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Abstract
Introduction Vaccines are the most important instrument for bringing the pandemic to a close and saving lives and helping to 
reduce the risks of infection. It is important that everyone has equal access to immunizations that are both safe and effective. 
There is no one who is safe until everyone gets vaccinated. COVID-19 vaccinations are a game-changer in the fight against 
diseases. In addition to examining attitudes toward these vaccines in Africa, Asia, Oceania, Europe, North America, and 
South America, the purpose of this paper is to predict the acceptability of COVID-19 vaccines and study their predictors.
Materials and methods Kaggle datasets are used to estimate the prediction outcomes of the daily COVID-19 vaccination to 
prevent a pandemic. The Kaggle data sets are classified into training and testing datasets. The training dataset is comprised 
of COVID-19 daily data from the 13th of December 2020 to the 13th of June 2021, while the testing dataset is comprised of 
COVID-19 daily data from the 14th of June 2021 to the 14th of October 2021. For the prediction of daily COVID-19 vac-
cination, four well-known machine learning algorithms were described and used in this study: CUBIST, Gaussian Process 
(GAUSS), Elastic Net (ENET), Spikes, and Slab (SPIKES).
Results Among the models considered in this paper, CUBIST has the best prediction accuracy in terms of Mean Absolute 
Scaled Error (MASE) of 9.7368 for Asia, 2.8901 for America, 13.2169 for Oceania, and 3.9510 for South America respectively.
Conclusion This research shows that machine learning can be of great benefit for optimizing daily immunization of citizens 
across the globe. And if used properly, it can help decision makers and health administrators to comprehend immunization 
rates and create strategies to enhance them.

Keywords COVID-19 · Vaccination · Machine learning · Gaussian process (GAUSS) · Elastic net (ENET) · Spikes and slab 
(SPIKES)

1 Introduction

The World Health Organization (WHO) declared the coronavi-
rus outbreak in Wuhan, China, in December 2019 as COVID-
19, designating 2020 as the year of global disaster [1]. Since 
the first fatality from the disease was recorded in January 2020, 
before vaccination began in the United Kingdom on December 
8th, the number of confirmed and death cases has progres-
sively increased (UK). The virus spreads from person to per-
son, resulting in a worldwide epidemic. COVID-19 is a virus 
that causes mild symptoms in persons of various ages [2, 3].

While data indicates that two categories of persons are much 
more likely to be infected by this serious virus than some others: 
the aged (over 60 years old) and those who are habitually sick as 
a result of congestive heart failure, diabetes, acute pulmonary, 
and cancer problems. The number of confirmed cases is drop-
ping fast in nations where vaccines have started, such as the 
United States and the United Kingdom, whereas it is still rising 
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or constantly changing in places where immunizations have 
begun late or not at all. Because the death toll from COVID-
19 has been steadily rising over the world [4], many countries 
have been compelled to take more drastic measures, such as 
masking, social distancing, isolation, and restriction. The crea-
tion of the COVID-19 vaccines as soon as possible has become 
a worldwide concern. In 2022, sufficient COVID-19 vaccines 
are expected to be manufactured to immunize a minimum of 70 
percent [5]. Based on the most recent research, there is a quantity 
that might halt the global epidemic years earlier than projected 
if the vaccines are well circulated.

Due to their great efficiency, machine learning (ML) tech-
niques are now widely employed in a wide range of computer 
applications [6, 7]. Empirical methods such as data mining and 
machine learning, for example, might help. Machine learn-
ing classification algorithms are data processing methods that 
make it easier to create closed-form mathematical models [8, 9]. 
Machine learning classification algorithms are data processing 
techniques that make the building of analytical models easier. 
Data mining is used to create rules from massive amounts of 
data. Machine learning is crucial in today’s environment, espe-
cially in healthcare. Machine learning techniques are being used 
to help with hospital system restructuring, infectious disease 
detection and treatment, and medical treatment [10–13]. In addi-
tion, machine learning models may be used to give intelligent 
solutions for analyzing vast amounts of data.

By building rapid and effective algorithms and models 
based on actual observations of the process for real-time data 
processing, machine learning approaches are able to give 
outstanding outputs and analysis. As a result, more informa-
tion must be provided to medical workers so that they may 
make educated judgments regarding medical diagnosis and 
treatment approaches while also being aware of the poten-
tial consequences and costs for everyone [14]. The ability 
of machine learning to generate massive datasets beyond 
human competence is critical in healthcare. Following that, 
machine learning reliably transforms data analysis into the 
knowledge of the disease and its symptoms, as well as the 
necessity for therapy. This will help healthcare workers plan 
and deliver treatment, resulting in improved results, fewer 
healthcare costs, and more patient satisfaction [15, 16].

The importance of ML in healthcare is its proficiency in 
generating large datasets over and above human capacity. 
Afterward, ML dependably transforms the analysis of that 
data into awareness of the disease and its symptoms, and 
the need for treatment. This will aid healthcare providers in 
planning and delivering care, resulting in improved results, 
lower healthcare costs, and more patient satisfaction [15, 16].

To optimize the daily COVID-19 vaccine so as to fight 
against the pandemic, we obtained data from Kaggle and 
analyzed it using machine learning algorithms [17]. ML 
algorithms are used for extracting useful information 
from data and building a reliable predictive model from it. Ta
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Machine learning algorithms [18–21] are used in this study 
to improve vaccination and determine which is the most suc-
cessful in terms of consistency and accuracy. The objective 
of this paper is to apply predict about the acceptability of 
COVID-19 vaccines and study their predictors.

This research contribution is summarized as follows:

• Machine learning algorithms that are capable of effec-
tively predicting COVID-19 vaccine daily dissemination 
are presented.

• Novel systems that can predict the trends of COVID-19 
vaccination for each continent in the world are proposed.

• A new model for optimal predicting of COVID-19 vac-
cination is presented.

• A novel system with increased accuracy of COVID-19 
vaccination prediction is proposed.

The remainder of this work is structured as follows: Sec-
tion two discusses relevant work, section three discusses 
methodology, part four discusses findings and discussion, 
and the conclusion is presented in section five.

2  Related works

Kim [22] used two statistical models and a deep learning 
(DL) model and (LSTM-DNN) to model and forecast daily 
verified coronavirus cases (COVID-19). The stacked long 
short-term memory deep neural network was employed in 
conjunction with the autoregressive integrated moving aver-
age (ARIMA), the generalized autoregressive conditional 
heteroscedasticity (GARCH), and the autoregressive inte-
grated moving average (ARIMA). The experiment uses ten 
datasets provided by the WHO. Simulation results reveal that 
performance is based on the dates and vaccinations utilized 
in the data. It also reveals that the proposed LSTM-DNN 
prediction is superior to the two statistical models. Accord-
ing to the experimental data, LSTM-DNN significantly 
improves mean absolute error when compared to ARIMA 
and GARCH. ARIMA and GARCH yield different outcomes 
based on the dataset. The achieved results could serve as a 
benchmark for the COVID-19 daily confirmed cases' perfor-
mance limits and prediction accuracy. The shortcoming of 
the work is that data collected after February 2021 was not 
included in the analysis. Furthermore, the accuracy of the 
proposed model is quite poor.

Cheong et al. [23] used machine learning techniques to 
examine socioeconomic data from a range of online sources, 
including the US CDC and the US Census Bureau COVID-
19 Site. Using XGBoost and socioeconomic data, a machine 
learning study was done. With a 62 percent accuracy rate, 
the suggested model accurately predicted COVID-19 vac-
cination uptake in US countries. It was also observed that 
the most important socioeconomic determinants determining 
vaccine uptake in the United States include region, educa-
tion, ethnicity, income, and home internet access. Finally, 
the algorithm generated a themed map depicting low and 
high vaccination rates, which health care officials might 
utilize in future pandemics to visualize and prioritize low 
vaccination zones as well as organize specific vaccine pro-
grams. The experiment had a flaw in that the dataset only 

Table 2  Attributes of COVID-19 Vaccination dataset

Terms Data Type

Country Nominal
iso_code Nominal
Date Ordinal
total_vaccinations Continuous
people_vaccinated Continuous
people_fully_vaccinated Continuous
daily_vaccinations_raw Continuous
daily_vaccinations Continuous
total_vaccinations_per_hundred Continuous
people_vaccinated_per_hundred Continuous
people_fully_vaccinated_per_hundred Continuous
daily_vaccinations_per_million Continuous
Vaccines Categorical

Fig. 1  Depicts the block dia-
gram of the proposed COVID-
19 vaccination

1279Health and Technology (2022) 12:1277–1293
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included data from the United States, resulting in poor pre-
diction accuracy.

Machine learning techniques were used by Abdulkareem 
et al. [24] to assess the progress of COVID-19 immunization 
throughout the world. The findings of the article indicated 
which method is superior for which dataset. To assess and 
generate findings, four output classification strategies were 
used: Decision Tree (DT), K-nearest neighbors (KNN), Ran-
dom Tree (RT), and Naive Bayes (NB), with ML models 
on Weka. According to the research, DT outperforms other 
algorithms in terms of speed and precision. The experiment 
performance was not compared with other machine learning 
algorithms utilizing the same dataset, which is a flaw in the 

work. Moreover, the performance of many of the ML models 
used except for the decision tree is poor.

Fernandes et al. [25] used machine learning approaches to 
predict COVID-19 vaccination and the factors that influence 
vaccines. The study’s major purpose was to look at people’s 
intentions to be vaccinated and to vaccinate their children. 
They also wanted to know how their decision was impacted 
by personal qualities, emotional concerns, and the lock-
down scenario. As a result, during the Portugal shutdown, 
the authors conducted an online survey (15 January 2021 
until 14 March 2021). According to the data, 63% of the 649 
participants said they were highly likely to obtain the vacci-
nation and 60% said they would vaccinate their children. The 

Table 3  Training Control 
Parameters of ENET, CUBIST, 
GAUSS and SPIKES

Arguments Parameter Meaning

Method The resampling method: 
repeatedcv

Provides a way to improve the estimated 
performance of machine learning

Number 10 The number of resampling iterations
Search random Describing how the tuning parameter is determined
Repeats 3 Is the number of complete set of folds to compute
verboseIter TRUE A logical for printing a training log

Fig. 2  Vaccination against 
COVID-19 in Africa

1280 Health and Technology (2022) 12:1277–1293
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trials employed linear regression models, which explained 
65 percent of the variation in individual immunization and 
56 percent of the variance in group immunization. The over-
all ideas and attitudes about the COVID-19 vaccine were 
revealed to be the most important drivers of vaccination 
intention. Furthermore, the recommended artificial neural 
network (ANN) model achieved a vaccination intention pre-
diction accuracy of 85%. The drawback of the work is the 
prediction accuracy is low. Also, the work did not cover data 
obtained after 14 March 2021.

To evaluate the general predilection to the COVID-19 
vaccination, Zaidi et al. [26] used five models. A voting 
classifier was used to determine the accuracy of all the clas-
sifiers at the completion of their research. According to the 
data, a Support Vector Machine (SVM) generates the best 
predictions, whereas an Artificial Neural Network (ANN) 
produces the worst predictions for individual capacity to be 
vaccinated with the COVID-19 vaccine. The proposed tech-
nique has an overall accuracy of 89.9% for the random data-
set and 45.7 percent for the date-wise dataset when employ-
ing the voting classifier. As a result, the results reveal that 
the proposed prediction technique is a valid and promising 

method for predicting future COVID-19 vaccination trends. 
The suggested work has a flaw in that the total forecast accu-
racy is low.

Using previously available data, Davahli et al. [27] cre-
ated sequence-learning models to estimate the behavior of 
the COVID-19 pandemic across the United States (US). 
They classified US states based on their resemblance to 
previously reported COVID-19 behavior to avoid train-
ing the models for all states. The researchers employed an 
unsupervised self-organizing map to divide all states in the 
United States into four groups based on the similarity of 
their effective reproduction numbers. They developed deter-
ministic and stochastic long short-term memory (LSTM) and 
mixed density network (MDN) models after selecting a lead-
ing state (the state with the earliest recorded occurrences) 
in each group. Data was added into the model from each 
leading state, which was then compared to a baseline linear 
regression model to predict future outcomes. They investi-
gated the effects of removing periodicity and patterns from 
a dataset of non-stationary COVID-19 events on predic-
tion. Alternative prediction strategies beat the deterministic 
LSTM model trained on the COVID-19 ideal reproduction 

Fig. 3  Vaccination against 
COVID-19 in Africa (Continued)

1281Health and Technology (2022) 12:1277–1293



1 3

numbers, according to their findings. The work shortcoming 
is that the data used is exclusively from the United States. 
Furthermore, the authors did not take into account the inter-
action of states. Finally, the study data set is limited to only 
three months from August 26, 2020, to November 26, 2020. 
Table 1 summarized the list of all related works.

Motivated by gaps and the benefit mentioned above, 
Elastic Net (ENET), CUBIST, Gaussian Process (GAUSS), 
and Spikes and Slab (SPIKES) methods are developed for 
the prediction of COVID-19 vaccination in Africa, Asia, 
Europe, South America, North America, and Oceania. To 
the best of our knowledge, this is the first-time prediction of 
the COVID-19 vaccine in combating COVID-19 diseases in 
the continents of the world is explored.

3  Methodology

3.1  Dataset

Kaggle datasets [37] were utilized to evaluate the prediction 
outcomes of the daily COVID-19 vaccination to decrease 

pandemic risk. The dataset consists of all the countries that 
have been vaccinated, fully vaccinated with COVID-19, the 
types of vaccines used and the date vaccinated. Training 
datasets and testing datasets are the two types of data sets 
utilized in this study. COVID-19 daily data from the 13th of 
December 2020 to the 13th of June, 2021 make up the train-
ing dataset, whereas COVID-19 daily data from the 14th of 
June, 2021 to the 14th of October, 2021 make up the testing 
dataset. Table 2 displayed the attributes of COVID-19 vac-
cination dataset which consists of country, iso_code, date, 
total_vaccinations, people_vaccinated, people_fullt_vac-
cinated, daily_vaccination_raw, daily_vaccinations, total_
vaccinations_per_hundred, people_vaccinated_hundred, 
people_fully_vaccinated_per_hundred, daily_vaccinations_
per_million and vaccines.

3.2  Elastic net (ENET)

Elastic Net (ENET) is a penalized linear regression model 
that incorporates both the L1 and L2 penalties. Combin-
ing the L1-norm (lasso) and L2-norm (ridge) penalties, 
ENET decreases the regression coefficients. ENET arose 

Fig. 4  Vaccination against 
COVID-19 in Africa (Continued)
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from criticism of LASSO (Least Absolute Shrinkage and 
Selection Operator), a variable selection algorithm that is 
excessively dependent on data and hence unstable [28]. To 
obtain the best of both techniques is to mix the penalties of 
ridge regression and lasso [29]. ENET mathematical equa-
tions are as follows:

where � is the mixing parameter between ridge ( � = 0 ) and 
lasso (� = 1) , n is the observation of the response variable, 
yi, with a linear combination of m predictor variables, xi, � 
is the regularization penalty, � is the regression coefficient.

3.3  CUBIST

Cubist is a rule-based model derived from Quinlan's M5 
model tree. Linear regression models are embedded in the 
terminal leaves of a tree. The predictors used in earlier splits 
have been utilized to create these models. At each branch of 

(1)
Eenet

�
�̂
�
=

∑
i = 1

n
�
yi − xi�̂

�2

2n
+ �

�
1 − �

2

�m

j=1
�̂2
j
+ �

�m

j=1

����̂j
���
�

the tree, there are also intermediate linear models. At the 
tree's terminal node, a prediction is created using the linear 
regression model, but it is "smoothed" by taking into consid-
eration the preceding node's prediction (which also occurs 
recursively up the tree). The tree is simplified to a collection 
of rules, which are originally pathways from top to bottom 
[30]. CUBIST has the following mathematical equation:

where �(c) is the current model forecast and �(p) is the parent 
model prediction positioned above it in the tree.

3.4  Gaussian process (GAUSS)

The Gaussian Processes (GAUSS) model is a probabilistic 
machine learning framework that is often used for regres-
sion and classification issues [31]. The GAUSS model may 
make predictions based on past data and provide confidence 
ranges for those predictions. The Gaussian processes model 
[32] is an approach developed by scientist and statistician. 
The following are the GAUSS mathematical procedures:

(2)Ccubist = (1 − a) × �(p) + a × �(c)

Fig. 5  Vaccination against 
COVID-19 in Asia
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The following is a multivariate Gaussian regression 
function:

The f  and f∗ joint distribution is given as

The following is the combined distribution of observed 
values and function values at new testing points:

Predictive equations for Gaussian processes regression 
may be found by determining the conditional distribution:

Also,

(3)P(f |X) = ℵ(f |𝜇, k)

(4)
[
f

f∗

]
∼ ℵ

([
m(X)

m
(
X∗

)
]
,

[
k k∗
kT
∗
k∗∗

])

(5)
(

y

f∗

)
∼ ℵ

(
0,

[
k + 𝜎2I k∗
kT
∗

k∗∗

])

(6)�f∗|X, y,X∗ ∼ ℵ(�f∗, cov
(
f∗
)
)

where  X =
[
x1,… , xn

]
,  f =

[
f
(
x1
)
,… ., f

(
xn
)]
,  � = [m(

x1

)
,… ,m

(
x
n

)]
,  kij = k

(
xi, xj

)
,X  is the observed data 

points, m represents the mean function, k represents a posi-
tive definite kernel function,k = k(X,X),   k∗ = k

(
X,X∗

)
,

k∗∗ = k
(
X∗,X∗

)
, 
(
m(X),m

(
X∗

))
= 0.

3.5  Spikes and slab (SPIKES)

Spike and slab regression was alluded by [33] who adopted a 
Bayesian strategy to subgroup selection in linear regression 
models. [34, 35] contributed considerably to the develop-
ment of the technique. The final adjustments to the model 
were done by [36]. The prior for the regression coefficients 
utilized in their Bayesian hierarchy was referred to by spike 
and slab. The mathematical equations of SPIKES is given as:

(7)f̂∗ ≜
[
f̂∗|X, y,X∗

]
= kT

∗

[
k + �2

n
I
]−1

y

(8)cov
(
f∗
)
= k∗∗ − kT

∗

[
k + �2

n
I
]−1

k∗

Fig. 6  Vaccination against 
COVID-19 in Asia (Continued)
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3.6  Experimental design of COVID‑19 vaccination 
prediction system

This paper used four machine learning models for COVID-
19 vaccination prediction as depicted in Fig. 1. The proposed 
architecture uses time-series data preprocessed to extracts 
spatial features using different machine learning models. 
The attributes of COVID-19 vaccination dataset obtained 
from Kaggle comprises of Country, iso_code, Date, total_
vaccinations, people_vaccinated, people_fully_vaccinated, 
daily_vaccinations_raw, daily_vaccinations, total_vaccina-
tions_per_hundred, people_vaccinated_per_hundred, peo-
ple_fully_vaccinated_per_hundred, daily_vaccinations_per_
million, Vaccines. The dataset was partitioned into training 
set (70%) and test set (30%). Afterward, selected features of 
the data were modeled using Elastic Net (ENET), CUBIST, 

(9)(y
|||X, 𝛽, 𝜎

2
)
∼ ℵ

(
X𝛽, 𝜎2In

)

(10)(𝛽|𝛾) ∼ ℵ(0,𝜔)

Gausian Process (GAUSS), and Spikes and Slab (SPIKES) 
algorithms. The accuracy of the machine learning is evalu-
ated in the performance evaluation section. Training a model 
entail selecting appropriate values for each weight and bias 
from labelled samples. Tuning parameters is one of the most 
crucial steps in the training of machine learning models. The 
parameters used to regulate the COVID-19 vaccine training 
set are all shown in Table 3 and are used to fine-tune the 
model's performance.

3.7  Performance measures

Three metrics are used to evaluate prediction performance of 
daily COVID-19 vaccination: Mean Absolute Scaled Error 
(MASE), Relative Absolute Error (RAE), Mean Squared 
Log Error (MSLE).

MASE is given a:

RAE is defined as follows:
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Fig. 7  Vaccination against 
COVID-19 in Europe
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MSLE is defined as follows:

where m is the seasonal period, yn
t
 is the actual values and 

predicted values is ŷn
t
.  

4  Result and discussion

Vaccines are the most important instrument for bringing 
the pandemic to an end and saving lives and livelihoods. It 
is critical that everyone has equal access to immunizations 
that are both safe and effective. There is no one who is safe 
until everyone gets vaccinated. In the fight against COVID-
19, safe and effective COVID-19 vaccinations are a game-
changer. Figures 2–12 is the roll-out of COVID-19 vaccines 
for each country of the World. Figure 2 consist of twenty 
countries in Africa that have commences vaccine of its citi-
zen. Egypt and Algeria commenced vaccination of its citizen 

(12)
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earlier than other country while Chad and Burkina Faso 
commenced late in the vaccination chart. The country that 
first commenced COVID-19 vaccination among them are 
Seychelles and Mauritius while three countries commenced 
late and these are Madagascar, Liberia and Guinea Bissau as 
shown in Fig. 3. Out of the twelve countries in Fig. 4, South 
Africa and Zimbabwe commenced vaccination earlier than 
others while Zambia, Tanzania and Somalia commenced 
vaccination of their citizen late. Out of twenty countries in 
Asia, China, Kuwait and Bahrain commenced vaccination 
earlier while Kyryzstan, Brunei and Armenia commenced 
late in the vaccination of their citizen (as shown in Fig. 5). 
Out of twenty-one countries in Fig. 6, Qatar and Oman com-
menced vaccination earlier than others while Yemen and 
Tajikistan commenced late in the vaccination of its citizen. 
Almost all the countries in Fig. 7 commenced vaccination 
of its citizen earlier except Georgia, Faeroe Islands and 
Bosnia and Herzegovia that commenced vaccination late. 
Out of twenty-one of this countries Moldova, Kosovo and 
Jersey commenced vaccination of its citizen late than other 
countries (as shown in Fig. 8. Figure 9 consists of eight 
countries in Oceania which include Vanuatu, Papua New 
Guinea, New Zealand, New Caledonia, French Polynesia, 
Fiji and Australia. Out of the eight countries in Oceania, two 
countries commenced vaccination earlier and these are New 

Fig. 8  Vaccination against 
COVID-19 in Europe (Continued)
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Fig. 9  Vaccination against 
COVID-19 in Oceania

Fig. 10  Vaccination against 
COVID-19 in North America
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Fig. 11  Vaccination against 
COVID-19 in North America 
(Continued)

Fig. 12  Vaccination against 
COVID-19 in South America
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Fig. 13  COVID-19 Vaccination of Real and Predicted (ENET)

Fig. 14  COVID-19 Vaccination of Real and Predicted (CUBIST)
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Fig. 15  COVID-19 Vaccination of Real and Predicted (GAUSS)

Fig. 16  COVID-19 Vaccination 
of Real and Predicted (SPIKES)
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Caledonia, French Polynesia. Figures 10, 11, 12 consists of 
countries in South America that commences vaccination. It 
was observed Canada, USA, Mexico, Chile and Argentina 
commenced vaccination earlier.

In this research, the outcomes of machine learning 
approaches such as CUBIST, Spikes and Slab (SPIKES), 
Gaussian Process (GAUSS), and Elastic Net (ENET) were 
studied. The four machine learning algorithms used in this 
study were compared to determine which was more accurate 
in predicting daily COVID-19 immunization. The Kaggle 
database was used to get the COVID-19 dataset. We dem-
onstrate the accuracy of these methods in predicting daily 
COVID-19 vaccination using Mean Absolute Scaled Error 
(MASE), Relative Absolute Error (RAE), and Mean Squared 
Log Error (MSLE). Figures 13, 14, 15, 16 is the result of 
both real and predicted COVID-19 vaccination of all the four 
machine learning considered in this paper.

MASE, RAE, and MSLE are among the performance 
measures shown in Table 4. CUBIST surpasses the other 
three algorithms by attaining lower error rates, implying 
that the methods are more precise than any other forecast. 
According to the data, CUBIST can predict daily COVID-19 
immunization.

5  Conclusions

A study was carried out for the prediction of daily COVID-
19 to reduce disease propagation. The study presented 
and used four well-known machine learning models for 
daily COVID-19 prediction: CUBIST, Gaussian Pro-
cess (GAUSS), Elastic Net (ENET), and Spikes and Slab 
(SPIKES). According to the findings of the study, CUBIST 
have the ability to predict daily COVID-19 immunization. 
As the findings demonstrate, selecting the best successful 
model for this prediction requires a combination of perfor-
mance indicators such as Relative Absolute Error (RAE), 
Mean Squared Log Error (MSLE), and Mean Absolute 
Scaled Error (MASE). CUBIST can predict daily COVID-19 
immunization in Asia with 9.7368 (MASE), North America 
with 2.8901 (MASE), Oceania with 13.2169 (MASE) and 
South America with 3.9510, respectively. Furthermore, find-
ings showed that different nations in Europe begin immuniz-
ing their citizens earlier than other continents.

However, the limitation of this research is that obtain-
ing COVID-19 datasets of those who are fully vaccinated is 
extremely difficult due to the fact that social media is awash 
with posts denigrating the vaccine hesitant. This has resulted 
in many people being unwilling to receive COVID-19 vac-
cination. The consequence is something of a social media 
cultural war, with many online commentators suggesting that 
vaccine skeptics are altering their minds, yet even a delay is 
considered a hazard to health because viral diseases spread 
swiftly. In the future, we will examine various machine 
learning techniques to assess daily COVID-19 vaccination.
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Table 4  Performance Measures of ENET, CUBIST, GAUSS AND 
SPIKES

Continent Models MASE MSLE RAE

Africa ENET 16.7807 0.5399 1.8707
CUBIST 10.4519 0.4294 1.1651
GAUSS 8.4411 0.2062 0.9410
SPIKES 8.4079 0.2048 0.9373

Asia ENET 24.4637 0.4161 4.8801
CUBIST 9.7368 0.1678 1.9423
GAUSS 17.0896 0.2579 3.4091
SPIKES 23.9455 0.4041 4.7768

Europe ENET 43.2658 0.6320 2.5360
CUBIST 11.8689 0.1783 0.6957
GAUSS 9.1852 0.0865 0.5384
SPIKES 8.3149 0.0564 0.4873

North America ENET 30.9528 0.6220 10.1623
CUBIST 2.8901 0.0178 0.9488
GAUSS 84.0509 - 27.5954
SPIKES 76.2009 - 25.0181

Oceania ENET 39.0103 0.9809 1.9631
CUBIST 13.2169 0.0990 0.6651
GAUSS 24.1195 0.2430 1.2137
SPIKES 21.3783 0.1696 1.0758

South America ENET 5.5114 0.0724 2.0113
CUBIST 3.9510 0.0473 1.4419
GAUSS 12.7782 1.0958 4.6633
SPIKES 15.2499 2.5426 5.5653
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