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Abstract: The current sensorless vector-controlled permanent-magnet synchronous motor (PMSM)
drive using a single sensor (i.e., speed sensor) is presented in this work. The current sensors are
removed, and the estimated currents are used to close the current loop to minimize the drive cost
and make it fault-tolerant against current sensor failure. A classical vector-control PMSM drive
requires at least three sensors, i.e., two current sensors and one speed/position sensor. This paper
presents a new current estimation technique that is free from inverter switching states, an integrator,
and differentiator terms. The drive is suitable for retrofit applications, as it does not require any
additional hardware. The reference voltages (vds and vqs) are used to estimate the rotor reference
frame currents (i.e., iqs and ids). The presented algorithm depends on the stator resistance (
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estimated currents. The sensitivity analysis for the currents against the speed is verified and pre-
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verified for various operation conditions, and some of the extensive results are presented. Ɍ 
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1. Introduction 
PMSMs (permanent-magnet synchronous machines) have been gaining a strong in-

terest over the past decades. Its unique characteristics meet the electric vehicle drive op-
eration criteria, with a higher torque/inertia ratio and minimum copper losses with high 
efficiency, and the PMSM operates successfully at the required speed and load [1]. A 
PMSM is smaller in size compared to other machines [1]. Vector-control drive has an ex-
cellent dynamic performance [2]. The speed/position data are accessed from a sensor at-
tached to the machine shaft for controlling the drive. In general, a three-phase PMSM re-
quires at least two phase currents and rotor position information to compute the rotating 
reference frame currents [1,2]. 

Torque ripple in the drive operation can be caused by sensor parameters, such as 
gain errors, drift, and offset, resulting in poorer performance [3]. The failure of the sensor 
occurs under heavily loaded conditions and high ambient temperature, which results in 
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estimated currents. The sensitivity analysis for the currents against the speed is verified and presented.
The speed loop is closed with actual speed information, which will try to maintain the reference
speed under any circumstances. The proposed current sensorless PMSM drive was validated using
MATLAB/Simulink and also verified on a hardware prototype. The presented technique was verified
for various operation conditions, and some of the extensive results are presented.
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1. Introduction

PMSMs (permanent-magnet synchronous machines) have been gaining a strong in-
terest over the past decades. Its unique characteristics meet the electric vehicle drive
operation criteria, with a higher torque/inertia ratio and minimum copper losses with
high efficiency, and the PMSM operates successfully at the required speed and load [1].
A PMSM is smaller in size compared to other machines [1]. Vector-control drive has an
excellent dynamic performance [2]. The speed/position data are accessed from a sensor
attached to the machine shaft for controlling the drive. In general, a three-phase PMSM
requires at least two phase currents and rotor position information to compute the rotating
reference frame currents [1,2].

Torque ripple in the drive operation can be caused by sensor parameters, such as gain
errors, drift, and offset, resulting in poorer performance [3]. The failure of the sensor occurs
under heavily loaded conditions and high ambient temperature, which results in drive
instability. The decrease in the sensors in the drive will lower the failure rate, increase the
reliability, and reduce the cost of the drive.
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This paper mainly concerns the reduction of the sensor’s dependability (i.e., current
sensors), increasing the drive reliability, and making it fault-tolerant. In the literature,
current sensor reduction/elimination is discussed. This section starts with a brief overview
of the various current estimating techniques for current sensor reduction, and then it is
carried out with the proposed estimation technique.

In the literature, there are a few single-current sensor-based drive approaches. Based
on the placement of the current sensor in the inverter, the reconstruction of three-phase
currents is divided into a DC-link current measurement, measuring multiple branch current
measurements with a single current sensor, and a single-phase current measurement [4–18].
Three-phase currents are reconstructed based on the DC-link current, voltage, and inverter
switching information [8,10,19–22]. Although DC-link current measurement is a common
strategy, it has certain drawbacks: low modulation index, active-switching states at the
sector boundary/short duration, and phase variation in the estimated currents, which
are all factors to consider. A few solutions for enhancing the phase current accuracy in
the reconstruction in all four-quadrant regions have been given in the literature. Under
the zero-voltage vector sampling zone, an isolated current sensor technique is used to
detect phase currents matching the DC-link current [4]. The measurement vector insertion
approach was adopted to overcome the difficulty of switching states in a short period [23].
In [16], it shows how to measure phase currents in a low-modulation index or a near-sector
boundary region. These approaches rely on the DC-link current and inverter switching
states to reconstruct the phase currents and require an extremely complicated analysis.

A current sensor is used to measure the current passing through multiple
branches [4–6,9,10,12]. The three-phase currents are reconstructed using the advantage of
switching states and the sum of the branch currents. In this method, a current sensor is em-
ployed to measure more than the rated current [12], which increases the current sensor’s cost.

The estimation of the current without using a DC-link current sensor is presented
in [21,24–31]. These methods use either a speed encoder/voltage sensor/single-phase
current measurement and an accurate machine model to estimate the currents. The current
sensor detects the single-phase current, and using an observer design approach, the remain-
ing phase currents are estimated [32]. The PMSM drive current sensorless procedure makes
the drive more robust, cost effective, and reliable. References [25,33] present a PMSM drive
prediction approach based on a current sensorless extended Kalman-filtered operation. This
approach is mostly machine-dependent and involves both the initial conditions and filters.

A new technique is presented for current estimation with a low precession speed/
position sensor for a PMSM drive. In the d and q axes frame, the current estimation was
constructed on machine formulae. The dead-time was employed to make the delay caused
by the machine and inverter in real time. This process was simulated in MATLAB/Simulink
and verified for various conditions and verified for a four-quadrant operation.

To overcome the drawbacks in the existing methods, the paper presents a new method
for a current sensorless approach. The proposed method has several advantages. As it
does not require any additional sensors or hardware, it makes the drive suitable for retrofit
applications. The current estimation technique can be used to monitor the status of current
sensors by implementing them in the existing PMSM drive. A speed sensor was employed
to perform the drive operation, and the current estimation technique reduces the drive
cost and complexity. The reliability and immunity to signal noise are increased, as a single
sensor is used, i.e., speed/position sensor. The proposed drive is independent of the
switching states, an integrator, and differentiator terms.

â A current sensorless algorithm for a PMSM drive;
â An algorithm that is independent of an integrator and differentiator terms;
â The algorithm can be applied with a low-resolution speed sensor;
â The overall drive cost can be reduced for low-precession applications;
â Has a reduced current sensor dependency;
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â The proposed current estimation method can be used to make the existing PMSM
drives (which use all of the current sensors) fault-tolerant against failure of the current
sensors.

The following is a summary of the structure of the paper. In Section 2, the modeling of
the PMSM is discussed. Section 3 explains the mathematical model of the current estimating
scheme. In Section 4, a sensitivity analysis is performed and presented. In Section 5, the
proposed drive is validated using the MATLAB/Simulink platform, and the results are
provided to show the performance under various conditions. On the dSPACE 1104-based
laboratory prototype, the current sensorless PMSM drive is validated, and the results are
presented in Section 6. Finally, in Section 7, this work is concluded.

2. Modeling of PMSM

Reference [1] was used to model the PMSM machine. The stator currents (i.e., “d” and
“q” axes) in the rotor-reference frame for the PMSM are shown in (1).
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verified for various operation conditions, and some of the extensive results are presented. Ɍ 
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1. Introduction 
PMSMs (permanent-magnet synchronous machines) have been gaining a strong in-

terest over the past decades. Its unique characteristics meet the electric vehicle drive op-
eration criteria, with a higher torque/inertia ratio and minimum copper losses with high 
efficiency, and the PMSM operates successfully at the required speed and load [1]. A 
PMSM is smaller in size compared to other machines [1]. Vector-control drive has an ex-
cellent dynamic performance [2]. The speed/position data are accessed from a sensor at-
tached to the machine shaft for controlling the drive. In general, a three-phase PMSM re-
quires at least two phase currents and rotor position information to compute the rotating 
reference frame currents [1,2]. 

Torque ripple in the drive operation can be caused by sensor parameters, such as 
gain errors, drift, and offset, resulting in poorer performance [3]. The failure of the sensor 
occurs under heavily loaded conditions and high ambient temperature, which results in 
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s) 0.78 Ω
Rated current 5.9 A
Rated voltage 415 V
Rated torque 16 N·m

3. Current Sensorless Methodology

In the “d” and “q” axes frame, the proposed method estimates the currents using the
machine modeling in Equation (1). In the rotor reference frame, the stator voltages were
defined as in (4) and (5), where ids and iqs show the actual d and q axes stator currents;
ie
ds and ie

qs show the estimated d and q axes stator currents; and i∗ds and i∗qs represent the
d and q axes reference currents.
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chine was a nonsaliency type with a sinusoidal back‒EMF waveform, where Ƭ  and Ƭ  
are the electric-torque and load-torque, respectively. Table 1 shows the PMSM machine’s 
parameters. 

Table 1. Machine parameters. 

“Nominal shaft power” (𝑃 ) 3 KW 
“Pole pair” (𝑃) 2 

“Nominal speed” (ω ) 157 rad/s. 
“𝑑 − axis inductance” (𝐿 ) 0.0107637 H 
“𝑞 − axis inductance” (𝐿 ) 0.0553733 H ƛ  (“Mutual flux linkage between rotor and stator due to the permanent mag-

net”) 
0.553161 
Wb/m2 

“Stator resistance” (Ɍ ) 0.78 Ω 
Rated current 5.9 A 
Rated voltage 415 V 
Rated torque 16 N·m 

3. Current Sensorless Methodology 
In the “𝑑” and “𝑞” axes frame, the proposed method estimates the currents using the 

machine modeling in Equation (1). In the rotor reference frame, the stator voltages were 
defined as in (4) and (5), where 𝑖  and 𝑖  show the actual 𝑑 and 𝑞 axes stator currents; 𝑖  and 𝑖  show the estimated 𝑑 and 𝑞 axes stator currents; and 𝑖∗  and 𝑖∗  represent the 𝑑 and 𝑞 axes reference currents.  V = Ɍ  i + 𝐿 − ω  𝐿  𝑖   (4)𝑉 = Ɍ  𝑖 + 𝐿  + 𝜔  𝐿   𝑖 + ω𝒔 λ   (5)

Under a steady-state operation, the differential terms are considered as zero. Under a steady-state operation, the differential terms are considered as zero.



Mathematics 2022, 10, 4623 4 of 18
Mathematics 2022, 10, x FOR PEER REVIEW 4 of 19 
 

 

V = Ɍ  i − ω  𝐿  𝑖   (6)𝑉 = Ɍ  𝑖 + 𝜔  𝐿  𝑖 + ω𝒔 λ   (7)

taking 𝑖  from 𝑖∗  in 𝑖  for (6) and 𝑖  in 𝑖  for (7). The currents on the 𝑑 and 𝑞 axes 
are calculated and presented as 𝑖  and 𝑖 .  𝑖 = 𝑉∗ + 𝜔  𝐿  𝑖∗   (8)𝑖 = 𝑉∗ − 𝜔  𝜆 − 𝜔  𝐿 𝑖   (9)

Figure 1 shows a flow chart for the proposed current estimation method. From Figure 
1, the outer speed loop from the motor speed sensor maintains the voltage gains to main-
tain the estimated currents in a closed loop. 

 
Figure 1. Flow chart for the current estimation method. 

4. Sensitivity Analysis 
In this secession, the sensitivity [34] of the estimated currents against 𝜔  variation 

was performed. The ∆∆  and ∆∆  are considered as the sensitivity indicators, and ∆∆  

and ∆∆  are plotted against the speed variation.  

Let, 𝑟 = , 𝑟 = ,  𝑟 =   (10)
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taking iqs from i∗qs in ie
ds for (6) and ie

ds in ids for (7). The currents on the d and q axes are
calculated and presented as ie

ds and ie
qs.

ie
ds =

[
V∗ds + ωs Lq i∗qs

] 1
Rs

(8)

ie
qs =

[
V∗qs −ωs λa f −ωs Ldie

ds

] 1
Rs

(9)

Figure 1 shows a flow chart for the proposed current estimation method. From Figure 1,
the outer speed loop from the motor speed sensor maintains the voltage gains to maintain
the estimated currents in a closed loop.
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Figure 1. Flow chart for the current estimation method.

4. Sensitivity Analysis

In this secession, the sensitivity [34] of the estimated currents against ωr variation was

performed. The ∆ieds
∆ωr

and
∆ieqs
∆ωr

are considered as the sensitivity indicators, and ∆ieds
∆ωr

and
∆ieqs
∆ωr

are plotted against the speed variation.

Let, r1 =
skp1 + ki1

s
, r2 =

skp2 + ki2

s
, r3 =

skp3 + ki3

s
(10)

These rn (n = 1,2,3&4) are the transfer functions of the PI controllers of the speed loop
and the q axes and d axes current loops.

i∗qs, v∗ds, and v∗qs are stated in (11), (15), and (21), which are taken from Figure 2 and (10).
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Figure 2. Schematic diagram of the speed sensor vector-controlled PMSM drive with the current
sensorless scheme.

∆i∗qs is expressed as
i∗qs = r1(ω

∗
r −ωr) (11)

∆i∗qs = ∆r1(ω
∗
r −ωr) (12)

∆i∗qs = r1(0− ∆ωr) (13)

∆i∗qs = −r1∆ωr (14)

∆v∗ds is expressed as
V∗ds = r3(i∗ds − ie

ds) (15)

∆V∗ds = ∆r3(i∗ds − ie
ds) (16)

∆V∗ds = r3(∆i∗ds − ∆ie
ds) (17)

As i∗ds = 0 (18)

From (17) and (18)
∆V∗ds = r3(0− ∆ie

ds) (19)

∆V∗ds = −r3∆ie
ds (20)

∆v∗qs is expressed as

V∗qs = r2

(
i∗qs − ie

qs

)
(21)

∆V∗qs = ∆r2

(
i∗qs − ie

qs

)
(22)

∆V∗qs = r2

(
∆i∗qs − ∆ie

qs

)
(23)

∆V∗qs = r2

(
−r1∆ωr − ∆ie

qs

)
(24)

∆V∗qs = −r2

(
r1∆ωr + ∆ie

qs

)
(25)

Using a small-signal analysis, the expressions for ∆ie
ds and ∆ie

qs become:
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∆ie
ds is expressed as

ie
ds =

[
V∗ds + ωs Lq i∗qs

] 1
Rs

(26)

∆ie
ds = ∆

[
V∗ds + ωs Lq i∗qs

] 1
Rs

(27)

∆ie
ds =

[
∆V∗ds + ∆

(
ωs Lq i∗qs

)] 1
Rs

(28)

∆ie
ds =

[
∆V∗ds + ωs Lq ∆i∗qs + Lq i∗qs∆ωs

] 1
Rs

(29)

∆ie
ds =

[
∆V∗ds + ωs Lq(−r1∆ωr) + Lq i∗qs∆ωs

] 1
Rs

(30)

∆ie
ds =

[
−r3∆ie

ds − r1ωs Lq∆ωr + Lq i∗qs∆ωs

] 1
Rs

(31)

Rs∆ie
ds = −r3∆ie

ds − r1ωs Lq∆ωr + Lq i∗qs∆ωs (32)

Rs∆ie
ds + r3∆ie

ds = −r1ωs Lq∆ωr + Lq i∗qs∆ωs (33)

where
ωs = Pωr (34)

(Rs + r3)∆ie
ds = −r1ωs Lq∆ωr + Lq i∗qsP∆ωr (35)

(Rs + r3)∆ie
ds =

(
−r1ωs Lq + Lq i∗qsP

)
∆ωr (36)

∆ie
ds

∆ωr
=
−r1ωs Lq + Lq i∗qsP

Rs + r3
(37)

∆ie
qs is expressed as

ie
qs =

[
V∗qs −ωs λa f −ωs Ldie

ds

] 1
Rs

(38)

∆ie
qs = ∆

[
V∗qs −ωs λa f −ωs Ldie

ds

] 1
Rs

(39)

∆ie
qs =

[
∆V∗qs − ∆(ωs λa f )− ∆(ωs Ldie

ds)
] 1

Rs
(40)

∆ie
qs =

[
∆V∗qs − λa f ∆ωs − Ldie

ds∆ωs −ωs Ld∆ie
ds

] 1
Rs

(41)

Rs∆ie
qs =

[
∆V∗qs − λa f ∆ωs − Ldie

ds∆ωs −ωs Ld∆ie
ds

]
(42)

Rs∆ie
qs =

[
−r2

(
r1∆ωr + ∆ie

qs

)
− λa f ∆ωs − Ldie

ds∆ωs −ωs Ld∆ie
ds

]
(43)

Rs∆ie
qs = −r2r1∆ωr − r2∆ie

qs − λa f ∆ωs − Ldie
ds∆ωs −ωs Ld∆ie

ds (44)

Rs∆ie
qs + r2∆ie

qs = −r2r1∆ωr − λa f ∆ωs − Ldie
ds∆ωs −ωs Ld∆ie

ds (45)

(Rs + r2)∆ie
qs = −r2r1∆ωr − λa f ∆ωs − Ldie

ds∆ωs −ωs Ld∆ie
ds (46)

(Rs + r2)∆ie
qs = −r2r1∆ωr − Pλa f ∆ωr − Ldie

dsP∆ωr −ωs Ld∆ie
ds (47)

(Rs + r2)∆ie
qs =

(
−r2r1 − Pλa f − Ldie

dsP
)

∆ωr −ωs Ld∆ie
ds (48)

(Rs + r2)
∆ie

qs

∆ωr
= −( r2r1

P
+
(

λa f + Ldie
ds

)
P−ωs Ld

∆ie
ds

∆ωr
(49)
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∆ie
qs

∆ωr
=

(
−r2r1 − Pλa f − Ldie

dsP
)

(Rs + r2)
− ωs Ld

(Rs + r2)

∆ie
ds

∆ωr
(50)

∆ie
qs

∆ωr
=

(
−r2r1 − Pλa f − Ldie

dsP
)

(Rs + r2)
− ωs Ld

(Rs + r2)

(
−r1ωs Lq + Lq i∗qsP

)
(Rs + r3)

(51)

The sensitivity plot for the estimated currents is shown in Figure 3 for theωr variation.

Figure 3a presents
∆ieqs
∆ωr

with respect to the ωr variation. Figure 3b presents ∆ieds
∆ωr

with respect
to the ωr variation. The performance of the estimated current is presented with the speed
(ωr). The sensitivity is shown for the motoring and regenerating mode operation range
with a 10 N·m load. The outer loop was closed with the actual speed information from the
sensor; thus, the drive stabilized itself to maintain the shaft speed at the reference speed.
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5. Simulation Results

This work presents a position or speed sensor-based vector-controlled PMSM drive for
the current sensorless scheme. A schematic diagram is shown in Figure 2. References [1,2]
present the switching sequence, vector-control, and mathematical model for the PMSM
drive. Under various operating speeds/loads, the PMSM drive with the current sensorless
algorithm was modeled and tested in MATLAB/Simulink, and some of the results are
demonstrated to show the performance of the PMSM drive. The speed loop was closed us-
ing data acquired from the speed sensor, while the currents were closed with the estimated
quantities. Table 1 shows the machine’s parameter obtained from a laboratory prototype of
the PMSM machine.

The actual currents dq axes and the estimated currents dq axes are shown in the rotor-
reference frames. ids = 0 denotes a successful vector-control operation, whereas iqs denotes
the torque-producing current component. The simulation plots the shaft speed (wr) against
the reference speed (w∗r ), and the position is displayed.

The drive performance is presented for the various reference speed commands, and
the simulation results confirmed the performance of the proposed method. The drive was
verified for the ramp speed command, step speed command, and four-quadrant operation.
To check the accuracy of the estimated values, the actual currents, reference currents, and
estimated currents are shown on the same graph in the simulation results.

5.1. Various Speed Operations

The current sensorless PMSM drive was evaluated for various speed operations, and
the simulation results are presented in Figure 4. The current sensors were used to observe
the actual currents and verify the estimation technique performance. The estimated current
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followed the actual currents observed from the simulation results presented in Figure 2. To
demonstrate the accuracy of the current estimation technique, the q and d axes estimated
and the actual currents are plotted on the same scale in Figure 4.
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Figure 4. The drive was tested for the forward motoring and reverse motoring operations for various
speed commands.

5.2. Drive Performance for the Ramp Speed Command

The drive was verified and tested for the ramp command, and the results are shown
in Figure 5 under varied load and speed circumstances. The tracking performance was
tested for the ramp-type speed (i.e., slow zero crossings). The reference speed was changed
in a slow ramp command with +10 to −10 rad/s. The PMSM was connected with the
DC generator-type load (i.e., Kωr load). The ids was maintained at zero, reflects the
q-axes vector-control operation. The estimated and actual iqs torque-producing stator
current components are presented on the same scale. The current estimation technique’s
performance is shown in Figure 5 for the ramp speed command and slow zero crossings.

5.3. Drive performance for Step Speed Command

The simulation results for the proposed technique for the step speed command are
illustrated in Figure 6. Initially, the reference speed was set at ten rad/s, and the speed
was altered between ±10 rad/s. The DC generator-type load (i.e., Kωr load) was acting
on the PMSM. It was observed that the estimated and actual dq axes stator currents were
comparably similar. The estimated currents and actual currents are shown on the same
scale to demonstrate the accuracy of the proposed current estimation technique.
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5.4. Drive Performance for the Four-Quadrant Operation

Figure 7 shows a four-quadrant operation. The machine was initially set to +10 rad/s
and 8 N·m. The reference speed was changed from +10 to 0, −10, and +10 rad/s at t = 2, 3,
and 6 s. The load was changed within ±8 N·m at t = 4 and 7 s.
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tached to the machine shaft for controlling the drive. In general, a three-phase PMSM re-
quires at least two phase currents and rotor position information to compute the rotating 
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Torque ripple in the drive operation can be caused by sensor parameters, such as 
gain errors, drift, and offset, resulting in poorer performance [3]. The failure of the sensor 
occurs under heavily loaded conditions and high ambient temperature, which results in 
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The method was tested for the parameter change, and the simulation results are
displayed in Figure 8. The current loop was closed with the estimated d and q axes current
quantities. The machine resistance was varied with +0.2 ohms from t =10 s to t = 12 s. The
effect of the parameter variation was observed on the vector-control (as ids 6= 0), and the
simulation results are given in Figure 8. The estimated and the actual currents were affected
from t = 10 s, with the
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s compensation to avoid the impact of the machine’s parameters.
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6. Hardware Validation

The presented method was validated experimentally on a laboratory prototype using
dSPACE 1104 (shown in Figure 10). The drive consisted of the DC generator, PMSM, in-
verter, driver and protection circuit, and dSPACE 1104. The current sensorless PMSM drive
was verified for various conditions; some are presented to show the performance of the pro-
posed algorithm. The experimental results show the shaft speed (ωr), reference speed (ωre f ),
actual d and q axes stator currents (ids and iqs), and estimated d and q axes stator currents
(ie

ds and ie
qs), d and q axes reference currents (i∗ds and i∗qs), and the position.
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The dSPACE-based laboratory interface is more flexible for verifying the algorithms
and advantageous for testing in various applications, such as robotics and electric drives.
The dSPACE 1104 is more suitable for a laboratory interface with a cost-effective, real-time
processor with an I/O interface. The dSPACE is user friendly with MATLAB/Simulink
(the Realtime Interface provides Simulink with blocks for the I/O configuration). Using
the DS1104, the Simulink block was interfaced with the I/O graphically, and the code was
generated for the Realtime Interface (RTI). The model was compiled and built into the
DS1104 controller board connected with the PC.

The I/O signals were accessed via an adapter cable from the CP1104 (connector panel)
to the DS1104 controller board. The CP1104 had eight ADCs and eight DACs, a digital I/O,
a slave I/O PWM, two incremental encoders, and serial communication: RS232 and RS485.
For the IPMSM drive, two ADCs were used: one for speed information and the other for
the current sensor information. The controller board computed the control algorithm, and
three-pulse width modulation (PWM) signals with 5 V were generated on the CP1104 (slave
I/O PWM). Three PWM pulses were sent to the driver circuit board from the dSPACE-1104
PWM I/O board. Six PWM pulses of 15 V (three inverting and three noninverting PWMs)
were generated using three PWM pulses. The pulses were generated with a dead band of
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2 µsec to the SKYPER 32 R (SEMIKRON) driver circuit in the inverter. The Semikron driver
circuit could control the IGBT (SKM75GB12T4) switching in the inverter.

6.1. Variable Speed Operations

This section shows the experimental results for the current sensorless PMSM drive
under various speed commands and slowly zero crossings. The current sensors were used
to observe the actual currents and to verify the estimation technique’s performance. The
estimated current followed the actual currents that can be observed in Figure 11. The actual
currents and estimated currents were plotted on the same graph to see the accuracy of the
estimated quantities.
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6.2. Forward and Reverse Motoring Operations in a Ramp Speed Command

Figure 12 shows the experimental results for the ramp speed command. The speed
command changed between 15 and −15 rad/s in a ramp form. The machine was loaded
with a DC generator-type load. The machine was started from a standstill position to 15
rad/s in a ramp form. The drive performance confirmed the ramp speed change with zero
crossing also.
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6.3. Drive Operation for the Step Speed Command

Figure 13 shows the experimental results for the step speed change. The machine was
loaded with a DC generator-type load. The speed command was altered up to ±10 rad/s
in a step form. The drive was verified for the step command, and the results confirmed the
performance of the presented algorithm.
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6.4. Drive Operation with Online Rotor Resistance Estimation and Compensation

The dive performance was verified for the
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s variation, with online estimation and
compensation. Figure 14 shows the actual shaft speed and reference speed command,
which was maintained at 5 rad/s. The machine was loaded with a constant load (DC
generator load). The
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Abstract: The current sensorless vector-controlled permanent-magnet synchronous motor (PMSM) 
drive using a single sensor (i.e., speed sensor) is presented in this work. The current sensors are 
removed, and the estimated currents are used to close the current loop to minimize the drive cost 
and make it fault-tolerant against current sensor failure. A classical vector-control PMSM drive re-
quires at least three sensors, i.e., two current sensors and one speed/position sensor. This paper 
presents a new current estimation technique that is free from inverter switching states, an integrator, 
and differentiator terms. The drive is suitable for retrofit applications, as it does not require any 
additional hardware. The reference voltages (𝑣   and 𝑣 ) are used to estimate the rotor reference 
frame currents (i.e., 𝑖 , and 𝑖 ). The presented algorithm depends on the stator resistance (Ɍ ). The 
online Ɍ  estimation algorithm is used for compensation to overcome the effect of the Ɍ  on the 
estimated currents. The sensitivity analysis for the currents against the speed is verified and pre-
sented. The speed loop is closed with actual speed information, which will try to maintain the ref-
erence speed under any circumstances. The proposed current sensorless PMSM drive was validated 
using MATLAB/Simulink and also verified on a hardware prototype. The presented technique was 
verified for various operation conditions, and some of the extensive results are presented. Ɍ 

Keywords: current estimation; speed sensor; PMSM; vector control  

MSC: 70Q05 
 

1. Introduction 
PMSMs (permanent-magnet synchronous machines) have been gaining a strong in-

terest over the past decades. Its unique characteristics meet the electric vehicle drive op-
eration criteria, with a higher torque/inertia ratio and minimum copper losses with high 
efficiency, and the PMSM operates successfully at the required speed and load [1]. A 
PMSM is smaller in size compared to other machines [1]. Vector-control drive has an ex-
cellent dynamic performance [2]. The speed/position data are accessed from a sensor at-
tached to the machine shaft for controlling the drive. In general, a three-phase PMSM re-
quires at least two phase currents and rotor position information to compute the rotating 
reference frame currents [1,2]. 

Torque ripple in the drive operation can be caused by sensor parameters, such as 
gain errors, drift, and offset, resulting in poorer performance [3]. The failure of the sensor 
occurs under heavily loaded conditions and high ambient temperature, which results in 
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s was estimated using [34] and compensated to the current estimation
technique. The drive performance confirmed the current sensorless algorithm under stator
resistance variation.
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Figure 14. Experimental results for the online stator-resistance estimation and compensation.

6.5. Drive Operation for the High-Speed Command

Figure 15 shows the experimental results for the high-speed reference command. The
machine was connected with a DC generator-type load (i.e., kωr-type load). The machine
was initially at the rest position. The reference speed was changed from 0 to 150 rad/s in a
ramp form. At 13 s, the load on the machine was varied by changing the load resistance
connected to the DC motor. The estimated and actual currents were plotted on the same
scale to show the accuracy of the proposed technique.
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7. Conclusions 
In this paper, a current sensorless PMSM motor with a position/speed sensor was 
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7. Conclusions

In this paper, a current sensorless PMSM motor with a position/speed sensor was
presented. The currents were estimated from the reference voltages. In the d and q axes
rotating reference frame, the stator currents were calculated and closed in the loop to
perform an all four-quadrant operation. No additional sensors or hardware is required to
implement the proposed method, which makes the drive suitable for retrofitting applica-
tions. The current sensorless algorithm can be applied to various PMSM motor types. The
current estimation technique can be used to monitor the status of the current sensors by
implementing them in the existing PMSM drive. A speed sensor is employed to perform
the drive operation with the current estimation technique, which reduces the drive cost
and complexity. The reliability and immunity to signal noise is reduced by using a single
sensor, i.e., speed or position sensor. The proposed drive is independent of the switching
states, integrator, and differentiator terms. The sensitivity of the estimated currents is also
performed with speed information. The algorithm was tested on the MATLAB/Simulink
platform and also verified on a laboratory prototype. Finally, the current sensorless for
PMSM was experimentally validated, and the system’s good performance at a variety of
speeds and loading circumstances was confirmed.
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