l i v e r y s e r v i c e
46 c u r r e n t img d i r : { s e l f . i m g d i r } , c u r r e n t j s o n : { s e l f . j s o n } ' )
47 p r i n t ( F o r e . C Y A N , f " T o t a l b a t c h e s in t r a i n i n g s e t : { l e n ( s e l f . t r a i n _ s e t ) } " )
48 p r i n t ( F o r e . C Y A N , f " T o t a l b a t c h e s in v a l i d a t i o n s e t : { l e n ( s e l f . v a l _ s e t ) } " )

r e t u r n D o b b y D a t a s e t ( t r a i n _ k e y s , s e l f . t r a i n _ a u g ,
s e l f . j s o n d i c t , s e l f . i m g d i r , 3 2 , T r u e ) ,

D o b b y D a t a s e t ( v a l _ k e y s , s e l f . v a l i d a t i o n _ a u g ,
s e l f . j s o n d i c t , s e l f . i m g d i r , 3 2 , F a l s e )

Listing F.3: DobbyDelivery.py, Python script responsible to collect the dataset from
DobbyDataset(Appendix F.2), and deliver it to the training session.
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F.4 DobbyTrainer.py

1 from typing import Optional
2 from tensor f low import keras
3 from Dobby . DobbyDelivery import DobbyDelivery
4 from keras . ca l l back s import TensorBoard , EarlyStopping , ReduceLROnPlateau , ModelCheckpoint
5

6

7 c l a s s DobbyTrainer :
8 def __init__( s e l f , j son : str , kp_def : s t r , images : s tr , checkpoint_dir : s t r ,
9 log_dir : s t r , save_dir : s t r , name : str , model ,

10 epochs : Optional [ i n t ] = 50 , stopping_patience : Optional [ i n t ] = 3 ,
11 l r_pat ience : Optional [ i n t ] = 2) :
12 s e l f . model_name = name
13 s e l f . checkpoint_dir = checkpoint_dir
14 s e l f . log_dir = log_dir
15 s e l f . save_dir = save_dir
16 s e l f . epochs = epochs
17 s e l f . stopping_patience = stopping_patience
18 s e l f . l r_pat ience = lr_pat ience
19 data = DobbyDelivery ( json , kp_def , images )
20 s e l f . train_data = data . tra in_set
21 s e l f . val_data = data . val_set
22 s e l f . model = model
23

24 def t r a in ( s e l f , ) :
25 tensorboard_cal lback = TensorBoard ( log_dir=f ”{ s e l f . log_dir }{ s e l f . model_name}/” )
26 early_stopping_cal lback = EarlyStopping ( monitor=”val_mae” , pat ience =3)
27 reduce_lr_cal lback = ReduceLROnPlateau ( monitor=”val_mae” , f a c t o r =0.1 , pat ience =2,
28 verbose =1, mode=”auto” )
29 checkpoint = ModelCheckpoint ( f i l e p a t h=f ’ { s e l f . checkpoint_dir }{ s e l f . model_name} ’ ,
30 monitor=’val_mae ’ , verbose =1, save_best_only=True ,
31 mode=’min ’ )
32

33 s e l f . model . compile ( l o s s=”mean_squared_error” ,
34 opt imizer=keras . opt imizers .Adam(0 .001) ,
35 metr ics =[ ’mae ’ ] )
36 s e l f . model . summary ( )
37 s e l f . model . f i t ( s e l f . train_data , val idation_data=s e l f . val_data , epochs=s e l f . epochs ,
38 ca l l back s =[ tensorboard_callback , early_stopping_callback ,
39 reduce_lr_callback , checkpoint ,
40 CustomLRCallback ( s e l f . model_name) ] )
41

42 s e l f . model . save ( f ’ { s e l f . save_dir }{ s e l f . model_name} ’ )
43

44

45 c l a s s CustomLRCallback ( keras . ca l l back s . Callback ) :
46 ”””Custom ca l lback f o r l ea rn ing rate scheduler .
47 ”””
48

49 def __init__( s e l f , model_name) :
50 super ( CustomLRCallback , s e l f ) . __init__ ()
51 s e l f . model_name = model_name
52

53 def on_epoch_begin ( s e l f , epoch , l og s=None) :
54 # open a f i l e and check i f the l ea rn ing rate i s the same as the one in the f i l e
55 with open ( f ”{ s e l f . model_name}− l r . txt ” , ” r ” ) as f :
56 l earn ing_rate = f . read ( )
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F.4 DobbyTrainer.py

1 f rom t y p i n g i m p o r t O p t i o n a l
2 f rom t e n s o r f l o w i m p o r t k e r a s
3 f rom Dobby. D o b b y D e l i v e r y i m p o r t D o b b y D e l i v e r y
4 f rom k e r a s . c a l l b a c k s i m p o r t T e n s o r B o a r d , E a r l y S t o p p i n g , R e d u c e L R O n P l a t e a u , M o d e l C h e c k p o i n t
5

6

7 c l a s s D o b b y T r a i n e r :
8 d e f i n i t ( s e l f , j s o n : s t r , k p _ d e f : s t r , i m a g e s : s t r , c h e c k p o i n t _ d i r : s t r ,
o l og d i r : s t r , s a v e _ d i r : s t r , name: s t r , m o d e l ,

10 e p o c h s : O p t i o n a l [ i n t ] = 5 0 , s t o p p i n g p a t i e n c e : O p t i o n a l [ i n t ] 3,
11 lr p a t i e n c e : O p t i o n a l [ i n t ] = 2 ) :
12 se l f . model_name = name
13 s e l f . c h e c k p o i n t _ d i r = c h e c k p o i n t _ d i r
14 s e l f . l o g d i r = log d i r
15 s e l f . s a v e d i r = s a v e d i r
16

17

18

19

20

21

22

23

24 d e f t r a i n ( se l f , ) :
25 t e n s o r b o a r d c a l l b a c k = T e n s o r B o a r d ( l o g d i r = f " { s e l f . l o g d i r } { s e l f . m o d e ln a m e } / " )
26 e a r l y _ s t o p p i n g _ c a l l b a c k = E a r l y S t o p p i n g ( m o n i t o r = " v a l _ m a e " , p a t i e n c e = 3 )
27 r e d u c e _ l r _ c a l l b a c k = ReduceLROnPla t eau ( m o n i t o r = " v a l m a e " , f a c t o r = 0 . 1 , p a t i e n c e = 2 ,
28 v e r b o s e = l , mode=" a u t o " )
29 c h e c k p o i n t = M o d e lC h e c k p o i n t ( fi l e p a t h = f ' { s e l f. c h e c k p o i n t _ d i r } { s e l f. model_name} ' ,
30 m o n i t o r = ' v a l _ m a e ' , v e r b o s e = l , s a v e bes t o n l y = T r u e ,
31 mode= ' m i n ' )

s e l f . e p o c h s = e p o c h s
s e l f . s t o p p i n g p a t i e n c e = s t o p p i n g p a t i e n c e
s e l f . l r _ p a t i e n c e = l r _ p a t i e n c e
d a t a = D o b b y D e l i v e r y (j s o n , kp d e f , i m a g e s )
s e l f . t r a i n _ d a t a = d a t a . t r a i n s e t
s e l f . v a l _ d a t a = d a t a . v a l s e t
s e l f . model = mode l

32

33

34

35

36

37

38

39

40

41

42

43

44

45 c l a s s C u s t o m L R C a l l b a c k ( k e r a s . c a l l b a c k s . C a l l b a c k ) :
46 " ' " 'Cus tom c a l l b a c k f o r l e a r n i n g r a t e s c h e d u l e r .

s e l f . m o d e l . c o m p i l e ( l o s s = " m e a ns q u a r e d e r r o r " ,
o p t i m i z e r = k e r a s . o p t i m i z e r s . A d a m ( 0 . 0 0 1 ) ,
m e t r i c s = [ ' m a e ' ] )

se l f . model . summary( )
s e l f . m o d e l . f i t ( s e l f . t r a i nd a t a , v a l i d a t i o n d a t a = s e l f . v a l d a t a , e p o c h s = s e l f . e p o c h s ,

c a l l b a c k s = [ t e n s o r b o a r d c a l l b a c k , e a r l y _ s t o p p i n g _ c a l lb a c k ,
r e d u c e _ l r _ c a l l b a c k , c h e c k p o i n t ,
Cus tomLRCal lback ( se l f. model_name) ] )

se l f. m o d e l . s a v e ( f ' { s e l f. s a v e _ d i r } { s e l f. model_name} ')

47

48

4o d e f i n i t ( s e l f , m o d e l _ n a m e ) :
50 su p e r ( Cus tomLRCal lback , se l f) . _ i n it O
51 se l f . model name = model name
52

s3 d e f on epochb e g i n ( s e l f , e p o c h , l o g s = N o n e ) :
54 # o p e n a f i l e and c h e c k if t h e l e a r n i n g r a t e is t h e same as t h e one in t h e f i l e
55 w i t h o p e n ( f " { s e l f . m o d e l _ n a m e } - l r . t x t " , " r " ) as f:
56 l e a r n i n g r a t e = f . r e a d ()
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57 # i f not , s e t the l ea rn ing rate to the one in the f i l e
58 s e l f . model . opt imizer . l earn ing_rate = f l o a t ( learn ing_rate )
59 pr int ( f ”Epoch {epoch } : Learning rate changed to
60 { s e l f . model . opt imizer . l earn ing_rate } from f i l e . ” )

Listing F.4: DobbyTrainer.py, is responsible for training single models. The module uses
DobbyDelivery.py (Appendix F.3).
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57

58

59

60

# if n o t , s e t t h e l e a r n i n g r a t e to t h e one in t h e f i l e
s e l f . m o d e l . o p t i m i z e r . l e a r n i n g r a t e = f l o a t ( l e a r n i n g r a t e )
p r i n t ( f " E p o c h { e p o c h } : L e a r n i n g r a t e c h a n g e d to

{ s e l f . m o d e l . o p t i m i z e r . l e a r n i n g r a t e } f rom f i l e . " )

Listing F.4: DobbyTrainer.py, is responsible for training single models. The module uses
DobbyDelivery.py (Appendix F.3).
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Appendix G

Albus

G.1 AlbusSearch.py

1 import keras_tuner as kt
2 from colorama import Fore
3 from typing import Optional
4 from tensor f low import keras
5 from Dobby . DobbyDelivery import DobbyDelivery
6 from keras . ca l l back s import TensorBoard , EarlyStopping
7

8

9 c l a s s AlbusSearch :
10 ”””
11 AlbusSearch i s a c l a s s that i s used to search f o r the best model .
12 ”””
13 def __init__( s e l f , model , j son : str , kp_def : s t r , img_dir : s t r ,
14 log_dir : s t r , epochs : Optional [ i n t ] = 50) :
15 ”””
16 I n i t i a l i z e s the AlbusSearch c l a s s .
17 : param model : Model bu i lde r c o l l e c t e d from Albus . AlbusModels . . .
18 : param json : Path to dataset j son f i l e .
19 : param kp_def : Path to keypoint d e f i n i t i o n f i l e .
20 : param img_dir : Path to image d i r e c to ry .
21 : param log_dir : Path to log d i r e c to ry .
22 : param epochs : Number o f epochs to t ra in f o r .
23 ”””
24 s e l f . model = model
25 s e l f . j son = json
26 s e l f . kp_def = kp_def
27 s e l f . img_dir = img_dir
28 s e l f . epochs = epochs
29 s e l f . log_dir = log_dir
30 s e l f . data = DobbyDelivery ( s e l f . json , s e l f . kp_def , s e l f . img_dir )
31

32 def search ( s e l f ) :
33 s e l f . __run_tuner ( s e l f . model )
34

35 def __run_tuner ( s e l f , model ) :
36 stop_early = EarlyStopping ( monitor=’ va l_loss ’ , pat ience =3)
37

38 tuner = kt . Hyperband ( model ,
39 ob j e c t i v e=’ va l_loss ’ ,
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Albus

G . l AlbusSearch.py

1 i m p o r t k e r a s _ t u n e r as kt
2 f rom c o l o r a m a i m p o r t F o r e
3 f rom t y p i n g i m p o r t O p t i o n a l
4 f rom t e n s o r f l o w i m p o r t k e r a s
5 f rom Dobby. D o b b y D e l i v e r y i m p o r t D o b b y D e l i v e r y
6 f rom k e r a s . c a l l b a c k s i m p o r t T e n s o r B o a r d , E a r l y S t o p p i n g
7

8

o c l a s s A l b u s S e a r c h :
10

11

12

A l b u s S e a r c h is a c l a s s t h a t is used to s e a r c h f o r t h e b e s t m o d e l .

13 d e f i n i t ( s e l f , m o d e l , js o n : s t r , k p _ d e f : s t r , img d i r : s t r ,
14 l og d i r : s t r , e p o c h s : O p t i o n a l [ i n t ] = 5 0 ) :
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 d e f s e a r c h ( s e l f ) :
33 s e l f · r u n t u n e r ( s e l f . m o d e l )

I n i t i a l i z e s t h e A l b u s S e a r c h c l a s s .
: pa ram m o d e l : Model b u i l d e r c o l l e c t e d f rom A l b u s . AlbusMode l s . . .
: pa ram js o n : P a t h to d a t a s e t js o n f i l e .
: param k p _ d e f : P a t h to k e y p o i n t d e f i n i t i o n f i l e .
: pa ram img d i r : P a t h to image d i r e c t o r y .
: param log d i r : P a t h to l o g d i r e c t o r y .
: pa ram e p o c h s : Number of e p o c h s to t r a i n f o r .

s e l f . model = model
s e l f . js o n = js o n
s e l f . k p def = kp def
s e l f . i m g d i r = img d i r
s e l f . e p o c h s = e p o c h s
s e l f . l o g d i r = log d i r
s e l f . d a t a = D o b b y D e l i v e r y ( s e l f . j s o n , s e l f . k pd e f , s e l f . i m g d i r )

34

35 d e f r u n t u n e r ( s e l f , m o d e l ) :
36 s t o p e a r l y = E a r l y S t o p p i n g ( m o n i t o r = ' v a l l o s s ' , p a t i e n c e = 3 )
37

38

39

t u n e r = k t . Hyperband ( m o d e l ,
o b j e c t i v e = ' v a l l o s s ' ,
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40 max_epochs=15,
41 f a c t o r =3,
42 d i r e c to ry=’tmp/tb ’ ,
43 project_name=’Quantium ’ ,
44 overwr i te=True
45 )
46 tuner . search ( s e l f . data . train_set , val idation_data=s e l f . data . val_set ,
47 epochs=s e l f . epochs ,
48 ca l l back s =[ stop_early , TensorBoard ( s e l f . log_dir ) ] )
49

50 # Get the optimal hyperparameters and pr int to conso le .
51 tuner . results_summary ( )
52 best_hps = tuner . get_best_hyperparameters ( num_trials=1) [ 0 ]
53 pr int ( Fore .GREEN, best_hps )

Listing G.1: AlbusSearch.py, is responsible for running architecture searches and
hyperparameter tuning for model search spaces in AlbusModels. The module uses
DobbyDelivery (Appendix F.3).
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40

41

42

43

44

45

46

47

48

49

50

51

52

53

maxe p o c h s = 1 5 ,
f a c t o r = 3 ,
d i r e c t o r y = ' t m p / t b ' ,
p ro j ec t n a m e = Q u a n t i u m ' ,
o v e r w r i t e = T r u e

t u n e r . s e a r c h ( s e l f . d a t a . t r a i ns e t , v a l i d a t i o n d a t a = s e l f . d a t a . v a l _ s e t ,
e p o c h s = s e l f . e p o c h s ,
c a l l b a c k s = [ s t o p e a r l y , T e n s o r B o a r d ( s e l f . l o g d i r ) ] )

# Get t h e o p t i m a l h y p e r p a r a m e t e r s and p r i n t to c o n s o l e .
t u n e r . r e s u l t s _ s u m m a r y ()
b e s t _ h p s = t u n e r . g e t _ b e s t _ h y p e r p a r a m e t e r s ( n u m _ t r i a l s = 1 ) [ 0 ]
p r i n t ( F o r e .GREEN, b e s t _ h p s )

Listing G . l : AlbusSearch.py, is responsible for running architecture searches and
hyperparameter tuning for model search spaces in AlbusModels. The module uses
DobbyDelivery (Appendix F.3).
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G.2. ALBUSMODELS/CNN.PY

G.2 AlbusModels/cnn.py

1 from tensor f low import keras
2 from keras import l a y e r s
3

4

5 def build_cnn_search (hp) :
6 input_shape = (224 , 224 , 3)
7

8 input_layer = l a y e r s . Input ( input_shape )
9

10 x = input_layer
11 x = l a y e r s . Conv2D(hp . Int ( ’ units_Input ’ , min_value=96,
12 max_value=512, step =32) , 3 ,
13 padding=”same” , name=” f i r s t_conv ” ) (x)
14 x = l a y e r s . BatchNormalization ( ) (x)
15 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
16 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
17

18 f o r i in range (hp . Int ( ’ Conv_layers ’ , 2 , 6) ) :
19 x = l a y e r s . Conv2D(hp . Int ( ’ units_ ’ + s t r ( i ) , min_value=96,
20 max_value=512, step =32) , 3 ,
21 padding=”same” ,
22 name=”conv_layer_”+s t r ( i ) ) (x)
23

24 i f hp . Choice ( ”BatchNorm” + s t r ( i ) , [ True , False ] ) :
25 x = l a y e r s . BatchNormalization ( ) (x)
26

27 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
28

29 i f hp . Choice ( ”conv_dropout_C” + s t r ( i ) , [ True , False ] ) :
30 x = l a y e r s . Dropout (hp . Choice ( ”conv_dropout_” + s t r ( i ) ,
31 values =[0.1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
32 name=”conv_dropout_” + s t r ( i ) ) (x)
33

34 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
35

36 f o r j in range (hp . Int ( ’ separable_layers ’ , 2 , 6) ) :
37 x = l a y e r s . SeparableConv2D (hp . Int ( ’ sep_units_ ’+s t r ( j ) , min_value=96,
38 max_value=512, step =32) , 3 ,
39 padding=”same” , name=” separable_layer_ ”+s t r ( j ) ) (x)
40

41 i f hp . Choice ( ”BatchNorm” + s t r ( j ) , [ True , False ] ) :
42 x = l a y e r s . BatchNormalization ( ) (x)
43

44 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
45 i f hp . Choice ( ”sep_dropout_C” + s t r ( j ) , [ True , False ] ) :
46 x = l a y e r s . Dropout (hp . Choice ( ”sep_dropout_” + s t r ( j ) ,
47 values =[0.1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
48 name=”sep_dropout_” + s t r ( j ) ) (x)
49

50 x = l a y e r s . MaxPooling2D (3 , s t r i d e s =3, padding=”same” ) (x)
51

52 x = l a y e r s . SeparableConv2D (hp . Int ( ’ sep_out_units_0 ’ , min_value=96,
53 max_value=512, step =32) , kerne l_s ize =5,
54 s t r i d e s =1, ac t i va t i on=” re lu ” ,
55 name=”sep_out_0” ) (x)
56
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G.2 Al busModels /enn.py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3

4

5 d e f b u i l d _ c n n _ s e a r c h ( h p ) :
6 i n p u t _ s h a p e ( 2 2 4 , 2 2 4 , 3)
7

8

9

10

11

12

13

14

15

16

17

18 f o r in r a n g e ( h p . I n t ( ' C o n v _ l a y e r s ' , 2, 6 ) ) :
19 X l a y e r s . C o n v 2 D ( h p . I n t ( ' u n i t s _ ' + s t r ( i ) , m in v a l u e = 9 6 ,
20 max v a l u e = 5 1 2 , s t e p = 3 2 ) , 3,
21 p a d d i n g = s a m e " ,
22 name="conv l a y e r " + s t r ( i ) ) ( x )

i n p u t _ l a y e r l a y e r s . I n p u t ( i n p u t _ s h a p e )

x
x

x
x
x

i n p u t _ l a y e r
l a y e r s . Conv2D(hp . I n t ( ' u n i t s _ I n p u t ' , m i n _ v a l u e = 9 6 ,

max_ v a l u e = 5 1 2 , s t e p = 3 2 ) , 3,
p a d d i n g = " s a m e " , name=" f i r s t _ c o n v " ) ( x )

l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ()

23

24

25

26

27

28

29

30

31

32

33

34 x = l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ()

if h p . C h o i c e ( " B a t c h N o r m " + s t r ( i ) , [ T r u e , F a l s e ] ) :
x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )

x = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

if h p . C h o i c e ( " c o n v _ d r o p o u t _ C " + s t r ( i ) , [ T r u e , F a l s e ] ) :
x= l a y e r s . D r o p o u t ( h p . C h o i c e ( " c o n v d r o p o u t " + s t r ( i ) ,

v a l u e s = [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " c o n v _ d r o p o u t _ " + s t r ( i ) ) ( x )

35

36 f o r in r a n g e ( h p . I n t ( ' s e p a r a b l e _ l a y e r s ' , 2, 6 ) ) :
37 x l a y e r s . S e p a r a b l e C o n v 2 D ( h p . I n t ( ' s e p u n i t s ' + s t r ( j ) , minv a l u e = 9 6 ,
38 max v a l u e = 5 1 2 , s t e p = 3 2 ) , 3,
39 p a d d i n g = " s a m e " , n a m e " s e p a r a b l e _ l a y e r " + s t r ( j ) ) ( x)
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

x

x

if h p . C h o i c e ( " B a t c h N o r m " + s t r ( j ) , [ T r u e , F a l s e ] ) :
x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )

x = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
if h p . C h o i c e ( " s e p _ d r o p o u t _ C " + s t r ( j ) , [ T r u e , F a l s e ] ) :

x = l a y e r s . D r o p o u t ( h p . C h o i c e ( " s e p d r o p o u t _ " + s t r ( j ) ,
v a l u e s = [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " s e p _ d r o p o u t _ " + s t r ( j ) ) ( x )

l a y e r s . M a xP o o l i n g 2 D ( 3 , s t r i d e s = 3 , p a d d i n g = " s a m e " ) ()

l a y e r s . S e p a r a b l e C o n v 2 D ( h p . I n t ( ' s e po u t u n i t s _ 0 ' , m in v a l u e = 9 6 ,
max v a l u e = 5 1 2 , s t e p = 3 2 ) , k e r n e ls i z e = 5 ,
s t r i d e s = l , a c t i v a t i o n = " r e l u " ,
name="sep o u t _ 0 " ) ( x )
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57 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
58

59 x = l a y e r s . SeparableConv2D (hp . Int ( ’ sep_out_units_1 ’ , min_value=96,
60 max_value=512, step =32) , kerne l_s ize =3,
61 s t r i d e s =1, ac t i va t i on=” re lu ” ,
62 name=”sep_out_1” ) (x)
63

64 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
65

66 x = l a y e r s . SeparableConv2D (hp . Int ( ’ sep_out_units_2 ’ , min_value=96,
67 max_value=512, step =32) , kerne l_s ize =2,
68 s t r i d e s =1, ac t i va t i on=” re lu ” , name=”sep_out_2” ) (x)
69 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
70

71 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =1, s t r i d e s =1, ac t i va t i on=” sigmoid ” ,
72 name=”sep_output” ) (x)
73 # outputs = l a y e r s . Flatten ( ) (x)
74

75 model = keras . Model ( input_layer , outputs )
76 model . summary ( )
77

78 hp_learning_rate = hp . Choice ( ’ l earn ing_rate ’ , va lues =[1e−2, 1e−3, 1e −4])
79

80 model . compile ( l o s s=”mean_squared_error” ,
81 opt imizer=keras . opt imizers .Adam( hp_learning_rate ) ,
82 metr ics =[ ’mae ’ ] )
83 return model

Listing G.2: AlbusModels/cnn.py, delivers the cnn architecture and hyperparameter tuning
search space to AlbusSearch.
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57

58

59

60

61

62

63

64

65

66 x l a y e r s . S e p a r a b l e C o n v 2 D ( h p . I n t ( ' s e p _ o u t _ u n i t s _ 2 ' , m i n _ v a l u e = 9 6 ,
67 max v a l u e = 5 1 2 , s t e p = 3 2 ) , k e r n e l s i z e = 2 ,
68 s t r i d e s = l , a c t i v a t i o n = " r e l u " , name="sepo u t _ 2 " ) ( x )
69 x = l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )

x

x

x

l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )

l a y e r s . S e p a r a b l e C o n v 2 D ( h p . In t ( ' s e p _ o u t _ u n i t s _ l ' , m in v a l u e = 9 6 ,
max v a l u e = 5 1 2 , s t e p = 3 2 ) , k e r n e l s i z e = 3 ,
s t r i d e s = l , a c t i v a t i o n = " r e l u " ,
n a m e = " s e p _ o u t _ l " ) ( x )

l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )

70

71 o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = l , s t r i d e s = l , a c t i v a t i o n = s i g m o i d " ,
72 name="sep o u t p u t " ) ( x )
r3 # o u t p u t s = l a y e r s . F l a t t e n ( ) ( x )
74

75 model = k e r a s . Mode l ( i n p u t _ l a y e r , o u t p u t s )
76 model . summary ()
77

78 h p _ l e a r n i n g _ r a t e = h p . C h o i c e ( ' l e a r n i n g _ r a t e ' , v a l u e s = [ l e - 2 , l e - 3 , l e - 4 ] )
79

80 m o d e l . c o m p i l e ( l o s s = m e a ns q u a r e d e r r o r " ,
81 o p t i m i z e r = k e r a s . o p t i m i z e r s .Adam( h p _ l e a r n i n g _ r a t e ) ,
82 m e t r i c s = [ ' m a e ' ] )
83 r e t u r n model

Listing G.2: AlbusModels/cnn.py, delivers the enn architecture and hyperparameter tuning
search space to AlbusSearch.
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G.3 AlbusModels/dense.py

1 from tensor f low import keras
2 from keras import l a y e r s
3

4

5 def model_builder (hp) :
6

7 shape = (224 , 224 , 3)
8

9 input_layer = l a y e r s . Input ( shape )
10 x = input_layer
11

12 x = l a y e r s . Conv2D(hp . Int ( ’ units_Input ’ , min_value=16, max_value=128, step=8) ,
13 3 , padding=”same” , name=” f i r s t_conv ” ) (x)
14 x = l a y e r s . BatchNormalization ( ) (x)
15 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
16 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
17

18 f o r i in range (hp . Int ( ’ Conv_layers ’ , 2 , 6) ) :
19 x = l a y e r s . Conv2D(hp . Int ( ’ conv_units_ ’ + s t r ( i ) ,
20 min_value=16, max_value=128, step=8) ,
21 3 , padding=”same” , name=”conv_layer_”+s t r ( i ) ) (x)
22

23 i f hp . Choice ( ”BatchNorm” + s t r ( i ) , [ True , False ] ) :
24 x = l a y e r s . BatchNormalization ( ) (x)
25

26 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
27

28 i f hp . Choice ( ”conv_dropout_C” + s t r ( i ) , [ True , False ] ) :
29 x = l a y e r s . Dropout (hp . Choice ( ”conv_dropout_” + s t r ( i ) ,
30 values =[0.1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
31 name=”conv_dropout_” + s t r ( i ) ) (x)
32

33 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
34

35 f o r j in range (hp . Int ( ’ separable_layers ’ , 2 , 6) ) :
36 x = l a y e r s . SeparableConv2D (hp . Int ( ’ sep_units_ ’+s t r ( j ) , min_value=32,
37 max_value=512, step =32) , 3 , padding=”same” ,
38 name=” separable_layer_ ”+s t r ( j ) ) (x)
39

40 i f hp . Choice ( ”sep_BatchNorm” + s t r ( j ) , [ True , False ] ) :
41 x = l a y e r s . BatchNormalization ( ) (x)
42

43 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
44 i f hp . Choice ( ”sep_dropout_C” + s t r ( j ) , [ True , False ] ) :
45 x = l a y e r s . Dropout (hp . Choice ( ”sep_dropout_” + s t r ( j ) ,
46 values =[0.1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
47 name=”sep_dropout_” + s t r ( j ) ) (x)
48

49 x = l a y e r s . Flatten ( ) (x)
50

51 f o r j in range (hp . Int ( ’ dense_layers ’ , 1 , 4) ) :
52 x = l a y e r s . Dense (hp . Int ( ’ dense_units_ ’+s t r ( j ) , min_value=32,
53 max_value=500, step =32) , name=”dense_layer_”+s t r ( j ) ) (x)
54

55 i f hp . Choice ( ”dense_BatchNorm” + s t r ( j ) , [ True , False ] ) :
56 x = l a y e r s . BatchNormalization ( ) (x)
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G . 3 AlbusModels /dense.py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3

4

5 d e f m o d e l b u i l d e r ( h p ) :
6

r s h a p e = ( 2 2 4 , 2 2 4 , 3)
8

o i n p u t l a y e r = l a y e r s . I n p u t ( s h a p e )
10 x i n p u t _ l a y e r
11

12

13

14

15

16

17

18 f o r in r a n g e ( h p . I n t ( ' C o n v _ l a y e r s ' , 2, 6 ) ) :
19 X l a y e r s . C o n v 2 D ( h p . I n t ( ' c o n v _ u n i t s _ ' + s t r ( i ) ,
20 minv a l u e = 1 6 , max value==128, s t e p = 8 ) ,
21 3, p a d d i n g = " s a m e " , n a m e = " c o n v _ l a y e r _ " + s t r ( i ) ) ( x )

x

x
x
x

l a y e r s . C o n v 2 D ( h p . I t ( ' u n i t s I n p u t ' , minv a l u e = 1 6 , max v a l u e = 1 2 8 , s t e p = 8 ) ,
3, p a d d i n g = s a m e " , name=" f i r s t c o n v " ) ( x )
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ()

22

23

24

25

26

27

28

29

30

31

32

33

34

35 f o r in r a n g e ( h p . I n t ( ' s e p a r a b l e _ l a y e r s ' , 2, 6 ) ) :
36 x l a y e r s . S e p a r a b l e C o n v 2 D ( h p . I n t ( ' s e p u n i t s ' + s t r ( j ) , minv a l u e = 3 2 ,
37 max v a l u e = 5 1 2 , s t e p = 3 2 ) , 3, p a d d i n g = " s a m e " ,
38 name=" s e p a r a b l e _ l a y e r _ " + s t r ( j ) ) ( x)

if h p . C h o i c e ( " B a t c h N o r m " + s t r ( i ) , [ T r u e , F a l s e ] ) :
x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )

x = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

if h p . C h o i c e ( " c o n v _ d r o p o u t _ C " + s t r ( i ) , [ T r u e , F a l s e ] ) :
x= l a y e r s . D r o p o u t ( h p . C h o i c e ( " c o n v d r o p o u t " + s t r ( i ) ,

v a l u e s = [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " c o n v _ d r o p o u t _ " + s t r ( i ) ) ( x )

x l a y e r s . M a x P o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )

39

40

41

42

43

44

45

46

47

48

49 X = l a y e r s . F l a t t e n ( ) ( x )

if h p . C h o i c e ( " s e p _ B a t c h N o r m " + s t r ( j ) , [ T r u e , F a l s e ] ) :
x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )

x = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
if h p . C h o i c e ( " s e p _ d r o p o u t _ C " + s t r ( j ) , [ T r u e , F a l s e ] ) :

x = l a y e r s . D r o p o u t ( h p . C h o i c e ( " s e p d r o p o u t _ " + s t r ( j ) ,
v a l u e s = [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " s e p _ d r o p o u t _ " + s t r ( j ) ) ( x )

50

51 f o r in r a n g e ( h p . I n t ( d e n s e l a y e r s ' , 1, 4 ) ) :
52 x l a y e r s . D e n s e ( h p . I n t ( ' d e n s e u n i t s ' + s t r ( j ) , m in v a l u e = 3 2 ,
s3 max v a l u e = 5 0 0 , s t e p = 3 2 ) , name="dense l a y e r " + s t r ( j ) ) ( )
54

55

56

if h p . C h o i c e ( " d e n s e _ B a t c h N o r m " + s t r ( j ) , [ T r u e , F a l s e ] ) :
x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
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57

58 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
59 i f hp . Choice ( ”dense_dropout_C” + s t r ( j ) , [ True , False ] ) :
60 x = l a y e r s . Dropout (hp . Choice ( ”dense_dropout_” + s t r ( j ) ,
61 values =[0.1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
62 name=”dense_dropout_” + s t r ( j ) ) (x)
63

64 outputs = l a y e r s . Dense (30 , a c t i va t i on=” sigmoid ” , name=”output” ) (x)
65

66 model = keras . Model ( input_layer , outputs )
67 model . summary ( )
68

69 hp_learning_rate = hp . Choice ( ’ l earn ing_rate ’ , va lues =[1e−2, 1e−3, 1e −4])
70

71 model . compile ( l o s s=”mean_squared_error” ,
72 opt imizer=keras . opt imizers .Adam( hp_learning_rate ) ,
73 metr ics =[ ’mae ’ ] )
74 return model

Listing G.3: AlbusModels/dense.py, delivers the dense architecture and hyperparameter
tuning search space to AlbusSearch.
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57

58

59

60

61

62

63

64 o u t p u t s = l a y e r s . D e n s e ( 3 0 , a c t i v a t i o n = " s i g m o i d " , n a m e = " o u t p u t " ) ( x )

x = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
if h p . C h o i c e ( " d e n s e _ d r o p o u t _ C " + s t r ( j ) , [ T r u e , F a l s e ] ) :

x = l a y e r s . D r o p o u t ( h p . C h o i c e ( " d e n s ed r o p o u t " + s t r ( j ) ,
v a l u e s = [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " d e n s e _ d r o p o u t _ " + s t r ( j ) ) ( x )

65

66 model = k e r a s . Mode l ( i n p u t _ l a y e r , o u t p u t s )
67 model . summary ()
68

6o hp l e a r n i n g r a t e = h p . C h o i c e ( ' l e a r n i n g r a t e ' , v a l u e s = [ l e - 2 , l e - 3 , l e - 4 ] )
70

n m o d e l . c o m p i l e ( l o s s = m e a ns q u a r e d e r r o r " ,
72 o p t i m i z e r = k e r a s . o p t i m i z e r s . A d a m ( h p l e a r n i n g r a t e ) ,
73 m e t r i c s = [ ' m a e ' ])
74 r e t u r n model

Listing G.3: AlbusModels/dense.py, delivers the dense architecture and hyperparameter
tuning search space to AlbusSearch.
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G.4 AlbusModels/residual.py

1 from tensor f low import keras
2 from keras import l a y e r s
3

4

5 def bui ld_res idual_search (hp) :
6 shape = (224 , 224 , 3)
7

8 inputs = l a y e r s . Input ( shape )
9 x = inputs

10

11 # Entry block
12 x = l a y e r s . Resca l ing (1 . 0 / 255) (x)
13 x = l a y e r s . Conv2D(hp . Int ( ’ units_input ’ , min_value=32,
14 max_value=512, step =32) , 3 ,
15 s t r i d e s =2, padding=”same” ) (x)
16

17 i f hp . Choice ( ”BatchNorm1” , [ True , False ] ) :
18 x = l a y e r s . BatchNormalization ( ) (x)
19 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
20

21 x = l a y e r s . Conv2D(hp . Int ( ’ units_2 ’ , min_value=32, max_value=512, step =32) , 3 ,
22 padding=”same” ) (x)
23

24 i f hp . Choice ( ”BatchNorm2” , [ True , False ] ) :
25 x = l a y e r s . BatchNormalization ( ) (x)
26

27 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
28

29 previous_block_activat ion = x # Set as ide r e s i d u a l
30

31 f o r i in range (hp . Int ( ’ l a y e r s ’ , 2 , 6) ) :
32 s i z e = hp . Int ( f ’ unit_block−{s t r ( i ) } ’ , min_value=32, max_value=512, step =32)
33 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
34 x = l a y e r s . SeparableConv2D ( s i z e , 3 , padding=”same” ) (x)
35

36 i f hp . Choice ( ”BatchNorm3” , [ True , False ] ) :
37 x = l a y e r s . BatchNormalization ( ) (x)
38

39 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
40 x = l a y e r s . SeparableConv2D ( s i z e , 3 , padding=”same” ) (x)
41

42 i f hp . Choice ( ”BatchNorm4” , [ True , False ] ) :
43 x = l a y e r s . BatchNormalization ( ) (x)
44

45 x = l a y e r s . MaxPooling2D (3 , s t r i d e s =2, padding=”same” ) (x)
46

47 # Project r e s i d u a l
48 r e s i d u a l = l a y e r s . Conv2D( s i z e , 1 , s t r i d e s =2, padding=”same” ) (
49 previous_block_activat ion
50 )
51 x = l a y e r s . add ( [ x , r e s i d u a l ] ) # Add back r e s i d u a l
52 previous_block_activat ion = x # Set as ide next r e s i d u a l
53

54 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =4, padding=”same” ) (x)
55 x = l a y e r s . SeparableConv2D (30 , kerne l_s ize =2, s t r i d e s =2, padding=”same” ) (x)
56 x = l a y e r s . BatchNormalization ( ) (x)

129

G.4. ALBUSMODELS/RESIDUAL.PY

G.4 Al busModels /residual.py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3

4

5 d e f b u i l d _ r e s i d u a l _ s e a r c h ( h p ) :
s s h a p e = ( 2 2 4 , 2 2 4 , 3)
7

8 i n p u t s = l a y e r s . I n p u t ( s h a p e )
9 x = i n p u t s

10

11 ## E n t r y b l o c k
12 x l a y e r s . R e s c a l i n g ( l . O / 255) ( x )
13 x = l a y e r s . Conv2D(hp . I n t ( u n i t s i n p u t ' , minv a l u e = 3 2 ,
14 max v a l u e = 5 1 2 , s t e p = 3 2 ) , 3,
15 s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )
16

17 if h p . C h o i c e ( " B a t c h N o r m l " , [ T r u e , F a l s e ] ) :
18 x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
19 X l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
20

21

22

23

24 if h p . C h o i c e ( " B a t c h N o r m 2 " , [ T r u e , F a l s e ] ) :
25 x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )

x l a y e r s . C o n 2 D ( h p . I n t ( ' u n i t s _ 2 ' , m in v a l u e = 3 2 , max v a l u e = 5 1 2 , s t e p = 3 2 ) , 3,
p a d d i n g = " s a m e " ) ( x )

26

27 X = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
28

29 p r e v i o u s _ b l o c k _ a c t i v a t i o n = x # S e t a s i d e r e s id u al
30

31 f o r i in r a n g e ( h p . I n t ( ' l a y e r s ' , 2, 6 ) ) :
32 s i z e = h p . I n t ( f ' u n i t b l o c k{ s t r ( i ) } ' , m inv a l u e = 3 2 , max v a l u e = 5 1 2 , s t e p = 3 2 )
33 x l ay e rs . A c t i v a t i o n ( " r e l u ") ( x )
34 x = l a y e r s . S e p a r a b l e C o n v 2 D ( s i z e , 3, padd ing="same") ()
35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

i f h p . C h o i c e ( "Ba tchNorm3" , [ T r u e , F a l s e ] ) :
x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )

x
x

l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . S e p a r a b l e C o n v 2 D ( s i z e , 3, p a d d i n g = " s a m e " ) ()

i f h p . C h o i c e ( "Ba tchNorm4" , [ T r u e , F a l s e ] ) :
x = l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )

x= l a y e r s . M a x P o o l i n g 2 D ( 3 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ()

# P r o j e c t r e s id u al
r e s i d u a l = l a y e r s . C o n v 2 D ( s i z e , I, s t r i d e s = 2 , p a d d i n g = " s a m e " ) (

p r e v i o u s _ b l o c k _ a c t iv a t i o n

x l a y e r s . a d d ( [ x , r e s i d u a l ] )
p r e v i o u s _ b l o c k _ a c t i v a t i o n = x

# Add b a c k r e s id u al
# S e t a s i d e n e x t r e s i d u a l

x
x
x

l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 4 , p a d d i n g = " s a m e " ) ()
l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e l s i z e = 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
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57 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
58 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =4, padding=”same” ) (x)
59

60 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =1, s t r i d e s =1,
61 ac t i va t i on=” sigmoid ” ) (x)
62

63 model = keras . Model ( inputs , outputs )
64 model . summary ( )
65

66 hp_learning_rate = hp . Choice ( ’ l earn ing_rate ’ , va lues =[1e−2, 1e−3, 1e −4])
67

68 model . compile ( l o s s=”mean_squared_error” ,
69 opt imizer=keras . opt imizers .Adam( hp_learning_rate ) ,
70 metr ics =[ ’mae ’ ] )
71

72 return model

Listing G.4: AlbusModels/residual.py, delivers the residual cnn architecture and
hyperparameter tuning search space to AlbusSearch.
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57

58

59

6o o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = l , s t r i d e s = l ,
61 a c t i v a t i o n = s i g m o i d " ) ( x )

x
x

l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 4 , p a d d i n g = " s a m e " ) ( x )

62

63 model = k e r a s . Mode l ( i n p u t s , o u t p u t s )
64 model . summary ()
65

6o hp l e a r n i n g r a t e = h p . C h o i c e ( ' l e a r n i n g r a t e ' , v a l u e s = [ l e - 2 , l e - 3 , l e - 4 ] )
67

68 m o d e l . c o m p i l e ( l o s s = m e a ns q u a r e d e r r o r " ,
69 o p t i m i z e r = k e r a s . o p t i m i z e r s . A d a m ( h p l e a r n i n g r a t e ) ,
7o m e t r i c s = [ ' m a e ' ])
71

12 r e t u r n model

Listing G.4: AlbusModels/residual.py, delivers the residual enn architecture and
hyperparameter tuning search space to AlbusSearch.
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G.5 AlbusModels/resnet.py

1 from tensor f low import keras
2 from keras import l a y e r s
3

4

5 def build_resnet_search (hp) :
6 # Load the pre−tra ined weights o f MobileNetV2 and f r e e z e the weights
7 backbone = keras . app l i c a t i on s . ResNet50 (
8 weights=” imagenet ” , include_top=False , input_shape =(224 , 224 , 3)
9 )

10 backbone . t r a inab l e = False
11

12 inputs = l a y e r s . Input ((224 , 224 , 3) )
13 model = keras . app l i c a t i on s . resnet50 . preprocess_input ( inputs )
14 model = backbone ( model )
15

16 f o r i in range (hp . Int ( ’ Conv_layers ’ , 0 , 6) ) :
17 model = l a y e r s . Conv2D(hp . Int ( ’ units_ ’ + s t r ( i ) , min_value=32,
18 max_value=128, step =32) , 3 , padding=”same” ,
19 name=”conv_layer_” + s t r ( i ) ) ( model )
20

21 i f hp . Choice ( ”BatchNorm” + s t r ( i ) , [ True , False ] ) :
22 model = l a y e r s . BatchNormalization ( ) ( model )
23

24 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
25

26 i f hp . Choice ( ”conv_dropout_C” + s t r ( i ) , [ True , False ] ) :
27 model = l a y e r s . Dropout (hp . Choice ( ”conv_dropout_” + s t r ( i ) ,
28 values =[0.2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
29 name=”conv_dropout_” + s t r ( i ) ) ( model )
30

31 model = l a y e r s . MaxPooling2D (2 , s t r i d e s =1, padding=”same” ) ( model )
32

33 f o r j in range (hp . Int ( ’ separable_layers ’ , 0 , 6) ) :
34 model = l a y e r s . SeparableConv2D (hp . Int ( ’ sep_units_ ’ + s t r ( j ) , min_value=32,
35 max_value=128, step =32) , 3 , padding=”same” ,
36 name=” separable_layer_ ” + s t r ( j ) ) ( model )
37

38 i f hp . Choice ( ”sep_BatchNorm” + s t r ( j ) , [ True , False ] ) :
39 model = l a y e r s . BatchNormalization ( ) ( model )
40

41 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
42 i f hp . Choice ( ”sep_dropout_C” + s t r ( j ) , [ True , False ] ) :
43 model = l a y e r s . Dropout (hp . Choice ( ”sep_dropout_” + s t r ( j ) ,
44 values =[0.2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
45 name=”sep_dropout_” + s t r ( j ) ) ( model )
46

47 # model = l a y e r s . MaxPooling2D (3 , s t r i d e s =3, padding=”same”) ( model )
48

49 model = l a y e r s . Dropout ( 0 . 2 ) ( model )
50 model = l a y e r s . SeparableConv2D (
51 30 , kerne l_s ize =5, s t r i d e s =1, ac t i va t i on=” re lu ” ) ( model )
52 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =3, s t r i d e s =1,
53 ac t i va t i on=” sigmoid ” ) ( model )
54

55 model = keras . Model ( inputs , outputs , name=” keypoint_detector ” )
56
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G.5 Al busModels / resnet .py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3

4

5 d e f b u i l d _ r e s n e t s e a r c h ( h p ) :
o # Load t h e p r e - t r a i n e d w e i g h t s of Mobi leNetV2 and f r e e z e t h e w e i g h t s
7 b a c k b o n e = k e r a s . a p p l i c a t i o n s . R e s N e t 5 0 (
s w e i g h t s = " i m a g e n e t " , i n c l u d e _ t o p = F a l s e , i n p u t s h a p e = ( 2 2 4 , 2 2 4 , 3)
9

10 b a c k b o n e . t r a i n a b l e = F a l s e
11

12 i n p u t s = l a y e r s . I n p u t ( ( 2 2 4 , 2 2 4 , 3 ) )
13 model k e r a s . a p p l i c a t i o n s . r e s n e t 5 0 . p r e p r o c e s s _ i n p u t ( i n p u t s )
14 model = b a c k bone ( m o d e l )
15

16 f o r i in r a n g e ( h p . I t ( ' C o n vl a y e r s ' , 0, 6 ) ) :
17 model = l a y e r s . C o n v 2 D ( h p . I t ( ' u n i t s ' + s t r ( i ) , minv a l u e = 3 2 ,
18 max v a l u e = 1 2 8 , s t e p = 3 2 ) , 3, p a d d i n g = " s a m e " ,
19 name="conv_ l a y e r _ " + st r ( i) ) ( m o d e l )
20

21

22

23

24

25

26

27

28

29

30

31 model = l a y e r s . MaxPooling2D ( 2 , s t r i d e s = l , p a d d i n g = " s a m e " ) ( m o d e l )

if h p . C h o i c e ( " B a t c h N o r m " + s t r ( i ) , [ T r u e , F a l s e ] ) :
mode l = l a y e r s . B a t c h N o r m a l i z a t i o n () ( m o d e l )

m o d e l = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )

if h p . C h o i c e ( " c o n v _ d r o p o u t _ C " + s t r ( i ) , [ T r u e , F a l s e ] ) :
m o d e l = l a y e r s . D r o p o u t ( h p . C h o i c e ( " c o n v _ d r o p o u t _ " + s t r ( i ) ,

v a l u e s = [ 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " c o n v _ d r o p o u t _ " + s t r ( i ) ) ( m o d e l )

32

33 f o r in r a n g e ( h p . I n t ( s e p a r a b l e l a y e r s ' , 0, 6 ) ) :
34 m o d e l = l a y e r s . S e p a r a b l e C o n v 2 D ( h p . I n t ( ' s e p _ u n i t s _ ' + s t r ( j ) , m i n _ v a l u e = 3 2 ,
3 max v a l u e = 1 2 8 , s t e p = 3 2 ) , 3, p a d d i n g = " s a m e " ,
36 n a m e = " s e p a r a b l e _ l a y e r _ " + s t r ( j ) ) ( m o d e l )
37

38

39

40

41

42

43

44

45

46

47

48

49 model = l a y e r s . D r o p o u t ( 0 . 2 ) ( m o d e l )
50 model = l a y e r s . S e p a r a b l e C o n v 2 D (
51 3 0 , k e r n e ls i z e = 5 , s t r i d e s = l , a c t i v a t i o n = " r e l u " ) ( m o d e l )
52 o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = 3 , s t r i d e s = 1 ,
53 a c t i v a t i o n = " s i g m o i d " ) ( m o d e l )

if h p . C h o i c e ( " s e p _ B a t c h N o r m " + s t r ( j ) , [ T r u e , F a l s e ] ) :
mode l = l a y e r s . B a t c h N o r m a l i z a t i o n () ( m o d e l )

m o d e l = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )
if h p . C h o i c e ( " s e p _ d r o p o u t _ C " + s t r ( j ) , [ T r u e , F a l s e ] ) :

m o d e l = l a y e r s . D r o p o u t ( h p . C h o i c e ( " s e p _ d r o p o u t _ " + s t r ( j ) ,
v a l u e s = [ 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " s e p _ d r o p o u t _ " + s t r ( j ) ) ( m o d e l )

#/ mode l = l a y e r s . M a xP o o l i n g 2 D ( 3 , s t r i d e s = 3 , p a d d i n g = " s a m e " ) ( mode l )

54

55

56

model k e r a s . Mode l ( i n p u t s , o u t p u t s , n a m e = " k e y p o i n t _ d e t e c t o r " )
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57 hp_learning_rate = hp . Choice ( ’ l earn ing_rate ’ , va lues =[1e−2, 1e−3, 1e −4])
58

59 model . compile ( l o s s=”mean_squared_error” ,
60 opt imizer=keras . opt imizers .Adam( hp_learning_rate ) ,
61 metr ics =[ ’mae ’ ] )
62 model . summary ( )
63 return model

Listing G.5: AlbusModels/resnet.py, delivers the ResNet architecture and hyperparameter
tuning search space to AlbusSearch.
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s7 hp l e a r n i n g r a t e = h p . C h o i c e ( ' l e a r n i n g r a t e ' , v a l u e s = [ l e - 2 , l e 3 , 1 e - 4 ] )
58

59 m o d e l . c o m p i l e ( l o s s = m e a ns q u a r e d e r r o r " ,
6o o p t i m i z e r = k e r a s . o p t i m i z e r s . A d a m ( h p l e a r n i n g r a t e ) ,
61 m e t r i c s = [ ' m a e ' ] )
62 model . summary ()
63 r e t u r n model

Listing G.5: AlbusModels/resnet.py, delivers the ResNet architecture and hyperparameter
tuning search space to AlbusSearch.
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G.6 AlbusModels/mobilenet.py

1 from tensor f low import keras
2 from keras import l a y e r s
3

4

5 def build_mobilenet_search (hp) :
6 # Load the pre−tra ined weights o f MobileNetV2 and f r e e z e the weights
7 backbone = keras . app l i c a t i on s . MobileNetV2 (
8 weights=” imagenet ” , include_top=False , input_shape =(224 , 224 , 3)
9 )

10 backbone . t r a inab l e = False
11

12 inputs = l a y e r s . Input ((224 , 224 , 3) )
13 model = keras . app l i c a t i on s . mobilenet_v2 . preprocess_input ( inputs )
14 model = backbone ( model )
15

16 f o r i in range (hp . Int ( ’ Conv_layers ’ , 0 , 6) ) :
17 model = l a y e r s . Conv2D(hp . Int ( ’ units_ ’ + s t r ( i ) , min_value=32,
18 max_value=128, step =32) , 3 ,
19 padding=”same” ,
20 name=”conv_layer_” + s t r ( i ) ) ( model )
21

22 i f hp . Choice ( ”BatchNorm” + s t r ( i ) , [ True , False ] ) :
23 model = l a y e r s . BatchNormalization ( ) ( model )
24

25 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
26

27 i f hp . Choice ( ”conv_dropout_C” + s t r ( i ) , [ True , False ] ) :
28 model = l a y e r s . Dropout (hp . Choice ( ”conv_dropout_” + s t r ( i ) ,
29 values =[0.2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
30 name=”conv_dropout_” + s t r ( i ) ) ( model )
31

32 model = l a y e r s . MaxPooling2D (2 , s t r i d e s =1, padding=”same” ) ( model )
33

34 f o r j in range (hp . Int ( ’ separable_layers ’ , 0 , 6) ) :
35 model = l a y e r s . SeparableConv2D (hp . Int ( ’ sep_units_ ’ + s t r ( j ) , min_value=32,
36 max_value=128, step =32) ,
37 3 , padding=”same” ,
38 name=” separable_layer_ ” + s t r ( j ) ) ( model )
39

40 i f hp . Choice ( ”sep_BatchNorm” + s t r ( j ) , [ True , False ] ) :
41 model = l a y e r s . BatchNormalization ( ) ( model )
42

43 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
44 i f hp . Choice ( ”sep_dropout_C” + s t r ( j ) , [ True , False ] ) :
45 model = l a y e r s . Dropout (hp . Choice ( ”sep_dropout_” + s t r ( j ) ,
46 values =[0.2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
47 name=”sep_dropout_” + s t r ( j ) ) ( model )
48

49 # model = l a y e r s . MaxPooling2D (3 , s t r i d e s =3, padding=”same”) ( model )
50

51 model = l a y e r s . Dropout ( 0 . 2 ) ( model )
52 model = l a y e r s . SeparableConv2D (
53 30 , kerne l_s ize =5, s t r i d e s =1, ac t i va t i on=” re lu ” ) ( model )
54 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =3, s t r i d e s =1,
55 ac t i va t i on=” sigmoid ” ) ( model )
56
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G.6 Al busModels / mo bilenet.py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3

4

5 d e f b u i l d _ m o b i l e n e t s e a r c h ( h p ) :
o # Load t h e p r e - t r a i n e d w e i g h t s of Mobi leNetV2 and f r e e z e t h e w e i g h t s
7 b a c k b o n e = k e r a s . a p p l i c a t i o n s . Mobi leNe tV2 (
s w e i g h t s = " i m a g e n e t " , i n c l u d e _ t o p = F a l s e , i n p u t s h a p e = ( 2 2 4 , 2 2 4 , 3)
9

10 b a c k b o n e . t r a i n a b l e = F a l s e
11

12 i n p u t s = l a y e r s . I n p u t ( ( 2 2 4 , 2 2 4 , 3 ) )
13 model k e r a s . a p p l i c a t i o n s . m o b i l e n e t _ v 2 . p r e p r o c e s s _ i n p u t ( i n p u t s )
14 model = b a c k bone ( m o d e l )
15

16 f o r i in r a n g e ( h p . I t ( ' C o n vl a y e r s ' , 0, 6 ) ) :
17 model = l a y e r s . C o n v 2 D ( h p . I t ( ' u n i t s ' + s t r ( i ) , minv a l u e = 3 2 ,
18 max v a l u e = 1 2 8 , s t e p = 3 2 ) , 3,
19

20

21

22

23

24

25

26

27

28

29

30

31

32 model = l a y e r s . MaxPooling2D ( 2 , s t r i d e s = l , p a d d i n g = " s a m e " ) ( m o d e l )

p a d d i n g = " s a m e " ,
n a m e = " c o n v _ l a y e r _ " + s t r ( i ) ) ( m o d e l )

if h p . C h o i c e ( " B a t c h N o r m " + s t r ( i ) , [ T r u e , F a l s e ] ) :
mode l = l a y e r s . B a t c h N o r m a l i z a t i o n () ( m o d e l )

m o d e l = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )

if h p . C h o i c e ( " c o n v _ d r o p o u t _ C " + s t r ( i ) , [ T r u e , F a l s e ] ) :
m o d e l = l a y e r s . D r o p o u t ( h p . C h o i c e ( " c o n v _ d r o p o u t _ " + s t r ( i ) ,

v a l u e s = [ 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " c o n v _ d r o p o u t _ " + s t r ( i ) ) ( m o d e l )

33

34 f o r in r a n g e ( h p . I n t ( s e p a r a b l e l a y e r s ' , 0, 6 ) ) :
35 m o d e l = l a y e r s . S e p a r a b l e C o n v 2 D ( h p . I n t ( ' s e p _ u n i t s _ ' + s t r ( j ) , m i n _ v a l u e = 3 2 ,
36 max value==128, s t e p = 3 2 ) ,
37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 m o d e l = l a y e r s . D r o p o u t ( 0 . 2 ) ( m o d e l )
52 model = l a y e r s . S e p a r a b l e C o n v 2 D (
53 3 0 , k e r n e ls i z e = 5 , s t r i d e s = l , a c t i v a t i o n = " r e l u " ) ( m o d e l )
54 o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = 3 , s t r i d e s = 1 ,
55 a c t i v a t i o n = " s i g m o i d " ) ( m o d e l )

3, p a d d i n g = " s a m e " ,
n a m e = " s e p a r a b l e _ l a y e r _ " + s t r ( j ) ) ( m o d e l )

if h p . C h o i c e ( " s e p _ B a t c h N o r m " + s t r ( j ) , [ T r u e , F a l s e ] ) :
mode l = l a y e r s . B a t c h N o r m a l i z a t i o n () ( m o d e l )

m o d e l = l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )
if h p . C h o i c e ( " s e p _ d r o p o u t _ C " + s t r ( j ) , [ T r u e , F a l s e ] ) :

m o d e l = l a y e r s . D r o p o u t ( h p . C h o i c e ( " s e p _ d r o p o u t _ " + s t r ( j ) ,
v a l u e s = [ 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 ] ) ,
n a m e = " s e p _ d r o p o u t _ " + s t r ( j ) ) ( m o d e l )

#/ mode l = l a y e r s . M a xP o o l i n g 2 D ( 3 , s t r i d e s = 3 , p a d d i n g = " s a m e " ) ( mode l )

56
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57 model = keras . Model ( inputs , outputs , name=” keypoint_detector ” )
58

59 hp_learning_rate = hp . Choice ( ’ l earn ing_rate ’ , va lues =[1e−2, 1e−3, 1e −4])
60

61 model . compile ( l o s s=”mean_squared_error” ,
62 opt imizer=keras . opt imizers .Adam( hp_learning_rate ) ,
63 metr ics =[ ’mae ’ ] )
64 model . summary ( )
65 return model

Listing G.6: AlbusModels/mobilenet.py, delivers the MobileNet architecture and
hyperparameter tuning search space to AlbusSearch.
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57 m o d e l = k e r a s . M o d e l ( i n p u t s , o u t p u t s , n a m e = " k e y p o i n t _ d e t e c t o r " )
58

so hp l e a r n i n g r a t e = h p . C h o i c e ( ' l e a r n i n g r a t e ' , v a l u e s = [ l e - 2 , l e - 3 , l e - 4 ] )
60

61 m o d e l . c o m p i l e ( l o s s = m e a ns q u a r e d e r r o r " ,
62 o p t i m i z e r = k e r a s . o p t i m i z e r s . A d a m ( h p l e a r n i n g r a t e ) ,
63 m e t r i c s = [ ' m a e ' ])
64 model . summary ()
65 r e t u r n model

Listing G.6: AlbusModels/mobilenet.py, delivers the MobileNet architecture and
hyperparameter tuning search space to AlbusSearch.
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Alastor

H.1 AlastorTrainer.py

1 import os
2 from colorama import Fore
3 from Fi lch . F i l c h U t i l s import get_model
4 from ModelBuilder . cnn import cnn
5 from ModelBuilder . r e snet import re snet
6 from ModelBuilder . r e s i d u a l import r e s i d u a l
7 from ModelBuilder . mobilenet import mobilenet
8 from Dobby . DobbyTrainer import DobbyTrainer
9

10

11 c l a s s AlastorTrainer :
12 def __init__( s e l f , j son_fo lder : s tr , image_folder : s tr , kp_def : s t r ,
13 checkpoint_dir : s t r , save_dir : s t r , log_dir : s t r ) :
14 s e l f . j son_fo lder = json_fo lder
15 s e l f . image_folder = image_folder
16 s e l f . kp_def = kp_def
17 s e l f . checkpoint_dir = checkpoint_dir
18 s e l f . save_dir = save_dir
19 s e l f . log_dir = log_dir
20 s e l f . s p l i t s = os . l i s t d i r ( s e l f . j son_fo lder )
21 s e l f . p rev ious_sp l i t = ’ ’
22 s e l f . compile_status = True
23

24 def run ( s e l f ) :
25 pr int ( Fore .GREEN, ”Running AlastorTrainer ” )
26 s e l f . s p l i t s . s o r t ( )
27 f o r s p l i t in s e l f . s p l i t s :
28 split_name = os . path . s p l i t e x t ( s p l i t ) [ 0 ]
29 pr int ( split_name )
30 pr int ( Fore .GREEN, ”Running AlastorTrainer on s p l i t : ” , s p l i t )
31 i f ’ 1 ’ in split_name :
32 mobilenet_model = mobilenet ( )
33 resnet_model = resnet ( )
34 residual_model = r e s i d u a l ( )
35 cnn_model = cnn ( )
36 e l s e :
37 mobilenet_model = get_model ( f ’ { s e l f . checkpoint_dir }
38 mobilenet −{ s e l f . p rev ious_sp l i t }/ ’ )
39 resnet_model = get_model ( f ’ { s e l f . checkpoint_dir }
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H . l AlastorTrainer.py

1 i m p o r t os
2 f rom c o l o r a m a i m p o r t F o r e
3 f rom F i l c h . F i l c h U t i l s i m p o r t g e t _ m o d e l
4 f rom M o d e l B u i l d e r . e n n i m p o r t e n n
5 f rom M o d e l B u i l d e r . r e s n e t i m p o r t r e s n e t
6 f rom M o d e l B u i l d e r . r e s id u al i m p o r t r e s i d u al
7 f rom M o d e l B u i l d e r . mo b i l e n e t i m p o r t mo b i l e n e t
8 f rom Dobby. D o b b y T r a i n e r i m p o r t D o b b y T r a i n e r
9

10

11 c l a s s A l a s t o r T r a i n e r :
12 d e f i n i t ( s e l f , j s o n _ f o l d e r : s t r , i m a g e _ f o l d e r : s t r , k p _ d e f : s t r ,
13 c h e c k p o i n t _ d i r : s t r , s a v e _ d i r : s t r , l og d i r : s t r ) :
14 s e l f . j s o n _ f o l d e r = j s o n _ f o l d e r
15 s e l f . i m a g e _ f o l d e r = i m a g e _ f o l d e r
16 s e l f . k p def = kp def
17

18

19

20

21

22

23

24 d e f ru n ( se l f ) :
25 p r i n t ( F o r e .GREEN, " R u n n i n g A l a s t o r T r a i n e r " )
26 s e l f . s p l i t s . so r t ()
27 f o r s p l i t i n se l f . s p l i t s :
28 s p l i t _ n a m e = o s . p a t h . s p l i t e x t ( s p l i t ) [ 0 ]
29 p r i n t ( s p l i t _ n a m e )
30 p r i n t ( F o r e . G R E E N , " R u n n i n g A l a s t o r T r a i n e r on s p l i t : " , s p l i t )
31 i f ' l ' in s p l i t _ n a m e :
32 m o b i l e n e t _ m o d e l = mo b i l e n e t ( )
33 r e s n e t _ m o d e l = r e s n e t ()
34 r e s i d u a l _ m o d e l = r e s id u a l ( )
35 enn model = e n n ()

s e l f . c h e c k p o i n t _ d i r = c h e c k p o i n t _ d i r
s e l f . s a v e _ d i r = s a v e _ d i r
s e l f . l o g d i r = log d i r
s e l f . s p l i t s = o s . l i s t d i r ( s e l f . j s o n f o l d e r )
s e l f . p r e v i o u s _ s p l i t
s e l f . c o m p i l e _ s t a t u s = T r u e

36

37

38

39

e l s e :
mob i l ene t m o d e l = g e t _ m o d e l ( f ' { s e l f . c h e c k p o i n t _ d i r }

m o b i l e n e t - { s e l f . p r e v i o u s _ s p l i t } / ' )
r e s n e t m o d e l g e t _ m o d e l ( f ' { s e l f . c h e c k p o i n t _ d i r }
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40 resnet −{ s e l f . p rev ious_sp l i t }/ ’ )
41 residual_model = get_model ( f ’ { s e l f . checkpoint_dir }
42 r e s idua l −{ s e l f . p rev ious_sp l i t }/ ’ )
43 cnn_model = get_model ( f ’ { s e l f . checkpoint_dir }
44 cnn−{ s e l f . p rev ious_sp l i t }/ ’ )
45 s e l f . compile_status = False
46

47 pr int ( Fore .GREEN, f ”Running DobbyTrainer , MobileNet−{s p l i t }” )
48 dobby_mobilenet = DobbyTrainer ( j son=f ’ { s e l f . j son_fo lder }{ s p l i t } ’ ,
49 kp_def=s e l f . kp_def , images=s e l f . image_folder ,
50 checkpoint_dir=s e l f . checkpoint_dir ,
51 log_dir=s e l f . log_dir , save_dir=s e l f . save_dir ,
52 name=f ’ mobilenet −{split_name} ’ , model=mobilenet_model ,
53 compiler=s e l f . compile_status )
54 dobby_mobilenet . t r a in ( )
55

56 pr int ( Fore .GREEN, f ”Running DobbyTrainer , ResNet−{split_name}” )
57 dobby_resnet = DobbyTrainer ( j son=f ’ { s e l f . j son_fo lder }{ s p l i t } ’ ,
58 kp_def=s e l f . kp_def ,
59 images=s e l f . image_folder ,
60 checkpoint_dir=s e l f . checkpoint_dir ,
61 log_dir=s e l f . log_dir ,
62 save_dir=s e l f . save_dir ,
63 name=f ’ resnet −{split_name} ’ ,
64 model=resnet_model ,
65 compiler=s e l f . compile_status )
66 dobby_resnet . t r a in ( )
67

68 pr int ( Fore .GREEN, f ”Running DobbyTrainer , CNN−{split_name}” )
69 dobby_cnn = DobbyTrainer ( j son=f ’ { s e l f . j son_fo lder }{ s p l i t } ’ ,
70 kp_def=s e l f . kp_def ,
71 images=s e l f . image_folder ,
72 checkpoint_dir=s e l f . checkpoint_dir ,
73 log_dir=s e l f . log_dir ,
74 save_dir=s e l f . save_dir ,
75 name=f ’ cnn−{split_name} ’ ,
76 model=cnn_model ,
77 compiler=s e l f . compile_status )
78 dobby_cnn . t ra in ( )
79

80 pr int ( Fore .BLUE, f ”Running DobbyTrainer , Residual −{split_name}” )
81 dobby_residual = DobbyTrainer ( j son=f ’ { s e l f . j son_fo lder }{ s p l i t } ’ ,
82 kp_def=s e l f . kp_def ,
83 images=s e l f . image_folder ,
84 checkpoint_dir=s e l f . checkpoint_dir ,
85 log_dir=s e l f . log_dir , save_dir=s e l f . save_dir ,
86 name=f ’ r e s idua l −{split_name} ’ ,
87 model=residual_model ,
88 compiler=s e l f . compile_status )
89 dobby_residual . t r a in ( )
90 s e l f . p rev ious_sp l i t = split_name
91

92 pr int ( Fore .GREEN, ” AlastorTrainer f i n i s h e d ” )

Listing H.1: AlastorTrainer.py, is responsible for training all our models on all splits of a
given dataset without stopping. The module uses DobbyTrainer (Appendix F.4)
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40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

r e s n e t - { s e l f . p r e v i o u s _ s p l i t } / ' )
r e s i d u a l m o d e l = g e t _ m o d e l ( f' { s e l f . c h e c k p o i n t _ d i r }

r e s i d u a l - { s e l f . p r e v i o u s _ s p l i t } / ' )
c n n _ m o d e l = g e t _ m o d e l ( f ' { s e l f. c h e c k p o i n t _ d i r }

c n n - { s e l f . p r e v i o u s _ s p l i t } / ' )
s e l f . c o m p i l e _ s t a t u s = F a l s e

p r i n t (Fore .GREEN, f " R u n n i n g D o b b y T r a i n e r , M o b i l e N e t - { s p i t } " )
d o b b y _ m o b i l e n e t = D o b b y T r a i n e r ( j s o n = f ' { s e l f . j s o n f o l d e r } { s p l i t } ' ,

k p _ d e f = s e l f . k p d e f , i m a g e s = s e l f . i m a g ef o l d e r ,
c h e c k p o i n t d i r = s e l f . c h e c k p o i n t d i r ,
l og d i r = s e l f . l o g d i r , s a v e _ d i r = s e l f . s a v e _ d i r ,
name=f ' m o b i l e n e t { s p l i t _ n a m e } ' , mode l=mobi lene t m o d e l ,
c o m p i l e r = s e l f . c o m p i l e _ s t a t u s )

d o b b y _ m o b i l e n e t . t r a i n ( )

pr i n t (Fore .GREEN, f " R u n n i n g D o b b y T r a i n e r , R e s N e t - { s p l i t _ n a m e } " )
d o b b y _ r e s n e t = D o b b y T r a i n e r ( j s o n = f ' { s e l f . j s o n _ f o l d e r } { s p l i t } ' ,

kp _ d e f = s e l f . k pd e f ,
i m a g e s = s e l f . i m a g e f o l d e r ,
c h e c k p o i n t d i r = s e l f . c h e c k p o i n t d i r ,
l og d i r = s e l f . l o g d i r ,
s a v e _ d i r = s e l f . s a v e _ d i r ,
name=f ' r e s n e t { s p l i t n a m e } ' ,
mode l=resne t m o d e l ,
c o m p i l e r = s e l f . c o m p i l e _ s t a t u s )

d o b b y _ r e s n e t . t r a i n ( )

p r i n t (Fore .GREEN, f " R u n n i n g D o b b y T r a i n e r , CNN { s p l i t n a m e } " )
dobby c n n = D o b b y T r a i n e r ( j s o n = f ' { s e l f . j s o n f o l d e r } { s p l i t } ' ,

kp _ d e f = s e l f . k pd e f ,
i m a g e s = s e l f . i m a g e f o l d e r ,
c h e c k p o i n t d i r = s e l f . c h e c k p o i n t d i r ,
l og d i r = s e l f . l o g d i r ,
s a v e _ d i r = s e l f . s a v e _ d i r ,
name=f ' c n n{ s p l i t _ n a m e } ' ,
model=cnn model ,
c o m p i l e r = s e l f . c o m p i l e _ s t a t u s )

d o b b y _ c n n . t r a i n ( )

p r i n t (Fo re .BLUE, f " R u n n i n g D o b b y T r a i n e r , R e s i d u a l - { s p l i t _ n a m e } " )
d o b b y_ r e s i d u a l = D o b b y T r a i n e r ( j s o n = f ' { s e l f. j s o n _ f o l d e r } { s p l i t } ' ,

k p _ d e f = s e l f . k p d e f ,
i m a g e s = s e l f . i m a g ef o l d e r ,
c h e c k p o i n t d i r = s e l f . c h e c k p o i n t d i r ,
l og d i r = s e l f . l o g d i r , s a v e _ d i r = s e l f . s a v e _ d i r ,
name=f ' r e s i d u a l - { s p l i t _ n a m e } ' ,
m o d e l = r e s i d u a l m o d e l ,
c o m p i l e r = s e l f . c o m p i l e _ s t a t u s )

d o b b y _ r e s i d u a l . t r a i n ( )
s e l f . p r e v i o u s _ s p l i t = s p l i t _ n a m e

p r i n t ( F o r e .GREEN, " A l a s t o r T r a i n e r f i n i s h e d " )

Listing H . l : AlastorTrainer.py, is responsible for training all our models on all splits of a
given dataset without stopping. The module uses DobbyTrainer (Appendix F.4)
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I.1 ModelBuilder/cnn.py

1 from tensor f low import keras
2 from keras import l a y e r s
3

4

5 def cnn ( ) :
6 shape = (224 , 224 , 3)
7

8 input_layer = l a y e r s . Input ( shape )
9 x = input_layer

10

11 x = l a y e r s . Conv2D(352 , 3 , padding=”same” , name=” f i r s t_conv ” ) (x)
12 x = l a y e r s . BatchNormalization ( ) (x)
13 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
14 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
15

16 x = l a y e r s . Conv2D(384 , 3 , padding=”same” ) (x) # Units_0
17 x = l a y e r s . BatchNormalization ( ) (x)
18 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
19 x = l a y e r s . Dropout ( 0 . 5 ) (x)
20

21 x = l a y e r s . Conv2D(352 , 3 , padding=”same” ) (x) # units_1
22 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
23

24 x = l a y e r s . Conv2D(416 , 3 , padding=”same” ) (x) # units_2
25 x = l a y e r s . BatchNormalization ( ) (x)
26 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
27 x = l a y e r s . Dropout ( 0 . 2 ) (x)
28

29 x = l a y e r s . Conv2D(96 , 3 , padding=”same” ) (x) # units_3
30 x = l a y e r s . BatchNormalization ( ) (x)
31 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
32

33 x = l a y e r s . Conv2D(128 , 3 , padding=”same” ) (x) # units_4
34 x = l a y e r s . BatchNormalization ( ) (x)
35 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
36 x = l a y e r s . Dropout ( 0 . 3 ) (x)
37

38 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
39
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l . l ModelBuilder/enn.py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3

4

5 d e f e n n ( ) :
s s h a p e = ( 2 2 4 , 2 2 4 , 3)
7

8 i n p u t _ l a y e r = l a y e r s . I n p u t ( s h a p e )
9 x i n p u t _ l a y e r

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

x
x
x
x

x
x
x
x

x
x

x
x
x
x

x
x
x

x
x
x
x

x

l a y e r s . Conv2D(352 , 3, p a d d i n g = s a m e " , n a m e = " f i r s t c o n v " ) ( x )
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )

l a y e r s . Conv2D(384 , 3, p a d d i n g = " s a m e " ) ( x ) # U n i t s 0
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . Dropou t ( 0 . 5 ) ()

l a y e r s . C o n v 2 D ( 3 5 2 , 3, p a d d i n g = " s a m e " ) ( x ) # u n i t s l
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . Conv2D( 4 1 6 , 3, p a d d i n g = " s a m e " ) ( x ) # u n i t s 2
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . Dropou t ( 0 . 2 ) ( x )

l a y e r s . C o n v 2 D ( 9 6 , 3, p a d d i n g = " s a m e " ) ( x ) # u n i t s 3
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . C o n v 2 D ( 1 2 8 , 3, p a d d i n g = " s a m e " ) ( x ) # u n i t s 4
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . Dropou t ( 0 . 3 ) ( x )

l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )
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40 x = l a y e r s . SeparableConv2D (320 , 3 , padding=”same” ) (x) # sep_units_0
41 x = l a y e r s . BatchNormalization ( ) (x)
42 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
43

44 x = l a y e r s . SeparableConv2D (352 , 3 , padding=”same” ) (x) # sep_units_1
45 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
46

47 x = l a y e r s . SeparableConv2D (128 , 3 , padding=”same” ) (x) # sep_units_2
48 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
49 x = l a y e r s . Dropout ( 0 . 5 ) (x)
50

51 x = l a y e r s . SeparableConv2D (256 , 3 , padding=”same” ) (x) # sep_units_3
52 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
53

54 x = l a y e r s . SeparableConv2D (352 , 3 , padding=”same” ) (x) # sep_units_4
55 x = l a y e r s . BatchNormalization ( ) (x)
56 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
57

58 x = l a y e r s . SeparableConv2D (416 , 3 , padding=”same” ) (x) # sep_units_5
59 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
60

61 x = l a y e r s . MaxPooling2D (3 , s t r i d e s =3, padding=”same” ) (x)
62

63 x = l a y e r s . SeparableConv2D (448 , kerne l_s ize =5, s t r i d e s =1,
64 ac t i va t i on=” re lu ” , name=”sep_out_0” ) (x)
65 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
66 x = l a y e r s . SeparableConv2D (224 , kerne l_s ize =3, s t r i d e s =1,
67 ac t i va t i on=” re lu ” , name=”sep_out_1” ) (x)
68 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
69 x = l a y e r s . SeparableConv2D (480 , kerne l_s ize =2, s t r i d e s =1,
70 ac t i va t i on=” re lu ” , name=”sep_out_2” ) (x)
71 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =2, padding=”same” ) (x)
72

73 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =1, s t r i d e s =1,
74 ac t i va t i on=” sigmoid ” , name=”output” ) (x)
75

76 model = keras . Model ( input_layer , outputs , name=”McFly_cnn_50epochs” )
77 return model

Listing I.1: ModelBuilder/cnn.py, is responsible for delivering our cnn architecture to a
training session.
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40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73 o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = l , s t r i d e s = 1 ,
74 a c t i v a t i o n = " s i g m o i d " , n a m e = " o u t p u t " ) ( x )

x
x
x

x
x

x
x
x

x
x

x
x
x

x
x

x

x

x
x

x
x

x

l a y e r s . S e p a r a b l e C o n v 2 D ( 3 2 0 , 3, p a d d i n g = " s a m e " ) ( x ) # sep u n i t s _ 0
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . S e p a r a b l e C o n v 2 D ( 3 5 2 , 3, p a d d i n g = " s a m e " ) ( x ) # sep u n i t s l
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . S e p a r a b l e C o n v 2 D ( 1 2 8 , 3, p a d d i n g = " s a m e " ) ( x ) # sep u n i t s 2
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . D r o p o u t ( 0 . 5 ) ( x )

l a y e r s . S e p a r a b l e C o n v 2 D ( 2 5 6 , 3, p a d d i n g = " s a m e " ) ( x ) # sep u n i t s _ 3
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . S e p a r a b l e C o n v 2 D ( 3 5 2 , 3, p a d d i n g = " s a m e " ) ( x ) # sep u n i t s4
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . S e p a r a b l e C o n v 2 D ( 4 1 6 , 3, p a d d i n g = " s a m e " ) ( x ) # s e p _ u n i t s _ 5
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . M a x P o o l i n g 2 D ( 3 , s t r i d e s = 3 , p a d d i n g = " s a m e " ) ()

l a y e r s . S e p a r a b l e C o n v 2 D ( 4 4 8 , k e r n e l _ s i z e = 5 , s t r i d e s = l ,
a c t i v a t i o n = " r e l u " , n a m e = " s e p _ o u t _ 0 " ) ( x )

l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )
l a y e r s . S e p a r a b l e C o n v 2 D ( 2 2 4 , k e r n e ls i z e = 3 , s t r i d e s = 1 ,

a c t i v a t i o n = r e l u " , n a m e = " s e p _ o u t _ l " ) ( x )
l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , padd ing="same") ( x )
l a y e r s . S e p a r a b l e C o n v 2 D ( 4 8 0 , k e r n e l _ s i z e = 2 , s t r i d e s = l ,

a c t i v a t i o n = r e l u " , n a m e = " s e p _ o u t _ 2 " ) ( x )
l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )

75

76 model = k e r a s . Mode l ( i n p u t _ l a y e r , o u t p u t s , n a m e = " M c F l y _ c n n _ 5 0 e p o c h s " )
77 r e t u r n model

Listing I.l : ModelBuilder/cnn.py, is responsible for delivering our enn architecture to a
training session.
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I.2 ModelBuilder/residual.py

1 # This funct ion returns a r e s i d u a l model .
2 # Written by William Svea−Lochert , Halden , Norway 2021.
3

4 from tensor f low import keras
5 from keras import l a y e r s
6

7

8 def r e s i d u a l ( ) :
9 shape = (224 , 224 , 3)

10

11 inputs = l a y e r s . Input ( shape )
12 x = inputs
13

14 # Entry block
15 x = l a y e r s . Resca l ing (1 . 0 / 255) (x)
16 x = l a y e r s . Conv2D(416 , 3 , s t r i d e s =2, padding=”same” ) (x)
17 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
18 x = l a y e r s . Conv2D(224 , 3 , padding=”same” ) (x)
19 x = l a y e r s . BatchNormalization ( ) (x)
20 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
21

22 previous_block_activat ion = x # Set as ide r e s i d u a l
23

24 s i z e s = [320 , 416 , 256 , 160 , 416 , 32 ]
25

26 f o r s i z e in s i z e s :
27 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
28

29 x = l a y e r s . SeparableConv2D ( s i z e , 3 , padding=”same” ) (x)
30 x = l a y e r s . BatchNormalization ( ) (x)
31 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
32

33 x = l a y e r s . SeparableConv2D ( s i z e , 3 , padding=”same” ) (x)
34

35 x = l a y e r s . MaxPooling2D (3 , s t r i d e s =2, padding=”same” ) (x)
36

37 # Project r e s i d u a l
38 r e s i d u a l = l a y e r s . Conv2D( s i z e , 1 , s t r i d e s =2, padding=”same” ) (
39 previous_block_activat ion
40 )
41 x = l a y e r s . add ( [ x , r e s i d u a l ] ) # Add back r e s i d u a l
42 previous_block_activat ion = x # Set as ide next r e s i d u a l
43

44 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =4, padding=”same” ) (x)
45 x = l a y e r s . SeparableConv2D (30 , kerne l_s ize =2, s t r i d e s =2, padding=”same” ) (x)
46 x = l a y e r s . BatchNormalization ( ) (x)
47 x = l a y e r s . Act ivat ion ( ” r e lu ” ) (x)
48 x = l a y e r s . MaxPooling2D (2 , s t r i d e s =4, padding=”same” ) (x)
49

50 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =1, s t r i d e s =1,
51 ac t i va t i on=” sigmoid ” ) (x)
52

53 model = keras . Model ( inputs , outputs )
54 model . summary ( )
55

56 return model
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1.2 ModelBuilder/residual.py

1 # T h i s f u n c t i o n r e t u r n s a r e s i d u a l model .
2 # W r i t t e n by W i l l i a m S v e a - L o c h e r t , H a l d e n , Norway 2021 .
3

4 f rom t e n s o r f l o w i m p o r t k e r a s
5 f rom k e r a s i m p o r t l a y e r s
6

7

8 d e f r e s i d u a l ( ) :
o s h a p e = ( 2 2 4 , 2 2 4 , 3)

10

11 i n p u t s = l a y e r s . I n p u t ( s h a p e )
12 x = i n p u t s
13

14 ## E n t r y b l o c k
15 x l a y e r s . R e s c a l i n g ( l . 0 / 255) ( x )
16 x l a y e r s . C o n v 2 D ( 4 1 6 , 3, s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )
17 X l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
18 x l a y e r s . C o n 2 D ( 2 2 4 , 3, p a d d i n g = " s a m e " ) ()
19 X l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
20 x l ay e rs . A c t i v a t i o n ( " r e l u " ) ( x )
21

22 p r e v i o u s _ b l o c k _ a c t i v a t i o n = x # S e t a s i d e r e s id u al
23

24 s i z e s = [3 2 0 , 41 6 , 25 6 , l 6 0 , 41 6 , 3 2 ]
25

26 f o r s i z e i n s i z e s :
27 X l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = l , s t r i d e s = 1 ,
1 a c t i v a t i o n = " s i g m o i d " ) ( x )

x
x
x

x

x l a y e r s . M a x P o o l i n g 2 D ( 3 , s t r i d e s = 2 , p a d d i n g = " s a m e " ) ( x )

# P r o j e c t r e s id u al
r e s i d u a l = l a y e r s . C o n v 2 D ( s i z e , I, s t r i d e s = 2 , p a d d i n g = " s a m e " ) (

p r e v i o u s _ b l o c k _ a c t iv a t i o n

x l a y e r s . a d d ( [ x , r e s i d u a l ] )
p r e v i o u s _ b l o c k _ a c t i v a t i o n = x

x
x
x
x
x

l a y e r s . S e p a r a b l e C o n v 2 D ( s i z e , 3, padd ing="same") ()
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )

l a y e r s . S e p a r a b l e C o n v 2 D ( s i z e , 3, p a d d i n g = " s a m e " ) ()

# Add b a c k r e s id u al
# S e t a s i d e n e x t r e s i d u a l

l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 4 , p a d d i n g = " s a m e " ) ()
l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e l s i z e = 2 , s t r i d e s = 2 , p a d d i n g = s a m e " ) ( x )
l a y e r s . B a t c h N o r m a l i z a t i o n () ( x )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( x )
l a y e r s . M a xP o o l i n g 2 D ( 2 , s t r i d e s = 4 , p a d d i n g = " s a m e " ) ()

52

53 model = k e r a s . Mode l ( i n p u t s , o u t p u t s )
54 model . summary ()
55

56 r e t u r n model
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Listing I.2: ModelBuilder/residual.py, is responsible for delivering our residual architecture
to a training session.
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Listing I.2: ModelBuilder/residual.py, is responsible for delivering our residual architecture
to a training session.
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I.3 ModelBuilder/resnet.py

1 from tensor f low import keras
2 from keras import l a y e r s
3 from keras . ca l l back s import TensorBoard , EarlyStopping , ReduceLROnPlateau , ModelCheckpoint
4

5

6 def re snet ( ) :
7 # Load the pre−tra ined weights o f MobileNetV2 and f r e e z e the weights
8 backbone = keras . app l i c a t i on s . ResNet50 (
9 weights=” imagenet ” , include_top=False , input_shape =(224 , 224 , 3)

10 )
11 backbone . t r a inab l e = True
12 pr int ( ”Number o f l a y e r s in the base model : ” , l en ( backbone . l a y e r s ) )
13 fine_tune_at = 100
14

15 f o r l aye r in backbone . l a y e r s [ : fine_tune_at ] :
16 l aye r . t r a inab l e = False
17

18 inputs = l a y e r s . Input ((224 , 224 , 3) )
19 model = keras . app l i c a t i on s . resnet50 . preprocess_input ( inputs )
20 model = backbone ( model )
21

22 model = l a y e r s . Conv2D(96 , 3 , padding=”same” , name=”conv_layer_0” ) ( model )
23 model = l a y e r s . BatchNormalization ( ) ( model )
24 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
25

26 model = l a y e r s . Conv2D(64 , 3 , padding=”same” , name=”conv_layer_1” ) ( model )
27 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
28

29 model = l a y e r s . Conv2D(96 , 3 , padding=”same” , name=”conv_layer_2” ) ( model )
30 model = l a y e r s . BatchNormalization ( ) ( model )
31 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
32

33 model = l a y e r s . MaxPooling2D (2 , s t r i d e s =1, padding=”same” ) ( model )
34

35 model = l a y e r s . SeparableConv2D (64 , 3 , padding=”same” , name=” separable_layer_0 ” ) ( model )
36 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
37

38 model = l a y e r s . Dropout ( 0 . 2 ) ( model )
39 model = l a y e r s . SeparableConv2D (
40 30 , kerne l_s ize =5, s t r i d e s =1, ac t i va t i on=” re lu ” ) ( model )
41 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =3,
42 s t r i d e s =1, ac t i va t i on=” sigmoid ” ) ( model )
43

44 model = keras . Model ( inputs , outputs , name=” keypoint_detector ” )
45

46 return model

Listing I.3: ModelBuilder/resnet.py, is responsible for delivering our ResNet architecture
to a training session.
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1.3 ModelBuilder /resnet .py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3 f rom k e r a s . c a l l b a c k s i m p o r t T e n s o r B o a r d , E a r l y S t o p p i n g , R e d u c e L R O n P l a t e a u , M o d e l C h e c k p o i n t
4

5

6 d e f r e s n e t ( ) :
1 # Load t h e p r e - t r a i n e d w e i g h t s of Mobi leNetV2 and f r e e z e t h e w e i g h t s
8 b a c k b o n e = k e r a s . a p p l i c a t i o n s . R e s N e t 5 0 (
o w e i g h t s = " i m a g e n e t " , i n c l u d e _ t o p = F a l s e , i n p u t s h a p e = ( 2 2 4 , 2 2 4 , 3)

10

11 b a c k b o n e . t r a i n a b l e = T r u e
12 p r i n t ( " N u m b e r of l a y e r s in t h e b a s e m o d e l : " l e n ( b a c k b o n e . l a y e r s ) )
13 f i n e t u n e at = 100
14

15 f o r l a y e r in b a c k b o n e . l a y e r s [: f i n e _ t u n e _ a t ] :
16 l a y e r . t r a i n a b l e = F a l s e
17

18 i n p u t s = l a y e r s . I n p u t ( ( 2 2 4 , 2 2 4 , 3 ) )
19 model k e r a s . a p p l i c a t i o n s . r e s n e t 5 0 . p r e p r o c e s s _ i n p u t ( i n p u t s )
20 model b a c k bone ( m o d e l )
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 model l a y e r s . D r o p o u t ( 0 . 2 ) ( m o d e l )
39 model l a y e r s . S e p a r a b l e C o n v 2 D (
40 3 0 , k e r n e ls i z e = 5 , s t r i d e s = l , a c t i v a t i o n = " r e l u " ) ( m o d e l )
41 o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = 3 ,
42 s t r i d e s = l , a c t i v a t i o n = " s i g m o i d " ) ( m o d e l )

model
model
model

model
model

model
model
model

model

model
model

l a y e r s . C o n v 2 D ( 9 6 , 3, p a d d i n g = s a m e " , name=" c o n v l a y e r _ 0 " ) ( m o d e l )
l a y e r s . B a t c h N o r m a l i z a t i o n () ( m o d e l )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )

l a y e r s . C o n v 2 D ( 6 4 , 3, p a d d i n g = s a m e " , name="conv l a y e r _ 1 " ) ( m o d e l )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )

l a y e r s . C o n v 2 D ( 9 6 , 3, p a d d i n g = s a m e " , name="conv l a y e r _ 2 " ) ( m o d e l )
l a y e r s . B a t c h No r m a l i z a t i o n () ( m o d e l )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )

l a y e r s . MaxPooling2D ( 2 , s t r i d e s = l , p a d d i n g = " s a m e " ) ( m o d e l )

l a y e r s . S e p a r a b l e C o n v 2 D ( 6 4 , 3, p a d d i n g = " s a m e " , n a m e = " s e p a r a b l e _ l a y e r _ 0 " ) ( m o d e l )
l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )

43

44 m o d e l = k e r a s . M o d e l ( i n p u t s , o u t p u t s , n a m e = " k e y p o i n t _ d e t e c t o r " )
45

46 r e t u r n model

Listing I.3: ModelBuilder/resnet.py, is responsible for delivering our ResNet architecture
to a training session.
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I.4 ModelBuilder/mobilenet.py

1 from tensor f low import keras
2 from keras import l a y e r s
3

4

5 def mobilenet ( ) :
6 # Load the pre−tra ined weights o f MobileNetV2 and f r e e z e the weights
7 backbone = keras . app l i c a t i on s . MobileNetV2 (
8 weights=” imagenet ” , include_top=False , input_shape =(224 , 224 , 3)
9 )

10 backbone . t r a inab l e = True
11 pr int ( ”Number o f l a y e r s in the base model : ” , l en ( backbone . l a y e r s ) )
12 fine_tune_at = 100
13

14 f o r l aye r in backbone . l a y e r s [ : fine_tune_at ] :
15 l aye r . t r a inab l e = False
16

17 inputs = l a y e r s . Input ((224 , 224 , 3) )
18 model = keras . app l i c a t i on s . mobilenet_v2 . preprocess_input ( inputs )
19 model = backbone ( model )
20

21 model = l a y e r s . Conv2D(64 , 3 , padding=”same” , name=”conv_layer_0” ) ( model )
22

23 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
24

25 model = l a y e r s . Conv2D(128 , 3 , padding=”same” , name=”conv_layer_1” ) ( model )
26

27 model = l a y e r s . BatchNormalization ( ) ( model )
28

29 model = l a y e r s . Act ivat ion ( ” r e lu ” ) ( model )
30

31 model = l a y e r s . MaxPooling2D (2 , s t r i d e s =1, padding=”same” ) ( model )
32

33 model = l a y e r s . Dropout ( 0 . 2 ) ( model )
34 model = l a y e r s . SeparableConv2D (30 , kerne l_s ize =5, s t r i d e s =1,
35 ac t i va t i on=” re lu ” ) ( model )
36 outputs = l a y e r s . SeparableConv2D (30 , kerne l_s ize =3,
37 s t r i d e s =1, ac t i va t i on=” sigmoid ” ) ( model )
38

39 model = keras . Model ( inputs , outputs , name=” keypoint_detector ” )
40

41 return model

Listing I.4: ModelBuilder/mobilenet.py, is responsible for delivering our MobileNet
architecture to a training session.
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1.4 ModelBuilder/mobilenet.py

1 f rom t e n s o r f l o w i m p o r t k e r a s
2 f rom k e r a s i m p o r t l a y e r s
3

4

5 d e f mo b i l e n e t ( ) :
o # Load t h e p r e - t r a i n e d w e i g h t s of Mobi leNe tV2 and f r e e z e t h e w e i g h t s
7 b a c k b o n e = k e r a s . a p p l i c a t i o n s . Mobi leNetV2 (
s w e i g h t s = " i m a g e n e t " , i n c l u d e _ t o p = F a l s e , i n p u t s h a p e = ( 2 2 4 , 2 2 4 , 3)
9

10 b a c k b o n e . t r a i n a b l e = T r u e
11 p r i n t ( " N u m b e r of l a y e r s in t h e b a s e m o d e l : " l e n ( b a c k b o n e . l a y e r s ) )
12 f i n e t u n e at = 100
13

14 f o r l a y e r in b a c k b o n e . l a y e r s [: f i n e _ t u n e _ a t ] :
15 l a y e r . t r a i n a b l e = F a l s e
16

17 i n p u t s = l a y e r s . I n p u t ( ( 2 2 4 , 2 2 4 , 3 ) )
18 model k e r a s . a p p l i c a t i o n s . m o b i l e n e t _ v 2 . p r e p r o c e s s _ i n p u t ( i n p u t s )
19 model b a c k bone ( m o d e l )
20

21

22

23

24

25

26

27

28

29

30

31

32

33 model l a y e r s . D r o p o u t ( 0 . 2 ) ( m o d e l )
34 model l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e l s i z e = 5 , s t r i d e s = 1 ,
35 a c t i v a t i o n = " r e l u " ) ( m o d e l )
36 o u t p u t s = l a y e r s . S e p a r a b l e C o n v 2 D ( 3 0 , k e r n e ls i z e = 3 ,
37 s t r i d e s = l , a c t i v a t i o n = " s i g m o i d " ) ( m o d e l )

model

model

model

model

model

model

l a y e r s . C o n v 2 D ( 6 4 , 3, p a d d i n g = " s a m e " , n a m e = " c o n v _ l a y e r _ 0 " ) ( m o d e l )

l a y e r s . A c t i v a t i o n ( " r e l u ") ( m o d e l )

l a y e r s . Conv2D(128 , 3, p a d d i n g = " s a m e " , name="conv l a y e r _ 1 " ) ( m o d e l )

l a y e r s . B a t c h N o r m a l i z a t i o n () ( m o d e l )

l a y e r s . A c t i v a t i o n ( " r e l u " ) ( m o d e l )

l a y e r s . M a x P o o l i n g 2 D ( 2 , s t r i d e s = l , p a d d i n g = " s a m e " ) ( m o d e l )

38

39 m o d e l = k e r a s . M o d e l ( i n p u t s , o u t p u t s , n a m e = " k e y p o i n t _ d e t e c t o r " )
40

41 r e t u r n model

Listing I.4: ModelBuilder/mobilenet.py, is responsible for delivering our MobileNet
architecture to a training session.
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Sirius

J.1 SiriusConverter.py

1 import os
2 import tensor f l ow as t f
3 from colorama import Fore , Back , Sty le
4 from Fi lch . F i l c h U t i l s import get_model , get_models_from_folder
5

6

7 c l a s s S i r iusConverter :
8 ”””
9 Class to convert a model to a Tensorflow Lite model .

10 ”””
11 def __init__( s e l f , d i r e c to ry : str , output_directory : s t r ) :
12 s e l f . d i r e c to ry = d i r e c to ry
13 s e l f . output_directory = output_directory
14

15 def __convert_models ( s e l f ) :
16 ”””
17 Converts a l l models in the d i r e c to ry to Tensorflow Lite models .
18 : return :
19 ”””
20 models = get_models_from_folder ( s e l f . d i r e c to ry )
21 f o r model_name in models :
22 model = get_model ( f ’ { s e l f . d i r e c to ry }{model_name} ’ )
23 converter = t f . l i t e . TFLiteConverter . from_keras_model (
24 model )
25 t f l i t e_mode l = converter . convert ( )
26

27 # check i f f i l e e x i s t s i f not c reate i t
28 i f not os . path . e x i s t s ( f ’ { s e l f . output_directory }{model_name } . t f l i t e ’ ) :
29 pr int ( Fore .RED, f ’ {model_name} does not ex i s t , c r ea t ing i t ! ’ )
30 with open ( f ’ { s e l f . output_directory }{model_name } . t f l i t e ’ , ’w+’ ) as f :
31 f . wr i te ( t f l i t e_mode l )
32 e l s e :
33 pr int ( Fore .GREEN, f ’ {model_name} already ex i s t s , adding model information . . . ’ )
34 with open ( f ’ { s e l f . output_directory }{model_name } . t f l i t e ’ , ’wb ’ ) as f :
35 f . wr i te ( t f l i t e_mode l )

Listing J.1: SiriusConverter.py, is responsible for converting our trained models into TFLite
models. The module utilizes FilchUtils.py (Appendix D.1).
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J.l SiriusConverter.py

1 i m p o r t os
2 i m p o r t t e n s o r f l o w as tf
3 f rom c o l o r a m a i m p o r t F o r e , B a c k , S t y l e
4 f rom F i l c h . F i l c h U t i l s i m p o r t g e t _ m o d e l , g e t _ m o d e l s _ f r o m _ f o l d e r
5

6

7 c l a s s S i r i u s C o n v e r t e r :
8

9

10

C l a s s to c o n v e r t a model to a T e n s o r f l o w L i t e m o d e l .

11 d e f i n i t ( s e l f , d i r e c t o r y : s t r , o u t p u t _ d i r e c t o r y : s t r ) :
12 se l f. di r e c t o r y = di r e c t o r y
13 s e l f . o u t p u t _ d i r e c t o r y = o u t p u t _ d i r e c t o r y
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

d e f c o n v e r t models ( s e l f) :

C o n v e r t s a l l mode l s in t h e d i r e c t o r y to T e n s o r f l o w L i t e m o d e l s .
: r e t u r n :

mode l s = g e t _ m o d e l s _ f r o m _ f o l d e r ( s e l f . d i r e c t o r y )
f o r model_name in m o d e l s :

mode l = g e t _ m o d e l ( f ' { s e l f. d i r e c t o r y } {model_name} ')
c o n v e r t e r = t f. l i t e . T F L i t e C o n v e r t e r . f r o m _ k e r a s _ m o d e l (

m o d e l )
t f l i t e _ m o d e l = c o n v e r t e r . c o n v e r t ( )

# c h e c k if f i l e e x i s t s if no t c r e a t e it
i f n o t o s . p a t h . e x i s t s ( f ' { s e l f. o u t p u t _ d i r e c t o r y }{mode l_name} . t fl i t e ' ) :

p r i n t ( F o r e . R E D , f ' { m o d e l _ n a m e } d o e s no t e x i s t , c r e a t i n g i t ! ' )
w i t h o p e n ( f ' { s e l f . o u t p u t _ d i r e c t o r y } { m o d e l _ n a m e } . t f l i t e ' , ' w + ' ) as f:

f. w r i t e ( t f l i t e _ m o d e l )
e l s e :

p r i n t ( F o r e .GREEN, f' {model_name} a l r e a d y e x i s t s , a d d i n g mode l i n f o r m a t i o n . . . ')
w i t h o p e n ( f ' { s e l f . o u t p u t _ d i r e c t o r y } { m o d e l _ n a m e } . t f l i t e ' ' w b ' ) as f:

f. w r i t e ( t f l i t e _ m o d e l )

Listing J . l : SiriusConverter.py, is responsible for converting our trained models into TFLite
models. The module utilizes FilchUtils.py (Appendix D.l).
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Appendix K

Lupin

K.1 LupinExamin.py

1 import numpy as np
2 from colorama import Fore
3 import cv2
4 from typing import Optional
5 import matplot l ib . pyplot as p l t
6 from Fi lch . F i l c h U t i l s import get_train_params , get_pose , get_model , load_image
7

8

9 c l a s s LupinExamin :
10 def __init__( s e l f , j son : str , img_dir : s t r , kp_def : s t r , model_dir : s t r ,
11 v i s u a l i z e : Optional [ bool ] = False , num_samples : Optional [ i n t ] = 500) :
12 ”””
13 I n i t i a l i z e the c l a s s .
14 : param json : path to json f i l e .
15 : param img_dir : path to image d i r e c to ry .
16 : param kp_def : path to keypoint d e f i n i t i o n f i l e .
17 : param model_dir : path to models d i r e c to ry .
18 ”””
19 s e l f . j son = json
20 s e l f . img_dir = img_dir
21 s e l f . kp_def = kp_def
22 s e l f . model_dir = model_dir
23 s e l f . samples , s e l f . json_dict , s e l f . kp_def , s e l f . co lo r s , s e l f . l a b e l s =
24 get_train_params ( s e l f . json , s e l f . kp_def )
25 s e l f . images = [ ]
26 s e l f . gt_kps = [ ]
27 s e l f . l i s t_o f_pred i c t i ons = [ ]
28 s e l f . l i s t_of_gt = [ ]
29 s e l f . v i s u a l i z e = v i s u a l i z e
30 s e l f . se lected_samples = s e l f . __get_test_samples ( )
31 s e l f . num_samples = num_samples
32

33 s e l f . head_errors = [ ]
34 s e l f . l e f t_shou lder_errors = [ ]
35 s e l f . r ight_shoulder_errors = [ ]
36 s e l f . le f t_elbow_errors = [ ]
37 s e l f . r ight_elbow_errors = [ ]
38 s e l f . l e f t_wr i s t_er ro r s = [ ]
39 s e l f . r ight_wrist_errors = [ ]
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K . l LupinExamin.py

1 i m p o r t numpy as np
2 f rom c o l o r a m a i m p o r t F o r e
3 i m p o r t c v 2
4 f rom t y p i n g i m p o r t O p t i o n a l
5 i m p o r t m a t p l o t l i b . p y p l o t as p i t
6 f rom F i l c h . F i l c h U t i l s i m p o r t get t r a i np a r a m s , ge t p o s e , get m o d e l , l o a d _ i m a g e
7

8

o c l a s s L u p i n E x a m i n :
10 d e f i n i t ( s e l f , js o n : s t r , img d i r : s t r , kp d e f : s t r , m o d e l _ d i r : s t r ,
11 v i s u a l i z e : O p t i o n a l [ b o o l ] = F a l s e , n u m _ s a m p l e s : O p t i o n a l [ i n t ] 5 0 0 ) :
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

I n i t i a l i z e t h e c l a s s .
: pa ram js o n : p a t h to js o n f i l e .
: pa ram img d i r : p a t h to image d i r e c t o r y .
: pa ram k p _ d e f : p a t h to k e y p o i n t d e f i n i t i o n f i l e .
: pa ram m o d e l d i r : p a t h to mode l s d i r e c t o r y .
1 1 1 9 19

s e l f . js o n = js o n
s e l f . i m g d i r = img d i r
s e l f . k p def = kp def
se l f . m o d e l d i r = m o d e l d i r
s e l f . s a m p l e s , s e l f . j s o n _ d i c t , s e l f . k p _ d e f , s e l f . c o l o r s , s e l f . l a b e l s =

ge t t r a i n p a r a m s ( s e l f. js o n , se l f . k pd e f )
s e l f . i m a g e s = []
s e l f . g t k p s = []
s e l f . l i s t _ o f _ p r e d i c t i o n s
s e l f . l i s t of gt = []
s e l f . v i s u a l i z e = v i s u a l i z e
s e l f . s e l e c t e d _ s a m p l e s = s e l f · g e t t e s t s a m p l e s ( )
se l f . num_samples num_samples

[]

s e l f . h e a d _ e r r o r s []
s e l f . l e f t s h o u l d e r e r r o r s = []
s e l f . r i g h t _ s h o u l d e r _ e r r o r s = []
s e l f . l e f t _ e l b o w _ e r r o r s = []
s e l f . r i g h t _ e l b o w _ e r r o r s = []
s e l f . l e f t _ w r i s t _ e r r o r s = []
s e l f . r i g h t _ w r i s t _ e r r o r s = []
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40 s e l f . l e f t_hip_errors = [ ]
41 s e l f . r ight_hip_errors = [ ]
42 s e l f . neck_errors = [ ]
43 s e l f . tor so_errors = [ ]
44 s e l f . l e f t_knee_errors = [ ]
45 s e l f . r ight_knee_errors = [ ]
46 s e l f . l e f t_ankle_errors = [ ]
47 s e l f . r ight_ankle_errors = [ ]
48

49 s e l f . head_gt = [ ]
50 s e l f . le f t_shoulder_gt = [ ]
51 s e l f . r ight_shoulder_gt = [ ]
52 s e l f . left_elbow_gt = [ ]
53 s e l f . right_elbow_gt = [ ]
54 s e l f . l e f t_wrist_gt = [ ]
55 s e l f . r ight_wrist_gt = [ ]
56 s e l f . le ft_hip_gt = [ ]
57 s e l f . right_hip_gt = [ ]
58 s e l f . neck_gt = [ ]
59 s e l f . torso_gt = [ ]
60 s e l f . left_knee_gt = [ ]
61 s e l f . right_knee_gt = [ ]
62 s e l f . le ft_ankle_gt = [ ]
63 s e l f . right_ankle_gt = [ ]
64

65 s e l f . head_distance = 0
66 s e l f . l e f t_ankle_distance = 0
67 s e l f . le ft_elbow_distance = 0
68 s e l f . l e f t_hip_distance = 0
69 s e l f . le ft_knee_distance = 0
70 s e l f . l e f t_shoulder_distance = 0
71 s e l f . l e f t_wr i s t_dis tance = 0
72 s e l f . neck_distance = 0
73 s e l f . r ight_ankle_distance = 0
74 s e l f . r ight_elbow_distance = 0
75 s e l f . r ight_hip_distance = 0
76 s e l f . r ight_knee_distance = 0
77 s e l f . r ight_shoulder_distance = 0
78 s e l f . r ight_wrist_distance = 0
79 s e l f . torso_distance = 0
80

81 def __get_test_samples ( s e l f ) :
82 num_samples = 500
83 se lected_samples = np . random . cho ice ( s e l f . samples , num_samples , r ep lace=False )
84

85 f o r sample in selected_samples :
86 data = get_pose ( sample , s e l f . json_dict , s e l f . img_dir )
87 image = data [ ”img_data” ]
88 keypoint = data [ ” j o i n t s ” ]
89 s e l f . images . append ( image )
90 s e l f . gt_kps . append ( keypoint )
91

92 return selected_samples
93

94 def __predict ( s e l f , image_path : str , index : int , model ) :
95 ”””
96 Test the model on a s i n g l e image .
97 : param image_path : path to image .
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40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 d e f g e t t e s t s a m p l e s ( s e l f ) :
82 n u ms a m p l e s = 500
83 s e l e c t e d _ s a m p l e s = n p . r a n d o m . c h o i c e ( s e l f. s a m p l e s , n u m _ s a m p l e s , r e p l a c e = F a l s e)

s e l f . l e f t h i p e r r o r s = []
s e l f . r i g h t h i p e r r o r s = []
s e l f . n e c k _ e r r o r s = []
s e l f . t o r s o _ e r r o r s = []
s e l f . l e f t k n e e e r r o r s = []
s e l f . r i g h t _ k n e e _ e r r o r s = []
s e l f . l e f t _ a n k l e _ e r r o r s = []
s e l f . r i g h t _ a n k l e _ e r r o r s = []

s e l f . h e a d gt = []
s e l f . l e f t _ s h o u l d e r _ g t = []
s e l f . r i g h t _ s h o u l d e r _ g t = []
s e l f . l e f t _ e l b o w _ g t = []
s e l f . r i g h t e l b o w _ gt = []
s e l f . l e f t _ w r i s t _ g t = []
s e l f . r i g h t w r i s t gt = []
s e l f . l e f t h i p gt = []
s e l f . r i g h t h i p gt = []
s e l f . n e c k gt = []
s e l f . t o r s o gt = []
s e l f . l e f t _ k n e e gt = []
s e l f . r i g h t _ k n e e _ g t = []
s e l f . l e f t _ a n k l e _ g t = []
s e l f . r i g h t a n k l e gt = []

se l f. h e a d d i s t a n c e = 0
s e l f . l e f t a n k l e d i s t a n c e 0
s e l f . l e f t e l b o w _ d i s t a n c e 0
s e l f . l e f t _ h i p d i s t a n c e = 0
s e l f . l e f t k n e e _ d i s t a n c e = 0
s e l f . l e f t s h o u l d e r d i s t a n c e 0
s e l f . l e f t w r i s t d i s t a n c e = 0
se l f. n e c k d i s t a n c e = 0
s e l f . r i g h t _ a n k l e _ d i s t a n c e = 0
s e l f . r i g h t _ e l b o w _ d i s t a n c e = 0
s e l f . r i g h t h i p d i s t a n c e = 0
s e l f . r i g h t _ k n e e _ d i s t a n c e = 0
s e l f . r i g h t _ s h o u l d e r _ d i s t a n c e 0
s e l f . r i g h t _ w r i s t _ d i s t a n c e = 0
s e l f . t o r s o d i s t a n c e = 0

84

85

86

87

88

89

90

91

92

93

94 d e f p r e d i c t ( s e l f , i m a g ep a t h : s t r , i n d e x : i n t , m o d e l ) :

f o r s a m p l e in s e l e c t e d _ s a m p l e s :
d a t a = g e t p o s e ( s a m p l e , s e l f . j s o n _ d i c t , s e l f . i m g d i r )
i m a g e = d a t a [ " i m g da ta" ]
k e y p o i n t = d a t a [ " j o i n t s " ]
se l f . i m a g e s . a p p e n d ( i m a g e )
s e l f . g t _ k p s . a p p e n d ( k e y p o i n t )

r e t u r n s e l e c t e d _ s a m p l e s

95

96

97

T e s t t h e m o d e l on a s i n g l e i m a g e .
: p a r a m i m a g e p a t h : p a t h to i m a g e .
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98 : param index : index of image in dataset .
99 : return : p r ed i c t i on keypoints , and ground truth keypoints .

100 ”””
101 img_fi le = image_path
102 img = load_image ( image_path )
103 pred i c t i on s = model . p red i c t ( img) . reshape (−1, 15 , 2) ∗ 224
104 ground_truth = np . array ( s e l f . gt_kps [ index ] )
105 ground_truth . reshape (−1, 15 , 2)
106

107 i f s e l f . v i s u a l i z e :
108 s e l f . __visualize_keypoints ( pred i c t ions , img_fi le , [ ground_truth ] )
109 return pred i c t ions , ground_truth
110

111 def __run_test ( s e l f ) :
112 ”””
113 Run the test , and pr int the r e s u l t s .
114 : return : nothing .
115 ”””
116 f o r i in range ( len ( s e l f . se lected_samples ) ) :
117 pred , gt = s e l f . __predict ( s e l f . img_dir + s e l f . se lected_samples [ i ] , i )
118 s e l f . l i s t_o f_pred i c t i ons . append ( pred )
119 s e l f . l i s t_of_gt . append ( gt )
120

121 control led_pred , contro l led_gt = s e l f . __check_if_valid ( )
122 s e l f . __append_errors ( control led_pred )
123 s e l f . __append_gt( contro l led_gt )
124 s e l f . __calculate_distance ( )
125

126 def __check_if_valid ( s e l f ) :
127 ”””
128 Check i f the p r ed i c t i on s are va l id or i f they are not usable to measure the e r ro r .
129 : return : l i s t o f va l id pred i c t ions , and l i s t o f va l id ground truths .
130 ”””
131 p , g = [ ] , [ ]
132 i n v a l i d = 0
133

134 f o r i in range ( len ( s e l f . l i s t_o f_pred i c t i ons ) ) :
135 checker = False
136

137 f o r j in range (15) :
138 # pr int ( l i s t_of_gt [ i ] [ j ] [ 0 ] )
139 i f s e l f . l i s t_o f_pred i c t i ons [ i ] [ 0 ] [ j ] [ 0 ] < 10 or
140 s e l f . l i s t_o f_pred i c t i ons [ i ] [ 0 ] [ j ] [ 1 ] < 10:
141 checker = True
142 i n v a l i d += 1
143 e l i f s e l f . l i s t_of_gt [ i ] [ j ] [ 0 ] < 1 or
144 s e l f . l i s t_of_gt [ i ] [ j ] [ 1 ] < 1 :
145 checker = True
146 i n v a l i d += 1
147 i f not checker :
148 p . append ( s e l f . l i s t_o f_pred i c t i ons [ i ] )
149 g . append ( s e l f . l i s t_of_gt [ i ] )
150 pr int ( Fore .RED, f ’ { i n v a l i d } i n v a l i d samples found . . . ’ )
151 return p , g
152

153 def __append_errors ( s e l f , p r ed i c t i on s ) :
154 ”””
155 Append e r r o r s to the l i s t .
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98

99

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

108

1 0 9

1 1 0

1 1 1

1 1 2

1 1 3

1 1 4

1 1 5

1 1 6

1 1 7

118

1 1 9

1 2 0

1 2 1

1 2 2

1 2 3

1 2 4

1 2 5

1 2 6

1 2 7

128

1 2 9

1 3 0

1 3 1

1 3 2

1 3 3

1 3 4

1 3 5

1 3 6

1 3 7

138

1 3 9

1 4 0

1 4 1

1 4 2

1 4 3

1 4 4

1 4 5

1 4 6

1 4 7

148

1 4 9

1 5 0

1 5 1

1 5 2

1 5 3

1 5 4

1 5 5

: p a r a m i n d e x : i n d e x of i m a g e in d a t a s e t .
: r e t u r n : p r e d i c t i o n k e y p o i n t s , a n d g r o u n d t r u t h k e y p o i n t s .

%

i m g f i l e = i m a g e p a t h
img = l o a d _ i m a g e ( i m a g e p a t h )
p r e d i c t i o n s = m o d e l . p r e d i c t ( i m g ) . r e s h a p e ( - 1 , 1 5 , 2) * 224
g r o u n d _ t r u t h = n p . a r r a y ( se l f . g t _ k p s [ i n d e x ] )
g r o u n d _ t r u t h . r e s h a p e ( - 1 , 1 5 , 2)

if s e l f . v i s u a l i z e :
s e l f . v i s u a l i z e k e y p o i n t s ( p r e d i c t i o n s , i m g _ f i l e , [ g r o u n d _ t r u t h ] )

r e t u r n p r e d i c t i o n s , g r o u n d _ t r u t h

d e f r u n t e s t ( s e l f) :

Run t h e t e s t , a n d p r i n t t h e r e s u l t s .
: r e t u r n : n o t h i n g .

%

f o r i in r a n g e ( l e n ( s e l f . s e l e c t e d _ s a m p l e s ) ) :
p r e d , g t = s e l f . p r e d i c t ( s e l f . i m g d i r + s e l f . s e l e c t e d _ s a m p l e s [ i ] , i)
s e l f . l i s t _ o f _ p r e d i c t i o n s . a p p e n d ( p r e d )
s e l f . l i s t of g t . a p p e n d ( g t )

c o n t r o l l e d p r e d , c o n t r o l l e d gt = s e l f . c h e c k if v a l i d ()
s e l f . a p p e n d e r r o r s ( c o n t r o l l e d p r e d )
s e l f . a p p e n dg t ( c o n t r o l l e d _ g t )
s e l f . c a l c u l a t e _ d i s t a n c e ()

d e f c h e c k if v a l i d ( s e l f) :

C h e c k if t h e p r e d i c t i o n s a r e v a l i d or if t h e y a r e n o t u s a b l e to m e a s u r e t h e e r r o r .
: r e t u r n : l i s t of v a l i d p r e d i c t i o n s , a n d l i s t of v a l i d g r o u n d t r u t h s .
" " "
P, g= [ ] , []
i n v a l i d = 0

f o r i in r a n g e ( l e n ( s e l f . l i s t _ o f _ p r e d i c t i o n s ) ) :
c h e c k e r = F a l s e

f o r j in r a n g e ( 1 5 ) :
# p r i n t ( l i s t of g t [ i ] [ i ] [ 0 ] )
if s e l f . l i s t of p r e d i c t i o n s [ i ] [ 0 ] [ i ] [ 0 ] < 10 or

s e l f . l i s t o f _ p r e d i c t i o n s [ i ] [ 0 ] [ i ] [ 1 ] < 1 0 :
c h e c k e r = T r u e
i n v a l i d += l

e l i f s e l f . l i s t of g t [ i ] [ i ] [ 0 ] <1 or
s e l f . l i s t of g t [ i ] [ i ] [ 1 ] < 1:

c h e c k e r = T r u e
i n v a l i d += l

if n o t c h e c k e r :
p. a p p e n d ( s e l f . l i s t of p r e d i c t i o n s [ i ] )
g . a p p e n d ( s e l f . l i s t of g t [ i ] )

p r i n t ( F o r e . R E D , f ' { i n v a l i d } i n v a l i d s a m p l e s f o u n d . . . ')
r e t u r n p, g

d e f a p p e n d e r r o r s ( s e l f , p r e d i c t i o n s ) :
" " "
Append e r r o r s to t h e li s t .
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156 : param pred i c t i on s : l i s t o f p r ed i c t i on s .
157 : return : nothing
158 ”””
159 f o r i in p r ed i c t i on s :
160 s e l f . head_errors . append ( i [ 0 ] [ 0 ] )
161 s e l f . l e f t_ankle_errors . append ( i [ 0 ] [ 1 ] )
162 s e l f . le f t_elbow_errors . append ( i [ 0 ] [ 2 ] )
163 s e l f . l e f t_hip_errors . append ( i [ 0 ] [ 3 ] )
164 s e l f . l e f t_knee_errors . append ( i [ 0 ] [ 4 ] )
165 s e l f . l e f t_shou lder_errors . append ( i [ 0 ] [ 5 ] )
166 s e l f . l e f t_wr i s t_er ro r s . append ( i [ 0 ] [ 6 ] )
167 s e l f . neck_errors . append ( i [ 0 ] [ 7 ] )
168 s e l f . r ight_ankle_errors . append ( i [ 0 ] [ 8 ] )
169 s e l f . r ight_elbow_errors . append ( i [ 0 ] [ 9 ] )
170 s e l f . r ight_hip_errors . append ( i [ 0 ] [ 1 0 ] )
171 s e l f . r ight_knee_errors . append ( i [ 0 ] [ 1 1 ] )
172 s e l f . r ight_shoulder_errors . append ( i [ 0 ] [ 1 2 ] )
173 s e l f . r ight_wrist_errors . append ( i [ 0 ] [ 1 3 ] )
174 s e l f . tor so_errors . append ( i [ 0 ] [ 1 4 ] )
175

176 def __append_gt( s e l f , gt ) :
177 ”””
178 Append ground truth to the l i s t .
179 : param gt : l i s t o f ground truths .
180 : return : Nothing .
181 ”””
182 f o r i in range ( len ( gt ) ) :
183 s e l f . head_gt . append ( gt [ i ] [ 0 ] )
184 s e l f . le ft_ankle_gt . append ( gt [ i ] [ 1 ] )
185 s e l f . left_elbow_gt . append ( gt [ i ] [ 2 ] )
186 s e l f . le ft_hip_gt . append ( gt [ i ] [ 3 ] )
187 s e l f . left_knee_gt . append ( gt [ i ] [ 4 ] )
188 s e l f . le f t_shoulder_gt . append ( gt [ i ] [ 5 ] )
189 s e l f . l e f t_wrist_gt . append ( gt [ i ] [ 6 ] )
190 s e l f . neck_gt . append ( gt [ i ] [ 7 ] )
191 s e l f . right_ankle_gt . append ( gt [ i ] [ 8 ] )
192 s e l f . right_elbow_gt . append ( gt [ i ] [ 9 ] )
193 s e l f . right_hip_gt . append ( gt [ i ] [ 1 0 ] )
194 s e l f . right_knee_gt . append ( gt [ i ] [ 1 1 ] )
195 s e l f . r ight_shoulder_gt . append ( gt [ i ] [ 1 2 ] )
196 s e l f . r ight_wrist_gt . append ( gt [ i ] [ 1 3 ] )
197 s e l f . torso_gt . append ( gt [ i ] [ 1 4 ] )
198

199 def __calculate_distance ( s e l f ) :
200 ”””
201 Calculate the d i s tance between the ground truth and the pred i c t ions ,
202 and pr int i t to the conso le .
203 ”””
204

205 f o r i in range ( len ( s e l f . head_errors ) ) :
206 s e l f . head_distance += np . sqr t ( ( s e l f . head_errors [ i ] [ 0 ] − s e l f . head_gt [ i ] [ 0 ] )
207 ∗∗ 2 + ( s e l f . head_errors [ i ] [ 1 ] − s e l f . head_gt [ i ] [ 1 ] ) ∗∗ 2)
208 s e l f . l e f t_ankle_distance += np . sqr t ( ( s e l f . l e f t_ankle_errors [ i ] [ 0 ] −
209 s e l f . le ft_ankle_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . l e f t_ankle_errors [ i ] [ 1 ] −
210 s e l f . le ft_ankle_gt [ i ] [ 1 ] ) ∗∗ 2)
211 s e l f . le ft_elbow_distance += np . sqr t ( ( s e l f . le f t_elbow_errors [ i ] [ 0 ] −
212 s e l f . left_elbow_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . le f t_elbow_errors [ i ] [ 1 ]
213 − s e l f . left_elbow_gt [ i ] [ 1 ] ) ∗∗ 2)
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1 5 6

1 5 7

158

1 5 9

1 6 0

1 6 1

1 6 2

1 6 3

1 6 4

1 6 5

1 6 6

1 6 7

168

1 6 9

1 7 0

171

1 7 2

1 7 3

1 7 4

1 7 5

1 7 6

1 7 7

178

1 7 9

1 8 0

1 8 1

1 8 2

1 8 3

1 8 4

1 8 5

1 8 6

1 8 7

188

1 8 9

1 9 0

1 9 1

1 9 2

1 9 3

1 9 4

1 9 5

1 9 6

1 9 7

198

1 9 9

200

201

2 0 2

2 0 3

204

205

206

2 0 7

208

209

210

211

2 1 2

213

: param p r e d i c t i o n s : l is t of p r e d i c t i o n s .
: r e t u r n : n o t h i n g
" " "
f o r i in p r e d i c t i o n s :

s e l f . h e a d _ e r r o r s . a p p e n d ( i [ 0 ] [ 0 ] )
s e l f . l e f t _ a n k l e _ e r r o r s . a p p e n d ( i [ 0] [ l ] )
s e l f . l e f t _ e l b o w _ e r r o r s . a p p e n d ( i [ 0 ] [ 2 ] )
se l f . le f t _ h i p _ e r r o r s . a p p e n d ( i [ 0] [ 3] )
s e l f . l e f t _ k n e e _ e r r o r s . a p p e n d ( i [ 0] [ 4 ] )
s e l f . l e f t _ s h o u l d e r _ e r r o r s . a p p e n d ( i [ 0 ] [ 5 ] )
s e l f . l e f t _ w r i s t _ e r r o r s . a p p e n d ( i [ 0 ] [ 6 ] )
s e l f . n e c k _ e r r o r s . a p p e n d ( i [ 0 ] [ 7 ] )
s e l f . r i g h t _ a n k l e _ e r r o r s . a p p e n d ( i [ 0] [8 ] )
s e l f . r i g h t _ e l b o w _ e r r o r s . a p p e n d ( i [ 0 ] [ 9 ] )
s e l f . r i g h t _ h i p _ e r r o r s . a p p e n d ( i [ 0 ] [ 1 0 ] )
s e l f . r i g h t _ k n e e _ e r r o r s . a p p e n d ( i [ 0] [ 1 1 ] )
s e l f . r i g h t _ s h o u l d e r _ e r r o r s . a p p e n d ( i [ 0 ] [ 1 2 ] )
s e l f . r i g h t _ w r i s t _ e r r o r s . a p p e n d ( i [ 0 ] [ 1 3 ] )
s e l f . t o r s o _ e r r o r s . a p p e n d ( i [ 0 ] [ 1 4 ] )

d e f _ a p p e n d _ g t ( s e l f , g t ) :
" " "
Append g r o u n d t r u t h to t h e l i s t .
: p a r a m g t : l i s t of g r o u n d t r u t h s .
: r e t u r n : N o t h i n g .
" " "
f o r i in r a n g e ( l e n ( g t ) ) :

s e l f . h e a dg t . a p p e n d ( g t [ i ] [ 0 ] )
s e l f . l e f t _ a n k l e _ g t . a p p e n d ( g t [ i ] [ l ] )
s e l f . l e f t _ e l b o w _ g t . a p p e n d ( g t [ i ] [ 2 ] )
s e l f . l e f t _ h i p _ g t . a p p e n d ( g t [ i ] [ 3 ] )
s e l f . l e f t _ k n e e _ g t . a p p e n d ( g t [ i ] [ 4 ] )
s e l f . l e f t _ s h o u l d e r _ g t . a p p e n d ( g t [ i ] [ 5 ] )
se l f . le f t_ wr i s t _ g t . a p p e n d ( gt [ i ] [ 6] )
se l f . n e c k _ g t . a p p e n d ( gt [ i ] [ 7] )
s e l f . r i g h t _ a n k l e _ g t . a p p e n d ( g t [ i ] [ 8 ] )
s e l f . r i g h t _ e l b o w _ g t . a p p e n d ( g t [ i ] [ 9 ] )
s e l f . r i g h t _ h i p _ g t . a p p e n d ( g t [ i ] [ 1 0 ] )
s e l f . r i g h t _ k n e e _ g t . a p p e n d ( gt [ i ] [ 1 1 ) )
s e l f . r i g h t _ s h o u l d e r _ g t . a p p e n d ( gt [ i ] [ 1 2 ] )
s e l f . r i g h t _ w r i s t _ g t . a p p e n d ( gt [ i ] [ 1 3 )
s e l f . t o r s o _ g t . a p p e n d ( g t [ i ] [ 1 4 ] )

d e f __ c a l c u l a t e _ d i s t a n c e ( s e l f ) :
" " "
C a l c u l a t e t h e d i s t a n c e be tween t h e g r o u n d t r u t h and t h e p r e d i c t i o n s ,
and p r i n t it to t h e c o n s o l e .

f o r i in r a n g e ( l e n ( s e l f . h e a d _ e r r o r s ) ) :
s e l f . h e a d _ d i s t a n c e += n p . s q r t ( ( s e l f . h e a d _ e r r o r s [ i ] [ 0 ] - s e l f . h e a d _ g t [ i ] [ 0 ] )

** 2 + ( s e l f . h e a d e r r o r s [ i ] [ 1 ] - s e l f . h e a d g t [ i ] [ 1 ] ) + 2)
s e l f . l e f t _ a n k l e _ d i s t a n c e += n p . s q r t ( ( s e l f . l e f t _ a n k l e _ e r r o r s [ i ] [ 0 ] -

s e l f . l e f t _ a n k l e _ g t [ i ] [ 0 ] ) ** 2 + ( s e l f . l e f t _ a n k l e _ e r r o r s [ i ] [ l ]
s e l f . l e f ta n k l e _ g t [ i ] [ 1 ] ) ++ 2)

s e l f . l e f t _ e l b o w _ d i s t a n c e += n p . s q r t ( ( s e l f . l e f t _ e l b o w _ e r r o r s [ i ] [ 0 ] -
s e l f . l e f t _ e l b o w _ g t [ i ] [ 0 ] ) ** 2 + ( s e l f . l e f t _ e l b o w _ e r r o r s [ i ] [ l ]

- s e l f . l e f te l b o w _ g t [ i ] [ 1 ] ) ++ 2)
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214 s e l f . l e f t_hip_distance += np . sqr t ( ( s e l f . l e f t_hip_errors [ i ] [ 0 ] −
215 s e l f . le ft_hip_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . l e f t_hip_errors [ i ] [ 1 ] −
216 s e l f . le ft_hip_gt [ i ] [ 1 ] ) ∗∗ 2)
217 s e l f . le ft_knee_distance += np . sqr t ( ( s e l f . l e f t_knee_errors [ i ] [ 0 ] −
218 s e l f . left_knee_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . l e f t_knee_errors [ i ] [ 1 ] −
219 s e l f . left_knee_gt [ i ] [ 1 ] ) ∗∗ 2)
220 s e l f . l e f t_shoulder_distance += np . sqr t ( ( s e l f . l e f t_shou lder_errors [ i ] [ 0 ] −
221 s e l f . le f t_shoulder_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . l e f t_shou lder_errors [ i ] [ 1 ] −
222 s e l f . le f t_shoulder_gt [ i ] [ 1 ] ) ∗∗ 2)
223 s e l f . l e f t_wr i s t_dis tance += np . sqr t ( ( s e l f . l e f t_wr i s t_er ro r s [ i ] [ 0 ] −
224 s e l f . l e f t_wrist_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . l e f t_wr i s t_er ro r s [ i ] [ 1 ] −
225 s e l f . l e f t_wrist_gt [ i ] [ 1 ] ) ∗∗ 2)
226 s e l f . neck_distance += np . sqr t ( ( s e l f . neck_errors [ i ] [ 0 ] − s e l f . neck_gt [ i ] [ 0 ] )
227 ∗∗ 2 + ( s e l f . neck_errors [ i ] [ 1 ] − s e l f . neck_gt [ i ] [ 1 ] ) ∗∗ 2)
228 s e l f . r ight_ankle_distance += np . sqr t ( ( s e l f . r ight_ankle_errors [ i ] [ 0 ] −
229 s e l f . right_ankle_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . r ight_ankle_errors [ i ] [ 1 ] −
230 s e l f . right_ankle_gt [ i ] [ 0 ] ) ∗∗ 2)
231 s e l f . r ight_elbow_distance += np . sqr t ( ( s e l f . r ight_elbow_errors [ i ] [ 0 ] −
232 s e l f . right_elbow_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . r ight_elbow_errors [ i ] [ 1 ] −
233 s e l f . right_elbow_gt [ i ] [ 0 ] ) ∗∗ 2)
234 s e l f . r ight_hip_distance += np . sqr t ( ( s e l f . r ight_hip_errors [ i ] [ 0 ] −
235 s e l f . right_hip_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . r ight_hip_errors [ i ] [ 1 ] −
236 s e l f . right_hip_gt [ i ] [ 0 ] ) ∗∗ 2)
237 s e l f . r ight_knee_distance += np . sqr t ( ( s e l f . r ight_knee_errors [ i ] [ 0 ] −
238 s e l f . right_knee_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . r ight_knee_errors [ i ] [ 1 ] −
239 s e l f . right_knee_gt [ i ] [ 0 ] ) ∗∗ 2)
240 s e l f . r ight_shoulder_distance += np . sqr t ( ( s e l f . r ight_shoulder_errors [ i ] [ 0 ] −
241 s e l f . r ight_shoulder_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . r ight_shoulder_errors [ i ] [ 1 ] −
242 s e l f . r ight_shoulder_gt [ i ] [ 0 ] ) ∗∗ 2)
243 s e l f . r ight_wrist_distance += np . sqr t ( ( s e l f . r ight_wrist_errors [ i ] [ 0 ] −
244 s e l f . r ight_wrist_gt [ i ] [ 0 ] ) ∗∗ 2 + ( s e l f . r ight_wrist_errors [ i ] [ 1 ] −
245 s e l f . r ight_wrist_gt [ i ] [ 0 ] ) ∗∗ 2)
246 s e l f . torso_distance += np . sqr t ( ( s e l f . tor so_errors [ i ] [ 0 ] − s e l f . torso_gt [ i ] [ 0 ] )
247 ∗∗ 2 + ( s e l f . tor so_errors [ i ] [ 1 ] − s e l f . torso_gt [ i ] [ 0 ] ) ∗∗ 2)
248

249 # pr int (” Model : ” , model_name)
250 pr int ( Fore .MAGENTA, ”Average Head di s tance : ” ,
251 s e l f . head_distance / len ( s e l f . head_errors ) )
252 pr int ( Fore .MAGENTA, ”Average Neck d i s tance : ” ,
253 s e l f . neck_distance / len ( s e l f . l e f t_hip_errors ) )
254

255 pr int ( Fore .RED, ”Average Right_shoulder d i s tance : ” ,
256 s e l f . r ight_shoulder_distance / len ( s e l f . l e f t_hip_errors ) )
257 pr int ( Fore .RED, ”Average Right_elbow di s tance : ” ,
258 s e l f . r ight_elbow_distance / len ( s e l f . l e f t_hip_errors ) )
259 pr int ( Fore .RED, ”Average Right_wrist d i s tance : ” ,
260 s e l f . r ight_wrist_distance / len ( s e l f . l e f t_hip_errors ) )
261

262 pr int ( Fore .GREEN, ”Average Left_shoulder d i s tance : ” ,
263 s e l f . l e f t_shoulder_distance / len ( s e l f . l e f t_hip_errors ) )
264 pr int ( Fore .GREEN, ”Average Left_elbow di s tance : ” ,
265 s e l f . le ft_elbow_distance / len ( s e l f . l e f t_ankle_errors ) )
266 pr int ( Fore .GREEN, ”Average Left_wrist d i s tance : ” ,
267 s e l f . l e f t_wr i s t_dis tance / len ( s e l f . l e f t_hip_errors ) )
268

269 pr int ( Fore .MAGENTA, ”Average Torso d i s tance : ” ,
270 s e l f . torso_distance / len ( s e l f . l e f t_hip_errors ) )
271 pr int ( Fore .RED, ”Average Right_hip d i s tance : ” ,
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s e l f . l e f t _ h i p _ d i s t a n c e += n p . s q r t ( ( s e l f . l e f t _ h i p _ e r r o r s [ i J [ 0 ] -
s e l f . l e f t h i p g t [ i ] [ 0 ] ) ++ 2+ ( s e l f . l e f t h i p e r r o r s [ i ] [ 1 ] -
s e l f . l e f t _ h i p g t [ i ] [ 1 ] ) ++ 2)

s e l f . l e f t _ k n e e _ d i s t a n c e += n p . s q r t ( ( s e l f . l e f t _ k n e e _ e r r o r s [ i J [ 0 ] -
s e l f . l e f t _ k n e e _ g t [ i J [ O J ) ** 2 + ( s e l f . l e f t _ k n e e _ e r r o r s [ i J [ l J -
s e l f . l e f t _ k n e e _ g t [ i J [ l J ) ** 2)

s e l f . l e f t _ s h o u l d e r _ d i s t a n c e += n p . s q r t ( ( s e l f . l e f t _ s h o u l d e r _ e r r o r s [ i J [ OJ
s e l f . l e f t _ s h o u l d e r _ g t [ i J [OJ) ** 2 + ( s e l f . l e f t _ s h o u l d e r _ e r r o r s [ i J [ l J
s e l f . l e f t _ s h o u l d e r _ g t [ i J [ l J) ** 2)

s e l f . l e f t _ w r i s t _ d i s t a n c e += n p . s q r t ( ( s e l f . l e f t _ w r i s t _ e r r o r s [ i J [ 0 ] -
s e l f . l e f t _ w r i s t _ g t [ i J [ O J ) ** 2 + ( s e l f . l e f t _ w r i s t _ e r r o r s [ i J [ l J -
s e l f . l e f t _ w r i s t _ g t [ i J [ l J ) ** 2)

s e l f . n e c k _ d i s t a n c e += n p . s q r t ( ( s e l f . n e c k _ e r r o r s [ i J [ O J - s e l f . n e c k _ g t [ i J [ O J )
** 2 + ( s e l f . n e c k _ e r r o r s [ i ] [ 1 ] - s e l f . n e c k g t [ i ] [ 1 ] ) ++ 2)

s e l f . r i g h t _ a n k l e _ d i s t a n c e += n p . s q r t ( ( s e l f . r i g h t _ a n k l e _ e r r o r s [ i J [ 0 ] -
s e l f . r i g h t _ a n k l e _ g t [ i J [ O J ) ** 2 + ( s e l f . r i g h t _ a n k l e _ e r r o r s [ i J [ l J -
s e l f . r i g h t _ a n k l e _ g t [ i J [ O J ) ** 2)

se l f. r i g h t _ e l b o w_ d i s t a n c e += n p . s q r t ( ( s e l f. r i g h t _ e l b o w _ e r r o r s [ i J [ 0 ]-
s e l f . r i g h t _ e l b o w _ g t [ i J [ O J ) ** 2 + ( s e l f . r i g h t e l b o w _ e r r o r s [ i ] [ 1 ]
s e l f . r i g h t _ e l b o w _ g t [ i J [ O J ) ** 2)

s e l f . r i g h t _ h i p _ d i s t a n c e += n p . s q r t ( ( s e l f . r i g h t _ h i p _ e r r o r s [ i J [ 0 ] -
s e l f . r i g h t _ h i p _ g t [ i J [ O J ) ** 2 + ( s e l f . r i g h t h i p e r r o r s [ i ] [ 1 ] -
s e l f . r i g h t h i p g t [ i ] [ 0 ] ) + 2)

s e l f . r i g h t _ k n e e _ d i s t a n c e += n p . s q r t ( ( s e l f . r i g h t _ k n e e _ e r r o r s [ i J [ O J -
s e l f . r i g h t _ k n e e _ g t [ i J [ O J ) ** 2 + ( s e l f . r i g h t _ k n e e _ e r r o r s [ i J [ l J -
s e l f . r i g h t _ k n e e _ g t [ i J [ O J ) ** 2)

s e l f . r i g h t _ s h o u l d e r _ d i s t a n c e += n p . s q r t ( ( s e l f . r i g h t _ s h o u l d e r _ e r r o r s [ i J [OJ
s e l f . r i g h t _ s h o u l d e r _ g t [ i J [OJ) ** 2 + ( s e l f . r i g h t _ s h o u l d e r _ e r r o r s [ i J [ l J
s e l f . r i g h t _ s h o u l d e r _ g t [ i J [OJ) ** 2)

s e l f . r i g h t _ w r i s t _ d i s t a n c e += n p . s q r t ( ( s e l f . r i g h t _ w r i s t _ e r r o r s [ i J [ 0 ] -
s e l f . r i g h t _ w r i s t _ g t [ i J [ O J ) ** 2 + ( s e l f . r i g h t _ w r i s t _ e r r o r s [ i J [ l J -
s e l f . r i g h t _ w r i s t _ g t [ i J [ O J ) ** 2)

s e l f . t o r s o _ d i s t a n c e += n p . s q r t ( ( s e l f . t o r s o _ e r r o r s [ i ] [ 0 ] - s e l f . t o r s og t [ i ] [ 0 ] )
** 2 + ( s e l f . t o r s o _ e r r o r s [ i ] [ 1 ] - s e l f . t o r s og t [ i ] [ 0 ] ) » 2)

# p r i n t ( " M o d e l : ", model_name)
p r i n t (Fore.MAGENTA, " Ave rage Head d i s t a n c e : " ,

se l f. h e a d _ d i s t a n c e / l e n ( s e l f . h e a d _ e r r o r s ) )
p r i n t (Fore.MAGENTA, " Ave rage Neck d i s t a n c e : " ,

s e l f . n e c k _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .RED, " A v e r a g e R i g h t _ s h o u l d e r d i s t a n c e : ",
s e l f . r i g h t _ s h o u l d e r _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .RED, " A v e r a g e R i g h t _ e l b o w d i s t a n c e : ",
s e l f . r i g h t _ e l b o w _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .RED, " A v e r a g e R i g h t _ w r i s t d i s t a n c e : ",
s e l f . r i g h t _ w r i s t _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .GREEN, " A v e r a g e L e f t _ s h o u l d e r d i s t a n c e : ",
s e l f . l e f t _ s h o u l d e r _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .GREEN, " A v e r a g e L e f t _ e l b o w d i s t a n c e : ",
s e l f . l e f t _ e l b o w _ d i s t a n c e / l e n ( s e l f . l e f t _ a n k l e _ e r r o r s ) )

p r i n t ( F o r e .GREEN, " A v e r a g e L e f t _ w r i s t d i s t a n c e : ",
s e l f . l e f t w r i s t d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t (Fore.MAGENTA, " Ave rage T o r s o d i s t a n c e : ",
s e l f . t o r s o _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .RED, " A v e r a g e R i g h t _ h i p d i s t a n c e : "
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272 s e l f . r ight_hip_distance / len ( s e l f . l e f t_hip_errors ) )
273 pr int ( Fore .RED, ”Average Right_knee d i s tance : ” ,
274 s e l f . r ight_knee_distance / len ( s e l f . l e f t_hip_errors ) )
275 pr int ( Fore .RED, ”Average Right_ankle d i s tance : ” ,
276 s e l f . r ight_ankle_distance / len ( s e l f . l e f t_hip_errors ) )
277

278 pr int ( Fore .GREEN, ”Average Left_hip d i s tance : ” ,
279 s e l f . l e f t_hip_distance / len ( s e l f . l e f t_hip_errors ) )
280 pr int ( Fore .GREEN, ”Average Left_knee d i s tance : ” ,
281 s e l f . le ft_knee_distance / len ( s e l f . l e f t_hip_errors ) )
282 pr int ( Fore .GREEN, ”Average Left_Ankle d i s tance : ” ,
283 s e l f . l e f t_ankle_distance / len ( s e l f . l e f t_ankle_errors ) )
284

285 def __visualize_keypoints ( s e l f , keypoints , image_f i le : s t r , gt_keypoints ,
286 rot : Optional [ bool ] = False ) :
287 ”””
288 Visua l i z e keypoints on image .
289 : param keypoints : Predicted keypoints .
290 : param image_f i le : path to image .
291 : param gt_keypoints : Ground truth keypoints .
292 : param rot : True i f images needs to be rotated , f a l s e otherwise .
293 : return :
294 ”””
295

296 co lour s = [ ’#’ + co lo r f o r co l o r in s e l f . c o l o r s ]
297 f i g , ( ax1 , ax2 ) = p l t . subplots (1 , 2 , f i g s i z e =(10 , 10) )
298

299 p l t . rcParams . update ({ ’ font . s i z e ’ : 16 ,
300 ’ text . co l o r ’ : ’ white ’ , })
301

302 image = p l t . imread ( image_f i le )
303 ””” rotate image 90 degrees to the r i gh t ”””
304 # remove the next 3 l i n e s i f you don ’ t want to rotate the image
305 i f rot :
306 image = np . rot90 ( image , k=1, axes =(0 , 1) )
307 image = np . f l i p u d ( image )
308 image = np . f l i p l r ( image )
309

310 ax1 . imshow( image )
311 ax1 . s e t _ t i t l e ( ’ Pred ict ion ’ )
312 ax2 . imshow( image )
313 ax2 . s e t _ t i t l e ( ’Ground Truth ’ )
314

315 f o r current_keypoint in keypoints :
316 current_keypoint = np . array ( current_keypoint )
317 # Since the l a s t entry i s the v i s i b i l i t y f l ag , we d i scard i t .
318 current_keypoint = current_keypoint [ : , : 2 ]
319 f o r idx , (x , y) in enumerate ( current_keypoint ) :
320 ax1 . s c a t t e r ( [ x ] , [ y ] , c=co lour s [ idx ] , marker=”x” , s =50, l inewidths =5)
321

322 f o r current_keypoint in gt_keypoints :
323 current_keypoint = np . array ( current_keypoint )
324 # Since the l a s t entry i s the v i s i b i l i t y f l ag , we d i scard i t .
325 current_keypoint = current_keypoint [ : ]
326 f o r idx , (x , y) in enumerate ( current_keypoint ) :
327 ax2 . s c a t t e r ( [ x ] , [ y ] , c=co lour s [ idx ] , marker=”x” , s =50, l inewidths =5)
328

329 p l t . t ight_layout (pad=2.0)
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s e l f . r i g h t h i p d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )
p r i n t ( F o r e .RED, " A v e r a g e R i g h t _ k n e e d i s t a n c e : ",

s e l f . r i g h t _ k n e e _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )
p r i n t ( F o r e .RED, " A v e r a g e R i g h t _ a n k l e d i s t a n c e : ",

s e l f . r i g h t _ a n k l e _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .GREEN, " A v e r a g e L e f t _ h i p d i s t a n c e : ",
s e l f . l e f t h i p d i s t a n c e / l e n ( s e l f . l e f t h i p e r r o r s ) )

p r i n t ( F o r e .GREEN, " A v e r a g e L e f t _ k n e e d i s t a n c e : ",
s e l f . l e f t _ k n e e _ d i s t a n c e / l e n ( s e l f . l e f t _ h i p _ e r r o r s ) )

p r i n t ( F o r e .GREEN, " A v e r a g e L e f t _ A n k l e d i s t a n c e : ",
s e l f . l e f t _ a n k l e _ d i s t a n c e / l e n ( s e l f . l e f t _ a n k l e _ e r r o r s ) )

v i s u a l i z e _ k e y p o i n t s ( s e l f , k e y p o i n t s , i m a g e _ f i l e : s t r , g t _ k e y p o i n t s ,
r o t : O p t i o n a l [ b o o l ] = F a l s e ) :

V i s u a l i z e k e y p o i n t s on i m a g e .
: p a r a m k e y p o i n t s : P r e d i c t e d k e y p o i n t s .
: p a r a m i m a g e _ f i l e : p a t h to i m a g e .
: p a r a m g t _ k e y p o i n t s : G r o u n d t r u t h k e y p o i n t s .
: p a r a m r o t : T r u e i f i m a g e s n e e d s to be r o t a t e d , f a l s e o t h e r w i s e .
: r e t u r n :

c o l o u r s = [ ' # ' + c o l o r f o r c o l o r in s e l f . c o l o r s ]
f i g , ( a x l , a x 2 ) = pl t. s u b p l o t s ( l , 2, f i g s i z e = ( 1 0 , 1 0 ) )

p l t . r c P a r a m s . u p d a t e ( { ' f o n t . s i z e ' : 1 6 ,
' t e x t . c o l o r ' : ' w h i t e ' , } )

i m a g e pl t . i m r e a d ( i m a g e _ f i l e )
" " " r o t a t e i m a g e 90 d e g r e e s to t h e r i g h t " " "
# r e m o v e t h e n e x t 3 l i n e s if y o u d o n 't w a n t to r o t a t e t h e i m a g e
if r o t :

i m a g e
i m a g e
i m a g e

n p . r o t 9 0 ( i m a g e , k = l , a x e s = ( 0 , 1 ) )
n p . f l i p u d ( i m a g e )
n p . fl i p l r ( i m a g e )

ax l . i m s h o w ( i m a g e )
ax l . s e t_ t i t l e ( ' P r e d i c t i o n ' )
a x 2 . i m s h o w ( i m a g e )
a x 2 . s e t _ t i t l e ( ' G r o u n d T r u t h ' )

f o r c u r r e n t _ k e y p o i n t in k e y p o i n t s :
c u r r e n t _ k e y p o i n t = n p . a r r a y ( c u r r e n t _ k e y p o i n t )
##S i n c e t h e l a s t e n t r y is t h e v i s i b i l i t y f l a g , we d i s c a r d i t .
c u r r e n t _ k e y p o i n t = c u r r e n t _ k e y p o i n t [: , : 2]
f o r i d x , ( x , y) in e n u m e r a t e ( c u r r e n t _ k e y p o i n t ) :

a x 1 . s c a t t e r ( [ x ] , [ y ] , c = c o l o u r s [ i d x ] , m a r k e r = " x " , s = 5 0 , l i n e w i d t h s = 5 )

f o r c u r r e n t _ k e y p o i n t in g t _ k e y p o i n t s :
c u r r e n t _ k e y p o i n t = n p . a r r a y ( c u r r e n t _ k e y p o i n t )
##S i n c e t h e l a s t e n t r y is t h e v i s i b i l i t y f l a g , we d i s c a r d i t .
c u r r e n t _ k e y p o i n t = c u r r e n t k e y p o i n t [ : ]
f o r i d x , ( x , y) in e n u m e r a t e ( c u r r e n t _ k e y p o i n t ) :

a x 2 . s c a t t e r ( [ x ] , [ y ] , c = c o l o u r s [ i d x ] , m a r k e r = " x " , s = 5 0 , l i n e w i d t h s = 5 )

p l t . t i g h t l a y o u t ( p a d = 2 . 0 )



K.1. LUPINEXAMIN.PY

330 p l t . show ()

Listing K.1: LupinExamin.py is responsible to calculating the distance from predicted
keypoints to ground truth keypoints to measure a models accuracy. The module uses Filch
(Appendix D.1)
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330 pl t. s h o w ( )

Listing K . l : LupinExamin.py is responsible to calculating the distance from predicted
keypoints to ground truth keypoints to measure a models accuracy. The module uses Filch
(Appendix D.l)
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Appendix L

James

L.1 JamesPredict.py

1 from typing import Optional
2 from Fi lch . F i l c h U t i l s import load_image , get_model , v i sua l i ze_keypo ints
3

4

5 def pred i c t ( image_path , model_path , v i s u a l i z e : Optional [ bool ] = False ) :
6 ”””
7 Predict the image using the model
8 : param image_path : path to the image
9 : param model_path : path to the model

10 : param v i s u a l i z e : whether to v i s u a l i z e the keypoints
11 : return : the pred icted keypoints
12 ”””
13 image = load_image ( image_path )
14 model = get_model ( model_path )
15 pred i c t i on = model . p red i c t ( image ) . reshape (−1, 15 , 2) ∗ 224
16 i f v i s u a l i z e :
17 v i sua l i ze_keypo ints ( pred ict ion , image_path , False )
18 return pred i c t i on

Listing L.1: JamesPredict.py is responsible to making a model prediction, the script uses
Filch (Appendix D.1)
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James

L.l JamesPredict .py

1 f rom t y p i n g i m p o r t O p t i o n a l
2 f rom F i l c h . F i l c h U t i l s i m p o r t l o a d _ i m a g e , g e t _ m o d e l , v i s u a l i z e _ k e y p o i n t s
3

4

5 d e f p r e d i c t ( imagep a t h , modelp a t h , v i s u a l i z e : O p t i o n a l [ b o o l ] F a l s e ) :
6

7

8

g

10

11

12

13

14

15

16

17

18

P r e d i c t t h e image u s i n g t h e model
: pa ram image p a t h : p a t h to t h e image
: pa ram model p a t h : p a t h to t h e model
: p a r a m v i s u a l i z e : w h e t h e r to v i s u a l i z e t h e k e y p o i n t s
: r e t u r n : t h e p r e d i c t e d k e y p o i n t s
9 19 19

image = l o a d _ i m a g e ( i m a g e p a t h )
model = g e t _ m o d e l ( m o d e lp a t h )
p r e d i c t i o n = m o d e l . p r e d i c t ( i m a g e ) . r e s h a p e ( - 1 , 1 5 , 2) * 224
if v i s u a l i z e :

v i s u a l i z e _ k e y p o i n t s ( p r e d i c t i o n , image p a t h , F a l s e )
r e t u r n p r e d i c t i o n

Listing L. l : JamesPredict.py is responsible to making a model prediction, the script uses
Filch (Appendix D. l )
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L.2 JamesAngle.py

1 import numpy as np
2 from JamesPredict import pred i c t
3 from colorama import Fore
4

5

6 c l a s s JamesAngle :
7 def __init__( s e l f , image : str , model : s t r ) :
8 s e l f . p r ed i c t i on = pred i c t ( image , model , True )
9 s e l f . person = s e l f . __get_person ( )

10 i f s e l f . person :
11 s e l f . left_arm , s e l f . right_arm , s e l f . hips , s e l f . core , s e l f . l e f t_ leg ,
12 s e l f . r ight_leg , s e l f . i s_fac ing = s e l f . __get_joints ( )
13 s e l f . l e f t_range = range (50 , 110 , 1)
14 s e l f . r ight_range = range (50 , 110 , 1)
15 s e l f . forward_range = range (110 , 160 , 1)
16 s e l f . reverse_range = range (110 , 160 , 1)
17

18 def __get_person ( s e l f ) :
19 ”””
20 Returns there i s a person in the image .
21 ”””
22 counter = 0
23 f o r i in range (15) :
24 i f s e l f . p r ed i c t i on [ 0 ] [ i ] [ 0 ] < 20 and s e l f . p r ed i c t i on [ 0 ] [ i ] [ 1 ] < 20:
25 counter += 1
26 i f counter > 5 :
27 return False
28 e l s e :
29 return True
30

31 def __get_joints ( s e l f ) :
32 ”””
33 Returns the a l l j o i n t s except head , and checks which way the person i s f a c ing .
34 ”””
35 left_arm , right_arm , hips , core , l e f t_ leg , r ight_leg = [ ] , [ ] , [ ] , [ ] , [ ] , [ ]
36

37 # pr int ( s e l f . p r ed i c t i on [ 0 ] )
38 left_arm . append ( s e l f . p r ed i c t i on [ 0 ] [ 5 ] )
39 left_arm . append ( s e l f . p r ed i c t i on [ 0 ] [ 2 ] )
40 left_arm . append ( s e l f . p r ed i c t i on [ 0 ] [ 6 ] )
41 right_arm . append ( s e l f . p r ed i c t i on [ 0 ] [ 1 2 ] )
42 right_arm . append ( s e l f . p r ed i c t i on [ 0 ] [ 9 ] )
43 right_arm . append ( s e l f . p r ed i c t i on [ 0 ] [ 1 3 ] )
44

45 hips . append ( s e l f . p r ed i c t i on [ 0 ] [ 4 ] )
46 hips . append ( s e l f . p r ed i c t i on [ 0 ] [ 1 1 ] )
47

48 core . append ( s e l f . p r ed i c t i on [ 0 ] [ 7 ] )
49 core . append ( s e l f . p r ed i c t i on [ 0 ] [ 1 4 ] )
50

51 l e f t _ l e g . append ( s e l f . p r ed i c t i on [ 0 ] [ 4 ] )
52 l e f t _ l e g . append ( s e l f . p r ed i c t i on [ 0 ] [ 1 ] )
53

54 r ight_leg . append ( s e l f . p r ed i c t i on [ 0 ] [ 1 1 ] )
55 r ight_leg . append ( s e l f . p r ed i c t i on [ 0 ] [ 8 ] )
56
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L.2 JamesAngle.py

1 i m p o r t numpy as np
2 f rom J a m e s P r e d i c t i m p o r t p r e d i c t
3 f rom c o l o r a m a i m p o r t F o r e
4

5

6 c l a s s J a m e s A n g l e :
7 d e f i n i t s e l f , i m a g e : s t r , m o d e l : s t r ) :
8 s e l f . p r e d i c t i o n = p r e d i c t ( i m a g e , m o d e l , T r u e )
o s e l f . p e r s o n = s e l f . g e t p e r s o n ()

10 if s e l f . p e r s o n :
11 s e l f . l e f t _ a r m , s e l f . r i g h t _ a r m , s e l f . h i p s , s e l f . c o r e , s e l f . l e f t _ l e g ,
12 s e l f . r i g h t _ l e g , s e l f . i s _ f a c i n g = s e l f · g e t j o i n t s ( )
13 s e l f . l e f t _ r a n g e = r a n g e ( 5 0 , 1 1 0 , 1)
14 s e l f . r i g h t _ r a n g e = r a n g e ( 5 0 , 1 1 0 , l)
15 se l f. f o r w a r d _ r a n g e r a n g e (1 1 0 , 1 6 0 , l)
16 s e l f . r e v e r s e _ r a n g e = r a n g e ( 1 1 0 , 1 6 0 , l)
17

18

19

d e f g e t p e r s o n ( s e l f) :

20 R e t u r n s t h e r e is a p e r s o n in t h e i m a g e .
21

22

23

24

25

26

27

28

29

30

31

32

c o u n t e r 0
f o r i in r a n g e ( 1 5 ) :

i f se l f . p r e d i c t i o n [ 0 J [ i J [ 0 J < 20 and se l f . p r e d i c t i o n [ 0 J [ i J [l J < 2 0 :
c o u n t e r += l

if c o u n t e r > 5:
r e t u r n F a l s e

e l s e :
r e t u r n T r u e

d e f g e t j o i n t s ( se I f ) :

33 R e t u r n s t h e a l l j o i n t s e x c e p t h e a d , and c h e c k s which way t h e p e r s o n is f a c i n g .
34

35 l e f t _ a r m , r i g h t _ a r m , h i p s , c o r e , l e f t _ l e g , r i g h t _ l e g = [J , [J , [J , [J , [J , [J
36

37 # p r i n t ( s e l f . p r e d i c t i o n [OJ)
38 l e f t _ a r m . append ( s e l f. p r e d i c t i o n [ 0 J [5 J)
39 l e f t _ a r m . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] [ 2 ] )
40 l e f t _ a r m . append ( s e l f. p r e d i c t i o n [ 0 J [ 6 J)
n1 r i gh t a r m . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] [ 1 2 ] )
2 r i gh t a r m . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] / 9 ] )
43 r i gh t a r m . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] [ 1 3 ] )
44

45 h i p s . a p p e n d ( s e l f . p r e d i c t i o n [OJ [ 4 J )
46 h i p s . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] [ 1 1 ] )
47

48 c o r e . a p p e n d ( s e l f . p r e d i c t i o n [OJ [ 7 J )
49 c o r e . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] [ 1 4 ] )
50

51 l e f t _ l e g . a p p e n d ( s e l f . p r e d i c t i o n [OJ [ 4 J )
52 l e f t _ l e g . a p p e n d ( s e l f . p r e d i c t i o n [OJ [l J)
53

4 r i g h t l e g . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] [ 1 1 ] )
ss r i g h t l e g . a p p e n d ( s e l f . p r e d i c t i o n [ 0 ] [ 8 ] )
56

154



L.2. JAMESANGLE.PY

57 i f s e l f . p r ed i c t i on [ 0 ] [ 5 ] [ 0 ] > s e l f . p r ed i c t i on [ 0 ] [ 1 2 ] [ 0 ] :
58 return left_arm , right_arm , hips , core , l e f t_ leg , r ight_leg , True
59 e l s e :
60 return left_arm , right_arm , hips , core , l e f t_ leg , r ight_leg , False
61

62 def __get_signal ( s e l f ) :
63 ”””
64 Returns the s i g n a l that the person i s f a c ing .
65 Returns : s t r
66 ”””
67 i f s e l f . person :
68 left_arm_angle = s e l f . __calculate_angle ( s e l f . left_arm [ 0 ] ,
69 s e l f . left_arm [ 1 ] , s e l f . left_arm [ 2 ] )
70 right_arm_angle = s e l f . __calculate_angle ( s e l f . right_arm [ 0 ] ,
71 s e l f . right_arm [ 1 ] , s e l f . right_arm [ 2 ] )
72

73 i f ( s e l f . h ips [ 0 ] [ 0 ] < 10 and s e l f . h ips [ 0 ] [ 1 ] < 10) or
74 ( s e l f . h ips [ 1 ] [ 0 ] < 10 and s e l f . h ips [ 1 ] [ 1 ] < 10) :
75 l e f t_s igna l_ang le = 0
76 r ight_signal_angle = 0
77 e l i f s e l f . left_arm [ 0 ] [ 0 ] < 10 and s e l f . left_arm [ 0 ] [ 1 ] < 10 and
78 s e l f . left_arm [ 1 ] [ 0 ] < 10 and s e l f . left_arm [ 1 ] [ 1 ] < 10:
79 l e f t_s igna l_ang le = 0
80 r ight_signal_angle = 0
81 e l i f s e l f . right_arm [ 0 ] [ 0 ] < 10 and s e l f . right_arm [ 0 ] [ 1 ] < 10 and
82 s e l f . right_arm [ 1 ] [ 0 ] < 10 and s e l f . right_arm [ 1 ] [ 1 ] < 10:
83 l e f t_s igna l_ang le = 0
84 r ight_signal_angle = 0
85 e l s e :
86 l e f t_s igna l_ang le = s e l f . __calculate_angle ( s e l f . h ips [ 0 ] ,
87 s e l f . left_arm [ 0 ] , s e l f . left_arm [ 1 ] )
88 r ight_signal_angle = s e l f . __calculate_angle ( s e l f . h ips [ 1 ] ,
89 s e l f . right_arm [ 0 ] , s e l f . right_arm [ 1 ] )
90

91 i f s e l f . i s_fac ing :
92 i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . l e f t_range and
93 i n t ( f l o a t ( r ight_signal_angle ) ) in s e l f . r ight_range :
94 s i g n a l = ’ stop ’
95 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . reverse_range and
96 i n t ( f l o a t ( r ight_signal_angle ) ) in s e l f . reverse_range :
97 s i g n a l = ’ r eve r s e ’
98 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . forward_range or
99 i n t ( f l o a t ( r ight_signal_angle ) ) in s e l f . forward_range :

100 s i g n a l = ’ forward ’
101 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . l e f t_range and
102 i n t ( f l o a t ( r ight_signal_angle ) ) not in s e l f . r ight_range :
103 s i g n a l = ’ r i gh t ’
104 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) not in s e l f . l e f t_range and
105 i n t ( f l o a t ( r ight_signal_angle ) ) in s e l f . r ight_range :
106 s i g n a l = ’ l e f t ’
107 e l s e :
108 pr int ( Fore .CYAN, ’HIT ELSE ’ )
109 s i g n a l = ’ stop ’
110 e l s e :
111 i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . l e f t_range and
112 i n t ( f l o a t ( r ight_signal_angle ) ) in s e l f . r ight_range :
113 s i g n a l = ’ stop ’
114 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . reverse_range
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57 i f se l f . p r e d i c t i o n [ 0] [ 5] [0] > se l f . p r e d i c t i o n [ 0] [ l 2] [0] :
58 r e t u r n l e f t _ a r m , r i g h t _ a r m , h i p s , c o r e , l e f t _ l e g , r i g h t _ l e g , T r u e
59 e ls e :
60 r e t u r n l e f t _ a r m , r i g h t _ a r m , h i p s , c o r e , l e f t _ l e g , r i g h t _ l e g , F a l s e
61

62

63

d e f g e t s i g n a l ( s e l f) :
" " "

64 R e t u r n s t h e s i g n a l t h a t t h e p e r s o n is f a c i n g .
65

66

67

68

69

70

71

72

7a if ( s e l f . h i p s [ 0 ] [ 0 ] < 10 and s e l f . h i p s [ 0 ] [ 1 ] < 1 0 ) or
a ( s e l f . h i p s [ 1 ] [ 0 ] < 10 and s e l f . h i p s [ 1 ] [ 1 ] < 1 0 ) :
75 l e f t _ s i g n a l _ a n g l e = 0
76 r i g h t _ s i g n a l _ a n g l e = 0
77 e l i f se l f. l e f t _ a r m [ 0] [ 0] < 10 and se l f. l e f t _ a r m [ 0] [ l ] < 10 and
78 s e l f . l e f ta r m [ 1 ] [ 0 ] < 10 and s e l f . l e f t _ a r m [ 1 ] [ 1 ] < 1 0 :
79 l e f t _ s i g n a l _ a n g l e = 0
80 r i g h t _ s i g n a l _ a n g l e = 0
81 e l i f s e l f . r i g h t a r m [ 0 ] [ 0 ] < 10 and s e l f . r i g h t a r m [ 0 ] [ 1 ] < 10 and
82 s e l f . r i g h t a r m [ 1 ] [ 0 ] < 10 and s e l f . r i g h t a r m [ 1 ] [ 1 ] < 1 0 :
83 l e f t _ s i g n a l _ a n g l e = 0
84 r i g h t _ s i g n a l _ a n g l e = 0

R e t u r n s : s t r

i f se l f . p e r s o n :
l e f t _ a r m _ a n g l e = s e l f . c a l c u l a t ea n g l e ( s e l f . l e f t _ a r m [ 0 ] ,

s e l f . l e f t _ a r m [ 1 ] , s e l f . l e f ta r m [ 2 ] )
r i g h t _ a r m _ a n g l e = se l f. __ c a l c u l a t e _ a n g l e ( s e l f. r i g h t _ a r m [0] ,

s e l f . r i gh t a r m [ 1 ] , s e l f . r i g h t a r m [ 2 ] )

85 e ls e :
86 l e f t _ s i g n a l _ a n g l e = s e l f . c a l c u l a t ea n g l e ( s e l f . h i p s [ 0 ] ,
87 s e l f . l e f t _ a r m [ 0 ] , s e l f . l e f t _ a r m [ 1 ] )
88 r i g h t _ s i g n a l _ a n g l e = s e l f . c a l c u l a t e a n g l e ( s e l f . h i p s [ 1 ] ,
so s e l f . r i g h t a r m [ 0 ] , s e l f . r i g h t a r m [ 1 ] )
90

91 if s e l f . i s _ f a c i n g :
92 if i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . l e f t _ r a n g e and
93 i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in s e l f . r i g h t _ r a n g e :
94

95

96

97

98

99

100

101

102

103

104

105

1 0 6

107

108

s i g n a l = ' s t o p '
e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . r e v e r s e _ r a n g e and

i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in s e l f . r e v e r s e _ r a n g e :
s i g n a l = ' r e v e r s e '

e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . f o r w a r d _ r a n g e or
in t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in se l f. f o r w a r d _ r a n g e :

s i g n a l = ' f o r w a r d '
e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . l e f t _ r a n g e a n d

i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) n o t in s e l f . r i g h t _ r a n g e :
s i g n a l = ' r i g h t '

e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) n o t in s e l f . l e f t _ r a n g e and
i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in s e l f . r i g h t _ r a n g e :

s i g n a l = ' l e f t '
e l s e :

p r i n t ( F o r e . C Y A N , 'HIT E L S E ' )
109 s i g n a l = ' s t o p '
1 1 0 e l s e :
1 1 1 if i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . l e f t _ r a n g e and
1 1 2 i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in s e l f . r i g h t _ r a n g e :
1 1 3 si g n a l = ' s t o p '
1 1 4 e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . r e v e r s e _ r a n g e
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115 and in t ( f l o a t ( r ight_signal_angle ) ) in s e l f . reverse_range :
116 s i g n a l = ’ r eve r s e ’
117 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . forward_range or
118 i n t ( f l o a t ( r ight_signal_angle ) ) in s e l f . forward_range :
119 s i g n a l = ’ forward ’
120 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) in s e l f . l e f t_range and
121 i n t ( f l o a t ( r ight_signal_angle ) ) not in s e l f . r ight_range :
122 s i g n a l = ’ l e f t ’
123 e l i f i n t ( f l o a t ( l e f t_s igna l_ang le ) ) not in s e l f . l e f t_range and
124 i n t ( f l o a t ( r ight_signal_angle ) ) in s e l f . r ight_range :
125 s i g n a l = ’ r i gh t ’
126 e l s e :
127 pr int ( Fore .CYAN, ’HIT ELSE ’ )
128 s i g n a l = ’ stop ’
129

130 s e l f . pr int_s igna l_info ( left_arm_angle , right_arm_angle ,
131 l e f t_s igna l_angle , r ight_signal_angle , s i g n a l )
132 e l s e :
133

134 pr int ( Fore .RED, ’ S igna l : stop , no person in the image ! ’ )
135

136 def pr int_s igna l_info ( s e l f , left_arm_angle , right_arm_angle ,
137 l e f t_s igna l_angle , r ight_signal_angle , s i g n a l ) :
138 pr int ( Fore .YELLOW, ’−−−−−−−−−−−−−−−−−−−−−Signa l data −−−−−−−−−−−−−−−−−−−−−’ )
139 pr int ( Fore .RED, s e l f . right_arm )
140 pr int ( Fore .GREEN, s e l f . left_arm )
141 pr int ( Fore .BLUE, f ’ Person i s f a c ing camera : { s e l f . i s_fac ing }\n ’ )
142

143 # pr int ( Fore .RED, f ’ Right arm angle : {right_arm_angle } ’ )
144 # pr int ( Fore .GREEN, f ’ Left arm angle : { left_arm_angle }\n ’ )
145

146 pr int ( Fore .RED, f ’ Right s i g n a l angle : { r ight_signal_angle } ’ )
147 pr int ( Fore .GREEN, f ’ Left s i g n a l angle : { l e f t_s igna l_ang le }\n ’ )
148

149 pr int ( Fore .MAGENTA, f ’ S igna l : { s i g n a l } ’ )
150 pr int ( Fore .YELLOW, ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’ )
151

152 def __calculate_angle ( s e l f , point1 , point2 , point3 ) :
153 ”””
154 Calcu lates the angle between three po ints .
155 ”””
156 a = np . array ( point1 )
157 b = np . array ( point2 )
158 c = np . array ( point3 )
159 ba = a − b # Di f f e r ence between a and b
160 bc = c − b # Di f f e r ence between c and b
161

162 cosine_angle = np . dot (ba , bc ) / (np . l i n a l g . norm(ba) ∗ np . l i n a l g . norm( bc ) )
163 angle = np . arccos ( cosine_angle )
164 degrees = np . degrees ( angle )
165 i f degrees i s None :
166 return 0
167 e l s e :
168 return degrees
169

170 def run ( s e l f ) :
171 s e l f . __get_signal ( )
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1 1 5

1 1 6

1 1 7

118

1 1 9

1 2 0

1 2 1

1 2 2

1 2 3

1 2 4

1 2 5

1 2 6

1 2 7

128

1 2 9

1 3 0 s e l f . p r i n t _ s i g n a l _ i n f o ( l e f t _ a r m _ a n g l e , r i g h t _ a r m _ a n g l e ,
1 3 1 l e f t _ s i g n a l _ a n g l e , r i g h t _ s i g n a l _ a n g l e , s i g n a l )

a n d i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in s e l f . r e v e r s e _ r a n g e :
s i g n a l = ' r e v e r s e '

e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . f o r w a r d _ r a n g e or
in t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in s e l f . f o r w a r d _ r a n g e :

s i g n a l = ' f o r w a r d '
e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) in s e l f . l e f t _ r a n g e a n d

i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) n o t in s e l f . r i g h t _ r a n g e :
s i g n a l = ' l e f t '

e l i f i n t ( f l o a t ( l e f t _ s i g n a l _ a n g l e ) ) n o t in s e l f . l e f t _ r a n g e a n d
i n t ( f l o a t ( r i g h t _ s i g n a l _ a n g l e ) ) in s e l f . r i g h t _ r a n g e :

s i g n a l = ' r i g h t '
e l s e :

p r i n t ( F o r e . C Y A N , 'HIT E L S E ' )
s i g n a l = ' s t o p '

1 3 2 e ls e :
1 3 3

1 3 4

1 3 5

1 3 6

1 3 7
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1 3 9

1 4 0

1 4 1

1 4 2

1 4 3 # p r i n t ( F o r e . R E D , f ' R i g h t a r m a n g l e : { r i g h t _ a r m _ a n g l e } ' )
1 4 4 # p r i n t ( F o r e . G R E E N , f ' L e f t a rm a n g l e : { l e f t _ a r m _ a n g l e } \ n ' )

p r i n t ( F o r e .RED, ' S i g n a l : s t o p , no p e r s o n in t h e i m a g e ! ' )

d e f p r i n t _ s i g n a l _ i n f o ( s e l f , l e f t _ a r m _ a n g l e , r i g h t _ a r m _ a n g l e ,
l e f t _ s i g n a l _ a n g l e , r i g h t _ s i g n a l _ a n g l e , s i g n a l ) :

p r i n t ( F o r o .YE][) S i g n a l d a t a ' )
p r i n t ( F o r e .RED, s e l f . r i g h t _ a r m )
p r i n t ( F o r e .GREEN, s e l f . l e f t _ a r m )
p r i n t ( F o r e . B L U E , f ' P e r s o n is f a c i n g c a m e r a : { s e l f . i s _ f a c i n g } \ n ' )

1 4 5

1 4 6 p r i n t ( F o r e . R E D , f ' R i g h t s i g n a l a n g l e : { r i g h t _ s i g n a l _ a n g l e } ' )
1 4 7 p r i n t ( F o r e . G R E E N , f ' L e f t s i g n a l a n g l e : { l e f t _ s i g n a l _ a n g l e } \ n ' )
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1 4 9

1 5 0

1 5 1

1 5 2

1 5 3

1 5 4

1 5 5

p r i n t (Fore.MAGENTA, f ' S i g n a l : { s i g n a l } ' )
p r i n t ( F o r e .YELIDW, ' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' )

d e f __ c a l c u l a t e _ a n g l e ( s e l f , p o i n t l , p o i n t 2 , p o i n t 3 ) :
1

C a l c u l a t e s t h e a n g l e b e t w e e n t h r e e p o i n t s .
%

1 5 6 a n p . a r r a y ( p o i n t l)
1 5 7 b= n p . a r r a y ( p o i n t 2 )
158 c= n p . a r r a y ( p o i n t 3 )
1 5 9 ba a b # D i f f e r e n c e b e t w e e n a a n d b
1 6 0 bc = c b # D i f f e r e n c e b e t w e e n c a n d b
1 6 1

1 6 2 c o s i n e a n g l e = n p . d o t ( b a , b c ) / ( n p . l i n a l g . n o r m ( b a ) * n p . l i n a l g . n o r m ( b c ) )
1 6 3 a n g l e = n p . a r c c o s ( c o s i n e _ a n g l e )
1 6 4 d e g r e e s = n p . d e g r e e s ( a n g l e )
1 6 5 if d e g r e e s is N o n e :
1 6 6 r e t u r n 0
1 6 7 e l s e :
168

1 6 9

1 7 0 d e f r u n ( s e l f ) :
171 s e l f . g e t s i g n a l ()

r e t u r n d e g r e e s
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L.2. JAMESANGLE.PY

Listing L.2: JamesAngle.py is responsible for calculating the angles from keypoints and
return a steering signal the module uses JamesPredict (Appendix L.1)
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Appendix M

Luke - Smartphone app: Install
and run

M.1 What is Luke

Luke is a Android app made to run human pose estimation models. The app generates
steering signals for manoeuvring autonomous vehicles based on predictions from a HPE
model.

Link to Code on GitHub: https://github.com/wsvea-lochert/Luke

M.2 prerequisites

• Android Studio

• Android smartphone running Android 10 or higher

Note that the application will not run on a emulator as it needs the camera hardware.

M.3 Download

Run the command in Figure M.1 to download the package:

Figure M.1: Command for cloning Luke from GitHub.
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model.

Link to Code on GitHub: h t t p s : / / g i t h u b . com/wsvea- lochert /Luke
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• Android Studio

• Android smartphone running Android 10 or higher

Note that the application will not run on a emulator as it needs the camera hardware.

M . 3 Download

Run the command in Figure M.l to download the package:

•••

Figure M. l : Command for cloning Luke from GitHub.
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APPENDIX M. LUKE - SMARTPHONE APP: INSTALL AND RUN

M.4 Install and run
Open the project folder in Android Studio and build the project. When the project is done
building plug your phone into your computer and run the project, the app will then be
installed to your phone, and is ready to use.
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