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Abstract: In today’s healthcare setting, the accurate and timely diagnosis of breast cancer is critical
for recovery and treatment in the early stages. In recent years, the Internet of Things (IoT) has
experienced a transformation that allows the analysis of real-time and historical data using artificial
intelligence (AI) and machine learning (ML) approaches. Medical IoT combines medical devices
and AI applications with healthcare infrastructure to support medical diagnostics. The current
state-of-the-art approach fails to diagnose breast cancer in its initial period, resulting in the death of
most women. As a result, medical professionals and researchers are faced with a tremendous problem
in early breast cancer detection. We propose a medical IoT-based diagnostic system that competently
identifies malignant and benign people in an IoT environment to resolve the difficulty of identifying
early-stage breast cancer. The artificial neural network (ANN) and convolutional neural network
(CNN) with hyperparameter optimization are used for malignant vs. benign classification, while the
Support Vector Machine (SVM) and Multilayer Perceptron (MLP) were utilized as baseline classifiers
for comparison. Hyperparameters are important for machine learning algorithms since they directly
control the behaviors of training algorithms and have a significant effect on the performance of
machine learning models. We employ a particle swarm optimization (PSO) feature selection approach
to select more satisfactory features from the breast cancer dataset to enhance the classification
performance using MLP and SVM, while grid-based search was used to find the best combination
of the hyperparameters of the CNN and ANN models. The Wisconsin Diagnostic Breast Cancer
(WDBC) dataset was used to test the proposed approach. The proposed model got a classification
accuracy of 98.5% using CNN, and 99.2% using ANN.

Keywords: breast cancer; medical internet of things; healthcare applications; machine learning
algorithms; hyperparameter optimization; medical diagnosis

1. Introduction

Breast cancer is among the most common women’s cancers worldwide. Cancer is a
disease caused by abnormal cells in the human body that could be transmitted to other
regions of the body instead of only the region that is infected [1]. It is the leading source
of death globally, with a predictable 8.2 million fatalities [2]. Cancer cases are expected
to upsurge from 14 to 22 million over the next two decades, then continue to increase
year after year. As cancer spreads from its initial location to other parts of the body,
the death rate has increased [3,4]. Several studies [5,6] have predicted a discriminative
prognosis based on location. The prognosis and prediction of breast cancer are greatly aided
by potential biomarkers [7]. Advanced biomedical imaging methods such as magnetic
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resonance imaging (MRI) [8] and thermal imaging [9] can be used for the diagnosis of
breast cancer aided by deep learning models [10], however, the approach is costly and
requires special medical imaging equipment and expert knowledge to interpret the result,
which are not available in many rural areas of developing countries.

Compared to medical professionals, machine learning (ML) offers substantial benefits,
especially for human disease diagnostics [11,12]. ML is thought to be the best cancer
detection tool because it eliminates manual labor and helps clinicians categorize texts and
images. It also shows how patients’ emotions affect their well-being [13]. Digital sensors
can now be used to track a patient’s well-being by detecting heart rate, mobility, distance
variance, and skin tone [14].

Currently, the Industrial Internet of Things (IIoT) is among the fastest developing
networks capable of collecting and exchanging enormous amounts of data using sensors in
the healthcare setting [15]. In the therapeutic field, IoT is considered an expert application
and is sometimes called medical IoT, or Internet of Health Things (IoHT) [16], or Internet
of Medical Things (IoMT) [17,18]. IoMT refers to a networked infrastructure of medical
applications, devices, health systems, and services. It is used to examine sensor nodes that
get data from the patient’s body using intelligent portable gadgets to assess their physical
properties [19]. IoMT enables wireless and remote devices to communicate securely over
the Internet, while integration with AI methods allow for rapid and flexible medical data
analysis and diagnostics. When delivering data through the cloud, IoT devices handle
several unknown elements such as network structure, energy transfer, and computing ca-
pacity [20]. Both caregivers or health care providers and patients have successfully adapted
remote patient monitoring, disease detection, and efficient treatment via telehealth ser-
vices. All these devices and services lead to the transformation of healthcare to Healthcare
Industry 4.0 [21].

Compared to existing methodologies, the methods and techniques used in this pro-
posed study are more favorable, since they improve and optimize the selection of pertinent
characteristics that detect the tumor at its early stages utilizing ML techniques.

This work makes the following innovations and contributions:

1. A novel framework for the optimization of hyperparameters of the convolutional
neural network (CNN) and artificial neural network (ANN) models for achieving
optimal classification results.

2. An experimental comparison of SVM and MLP classifiers that have been trained and
evaluated utilizing particle swarm optimization (PSO) for feature selection.

3. The suggested approach can be easily integrated into the medical IoT-based healthcare
system and used to effectively diagnose breast cancer.

The remainder of this work is divided into the following sections: Section 2 presents
the IoMT-based framework for breast cancer diagnostics, explains our methodology, in-
cluding the neural network models and tuning of their hyperparameters, and discusses
the performance evaluation measures. The results of breast cancer diagnostic implementa-
tion with comparative analysis with state-of-the-art are discussed in Section 3. Section 4
concludes and provides recommendations for future studies.

2. Related Works

Deep learning (DL) is an ML initiative that can be used for automated training and
selection from characteristics of breast cancer datasets [22]. Wisconsin Prognostic Breast
Cancer Chemotherapy (WPBCC) and WDBC standards have been used in many stud-
ies over the years [23]. Many studies have been done on the diagnosis of breast cancer,
and ML has been used to apply a variety of classification approaches, including Naive
Bayes (NB), Decision Tree (DT), Logistic regression (LR), Random Forest (RF), Support
Vector Machine (SVM), and others. Feature selection approaches, including filter, wrapper,
and embedding methods, have been used similarly to improve predicted accuracy by
appointing the best features. Chougrad et al. [24] suggested a network strategy to improve
breast cancer survival at the initial stage. Researchers have used a deep convolutional
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approach and computer-assisted diagnostics to recognize early-stage breast cancer [25].
Ambrane et al. [26] identified methodological and objective predictive factors in breast
cancer categorization. For the prediction of breast cancer, two types of classifiers were
developed, K-Nearest-Neighbor (kNN) and NB, and calculated based on the prognostic
factor. Dasgupta et al. [27] developed four methods to identify cancer types and select
characteristics. For the breast cancer dataset, ML techniques such as NB, neural network
(NN), DT, and LR were used for feature selection and breast cancer prediction. Gupta and
Kaushik [28] used 3 classification techniques for cancer: SVM, NB and DT. In addition
to dimensionality reduction, feature selection was used to decrease the fitness problem.
For parameter selection, Yue et al. [29] adopted ML algorithms such as kNN, ANN, and
SVM. For parameter optimization in kernel functions, a novel PSO method was used for
the SVM. Using feature selection and an SVM classifier, Omondiagbe et al. [30] suggested
a fusion technique for the detection of breast cancer. Linear discriminant analysis (LDA)
was used to reduce dimensionality. Li and Chen [31] investigated the link between breast
cancer and certain characteristics that could help minimize mortality. Two data sets and
five classification methods were used to test the proposed model. Hajiabadi et al. [32]
used an artificial neural network (ANN) as an objective function for the detection of breast
cancer. The author used a mixture of three loss functions: cross-entropy, Hinge, and
correntropy, to analyze the data set at varying noise levels, enhance generalization, and
detect loss functions. Shravya et al. [33] recommended a breast cancer study employing
classification approaches such as LR, SVM and kNN classifiers, with SVM proving to be
the best classifier. These characteristics were removed from the breast cancer prediction.
Using ML technology, Chaurasia [34] investigated and concentrated on breast cancer risk
variables and created prognosis methods to estimate survival of breast cancer patients.
To categorize normal and pathological cells, three models were used: Nave Bayes (NB),
RBF network, and J48. Aavula and Bhramaramba [35] presented a technique to detect
breast cancer, patient survival, and recurrence. In the investigation of prognostic factors
for the assessment of risk and recurrence, an innovative method was used, an extensive
breast cancer diagnosis framework was used. To improve prognostic factors, they used
representative feature subset selection (RFSS) with SVM. Nandagopal et al. [36] used LR
and maximum likelihood estimation (MLE) combined with fuzzy logic to select and cate-
gorization of benign and malignant stages of breast cancer, the author. Abdar et al. [37]
created a two-layer nested ensemble classifier. The model was evaluated by employing
K-fold cross-validation. Stacking and voting ensemble voting were used. The performance
of the NB method for breast cancer detection increased with this model. For detecting
breast cancer, Wang [38] combined microwave breast imaging with X-ray mammography.
Microwave biosensors were developed to detect breast cancer. To discriminate between nor-
mal and diseased tissues, a low dielectric characteristic was used. Mansour [39] proposed a
computer-aided system for breast cancer detection using an adaptive learning-based Gaus-
sian aggregate model (GMM), and AlexNet-DNN-based feature extraction in combination
with principal component analysis (PCA) and LDA. The proposed technique scored 96.70%
for the AlexNet-FC7 model. Ragab et al. [40], for the identification and categorization of
breast cancer using ultrasound pictures, researchers developed a novel ensemble deep
learning-enabled clinical decision support system. To detect the tumor-affected regions,
the researchers devised an optimum multilevel thresholding-based picture segmentation
technique. The researchers also created a feature extraction ensemble of three deep learning
models and an effective ML classifier for the diagnosis of breast cancer.

Machine learning algorithms learn from data and alter their internal settings accord-
ingly. These parameters are referred to as “model parameters” or “parameters” for short.
Other factors, on the other hand, are not altered during the learning process but must be
pre-configured before the learning process begins. Hyperparameters are a term used to
describe such parameters. The model parameters describe how the input data is trans-
formed into the intended output, whereas the hyperparameters describe how the model
is organized. The choice and settings of a machine learning model’s hyperparameters
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can have a significant impact on its performance. The decision tree method, for example,
contains a “tree depth” hyperparameter; a reasonable value for this hyperparameter can
yield decent results, but a high number can reduce the algorithm’s performance. As a
result, hyperparameters should be set with caution. For a given dataset, hyperparameters
might be set using a variety of approaches. One option is to manually configure them
and calculate the accuracy. Other hyperparameter values may then be evaluated, and
the associated accuracy can be determined for each modification. Manually adjusting the
hyperparameter values in such a trial-and-error manner is a time-consuming and inefficient
approach. Another way to discover an acceptable hyperparameter configuration is to
utilize the default values of hyperparameters provided by the software packages used in
the implementation, which are in turn based on literature and experience recommendations.
While default settings may work well for a particular dataset, this does not always imply
that they provide the highest accuracy.

The significance of this work lies in the number of hyperparameter tuning methods
that are compared, the DL algorithms that are evaluated, and, most importantly, the nature
of the classification issue, which is the Breast Cancer analysis. A number of studies were
reviewed that used ML or DL approaches to solve the BC classification problem in the
IoMT or IoT environment, but none that we are aware of have used hyperparameter tuning
algorithms to find the best hyperparameters that will lead to the best classification accuracy
for the DL algorithm used in this study. This collection of hyperparameters is not the same
for every classification issue and varies depending on the problem’s nature.

The main objective of this research is to develop an IoT-based diagnostic model built
on an ML algorithm to accurately diagnose people with breast cancer and healthy people.
For the categorization of breast cancer in malignant and benign individuals, the SVM and
MLP ML diagnostic models were applied as baseline models for comparison. For the
choice of features that increase the performance of the SVM and MLP classifiers, the PSO
method was used. We chose PSO as a suitable feature selection in this work because of its
global search capabilities, resilience to control parameters, and computing efficiency [41].
This proposed approach differs from previous studies by overcoming some paradigms
related to feature selection in distinguishing the two groups of classes, which are benign
and malignant cancer cells. This was done using PSO to choose the right features. The
classification will also be performed using an IoT-based diagnostic system based on ML
classifiers to improve the classification accuracy in determining whether a breast cancer
case is benign or malignant. Current research has focused on hyperparameter optimization,
not just using ML classifiers alone, as evidenced by the literature study [42]. Other studies
focus on the tuning and optimization of hyperparameter values in order to improve the
performance of models [43–46].

The related works are summarized in Table 1.

Table 1. Summary of related works.

Reference Methods (Models) Dataset Accuracy

Chougrad et al. [24] VGG16, ResNet50, Inception v3 MIAS 98.23%

Amrane et al. [26] Naive Bayes (NB), k-nearest
neighbor (KNN)

Wisconsin Breast Cancer
(WBC) 97.5%

Hajiabadi et al. [32] Artificial Neural Network (ANN) WBC 97%

Shravya et al. [33] Support Vector Machine (SVM) WBC 92.78%

Chaurasia et al. [34] NB WBC 97.36%

Aavula and Bhramaramba [35] SVM with representative feature
subset selection SEER 98.90%

Abdar et al. [37] Nested ensemble classifiers with
BayesNet and Naïve Bayes WBC 98.07%
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Table 1. Cont.

Reference Methods (Models) Dataset Accuracy

Mansour [39] AlexNet BreakHis 96.70%

Ragab et al. [40]

Ensemble of deep learning models
(SqueezeNet, VGG-16, VGG-19)

with Cat Swarm Optimization and
Multilayer Perceptron

Breast Ultrasound Dataset 97.09%

3. Materials and Methods
3.1. Dataset

Dr. William Wolberg of the University of Wisconsin generated the WDBC dataset,
which is distributed at the UCI ML repository. We used it as a data set in this study to create
an IoT-based ML model for the diagnosis of breast cancer. 569 participants are included
in the dataset, with 32 characteristics and 30 real-value features. Malignant and benign
samples are represented by two classes on the output label of the target. There are 357
benign and 212 malignant patients in the data set, which is a 569 × 32 feature matrix.

3.2. Overall IoMT-Based Framework

Figure 1 shows the framework of our introduced IoMT-based breast cancer diagnosis
approach. It is divided into three major stages, which are as follows: First, histopathological
breast samples are collected from patients and tested. The cell images obtained from a
microscopy imaging device are forwarded to a cloud data server to provide additional
options. Histopathological image samples, for example, including annotations, are recorded
in the patient’s electronic health record (EHR) database. The acquired sample features are
then analyzed using our custom-built and hyperparameter-optimized CNN classifier. Using
cloud computing services for the classification of uploaded samples is preferred in our
proposed framework to reduce the use of computational resources and file storage. Third,
the results of the breast cancer detection are transferred to the therapist’s computer display
or smartphone, where they are verified and finalized with medical recommendations.
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Figure 1. Schematic architectural diagram of the proposed medical IoT-based breast cancer diag-
nosis framework for automatic identification of breast cancer using the proposed hyperparameter
optimized CNN classifier.

The system framework, described in Figure 1, represents the classification for detection
of breast cancer using IoT, using hyperparameter-optimized and trained models. Medical
doctor can use computers, laptops, and mobile devices to access the platform. The MIoT
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system has a web interface that allows you to choose between two options: training or
prediction. The user must supply the sample exam result dataset during the training stage.
After that, feature extraction is performed, resulting in a feature vector. Classifiers are
trained by using the feature vectors and then optimization of hyperparameters is performed.
In the previously separated test set, trained models complete a classification step. The user
can choose the optimal combination from the results of the experiments. The model is
accessible via a medical cloud service that may be accessed from any Internet-connected
device. The cloud-based e-Health care application server can efficiently detect and classify
the malignancy of breast cells as data enters, using the proposed approach, and relay the
results back to the local health care institution for appropriate medical action. The user can
utilize an application programming interface (API) to perform a suggested diagnosis at
the prediction stage and communicate the results to the medical doctor for a final clinical
decision.

3.3. Proposed Methodology

Breast cancer is recognized to be one of the most common tumors in women that leads
to invasive malignancies. The current state-of-the-art study focuses mainly on predicting
gene expression patterns at an early stage for clinical diagnosis. Figure 2 shows the
proposed architecture for diagnosing breast cancer.
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SVM is one of several classification algorithms used in biomedical data analysis, partic-
ularly for gene classification [47], but also for the evaluation of motor tremor symptoms [48]
and breast cancer diagnosis [49] as it creates a hyperplane in a multidimensional space.
The proposed technique relied on feature selection algorithm, model hyperparameter opti-
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mization, and classification approaches that were used to diagnose cancer-related patterns.
The prognosis of various forms of cancer has become an essential aspect of scientific area in
recent years. ML approaches were used to create model tools that would detect important
elements of the cancer pattern in various stages [50]. Medical IoT devices are used to moni-
tor a variety of physiological indicators. With this medical IoT environment, breast cancer
can be diagnosed quickly and accurately. Extensive experiments have been conducted,
paving the way for the utilization of ML approaches to interpret real-time data [51].

3.4. Data Preprocessing

Data processing is required before using ML to solve categorization issues. It processed
data [52], which decreased the classifier’s calculation time and improved the classifier’s
classification performance. Detection of missing values, z score, and Min-Max normaliza-
tion scheme are methods used for preparing data sets. Every feature has a mean of 0 and a
variation of 1 in the standard scalar, therefore, all features have the same coefficient. The
Min-Max scheme moves the data so that all values are between 0 and 1. The feature with
an empty row value is removed from the dataset.

3.5. Artificial Neural Networks (ANNs)

ANN is a sequence of fully connected neuron layers that convert an input data x to
a distribution of probability to predict the output class variable y. As a result, the ANN
serves as a function that performs the mapping for the probability distribution p(y|x) for
which the ANN was trained. This function is mapped by an ANN utilizing l hidden layers
followed by an output layer. The weighted edges connect the nodes in each layer to all the
nodes in the succeeding layer. These weights can be seen as a weight matrix. Each layer of
the network also has a bias vector b. A non-linear function is used as part of the calculation
in all hidden layers. Each neuron in the model has an activation function associated with
it. This function sets the output value of each neuron in a range of −1 to 1, or of 0 to 1. In
earlier publications, the activation function was often a softmax function.

softmax(xi) =
e(xi)

∑j e(xi)
(1)

where x is a single value output.
However, rectified linear units can outperform uncorrected linear units in many ANN

classification tasks. Dropout is a deep learning-specific regularization approach that is
commonly utilized. In each repetition, it randomly disables certain neurons. It simply
implies that neurons are “fallen out” at random. When certain neurons are turned off, we
are training a separate model that only employs a subset of neurons in each iteration. As
a result, neurons can learn characteristics individually, without relying on other neurons.
The dropped neurons are deleted during the forward phase, and no weight update is
applied to them during the backward propagation stage. Typically, dropout occurs in fully
linked layers because they have the most parameters, and hence are more likely to co-adapt
excessively, resulting in overfitting.

3.6. Convolutional Neural Networks (CNNs)

CNN is a form of deep neural network commonly used in image processing. Convolu-
tion is a computational process that aggregates two functions to obtain a function, which
is expressed as the summation of the products of two functions after a function has been
inverted and shifted. In CNN, a convolution is done on its input and an array of weights,
called filters, is created to create an object map. The filter moves over the input and matrix
multiplication is performed at each time step. This is done for each input parameter (entity),
and the results are aggregated to create a new feature map. In the case of series or time
series, dilating causal convolutions are often used. Causality indicates that the output of
the filter is independent of future input time steps. The network may look back in time
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with fewer layers while retaining input scale (i.e., the number of time steps in the sequence)
and computing efficiency by stacking dilated convolutions. Each new layer increases the
dilation factor exponentially with the depth of the network. Epoch number is the number
of iterations the neural network has processed the training data set. The more data that
is exposed to the network, the better it learns to make predictions. On the other hand,
overexposure can result in overfitting: The training error is small, but the error increases
dramatically as new data are presented. This is avoided by “stopping early” training when
the validation error no longer falls. Early breakpoints are used to shorten network learning
time during optimization.

The CNN architecture (Figure 3) has one-dimensional convolution, batch normal-
ization, and dropout layers. The final layer is a fully connected dense layer used for
classification. The network weights are modified after each batch. A training epoch is
finished after all batches have traveled through the network once. The loss function is
used to evaluate how well the network matches the data and is minimized during training
by calculating the best weights for neurons. The learning algorithm specifies how the
weights of neurons are modified during the learning process. Adam is one of the learning
algorithms. The learning rate is the allowable value of the change in the weight of neurons
throughout each phase of the training phase. A high learning rate can lead to excessive
weight updates, causing network performance to fluctuate throughout training epochs. A
learning rate that is too slow may not converge or may become trapped in a poor solution.
As a result, the learning rate should be calibrated. The batch size is the set of data that are
processed by the neural network in a single phase. More memory may be needed during
the training stage as the batch size increases.

3.7. Hyperparameter Optimization

Neural networks are dependent on various hyperparameters that are used to govern
the structural organization and the learning procedure, which may be classified as structural
and algorithmic hyperparameters [52].

Structural hyperparameters, which are represented by the number of network layers,
the number of neurons in each layer, the degree of connection, the transfer function, etc.,
characterize the network structure and topology of the network. They have an impact on the
network’s efficacy and computational complexity as they change its structure. Algorithmic
parameters drive the learning process and include the size of the training set, the training
algorithm, momentum, learning rate, etc. Hyper-parameters are not part of the neural
network model and have no effect on its performance; nevertheless, they influence the
speed and performance of the training stage.

Hyperparameter settings for ML models are a predefined set of decisions that have a
direct influence on the training process and the prediction output, indicating how well a
ML model performs. The process of teaching a model to discover patterns in the training
data and predict the output of new data based on these patterns is known as model training.
Model architecture, which depicts the model’s complexity, has a direct impact on the time
it takes to train and test a model, in addition to hyperparameter choices. Because of their
effects on model performance and the fact that the optimum set of values is unknown, the
setting has emerged as an essential and difficult topic in the use of ML algorithms. There
are various ways to tweak the hyperparameters in the literature.
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The methods for optimizing these hyperparameters are described below.

• The manual search determines the hyperparameter value based on the researcher’s
intuition or expertise and can be employed when the researcher has a strong grasp
of neural network topology and learning data. However, the criteria for setting
hyperparameters are vague and necessitating several experimentations.

• Grid-based search (GS) identifies the hyperparameter with the highest performance
by calculating many values for each hyperparameter and combining them. GS is
straightforward, easy to use, and requires minimal prior knowledge. With GS, all
potential hyperparameter value combinations are explored to identify the ideal values
based on the upper and lower limits of each hyperparameter and a predefined step
size, which creates the hyperparameter value space. Because GS runs all potential
combinations, it is considered comprehensive. The combination of required runs
increases exponentially as the number increases, which is a weakness of GS. As a result,
GS takes a long time and has a significant computational cost. Another disadvantage
of utilizing GS is that, owing to the nature of some ML algorithms, such as ANN and
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CNN, rerunning algorithms with the same settings will get differing prediction results
and thus different performance.

Designs of experiment (DOE) strategies are used to determine the best hyperparameter
values for ML algorithms [53]. DOE assesses the impacts of several experimental elements
at the same time, with each experiment consisting of a series of experimental runs at distinct
hyperparameter values that should be assessed jointly. Following the completion of the
trials, the experimental data are statistically analyzed to determine the influence of the
hyperparameters on the classifiers’ performance. To put it another way, an empirical model
is developed that links classification performance, such as prediction errors (as a response
variable), to hyperparameters (as predictors of classifier performance).

Table 2 provides an overview of all hyperparameters that must be fine-tuned for the
CNN model, while Table 3 shows the hyper-parameters of the ANN model to get optimal
prediction results. Because testing all potential possibilities in a full factorial manner
would be prohibitively costly, these hyperparameters are optimized using the Particle
Swarm Optimization (PSO). PSO is a computer approach to solving problems that uses a
population of possible solutions, referred to as particles, and moves them around in the
search area using a simple mathematical formula based on their location and velocity. Each
particle’s movement is impacted by its local best-known location, but it is also steered
toward the search space’s best-known positions, which are updated when better places
are discovered by other particles. The swarm is predicted to migrate to the best options
because of this [54].

Table 2. Hyperparameters and their range for CNN models.

Hyperparameter Description Range

Activation Function Neuron’s activation function ReLU, SeLU, Sigmoid

Batch Size Group size of training data
divisions 8, 16, 32

Epoch Number of learning iterations 20, 50, 100

Kernel Count Kernel count of convolutional
layer 8, 16, 32

Kernel Size Kernel size of convolutional
layer 1, 2, 3

Layer Depth
Number of layers constituting

entire
network

1, 2, 3

Learning Rate Weight change updated
during learning 0.01, 0.001, 0.0001

Loss Function Function to calculate error Binary crossentropy, L2 loss

Neuron Count Neuron count in the final
fully-connected layer 8, 16, 32

Stride Number of moving pixels of
kernel during convolution 1, 2, 3
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Table 3. Hyperparameters and their range for ANN models.

Hyperparameter Description Range

Number of hidden layers
Number of inner layers

between the input and output
layers

1, 2, 3

No. of hidden nodes No. of neurons in the hidden
layer 1–10

No. of training
cycles

Number of the training
iterations 10–1000

Learning rate Change in weight updated
during learning 0.0001–0.1

Learning algorithm
The optimization algorithm
that performs the learning

process in a neural network
SDG, Adam, RMDprop

Activation
functions Neuron’s activation function Tangent, Linear

Learning rate decay

The rate function of the decay
of the

learning rate during learning
iterations

Exponential, linear

Error function:
The function which is

minimized during training of
the neural network

Log loss, mean square error

Epoch limit Maximum number of learning
iterations 20, 50, 100

Mini batch size
Group size submitted to

model during
training

10, 20, 30

Patience

A delay to the trigger in terms
of the

number of epochs on which
we would like to see no

improvement.

2, 5, 10

The most significant parameters of a neural network are initial learning rate (α0),
learning rate decay factor (φ), number of hidden neurons (h), and regularization strength
(λ). Because all designs achieved comparable identification accuracy, hyper-parameters are
frequently more essential than network architecture because a given architecture provides
dramatically varying recognition rates with various hyper-parameter combinations.

Finally, the best-performing model with the smallest loss value in the validation
dataset is chosen. As the performance of the validation data set is factored into the model’s
hyper-parameter optimization, the final performance of the model is evaluated using a
hold-out test set. This method yields an unbiased evaluation of performance. Performance
metrics are generated independently for each objective to determine which targets are
precisely forecasted. Then, the network’s output is utilized to forecast breast cancer disease.
The same performance measures as described above are used to assess these results.

3.8. Baseline Machine Learning Classifiers for Comparison

The primary idea behind ML models is that they should provide a framework that
excels at feature selection, classification, and diagnosis. In ML approaches, classification
is crucial. In this suggested method, two types of categorization examinations have been
used. SVM and MLP are two of the classifiers, and they were created for classification
testing along with ten cross-fold techniques.
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The MLP is an ANN paradigm derived from ML that generates accurate results for
diagnosis and health management. Before the classification model is created, the cancer
data set instances are separated into two sets: training and testing. Two models are used to
validate the data to improve accuracy and gene pattern recognition.

The SVM decision boundary is designed to reduce the generalization error. It is a com-
prehensive and adaptable ML model that can deal with linear and nonlinear classification,
regression, and even outlier detection [55,56].

MLP uses backpropagation during training. Neural networks have been used success-
fully in various medical expert systems, such as for diagnosis of diabetes [57]. MLP differs
from a linear perceptron by its numerous layers and non-linear activation.

3.9. Performance Evaluation Metric

Six evaluation measures were utilized to assess the prediction performance of the
proposed classifiers based on the counts of True positive (TP): This means a person is
classified as breast cancer; True Negative (TN): This means a healthy person is classified as
healthy; False Positive (FP): This means a healthy person is classified as breast cancer; False
Negative (FN): This means a breast cancer person is classified as being healthy.

1. Classification Accuracy: demonstrates the performance of the classification system.

ACC =
TN + TP

TP + TN + FP + FN
∗ 100% (2)

2. Recall: The ratio of accurately predicted positive observations to all observed positive
observations in the actual class.

SEN =
TP

TP + FN
∗ 100% (3)

3. Specificity shows that a prediction is negative and the individual is healthy.

SPE =
TN

TN + FP
∗ 100% (4)

4. F1-Score: This is the harmonic mean of precision and recall.

F1− score = 2∗ precision ∗ recall
precision + recall

∗ 100% (5)

5. Precision refers to the accuracy with which the model makes a correct diagnosis.

PRE =
TP

TP + FP
∗ 100% (6)

6. Receiver Operator Characteristics (ROC) is a curve that draws the TPs against the FPs
at various threshold values for evaluation of binary classification results.

7. The precision-recall (PR) curve is used to assess binary classification algorithms’ per-
formance. PR curves, like ROC curves, provide a graphical depiction of a classifier’s
performance by calculating and plotting precision against recall for a single classifier
over a range of thresholds rather than a single number.

4. Experimental Results and Analysis
4.1. Dataset and Experimental Settings

The SVM and MLP ML diagnostic system was used for the prediction of breast cancer.
WDBC was utilized for the validation of the proposed classifiers. The data set is divided
into 65% training and 35% testing and validation in these implementations. The data set
has 569 instances with 32 features. The dataset has 357 benign and 212 malignant people.
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After that, we then perform feature scaling, which is an approach used to normalize the
features of the data.

The PSO feature selection algorithm is used to select attributes to be used by the
classifiers for the diagnosis of breast cancer. After selecting the attributes, the identification
of breast cancer cases is done by ML classifiers. Our methodology was validated with the
implementation of the SVM and MLP based approach. The hyperparameters of the SVM
were optimized using the Nelder–Mead (downhill simplex) method [58].

To verify the performance of the models, various evaluation metrics, such as accuracy,
sensitivity, specificity, recall, precision, and ROC are used. Additionally, all implementation
outcomes are presented in tables and graphs for better understanding. All experiments are
conducted using Python programming language running on Intel Pentium Core i3 CPU,
2.0 GHz processor speed, 4 GB RAM, and Windows 8 operating system.

4.2. Analysis of the Baseline Classifier Results

The performance of each classifier with the PSO feature selection algorithm has been
measured and is detailed in Table 4 whereas Table 5 gives the performance of each classifier
without the PSO feature selection algorithm. The result of the performance measurements
shows that the proposed MLP classifier with PSO feature selection generates a greater
accuracy result when likened to the other classifiers. When comparing the two proposed
classifiers, it is discovered that the PSO + MLP classifier outperformed that of PSO + SVM
for the diagnosis of breast cancer.

Table 4. Performance assessment for proposed classifiers with PSO.

Measures SVM (%) MLP (%)

Recall 97.0 97.8

Specificity 95.7 96.3

F1-score 97.0 97.6

Precision 97.0 97.8

Accuracy 96.5 97.2

Table 5. Performance assessment for proposed classifiers without PSO.

Measures SVM (%) MLP (%)

Recall 97.0 97.0

Specificity 95.7 95.7

F1-score 97.0 97.0

Precision 97.0 97.0

Accuracy 96.5 96.5

Figure 4 presents the precision of each classifier. Note that the classifier (PSO + MLP)
performs the best with an accuracy of 97.2% in diagnosing breast cancer cells. Improvement
in inaccuracy is a result of the introduction of the PSO algorithm, which optimizes the
problem of classification accuracy by finding the best fit. PSO + MLP performs the best as
well with a ROC curve value of 0.972. Therefore, it can be recommended that our proposed
model based on the IoT PSO + MLP is used to recognize breast cancer.
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4.3. Optimization of Hyperparameters of the CNN and ANN Models

Hyperparameter tuning findings show that certain combination of parameters has
more influence on model’s performance, while others have a modest impact. We have
discovered that the width of the filter and the number of layers had a substantial influence
on prediction performance. The results further demonstrated that for all filter widths,
excellent performance may be attained. Furthermore, utilizing many layers resulted in
somewhat higher performance than a single layer, since it allows for more complexity
in the model, but it also resulted in a longer training period. The number of layers and
the breadth of the filter had a corresponding effect on the training time but not on the
classification performance. As a result, if the number of layers is fixed, a large filter width
requires less training time than a smaller filter width, despite the fact that both options give
equivalent prediction results.

The same is true for the number of filters employed: The more filters utilized, the
longer the training time, with no apparent improvement to prediction performance. The
number of filters has a considerable influence on the training time (bottom). The number of
filters, along with the filter width and the number of layers and stacks, defines the number
of trainable parameters. As a consequence, training time is reduced by using fewer filters
for the same mix of filter width and layers. Adding more layers to the network increases
the depth, and consequently the complexity, of the model. The number of layers influences
training time but not performance. If the number of layers were fixed, a broad filter width
would need fewer layers, and hence less training time than a smaller filter width, despite
the fact that both would provide similar results.

4.4. Results of Top-Performing CNN Model

The best-performing network model with the best combination of hyperparameter
values was selected and tested on an independent test set. These findings demonstrated
that the proposed CNN model is capable of accurately predicting breast cancer. As a
result, the suggested convolutional neural networks are ideal for replacing time-consuming
traditional ML models. The model training results are illustrated in Figure 5, which shoes
the training accuracy and training loss values.
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The Precision and Recall Curve and Receiver Operating Characteristic (ROC) are
presented in Figure 6. The show that the best ANN model has achieved the mean precision
of 0.99 and the AUC of 1.00.
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The confusion matrices of the best CNN and ANN models are presented in Figure 7.
The ANN achieved slightly better accuracy 99.2% vs. 98.5% of the CNN model. The differ-
ence was evaluated using a statistical Mann-Whitley test and was found to be significant at
p = 0.018.
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Finally, we explored the influence of the training/testing ratio on the accuracy of the
classification. The results are presented in Figure 8. It is predictable that better accuracy
was achieved with the larger number of data samples available for training. The highest
accuracy of 0.98 for the CNN model was achieved, when 90% of the data was used for
training and 10% for testing.
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5. Discussion

The main disadvantage of deep learning models is the high computational resources
required, such as GPUs and a large RAM size. During the training phase, the CNN classifier
generates synthetic data, which results in a high storage capacity requirement. However,
as shown in Figure 1, this high hardware resource requirement can be met by using cloud
computing services in our proposed IoMT framework. Furthermore, in this study, all
hyperparameter values of our CNN classifier and implemented deep network models
were manually tuned. This manual tuning procedure is an iterative and time-consuming
task that must be completed to achieve good classification results. For a large number of
hyperparameters, the grid-based search is computationally expensive.
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Deep networks had previously outperformed shallow strategies in a variety of ML
situations, however, this is no longer the case. One such explanation might be a lack of
parameter search. Another explanation might be the tiny size of the data. Deep networks are
extremely sensitive to the size of the training set and require substantially larger training
data sets to be properly established. Our results show that no single hyperparameter
combination outperforms the others significantly. Because of changes in weight and bias
initialization, training a model with the same hyperparameter values once more does not
always result in the same classification accuracy. As a result, it is essential to repeat training
several times before selecting the best performing network. However, deeper networks
with more layers generally take longer to train.

The main advantage of the current study is the optimization of the hyperparameter
values. Hyperparameter tuning is an important aspect of regulating a machine learning
model’s behavior. Our estimated model parameters yield inferior outcomes if our hy-
perparameters are not appropriately tuned, since they do not minimize the loss function.
Modern machine learning methods typically include many hyperparameters (from one
to thousands), which are critical for model’s generalizability. This activity requires pro-
fessional knowledge and expert experience. Moreover, the time requirements to perform
search over full hyperparameter spaces are huge. The hyperparameter search usually
only trains a limited number of candidate configurations with limited training time, and
only the most promising candidates undergo full training. The question of how to build a
new hyperparameter optimization strategy that incorporates all of the advantages of both
automation and expert knowledge remains unsolved.

As a result, in our future studies, we will use more sophisticated neural architecture
search methods [59] to automate the design of our developed CNN classifier. The security
and privacy of patient data and breast cancer diagnosis results will also be considered in
our proposed medical IoT-based system, which will be used for open communication and
networked computing systems. However, the proposed IoMT system, which includes our
developed CNN classifier, is still valid for achieving successful automated diagnosis of
breast cancer.

6. Conclusions

Breast cancer is a common kind of cancer and the leading cause of death in women
around the world. ML models are commonly used to analyze diagnostic variables of breast
cancer survival in this study. We employed our two major algorithms, SVM and MLP, with
the addition of a feature selection method PSO, on the Wisconsin Breast Cancer (WBC)
dataset since our goal and difficulty in breast cancer classification is to construct precise and
reliable classifiers. CNN models were used in this article to replace typical ML models to
predict breast cancer illness. Using the PSO method, grid-based search and a small training
dataset, an approach for optimizing the network’s hyperparameters was provided (WDBC
dataset). Our results show that simple ANNs can still outperform CNNs on small datasets,
although the difference is not large: the proposed model gained a classification accuracy of
98.5% using CNN and 99.2% using ANN. The precision-recall curve and receiver operating
characteristics demonstrated that the best ANN model has achieved the mean precision of
0.99 and the AUC of 1.00. The ANN achieved a slightly better accuracy of 99.2% vs. 98.5%
of the CNN model. The difference was evaluated using a statistical Mann-Whitley test and
found to be significant at p = 0.018.

In healthcare research, particularly using ML methods and IoT, the feature selection
procedure can produce dissimilar results according to a different dataset, location, and
lifestyle of sick individuals. In this way, in this study, the performance of the breast cancer
diagnostic model that can be used in clinical practice was determined. In general, the
suggested model is effective in detecting benign and malignant class labels, as evidenced
by the comparison of the two models.

In the future, the scope of this research will be broadened in the future by conducting
trials with larger datasets, such as big data. This may be achieved by combining deep learn-
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ing techniques with optimization approaches to improve feature selection and effectively
identify breast cancer. Moreover, the system could be implemented with a text messaging-
based communication framework [60] for the provision of telehealth services [61].
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ML Machine Learning
DL Deep learning
GS Grid based search
DOE Designs of Experiment
PSO Particle Swarm Optimization
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ANN Artificial Neural Network
CNN Convolutional neural network
SVM Support Vector Machine
MLP Multilayer perceptron
WDBC Wisconsin Diagnostic Breast Cancer
IoMT Internet of Medical Things
NB Naïve Bayes
DT Decision Tree
RF Random Forest
kNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LR Logistic Regression
RFSS Representative Feature Subset Selection
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