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ABSTRACT The Industrial Internet of Things (IIoT) enables the integration of physical devices such as
sensors and actuators into the virtual world of automation application systems via different communication
protocols. Interoperability among the “things” appears to be one of the biggest conceptual and technological
challenges in developing the IIoT framework. Typically, collaboration at the field device level is very limited.
Instead, the decision-making process is usually propagated to higher levels with substantial computational
resources. This centralized architecture has been widely deployed based on global cloud infrastructure.
However, sending data over the cloud for analysis may bring about privacy and security threats. Besides,
network latency could be another factor that reduces adaptability. In this article, we propose a decentralized
approach that applies the concepts of local automation cloud. By using semantic technologies to achieve
autonomicity, the approach enables real-time monitoring of the control systems within one local cloud
and automates orchestration and configuration locally through adaptation based on semantic policies. The
approach is deployed and tested on a chemical production use case in which business-level policies have
been used for dynamical planning for suppliers and automatic detection of malfunctioning sensors with
subsequent adaptation to continuing supply planning and production as smooth as possible.

INDEX TERMS Arrowhead framework, autonomic computing, industrial IoT, self-adaptation, semantic
interoperability, semantic web.

I. INTRODUCTION
Industry 4.0 promotes a new generation of manufacturing
systems with integrated sensors and actuators that are used
for process control at the factory floor [1]. These physical
devices, together with industrial production machines, are
managed by software systems interconnected through indus-
trial networks and protocols. The integration at the factory
floor plays a critical part in the optimization of manufactur-
ing and business processes as well as the generation of new
business values for the manufacturers. Furthermore, in order
to quickly adapt to the contemporary demand of the market or
to meet new requirements from the customers, the industrial

systems and manufacturing processes need to be monitored
and supervised continuously [2]. To achieve these goals, re-
cent information technologies such as Industrial Internet of
Things (IIoT), Cyber-physical Systems (CPS), Cloud-based
technologies, and Service-oriented Architecture (SoA) have
been introduced into modern manufacturing systems.

Typically, recent research in the industrial automation do-
main presents system architecture in which the management
and the location of the knowledge are away from the shop
floor physical machines [3]. Specifically, data from different
components of the production line are collected and sent
over a scalable Cloud infrastructure to analyze. Nevertheless,
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employing such global cloud architecture may introduce
problems related to security, privacy, and latency into
the manufacturing systems. Furthermore, cloud-based
technologies may bring challenges such as management of the
big and heterogeneous data generated by a substantial number
of devices at the shop floor. The computing resources of the
devices at the edge (e.g., gateway, embedded systems) are
often not leveraged. In this context, decentralized architecture
has been proposed as a potential approach for the integration
of the systems and for the process data analysis by clustering
the assembly shop into subsystems and modules[4]. In this ar-
chitecture, the decision-making process is delegated to the in-
dividual agents in the factory shop-floor instead of the central
manufacturing system [5]. The approaches employing this de-
centralized architecture are designed based on distributed con-
trol in which individual systems react to their local condition
in real-time [6]. These systems interact with their neighbors
to form a network that displays the desired self-organizing
behavior [7]. The decision is made by the systems individually
based on the local condition and the collaboration with other
systems.

Arrowhead Framework [8] is a cloud-based framework that
supports such decentralized solution. Arrowhead Framework
employs SoA to facilitate the secure communication of the
devices and systems in a distributed manner. In Arrowhead
Framework, the systems defined locally can exchange their
data by producing and consuming services. However, there
are heterogeneity issues originating from data generated by a
wide variety of devices and machines. These issues are still
not fully addressed in the decentralized approaches, and may
therefore limit the collaboration between the entities in the
industrial chain. Consequently, there is a growing demand
for interoperability among the systems, processes, devices -
down from the factory floor up to the enterprise and business
levels [2]. Interoperability is the crucial element for opti-
mizing manufacturing and improving productivity, reliability,
and availability of the production systems in a heterogeneous
environment.

Self-adaptation emerges as a promising solution to enable
interoperable systems [9]. Self-adaptation enables the sys-
tems to exchange data with each other, analyze the data, and
make appropriate decisions automatically. For example, this
approach can be applied to condition monitoring tasks to
determine the correctness of the operating states of the phys-
ical devices or manufacturing processes. Within traditional
production systems, these tasks are usually performed by the
highly experienced operator to prevent outage situations in
case of machinery failure. However, due to the evolution of
system architecture and functionality, these domain profes-
sionals may require more effort to adapt and may not be
able to provide response precisely and timely to a machin-
ery fault or failure [10]. For this reason, there is a need for
a self-adaptation solution for IIoT systems that is capable
of “harmonizing” heterogeneous data and providing reactive
adaptation. This solution should be applied to any application

domain while also enabling the integration of domain expert
knowledge. However, As indicated in [9] such a full-fledged
architecture for self-adaptation that combines SoA and IoT is
still missing.

To address the challenges above, our work proposes an
approach that introduces Autonomic Computing into decen-
tralized control architecture. Autonomic Computing [11] is
the concept introduced by IBM describing software systems
that automatically observe and react to their operating envi-
ronment. In our article, the MAPE-K (Monitor, Analyse, Plan,
Execute, Knowledge) model introduced within Autonomic
Computing is employed as a fundamental model to enable
a generic self-adaptation solution. The adaptations will be
provided as services to the application systems in order to
orchestrate the communication among the systems or to con-
figure their internal functionality. Furthermore, our approach
enables the domain expert to integrate their knowledge into
the process of generating adaptation under the form of high-
level adaptation policies. To unify the heterogeneous data and
infer valuable information for generating adaptations, Seman-
tic Web Technologies have been exploited for transforming,
analyzing, and reasoning over the data.

We make the following contributions:
1) We illustrate the use of Autonomic Computing in a

service-oriented Industrial IoT framework that deals
with heterogeneous data from various services and
application systems and makes operating decisions
automatically.

2) We propose a software engineering approach for en-
abling autonomic adaptation for configuration and or-
chestration of service-oriented industrial IoT applica-
tion systems.

3) We lay out our vision that exploits the local automa-
tion cloud concept to migrate from traditional central-
ized architecture to decentralized architecture in or-
der to achieve dynamic adaptation of manufacturing
processes.

II. RELATED WORK AND TECHNOLOGIES
The concept of employing Autonomic Computing to achieve
self-adaptation for different IoT domains has been proposed
in multiple approaches. In [12], an approach that applied the
MAPE-K model to perform automatic management of IoT
architecture was proposed. In [13], the RoCoSys framework,
which applied the MAPE-K model for coordination of Mo-
bile IoT Devices, was used to make self-driving Mindstorms
robots. The components of the MAPE-K model in those
works are designed for the designated applications, thereby
limiting their reusability for other domains. There were also
Model-Driven Engineering (MDE) based approaches were
presented in [14]–[17] where the adaptation is carried out by
applying the concepts of models@runtime into the MAPE-K
loop. Specifically, these approaches used the design model of
the system as the semantic knowledge for generating auto-
matic adaptations, which could make their solutions limited
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to specific applications since not every system has a com-
plete design model. Furthermore, they also experienced the
heterogeneity issue for transforming models from different
Domain-Specific Modelling Languages (DSMLs).

Works providing autonomicity for Service-oriented en-
vironments have also been proposed. The authors of [18]
proposed an approach for decentralized autonomic opera-
tions in microservices architectures (e.g., Kubernetes, Docker
Swarm). In [19], Baylov et al. proposed a reference archi-
tecture for service-oriented systems based on the concept of
an adaptation registry. Khazaei et al. [20] propose another
solution providing adaptation as a service for microservice
systems. Similarly, Maksuti et al. proposed a GAMS Sys-
tem (Generic Autonomic Management Service) that provided
adaptation service within Arrowhead Framework [21]. The
main focus was establishing the chain of trust and secure
on-boarding procedure for the devices and systems within
Arrowhead local cloud. Furthermore, Machine Learning (ML)
algorithms were also employed to realize the MAPE-K model.
For example, a self-healing microservice architecture that
used ML to detect anomalies in docker containers was pro-
posed in [22]. The authors in [23] introduce a distributed
framework for autonomic resource management in the context
of fog computing by applying support vector regression and
reinforcement learning techniques for the analysis and plan-
ning phases. Other than ML approaches, rule-based solutions
were also introduced. For example, the EXCLAIM framework
[24] employed Semantic Web Technologies to monitor and
process real-time data streams from cloud platforms and pro-
pose reconfiguration to address the scalability of the cloud.
Cao et al. [10] also exploited Semantic Web for condition
monitoring and failure detection in manufacturing processes.
These solutions again targeted application-specific problems
where the technologies were designed to fit the particular
applications. As indicated in [9] a full-fledged framework or
reference architecture for service-oriented IoT systems is still
missing.

Distinguished from the works reported above, we propose
a generic approach to achieve self-adaptation for service-
oriented IoT systems. Specifically, we apply decentralized
SoA as the primary concept to provide adaptation services
generated by the MAPE-K feedback loop. To realize a generic
MAPE-K solution that can be applied to any given domain, the
Semantic Web Technologies and semantic modeling approach
have been exploited for the implementation of the MAPE-K
components. Furthermore, the Arrowhead Framework is used
as the fundamental framework to realize our approach.

III. MOTIVATING SCENARIO
At Unger Fabrikker,1 one of our partners in the Productive
4.0 project,2 we developed a supply chain monitoring system
that observed the consumption of the raw materials during

1[Online]. Available: http://www.unger.no
2[Online]. Available: https://productive40.eu

the production. The monitoring system was also integrated
with the ordering of the raw materials from the suppliers, and
notifying the suppliers of upcoming deliveries. The solution
consists of several gateways and sensors deployed to measure
the level of the tanks that store the raw material.

Unger Fabrikker manufactures and exports a wide variety
of surfactants, which are the main ingredients to produce
household detergents, personal care, institutional products,
and functional additives for industrial applications. Lye and
Sulphur are two of the main ingredients for the production of
surfactants at Unger Fabrikker. Typically, to make the orders
for the raw materials, the operator at Unger Fabriker needs to
keep monitoring the level of the tanks as well the production
plan and must communicate with the suppliers to agree on
the delivery plan (e.g., type and amount of the materials,
delivery date). Furthermore, whenever there are changes to
the production plan, the deliveries need to be updated ac-
cordingly within a reasonable time. The manual supervision
and communication in the supply chain may result in longer
time and inefficiencies in the production. Therefore, a system
that constantly monitors the production status is useful in
order to understand how these conditions might affect the
consumption of raw materials, make or update the orders for
the suppliers, notify or take any other actions automatically.
A straightforward solution is to hard-code a set of rules for
corresponding actions. For example, if the level of the raw
material is running low according to the current production
plan, a new delivery needs to be made before the tank be-
comes empty. As another example, whenever the sensor de-
livers malicious measurement values, the system should use
the other sensors as an alternative or notify the operator for
the replacement of a new sensor. However, rules and actions
vary for different kinds of materials, suppliers, or even periods
of a year. As a result, whenever new requirements arise, the
system needs to be reprogrammed. Therefore, hard-coding
does not scale well and is not efficient for new problems or
new business rules.

From this scenario, it is clear that the operator wants a
solution that provides him more flexibility to address new
situations that were not envisioned during the initial setup of
the system. Therefore, it needs to be dynamic, flexible and
should not involve any reprogramming, redeployment, or hard
reset of the devices. Also, it should be usable even by non-
IT experts. In this work, our proposed solution supports the
implementation of a system that does not require reprogram-
ming whenever new requirements or new business rules are
introduced. Specifically, the solution contains the following
characteristics:

1) Expressing the conditions, requirements, and corre-
sponding actions of the business rules explicitly and
precisely.

2) Efficient deployment strategies of these business rules.
3) Efficient execution of these business rules.
4) Portable on different platforms (e.g., gateway, edge, fog

node, Raspberry Pi, etc.).
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FIGURE 1. IBM’s MAPE-K reference model for autonomic control loops.

5) Independent of physical devices type (e.g., sensors,
actuators), communication protocols, and application
domain.

IV. BACKGROUND
A. AUTONOMIC COMPUTING
Autonomic Computing [11] was first introduced by IBM
based on the human autonomic nervous system. Its overarch-
ing goal is to realize software systems that can manage them-
selves in accordance with high-level guidance from humans
[25]. In our work, Autonomic Computing is employed as the
enabling technology for the implementation of our adaptation
solution.

In order to achieve Autonomic Computing, IBM also pro-
posed a reference model for autonomic control loop [26],
which is also referred as MAPE-K (Monitor, Analyse, Plan,
Execute, Knowledge) loop and is depicted in Fig. 1. In the
MAPE-K autonomic loop, the Managed Element represents
any software or hardware resource that is provided with au-
tonomic behaviors by coupling it with an Autonomic Man-
ager. Sensors, also called probes or gauges, collect informa-
tion about the Managed Element whereas Effectors carry out
changes to the Managed Element [27] . The Autonomic Man-
ager is the core software system that provides autonomicity to
the Managed Elements. Particularly, the Autonomic Manager
keeps monitoring the status of the Managed Element and
generates adaptation whenever needed. The behavior of the
Autonomic Manager is modeled with five core components:
the Monitor component collects the data about the Managed
Element via Sensors, the Analyze component extracts criti-
cal information from the collected data, the Plan component
generates guiding actions for the Managed Element based on
the inferred critical conditions, and the Execute component
carries out the actions with the support of Effectors and the
Knowledge base, the central component for storing all gener-
ated information.

FIGURE 2. Four stages of autonomic adaptation.

B. FOUR STAGES OF AUTONOMIC ADAPTATION
An autonomic system can be designed by employing the
MAPE-K model. According to Fig. 1, the autonomic system
can be modeled as the Autonomic Element which consist of
two components: the Autonomic Manager and the Managed
Element. Additionally, the autonomic system is also provided
with high-level adaptation policies as the guidance for adap-
tation goals. In this section, we depict different approaches
to autonomic adaptation for software systems and summarize
them into four stages as illustrated in Fig. 2.

1) Stage 0 - Static: This is the early software system
that was developed with static configuration (e.g., hard-
coded setpoints). In the case of unexpected events, the
systems may require reprogramming and redeployment
in order to adapt to the current condition.

2) Stage 1 - Manual: The systems are enhanced with con-
figurable capabilities (e.g., via a configuration file or an
interactive user interface to update the set points). The
configurations are set manually by an administrator. At
this stage, the systems are designed to adapt to particu-
lar situations anticipated in those predefined configura-
tions. This stage could be considered as the most com-
mon solution as it introduces flexibility at a certain level
without introducing complexity to the implementation
of the systems. At this stage, human intervention is still
required when system calibration is needed. Also, the
systems may need to be redesigned in order to adapt to
the changes that cannot be done via reconfiguration.

3) Stage 2 - Dynamic: The systems at this stage are de-
signed to react to particular conditions that are speci-
fied by a set of policies. This stage can be considered
as the first stage where the systems are self-managed.
The term ‘policy’ refers to a structured set of rules and
actions that govern the behaviors of the system during
run-time. Policies can be defined either implicitly (e.g,
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[28]) or explicitly (e.g., [29], [30]) in the design of the
systems, and be specified either statically (e.g, [31],
[32]) at design time or dynamically during run-time
(e.g, [29], [30]). These systems are designed to cope
with environmental changes that cannot be anticipated
completely during design time. Although such designs
may increase the complexity of the systems (e.g., by in-
troducing adaptation logic into the original application
logic of the system), there has been increasing interest in
self-adaptive approaches because of the increasing cost
related to managing systems in dynamic environments
[33]. The common aspect of the systems at this stage is
the reliance on the user for defining and maintaining the
policies.

4) Stage 3 - Dynamic Dynamicity: At this stage, the adap-
tation solution is enhanced with the capability to self-
managing its policies. Specifically, these approaches
exploit a ‘learning component’ to disable inefficient
or invalid policies or to add new policies that handle
unforeseen situations. Therefore, these solutions may
introduce more complexity to the adaptation logic of the
system. Also, the ‘learning component’ of these systems
is implemented based on machine learning or artificial
intelligence algorithms with the learning data from ei-
ther the design models of the system or the run-time data
(i.e., [34]–[36]). As a result, these approaches usually
address domain-specific problems or handle particular
situations derived from the training data.

C. ARROWHEAD FRAMEWORK
Arrowhead Framework [8] is a service-oriented IIoT frame-
work that exploits the design of private cloud architecture to
facilitate the development of local automation clouds. The
concept “local automation cloud” is based on the idea that
certain automation tasks should be encapsulated and protected
based on their geographical organizations [37]. Therefore, the
local automation cloud basically involves devices and systems
needed to perform the automation tasks, thus forming a lo-
cal “room” that protects against unwanted external influence.
These local clouds may have secure interaction with other
local clouds, thus constituting a System of Systems (SoS)
architecture. Within Arrowhead Framework,

1) A Service contains the information about the interface
(e.g., communication protocol, syntax, and semantics
applied, authentication and authorization mechanism)
that defines how the service provider and consumer
should interact.

2) A System is a software artifact that either provides or
consumes services. There are two types of systems: core
systems which provide various administration of the
local louds, and application systems which implement
the automation logic.

3) A Device could be any equipment, machine, or com-
puter that can deploy one or more systems.

Fig. 12 illustrates an Arrowhead automation local cloud
that consists of the three mandatory core systems—Service

FIGURE 3. Autonomic Adaptation Solution within SoA.

Registry, Orchestration, and Authorization Systems (color-
coded as blue, green, and red), the support core system (color-
coded as yellow)—Autonomic Adaptation System, and the
application systems (color-coded as orange). The three core
mandatory core systems are required to construct a minimal
Arrowhead local automation cloud.

1) The Service Registry is the central record of the pub-
lished services. It supports the service producer to reg-
ister its services and the service consumer to discover
the published services.

2) The Authorization System provides mechanisms for au-
thenticating the application systems and authorizing ser-
vice consumption.

3) The Orchestration System establishes and maintains the
interactions among the service producers and service
consumers.

In addition to those mandatory core systems, Arrowhead
Framework also consists of various support core systems that
facilitate both design-time and run-time development of au-
tomation systems with either intra- or inter-cloud interaction.
As examples of such support systems we have the GateKeeper
and Gateway [38] for inter-cloud service interaction, the Con-
figuration system to store configurations of the systems, and
the Data Manager for short-time or long-time application data
storage. These core systems together enable a framework with
lookup, loose-coupling and late-binding properties for engi-
neering IIoT SoS satisfying the requirements for real-time
performances, robust security, and interoperability. [37].

V. AUTONOMIC APPROACH
A. AUTONOMIC ADAPTATION SYSTEM
In this section, we discuss our proposed architecture that sup-
ports the development of IIoT applications and addressing the
dynamic adaptation requirements mentioned above.

Definition 1: Dynamic Adaptation indicates the ability of
an application system to modify its behaviors during its execu-
tion as a reaction to the changes of its operating environment.

In order to achieve dynamic adaptation, the model in stage
2 of autonomic adaptation is employed as the fundamental de-
sign of our approach. Fig. 3 illustrates our conceptual design
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FIGURE 4. Example payload of orchestration service.

within SoA. Accordingly, by employing SoA, we separate
the application system in stage 2 into two sub-systems: the
Adaptation System that interprets the user policies and pro-
vide corresponding adaptation as a service, and the Managed
System that implements the core functionality and reacts to
the changes under the coordination of the adaptation service.
As a result, this design reduces the complexity of the orig-
inal application system by separating the implementation of
the adaptation support from the core functionality while also
introducing flexibility to the deployment of the systems by
employing SoA.

To realize the conceptual design in Fig. 3, we employ the
Arrowhead Framework as the fundamental architecture for
our solution. We propose one support core system for the
Arrowhead framework, namely Autonomic Adaptation Sys-
tem. This system plays the role of the Adaptation Manager
in our conceptual design in Fig. 3 and enables the application
systems (a.k.a. Managed Systems) with dynamic adaptation
under the form of dynamical orchestration and configuration
services. As shown later, these two services are implemented
by applying the core services of Orchestration and Configu-
ration systems of Arrowhead Framework. From this section,
for simplicity, we will use the term “adaptation” to refer to
dynamical orchestration and configuration.

Definition 2: An Orchestration is a message contain-
ing the information about the service and its corresponding
provider system which is used by the consumer system to
establish a connection to that provider system.

Fig. 4 shows an example of an orchestration of a RESTful
service which consists of the service unique id (serviceDefi-
nition), exchanging formats (interfaces), metadata as well as
endpoint of the server (provider).

Definition 3: A Configuration is a message containing the
actual parameter values for the application system to adjust its
internal functionality.

An example of such configuration is showed in Fig. 5
which instructs the application system (identified by the

FIGURE 5. Example payload of configuration service.

systemName) to create a new order with details provided in
the data field.

Definition 4: Orchestration Service is the service that co-
ordinates the communication among application systems by
providing appropriate Orchestrations to the requesting con-
sumer systems.

Definition 5: Configuration Service is the service that
provides Configurations (e.g., parameter property) to the ap-
plication systems.

Orchestration service is used to control how systems are
deployed and interconnected, while configuration service en-
ables the systems to change their internal functionality during
run-time. Within Arrowhead Framework, these two services
are provided by the Orchestration and Configuration sys-
tems. Specifically, the service consumer can query informa-
tion about its service of interest by providing the exact name
of that service to the Orchestration System. Subsequently,
the Orchestration System will retrieve the corresponding in-
formation from the Service Registry and the Authorization
System, and compose a list of authorized services and their
corresponding service providers. This mechanism is imple-
mented by string matchmaking and filtering over the service
namespace. If there is more than one provider in the return
list of orchestrations, the consumer can decide which one to
consume the service. Alternatively, the Orchestration System
also maintains an Orchestration Store that contains static or-
chestrations for the consumer system to connect (e.g., speci-
fied manually by the administrator of the system). This static
approach can be used to initialize or orchestrate the system
whenever the name of the service is unknown during the
design time. Similarly, the Configuration System also main-
tains a Configuration Store for configuring the applications
statically.

In this work, we move one step further by providing dy-
namical orchestration and configuration mechanisms to Ar-
rowhead Framework. Particularly, the contextual information
of the corresponding services and application systems will be
considered to generate their orchestrations and configurations
automatically. This mechanism is realized with Orchestration
and Configuration policies.

Definition 6: Orchestration or Configuration policy is
the rule (if-then-else statement) specifying how an application
system should be orchestrated or configured under a specific
condition.
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FIGURE 6. The Service-oriented Autonomic IoT (SAI) platform. Adapted
from [39].

The Autonomic Adaptation System will exploit these poli-
cies to generate orchestration and configurations and push
them to the Orchestration and Configuration Stores accord-
ingly. Accordingly, the Autonomic Adaptation System en-
ables the application systems to automatically re-orchestrate
their service consumption or reconfigure their settings in re-
action to the changes of other systems and services within one
Arrowhead local cloud.

The core functionality of the Autonomic Adaptation Sys-
tem is designed based on the concept introduced in Auto-
nomic Computing (discussed in Section IV-A). Specifically,
our proposed approach uses the MAPE-K model as the fun-
damental model for the implementation of the Autonomic
Adaptation System. In order to realize the MAPE-K model,
we employ the SAI (Service-oriented Autonomic IoT) plat-
form - our previous work presented in [39], [40]. The SAI
platform exploited different tools and technologies from the
Semantic Web to implement the core functionalities of the
MAPE-K model. Fig. 6 illustrates the usage of Semantic Web
Technologies to implement the SAI platform. Specifically, we
employed the Jena RDF (Resource Description Framework)
Triplestore3 as the central Knowledge Base (KB) to store
the monitoring data and policies specified with SWRL (Se-
mantic Web Rule Language) and SPARQL queries (SPARQL
Protocol and RDF Query Language). The SAI ontology [40]
is used as the common schema for semantic data represen-
tation and validation. This ontology was developed based
on different well-known IoT ontologies such as IoT-O [41],
SOSA [42], SSN [43]) to specify concepts of devices, sensors,
observation, and actuators. Fig. 7 shows an extract of the
SAI ontology containing the models of Sensor, Arrowhead
Service, and Application System. Furthermore, the Monitor
component collects the data from the services and application
systems, transforms them into RDF triples, and updates to the
KB. Fig. 8 show an extract of the KB representing the data
from the sensor that measures the level of a Lye Tank. The
SAI ontology is used as the common vocabulary to annotate
and integrate the sensor value into its respective service in
the Arrowhead local cloud. The Analysis component exploits
the SPARQL Query Engine to filter the data in the KB for

3[Online]. Available: https://jena.apache.org/

FIGURE 7. Service, System and Sensor models in the SAI ontology.

FIGURE 8. A snapshot of the KB that annotates data from the sensor of a
Lye Tank.

only critical conditions about the monitoring services or ap-
plications and updates the querying results to the KB. Fig. 9
shows the SPARQL query that periodically checks the times-
tamp of the sensor observation and updates the status of the
corresponding sensor service to OfflineState if the value is not
updated within 20 seconds. As can be seen from this figure,
the SAI ontology is also used as the language to describe the
query. Furthermore, the Plan component will reason over the
KB for any relevant adaptations which will then be carried out
by the Execute component. Specifically, the Plan component
exploits the adaptation policies as the instruction for generat-
ing adaptations. In this work, we use SWRL to specify those
adaptation policies. Fig. 10 illustrates a SWRL rule instruct-
ing the application to re-orchestrate (substituteService) to an
“Online” service if its consuming service is “Offline”. Similar
to the SPARQL queries, the SWRL rules also exploit the SAI
ontology to specify the policies. These queries and policies
are also stored inside the KB as shown in Fig. 11.

The SAI platform was discussed in our previous work [39].
Here, we move one step further by adapting the SAI platform
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FIGURE 9. A SPARQL query to update state of the service.

FIGURE 10. Examples of an orchestration policy to substitute from one
Offline sensor service to an Online one at the same location and feature of
interest.

FIGURE 11. A snapshot of the KB that annotates the consumer and its
policies.

to implement the Autonomic Adaptation System in order to
achieve dynamical adaptation within Arrowhead local cloud.
Fig. 12 illustrates the interaction of the Autonomic Adaptation
System with the application systems via Arrowhead services.

As can be seen from Fig. 12, the SAI platform, applying
the MAPE-K model, is the core component of the Autonomic

Adaptation System to implement self-adaptation. In addition,
the Autonomic Adaptation System is also equipped with dif-
ferent Application Service Adapters to support the Monitor
component to parse and transform the messages from the
monitoring services. At the current implementation of the Au-
tonomic Adaptation System, the adapters only accept service
interfaces employing SenML4 specification with either XML
or JSON format. The numbers in Fig. 12 represent the order
of information flow of the adaptation control loop. To be mon-
itored by the Autonomic Adaptation System, the Application
Systems have to send their data (conforming to the SenML
format) to the Data Manager system which acts as the cen-
tral storage for real/time monitoring data (1). The Autonomic
Adaptation System will use these data from the Data Manager
(2), transform, and update the KB as presented above. The
Autonomic Adaptation System will also generate Orchestra-
tions and Configurations based on the specified policies and
push them to the Orchestration and Configuration Stores re-
spectively (3). Furthermore, those Orchestrations or Configu-
rations will be sent to the corresponding application systems
for re-orchestration or reconfiguration (4). To carry out the Or-
chestration or Configuration, these application systems need
to implement an Adaptation Executor to analyze the
Orchestrations or Configurations and update their functionali-
ties accordingly. The Arrowhead Framework already provides
libraries to parse the Orchestration and Configuration showed
in Figs. 4 and 5. The application system can exploit those
libraries and implement the methods to handle the information
accordingly. We do not define any format for the configuration
value (e.g., the data field of the configuration). It is left to the
application layer to design syntax or semantics for this field.

B. AUTONOMIC ADAPTATION SYSTEM AUTOMATES
RECONFIGURATION OF MANUFACTURING PROCESS
Manufacturing Execution System (MES) acts as an interme-
diate layer between the information systems of high-level
enterprise applications and the tightly coupled systems on
the shop floor which manage the low-level data generated by
field devices. Through the control loops between the ongoing
manufacturing processes and their respective control instances
(i.e., Programmable Logic Controller), MES improves the
overall process efficiency in terms of quality, timeliness, and
maintenance aspects. Fig. 13 illustrates such organizational
approach in current automation systems. Traditionally, the
field devices (i.e., robots, sensors, actuators) on the shop floor
are controlled by the automation systems built with the Pro-
grammable Logic Controller (PLC). These systems contain
all necessary programs, sequences, and logical correlations
for the manufacturing steps performed by the field devices.
Furthermore, certain data generated by these field devices
might be collected, aggregated, and shown within supervisory
control and data acquisition systems (SCADA) for diagnostics
or analytical purposes. SCADA usually collect information

4[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-core-
senml
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FIGURE 12. Interaction of the Autonomic Adaptation System with other systems within Arrowhead local cloud. The numbers represent the order of the
communication flow.

FIGURE 13. Production organization in current automation systems
(Adapted from [44]).

about the ongoing process such as average time of the produc-
tion steps, deviations of manufacturing tolerances, or similar
KPI (Key Performance Indicator) and forward such informa-
tion to higher systems (i.e., database server) for later tactical
or strategic decisions regarding the production planning and
control. Moreover, this information could be used as refer-
ence data for diagnosing manufacturing errors and making
decisions accordingly. Typically, whenever errors occur (e.g.,
caused by operating environment, material faults, etc.), the
MES may stop the process or re-initialize the production in
accordance with human interaction with the system configura-
tion [44]. However, due to human-based interaction, the cycle

FIGURE 14. Production organization with Autonomic Adaptation System.

time of these feedback loops is too long [44]. Furthermore,
in most cases, the exchanged data lacks context and other
descriptive information and does not fit the need for automatic
decision-making. As a result, the processes of extracting rele-
vant information for utilizing the manufacturing processes are
usually manual and human-based. Therefore, the aforemen-
tioned feedback loops could not be considered for short-term
planning and optimization scenarios.

The Autonomic Adaptation System facilitates the feedback
loop between the field and the managing instances of the
automation system in a semi-automated manner. Fig. 14 il-
lustrates such production organization with the support of the
Autonomic Adaptation System. It automates the processes of
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reconfiguration of the automation systems in order to achieve
self-healing or self-optimization. Particularly, by collecting,
transforming, and integrating the field data with necessary
contextual information, the Autonomic Adaptation System
monitors the status of manufacturing processes and makes
decisions automatically whenever anomalies occur or other
actions need to be taken. These decisions could be either
short-term goals such as prioritizing certain products or op-
timization of a single process or even mid-term and long-term
goals at the management level. However, human interaction
cannot be completely eliminated from the feedback loop. In
particular, the Autonomic Adaptation System needs to be su-
pervised by the process operators under the form of policies
for when and how to make adaptations. This second feedback
loop between the Autonomic Adaptation System and high-
level systems is rather slow but will not occur frequently. Once
the policies are updated in the Autonomic Adaptation System,
and subsequently triggered, reconfiguration will be executed
immediately without any human intervention.

C. PROPERTIES OF ARROWHEAD LOCAL CLOUD WITH
AUTONOMIC ADAPTATION SYSTEM SUPPORT
In the traditional approach, knowledge localization and ma-
nipulation are implemented far away from where the data is
generated (i.e., physical devices), whereas the private local
cloud approach brings the knowledge representation to the de-
vice level, thereby decentralizing the knowledge closer to the
knowledge-driven system [45]. In our research, we develop
this private cloud approach further by introducing autonomic-
ity into the local cloud.

The approach discussed in this article employs the local
automation cloud concept within Arrowhead Framework but
goes one step further by leveraging the knowledge to detect
anomalies of the systems in the cloud and generating re-
orchestration or re-configuration accordingly. Table 1 shows
the different aspects of this approach in comparison with the
traditional approach and the Arrowhead local cloud approach.
The categories of this table are obtained based on the bench-
mark made in [45] and supplemented with the approaches
discussed in our study.

As can be seen from Table 1, the first direct benefit of
the new system is autonomic adaptation. While the original
system permits only one static configuration (e.g., consum-
ing only one set of sensor units). Traditionally, the connec-
tion between the automation systems and the field devices
is usually decided at design time and hard-coded during the
development of the systems. This limits the complexity of
the systems, but it also limits their flexibility during execution
time. As a result, the static configuration requires reprogram-
ming and redeploying the system whenever there are updates
to the design or configuration of the systems. In contrast,
within Arrowhead local cloud, the application systems can
be re-orchestrated or reconfigured during their run-time based
on multiple preferences stored in the Orchestration and Con-
figuration systems. Therefore, application systems become
loosely coupled with the devices at the lower layer. However,

TABLE 1. Properties of Arrowhead Local Cloud With Autonomic
Orchestration System Support (Extended from [45])

adaptation within Arrowhead local cloud is still manual since
those preferences of orchestration and configuration are added
by the operator of the systems and need to be updated with
the evolution of the whole system. The Autonomic Adaptation
System addresses this issue by taking into account the context
in which the systems are executing and generating adaptations
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accordingly. This is achieved by enhancing manual adapta-
tion with adaptation policies. By satisfying these policies,
the Autonomic Adaptation System will decide the optimal
adaptation that fits the most recent status of the systems.

The communication protocols in the traditional approach
are basically proprietary and made for particular device types.
As the systems evolve, the devices may need to be replaced
or new devices added. Thus, these systems have to be re-
configured (or even reprogrammed) manually in order to adapt
to these changes. Within Arrowhead local cloud, by exploit-
ing the SoA concept, the communication is abstracted into
services that typically employ open and standardized proto-
cols. Specifically, Arrowhead Framework provides multiple
core services that support the communication with physical
devices via various industrial protocols (e.g., Modbus TCP,
OPC-UA). These services act as adapters between the devices
and the application systems and can be re-used for new de-
vices. Although unsupported protocols require new adapter
implementations, the application systems do not need to be
reprogrammed but instead re-orchestrated. In our approach,
with the support of dynamic adaptation of the Autonomic
Adaptation System, changing physical devices can be de-
scribed as adaptation policies and carried out automatically.

Within the traditional approach, due to the diversity of
communication protocols between the automation system and
devices, Plug and Play feature is not supported. Within Ar-
rowhead local cloud, by employing the SoA paradigm, the
connection between the systems and devices becomes loosely
coupled. As mentioned earlier, the application systems need
to be re-orchestrated to work with newly added devices. This
could be done manually, and the application system may need
to be restarted to update the new orchestration. With the sup-
port of the Autonomic Adaptation System, once the policies
regarding new devices are registered, new orchestration can
be generated and pushed to the appropriate application system
automatically.

IT infrastructure regarding both hardware and software is
poorly reusable in the traditional approach as the systems are
usually designed and implemented to work with designated
devices. Therefore, replacing or adding new devices requires
re-configuring and re-programming the systems. In contrast,
the Arrowhead framework aims at loosely coupled systems.
As a result, the software components (e.g., services, applica-
tion systems) could be exploited to compose a new system of
systems. Also, as discussed earlier, physical devices could be
easily integrated and interact with the systems unambiguously
and automatically. Therefore, the reusability of both systems
and devices is highly supported during the development of
new systems.

The control architecture in traditional approach is purely
centralized. Typically, the automation systems collect and
send data to one central server which performs processing and
analyzing of the data. Based on the analysis, the decision will
be made and sent back to those systems. This architecture
is simple and easy to deploy and maintain as all necessary
operations are managed in one place. However, the computing

resources of modern devices at the edge are not fully lever-
aged. Also, security and privacy risks could be introduced be-
cause the data could be sent over the network (e.g., to a global
cloud) for processing. Additionally, response time could be
longer due to the network latency or high workload at the
central system. These issues are addressed in the Arrowhead
framework which employs decentralized architecture. Partic-
ularly, each Arrowhead local cloud encapsulates all the appli-
cation systems and devices that are deployed within one local
area (e.g, one factory floor, one room of a building). In each
local cloud, there could be one central system that collects
data from the others and analyzes the data locally. The data
can also be sent to other local clouds if necessary for making
the final decisions. With the support of the Authorization and
Certificate Authority services, data privacy and security are
ensured for both intra- and inter-cloud communication [46].
Within one Arrowhead local cloud, any system could be im-
plemented as the central node which collects and analyzes the
data. However, as new systems and services are introduced
to the local cloud, this central node has to be updated by
reprogramming or re-configuring manually. In our autonomic
approach, by employing the MAPE-K model, the decentral-
ized architecture is enhanced with autonomic control. The
Autonomic Adaptation System is responsible for monitoring
and generating the decisions, whereas the application systems
specify how decisions will be executed in the form of adapta-
tions. With semantic technologies, the data will be annotated
and standardized to support automatic decision-making. As
a result, the actions based on the generated decision will be
carried out automatically without any interruptions or manual
operations.

The control model in traditional automation systems is usu-
ally scan-based. In principle, these systems have to poll the
central node periodically to get updated with the latest control
decision. This method may waste time and resources spent on
communication and computation when no significant change
in the system has occurred. In contrast to this scan-based
model, in the event-based model, the systems will be trig-
gered whenever there are changes that need to be updated.
Arrowhead framework supports both models. Specifically, de-
pending on their designs, the systems could be implemented to
keep polling the information periodically, or the information
will be pushed to those systems once it is generated. In our
approach, the communication between the Autonomic Adap-
tation System and the monitored system is designed based
on an event-driven model. Therefore, the application systems
have to implement corresponding callback functions to handle
those triggered events.

Regarding the addressability of the resources (e.g., sen-
sor data), within the traditional approach, it is designed as a
hierarchical model. The data from the field devices have to
go through the systems through multiple levels (e.g., PLC,
SCADA, MES) in order to be analyzed. Accordingly, the
instructions from the systems at higher levels will also go
through the intermediate level before arriving at the devices.
Within Arrowhead local cloud, the data can go directly to
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the designated systems with the support of service discov-
ery. As all operations are abstracted into services, the ap-
plication can query over the Service Discovery to look for
the desired service providers and start the communication
immediately.

Within the traditional approach, data processing will be
performed at a global central unit (e.g., global cloud which
provides storage and analysis services). In contrast, within
Arrowhead local cloud, the data will be collected and ana-
lyzed locally by any authorized system. Therefore, the the
number of computation nodes will increase with the number
of systems and local clouds. As a result, the approach can
not only utilize the computational capacities of the local ma-
chines on which those systems are deployed but also mitigate
the security and latency issues related to the global network
communication.

Furthermore, the exchange data within the local cloud is an-
notated with semantic description which becomes information
instead of pure signal data as in the traditional approach. Since
the operations of the field devices are now abstracted into
services and communication between the systems becomes
producing and consuming services, the raw signal data would
be annotated with metadata at the service level. Therefore,
messages become more human readable, thus reducing the
effort related to diagnostic and maintenance of the systems.
However, the approach increases message overhead as the ex-
change messages will contain additional information related
to syntactic and semantic annotation.

In both traditional approach and Arrowhead local cloud,
the data representation at the computational nodes that collect
and process the data vary relative to the domain of the applica-
tion. Therefore, the data are exchanged and stored with differ-
ent syntax and semantics from different systems. This hetero-
geneity problem is addressed in our approach. By employing
semantic technologies, the data collected from heterogeneous
service interfaces are transformed, annotated based on the pro-
posed semantic ontology, and stored in RDF triplestore. Thus,
the application systems may use the ontology as a uniform
vocabulary to describe their policies and communicate with
the Autonomic Adaptation System.

Arrowhead Framework may introduce communication pro-
tocol overhead as the application systems need to interact
with the core systems for authorization, orchestration, or other
management purposes. By employing Arrowhead architec-
ture, our approach also requires the application systems to
follow the same protocols as described in Fig. 12 in order
to achieve dynamic adaptation, thereby introducing more in-
teraction among the application systems at the service level.
However, as the local cloud is designed to coordinate the ap-
plication systems and devices in close proximity, the latency
introduced by protocol overhead is expected to be insignifi-
cant in comparison with the global cloud architecture.

By separating the monitoring and reasoning tasks from
the main application functionalities, our approach with the
support of the Autonomic Adaptation System helps to re-
duce the application implementation complexity. In traditional

automation systems or usual Arrowhead application systems,
adaptation features could be achieved either manually or by
integrating the solutions into the implementation of the ap-
plication. The former requires manual effort and may result
in a longer adaptation cycle, while the latter introduces more
complexity to the application logic and therefore requires
development and maintenance effort. The Autonomic Adap-
tation System automates the process of monitoring and adap-
tation reasoning and provides adaptation as a service. There-
fore, the application systems only need to execute the adapta-
tions accordingly. Also, these applications have to follow the
communication protocol as introduced earlier. However, the
overhead related to the implementation of the communication
and processing adaptations is expected to be smaller than the
monolithic solution.

Regarding the horizontal and vertical integration aspect, by
employing the SoA concept with unified service management
operations, Arrowhead Framework not only enables the easy
integration of the devices and systems in one layer but also
improves the interaction of the systems from different layers
of the ISA-95 model. Furthermore, both the traditional ap-
proach and Arrowhead Framework have limited support of
monitoring and adaptation whereas this feature is the core
functionality of the Autonomic Adaptation System. Finally,
by employing Arrowhead core systems, authentication and au-
thorization are implemented at several levels: physical device
level, service level, system level, and cloud level, and thereby
improving the cyber security of the system.

VI. CASE STUDY
In this section, we will demonstrate our proposed approach by
a use case aiming to improve the supply chain management
system at Unger Fabrikker. We will introduce high-level poli-
cies to automate the process of monitoring and planning for
supplying the raw materials during the production at Unger
Fabrikker.

Unger Fabrikker has several suppliers of raw materials
(e.g., lye, sulfur). The materials are stored in multiple tanks.
These chemical supplies require extensive planning by both
suppliers and Unger Fabrikker. To ease the entire manage-
ment of the supply chain, the Autonomic Adaptation System,
together with Arrowhead Framework, has been used for real-
time monitoring of storage tanks, predicting the consumption
of the raw materials, and planning for future supplies.

Fig. 15 illustrates the software architecture of this case
study. Specifically, the solution is made available through
the SupplyManagementApp - a web-based application to man-
age the supply chain at Unger Fabrikker internally (e.g., create
or modify the supply orders, visualize real-time values of
the storage tanks and production) and the SupplierApp - a
web-based application to provide the external suppliers with
their corresponding supply data. For example, the Supplier-
App provides the suppliers with detailed information about
the level of the storage tanks that they supply and their corre-
sponding future orders and deliveries. The suppliers can use
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FIGURE 15. Information model and the communication of the application systems in the case study. The classes represent the information models of the
components with the same color.

the information to continuously plan and assess the need for a
new delivery in principle without involving Unger personnel.

To enable automatic monitoring of the supply chain, dif-
ferent sensors are installed to measure the level of storage
tanks. These sensor values are stored in an OPC Server. Also,
production information necessary for supply planning is made
available at the OPC server. We develop an Arrowhead appli-
cation system, OPC Data Producer, to enrich the raw data
with more contextual information and make them accessible
via services. These data are corresponding to TankLevelData,
TankWeeklyConsumptionData and TankEmptyInData showed
in Fig. 15. Specifically, the TankLevelData represents the
level of the corresponding lye or sulfur tanks (in tons). The
TankWeeklyConsumptionData provides the estimated usage
of a storage tank for the following seven days. TankEmptyIn-
Data represents the number of hours until a particular tank
is empty. These data will be pushed to the Data Manager
(1) and subsequently transformed to semantic knowledge ac-
cording to the Sensor model of the ontology shown in Fig. 7
(2). Furthermore, the information of the Order (e.g., date,
amount, type of substance) and the SupplierData (e.g., avail-
able amount, average delivery time, type of substance) will
also be captured by the Autonomic Adaptation System. Here
we use the location value to identify the tank related to these
data. In order to represent these data, the proposed ontology
is extended with the Supplier model as shown in Fig. 16. In
this case study, the SupplyManagementApp also consumes
all the aforementioned data services and visualizes the data
in a dashboard to support the management staff to monitor the
supply chain.

Once the data is available, the Autonomic Adaptation Sys-
tem will automate the real-time monitoring of the availability
of the supplies as well as the production plan and gener-
ate appropriate plans for new orders or deliveries of these
supplies according to the high-level policies input from the

FIGURE 16. Extract of the SAI ontology representing the related concepts
of the case study.

management staff at Unger Fabrikker. Table 2 shows the high-
level policies that are used for monitoring and planning of the
supply chain in this case study.These policies are described
by SWRL according to the ontologies presented in Figs. 7
and 16. For example, Fig. 10 show the SWRL representation
of policy #1 which instructs the SupplyManagmentApp to re-
orchestrate to a new online tank sensor if the old one is offline.
Policy #2 and #3 check if the value of tank level is below
a threshold and send a notification to the SupplyManagmen-
tApp accordingly. For notification purpose, we encapsulate
the notification message into the data field of the configura-
tion (example showed in Fig. 5) and push it to Configuration
Store (3). The same mechanism is employed for creating or
modifying new order. Therefore, the SupplyManagmentApp
has to extract the value from the configuration (4) and decode
it into respective message types (e.g., notification, create order
and modify order). This method is implemented in the Adap-
tation Executor of the application as discussed in Section V-
A. Policy #4 and #5 check the value of TankEmplyInData
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TABLE 2. Policies for Monitoring and Planning of Supply Chain at Unger
Fabrikker

and instruct the SupplyManagmentApp to create a new order
before the corresponding tank becomes empty. Similarly,
Policy #6 and #7 monitor the changes of TankEmplyInData
values and update the delivery date of the created orders ac-
cordingly. Finally, Policy #8 and #9 send a notification to the
SupplyManagmentApp whenever the delivery date is coming.

Once the new orchestrations and configurations (e.g., no-
tification, create and modify orders) are pushed to the Sup-
plyManagementApp, this application will either update its
dashboard or forward the notifications to the corresponding
suppliers via the SupplierApp accordingly (5).

Table 2 also shows the estimated time for the management
staff to execute those policies manually. Normally, it will take
from a few minutes to hours to monitor the data, update or cre-
ate the orders and communicate with the suppliers regarding
those orders via emails or phone calls. In contrast, our solution
facilitates the supply chain management at Unger Fabrikker
by reducing internal monitoring and supervision regarding the
planning and delivery of the supplies as well as the external
communication with their suppliers. Once the policies are
loaded into the Autonomic Adaptation System, the supply
chain management will be executed automatically within a
few seconds. The development and maintenance of policies
may take long time and require domain knowledge, but will
not occur frequently compared to continuous monitoring and
communication with the suppliers.

In this case study, we introduced only a set of simple
policies to illustrate the feasibility of our approach within a
particular industrial domain. However, more conditions (e.g.,
arithmetic computations of the values) and relationship con-
cepts can be added to the policies in order to describe more
complex planning strategies. As long as these strategies can
be modeled with the proposed ontologies, the Autonomic

Adaptation System can make inferences with the SWRL and
generate adaptations accordingly.

This case study was conducted as part of the collabora-
tion during Productive4.0 project. Particularly, the Autonomic
Adaptation System monitored the actual real-time production
data provided by Unger Fabrikke. However, the generated
adaptations were only provided as the recommendations to
the management staff as well as to evaluate the feasibility and
efficiency of the proposed approach.

VII. EVALUATION
In this section, we discuss the performance evaluation of the
proposed approach based on the case study presented in the
previous section. The following perspectives will be consid-
ered in our conducted experiments:

1) Reliability regarding the generation of adaptations prop-
erly and timely.

2) Efficiency in term of reduction in the manual effort
related to monitoring and planning.

3) Scalability concerning the increase of services and sys-
tems.

The Arrowhead Framework version 4.0.0, Jena TDB triple-
store and its API 5 are used as the core technologies for the im-
plementation of the prototype. The Arrowhead core systems
and application systems (depicted in Fig. 15) are deployed on
a laptop with a 2.20 GHz Intel i7-8750H CPU and 16 GB
RAM. In order to trigger the adaptations described in Table 2,
the simulated events corresponding to the conditions of the
policies are injected into the KB, and different metrics are
measured accordingly.

A. EXPERIMENTAL RESULTS
Based on the perspectives mentioned above, the following
measurements are recorded in order to evaluate the perfor-
mance of our approach:

1) The maximum memory consumption of the Autonomic
Adaptation System during its execution time.

2) Reasoning Time (treasoning): is the duration from the time
when the simulated event is injected into the KB to the
time when the respective adaptation is ready to send by
the Execute component.

3) Adaptation Time (tadaptat ion): is the duration from the
time when the simulated event is injected into the KB to
the time when the respective adaptation is executed by
the corresponding application system.

Generally, tadaptat ion = treasoning + tcommunicat ion, where
tcommunicat ion is the time for the adaptation to be sent from the
Autonomic Adaptation System to the application system. The
Reasoning Time and Adaptation Time are measured for each
rule listed in Table 2. In order to ensure the reliability of the
results, the experiments are performed ten times.

To evaluate the reliability of the approach to generate the
expected adaptations correctly and timely, we modified the
value of service monitoring data to meet the conditions of

5[Online]. Available: https://jena.apache.org
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TABLE 3. Average Reasoning Time, Communication Time and Adaptation Time (In Seconds)

each policy in Table 2, captured and validated the respective
adaptation generated by the Autonomic Adaptation System.
The estimated time for manually handling the policies (as
shown in Table 2) was used as the expected timeout for the
Autonomic Adaptation System to reason over the KB and
trigger an adaptation. Once the expected is generated, the
Adaptation Time (tadaptat ion) will also be measured for each
scenario. Table 3 shows the average Reasoning Time of the
nine policies. The Autonomic Adaptation System was able to
generate all of the expected adaptations within 3 seconds after
we injected the triggering events of policies. The Reasoning
Time may vary according to the complexity of the policy. As
can be seen from the table, policies #6 and #7 takes the longest
time for reasoning as the Autonomic Adaptation System may
need to compare the delivery dates of the orders with the date
indicated in TankEmplyInData values in order to compute
the new delivery dates, whereas simple policies such as #1,
2 or 3 may take a shorter time to reason as the Autonomic
Adaptation System needs to compare only single data value.
However, in general, within this prototype with only 2 Tanks
and 2 Suppliers, the KB is relatively small (about 625 triples).
Therefore, the measuring times do not differ significantly
among the policies.

Furthermore, we also captured the time when the Sup-
plyManagementApp finished executing the generated adapta-
tions. As shown in Table 3, the Adaptation Time tadaptat ion

represents the total adaptation process from simulated events
were injected to adaptations has been completely carried out.
In this prototype, because the SupplyManagementApp simply
updates its internal data structure and prints out a message
to the console whenever receiving the adaptation, executing
the adaptation is also done within a few seconds. It is also
worth mentioning that since we run all of the applications on
the same machine, the network latency is also very small.
However, in this approach, as adaptations are encapsulated
into orchestration or configuration messages (as shown in
Fig. 5), communicated among the systems within one local
cloud, and can be handled automatically by the application
systems, the overhead related to network latency or processing
the adaptations is expected to be smaller than manual op-
erations. As can be seen from Table 3, our approach shows
orders of magnitude greater operational efficiency in term of
executing the policies compared to the estimated manually
handling time of the management staff (as shown in the third
column of Table 2).

Finally, regarding the scalability issue, we repeated the
same experiment as described above with a gradually increas-
ing number of sensor services. We added arbitrary sensor
services which are of a different type (e.g., having different
FeatureOfInterest) from the ones used in this use case in order

TABLE 4. Number of Triples and Maximum Memory Consumption of the
Autonomic Adaptation System With Increasing Number of Services

FIGURE 17. Average Reasoning Time of the Autonomic Adaptation System
with increasing number of services.

to avoid overlapping with the use case data as well as to
simplify the process of validating the generated adaptations.
Table 4 shows the number of triples of the KB with the in-
creasing number of services as well as the maximum memory
consumption of the Autonomic Adaptation System during its
run-time. Specifically, the memory allocation tends to increase
slower than the number of added services. This figure ap-
proximately doubles when the number of devices increases
ten times and raises up to 1.5GB with 10000 services. As
we apply in-memory data process and reasoning, this figure
can be critical to the feasibly of our approach when deployed
on resource-limited devices. Furthermore, we also measured
the Reasoning Time of the Autonomic Adaptation System as
shown in Fig. 17. Particularly, the system faces considerable
challenges, which stem from the volume and variety of the
KB. As can be seen from this figure, the numbers have the
same increasing tendency that is exponential to the number of
services. Most of the policies were triggered within 8 seconds
when there were 100 more services. The number increased
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to 34 seconds with 1000 services more and went up to 11
minutes (660 seconds) when 10000 services were added.

B. DISCUSSION
In this use case, we have demonstrated the feasibility of the
Autonomic Adaptation System to automate the processes of
monitoring the production status and making supplying or-
ders. These processes are described with orchestration and
configuration policies that can be updated and governed by
the Autonomic Adaptation System during run-time. The ex-
periment results present the reliability of the approach by
generating the expected outputs properly and timely. The
Autonomic Adaptation System was able to reason for the
policies and generate corresponding adaptations within a few
seconds, while these processes may take hours to handle
manually. Although there are only nine policies introduced,
these policies are sufficient to cover most representative sce-
narios from the supply chain at Unger Fabrikker. Moreover,
additional policies can also be added to the system without
significant effect on the performance of the system because
these policies can be handled individually and parallel by the
Autonomic Adaptation System. As our approach models the
adaptation policies as orchestration and configuration poli-
cies, it is developed to support real-time monitoring and au-
tonomous decision-making such as anomaly detection or run-
time optimization and configuration of the production systems
based on the collected data. For more complex orchestration
scenarios that involve other entities in the manufacturing (e.g.,
machines, robot, products), more support systems in the Ar-
rowhead Framework can be added to our proposed approach
to accomplish more advanced features. For example, The
Workflow Choreographer [47] that exploits BPMN (Business
Process Model and Notation) and CPN (Colored Petri Net)
languages to model the production “recipe” and its sequences
of tasks, which will be generated into executable models.
These models are used to orchestrate the tasks, services, re-
sources, machines, etc. in accordance with the specified work-
flow of the production. Our proposed Autonomic Adaptation
System, instead, can be exploited to enhance this Workflow
Choreographer solution by providing run-time critical events
of the systems to achieve more flexible production. However,
as showed in the evaluation result, the Reasoning Time of our
approach may be longer for more complex policies and larger
KB. The reason is that the Autonomic Adaptation System has
to match multiple conditions of the policies over the whole
KB. Nevertheless, experiments showed that the approach is
still able to provide expected results within the timeout when-
ever the KB grows larger with 10000 additional sensor ser-
vices. Furthermore, as shown in Fig. 10, the policy consists of
different conditions (represented by the triples) which can be
evaluated parallel. Therefore, one complex policy may be split
into smaller sub-policies and handled simultaneously in order
to reduce the reasoning time and diagnostic effort as well as
to avoid error or editing mistakes.

Regarding the efficiency aspect compared with the current
manual process, the experiments also present a significant

improvement in the total operation time of each scenario.
Accordingly, our autonomic approach can execute processes
of monitoring and generating supply orders much faster than
the estimated manual time of the operator. As everything
is handled automatically once policies are available in the
system, our approach can provide expected output within a
few seconds in comparison to minutes or hours of manual
monitoring and communication among the partners. However,
there is still one recognized issue related to the creation and
validation of the policies. In this prototype, we assume that the
policies are available beforehand for the experiments. In fact,
these policies manifest the knowledge of the domain experts
and may take more time and experience to infer. Nevertheless,
the Autonomic Adaptation System can be used as the database
that persists the knowledge which can be used as the base
resource for making further optimization, diagnostic or train-
ing purposes. Furthermore, although making new policies can
take a long time, this does not happen very frequently. Instead,
executing those policies may require more effort throughout
the production of the factory. As a result, the proposed ap-
proach can demonstrate its efficiency in term of human effort
reduction, especially for use cases involving a large number
of field devices and applications. Furthermore, the process
of validating the generated policies and their corresponding
adaptations is performed manually in the presented use case.
With a small number of policies, this may not take too much
time. Also, compared to the great effort related to manual op-
eration, it can be much more efficient to just evaluate the adap-
tations proposed by the system. For future direction, machine
learning or data-driven methods can be applied as an external
module to the MAPE-K component to support such processes
of creating and validating the policies and adaptations.

Furthermore, the scalability evaluation also shows the po-
tential of our approach for use cases that involve a large
number of physical devices. Accordingly, by exploiting the
current SAI ontologies, there are not many additional triples
for each added physical device. As a result, our approach
does not require too much RAM memory for reasoning tasks
with the increasing number of devices. However, the reason-
ing task may suffer from scalability for larger KB, which
could introduce challenge to the deployment of Autonomic
Adaptation System to resource-limited devices. Nevertheless,
benefit from the modular characteristic of the proposed de-
centralized SoA, different components of the system can be
deployed on multiple resource-constraint devices. For further
improvement, solutions for lightweight triplestore such as the
approach in [48] can be considered for the implementation of
the SAI platform. Furthermore, to improve the reasoning per-
formance, mechanisms such as parallelizing the evaluation of
policies or splitting policies can be applied to complement the
reasoning performance. Moreover, as our approach applied
the decentralized SoA where each local cloud has its own Au-
tonomic Adaptation System to support dynamic adaptation,
the total number of devices in each local cloud is expected not
to be substantial. Therefore, as shown in the last experiment,
the Autonomic Adaptation System can also handle a practical
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number of monitoring services with reasonable response time.
Furthermore, as each use case may have its separate set of
related physical devices or services, the approach can also be
designed to have different KBs for different use cases, thereby
addressing the scalability issue while facilitating analysis or
diagnostic purposes.

VIII. CONCLUSION
Industry 4.0 envisions a new generation of automation sys-
tems where modern Information and Communication Tech-
nologies such as IIoT, CPS, and Cloud-based Technologies
are applied to facilitate the vertical integration of field de-
vices from the shop floor to enterprise software systems to
establish an agile manufacturing environment. However, ap-
plying these technologies also brings new challenges such
as security, heterogeneity, interoperability, and scalability. To
address these challenges, this work proposes a decentralized
service-oriented architecture for self-adaptive IIoT systems.
Specifically, our approach provides self-adaptation as a ser-
vice within one local automation cloud where software sys-
tems and devices are orchestrated and configured securely
and automatically. Self-adaptation is achieved by employing
the MAPE-K model proposed for Autonomic Computing and
implemented with different tools from Semantic Web Tech-
nologies. Furthermore, this approach enables the integration
of domain expert knowledge in the form of high-level policies
in order to support the generation of adaptations. This is a
generic approach that can be applied to different application
domains. The approach is implemented as the Autonomic
Adaptation System, a support core system within Arrowhead
Framework, to support dynamic orchestration and configura-
tion for the application systems during run-time. As a proof-
of-concept, this solution was used to demonstrate dynamic
planning for the supply chain of the production at the chemical
factory Unger Fabrikker.

Our solution of dynamic adaptation can be applied to sys-
tems at different levels. For example, it can be used to deal
with uncertainties and anomalies during the production at the
manufacturing control level, or to facilitate the communica-
tion and planning for the supply chain at the manufactur-
ing management level as shown in the proposed case study.
Therefore, employing dynamic adaptation can reduce the en-
gineering and management effort related to manual mainte-
nance, diagnostic and configuration with regards to changes
and evolution of the production systems as well as improve
the efficiency and sustainability of production in term of time,
waste, or other similar objectives. This approach does not
eliminate humans from the operation management. Instead,
it assists management staff with situation evaluation and plan-
ning so that they can focus on supervision and establishing
self-management policies.

However, there is one issue that needs to be addressed in
our future research. As we use SWRL to describe the high-
level adaptation policies, the approach may be error-prone
and difficult for domain experts to specify and verify these
policies. To deal with this issue, an approach to facilitate the

creation of policies is needed. One solution is to develop a
tool to assist the user in creating, editing, and validating the
adaptation policies. Furthermore, to achieve the higher level
of adaptation as shown in Fig. 2, data-driven algorithms could
be applied to enhance the MAPE-K with automatic generation
of policies. The integration of ML and reinforced learning into
MAPE-K model as suggested in [49] should be taken into
consideration for this direction.
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