
Innovations in Systems and Software Engineering
https://doi.org/10.1007/s11334-022-00455-5

S . I . : SYSTEMS MODELL ING AND MANAGEMENT

SysMLmodeling of service-oriented system-of-systems

Jerker Delsing1 · Géza Kulcsár2 ·Øystein Haugen3

Received: 5 March 2021 / Accepted: 28 March 2022
© The Author(s) 2022

Abstract
The success of the ongoing fourth industrial revolution largely depends on our ways to cope with the novel design challenges
arising from a combination of an enormous increase in process and product complexity, as well as the expected autonomy
and self-organization of complex and diverse industrial hardware–software installments, often called systems-of-systems.
In this paper, we employ the service-oriented architectural paradigm, as materialized in the Eclipse Arrowhead framework,
to represent modern systems engineering principles and their open structural principles and, thus, relevance to flexible and
adaptive systems. As for adequately capturing the structural aspect, we propose using model-based engineering techniques
and, in particular, a SysML-based specialization of systems modeling. The approach is illustrated by a real-life use-case in
industrial automation.

Keywords Service-oriented architectures · Industrial IoT design · System-of-Systems modeling

1 Introduction

In the new era of industrial digitalization, engineers are
facing a new set of diverse challenges. Essentially, these
challenges arise as a combination of (1) an increased scale
and complexity in industrial engineering and automation
processes, as well as in the partaking hardware and soft-
ware systems and products, (2) an accompanying expectation
toward those systems to organize, adapt and optimize them-
selves autonomously along flexible architectural principles,
and, finally, (3) a desire to maintain or even strengthen the
use of rigorous design practices and standards while devis-
ing these complex systems and processes, thus, retaining a
comprehensive overview of the components of the overall
industrial scenario, regardless of their individual behavior
and their modes of interaction. Notice that the crux of this
novel kind of challenges lies within the contradictory nature

B Jerker Delsing
jerker.delsing@ltu.se

Géza Kulcsár
geza.kulcsar@incquerylabs.com

Øystein Haugen
oystein.haugen@hiof.no

1 Luleå University of Technology, Luleå, Sweden

2 IncQuery Labs cPlc., Budapest, Hungary

3 Østfold University College, Halden, Norway

of those wishes and goals, in short, (1) complexity, (2) auton-
omy, and (3) modelability. (In particular, (3) appears to be
in opposition to the first two.) It is now crucial to achieve a
thorough understanding of the interplay of these conceptual
points: the success of the ongoing fourth industrial revolu-
tion, often called Industry 4.0, depends on finding the right
ways to harmonize the aforementioned goals.

The present paper proposes an approach to live up to these
challenges by identifying an adequate conceptual domain for
each of the three goals, and then examining their combination
in the light of the state-of-the-art in each of those domains,
as well as a current, real-life industrial case study.

As for complexity of industrial installments, we refer to
the more and more prevalent notion of System-of-Systems
(SoS) [1–3], denoting complex software and hardware (i.e.,
often, cyber-physical) systems, as well as their large-scale,
dynamic compositions. In addition, not unrelated to the lay-
ered, diverse and inter-domain nature of SoS, instantiations
of this concept are expected to exhibit a level ofautonomy and
self-organization not seen before. Recently, a structuring and
communication concept called service-oriented architecture
(SOA) has drawn much attraction, representing a promising
compromise between tractable, well-founded design princi-
ples and the flexibility and adaptability of the (systems of)
systems emerging from SOA design processes.

As for modellability, the complex and critical nature
of systems engineering activities still necessitates a well-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-022-00455-5&domain=pdf
http://orcid.org/0000-0002-4133-3317
http://orcid.org/0000-0002-5387-8277
http://orcid.org/0000-0002-0567-769X


J. Delsing et al.

foundedmethodology for the design of complex systems and
SoS, from understanding their requirements to deploying and
maintaining them according to design-time expectations.

A go-to methodology for designing and maintaining com-
plex systems, model-based systems engineering (MBSE) [4]
offers a comprehensive yet practical foundation for such
activities. However, a number of open questions remain
around the application of MBSE techniques and, in particu-
lar, the SysML modeling language as a conceptual basis, in
Industry 4.0 scenarios involving industrial SoS applications.
Furthermore, the engineering of SoS-based solution archi-
tectures is currently largely based on experience, tools and
toolchains primarily adopted for legacy architectures. Thus,
we perceive an enormous potential for cross-fertilization
between SoS engineering and MBSE.

Summarizing, the present paper offers a crossover approach:
we present an MBSE approach to design SOA-based SoS.

Specifically, we rely on the standard language of MBSE,
the systems modeling language (SysML) [5,6] maintained
by the Object Management Group (OMG), which is inten-
sively used for large-scale, comprehensive industrial systems
modeling activities. In this paper, we address both the cur-
rent, industrially established SysML version (v1.6, Sects. 3
and 4) and the upcoming newmajor version, SysML v2, con-
stituting a fundamental change in the internal and external
structure of SysML (Sect. 5).

As for the technological frame of our work, we build upon
the concepts of Eclipse Arrowhead, an SOA-based industrial
IoT framework, also considering its reference implementa-
tion.1

In this paper, we report the following specific contribu-
tions:

– we propose a SysML v1.6 profile for modeling service-
oriented SoS, inspired byArrowhead design principle but
being generic in nature (Sect. 3);

– we demonstrate how that profile is utilized to create a
full-fledged model library of the so-called core systems
of the arrowhead architecture (Sect. 4);

– we describe how our arrowhead-related endeavors serve
as a major SOA validation case study in the development
of SysML v2 (Sect. 5);

– additionally, a real-life, comprehensive industrial use
case is presented in both SysML v1.6 and v2 fashion
(Sect. 6); and

– we discuss to what extent our profile captures the stan-
dard, generally accepted principles of the two underlying
conceptual frameworks, namely SOA and SoS (Sect. 7).

A SysML profile for SOA-based SoS, inspired by the
Eclipse Arrowhead base architecture, has been devised. This

1 https://github.com/eclipse-arrowhead

profile is then used to devise a comprehensive model library
of the Eclipse Arrowhead core system. This development
is now impacting the SysML v2 standardization. As a first
verification, an industrial case is been modeled using both
versions of SysML.

2 Background

In this section, we provide an overview of the relevant tech-
nologies and concept models related to the industrial use of
service-oriented architectures (SOA) from a more technical
perspective, being the conceptual backbone of our proposal
and its industrial utilization through the Eclipse Arrowhead
framework.

In the following, we provide a brief overview (including
related work) on SOA, solution architectures and concepts,
and their engineering methods.

2.1 Service-oriented architectures

SOA, introduced by IBM in the mid 1990s [7], is often
referred to asmicro-service architecture. From amore funda-
mental perspective, these terms are considered equivalent [8].
In this context, a micro-service is produced/consumed by a
micro-system.ASOAreferencemodel has been published by
OASIS [9]. The key properties of SOA/micro-service archi-
tectures are:

– Look-up
– Late binding
– Loose coupling

often referred to as the 3 Ls.
Further, important properties are as follows:

– A micro-system performs its function independently.
– A micro-system can be

• stateful and is then responsible for storing its own
state; or

• stateless.

Fulfillment of these properties requires a “service registry”
and an “orchestration capability.” A prominent early usage
of these fundamentals was the Jini add-on package to Java
[10]. Unfortunately, this approach did not experience wide
acceptance.

SOA is currently themain approach for achieving automa-
tion and digitalization architectures and their reference
implementations and platforms for concrete solution imple-
mentation. Examples include FiWare [11], Eclipse BaSyx
[12], and Eclipse Arrowhead [13,14]. A comparison of the

123

https://github.com/eclipse-arrowhead


SysML modeling of service-oriented system-of-systems

current most relevant initiatives related to automation and
digitalization can be found in [15].

For the implementation of SOA, there is a wide range
of protocols that can be considered service protocols, e.g.,
HTTP (REST), CoAP, MQTT, DDS, and AMQP [16].

2.2 Solution architectures and concepts

The design and development of complex industrial automa-
tion and digitalization solutions is currently based on older,
structured and more rigid architectures, such as the ISA-
95 standard [17]. With the emergence of Industry 4.0, the
demand for and complexity of such solutions is expected to
grow substantially. Accordingly, there is an increasing need
for approaches to reduce costs and design and engineering
time for such solutions. Here, appropriate implementa-
tion architectures, reference platforms and implementation
frameworks, and associated tools and toolchains become
highly important.

SOA is a major approach to implement automation and
digitalization solutions following Industry 4.0 architectures
such as RAMI4.0 [18] and IIRA [19]. Their implementations
are often achieved using an SOA/micro-service approach and
principles, properties and terminologies based onSoS and the
IoT. Some SoS fundamentals have been formulated byMaier
[1,2] and then updated and extended byBoardman andSauser
[3]. A further extension to the biology of systems has been
proposed by Sauser et al. [20]. Therefore, the SoS properties
that must be captured in modeling can be summarized as
follows:

– Operational independence/autonomyof the elementsThe
constituent systems can operate independently in amean-
ingful way and are useful in their own right.

– Belonging The autonomous constituent systems choose
to belong to theSoSbecause they seevalue for themselves
to give up some of their autonomy to receive benefits.

– Connectivity To let the constituent systems interact, they
must be connected, and unless they provide sufficiently
generic interfaces, they must be modified to provide such
interoperability. Connectivity in anSoS is, thus, dynamic,
with interfaces and links forming and vanishing as the
need arises.

– DiversityWhereasmany other systems strive tominimize
diversity to simplify the system, increased diversity in
an SoS gives it the ability to better address unforeseen
situations during its life-cycle.

– Emergent behavior appears in any system, and in many
systems, this is deliberately and intentionally designed in
and tested. In an SoS, emergent behavior is not restricted
to what can be foreseen. Instead, the system should have
the capability to detect (in an early stage) and eliminate
bad behavior that emerges.

– Managerial independence of the elements The con-
stituent systems not only can but do operate inde-
pendently, even while being part of the SoS. Further,
elements can be added individually to the SoS.

– Evolutionary development The SoS does not appear fully
formed, and functions and purposes are added based on
experience.

– Geographical distribution The constituent systems only
exchange information and not substantial quantities of
mass or energy.

– Secure and safe Malicious behavior in an SoS and its
constituent systems must be detected and mitigated to
ensure information, system and SoS integrity.

2.3 Solution engineering

The knowledge and experience of complex automation engi-
neering is currently guided by a number of engineering
standards, e.g., ISO 81346 and ISO 18828 [21,22].

In the transition from legacy production architecture,
such as ISA-95 [23], to Industry 4.0 architectures, such as
RAMI4.0 and IIRA, SOA and micro-service based imple-
mentation architectures and platforms were pioneered by
ColomboandKarnouskos [24–26]. Properties, principles and
concepts formulated around SoS have become necessary to
consider in the engineering of Industry 4.0 automation solu-
tions.

In this context, we need to reason about capturing SoS
fundamentals in an MBSE context; thus far, only a limited
amount of work has been conducted in this area. In this
respect, a UML-based SOA profile, SoaML, was proposed
in 2009 [27]. A number of the fundamental properties and
keywords of SOA were not included in the SoaML profile;
thus, wide adoption did not occur.

A few SOA modeling approaches were devised in the
early 2000s. The service-oriented design and development
methodology (SDDM) [28,29] provides methods and tech-
niques used in service-oriented design and approaches
the service development methodology from the perspec-
tive of both service producers and consumers. In 2004,
IBM announced service-oriented modeling and architecture
(SOMA) as its SOA-related methodology. Further details of
this approach have been published by Arsanjani [30]. The
service-oriented modeling framework, SOMF, was devised
byMichael Bell as a holistic and anthropomorphic modeling
language for software development that employs discipline
and a universal language to provide tactical and strategic
solutions to enterprise problems [31].

A recent paper by Urgese et al. [32] provides an automa-
tion solution engineering approach that extends the IEC
81346 standard. The approach models both the engineering
process and the engineering tool usage in an SOA fashion.

123



J. Delsing et al.

Moreover, the approach can be modeled directly using the
SysML approach proposed in this paper.

Of the SoS properties listed above, operational indepen-
dence, belonging, connectivity, diversity, secure and safe,
and geographical distribution are potentially captured using
modeling languages such as SysML. This paper discusses
the SysML v1.6 and v2 approaches, enabling solution mod-
eling of industrial automation and digitalization based on a
SOA approach, where several fundamental SoS properties
are addressed.

3 Concepts for system-of-systemsmodeling

In this section, we introduce a conceptual space for model-
ing complex, hierarchical SoS according to service-oriented
principles, as discussed above. More concretely, we are
proposing aSysMLv1.6 profile for SoSmodeling. (Themod-
eling tool used for the current implementation of the profile
is Cameo Systems Modeler.2)

The profile is inspired by and validated against the princi-
ples proposed in the Eclipse Arrowhead framework. Eclipse
Arrowhead provides an SoS architecture approach and a ref-
erence implementation platform. The concepts we identify
form a general conceptual framework and are intended to be
used as reference points for modeling large-scale, dynamic
entities in industrial IoT.

The notion of a profile has already been proposed in the
UML language [33] and serves as its central language exten-
sion and specialization mechanism [34]. In turn, SysML has
been conceived as a profile of UML. A profile is a collection
of stereotypes, abstract element descriptions, which can be
used for fixing the modeling vocabulary for a given (emerg-
ing) modeling domain.

Our profile is conceived to support the creation of SOA-
based SoS solutions making use of the Eclipse Arrowhead
framework and its reference implementation. The profile also
makes use of and extends the Eclipse Arrowhead documen-
tation structure [35].

Thus, the profile addresses the following design lev-
els, constituting black- and white-box descriptions of SoS
elements. As a convention, those concepts representing a
black-box aspect have a Description suffix in their names,
while their white-box counterparts end withDesign Descrip-
tion.

Specifically, the profile captures the following layers of
an SoS:

– service and interfaces,
– systems with producing and/or consuming services, and
– two different abstractions for compound SoS:

2 https://www.nomagic.com/products/cameo-systems-modeler.

• Local clouds [36] as basic organizational units and
• Systems of local clouds, i.e., their compositions.

The profile also includes a basic form of design support
regarding data exchange properties. The current version of
the profile is available in theGitHub repository of the project.

Following the principles of SOAs, the main ingredients
of our conceptual space are services and systems. There-
fore, we proceed with first introducing stereotypes used to
represent services (Sect. 3.1 and then continue with sys-
tems stereotypes (Sect. 3.2). Next, we model the concept of
local clouds [36] (LCs) and systems of LCs (SoLCs), origi-
nally proposedwithin theArrowhead ecosystem. The present
section concerns the concepts themselves; for their use, we
refer to Sect. 4, with a detailed description of the Arrowhead
SysML library based on the profile.

3.1 Service stereotypes

Figure 1 shows the three stereotypes (SD, SD-DD and IDD)
used for service modeling in our approach, including their
connection to the SysML language. (The figure comes from
an actual implementation of the profile in Cameo Systems
Modeler.)

The connection to SysML is represented by the box in
the upper left, representing the Interface Block, one
of the central meta-classes of SysML. An interface block,
as the name suggests, is typically applied for entities repre-
senting communication or exchange interfaces between other
entities (systems in our case). Therefore, it is a perfect fit for
expressing service-related concepts in a service-oriented SoS
model.

We distinguish between two abstraction levels: SD (Ser-
vice Description) is the abstract unifying concept for ser-
vices, as generally understood according to theSOAparadigm
(cf. Sect. 2.1). In our setting, an SD is a general description
of some functionality or data service (e.g., temperature mea-
surements), which can be either provided or consumed by
systems.

While an SD represents a black-box perspective on ser-
vices, its SD-DD (Service Description–Design Description)
counterpart captures the realization of a service as it is actu-
ally provided (or consumed) by a system.

The actual communication then happens via interfaces,
which are represented as IDDs (Interface Design Descrip-
tions), i.e., refinements (specializations in UML terminol-
ogy) of SDs, also providing information on communication
details, allowing actual communication to occur between a
provider-consumer pair of systems. Here, the applied secu-
rity, usage of encryption, compression, encoding, etc., are
defined, alongwith the applied payload datamodel. Instances
of IDDs would typically appear as contained in an SD-DD

123

https://www.nomagic.com/products/cameo-systems-modeler


SysML modeling of service-oriented system-of-systems

Fig. 1 Stereotypes for
describing services

and be interpreted as actual interface endpoints belonging to
single operations of an overall service definition.

3.2 Systems stereotypes

Figure 2 shows an overview of the rest of the concepts
presented in this paper, namely stereotypes concerned with
systems and compound entities based on them, local clouds
as well as systems of local clouds.

First, note that the aforementioned concepts also con-
stitute a three-layer composition hierarchy, as represented
by the composition links (the black diamond-headed lines)
between them from the top to the bottom. As for the horizon-
tal classification, the organization of these concepts, again,
follows our principle of providing black-/white-box pairs for
each composition layer. As shown in the upper-left corner,
each system stereotype is a specialization of Block coming
from the SysML language, being its central, general stereo-
type.

In the remainder of this section, we describe the system
stereotypes, i.e., the elements in the bottom layer of Fig. 2.

The SysD (System Design) stereotype represents a black-
box view of systems, i.e., it can be considered a generic
template for (the software behavior of) a given system type
in the SoS that we want to model.

In turn, the SysDD (System Design Description) stereo-
type represents a white-box view of systems, resulting in
higher precision regarding the details of the behavior. Note,
however, that these system stereotypes can be used hierar-

chically; i.e., there are no strict constraints on how much
information has to be provided in a single SysDD, and the
amount of information can be refined in further specialization
blocks.

Avery important, even central, usageof SysD andSysDD
blocks is to hold ports (which are, again, basic SysML ele-
ments), i.e., connections with the outer world. However, in
SysML, the exact interpretation of a port is left to themodeler.
The interpretation in our profile is that a so-called full port is
typed over an SD, representing an overall service provided or
consumed by that system, while the individual interfaces of
that service aremodeled byIDD-typed proxy ports contained
in that full port.

3.3 Stereotypes for local clouds and systems of local
clouds

In this section,we elaborate on the four stereotypes remaining
in Fig. 2: the pair consisting of LocalCloudDesign and
LocalCloudDesignDescription (middle layer), as
well as theSystem-of-LocalClouds-Design stereo-
type, together with the System-of-LocalClouds-
DesignDescription (upper layer).

The concept of a local cloud [36] has been proposed in
the context of Arrowhead; however, it constitutes a general-
purpose organizational principle for SOA-based SoS. A local
cloud is an SoS instance, where the partaking systems have a
certain level of trust toward each other, enabling amore direct
orchestration mechanism between them, while at the same

123



J. Delsing et al.

Fig. 2 Stereotypes for
describing systems and (systems
of) local clouds

time, the local cloud also implies a logical groupingof its con-
stituents. (For a concrete example, cf. Sect. 6.) As expected,
the LocalCloudDesign stereotype corresponds to other
Design stereotypes and serves as their logical container,
while the LocalCloudDesignDescription is a more
detailed entity with a white-box view on design details, as
represented by other Design Description stereotypes within.

Finally, the most large-scale entities in our modeling
domain are the Systems of Local Clouds. Such dimensions
and scenarios are the final goal of industry-scale IoT endeav-
ors: the envisioned level of automation and autonomy is
achievable only by a coordinated, yet adaptive interaction
on a global scale. In our setting, this is expressed by the
SoLC level: an SoLC is also an SoS instance, having a com-
pound, more global nature. The communication between the
clouds has to follow strict rules; therefore, an SoLC has a
different operational nature than that of a single local cloud,
despite the structural analogy. As expected, the two different
stereotypes associated with systems of local clouds serve as
high-level containers for the respective black-box and white-
box designs of their constituents.

4 Arrowhead core system library

The profile described above has been used to create library
models of a number of the core systems of the EclipseArrow-
head framework.

An example of such a core system model is the Eclipse
Arrowhead ServiceRegistry system. The model is shown
in Fig. 3. The currently available core system models for
enabling SOA solution architecting and implementation are
as follows:

– ServiceRegistry system
– Orchestration system
– Authorization system
– SystemRegistry system
– DeviceRegistry system
– Onboarding system
– CertificateAuthority system
– DataManager system
– Translation system
– EventHandler system
– QoS (Quality of Service) system
– TimeManager
– GateKeepeer system (intercloud Lookup, Late binding
and Authorization)

– Gateway system (intercloud secure service exchange)
– OPC-UA adaptor
– Z-wave adaptor
– MQTT broker
– LocalCloud
– System-of-LocalClouds
– Generic-application system
– Device; capable of hosting multiple systems with physi-
cal network port/s

– Network; defining the physical network layers used by
Device network ports

The profile and the library enable us to design and model
complex automation and digitalization solutions. A generic
example of a modeled SoS use case is shown in Fig. 4. Here,
a single local cloud is modeled with the Eclipse Arrowhead
core system. A protected solution is created within one local
cloud with SOA lookup, late binding and loose coupling
properties, as implemented by the Arrowhead ServiceReg-
istry and Orchestration systems. Authentication and autho-

123



SysML modeling of service-oriented system-of-systems

Fig. 3 SysML model of the
eclipse arrowhead
ServiceRegistry system

123



J. Delsing et al.

Fig. 4 Left: the SysML model
of a basic SoS modeled as one
local cloud including a number
of the eclipse arrowhead core
systems. Right: a system of
local clouds (SoLC)

rization security is implemented through the Arrowhead
Authorization system. The required automation functional-
ity can then be modeled as a set of application systems and
their interaction with the available core systems. Application
system modeling is supported through a generic application
system template. Solutions using multiple local clouds are
also modeled and shown in Fig. 4.

The current version of the library is available from
the GitHub repository of Eclipse Arrowhead https://www.
github.com/eclipse-arrowhead

The validation of the profile and the library is based on a
concrete industrial automation use case, described and mod-
eled in Sect. 6.

5 Standardization: toward next-generation
systemsmodeling

5.1 Introducing SysML v2

SysML v2 is the emerging next version of SysML. SysML
was introduced in 2005, and it seems appropriate that a
successor would appear to account for the technological
developments in the past 15 years. The standardization
of SysML is performed in the context of OMG (Object
Management Group) that also provides a number of other

model-oriented technologies, such asUML [33]. The process
is open in the sense that there are no restrictions on becoming
a member of the OMG, but the process is not public since
until the technology is available, the documents may be kept
for those members that participate in related consortia. For
SysML v2, however, the large consortium (and there is only
one consortium in this case) has decided to make the evolv-
ing pilot implementation with documentation open source.
This has made the SysML v2 process more transparent to the
general public [37].

The pilot implementation is important since it represents
an opportunity to experiment and a solid basis for discussion.
Most discussions occur in subgroups of the large consortium,
which now includes more than a hundred individual partici-
pants and close to a hundred organizations.

The development of SysML v2 has been a well-managed
process in which the requirements of the new version of
the language were collected and systematized in a request-
for-proposals. The satisfaction of these requirements is
meticulously monitored by applying the pilot implementa-
tion.

However, therewere few requirements in the field of SOA.
To take advantage of the new SysML v2 to support Arrow-
head, we would need proper constructs to describe SOA;
therefore, we proposed to provide a validation use-case in
the field of SOA based on the Norwegian industrial use case

123

https://www.github.com/eclipse-arrowhead
https://www.github.com/eclipse-arrowhead


SysML modeling of service-oriented system-of-systems

in the project Productive4.0 [38], where communication is
handled by Arrowhead. This scenario has turned out to be
fruitful for several discussions since the example is manage-
able and originates from a real case in industry.

5.2 The descriptive needs of the arrowhead
framework

Taking the SysML Arrowhead profile as starting point and
the Norwegian Productive4.0 use-case as an example [39],
we investigated howSOAcould be describedwith the emerg-
ing SysML v2. We found some issues with describing SOA
in general since there have not been many requirements orig-
inally recorded in that field, and we found that when drilling
down into the details, there were other issues related more
directly to Arrowhead.

– Representing a remote method call where the requiring
party waits for the provided service to be performed and
results to be returned.

– Sufficient information described for asynchronous sig-
nal sending and reception, potentially through a sub-
scribe/publish approach.

– Visualization of SOA protocols with sequence diagrams
where the detailed communication points appear.

These issues may at first glance appear obvious and to be
topics that have been included in earlier versions of SysML
version 1 and UML version 2, but this is only partially cor-
rect. SysML v2 is constructed from scratch on a foundation
(KerML) that provides more precision with formal seman-
tics. Thus, the language is not simply an enhancement of
SysML v1 even though it should cover the same purposes
and more. Therefore, our Arrowhead requirements must be
documented with a proper rationale, such that Arrowhead
and its use cases are credible grounds for discussion.

Moreover, even though operation invocation is included in
UML 2, it has not been straightforward to apply operations.
Built on UML 2, the SoaML profile never achieved a large
audience. Therefore, our aimwith SysML v2 is to cover SOA
concepts in a straightforward manner and not fall into the
pitfalls of the past attempts.

In September 2021 SysML v2 presented their “Revised
Submission” for the OMG Technical meeting. Even though
ourArrowhead needs have been on the agenda for over a year,
the language still has no proper support for remote method
calls. The asynchronous communication is taken well-care
of, and the remote procedures can be modeled through sig-
naling, but we want more native concepts. Hopefully, this
will be doable before the final submission intended for early
2022. Basic sequence diagrams are in place, and the major
improvement is that the sequences will be based on the same
semantic base as the other language concepts of SysML v2.

In UML 2.0 sequences, activities and states had different
semantic definitions and consistency was hard to prove.

5.3 The arrowhead language extensions for SysML

SysML v2 may not receive the same kind of extension con-
structs as we know from UML profiles, as given in Sect. 3,
but rather promises a stronger language extension mecha-
nism inspired by how SysML v2 is built on the KerML
kernel language. The big advantage is in the potential to
establish a domain-specific language (DSL) based upon the
SysML v2 constructs and tooling, in addition to defining
the proprietary language constructs’ semantics in terms of
KerML and SysML libraries. We believe that Arrowhead is
the perfect candidate to implement such a language extension
mechanism, and we have already performed an experimental
simulation of how this could look and be defined.

5.3.1 Language extension for arrowhead in SysML v1

In UML and SysML, we apply “profiles” that define exten-
sions of the UML or SysML basic concepts. Typically, such
“stereotypes” are given meaning through code generation by
the community that supports and applies the defined profile.
Wehave defined aSysMLv1profile forArrowhead, as shown
in Figs. 1 and 2. The profile defines the basic concepts of
Arrowhead, and their semantics are given by the explanation
found in the Arrowhead documentation. The implementation
of the profile is given by the tool providers that support the
profile.

Eclipse Arrowhead also contains Arrowhead systems and
services that are already developed by the open-source com-
munity, and there is a SysML v1 description of these systems
and services in the form of a model library based on the pro-
file. Excerpts of our core library are shown in Fig. 3.

5.3.2 Language extension for arrowhead in SysML v2

In SysML v2, the precise semantics refer to a basic library of
concepts of execution defined by the new language KerML.
Thus, the whole language semantics are built on a core
library, and extensions of the concepts are defined by spe-
cializing the core concepts and redefining and subsetting the
properties. This technique is well-known in object orienta-
tion but has not previously been applied as systematically as
in SysML v2 [40].

We also apply this technique to tailor Arrowhead to
SysML v2, and the Arrowhead profile becomes an Arrow-
head Profile Library, as shown in Fig. 5.

The Arrowhead Core library is built upon the profile
library and corresponds very closely to SysML v1 descrip-
tion of the core systems. In Fig. 6, we focus on the Service
Registry, as we did in Fig. 3. We have added some colors to

123



J. Delsing et al.

Fig. 5 SysML v2 arrowhead
profile library

showhow theArrowhead core concepts are inherited from the
profile library. The service_registry (light blue) is the Arrow-
head system of type SysD concept of the profile library and
subsetting the set of systems defined within the LocalCloud-
Design.

The service_registry defines its service serviceDiscovery
(green) as a port of type ServiceDiscovery, which is inherited
from library concept SD, and is a subset of the services of
the SysD concept of the profile library.

This shows the design level of the core system ser-
vice_registry. Now we apply the same mechanisms of

inheritance, subsetting, redefinition and typing to specialize
the detailed description from the design descriptions.

The service_registryDD (darker blue) is subset from ser-
vice_registry, and it redefines the serviceDiscovery port to
be of the type ServiceDiscoveryDD that is inherited from
ServiceDiscovery, and profile type SysDD. More detail is
added by a couple of nested ports representing the different
protocols that can be used to communicate with this service.
These nested ports (yellow) subset the idd (typed by IDD)
defined within SDDD.

123



SysML modeling of service-oriented system-of-systems

Fig. 6 SysML v2 arrowhead
core library (excerpts)

5.3.3 An arrowhead domain-specific language based on
SysML v2

Even though the principles of specialization in SysML v2
originates from object-orientation, their application may
still be slightly complicated for the creator of Arrowhead
systems-of-systems. This is why we apply the profile terms
in SysML v1, but SysML v2 will have an even better way
to define language extensions using the library concepts and
the general specialization mechanisms.

In Fig. 7,we showan excerpt of the SysMLv2definition of
the core system library corresponding to Fig. 6 plus a mock-
up of what that definition could look likewith the generalized
language extension.

We shall go through the principles by referring to the
example in detail. On the very first line, we have “#service
def ServiceDiscovery” in our Arrowhead notation corre-
sponding directly to “port def ServiceDiscovery :>SD” in
the plain SysML v2. This example shows how we explain
the #service concept by specializing the “SD” port definition
in our Arrowhead library. This is the exact same approach
as that used by the whole SysML v2 language to define its
semantics and is therefore possible to accommodate with-
out unwanted side effects. Similarly, subsetting is applied
for usages, as can be seen further down in the line “#local-
cloud ArrowheadCore” which is a usage of an Arrowhead
local cloud containing a set of systems, and usages of sys-
tems are defined by “#system” keywords, and the inheriting
of the SysD library concept is included in the definition of
the system concept.

The SysML v2 concepts used for specialization and for
all other needs can be used without restrictions.

This simple mechanism may seem like “syntactic sugar”
and it can be viewed in that way, but one should not under-
estimate the usefulness of directly applying terms of the

domain. We may also include constraints in the definitions
of the #-keywords restricting the concepts even more. More-
over, ongoing work is investigating how this domain-specific
notation can be visualized via domain-specific graphics sim-
ilar to our Arrowhead notation shown in Fig. 8. In this way,
the Arrowhead domain and use of service-oriented architec-
ture becomes visually intuitive, corresponds directly to the
Arrowheadmethodology and is defined precisely through the
same principles as the SysML v2 language itself.

We contribute to standardization to ensure that the mod-
eling means of tomorrow fit our Arrowhead framework.
Through active participation, some of our proposals will be
included in SysML v2, but we cannot expect all our desires
to be satisfied in the first version of SysML v2 for several
reasons. SysML v2 has many requirements, and our focus
is not the same as everyone else’s. SysML v2 will be used
for a variety of systems that will not apply SOA. Therefore,
some Arrowhead concepts may not be possible to include,
and they may also be difficult to express with the extension
mechanisms indicated in this section.

6 Chemical factory validation use-case

In Productive4.0 [38], we used Eclipse Arrowhead as the
vehicle for integrating the chemical use-case performed by
the Norwegian consortium at Unger Fabrikker3. The chemi-
cal use case focused at first on reducing the time between
products and thereby contributing to both less waste and
higher productivity. The chemical production goes on con-
tinuously 24/7, but in this chemical plant, they make several
specialized niche products and there is a need to roll over
from one product into another one. Between products there

3 https://www.unger.no

123

https://www.unger.no


J. Delsing et al.

Fig. 7 Services in arrowhead
DSL compared with plain
SysML v2

is a phase where no actual product is produced and such
production needs to be handled as waste. By applying
machine-learning and a new non-intrusive NIR (Near Infra
Red) sensor, we were able to make predictions such that the
process could be tuned quicker and waste reduced.

During the project we also introduced two other use cases
associatedwith the chemical production.Onuse case concen-
trated on improving the supply deliveries of lye and sulfur by
providing the suppliers with more online information about
the states of the tanks and what was expected to be used.
From this, the suppliers could themselves decide when they
wanted to deliver the raw material and thus improving their
own logistics as well as taking some work off the purchasing
staff at the chemical plant.

Finally, we also did some experiments on the product
deliveries to investigate what could be the source of acci-
dental lumping of a powder product when transported over
longer distances in Europe by truck.We instrumented the big
bags of powder with sensors for acceleration, temperature,
humidity and location and could follow and store these data
online.

Supporting all of these three use cases of the chemical
plant was a data communication structure that involved sev-
eral different platforms, different hardware, and the need for
physical and logical firewalls with security. The sensor data
from the NIR sensor was collected by the APIS system from
thepartner and sensor vendorPrediktor4 and the data from the
sensors in the big bags of powder was collected via the Tel-
lUCloud gateways and software by the partner TellU5 before
this was also placed in the APIS system before communi-
cated to the chemical plant hub.

The unifying framework for this communication between
these different platforms was the Eclipse Arrowhead. We
added adaptors and analysis applications to the framework,
and also took advantage of the built-in registration, orches-
tration and security properties. For our presentation in this
paper, we have in in Fig. 8 simplified the system to high-
light the unifying principles of the Eclipse Arrowhead.The
real use-case is of course more elaborate [39], but the sim-

4 https://www.prediktor.com
5 https://tellu.no/en/

plification demonstrate the main issues that we cover in this
paper. We show the asynchronous communication between
the APIS Producer and the APIS Consumer throughout
the MQTT broker. We define how the data from the Tel-
lUConsumer is communicated to the APIS Producer. The
complexities in the real data and the definition of the adap-
tors have been omitted here since this is more associated
with the proprietary use-case than the open-source Eclipse
Arrowhead.

A piece of the SysML v1.6model of the use-case is shown
in Fig. 9.

Excerpts of the corresponding SysML v2 model from the
current pilot implementation is shown in Fig. 10 in its textual
form. Due to current limitations of the pilot implementation,
all communication is defined asynchronously.

SOA is not only a composite structure architecture with
communication connections but also the behavior in terms
of the protocol of messages transferred between the parts. In
Fig. 11, we see the normal flow of messages in the simplified
chemical use-case. Here, we show synchronous communi-
cation between TellUConsumer and APISProducer applying
remote method calls as we want to achieve in the future. On
the right side of the sequence diagram, we see the commu-
nication between the APISProducer and the APISConsumer
using asynchronous signals using the publish/subscribe pro-
tocol MQTT via MQTTserver. All together the information
passes from left to right, and this is repeated in a loop.
The lifelines show the participants in the communication
with details on their ports and nested ports defining the
details of the data transfers. Please refer also to Fig. 10 for
details of the communication and see that it is consistent with
the sequence diagram for the asynchronous communication.
Basic sequence diagrams are also now included in SysML
v2.

7 Discussion: alignment with SOA and SoS
principles

Given the basic properties of SOA/micro-service architecture
and SoS provided in Sects. 2.1 and 2.2, in this section, we
analyze which of those properties are captured by our pro-

123

https://www.prediktor.com
https://tellu.no/en/


SysML modeling of service-oriented system-of-systems

Fig. 8 Simplified chemical
use-case

Fig. 9 Chemical use-case
modeled according to SysML
1.6

123



J. Delsing et al.

Fig. 10 Excerpts of the chemical use-case model in SysML v2 textual

posed SysML modeling approach, as summarized in Table
1.

The SysML modeling of SOA and micro-service-based
architecture can fulfill several and, eventually, most of the
fundamental SoS properties discussed in the literature. A
minor use-case validation of this has been performed in Sect.
6. The detailed outcome is further commented on in Table 1.

8 Conclusion and future work

With the ever-growing presence of IoT-based solutions in the
industry, there is an increasing need for well-founded system
design solutions to address novel challenges. Between rig-
orous systems modeling on the one hand and the expected
level of autonomy and self-organization on the other hand,
SOAs have been investigated as a promising bridge concept.

In this paper, we have presented an MBSE approach to
model SOA-based SoSs, relying upon SysML, the standard
MBSE language, investigating both its established baseline
version, v1.6, and its upcoming new major release, SysML
v2.We have presented a SysML profile (v1.6), its application
tomodel theEclipseArrowhead ecosystem, andour proposed
concept for adapting our ideas into SySML v2, along with a
comprehensive, real-life industrial case study. We have also
discussed the alignment of our concepts with the generally
accepted SOA and SoS principles from the respective com-
munities.

As for future investigations, on the conceptual side,we aim
to extend our conceptual framework with an adequate rep-
resentation of SOA-IoT deployments, allowing for a tighter
integration with real-life Arrowhead installments. On a more
practical note, we aim to experiment with different, poten-
tially cloud-based modeling environments to increase the
accessibility of our approach.

Fig. 11 Normal message flow of the chemical use-case

123



SysML modeling of service-oriented system-of-systems

Ta
bl
e
1

A
na
ly
si
s
of

SO
A
an
d
So

S
pr
op
er
tie
s
m
od
el
ed

by
Sy

sM
L
v1
.6

an
d
Sy

sM
L
v.
2

So
S
pr
op
er
ty

M
ec
ha
ni
sm

an
d
ar
ch
ite
ct
ur
e
co
re

sy
st
em

s
Sy

sM
L
v1
.6

Sy
sM

L
v2

U
se
-c
as
e
va
lid

at
io
n

L
oo
k
up

Se
rv
ic
eR

eg
is
tr
y
fo
r
fin

di
ng

av
ai
la
bl
e
se
rv
ic
es

Pr
ofi

le
&

L
ib
ra
ry

D
SL

&
L
ib
ra
ry

&
C
or
e

sy
st
em

us
ag
ea

V
al
id
at
ed

fr
om

Se
rv
ic
eR

eg
is
tr
y

da
ta
ba
se

co
nt
en
ta
ft
er

se
rv
ic
e

re
gi
st
ra
tio

n
pr
oc
es
s

L
at
e
bi
nd
in
g

O
rc
he
st
ra
tio

n
fo
r
pr
ov
id
in
g
la
te
bi
nd
in
g
in

ru
n-
tim

e
Pr
ofi

le
&

L
ib
ra
ry

D
SL

&
L
ib
ra
ry

&
C
or
e

sy
st
em

us
ag
e

V
al
id
at
ed

by
re
gi
st
ra
tio

n
of

th
e

A
rr
ow

he
ad

co
m
pl
ia
nt

se
rv
ic
es

in
vo
lv
ed

L
oo

se
co
up

lin
g

O
nc
e
or
ch
es
tr
at
ed

se
rv
ic
e
ex
ch
an
ge
s
w
ill

ru
n
un

til
fu
rt
he
r
no

tic
e

by
ei
th
er

ch
an
ge
d
pl
an
s
(r
e-
or
ch
es
tr
at
io
n)

or
ch
an
ge
d

au
th
en
tic

at
io
n
or

au
th
or
iz
at
io
n
po

lic
ie
s

Pr
ofi

le
&

L
ib
ra
ry

D
SL

&
L
ib
ra
ry

&
C
or
e

sy
st
em

us
ag
e

O
pe
ra
tio

n
af
te
r
or
ch
es
tr
at
io
n

un
til

re
-o
rc
he
st
ra
te
d

St
at
ef
ul

an
d/
or

st
at
el
es
s
m
ic
ro

sy
st
em

A
rc
hi
te
ct
ur
e
al
lo
w
s
fo
r
bo

th
Pr
ofi

le
D
SL

B
ot
h
st
at
ef
ul

an
d
st
at
el
es
s

m
ic
ro
-s
ys
te
m
s
in
vo
lv
ed

in
th
e

us
e
ca
se

O
pe
ra
tio

na
l

au
to
no
m
y

O
nc
e
or
ch
es
tr
at
ed

se
rv
ic
e
ex
ch
an
ge
s
w
ill

ru
n
un

til
fu
rt
he
r
no

tic
e

by
ei
th
er

ch
an
ge
d
pl
an
s
(r
e-
or
ch
es
tr
at
io
n)

or
ch
an
ge
d

au
th
en
tic

at
io
n
or

au
th
or
iz
at
io
n
po

lic
ie
s

Pr
ofi

le
&

L
ib
ra
ry

D
SL

&
L
ib
ra
ry

&
C
or
e

sy
st
em

us
ag
e

O
pe
ra
tio

n
af
te
r
or
ch
es
tr
at
io
n

un
til

re
-o
rc
he
st
ra
te
d

B
el
on

gi
ng

Se
rv
ic
eR

eg
is
tr
y,
Sy

st
em

R
eg
is
tr
y,
D
ev
ic
eR

eg
is
tr
y
an
d

O
nb
oa
rd
in
gP

ro
ce
du
re

en
ab
le
s
de
vi
ce
,s
ys
te
m
s
an
d
se
rv
ic
es

to
be

ac
ce
pt
ed

“p
ar
tn
er
s”

of
a
So

S

Pr
ofi

le
&

L
ib
ra
ry

N
ot

fu
lly

m
od

el
ed

ye
t

O
nl
y
se
rv
ic
e
re
gi
st
ra
tio

n
w
as

va
lid

at
ed

C
on

ne
ct
iv
ity

on
-d
em

an
d

Se
e
la
te
bi
nd
in
g
ab
ov
e
pr
ov
id
ed

th
at
th
e
un
de
rl
yi
ng

ph
ys
ic
al
la
ye
r

in
te
ro
pe
ra
bi
lit
y
ca
n
be

pr
ov
id
ed

Pr
ofi

le
&

L
ib
ra
ry

Po
ss
ib
le
bu
tn

ot
ye
t

va
lid

at
ed

R
un

-t
im

e
or
ch
es
tr
at
io
n
of

se
rv
ic
e
ex
ch
an
ge
s
be
tw

ee
n

in
vo
lv
ed

sy
st
em

s

D
iv
er
si
ty
/

he
te
ro
ge
ne
ity

In
te
gr
at
io
n
of

he
te
ro
ge
ne
ou
s
m
ic
ro
-s
ys
te
m
s
ba
se
d
on

he
te
ro
ge
ne
ou
s
ha
rd
w
ar
e
us
in
g
di
ff
er
en
tc
om

m
un
ic
at
io
n
pr
ot
oc
ol
s

Pr
ofi

le
&

L
ib
ra
ry

Po
ss
ib
le
bu
tn

ot
ye
t

va
lid

at
ed

Im
pl
em

en
ta
tio

n
on

he
te
ro
ge
ne
ou
s
de
vi
ce
s
us
in
g

tw
o
co
m
m
un

ic
at
io
n
pr
ot
oc
ol
s

E
m
er
ge
nt

be
ha
vi
or

N
ot

ye
ta
dd
re
ss
ed

N
ot

ye
tm

od
el
ed

N
ot

ye
tm

od
el
ed

N
/A

M
an
ag
er
ia
l

in
de
pe
nd
en
ce

N
ot

ye
ta
dd
re
ss
ed

N
ot

ye
tm

od
el
ed

N
ot

ye
tm

od
el
ed

N
/A

E
vo
lu
tio

na
ry

de
ve
lo
pm

en
t

R
e-
or
ch
es
tr
at
io
n
ba
se
d
on

pr
ep
la
nn
ed

or
au
to
no
m
ou
sl
y
up
da
te
d

or
ch
es
tr
at
io
n
ru
le
s
on

ly
pa
rt
ly

ad
dr
es
se
d
ye
t,
pr
ot
ot
yp

e
sy
st
em

in
ev
al
ua
tio

n

N
ot

ye
tm

od
el
ed

N
ot

ye
tm

od
el
ed

N
/A

G
eo
gr
ap
hi
ca
l

di
st
ri
bu
tio

n
D
ep
lo
ym

en
tt
o
m
ul
tip

le
de
vi
ce
s,
lo
ca
lc
lo
ud

s
an
d
sy
st
em

of
lo
ca
l

cl
ou
ds

sp
an
ni
ng

an
y
ge
og
ra
ph
ic
al
di
st
an
ce

Pr
ofi

le
&

L
ib
ra
ry

Po
ss
ib
le
bu
tn

ot
ye
t

va
lid

at
ed

D
ep
lo
ym

en
to

f
in
vo
lv
ed

sy
st
em

s
at
va
ri
ou

s
m
ac
hi
ne
s

an
d
lo
ca
tio

ns

Se
cu
re

an
d
sa
fe

A
ut
ho
ri
za
tio

n
(A

ut
he
nt
ic
at
io
n,

A
ut
ho
ri
za
tio

n)
,O

nb
oa
rd
in
g

(A
ut
he
nt
ic
at
io
n
an
d
au
th
or
iz
at
io
n
of

de
vi
ce
s
an
d
sy
st
em

s
to

en
te
r

a
lo
ca
lc
lo
ud

),
C
er
tifi

ca
te
A
ut
ho

ri
ty

(l
oc
al
ce
rt
ifi
ca
te
di
st
ri
bu
tio

n)
,

D
at
aM

an
ag
er

(A
ud
it)

sy
st
em

s
pl
us

pr
ot
ot
yp
e
sy
st
em

s
ad
dr
es
si
ng

Se
cu
ri
ty

m
on

ito
ri
ng

an
d
m
iti
ga
tio

n,
Se

cu
ri
ty

st
an
da
rd

co
m
pl
ia
nc
e
&

Sa
fe
ty

m
on

ito
ri
ng

an
d
m
iti
ga
tio

n

Pr
ofi

le
&

L
ib
ra
ry

of
re
le
as
ed

sy
st
em

s
N
ot

ye
tm

od
el
ed

A
ut
he
nt
ic
at
io
n
&
A
ut
ho

ri
za
tio

n
do
w
n
to

in
di
vi
du
al
se
rv
ic
es

a
Sy

sM
L
v2

is
m
or
e
fo
cu
se
d
on

de
sc
ri
bi
ng

us
ag
es

of
co
nc
ep
ts
th
an

is
Sy

sM
L
v1

123



J. Delsing et al.

Acknowledgements The authors would like to thank Ákos Horváth,
Zoltán Micskei and András Vörös for their work in developing the first
version of the SysML profile.
This research is funded by ECSEL, the Electronic Components and

Systems for European Leadership Joint Undertaking under grant agree-
ment No 826452 (Arrowhead Tools), supported by the European Union
Horizon 2020 Research and Innovation Programme and by the member
states.
Project no. 2019-2.1.3-NEMZ_ECSEL-2019-00003 has been imple-

mented with support provided by the National Research, Development
and Innovation Fund of Hungary, financed under the 2019-2.1.3-
NEMZ_ECSEL funding scheme.

Funding Open access funding provided by Lulea University of Tech-
nology.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Maier MW (1996) Architecting principles for systems-of-systems.
INCOSE Int Symp 6(1):565–573. https://doi.org/10.1002/j.2334-
5837.1996.tb02054.x

2. Maier MW (1998) Architecting principles for systems-of-systems.
Systems Eng 1(4):267–284 https://doi.org/10.1002/(SICI)1520-
6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D

3. Boardman J, Sauser B (2006) System of systems - the meaning
of of. In: 2006 IEEE/SMC international conference on system of
systems engineering. p 6 https://doi.org/10.1109/SYSOSE.2006.
1652284

4. Micouin P (2014)Model based systems engineering: fundamentals
and methods. John Wiley and Sons, New Jersey

5. Friedenthal S, Moore A, Steiner R (2014) A practical guide to
SysML: the systems modeling language. Morgan Kaufmann

6. Omg systems modeling language (omg sysml), version 1.6 (2019),
https://www.omg.org/spec/SysML/1.6/

7. Erl T (2005) Service-oriented architecture: concepts. PrenticeHall,
Technology and Design

8. IBM Cloud Education: SOA (service-oriented architecture),
https://www.ibm.com/cloud/learn/soa

9. BashioumC, Behera P, Breininger K, et al (2006) Reference model
for service oriented architecture. OASIS Standard soa-rm, Orga-
nization for the Advancement of Structured Information (OASIS),
https://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html, version 1.0,
accessed 2021-10-05

10. Edwards WK (1999) Core Jini with Book. Prentice Hall Profes-
sional Technical Reference

11. https://www.fiware.org
12. https://www.eclipse.org/basyx/
13. Delsing J (2017) IoT autoamtion - arrowhead framework. CRC

Press, Boca Raton
14. https://projects.eclipse.org/projects/iot.arrowhead

15. Paniagua C, Delsing J (2020) Industrial frameworks for internet
of things: a survey. IEEE Syst J pp 1–11 https://doi.org/10.1109/
JSYST.2020.2993323

16. https://en.wikipedia.org/wiki/Service-oriented_architecture
17. Scholten B (2007) The road to integration: A guide to applying the

ISA-95 standard in manufacturing. Isa
18. Adolphs P, Bedenbender H, Dirzus D, Ehlich M, Epple U, Hankel

M (2015) Referenzarchitekturmodell industrie 4.0 (rami 4.0)
19. https://www.iiconsortium.org/IIRA.htm
20. Sauser B, Boardman J, Verma D (2010) Systomics: Toward a biol-

ogy of system of systems. IEEE Trans Syst Man Cybern Part A
Syst Hum 40(4):803–814. https://doi.org/10.1109/TSMCA.2010.
2048024

21. Iso 811346-12:2018, https://www.iso.org/standard/63886.html
22. ISO-18828 - industrial automation systems and integration— stan-

dardized procedures for production systems engineering. Standard
document Part 1-5, ISO (2018-2019)

23. Wikipedia contributors:(2020)ANSI/ISA-95—Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=ANSI/
ISA-95&oldid=977352897 , [Online; accessed 24-January-2021]

24. Karnouskos S, Colombo AW, Jammes F, Delsing J, Bangemann T
(2010) Towards an architecture for service-oriented process mon-
itoring and control. In: IECON 2010 - 36th annual conference on
IEEE industrial electronics society. pp 1385–1391 https://doi.org/
10.1109/IECON.2010.5675482

25. Karnouskos S, Colombo AW (2011) Architecting the next genera-
tion of service-based scada/dcs systemof systems. In: IECON2011
- 37th annual conference of the IEEE industrial electronics society.
pp 359–364 https://doi.org/10.1109/IECON.2011.6119279

26. Colombo AW, Bangemann T, Karnouskos S (2013) A system of
systems viewon collaborative industrial automation. In: 2013 IEEE
international conference on industrial technology (ICIT). pp 1968–
1975 https://doi.org/10.1109/ICIT.2013.6505980

27. OMG (2009) Service oriented architecture modeling language
(soaml) - specification for the uml profile and metamodel for
services (upms). Tech. Rep. OMG Document Number: ptc/2009-
12-09, OMG http://www.omg.org/spec/SoaML/20091101

28. Papazoglou MP, van den Heuvel WJ (2006) Service-oriented
design and development methodology. Int J Web Eng Technol
2(4):412–442

29. PapazoglouMP(2013)WebServices andSOA:principles and tech-
nology. No. ISBN 9780273732167, Pearson Education Canada,
2nd edn

30. Arsanjani A, AllamA (2006) Service-orientedmodeling and archi-
tecture for realization of an soa. In: 2006 IEEE international
conference on services computing (SCC’06). pp 521–521 https://
doi.org/10.1109/SCC.2006.93

31. Bell M (2008) Introduction to service-oriented modeling - service-
oriented modeling: service analysis, design, and architecture. No.
ISBN 978-0-470-14111-3., Wiley and Sons, New Jersey

32. Urgese G, Azzoni P, Deventer JV, Delsing J, Macii E (2020) An
engineering process model for managing a digitalised life-cycle of
products in the industry 4.0. In: NOMS 2020 - 2020 IEEE/IFIP
Network Operations andManagement Symposium. pp 1–6 https://
doi.org/10.1109/NOMS47738.2020.9110365

33. Omg unified modeling language (uml), version 2.5.1 (2017),
https://www.omg.org/spec/UML/

34. Fuentes-Fernández L,Vallecillo-MorenoA (2004)An introduction
to UML profiles. UML Model Eng 2:6–13

35. Blomstedt F, Ferreira LL, Klisics M, Chrysoulas C, de Soria IM,
Morin B, Zabasta A, Eliasson J, Johansson M, Varga P (2014)
The arrowhead approach for soa application development and doc-
umentation. In: IECON 2014 - 40th Annual conference of the
IEEE industrial electronics society. pp 2631–2637 https://doi.org/
10.1109/IECON.2014.7048877

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/j.2334-5837.1996.tb02054.x
https://doi.org/10.1002/j.2334-5837.1996.tb02054.x
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1109/SYSOSE.2006.1652284
https://doi.org/10.1109/SYSOSE.2006.1652284
https://www.omg.org/spec/SysML/1.6/
https://www.ibm.com/cloud/learn/soa
https://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
https://www.fiware.org
https://www.eclipse.org/basyx/
https://projects.eclipse.org/projects/iot.arrowhead
https://doi.org/10.1109/JSYST.2020.2993323
https://doi.org/10.1109/JSYST.2020.2993323
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://www.iiconsortium.org/IIRA.htm
https://doi.org/10.1109/TSMCA.2010.2048024
https://doi.org/10.1109/TSMCA.2010.2048024
https://www.iso.org/standard/63886.html
https://en.wikipedia.org/w/index.php?title=ANSI/ISA-95&oldid=977352897
https://en.wikipedia.org/w/index.php?title=ANSI/ISA-95&oldid=977352897
https://doi.org/10.1109/IECON.2010.5675482
https://doi.org/10.1109/IECON.2010.5675482
https://doi.org/10.1109/IECON.2011.6119279
https://doi.org/10.1109/ICIT.2013.6505980
http://www.omg.org/spec/SoaML/20091101
https://doi.org/10.1109/SCC.2006.93
https://doi.org/10.1109/SCC.2006.93
https://doi.org/10.1109/NOMS47738.2020.9110365
https://doi.org/10.1109/NOMS47738.2020.9110365
https://www.omg.org/spec/UML/
https://doi.org/10.1109/IECON.2014.7048877
https://doi.org/10.1109/IECON.2014.7048877


SysML modeling of service-oriented system-of-systems

36. Delsing J, Eliasson J, van Deventer J, Derhamy H, Varga P (2016)
Enabling iot automation using local clouds. In: 2016 IEEE 3rd
world forum on internet of things (WF-IoT). pp 502–507 https://
doi.org/10.1109/WF-IoT.2016.7845474

37. https://github.com/Systems-Modeling/SysML-v2-Release
38. https://productive40.eu
39. https://productive40.eu/2019/02/25/prediction-online-analyzing-

sensors-norwegians-taking-control/

40. Seidewitz E (2007) On a metasemantic protocol for modeling
language extension. In: Proceedings of the 8th International Con-
ference on Model-Driven Engineering and Software Development
- Volume 1: MODELSWARD. pp 465–472. INSTICC, SciTePress
(2020). https://doi.org/10.5220/0009181604650472

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/WF-IoT.2016.7845474
https://doi.org/10.1109/WF-IoT.2016.7845474
https://github.com/Systems-Modeling/SysML-v2-Release
https://productive40.eu
https://productive40.eu/2019/02/25/prediction-online-analyzing-sensors-norwegians-taking-control/
https://productive40.eu/2019/02/25/prediction-online-analyzing-sensors-norwegians-taking-control/
https://doi.org/10.5220/0009181604650472

	SysML modeling of service-oriented system-of-systems
	Abstract
	1 Introduction
	2 Background
	2.1 Service-oriented architectures
	2.2 Solution architectures and concepts
	2.3 Solution engineering

	3 Concepts for system-of-systems modeling
	3.1 Service stereotypes
	3.2 Systems stereotypes
	3.3 Stereotypes for local clouds and systems of local clouds

	4 Arrowhead core system library
	5 Standardization: toward next-generation systems modeling
	5.1 Introducing SysML v2
	5.2 The descriptive needs of the arrowhead framework
	5.3 The arrowhead language extensions for SysML
	5.3.1 Language extension for arrowhead in SysML v1
	5.3.2 Language extension for arrowhead in SysML v2
	5.3.3 An arrowhead domain-specific language based on SysML v2


	6 Chemical factory validation use-case
	7 Discussion: alignment with SOA and SoS principles
	8 Conclusion and future work
	Acknowledgements
	References




