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Abstract

Hyperparameter tuning for any machine learning algorithms can play significant
role on determining the algorithm’s performance in terms of classification accuracies
or regression analysis. This research work presents a comparative study between
the automatic machine learning algorithm Classifium, and manually tuned gradient
boosting decision tree-based machine learning algorithms, XGBoost, LightGBM,
and CatBoost implemented with the hyperparameter tuning pipeline, and the other
automatic machine learning library H2O, for their classification accuracy. We used
the 7 different data sets, which were originally taken from UCI repository, and
developed the classification models with all our algorithms. And when compared
for their classification accuracy, we observed that in majority of classification task
with all of the 7 data sets, Classifium outperformed manually and carefully tuned
XGBoost, LightGBM and CatBoost, following the hyperparameter tuning pipelines,
which we proposed for this study based on relevant work and official documents of
algorithms. When we ran H2O by assembling algorithms like deep learning, gradient
boosting, random forest, and only with XGBoost separately, we found that the
classification accuracies obtained from Classifium was better than the classification
accuracies obtained from H2O with its own hyperparameter tuning pipeline for the
both approaches. From this study, we found that the automatic hyperparameter
tuning pipeline implemented in Classifium gives better or similar results compared
to the carefully tuned gradient boosting algorithms, like XGBoost, LightGBM and
CatBoost implemented with the manual hyperparameter tuning pipelines, and H2O
with the automatic hyperparameter tuning pipeline.

Keywords: Machine Learning, Gradient Boosting, XGBoost, LightGBM, CatBoost,
AutoML, Hyperparameter
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Chapter 1

Introduction

1.1 Machine Learning

The term Machine Learning was coined by Arthur L. Samuel in 1959 [87], which
means that the machines performing the task autonomously by learning from the
past experience and improving its performance. In 1959 Arthur L. Samuel published
his work on ”Some Studies in Machine Learning using Game Checkers” [1], in which
he has described the concept of how a computer can be trained to play a game by
itself better than a person who develop that game. Also, in the early 1950s, Alan
Turing developed a machine which could imitate the human voice for his imitation
game [14] and through which he raised the question ”can machines think?” [29]
According to Mitchell [9] the process of machine learning can be defined as, ”A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks T, as measured by
P, improves with experience E”.

In other words, machine learning can be defined as the domain of computer science
in which the computer programs are fed with data, and the computer programs
analyse those data and find the patterns from that data using some set of algorithms.
When new similar kind of data is fetched in same program, the algorithm responds
in the same way that it has learned from its past experience. For analysing the
data, machine learning algorithm depends on probability and statistics which are the
domains of mathematics [68]. Just like human brain learns from the past experience,
in machine learning, computers or machines are supposed to learn from the data
in the form of experience. The machine learning technique has been applied in
engineering, economics, medical research, automobiles and in every other sectors
which are growing in today’s world. For example, machine learning technique is used
to classify the email as spam or non-spam [23], classifying the likelihood of person
as diabetic or non-diabetic [72]. Also, this technique is used to predict the stock
price [39], housing price [46] and et cetera. In automobile industry machine learning
technique is applied to produce the cars which can automatically avoid collision,
change the driving lanes and navigate in urban area [25]. Beside these, machine
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CHAPTER 1. INTRODUCTION

learning technique is used for advertisement recommendation, movie recommendation,
face detection, person detection in security camera, and many more.

1.1.1 Machine Learning Methods
According to [78], [31], and [66] machine learning methods can be generalised into
four categories based on the data from which they are learning and the algorithms
on which they are learning.

1. Supervised Learning
In supervised learning methods, the machines are trained with the set of
examples containing the labeled outputs for corresponding input data sets
or features. From those examples they learn the relationship between input
features and labeled output. On the basis of their learning experience, machine
performs the task of classification or regression on the data which are fed
without the labeled output. In abstract form, machine is trained with set of
input features ’X’ and their corresponding set of output label ’y’. It maps the
relations of each input attribute of ’X’ with output ’y’. Later, when a set of
new data is added in ’X’ without labeled output ’y’, machine will perform
classification or regression on the basis of experience that it has gained by
learning the input set ’X’ with labeled output ’y’. Let us consider the examples
of classification of emails and prediction of car prices. In classification of emails,
machine is trained with the features of emails like domain name, IP address,
host name, format, and et cetera with the corresponding output label as spam
or non-spam [71]. In future, the trained machine can classify new emails as
spam or non-spam based on its previous experience. Similarly the price of car
can be predicted with supervised machine learning method, where machine is
first trained with the example containing features and corresponding price of
car and in future only features are given as input to predict the price. According
to [75], supervised learning methods best fit in scenarios where the user is
aware about the output as categories or continuous values, but is unaware
about the corresponding output. However, to find the patterns in unlabeled
data set using machine learning technique, we need to explore other dimension
of machine learning methods like Unsupervised Learning.

2. Unsupervised Learning
In unsupervised machine learning methods, the machines are trained with the
set of data without labeled output or target class. In this method machines
learns the pattern by finding relation among the features of the data set.
The data used in unsupervised machine learning have no predefined output
attribute. In the book Hands-on Machine learning with Scikit-Learn, Keras
and Tensorflow, [78] has explained the unsupervised learning using the example
of dividing the visitors on some blog post into clusters based on their sex
and age group. In this example [78] explains that with unsupervised learning
methods, machines are introduced only with the features of the visitors along
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1.2. CLASSIFICATION

with their sex and age included in the feature set. Required target features for
classification are not explicitly defined. Machines learns the data of visitors
and finds how many of visitors were male and female, how many of visitors
were young, adult or old and so on. According to [78] other relevant examples
of unsupervised learning can be detecting anomaly in credit card transaction,
catching manufacturing defects and association rule learning [20]. The most
general type of unsupervised learning methods are clustering and association
[68] [66].

3. Semi-supervised Learning
Semi-supervised learning method uses both the principles of Supervised learning
and Unsupervised learning methods partially. In this learning methods the
data set have both labeled and unlabeled data, but comparing to unlabeled
data, labeled data are very few in volume [78]. To create labeled training data
set, it can take lot of time and man power resulting the process to be expensive.
For example in computer-aided diagnosis, drug discovery and part of speech
tagging, it can be difficult to obtain labeled data [86]. Semi-supervised learning
methods can be useful in areas where labeled data are very few and unlabeled
data are enormous. [78] has given the example of photo hosting service, Google
Photos, as use case scenario of semi-supervised learning. In Google Photo
while uploading our family photo if we label the members of the family with
names in few pictures, the system will automatically recognize them in rest of
the uploaded pictures and will assign their name as label.

4. Reinforcement Learning
In reinforcement learning the machine or learning agent is set in its learning
environment and is exposed to different tasks. While performing those tasks
learning agent can make mistakes or it can do that task correctly. The basic
concept of reinforcement learning is that the learning agent learns by trial and
error. It is warned when it makes mistakes and it is rewarded when it performs
the task correctly and the objective of the learning agent is to maximize its
reward [68]. [78] gives the example of Deepmind’s Alphago program as an
example of reinforcement learning, which learned to play game of Go by trail
and error method and succeeded to beat human.

1.2 Classification
Classification is the act of separating the instances from a collection and assigning
those instances, having the same features or characters, together, to a group or
class. For example, if ’D’ represents a huge collection of numeric and alphabetical
values, the task of classification can separate those values into their distinctive classes.
According to [2] a classification allocates entities to initially undefined classes so that
individuals in a class are in some sense close to one another. Classification is a useful
tool for making decisions because different outcomes of a decision can be categorized
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CHAPTER 1. INTRODUCTION

into different classes and study can be done on the course of each outcome, which is
one application classification [4]. During the task of classification, if the instance is
classified under supervision it is called supervised classification and if the instance
is classified without any supervision it is called unsupervised classification. Here
supervision refers to the preliminary knowledge assigned to the instance about its
attributes and its respective output class. The relevant example of knowledge can
be labeled data with its output class. Classifying emails into spam and non-spam
class, classifying customers as ’bad debtor’ or ’good debtor’ based on their economic
status, classifying if the person is prone to diabetes or not, based on his/her genetic
information, are supervised classification. And categorizing visitors of an online store
based on their sex, age, interest can be unsupervised classification. For performing the
classification on big data, a machine learning approach is used which also automates
the process of classification [6]. In machine learning methods, different algorithms
are used for performing supervised and unsupervised classification. According to [4],
in machine learning methods, algorithms that produce logistic solutions are used,
like decision tree, which is one of the best examples for supervised classification. In
the decision tree approach, algorithms like C5.0, CART, Random Forest, Gradient
Boosting are used for performing classification and regression. According to [4] and
[6], generally in machine learning there are also other different approaches used for
performing classification and they are the Statistical method, and Neural Network
method.

1. Statistical method Statistical method is purely based on mathematics. According
to [6], statistical methods are generally characterised by having an explicit
underlying probability model, which provides a probability of being in each
class rather than simply a classification. In addition, it is usually assumed
that the technique will be used by statisticians, and hence human intervention
is assumed. Statistical methods are adopted to develop machine learning
classification algorithms like ID3, C4.5, CART and other. Some methods,
based on statistical classification, used for classification of data are linear
discriminant, quadratic discriminant, nearest neighbours, Bayes independence,
Bayes second order [4].

2. Neural Network method The artificial neural network or neural network consists
of neurons or perceptrons [8], which receives information as input data from
source or other neurons and gives the information to other neurons or to
receiver by analysing and adjusting the information it receives. The neurons
are placed vertically in a row and there can be more than two vertical row of
neurons connected to each other. The working mechanism of neuron network
is influenced with human biological nervous system [19]. Artificial neuron
network have been vastly used for pattern recognition and classification [35].
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1.3 Classification algorithms
Here we will discuss about the algorithms that has been used for the classification
and regression task since the beginning. In 1985, Quinlan proposed an algorithm,
ID3 [3], which is used to generate simple decision tree [5] from a set of training data.
The algorithm is used to perform classification of discrete data. For classification
and regression, Breiman et al. proposed an algorithm called CART which stands for
Classification and Regression trees [28]. To overcome the limitation of ID3 algorithm
on processing speed, efficiency, volume of data, Quinlan proposed C4.5 algorithm
[43], which was upgraded version of ID3 algorithm. Still c4.5 had some limitation
on its predicting accuracy, memory requirements and efficiency. Quinlan proposed
most efficient algorithm of that time, C5.0 or See5 [21]. C5.0, Random Forest and
Gradient Boosting algorithms are amongst the more popular algorithms for their
advanced features and higher efficiency, and are further investigated in this study.

1.3.1 C5.0

John Ross Quinlan proposed the most efficient algorithm of that time, C5.0 or See5
[21]. C5.0 is supposed to be one of the effective classification algorithms among ID3,
CART and C4.5 [59]. C5.0 algorithm generates the decision tree using the top-down
iteration approach. It splits the variables into two different sets based on their
information gain as splitting criteria. Boosting and construction of cost-sensitive
trees are two important features implemented in C5.0 which makes it an efficient
classification algorithm. In boosting, all the instances are assigned certain weights
and all instances from the training data set are used to generate the decision tree
classifier in each round. The process of generating classifiers is repeated to certain
previously declared number. As the algorithm repeats generating new classifiers
from the same data, the previously classified result will be changed. The weights of
instances that get misclassified are increased in every round of generating decision
tree so that algorithm can give special attention to those instances having some
extra weight while performing classification in next round [13]. Until the error of
classification gets lower than 0.5, the process of generating classifier by initializing
adjusted weight on the instances is repeated [3]. Like boosting, construction of cost-
sensitive tree is another important feature implemented in C5.0 algorithm. In C4.5,
all misclassified instances are treated with same importance level. But according to
[27], if considered in real life, misclassifying the diagnosis of any disease can lead
to serious result. The cost of misclassifying a patient, for example, diabetic as a
non-diabetic can generate serious consequences. So it should have higher importance.
This concept is implemented in C5.0 by assigning the weights to the instances. These
weights are considered as the cost for misclassifying the instances present in the
data set [27]. Also, C5.0 was incorporated with the ability to process data not
only numeric or categorical but also data that represent dates, time, timestamps,
etcetera [24]. Another significant feature in C5.0 algorithm was that it gives efficient
results also on those data set which are imbalanced. C5.0 is a simple and efficient
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classification algorithm. It can be used for almost any kind of data. C5.0 provides a
robust and highly efficient model for prediction and classification tasks.

1.3.2 Random Forest

The Random forest algorithm was proposed by L. Breiman in 2001, as a general-
purpose method for classification and regression task [50]. It is an ensemble learning
method that generates many decision trees as classifiers and combine their result
to give final prediction [36]. There are two methods applied to generate ensemble
learning models described by [37] and they are sequential ensemble methods and
parallel ensemble methods. In the sequential ensemble method, base learner’s result
is used as feedback to generate learner in next step using the same data, for example
AdaBoost [13]. In parallel ensemble methods, the learning models are generated in
parallel [37], where the base learner is build independent of each other. In random
forest, a parallel ensemble learning method is used to generate the decision trees
which are independent of each other. The process of generating a small subset of the
final learning model, which are the decision tree, is also known as bagging. Bagging
is a concept that is applied using two different techniques, namely bootstrap and
aggregation [37]. Bootstrap is a process of generating separate data set from the
existing one, by randomly picking the rows of data from the original data set. During
this process, the same row can be picked and placed in new data set multiple times,
which is called sampling with replacement [37]. And at the same time, some rows
may not be picked at all, or they are left in the original data set untouched. And
those data are said out-of-bag data or sometimes held-out data. Now, for the process
of generating multiple trees as learners, a different subset of features and instances
are chosen randomly from the bootstrap data set. For example, some trees may
be created using only 2 features and some trees may be created using more than
2 features from multidimensional bootstrap data set. For selecting the best split
attribute among the randomly selected subset of data from bootstrap data set, gini
impurity is calculated, the method used in CART [15]. After generating the learners
or classifiers of the tree with a randomly chosen subset of data set, those trees are
tested for their efficiency using out-of-box data [37]. Out of bag data are those data
which were left in the original data set without being included in the bootstrap data
set. According to [7], there can be 36.8% of out-of-bag data in each base learner. The
efficiency of base learner is estimated by feeding those out-of-bag data into the base
learner. Now when all learners or classifiers are tested with the out-of-bag data set,
by the process of aggregation, that class is chosen as the final predicted class, which
has been predicted by the majority of base learners or classifiers in the model. At this
point, the trees generated cast their vote for specifying any instances belonging to
any class. Random forest is a popular algorithm for performing classification tasks on
large and multidimensional data sets, because of features like being non-parametric,
interpretable, efficient, and also having high prediction accuracy and low processing
speed [49].
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1.3.3 Gradient Boosting
Gradient Boosting is a machine learning algorithm which is based on ensemble
approach of base learner. It was first introduced in 1999 by Stanford University
Professor Jerome H. Friedman [82]. According to Jerome H. Friedman [16], Gradient
Boosting is an algorithm that is used to produce competitive, highly robust, interpretable
procedures for both regression and classification. Gradient boosting was derived
from AdaBoost [51]. And it has been proved that gradient boosting produces most
the efficient results for classification and regression tasks, due to which it has become
one of the most popular algorithm in machine learning domain for classification and
regression tasks on complex data. Gradient boosting algorithm follows the boosting
approach while generating the final model by combining many base learners [30].
The results from each base learner is boosted by multiplying with fixed learning
rate [16] and added to the previously predicted value by the previous base learner.
The result from each base learner is added to generate the predicted value of the
model. The base learners can be defined as the basic building blocks of the final
model. Base learners are also called weak learner as their individual prediction
is assumed to be more than random guess [16]. Gradient boosting model can be
designed with different base learners. According to [40], there are three categories of
base learners, namely Linear models, Smooth models [52], and Decision tree models.
Since decision tree models are widely used as the base learner of gradient boosting,
we will focus on the decision tree based learning model. As the gradient boosting is
used for classification and regression task, it uses different algorithms for both kind
of tasks. To understand the working of gradient boosting algorithm, we will analyze
the algorithm proposed by Jerome H. Friedman for regression and classification tasks
separately. Below is the Gradient Boosting algorithm for regression proposed by J.H.
Friedman [16]. The algorithm is derived from [16].

• Gradient Boosting Algorithm for Regression:

For the convenience, the algorithm is divided into seven steps, step 1, step 2, step 3,
step 4, step 5, step 6, and step 7. We will analyse the each step based on [16].

Input: Data (xi, yi)
n
i=1 and a differentiable loss function L(yi, F (x))

The above expression defines about the data set with of ’x’ variables and
corresponding ’y’ output variable or target class or predicted value of any data
set ranging from ’i’ to ’n’ number. The loss function is used to measure the accuracy
of predicted value. Though there are several loss function used in gradient boosting
and according to [17], the popular ones are least-squares, least absolute deviation,
Huber, and logistic binomial log-likelihood. Here, for regression task least squared
method is used to determine the loss between observed and predicted value.

Step 1 : F0(X) = argminρ

∑N
i=1 L(yi, ρ)
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In the above equation, we defined function F0(X), which actually represents the
first predicted values from the introduced training example. This function can be
said as the function which maps each ’x’ to their corresponding ’y’. Here L(yi, ρ), is a
loss function. The

∑
means that we need to find the sum of residual by subtracting

each observed value,yi with each predicted value ρ. And argmin means that the
minimum value for ρ, which helps to minimize the total sum of residuals. This
minimized value is assigned to F0(X), which will be treated as leaf. Gradient boost
will start inducing the decision tree based on this first minimum predicted value.
This is just a single prediction, and it is treated as a single leaf, which will assign
the same value to all other samples.

Step 2 : For m = 1 to M do :

As we know gradient boosting is an ensemble learning model, and it uses several
base learners, here we need to declare the number of base learners that will be
generated through out the process. Here ’m’ refers to the individual tree generated in
each iteration and ’M’ is the number of trees or base learners that will be generated
through out the process.

Step 3 :ỹi = −[∂L(yi,F (Xi))
∂F (Xi)

]F (X)=Fm−1(X),i=1,N

In this step, negative gradient is calculated which gives the best steepest-descent
direction [16]. However this gradient is defined only at the data points Xi

N
1 and

cannot be generalised to other X-values [16]. The gradient boost is named after
this gradient. To find the steepest slope and the minimum intercept, the function
minimum intercept the −[∂L(yi,F (Xi))

∂F (Xi)
]F (X)=Fm−1(X),i=1,N is partially differentiated with

respect to slope and intercept of all samples in the data set.

Step 4 : am = argminaβ
∑N

i=1[ỹi − βh(Xi; a)]
2

In this step, a regression tree is generated using the residuals value obtained
in step 3, and using them as predicted values. β is the some constant defined as
learning rate for generalization of value at each leaf of tree am. If β is not used then
the new value obtained can over-fit to the training value.

Step 5 : ρm = argminρ

∑N
i=1 L(yi, Fm−1(Xi) + ρh(Xi; am))

In this step, the output values of regression tree, am, generated at step 5 is
determined. argminρ

∑N
i=1 L(yi, Fm−1(Xi) + ρh(Xi; am)) expression says that for

each leaf in new tree we compute an output value ρ, that minimizes the summation
at each leaf.
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Step 6 : Fm(X) = Fm−1(X) + ρmh(X; am)

At this step, we update the approximation Fm(X). Here, h(X, am) is added with
the approximation generated by Fm−1 in previous step. This illustrates the sequential
ensemble learning process. The process from step 3 to step 6 repeats until the value
of m does not equals to M.

Step 7 : end

Next, we will illustrate the gradient boosting algorithm for k-class classification.
The algorithm is taken from [16]. This algorithm is implemented to develop a
gradient-descent boosting algorithm for the k-class problem [16].

• Gradient Boosting Algorithm for Classification

Step 1: FK0(X) = 0, k = 1, K

Step 2: For m = 1 toM do :

Step 3: pk(X) = exp(Fk(X))∑k
l=1 exp(Fl(X)),k=1,K

Step 4: For k = 1 toK, do:

Step 5: ỹik = J - terminal node tree (ỹik, Xi)
N
1

Step 6: γjkm =
(k−1)

∑
Xj∈Rjkmỹik∑

Xj∈Rjkm|ỹik|(1−|ỹik|)
, j = 1, J

Step 7: Fkm(X) = Fk,m−1(X) +
∑J

j=1 γjkm1(X ∈ Rjkm)

Step 8: Stop Algorithm

In the above given algorithm for multi class classification, in step 1, FK0(X)
denotes a function of ”X” for ”K” classes. In the step 2, number of iteration is
declared as M. Initially the value of m = 1, represents that it is the first tree that
will be induced. In step 3, negative binomial log-likelihood function is used as loss
function. At step 4, probabilities of K classes are calculated at each iterations, m, to
predict the corresponding current residuals for each class on the probability scale
[16]. Each of these tree has J - terminal nodes, and their corresponding region is
calculated by using ỹik at step 5. Step 6 updates the values calculated for each region
of tree. The final estimated value at step 7 is used for performing classification task.
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From the above two algorithms, gradient boosting algorithms for regression and
classification, we found that gradient boosting algorithms sequentially produce a
prediction model in the form of linear combinations of base learners, i.e, m trees.
The prediction accuracy of Gradient boosting algorithm is high due to the boosting
technique applied at each base learner generated in every iteration of the process.
According to [48] gradient boosting algorithm provides state-of-the-art prediction
results on several challenging data set and it is regarded as one of the best classification
algorithm we have today.

Generally, there are three types of gradient boosting algorithms categorised
on the basis of data volume they are supplied during the calculation of gradients:
a)Batch gradient boosting b)Mini Batch gradient boosting, and c) Stochastic gradient
boosting.

In batch gradient boosting, the gradient of the cost function with respect to the
parameters of whole training data is calculated in every iteration of tree formation
[56]. This method requires more computational time and resources due this property.
So, this method requires more time during the implementation phase in large data
sets. Where as, in Stochastic gradient descent, this problem is addressed by only
calculating the gradients of the cost function with respect to the parameters of
certain sample of whole data set. But according to [56], Stochastic gradient boosting
also can not converge towards global minima when learning rate is decreased. And,
Mini-batch gradient descent calculates the gradient of the cost functions with respect
to the parameters of ”N” samples from whole data set. This helps to decrease the
computational time and resources required for algorithm.
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1.3. CLASSIFICATION ALGORITHMS

1.3.4 C5.0 Versus Random Forest versus Gradient Boosting
Here we will compare and contrast the algorithms C5.0, Random Forest and Gradient
Boosting on the basis of their working principle and features. The work of compare
and contrast of algorithms is provided in the table below. We have used following
criteria to compare and contrast the algorithms:

• Proposed By : This parameter provides the information about the person who
proposed the algorithm.

• Proposed For : This parameter provides the general information for which the
algorithm was proposed.

• Working Principle : This parameter provides the information about the
principle followed by algorithm to generate the classifier.

• Classifier Produced : This parameter provides the information about the type
of classifiers produced by each algorithm.

• Ensemble Approach : This parameter provides the information about the
ensemble technique used by the algorithms to generate final predicting model.

• Data Input Strategy : This parameter provides the information about the
strategy used to fed data to algorithm.

• Root Node : This parameter provides the information about the technique
used to select the root node for splitting the attributes in data set.

• Efficiency : This parameter gives the information about the general efficiency of
the model (processing time and prediction) generated by using the algorithms.

Based on the above discussed criteria, we have listed the differences between
C5.0, Random Forest, and Gradient Boosting in table 1 below.
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CHAPTER 1. INTRODUCTION

C5.0 versus Random Forest versus Gradient Boosting

Algorithms: C5.0 Random Forest Gradient Boosting
Proposed
By: John Ross Quinlan Leo Breiman Jerome H. Fried-

man

Proposed
For:

C5.0 is proposed
for performing
classification task.

Random Forest is
proposed for classi-
fication and regres-
sion task.

Gradient Boosting
is Proposed for
classification and
regression task.

Working
Principle:

C5.0 is based on
the information
theory in which it
calculates the
information gain
ratio of the
data and performs
the classification
task. It is an
iterative model,
which mea-
ns this algorithm
grows the tree
sequentially.

In Random Forest,
data are sampled
randomly. Gini
index is calculated
from the set of
randomly selected
data while genera-
ting a tree. And
several trees are
produced. Each one
with its predicted
result. The result
which is predicted
by most of the trees
is considered
as the final one.

In Gradient
boosting
gradients are
calculated such
that the difference
between the true
value and the
predicted results
become
minimum.

Classifier
Produced:

C5.0 generates
decision tree
classifiers.

Random Forest
generates the
decision tree based
classifiers and regr-
essors.

Gradient Boosting
can be used to
generate tree-
based,
and linear model
based classifiers
and regressor.

Ensemble
Approach:

C5.0 follows the
boosting techni-
que for generating
decision trees one
after another in
sequence.

Random Forest fol-
lows bagging tech-
nique for gener-
ating the decision
trees.

Gradient Boosting
follows the
sequential
ensemble approach
and uses
both boosting and
bagging technique
to generate
the final model.
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1.3. CLASSIFICATION ALGORITHMS

Table 1.1 continued from previous page
Algorithms: C5.0 Random Forest Gradient Boosting

Data Input
Strategy:

In C5.0, the whole
training data is
supplied to the
algorithm at the
beginning.

Random Forest
supports sampling
technique. So, it
trains each trees
with randomly sele-
cted certain por -
tion of data from
training data set.

Gradient boosting
does not support
bootstrap model,
so all data are
provided to
algorithm at once.
However
stochastic gradient
boosting supports
bootstraping. So,
subsampling
feature is avai-
lable in stochastic
gradient boosting.

Node
splitting
criteria:

C5.0 calculates
the information
gain ratio of
attributes present
in data set
to decide the best
splitting attribute
at each node.

Random forest calc-
ulates the gini index
of features, to decide
the best splitting
attributes present in
the data set.

Gradient boosting
uses the least
square method to
find the attribute
having
minimum squared
error while
selecting the nodes
of the decision tree.

Efficiency:

C5.0 cannot
handle big data
set. Its
classification
accuracy is lower
than that of Rand-
om Forest and
Gradient Boosting
Machines.

Random Forest is
considered to be
more efficient than
C5.0 in terms of
prediction accuracy.
But it is less
accurate than
Gradient Boosting
Machine.

Gradient Boosting
is the most
advance
algorithm in terms
of handling big
data, training
speed,
and performance.

Table 1.1: Table summarizing the differences between
C5.0, Random Forest, and Gradient Boosting.
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CHAPTER 1. INTRODUCTION

1.4 XGBoost
XGBoost is an open-source package implementing a gradient boosting principle for
the classification, regression, and ranking tasks in machine learning. It was proposed
by Chen and Gustrin [54] in 2016. XGBoost stands for extreme gradient boosting
algorithm [53] which is an extended version of gradient boosting algorithm and it is
based on the same principle as gradient boosting algorithm for creating base learners
and developing them into assembled model for classification or regression. XGBoost
uses a sequential ensemble approach to generate an additive classifier which is also
called boosting technique and it is used for supervised machine learning problems.
The XGBoost’s learning function can be represented as the regularized objective
function. This function is the minimized form of functions used to create a model
using XGBoost. The objective function is defined to measure how well the model
performed on the prediction task. The regularized objective function [54] is given as:

L(φ) =
∑

i l(ỹi, yi) +
∑

k Ω(fk)

Where l(ỹi, yi) represents the loss function. Though there are many loss functions like
the hinge loss, the logistic loss, the cross entropy loss, and exponential loss [80], that
can be used in XGBoost to measure the residuals, but usually mean squared error
and logistic loss functions are used [45]. And

∑
k Ω(fk) represents the regularization

term that helps to prevent the over-fitting in training data set. By this function, the
predicted value at each leaf is minimized by some scale, which creates the opportunity
for future models in ensemble to predict the correct value. The goal of the learning
model is to minimize the loss and hence increase the efficiency of the model.

XGBoost is considered to be much more efficient than gradient boosting machines,
in terms of processing speed and prediction accuracy. According to [44] it is ten
times faster than gradient boosting due to the feature scalability. There are several
other features [54] in XGBoost which provides support for high scalability. Here
we have discussed some features provided by [54] in short. XGBoost has shrinkage
and column sub-sampling features, which helps to prevent over-fitting. Shrinkage
scales newly added weights, at leaf after each step of tree boosting, by some factor
η [54]. When the final weight at a leaf, which is the predicted weight of each tree,
is reduced, the residual increases and this leads new trees to improve the future
prediction. In column sub-sampling, subsets of features are randomly picked so
that algorithms don’t need to consider all features present on the data set while
training the model. And column sub-sampling also contributes on decreasing the
training time required. For finding the best split candidate in a data set, XGBoost
implements an exact greedy algorithm and approximate algorithm. The exact greedy
algorithm is used when a data set is located as a whole inside a single location. And
the approximate algorithm is used when computation for the best splitting feature
is needed to perform in distributed locations. Also, another important feature of
XGBoost is that it is aware of sparse data type [54]. XGBoost is best suitable for high
volume complex data with multidimensional feature vector. And in real life these
type of data set have more sparse data. When XGBoost is fed with sparse data like
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1.5. LIGHTGBM

data sets having multiple missing attributes, frequent zero values, a separate path is
declared from the root node of the tree to pass those instances in relevant direction.
Lastly, the most important feature of XgBoost due to which its performance speed
is also high is that it supports out-of-core computations. In this feature, those data
which cannot be fitted into computer primary memory at once are divided into
blocks and are stored in the different locations of secondary memory locations. When
they are needed during the process of execution, they are loaded from the secondary
memory locations. According to [54], XGBoost package is widely popular in machine
learning and data mining applications for classification and regression tasks since it
provides a state-of-the-art solution using a minimal amount of resources.

1.5 LightGBM
LightGBM is a machine learning software package for implementing the gradient
boosting algorithm for classification, regression and ranking tasks. It was proposed
by Guolin Ke et al. [60]. It also works on the same principle of gradient boosting, in
which XGBoost works. It is also assigned a loss function whose gradient is calculated
with respect to the features to determine the new prediction.

It is the improved version of XGBoost in terms of speed and accuracy [60]. When
a large volume of data is needed to handle with multiple features, in XGBoost to
determine the best split point among all feature, every data present in the particular
features are needed to be scanned which is very time-consuming [60]. To eliminate
this problem Guolin Ke et al. proposed two novel techniques as Gradient-based
one-side sampling (GOSS) and Exclusive Feature Bundling (EFB) for LightGBM. In
GOSS for calculating the information gain to find the best split point, only those
data points whose gradients are higher are considered. The other data with lower
gradients are randomly sampled and they are multiplied with a constant value so
that data having lower gradients can influence in finding the best split point. This
approach results in higher speed in the process of finding best the split point. Another
improvement made by Guolin Ke et al. for LightGBM is EFB. In high dimensional
data set, there can be huge sparsity. Features with high sparsity can only increase
the resource requirements while training. To eliminate this problem, if such features
are excluded from data set, then it may also influence during computation of the
best split point. In LightGBM, this problem is tackled by implementing EFB, in
which mutually exclusive features are bundled together [60] to reduce the number
of features, which adds to the speed and efficiency of the algorithm. Due to these
features in LightGBM, according to [60], the overall training speed of LightGBM is
20 times faster than other conventional gradient boosting decision trees. LightGBM
is also a new gradient boosting based algorithm which is gaining huge popularity in
the machine learning community for classification and regression tasks.
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CHAPTER 1. INTRODUCTION

1.6 CatBoost
CatBoost is an open-source machine learning library implemented with the gradient
boosting principle for the classification, regression and ranking task. CatBoost or
Categorical Boosting is proposed by Dorogush et al. [67] for classification, regression
and ranking task, with our user requirement to change categorical features into
numerical during data pre-processing by using the encoding technique. CatBoost
can be used with data sets having both numeric and categorical features. According
to Dorogush et al. [67], to deal with the categorical value CatBoost uses a strategy,
which helps to reduce over-fitting. In this strategy in CatBoost, features are permuted
or shuffled randomly. And for each example, an average label value for example with
the same category value, placed before the given one in the shuffled list, is calculated.
During the training of model, each example is replaced with the average label value.
Since it follows ensemble approach, while generating a new decision tree, permutation
is performed again on the data set and whole process of of calculating the numerical
value of categorical example is repeated. According to [67], another powerful and
effective method implemented in CatBoost for converting categorical features to
numerical is by calculating the frequency of examples present in the data set and
replacing it with counted value in training process. This feature also enhances the
performance of the algorithm.

Another important feature of CatBoost is Feature Combination [67]. In Feature
combination, CatBoost generates more powerful features by combining the features
available in the data set. Since all present features can not be combined with each
other, it will be computation overhead, CatBoost combines the feature in greedy way.
That means CatBoost does not combine the feature for the first split in the tree. For
the next split, CatBoost combines all combinations and categorical features present
in current tree with all categorical features in data set [67]. According to [67], another
improvement made in CatBoost which made it better than other gradient boosting
decision trees like XGBoost and LightGBM is ”Fighting Gradient Bias”. In CatBoost,
unlike XGBoost and LightGBM, for building the tree structure, modified version
of gradient based decision trees is used and for setting the leaf values of built tree,
traditional gradient boosting decision trees is used. It is explained in brief in [67].
Due to these features, Dorogush et al. claims that CatBoost outperforms the existing
state-of-the-art libraries like XGBoost and LightGBM in terms of computational
speed and accuracy, in their work published in [67].
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1.7. HYPER-PARAMETERS

1.7 Hyper-parameters
In machine learning algorithms, hyper-parameter is a parameter whose value is used
to control the learning process [89]. In other word, hyperparameter determines the
architecture of the machine learning model. In case of decision tree based model,
parameters like number of leaves, depth of tree, loss function used to measure the
efficiency of prediction, and et cetera determines the model architecture. For example,
during the process of generating decision tree, if it becomes too wide or too deep,
then there can be chances of over fitting tree on training instances. To minimize such
challenges, size of the tree can be controlled by using the pruning method [11]. Here,
size of tree, number of leaves, depth of tree and pruning factor can be termed as
parameters of decision tree. Machine learning algorithms like C5.0, Random Forest
and Gradient Boosting have a large set of hyperparameter from which best set of
parameters are needed to be chosen for the high performance of algorithm [69][88][38].
Some of the hyper parameters used in C5.0 are maximum tree depth, number of
leaf. Similarly some hyper parameters used in Random Forest are booststrap model,
split criteria, maximum features used to train a tree, minimum number of leaf and
like wise, some hyper parameters used in Gradient Boosting are number of trees or
estimator in the model, the learning rate of the model, the maximum tree depth,
the minimum tree weight and et cetera. We will discuss about the some important
hyperparameters of xgboost, LightGBM and CatBoost, which we have selected for
tuning our models. These parameters are given below.

1. Learning Rate (learning_rate, eta, shrinkage_rate)
As we know xgboost, LightGBM and CatBoost are implemented with gradient
boosting algorithm [54], so they uses sequential ensemble method to generate
the final prediction. In sequential ensemble method, many base learners or
trees are generated. The result or prediction given by each tree for some
specific class is multiplied with some fixed rate and added to another tree’s
result. The rate by which the result of each tree is multiplied is known as the
learning rate. Learning rate is used to specify the steps at which gradients are
calculated. It can also be understood as the ratio or the interval after which
the algorithm checks for the total loss obtained after making prediction at that
point. Learning rate for xgboost, LightGBM and CatBoost is selected between
0 and 1. Generally, the default learning rate of xgboost and LightGBM is 0.1,
and default learning rate of CatBoost is 0.03 except for multiclass, logloss and
root mean squared error loss function. If the learning rate is set to be low, it
increases the training period. So, to decrease the time, we can increase the
learning rate and decrease the number of trees.

2. Number of Trees (n_estimators, num_iterations, iterations)
Gradient boosting algorithms generate a number of sequential base learners,
and multiply the output of each learners with fixed learning rate and gives the
output as predicted value. If the gradient boosting algorithm follows tree based
module, then those base learners are called trees. In other words, number
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and Gradient Boosting have a large set of hyperparameter from which best set of
parameters are needed to be chosen for the high performance of algorithm [69][88][38].
Some of the hyper parameters used in C5.0 are maximum tree depth, number of
leaf. Similarly some hyper parameters used in Random Forest are booststrap model,
split criteria, maximum features used to train a tree, minimum number of leaf and
like wise, some hyper parameters used in Gradient Boosting are number of trees or
estimator in the model, the learning rate of the model, the maximum tree depth,
the minimum tree weight and et cetera. We will discuss about the some important
hyperparameters of xgboost, LightGBM and CatBoost, which we have selected for
tuning our models. These parameters are given below.

l. Learning Rate ( learning_rate , e ta , shrinkage_rate)

As we know xgboost, LightGBM and CatBoost are implemented with gradient
boosting algorithm [54], so they uses sequential ensemble method to generate
the final prediction. In sequential ensemble method, many base learners or
trees are generated. The result or prediction given by each tree for some
specific class is multiplied with some fixed rate and added to another tree's
result. The rate by which the result of each tree is multiplied is known as the
learning rate. Learning rate is used to specify the steps at which gradients are
calculated. It can also be understood as the ratio or the interval after which
the algorithm checks for the total loss obtained after making prediction at that
point. Learning rate for xgboost, LightGBM and CatBoost is selected between
0 and l. Generally, the default learning rate of xgboost and LightGBM is 0.1,
and default learning rate of CatBoost is 0.03 except for multiclass, logloss and
root mean squared error loss function. If the learning rate is set to be low, it
increases the training period. So, to decrease the time, we can increase the
learning rate and decrease the number of trees.

2. N u m b e r of Trees (n_es t imators , num_i terat ions , iterations)

Gradient boosting algorithms generate a number of sequential base learners,
and multiply the output of each learners with fixed learning rate and gives the
output as predicted value. If the gradient boosting algorithm follows tree based
module, then those base learners are called trees. In other words, number
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of trees simply denotes the number of boosting iterations or number of trees
build during the whole boosting process. In xgboost, these number of trees
are represented as ’n_estimators’. The default number of trees generated in
xgboost is 100. Generally, We can select the number of trees in xgboost from
100 to 5000. But in LightGBM there is no limit in maximum number of trees.
Similarly, in CatBoost, the default number of trees is 1000 and it also does not
have any maximum limit for this parameter.

3. Maximum depth (max_depth, depth)

The depth of any decision tree can be defined as the distance from root node
to end leaves. The distance basically should be measured in terms of levels
from where the decision branches split up. In other words, the total number of
splitting nodes from root node of to the final classification leaf of the decision
tree. For example, lets consider that there are 3 predictors (X, Y, Z) and one
target feature (P) having binary target class as 0 and 1. Now lets say we found
X to be the best attribute to be a root node and remaining Y and Z are split
from the node X. Now again, Y and Z will be split into two leaf node predicting
the class 0 or 1 as their final outcome. Here the total length or depth, from
root node to leaf will be 2. So, it can be said that the maximum depth of tree
can be one less than the total number of features. But practically it is not best
practice to increase the depth of tree, which increases the complexities and risk
of over-fitting. So, the maximum depth needs to be find out by cross validation
method or tuning process. In xgboost, maximum depth is represented as
’max_depth’. In xgboost and CatBoost, the default value of depth is 6.

In LightGBM tree grows leaf-wise. This means that instead of growing tree in
layer-wise like in XGBoost and CatBoost, tree grows from the leaf of decision
trees. So depth is determined by the number of leaf as well. In LightGBM the
default value of depth is -1. Here -1 denotes that tree can grow to any depth
according to data it is being trained with, if it is not controlled by assigning
some integer value to its parameter max_depth [61]. The more tree grows
depth-wise, there will be more chances of overfitting. So, this parameter is
tuned during the training process in our experiment.

Figure 1.1: An image of a level-wise tree growth
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Figure 1.2: An image of a leaf-wise tree growth [62]

4. Minimum child weight

While forming decision tree, after root node, many different child nodes are
formed. After child nodes, leaf nodes are formed. If no threshold is set for
further splitting of child node, the tree will grow until all target attributes
become leaf node. This may increase the complexity of tree and results in
overfitting. So we can set some threshold to further split the node, if it has
minimum number of instances equal to the threshold set. This is called to be
minimum child weight.

5. Gamma

Gamma is a regularization parameter that is used in xgboost [54] for determining
whether to prune the particular leaves from tree or not. In xgboost, for pruning,
a random value for gamma (γ) is set. This value is subtracted with the gain,
which is previously calculated, to find out the best split. If the difference turns
negative, then that particular leaves is pruned, otherwise, it is left as it is.
Gamma helps to control the overfitting of tree by pruning and making tree less
sensitive to new instance in data set.

6. Subsample and Colsample

In normal gradient boosting algorithm,the whole data set needs to be fetched at
once. This increases the training time and also decreases the efficiency of model
by over generalizing the model. According to [18], this can be improved by
inserting only some random chunk of data from whole data set in each iteration
at a time. The process of dividing the data set into smaller sets or chunks
is called subsampling in xgboost. Similarly, colsample means the randomly
picked set of column from the subsample while generating a particular base
learner (tree).

We will tune both subsample and colsample in the range of 0.1 to 1. Here, the
float number declared for the range, represents the ratio of randomly selected
set of data to the whole data set assuming 1 for the whole data set.

7. Regularization parameters (α and λ)
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Alpha (α) and Lambda (λ) are another set of regularization parameters after
gamma. These parameters help to control the overfitting problem in xgboost
model. If the data set that is used to train the model has multiple features,
then those features can highly influence the model while training which can
lead to overfitting. To avoid this problem, if some of the features are dropped,
then some vital information may get lost which can results to under fitting.
In this case, we can decrease the weights by penalizing the multiple features
by decreasing their value in same proportion. This is called regularization.
For decreasing the weights of node, xgboost uses λ to divide the square of the
sum of residuals ending in a node for finding the weight of that node. score or
weight of node = (sum of residuals)2

number of residuals+ λ

The total gain or weight is the sum of residuals divided by their number by
adding with λ as shown in the above equation for every node, in root node, left
node and right node. λ in the equation helps to minimise the weight or score of
node and hence decreases the total gain. When gain is decreased, the pruning
decision at each node become less complex for algorithm. The equation for
calculating gain is given as: Gain = weight of left node + weight of right node
- weight of root node.
Alpha (α) and Lambda (λ) are also called L1 regularization and L2 regularization
terms respectively. L1 and L2 both penalises the weights in xgboost.

8. Number of leaves (num_leaves)
LightGBM adds nodes to trees based on the gain from adding that node,
regardless of depth. This parameter is responsible for deciding the number of
nodes in a tree. The range of this parameter is from 1 to ∞. Its default value
in gradient based LightGBM is 31.

9. Minimum gain to split (min_gain_to_split)
When adding a new tree node, LightGBM chooses the split point that has
the largest gain. Gain is basically the reduction in training loss that results
from adding a split point. By default, LightGBM sets min_gain_to_split to
0.0, which means “there is no improvement that is too small”. However, in
practice you might find that very small improvements in the training loss don’t
have a meaningful impact on the generalization error of the model. Increase
min_gain_to_split to reduce training time.

10. Minimum data in a leaf (min_data_in_leaf)
Minimum number of observations that must fall into a tree node for it to be
added. Its default value is 20 in LightGBM.

11. Random strength (random_strength)
Random strength is the amount of randomness to use for scoring splits when
the tree structure is selected. This parameter is used to control the overfitting
of CatBoost model. The value of this parameter is used when selecting splits.
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On every iteration each possible split gets a score (for example, the score
indicates how much adding this split will improve the loss function for the
training dataset). The split with the highest score is selected. The scores have
no randomness. A normally distributed random variable is added to the score
of the feature. It has a zero mean and a variance that decreases during the
training. The value of this parameter is the multiplier of the variance.

12. Bagging temperature (bagging_temperature)
This parameter defines the settings of the Bayesian bootstrap to assign random
weights to objects. It is used by default in classification and regression modes
in CatBoost.

13. Border Count (border_count)
This parameter determines the number of splits for numerical features in
CatBoost. This helps to control the overfitting of model.

14. Tree growing policy By default, CatBoost uses symmetric trees, which are
built if the growing policy is set to Symmetric Tree. Such trees are built level by
level until the specified depth is reached. On each iteration, all leaves from the
last tree level are split with the same condition. The resulting tree structure is
always symmetric. Symmetric trees have a very good prediction speed (roughly
10 times faster than non-symmetric trees) and give better quality in many
cases. However, in some cases, other tree growing strategies can give better
results than growing symmetric trees.

1.8 Hyperparameters Search Method
The performance of machine learning algorithms depends on the set of hyper
parameters used [63]. So, selection of appropriate hyper parameter values is a
crucial task during the learning model generation. The process of finding the best
set of hyper parameters that produces the best result is also called hyper parameter
optimization. So, for finding the best value of any hyperparameters requires multiple
trial with different values. But for performing multiple trial, it requires lot of human
effort and time. To overcome this inefficient approach of selecting hyper parameters,
methods like grid search, random search, and bayesian optimization are used [65].
We will discuss about each in brief below.

1.8.1 Grid Search
In grid search method [78], each and every hyperparameters declared with values
are tested in combining each other. That means for example M and N are two
hyper parameters. M is declared with 3 different values and N is declared with
4 different values. Now In grid search all these values are combined turn by turn
and the train and test is performed at least for 12 times. This process gives the
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best set of hyper parameters but it requires a lot of time since after combining the
hyperparameters, many different sets are generated. This method is costly in terms
of computational resources and time, but it checks each and every values from search
space. So, for finding the best value of hyperparameters, we followed this method in
our experiment.

1.8.2 Random Search
In random search method, [34] explains that the time for selecting best combinations
of hyper parameter is less due to its character of randomly selecting the values from
hyper parameter declared space. Unlike grid search method, random search randomly
selects the combination of hyperparameters and perform operation on it. According
to [34] random search yields the same results like grid search in much less time, but
sometime it can miss the value from declared space.

1.8.3 Bayesian Optimization
Bayesian optimization [12] [47] is also used for finding the best set of hyper parameters.
This technique creates the probabilistic model of the function being optimized and
then leverages this model to decide where next to evaluate the function [65]. In this
method information about the past output of combinations of hyper parameters can
be incorporated which increases the computation speed of algorithm, since it don’t
need to combine those hyper parameters that have already been combined.

1.9 Automated Machine Learning (AutoML)
In the automated machine learning (AutoML) approach, feature engineering, base
learner selection and the hyperparameter optimization of base learner are done
automatically and this approach has been proven to be efficient on those models
which require a wide range of hyperparameter [79]. Unlike in AutoML, algorithms like
Random Forest, XGBoost, LightGBM, and CatBoost, require human supervision for
data processing, feature engineering, selecting base model, optimizing hyperparameters
and prediction result analysis of the model. For optimizing hyperparameters, mostly
Grid search and Random search are used, which requires human effort for declaring
hyperparameter values in search space and selecting the best result from their output.
Some common automatic machine learning tools which are in practice are Auto Weka
[79], Auto-Sklearn [79], H2o [84], Hyperopt-Sklearn [42], TPOT (The Tree-Based
Pipeline Optimization Tool) [57], AzureML [58], and et cetera.

So, Automatic hyperparameter optimization is useful in reducing human effort to
tune the hyperparameters of the model, which enhances the performance of machine
learning algorithms, and also hyperparameter optimization is more reproducible than
a manual search [79]. Also, in automated machine learning, it is not required to
explicitly perform data preparation tasks like one-hot-encoding, and filling missing
values. These sorts of tasks are automatically handled by an algorithm implementing
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series of steps for the task through pipeline Another important benefit of the
automated machine learning process is that it can be used by anyone from machine
learning experts to naive users. Automated machine learning makes it possible to
generate the best machine learning model with little knowledge about the domain.

Figure 1.3: The common automatic machine learning pipeline [81]

According to [81] most automatic machine learning techniques are implemented
through a pipeline having different components as shown in figure 3. In each pipeline
series of actions are done. In the figure, data pre-processing, and feature engineering
is implemented in the first component. Task such as identifying data types, data
size, target attribute, imputing missing values, calculating the relevancy of any
feature, addition or removal of features, et cetera are done. Based on the information
gathered from data pre-processing and feature engineering component, tasks such as
model selection, hyperparameter optimization, are done in the second component.
For hyperparameter optimization different automatic machine learning framework
follows different technique. For example, Auto-Weka uses sequential model-based
algorithm configuration (SMAC) [33], Auto-sklearn utilizes SMAC3, H2O-AutoML
utilizes random search for selecting hyperparameters from search space. After data
pre-processing, feature engineering, model selection, hyperparameter optimization
and modelling, the performance results are visualized using different visualization
methods. For example, H2O visualizes its results through a graphical user interface
in a dashboard.
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feature, addition or removal of features, et cetera are done. Based on the information
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model selection, hyperparameter optimization, are done in the second component.
For hyperparameter optimization different automatic machine learning framework
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Chapter 2

Analysis

2.1 Research Question
The topic of our study was ”Comparative Analysis Of Classification Accuracy For
XGBoost, LightGBM, CatBoost, H2O, and Classifium.”

For getting the optimal accuracy from manually tuned XGBoost, LightGBM and
CatBoost we implemented hyperparameter tuning pipeline, which we will discuss
in the Implementation chapter of this document. For automatic machine learning
algorithm H2O and Classifium, they are provided with their built-in pipeline for data
pre-processing and hyperparameter tuning. During our study we were interested to
find out how well the automatic hyperparameter tuning pipeline of Classifium
performs when compared with the manually tuned XGBoost, LightGBM, and
CatBoost in terms of classification accuracy. And also, how well it can perform
compared with another automatic machine learning algorithm like H2O provided
with its own pipeline for tuning hyperparameters of algorithm.

Based on the scope of our project, the following research question is formulated:

• RQ1: Can an automated machine learning approach like Classifium generates
the classification results comparable with the results generated by the manually
and carefully tuned gradient boosting machine learning libraries like xgboost,
LightGBM, CatBoost and automatic machine learning library H2O?

2.2 Related Work
For making feature extraction, feature engineering, model building and tuning,
automated machine learning approaches provide a platform, where these tasks are
automatically done by the algorithm itself through pipelines. It provides ease for
novice users to work with machine learning problems and in that way democratize
the machine learning solutions for everyone. Automated machine learning has been
in practice and much research work is going on in this field. Here we have briefly
discussed some automated machine learning platforms that are in practice.
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discussed some automated machine learning platforms that are in practice.
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Auto Weka [79] is an automated machine learning library in which machine
learning model selection and hyperparameter optimization of those models is done
automatically. It uses the Combined Algorithm Selection and Hyperparameter
optimization (CASH) [79] algorithm for model selection, hyperparameter optimization
and feature selection. In Auto Weka, [79] authors implemented the Bayesian
optimization technique to automatically select base learners and hyperparameters
already available in the library of WEKA [26] which is a data mining software
package. The base learner algorithms in auto weka are Bayes net, Decision stumps,
Decision table, J48, Linear regression M5P and multilayer perceptron. But it does
not have gradient boosting based algorithms as base learners.
H2O [84] is also an auto-machine learning tool which is used to select the best
machine learning algorithms like linear regression, gradient boosting, random forest,
deep neural network and et cetera and tune their hyperparameters automatically for
given data. Along with other algorithms, H2O has incorporated xgboost as its base
learner, but not LightGBM and CatBoost.

Auto-Sklearn [79]is another AutoMl method that searches for the best combinations
of algorithms and hyperparameters from the search space. According to [79], this
method is better than Auto Weka and Hyperopt-Sklearn in terms that in this method
results of tuning performed on similar data in past can be incorporated.
But Auto-Sklearn does not have xgboost, LightGBM and CatBoost as its base
learners.

Auto hyperparameters tuning algorithms are essential components of any automated
machine learning library. Addressing this requirement, for finding the best configurations
of the algorithms and hyperparameters of Scikit-learn machine learning library,
Hyperopt-Sklearn [42] is proposed. It automatically searches the algorithms with
their hyperparameters in the search space and combines them to represent a single
hyperparameter optimization problem [79].

For auto-tuning the hyperparameters [77] proposed a simple adaptive random
search strategy. Authors compared this strategy with other optimization algorithms
like L-SHADE and random search algorithm by running 11 different data set
on XGBoost algorithm and found that this strategy equally optimized the hyper
parameters of algorithm like L-SHADE and random search algorithm does.
Autoxgboost [73] is also an automl method that follows the series of steps to perform
auto-tuning of hyperparameters. This method or pipeline is implemented to tune
hyperparameters, threshold optimization and encoding of categorical features.
Likewise for tuning the hyperparameter of XGBoost, [70] used a framework based
on Bayesian optimization principle, called Hyperopt.

Till now we have discussed about some of the research work done in the field
of automatic machine learning algorithm and automatic hyperparameter searching
and optimization algorithms. Since, gradient boosting decision trees are more
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effective in solving machine learning problems [22], [32], our study is more focused on
comparing manually tuned gradient boosting decision tree-based libraries, XGBoost,
LightGBM and CatBoost, with the automated machine learning methods like H2O
and Classifium. XGBoost, LightGBM and CatBoost are the latest state of the art
algorithms implementing gradient boosting techniques.

2.3 Related Comparative Work
To our best knowledge, very less study has been done on comparative analysis
between new gradient boosting libraries, XGBoost, LightGBM and CatBoost for
their performance. Here we are discussing few research works which have been done
comparing XGBoost, LightGBM and CatBoost and automated machine learning
library in terms of classification accuracy.

In ”CatBoost : Gradient boosting with categorical feature support” [67], Dorogush
et al., performed a comparative analysis between the latest implementation of gradient
boosting decision tree algorithms, CatBoost versus XGBoost and LightGBM. For the
comparison task, [67] had taken 8 different public data set from the UCI repository.
Those data set had a sufficient amount of categorical attributes and CatBoost was
purposed to handle the categorical attributes, without converting them to numerical
using an encoding technique. While comparing the performance between these
algorithms, they have developed two sets of models for each algorithm. One with
hyperparameters tuned and another with default hyperparameters set. During
this work, they have not explained about the implementation of hyperparameter
optimization pipeline in [67].
From comparison results, [67] claims that CatBoost performed better than XGBoost
and LightGBM in terms of lower log loss error.

Similarly, in ”A comparative analysis of gradient boosting algorithms” [90] has
performed extensive comparison tests among XGBoost, LightGBM and CatBoost
to analyze their performance accuracy using 28 different data sets from the UCI
repository. From this comparative study, they conclude that CatBoost outperformed
XGBoost and LightGBM in terms of accuracy. LightGBM outperformed XGBoost
and CatBoost in terms of training time. And XGBoost performance accuracy and
training time was found to be in between of CatBoost and LightGBM result.
Also, in [90] authors mention that the hyperparameters of comparative models were
tuned using the grid search method. But they have not mentioned the implementation
of hyperparameter tuning pipeline.

In another similar work by Essam AL Daoud, ”Comparison between XGBoost,
LightGBM and CatBoost using home credit data set” [74], the author concludes that
LightGBM outperformed XGBoost and CatBoost in terms of accuracy and training
time. He also argues that the results obtained from his work can not be generalised
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for other data sets.

In ”Comparative analysis of gradient boosting algorithm for landslide susceptibility
mapping”, [85] performed a comparative study on four different gradient boosting
algorithms, Gradient Boosting Machine, XGBoost, LightGBM and CatBoost for
modelling landslide susceptibility. This study [85] concludes that CatBoost model
had the highest prediction accuracy. After CatBoost, XGBoost, LightGBM and GBM
were ranked from top to bottom according to their performance accuracy. During
this work [85] mentioned that he has applied the grid search method for tuning
parameter of GBM and XGBoost. But parameters of LightGBM and CatBoost were
tuned by trial and error method.

In [83] the author evaluated CatBoost and XGBoost on the task of Medicare
fraud detection and report performance in terms of running time and Area Under
the Receiver Operating Characteristic Curve (AUC). And concludes that with highly
imbalanced and numerical data set CatBoost and XGBoost performed nearly the
same in terms of AUC.

Similar to latest gradient boosting algorithms, there has been very few comparative
analysis between different automatic machine learning tools. Here we have discussed
only one analysis study conducted to compare different automatic machine learning
algorithms.
In ”Towards Automated Machine Learning: Evaluation and Comparison of AutoML
Approaches and Tools”, [81], a comparative analysis is conducted to evaluate the
different automatic machine learning approaches like Auto-WEKA [41], auto-sklearn
[76], TPOT [57], and H2O AutoML [84] with 300 different data sets. This study [81]
has concluded that H2O AutoML performed slightly better in terms of accuracy for
binary classification and regression than other automl tools.

To our best knowledge, there has not been any comparative study done between
manually tuned XGBoost, CatBoost and LightGBM, implemented with hyperparameter
optimization pipeline, and AutoML H2O with automatic machine learning algorithm
Classifium.
Our research will be focused on fulfilling this gap.
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Chapter 3

Planning

3.1 Methodology

In this section, we present the methodology we followed to carry out our experimentation
in details.
According to the objective of our study, we first manually tuned xgboost, LightGBM
and CatBoost following the hyperparameter tuning pipeline and using the gridsearchcv()
function of scikit learn library with seven different data sets. After obtaining
the results from manually tuned algorithms, we then ran Classifium, which is an
automated machine learning algorithm used for classification tasks, with the same
training and testing data sets and obtained the result. Again, we ran another
automated machine learning algorithm called H2O with the same data sets. Then
we tabulated the results of all algorithms and compared the findings.
Throughout the process of manual tuning xgboost, LightGBM and CatBoost, we
followed a series of steps where different kinds of hyperparameters were tuned. We
call these steps as pipeline. The same pipeline was used by [55] on their work and
found impressive results. For finding the best value of hyperparameters from declared
search space, we used the gridsearchcv() function of the scikit learn library. We
declared the values in the grid. When the gridsearchcv() function returned the value,
we again searched for best fit declaring a new grid containing the last best value and
its closest lower and upper value.
We took seven different data sets from the HIOF repository maintained by Prof.
Roland Olsson for building classification modules. These data sets are explored in
detail in a later section. Here, we will discuss the hyperparameter pipeline that we
followed to tune xgboost, LightGBM and CatBoost.
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3.2 Hyperparameter optimization pipeline for
Xgboost

At the beginning, we declared a xgboost classifier function with hyperparameters
having default values. The detail about the function and its hyperparameters are
given in the appendix of this document. The default values were adjusted throughout
the tuning process.
Series of steps or pipeline we followed to tune xgboost:

• Step 1 : Tune the number of iterations
The number of iteration was tuned along with the learning rate.
The function was updated with the new value of estimators and learning rate
and proceeded to step 2.

• Step 2 : Tune max_depth and min_child_weight
In the second step of pipeline, we tuned max_depth and min_child_weight.
The best-fitting value was updated in the function. And proceeded to step 3.

• Step 3 : Tune Gamma
In the third step, the value of gamma was tuned and the best value was updated
in the function.

• Step 4 : Re-calibrate the number of iterations
After updating the xgboost classification function with the best value of
hyperparameters obtained so far from steps 1, 2 and 3, we again tuned the
number of iterations.
After tuning the number of iterations from this step, we updated the function
once again with a new value for the number of iterations and moved to step 5.

• Step 5 : Tune regularization parameters
At this step, we tuned regularization parameters (l1 and l2 parameters). And
updated the function with a new value of regularization parameters and moved
to step 6.

• Step 6 : Reducing learning rate
This was the last step of our pipeline for tuning hyperparameters of xgboost.
When all hyperparameters were tuned up to step 5, we again tuned the learning
rate. At this time, we checked whether it best fit will lower value than present
value or not.
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3.3 Hyperparameter optimization pipeline for
LightGBM

At the beginning, we declared LightGBM classifier function with hyperparameters
having default values. For tuning the LightGBM we followed the similar pipeline
which we had followed for tuning xgboost. We will discuss the series of steps or the
pipeline in this section that we have proposed here based on the documentation and
the related work.

• Step 1 :Tune number of estimators and learning rate
The number of estimators were tuned along with the learning rate.
The classification function was updated with the new value of estimators and
learning rate and proceeded to step 2.

• Step 2 : Tune maximum depth and minimum gain to split
After tuning the learning rate and the number of estimators, we tuned maximum
depth and minimum gain to split.
The best value of these two hyperparameters obtained at step 2 is updated in
the classification function and moved to step 3.

• Step 3 : Tune minimum data in leaves and number of leaves
At step 3, we tuned minimum data in leaves and number of leaves.
After tuning these two parameters, the classification function was updated
with the best value of these two hyperparameters.

• Step 4 : Re-calibrate the number of estimators
After step 3, we re-tuned the number of estimators of classification models
which were trained with big data sets.

• Step 5 : Tune bagging fraction and feature fraction
After step 4, we tuned the bagging fraction and feature fraction of our
classification model with the updated classification function.

• Step 6 : Tune regularization parameters (lambda_l1 and lambda_l2). After
step5 we tuned regularization parameters. This was the last step of our pipeline
for tuning the LightGBM.
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3.4 Hyperparameter optimization pipeline for
CatBoost

From the official documentation of CatBoost, https://CatBoost.ai/docs/con
cepts/parameter-tuning.html, we followed the guidelines for tuning CatBoost
classification models. It is claimed on their documentation that CatBoost can
be tuned to an optimum level with few sets of hyperparameters. Its default
value for other hyperparameters is set such a way that they applicable for
any data sets. So we proposed the series of steps as pipeline for tuning the
hyperparameters of CatBoost as described below.

• Step 1 :Tune number of estimators and learning rate
The number of estimators was tuned along with the learning rate.
The classification function was updated with the new value of estimators and
learning rate and proceeded to step 2.

• Step 2 : Tune depth of the tree
After tuning the learning rate and the number of estimators, we tuned the
maximum depth of the tree.
The best value of depth hyperparameter obtained at step 2 is updated in the
classification function and moved to step 3.

• Step 3 : Tune l2 leaf regularization function
At step 3, we tunedthe regularization function named as l2_leaf_reg.
After tuning these parameters, the classification function was updated with
the best value of these parameters.

• Step 4 : Tune random strength
After step 3, we tuned the random strength parameter of CatBoost. And after
obtaining the best value of this hyperparameter, we updated the classification
function and moved to step 5.

• Step 5 : Tune border count
In this step, we tuned the border count parameter. Generally, the default value
of this parameter gives the best result. But we chose this parameter because
of its properties; since its value could influence the training time.

• Step 6 : Tune bagging temperature
After step5 we tuned bagging temperature parameters.

• Step 7 : Re-calibrate iterations and learning rate
After tuning all hyperparameters from step 1 to step 6, we re-calibrate these
two hyperparameters again at last.
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3.5 Data Sets
In our experiment, we used seven different data sets from UCI data repositories,
available in csv (Comma Separated Value) format. Below is the table illustrating
the brief information about the data sets we have used.
Each data set was divided into two equal portions as training and testing sets for
training a classification model and testing its classification accuracy in unseen data
sets.

Data Sets
Number of
Training

Number of
Testing Classification

TypeRows Columns Rows Columns

Adult 24420 15 24420 15 Binary

Bank 20593 21 20593 21 Binary

Dota 51471 117 51471 117 Binary

Flavours of
Physics 33775 51 33775 51 Binary

Forest Cover
Type 290505 55 290505 55 Multiclass

MiniBooNE 65031 51 65031 51 Binary

Porto Seguro 21695 59 21695 59 Binary

Table 3.1: Table illustrating the information about the
data sets used.

Out of the 7 data sets, described in table 3.1, only Adult, Bank, and the Porto
Seguro data set has missing value. Similarly, Adult, Bank, Dota, Forest Cover Type,
and Porto Seguro data sets has both categorical and numerical types attribute. And,
Flavours of Physics and MiniBooNE data sets has only numerical type attributes or
columns.
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3.6 Cross Validation
After developing a machine learning model, it is a crucial task to find out its reliability.
A model trained with data sets will perform acceptably on that particular data set.
For finding its reliability we need to test the model in a data set which was not used
in its training phase. There are different approaches for feeding unseen data set to
model. We followed the simple approach and that was splitting the whole data set
into two parts. One part was used for training the model and the other part was
used for testing.
For making the model less unbiased, we implemented a 5-fold cross validation
technique where the whole data set was split into 5 different blocks. Each block was
used as a validation set and remaining 4 block was used for training the model. The
model was trained on the training set of 4 blocks and later tested on the validation
set of 1 block. The accuracy of model was calculated for the test on the validation
set. The process was repeated until all of the five blocks were treated as a validation
data set and for each repetition, accuracy of the model in validation data set was
calculated. After the training and later the testing of the model for all iterations,
the overall accuracy of the model was calculated as the mean of accuracy obtained
from 5 rounds of training and testing process.
While training and testing the model, its accuracy can also be highly influenced by
imbalanced classes. For example, if there are 100 binary classification examples, and
80 examples represent positive outcome and 20 examples represent negative outcome,
there is always 80% chance for an example to be classified as positive during the
testing phase. To overcome this problem, along with cross validation, we created
strata from the training data set and performed cross-validation on those strata.
This whole process was implemented by using RepeatedStratifiedKFold() function
from the scikit learn library.

3.7 Repeated Stratified Cross Validation
For solving the problem of imbalanced classes, different strata are created, containing
the same proportion of examples from all classes. These strata are treated as a block
in the k-fold cross validation technique.
In our experiment, we used the following function from Scikit Learn library, to
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random_state=Int_value)
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3.7. REPEATED STRATIFIED CROSS VALIDATION

Training Set Validation Set
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Repetition:
1

Iteration:
1 0 1 2 4 5 6 8 9 3 7

Iteration:
2 0 1 2 3 5 6 7 8 4 9

Iteration:
3 1 2 3 4 6 7 8 9 0 5

Iteration:
4 2 3 0 1 4 5 7 9 6 8

Iteration:
5 3 4 1 2 6 7 8 9 0 5

Repetition:
2

Iteration:
1 0 1 2 3 4 5 8 9 6 7

Iteration:
2 0 1 2 4 5 6 7 8 3 9

Iteration:
3 3 5 0 1 6 7 8 9 2 4

Iteration:
4 6 7 3 4 0 2 8 9 1 5

Iteration:
5 1 2 3 4 5 6 7 9 0 8

Table 3.2: Table illustrating the distribution of data
clusters during the repeated stratified k-fold cross-
validation process.

In the function, RepeatedStratifiedKFold(), declared above, parameter ’n_splits’
denotes the integer value according to which the whole data set will be divided
into folds or blocks. Similarly, n_repeats denotes the integer value for which the
whole k-fold cross validation process will be repeated. And random_state also takes
any integer value, which is declared to keep track records of the data randomly
distributed in each iterations and throughout whole repetitions.
To demonstrate the concept of Repeated Stratified K-Fold cross validation, we have
made a table which represents the distribution of imaginary data having only 10
rows. We used 5-fold cross validation repeating for 2 times.

RepeatedStratifiedKFold(n_splits=5, n_repeats=2,
random_state=36)

Let us suppose there are 10 data examples with features and target variables.
We are performing the Repeated Stratified K-Fold cross-validation and we have
declared in our function to create 5 folds with two repetitions, so 5 different folds
were created, each containing 2 examples or data and the process was repeated twice.
For implementing the stratification sampling process, the function takes the sample
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from all classes in equal proportions,with each class having equal probabilities of
being selected during the training and testing process. So, each fold or block created
during the process can be understood as strata. In each strata, equal proportion of
samples from all classes are included. In the second repetition, the entire blocks of
strata were shuffled randomly. Here, the random_state parameter is defined with
some integer value, to keep a record of the generated strata throughout the process.
The accuracy of the model trained with 4 different strata is tested with 5th strata
declared as a testing set. This process is repeated during all 5-folds and the accuracy
of the model is calculated in each iteration. When accuracy is obtained from 10
iterations , throughout the two repetitions, average accuracy is calculated. For this
reason, the accuracy calculated is believed to be more unbiased and reliable. This is
because the model gets the opportunity to test itself with 10 different validation or
testing sets.

We assigned different values for repetition while training the model with different
data sets. We performed the following steps with every data sets before deciding the
value for repetition in repeated stratified cross validation technique.

• Step 1: Declare 200000 as a constant.

• Step 2: Obtain the total number of rows in the training data set (r).

• Step 3: Divide 200000 by the total number of rows (r).

If l is the value for repetition then,

l = 200000
r

The result, ”l”, if obtained as floating point, then it was converted into integer by
rounding off technique. And the value of ”l” was used to determine how many times
the whole stratified cross validation technique would be repeated for the particular
data set. In this way the number of rows or the data set size influenced the times
the stratified cross validation process was repeated for that particular data set.
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3.8. EVALUATION METRIC

3.8 Evaluation metric
We tested our trained model with testing data sets. The volume of training data set
and testing data set is described in section 3.4. As a performance measure we used
accuracy. Accuracy is calculated by:

Accuracy = Total number of correct predictions made
Total number of all predictions made

For example, let us consider the following imaginary confusion matrix. May this
matrix represents the results of binary classification of 100 samples. Lets consider 60
samples belong to positive case and 40 samples belong to negative case.

Predicted
Versus
Actual

Predicted
Positive

Predicted
Negative

Actual
Positive

50
TP

10
FN

Actual
Negative

5
FP

45
TN

Table 3.3: Confusion matrix.

In above confusion matrix, TP represents True Positive, FP represents False
Positive, FN represents False Negative and TN represents True Negative. Now we
can calculate the accuracy of the model from the above confusion matrix.

Accuracy = True Positive + True Negative
True Positive + True Negative + False Positive + False Negative

After replacing the variable with constant values from table 4 in above equation,
we will get:

Accuracy = 50 + 45
50 + 45 + 10 + 5

Accuracy = 0.863636
So, we obtained accuracy as 0.863636. This means the model classifies the

examples with 86.36% accuracy or any instance has a probability of 86.36% of being
correctly classified.

For evaluating the performance of our model we used accuracy as evaluation
metrics.
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Chapter 4

Implementation

In this chapter we will discuss our approach for performing the comparative analysis
of manually tuned gradient boosting algorithms, XGBoost, LightGBM, and CatBoost,
and automated machine learning algorithm, Classifium and H2O in terms of classification
accuracy. For this, we performed the task given in different sections below.

4.1 Implementation of XGBoost
XGBoost or Extreme Gradient Boosting library is based on gradient boosting
technique. It is available as a free open-source software package. Its software
package is available in Python, R and Java languages. We used XGBoost package
implemented in the Python programming language. Details about this package can
be found at: https://xgboost.readthedocs.io/en/latest/index.html

4.1.1 XGBoost modelling
XGBoost has a wide range of hyperparameters, categorised as general parameters,
booster parameters, learning task parameters, and command-line parameters. We
have briefly described these hyperparameters in Introduction section 1.7. Details
about the tuning process and steps are provided in the appendix of this report.
For modelling XGBoost with different data sets, we first declared a function XGBClassifier()
imported from XGBoost library. At first, all hyperparameters of this function were left
with their default values. Their values were tuned by following the hyperparameter
tuning pipeline described in section 3.1.
Here we have listed those hyperparameters of XGBClassifier() which we used and
tuned during experimentation:

1. booster : XGBoost provides different options for boosting techniques. We used
’gbtree’ booster, which is a default booster in XGBoost.

2. learning_rate : We have tuned the learning rate of XGBoost during our
experiment because it determines the next range at which gradients are
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calculated during the gradient boosting process. So, this parameter influences
the accuracy of the machine learning model.

3. n_estimators : We have tuned the number of trees that were built in XGBoost
during our experiment. This also influences the accuracy of the machine
learning model.

4. max_depth : We have tuned max_depth of XGBoost tree. Because depth can
control the overfitting issue of the machine learning model.

5. min_child_weight : We have tuned the parameter min_child_weight, which
can control the overfitting problem of the machine learning model.

6. gamma : Gamma is one of the regularization parameters, which helps to adjust
the weight of gradients during the training process. So we tuned its value
during our experiment.

7. subsample : Since XGBoost supports stochastic gradient boosting technique,
we optimized this hyperparameter, which controls the amount of data from
the whole data set to be used for building trees each time. So, it also helps to
determine the accuracy of the model.

8. colsample_bytree : Sampling can be done column-wise. Selecting the important
features while generating a decision tree is controlled by this hyperparameter.
So we tuned this parameter to get the best accuracy from model.

9. reg_alpha : It is also a regularization parameter that controls the overfitting
problem of the model during training. We have tuned this parameter during
our experimentation.

10. reg_lambda : It is also another regularization parameter that controls the
overfitting problem like gamma and alpha of the model during training. We
have tuned this parameter during our experimentation.

11. tree_method : This hyperparameter determines the method used for building
a tree. We have used gpu_hist method, which is a gpu implementation of hist
method.

We used 7 different data sets described in section 3.4 for tuning xgboost classifier
model. For the training and testing propose, whole data sets were divided into half,
one half used for training and other half was used for testing. For those features
which had categorical values, we used one-hot encoding technique to change it from
categorical to numerical. For handling missing values, XGBoost has a built-in feature.
In our data set, we replaced missing strings denoting missing values with np.NAN.
So while declaring the XGBoost classifier function, we used a parameter ’missing’
and assigned np.NAN as value to it.
For objective function, we used ’binary:logistic’ function for binary classification,
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which outputs the probability of each samples belonging to a certain class. And for
multi-class classification, we used ’multi:softprob’ as an objective function.
We have used RepeatedStratifiedKFold() function from scikit learn library to perform
stratified repeated cross-validation. This technique helped to tackle the problem of
imbalanced data sets. Details about this strategy are given in section 3.5.1.
With all configurations mentioned above, we performed hyperparameter tuning of
XGBoost with 7 different data sets following the hyperparameter tuning pipeline
described in section 3.1. The result obtained as accuracy after training and testing
xgboost classifier model with 7 different data sets is tabulated in Results section.

4.2 Implementation of LightGBM
Light Gradient Boosting Machine or LightGBM is also a software package implementing
gradient boosting framework for classification, regression and ranking tasks in the
machine learning domain. It is available in different versions which supports Python,
R and C programming language. We used LightGBM package built for Python
programming language. Details about this package or library can be found at
https://lightgbm.readthedocs.io/en/latest
/index.html

4.2.1 LightGBM modelling
LightGBM also has a wide variety of hyperparameters categorized under different
categories like Core parameters, Learning Control parameters, IO parameters, Predict
parameters, Objective parameters, Metric parameters, Network parameters and GPU
parameters.
But from different categories, we have selected a limited number of parameters
for modelling LightGBM with all 7 data sets explained in section 3.4. And those
hyperparameters are given below. Details about these hyperparameters is provided in
Introduction section 1.7. Details about the tuning process and steps of LightGBMClassifier()
with all 7 data sets are provided in the appendix of this report.
For modelling LightGBM with all 7 data sets we used LightGBMClassifier() function
from LightGBM library. At first, all hyperparameters were left unchanged with
their default value. And following the hyperparameter tuning pipeline, described in
section 3.2, we only tuned below listed hyperparameters of LightGBMClassifier().

1. boosting : LightGBM uses different boosting techniques, gbdt (gradient
boosting decision tree), rf (random forest), dart and goss (gradient one side
sampling). For boosting technique, we used gbdt which is also a default
boosting technique in LightGBMClassifier().

2. learning_rate : Learning rate is categorized as a core parameter of LightGBM.
It controls the gradient calculated in different steps. It has a high influence in
the performance of LightGBM in terms of speed and accuracy.
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3. n_estimator : It is another important parameter of LightGBM which controls
the total number of trees built during the boosting process. It influences the
model performance in terms of training speed and classification accuracy. So,
we tuned this parameter through our pipeline.

4. max_depth : We tuned this parameter because it is used to control the
overfitting problem of model.

5. min_gain_to_split : This parameter sets the threshold for performing further
splits from a leaf in a tree. It helps to increase the training speed and the
accuracy. So, we tuned this parameter.

6. min_data_in_leaf : This parameter sets the threshold for minimum number of
data to be present in every leaf before splitting. This helps to control overfitting
and boosts the accuracy of model.

7. num_leaves : This parameter sets the maximum number of leaves in one single
tree built during the boosting process. We tuned this parameter.

8. bagging_fraction : LightGBM also supports stochastic gradient boosting
technique. This parameter randomly selects the rows of data for training in
one iteration. This helps to control overfitting problem and speeds up the
training process.

9. feature_fraction : Like bagging_fraction, feature_fraction is used to randomly
select part of data from the whole data set, but column wise. This parameter
selects a bunch of column randomly and helps to increase training speed and
accuracy. So, we tuned this parameter as well.

10. regularization_parameters : LightGBM also has regularization parameters
named as reg_alpha and reg_lambda or lambda_l1 and lambda_l2. We tuned
this parameter to tune the weights of gradients and control overfitting.

After declaring the function LightGBMClassifier(), including the above listed
function we also included objective function for LightGBM. For binary classification,
we used ’binary’ as an objective function and ’multiclass’ for multi-classification.
For handling the missing values, like in XGBoost, LightGBM also has implemented
a default mechanism, which treats all values represented by np.NAN in Python
as missing values. So, during our experiment, we replaced all missing values with
np.NAN.
For handling categorical data in LightGBM, we used one-hot encoding technique,
which gives the binary representation for categorical variables.
For performing cross-validation and address the problem of imbalanced target classes
in data sets, we used RepeatedStratifiedKFold() function from scikit learn library.

With all configurations mentioned above, we performed modelling of LightGBM
using 7 different data sets described in section 3.4. While modelling, we used separate
data subsets for training and testing. The results obtained as accuracy after cross-fold
training and testing are listed in the table presented in Result section.
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4.3 Implementation of CatBoost
Categorical Boosting or CatBoost is another software package that implements the
gradient boosting framework for classification, regression and ranking tasks in a
machine learning domain. It is available for Python and R language as different
packages. We used Python package implementing CatBoost. Details about this
package or library can be found at https://catboost.ai/docs.

4.3.1 CatBoost modelling
Unlike XGBoost and LightGBM, it has a very limited number of hyperparameters
for tuning. According to the official documentation of CatBoost, https://cat
boost.ai/docs, its parameters’ default values are tuned to fit various data sets.
The analysis result is presented in this paper [67]. Here, we have listed few
hyperparameters that we have selected for tuning CatBoost algorithm with our
7 different data sets tabulated in section 3.4. Details about these parameters are
provided in section Introduction section 1.7. Detailed procedure followed during
hyperparameter optimization process is provided in Appendix section of this report.
For modelling CatBoost with all 7 data sets we used CatBoostClassifier() function
from CatBoost library. At first, all hyperparameters were left with their default
values. And following the hyperparameter tuning pipeline, described in section 3.3,
we tuned only those hyperparameters listed below.

1. grow_policy : CatBoost has different techniques for building trees, like,
Symmetric, Depthwise, and Lossguide. We have used Symmetric tree growing
policy, which is also a default policy for growing trees in CatBoost.

2. learning_rate : Learning rate is used for controlling the width of intervals
in which gradients are calculated. This algorithm has a high influence on
classification accuracy and training time. So, we have tuned this algorithm
during our experiment with 7 different data sets.

3. iterations : This parameter controls the number of trees built during the
training process. So, it also affects the performance accuracy and training time.
We have tuned this parameter during our experiment.

4. depth : Depth of tree is highly sensitive with overfitting problems. So, we have
tuned this parameter during our experiment.

5. l2_leaf_reg : We have tuned the regularization function of CatBoost.

6. random_strength : This parameter is used for controlling the overfitting
problems. This parameter assigns a score to every possible split during tree
building and the split with the highest score based on loss function is selected.
So, we have tuned this parameter to boost up the performance accuracy.
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7. bagging_temperature : This parameter assigns random weights to objects. We
have tuned this parameter during our experiment.

8. border_count : This parameter controls the number of splits required for
numerical features. We have tuned this parameter during our experiment.

After declaring the function CatBoostClassifier() with the above-mentioned hyperparameters,
we also added an objective function. For binary classifications, the ’Logloss’ was
used as the objective function and for multi-class classification ’MultiClass’ was used
as the objective function.
For handling the missing values, CatBoost has built-in features which treat float NAN
(Not a Number) value in data sets as missing attributes. Any values represented by
a string of ’NAN’ or ’null’ or ’none’ is also treated as a missing value. So, to handle
the missing values of our data sets, we simply replaced the ’NAN’ string in missing
values.
Since CatBoost is built for handling categorical data, we did not perform any encoding
technique to convert our categorical features to numerals. This technique is briefly
explained in section 1.6. Details about this are presented at [64].
For addressing the issues of imbalanced data sets and for cross-validation, we
have performed a repeated stratified cross validation technique with the function
RepeatedStratifiedKFold() implemented from the scikit learn library.
With all technical configurations and settings, we performed the modelling of the
CatBoost algorithm with all 7 different data sets described in section 3.4. The results
obtained as classification accuracy after cross-fold training and testing are listed in
the table presented in Result section.

4.4 Implementation of H2O
H2O is an automatic machine learning algorithm, that performs data processing,
modelling and evaluation by itself [91]. It makes it easy for beginner users with
little knowledge in machine learning to generate a machine learning model using
H2O. H2O supports Supervised and Unsupervised machine learning techniques. For
Supervised learning approach H2O supports different algorithms like Deep Learning
(Neural Networks), Distributed Random Forest (DRF), Generalized Linear Model
(GLM), Maximum R Square Improvements (MAXR), Generalized Additive Models
(GAM), ANOVA GLM, Gradient Boosting Machine (GBM), Naïve Bayes Classifier,
RuleFit, Stacked Ensembles, Support Vector Machine (SVM), and XGBoost as base
learner. Using these algorithms, we can perform classification and regression tasks in
H2O. For Unsupervised learning, H2O supports different algorithms like Aggregator,
Generalized Low Rank Models (GLRM), Isolation Forest, Extended Isolation Forest,
K-Means Clustering, and Principal Component Analysis (PCA) In H2O, it is not
required to separately impute the missing values, perform data encoding technique
for categorical attributes, and hyperparameter tuning of any model.
We have used H2O to model with our 7 different data sets. Details about its modelling
are explained in the next section.
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4.4.1 H2O modelling
Unlike XGBoost, LightGBM, and Classifium, in H2O we do not need to perform
data processing, hyperparameter optimization and evaluation.
Since H2O supports many machine learning algorithms for its base learner, we
modeled H2O with 7 data sets in two different approaches; a) At first by allowing
H2O to select the either single best algorithm as its base learners or allowing it
to create the best classification model by assembling more than one algorithms
that it supports as its base learner by itself. b) And, since we were comparing
the performance of different gradient boosting algorithm with different settings of
hyperparameter tuning pipeline, we allow H2O to use only XGBoost as for its base
learner, and perform classification task on all of the 7 data sets.

Following task were performed throughout the both approaches.

1. We loaded the data into the H2O frame work using python script.

2. Data set for the training and the testing were loaded separately as two different
data frames.

3. Data attributes were divided into predictors and target groups using the same
approach which we have used earlier in XGBoost, LightGBM and CatBost
using python.

4. By default, H2O performs regression. To denote classification tasks, we must
have to denote our target column by categorical data type. Attributes can be
changed from any form to categorical by using asfactor() in H2O. So, to perform
the classification task, we denote our target attribute only as categorical by
using the asfactor() function in H2O.

5. For handling imbalanced data set, we used ’balanced_class’ feature of H2O.

6. By default, H2O performs 5-fold cross validation technique. So we did not
assign any function externally to perform cross-validation. So, during the
training, the data set was divided into 5 folds by the H2O default algorithm.

7. In H2O we can set the training time. But we did not set any constraints for
training time. Every classification model was trained with a default time limit,
which is 3600 seconds, besides a model trained with Forest Cover data set.
This is because the Forest Cover data set is the biggest data set that we have
used in our experimentation. So in the model, we set 4500 seconds for models
trained with the Forest Cover data set.

8. The list of models were published on leader board, based on the evaluation
metric score. We have set accuracy as our evaluation metric.

9. We selected two different models. One of which is developed using XGBoost
and another was developed using assembling approach.
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10. Both models were tested with testing data sets for determining their testing
accuracy, separately.

The cross-validation training accuracy and testing accuracy of classification models
generated with H2O and all 7 different data sets are tabulated in a table as result.
The table is presented in the Result section of this report.

4.5 Implementation of Classifium
Classifium is an automatic machine learning algorithm for classification. Unlike in
XGBoost, LightGBM and CatBoost,it is not required to perform hyperparameter
tuning by the user in Classifium. Hyperparameter tuning is done by the built-in
algorithms automatically. Also, it is not essential to perform the data pre-processing
like imputing missing values and changing categorical attributes to numerical in
Classifium. Simply missing values are represented by the special letter ”?”, and all
the categorical and numerical columns are represented as ”nominal” and ”ordinal”.
Columns having name ”nominal” are treated as categorical column, and built-in
mechanism is used to convert them into numerical. For representing target column
or feature, string ”output” is assigned as a name of column. Also, if any columns or
features are not important, then those are simply denoted by the string ”Ignore”,
and they are dropped while training.

4.5.1 Classifium modelling
We followed the following steps for generating classification models using Classifium
with all of the 7 data sets. The steps are described in series below.

1. We installed the executable files of Classifium from its source into our implementing
machine.

2. We prepared separate data set for training and testing as discussed in above
section 4.5.

3. Unlike other algorithms that we used for our experiment, Classifium requires
extra name file, containing the names of columns in exact order in which they
are presented in the data files.

4. We supplied the training data set in a csv file and name file of the data set in
the same directory where Classifium was installed as a executable file.

5. We run the following command to perform the classification task:
./cl -f filestem –numFolds –numReps –numThreads
Here, filestem means the name of data file representing training data and
name files of that training and testing data. And numFolds represents the
number of folds that will be made for performing cross validation. Similarly,
numReps means, the parameter numReps will perform the repeated stratified
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cross validation for that number of iterations as its value is assigned. And
numThreads means the number of cpus in which the algorithm will run in
parallel.

6. After training the model with the data set, Classifium generated the training
model with its name followed by an extension ”forest”.

7. That forest file is used to perform the prediction on test data set by executing
following code in the same directory where the Classifium is installed and
where the name files, and testing data set is present along with the ”forest”
file.
./predict filestem

8. After running the above code, we obtained the classification accuracy on
training data set and testing data set along with the confusion matrix.

4.6 Implementation platform
The technical specifications of the machine on which we ran all of our algorithms are
presented below.
Model Name: AMD Ryzen Threadripper 2990WX 32-Core Processor
Architecture: x86_64
Hyperthreading: Enabled
Number of CPUs: 64
RAM: 128 GB DDR4
Graphics: NVIDIA 10.8 GB
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Chapter 5

Results

In this chapter, we will illustrate the results from our experiment to address the
goal of our study. For comparing the accuracy of automatic machine learning
algorithm, Classifium, with gradient boosting decision tree based algorithms like
XGBoost, LightGBM, and CatBoost, and automated machine learning tools H2O,
we performed the modelling of these algorithms as described in sections 4.1, 4.2,
4.3, 4.4, and 4.5. We followed the hyperparameter tuning pipeline as described in
sections 3.1, 3.2, and 3.3 for modelling our classification algorithms with all 7 data
sets. We implemented 5-fold cross validation technique with the repeated stratified
sampling method for generating each classification model for all algorithms with the
7 data sets, and obtained cross-validation training accuracy from training models.
The cross validation training results is represented as CV training accuracy in the
table below. The models were trained and tested with the separate set of training
and testing data sets for their classification accuracy. Data sets used for training and
testing are listed in a table in section 3.5. The results obtained from each algorithm
with all 7 data sets are tabulated in table 5.1 and 5.2 which are presented below.

In table 5.1, we have listed the cross-validation training and testing accuracy
of XGBoost, LightGBM, CatBoost, Classifium and H2O. In the table 5.1, column
H2O represents the results which are generated using all of its base learners, Deep
learning, Distributed Random Forest, XGBoost, Gradient Boosting Machine, and
others. It tested all its base learners against a particular data set. It assembled all
base learners and stacked them, and performed training and testing.
In table 5.2, we have tabulated the training and testing results from all algorithms
along with H2O with only XGBoost as its base learner. Our focus was to test for
performance of hyperparameter tuning pipeline of H2O in two different configuration.
One, only with gradient boosting algorithm like XGBoost, and another by the
ensemble of many base learners with hyperparameter tuning pipeline. We found that
the classification accuracy of H2O generated with stacked ensemble model and only
with XGBoost were very much close to the results of Classifium and other algorithms
in the same data set.

We have compared the classification accuracy of Classifium with every other
algorithms used for our study. The comparison results are presented in the graphs,
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in section 5.3. Also, we performed the statistical significant test for the classification
results obtained from XGBoost, LightGBM, CatBoost and H2O against the results
obtained from Classifium. The result from statistical significance test is presented in
section 5.4.

5.1 Results obtained from XGBoost, LightGBM,
CatBoost, Classifium, and H2O implemented
with stacked ensemble models.

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O Classifium

Adult

CV
Training

Accuracy:
0.871785

Testing
Accuracy:
0.875225

CV
Training

Accuracy:
0.871334

Testing
Accuracy:
0.875389

CV
Training

Accuracy:
0.871021

Testing
Accuracy:
0.874815

CV
Training

Accuracy:
0.871007

Testing
Accuracy:
0.876577

CV
Training

Accuracy:
0.8703

Testing
Accuracy:
0.87523

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O Classifium

Bank

CV
Training

Accuracy:
0.917015

Testing
Accuracy:
0.916525

CV
Training

Accuracy:
0.917297

Testing
Accuracy:
0.915893

CV
Training

Accuracy:
0.916988

Testing
Accuracy:
0.917399

CV
Training

Accuracy:
0.91837

Testing
Accuracy:
0.915894

CV
Training

Accuracy:
0.9164

Testing
Accuracy:
0.915995

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O Classifium

Dota

CV
Training

Accuracy:
0.596279

Testing
Accuracy:
0.594859

CV
Training

Accuracy:
0.594451

Testing
Accuracy:
0.593751

CV
Training

Accuracy:
0.590784

Testing
Accuracy:
0.592838

CV
Training

Accuracy:
0.599075

Testing
Accuracy:
0.597268

CV
Training

Accuracy:
0.5982

Testing
Accuracy:
0.597529
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5.1. RESULTS OBTAINED FROM XGBOOST, LIGHTGBM, CATBOOST,
CLASSIFIUM, AND H2O IMPLEMENTED WITH STACKED ENSEMBLE

MODELS.

Table 5.1 continued from previous page
Algorithms

With
Data set

XGBoost Lightgbm CatBoost H2O Classifium

Flavours
of

Physics

CV
Training

Accuracy:
0.894265

Testing
Accuracy:
0.892701

CV
Training

Accuracy:
0.892622

Testing
Accuracy:
0.890747

CV
Training

Accuracy:
0.894414

Testing
Accuracy:
0.892790

CV
Training

Accuracy:
0.892287

Testing
Accuracy:
0.889297

CV
Training

Accuracy:
0.8929

Testing
Accuracy:
0.89158

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O Classifium

Forest
Cover

CV
Training

Accuracy:
0.963794

Testing
Accuracy:
0.968155

CV
Training

Accuracy:
0.90808

Testing
Accuracy:
0.919009

CV
Training

Accuracy:
0.956348

Testing
Accuracy:
0.960062

CV
Training

Accuracy:
0.951137

Testing
Accuracy:
0.954307

CV
Training

Accuracy:
0.9682

Testing
Accuracy:
0.971873

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O Classifium

MiniBoo
NE

CV
Training

Accuracy:
0.946596

Testing
Accuracy:
0.946856

CV
Training

Accuracy:
0.946974

Testing
Accuracy:
0.947624

CV
Training

Accuracy:
0.946605

Testing
Accuracy:
0.947056

CV
Training

Accuracy:
0.944673

Testing
Accuracy:
0.945564

CV
Training

Accuracy:
0.9455

Testing
Accuracy:
0.947057

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O Classifium
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5.1. RESULTS OBTAINED FROM XGBOOST, LIGHTGBM, CATBOOST,
CLASSIFIUM, AND H2O IMPLEMENTED WITH STACKED ENSEMBLE

MODELS.

Algorithms
With XGBoost Lightgbm CatBoost H2O Classifium

Data set
cv cv cv cv cv

Training Training Training Training Training

Flavours Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:

of 0.894265 0.892622 0.894414 0.892287 0.8929

Physics Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.892701 0.890747 0.892790 0.889297 0.89158

Algorithms
With XGBoost Lightgbm CatBoost H2O Classifium

Data set
cv cv cv cv cv

Training Training Training Training Training
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:

Forest 0.963794 0.90808 0.956348 0.951137 0.9682
Cover

Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.968155 0.919009 0.960062 0.954307 0.971873

Algorithms
With XGBoost Lightgbm CatBoost H2O Classifium

Data set
cv cv cv cv cv

Training Training Training Training Training
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:

MiniBoo 0.946596 0.946974 0.946605 0.944673 0.9455
NE

Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.946856 0.947624 0.947056 0.945564 0.947057

Algorithms
With XGBoost Lightgbm CatBoost H2O Classifium

Data set

Table 5.1 continued from previous page
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Table 5.1 continued from previous page

Porto
Seguro:

CV
Training

Accuracy:
0.594033

Testing
Accuracy:
0.595298

CV
Training

Accuracy:
0.593906

Testing
Accuracy:
0.593455

CV
Training

Accuracy:
0.593495

Testing
Accuracy:
0.592164

CV
Training

Accuracy:
0.592533

Testing
Accuracy:
0.596958

CV
Training

Accuracy:
0.5936

Testing
Accuracy:
0.598544

Table 5.1: Table illustrating the accuracy of 5 different
algorithms with 7 different data sets.

5.2 Results obtained from XGBoost, LightGBM,
CatBoost, Classifium, and H2O implemented
with only XGBoost.

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O

(XGBoost) Classifium

Adult

CV
Training

Accuracy:
0.871785

Testing
Accuracy:
0.875225

CV
Training

Accuracy:
0.871334

Testing
Accuracy:
0.875389

CV
Training

Accuracy:
0.871021

Testing
Accuracy:
0.874815

CV
Training

Accuracy:
0.871007

Testing
Accuracy:
0.874611

CV
Training

Accuracy:
0.8703

Testing
Accuracy:
0.87523

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O

(XGBoost) Classifium

Bank

CV
Training

Accuracy:
0.917015

Testing
Accuracy:
0.916525

CV
Training

Accuracy:
0.917297

Testing
Accuracy:
0.915893

CV
Training

Accuracy:
0.916988

Testing
Accuracy:
0.917399

CV
Training

Accuracy:
0.918370

Testing
Accuracy:
0.915894

CV
Training

Accuracy:
0.9164

Testing
Accuracy:
0.915995
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cv cv cv cv cv
Training Training Training Training Training

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
Porto 0.594033 0.593906 0.593495 0.592533 0.5936

Segura:
Testing Testing Testing Testing Testing

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.595298 0.593455 0.592164 0.596958 0.598544

Table 5.1 continued from previous page

Table 5.1: Table illustrating the accuracy of 5 different
algorithms with 7 different data sets.

5.2 Results obtained from XGBoost , LightGBM,
CatBoost , Classifium, and H20 implemented
with only XGBoost .

Algorithms H2OWith XGBoost Lightgbm CatBoost (XGBoost) Classifium
Data set

cv cv cv cv cv
Training Training Training Training Training

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:

Adult 0.871785 0.871334 0.871021 0.871007 0.8703

Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.875225 0.875389 0.874815 0.874611 0.87523

Algorithms H2OWith XGBoost Lightgbm CatBoost (XGBoost) Classifium
Data set

cv cv cv cv cv
Training Training Training Training Training

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:

Bank 0.917015 0.917297 0.916988 0.918370 0.9164

Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.916525 0.915893 0.917399 0.915894 0.915995
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5.2. RESULTS OBTAINED FROM XGBOOST, LIGHTGBM, CATBOOST,
CLASSIFIUM, AND H2O IMPLEMENTED WITH ONLY XGBOOST.

Table 5.2 continued from previous page
Algorithms

With
Data set

XGBoost Lightgbm CatBoost H2O
(XGBoost) Classifium

Dota

CV
Training

Accuracy:
0.596279

Testing
Accuracy:
0.594859

CV
Training

Accuracy:
0.594451

Testing
Accuracy:
0.593751

CV
Training

Accuracy:
0.590784

Testing
Accuracy:
0.592838

CV
Training

Accuracy:
0.584543

Testing
Accuracy:
0.583474

CV
Training

Accuracy:
0.5982

Testing
Accuracy:
0.597529

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O

(XGBoost) Classifium

Flavours
of

Physics

CV
Training

Accuracy:
0.894265

Testing
Accuracy:
0.892701

CV
Training

Accuracy:
0.892622

Testing
Accuracy:
0.890747

CV
Training

Accuracy:
0.894414

Testing
Accuracy:
0.892790

CV
Training

Accuracy:
0.891636

Testing
Accuracy:
0.887224

CV
Training

Accuracy:
0.8929

Testing
Accuracy:
0.89158

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O

(XGBoost) Classifium

Forest
Cover

CV
Training

Accuracy:
0.963794

Testing
Accuracy:
0.968155

CV
Training

Accuracy:
0.90808

Testing
Accuracy:
0.919009

CV
Training

Accuracy:
0.956348

Testing
Accuracy:
0.960062

CV
Training

Accuracy:
0.949257

Testing
Accuracy:
0.955329

CV
Training

Accuracy:
0.9682

Testing
Accuracy:
0.971873

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O

(XGBoost) Classifium
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Algorithms H2OWith XGBoost Lightgbm CatBoost (XGBoost) Classifium
Data set

cv cv cv cv cv
Training Training Training Training Training

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:

Dota 0.596279 0.594451 0.590784 0.584543 0.5982

Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.594859 0.593751 0.592838 0.583474 0.597529

Algorithms H2OWith XGBoost Lightgbm CatBoost (XGBoost) Classifium
Data set

cv cv cv cv cv
Training Training Training Training Training

Flavours Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:

of 0.894265 0.892622 0.894414 0.891636 0.8929

Physics Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.892701 0.890747 0.892790 0.887224 0.89158

Algorithms H2OWith XGBoost Lightgbm CatBoost (XGBoost) Classifium
Data set

cv cv cv cv cv
Training Training Training Training Training

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
Forest 0.963794 0.90808 0.956348 0.949257 0.9682
Cover

Testing Testing Testing Testing Testing
Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.968155 0.919009 0.960062 0.955329 0.971873

Algorithms H2OWith XGBoost Lightgbm CatBoost (XGBoost) Classifium
Data set

Table 5.2 continued from previous page
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Table 5.2 continued from previous page

MiniBoo
NE

CV
Training

Accuracy:
0.946596

Testing
Accuracy:
0.946856

CV
Training

Accuracy:
0.946974

Testing
Accuracy:
0.947624

CV
Training

Accuracy:
0.946605

Testing
Accuracy:
0.947056

CV
Training

Accuracy:
0.943965

Testing
Accuracy:
0.944242

CV
Training

Accuracy:
0.9455

Testing
Accuracy:
0.947057

Algorithms
With

Data set
XGBoost Lightgbm CatBoost H2O

(XGBoost) Classifium

Porto
Seguro:

CV
Training

Accuracy:
0.594033

Testing
Accuracy:
0.595298

CV
Training

Accuracy:
0.593906

Testing
Accuracy:
0.593455

CV
Training

Accuracy:
0.593495

Testing
Accuracy:
0.592164

CV
Training

Accuracy:
0.58926

Testing
Accuracy:
0.595391

CV
Training

Accuracy:
0.5936

Testing
Accuracy:
0.598544

Table 5.2: Table illustrating the accuracy of 5 different
algorithms, H2O (XGBoost), with 7 different data sets.

In the table 5.2, the column H2O(XGBoost) represents the classification accuracies
obtained by modelling H2O with only XGBoost as its base learner, with all 7 data
sets.

54

CHAPTER 5. RESULTS

cv cv cv cv cv
Training Training Training Training Training

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
MiniBoo 0.946596 0.946974 0.946605 0.943965 0.9455

NE
Testing Testing Testing Testing Testing

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.946856 0.947624 0.947056 0.944242 0.947057

Algorithms H2OWith XGBoost Lightgbm CatBoost (XGBoost) Classifium
Data set

cv cv cv cv cv
Training Training Training Training Training

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
Porto 0.594033 0.593906 0.593495 0.58926 0.5936

Segura:
Testing Testing Testing Testing Testing

Accuracy: Accuracy: Accuracy: Accuracy: Accuracy:
0.595298 0.593455 0.592164 0.595391 0.598544

Table 5.2 continued from previous page

Table 5.2: Table illustrating the accuracy of 5 different
algorithms, H2O (XGBoost), with 7 different data sets.

In the table 5.2, the column H2O(XGBoost) represents the classification accuracies
obtained by modelling H2O with only XGBoost as its base learner, with all 7 data
sets.
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5.3. GRAPHICAL ILLUSTRATION OF THE RESULTS FROM EXPERIMENT.

5.3 Graphical illustration of the results from experiment.

5.3.1 Classifium versus XGBoost

Figure 5.1: Classification accuracy of XGBoost and Classifium with the different
data sets.

The graph illustrates the comparative results between Classifium and XGBoost
for their classification accuracy with 7 different data sets. The y-axis of the graph
represents the accuracy categories in the interval of 10%, and the x-axis represents
the distribution of 7 different data sets.

Classifium and XGBoost performed almost same in terms of classification accuracy
with Adult data set. It only has difference of 0.000005% in terms of classification
accuracy. In this case we can say Classifium performed slightly better than XGBoost.
Similarly with the Dota data set, Classifium outperformed XGBoost by 0.00267% of
classification accuracy. And also with the Forest Cover Type data set, Classifium
outperformed XGBoost by 0.003718% of classification accuracy. Likewise, with
the MiniBooNE data set, Classifium outperformed XGBoost by the 0.000201% of
classification accuracy. And, with the Porto Seguro data set, Classifium outperformed
XGBoost by the difference of 0.003246% of accuracy.

But, with the bank data set XGBoost outperformed Classifium with the slight
difference of 0.00053% in terms of classification accuracy. And with the Flavours of
Physics data set, XGBoost outperformed Classifium by the difference of 0.001121%
in classification accuracy.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.1.
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5.3

5.3.1

Graphical illustration of the results from experiment .
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Figure 5.1: Classification accuracy of XC Boost and Classifium with the different
data sets.

The graph illustrates the comparative results between Classifium and XGBoost
for their classification accuracy with 7 different data sets. The y-axis of the graph
represents the accuracy categories in the interval of 10%, and the x-axis represents
the distribution of 7 different data sets.

Classifium and XCBoost performed almost same in terms of classification accuracy
with Adult data set. It only has difference of 0.000005% in terms of classification
accuracy. In this case we can say Classifium performed slightly better than XGBoost.
Similarly with the Dota data set, Classifium outperformed XGBoost by 0.00267% of
classification accuracy. And also with the Forest Cover Type data set, Classifium
outperformed XGBoost by 0.003718% of classification accuracy. Likewise, with
the MiniBooNE data set, Classifium outperformed XC Boost by the 0.000201% of
classification accuracy. And, with the Porto Segura data set, Classifium outperformed
XGBoost by the difference of 0.003246% of accuracy.

But, with the bank data set XGBoost outperformed Classifium with the slight
difference of 0.00053% in terms of classification accuracy. And with the Flavours of
Physics data set, XC Boost outperformed Classifium by the difference of 0.001121%
in classification accuracy.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.1.
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5.3.2 Classifium versus LightGBM

Figure 5.2: Classification accuracy of LightGBM and Classifium with the different
data sets.

The graph illustrates the comparative results between Classifium and LightGBM
for their classification accuracy with 7 different data sets. The y-axis of the graph
represents the accuracy categories in the interval of 10%, and the x-axis represents
the distribution of 7 different data sets.

From the graph we can say that, Classifium outperformed LightGBM by 0.000102%
of difference in classification accuracy. So, Classifium and LightGBM performed
almost same with the Bank data set. With the Dota data set, Classifium outperformed
the LightGBM by 0.003778% of difference in classification accuracy. And with the
Flavours of Physics data set, Classifium outperformed LightGBM by 0.000833%
of difference in classification accuracy. Similarly with the Forest Cover Type data
set, Classifium outperformed LightGBM by 0.052864% of difference in classification
accuracy, which is the highest difference in classification accuracy made by Classifium
against all other algorithms with 7 data sets, in our study. And, Classifium
outperformed LightGBM with Porto Seguro data set by the difference of 0.005089%
in classification accuracy.

But with the Adult data set, LightGBM outperformed Classifium with the slight
difference of 0.000159% in classification accuracy. Similarly LightGBM outperformed
Classifium with the MiniBooNE data set by 0.000567% of classification accuracy.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.1.
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5.3.2 Classifium versus LightGBM
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Figure 5.2: Classification accuracy of LightGBM and Classifium with the different
data sets.

The graph illustrates the comparative results between Classifium and LightGBM
for their classification accuracy with 7 different data sets. The y-axis of the graph
represents the accuracy categories in the interval of 10%, and the x-axis represents
the distribution of 7 different data sets.

From the graph we can say that, Classifium outperformed LightGBM by 0.000102%
of difference in classification accuracy. So, Classifium and LightGBM performed
almost same with the Bank data set. With the Dota data set, Classifium outperformed
the LightGBM by 0.003778% of difference in classification accuracy. And with the
Flavours of Physics data set, Classifium outperformed LightGBM by 0.000833%
of difference in classification accuracy. Similarly with the Forest Cover Type data
set, Classifium outperformed LightGBM by 0.052864% of difference in classification
accuracy, which is the highest difference in classification accuracy made by Classifium
against all other algorithms with 7 data sets, in our study. And, Classifium
outperformed LightGBM with Porto Segura data set by the difference of 0.005089%
in classification accuracy.

But with the Adult data set, LightGBM outperformed Classifium with the slight
difference of 0.000159% in classification accuracy. Similarly LightGBM outperformed
Classifium with the MiniBooNE data set by 0.000567% of classification accuracy.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.1.
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5.3.3 Classifium versus CatBoost

Figure 5.3: Classification accuracy of CatBoost and Classifium with the different
data sets.

The graph illustrates the comparative results between Classifium and CatBoost
for their classification accuracy with 7 different data sets. The y-axis of the graph
represents the accuracy categories in the interval of 10%, and the x-axis represents
the distribution of 7 different data sets.

From the graph it is found that Classifium outperformed CatBoost with Adult
data set by 0.000415% of classification accuracy. Similarly with the Dota data
set, Classifium outperformed CatBoost by 0.004691% of classification accuracy.
And with the Forest Cover Type data set as well, Classifium outperformed the
CatBoost by the difference of 0.011811%, in classification accuracy. This is the most
significant difference in classification accuracy between Classifium and CatBoost that
we observed with 7 data set. Similarly, with the Porto Seguro data set, Classifium
outperformed CatBoost by 0.00638% of difference in classification accuracy. And
with the MiniBooNE data set, both algorithms performed almost equally. Their
difference in classification accuracy was found to be 0.000001%.

But with the Bank data set, CatBoost clearly outperformed Classifium in terms
of classification accuracy by 0.001404%. Also, with the Flavours of Physics CatBoost
outperformed Classifium by the difference of 0.00121% in terms of classification
accuracy.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.1.
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Figure 5.3: Classification accuracy of CatBoost and Classifium with the different
data sets.

The graph illustrates the comparative results between Classifium and CatBoost
for their classification accuracy with 7 different data sets. The y-axis of the graph
represents the accuracy categories in the interval of 10%, and the x-axis represents
the distribution of 7 different data sets.

From the graph it is found that Classifium outperformed CatBoost with Adult
data set by 0.000415% of classification accuracy. Similarly with the Dota data
set, Classifium outperformed CatBoost by 0.004691% of classification accuracy.
And with the Forest Cover Type data set as well, Classifium outperformed the
CatBoost by the difference of 0.011811%, in classification accuracy. This is the most
significant difference in classification accuracy between Classifium and CatBoost that
we observed with 7 data set. Similarly, with the Porto Segura data set, Classifium
outperformed CatBoost by 0.00638% of difference in classification accuracy. And
with the MiniBooNE data set, both algorithms performed almost equally. Their
difference in classification accuracy was found to be 0.000001%.

But with the Bank data set, CatBoost clearly outperformed Classifium in terms
of classification accuracy by 0.001404%. Also, with the Flavours of Physics CatBoost
outperformed Classifium by the difference of 0.00121% in terms of classification
accuracy.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.1.
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5.3.4 Classifium versus H2O(XGB)

Figure 5.4: Classification accuracy of H2O(XGBoost) and Classifium with the
different data sets.

The graph illustrates the comparative results between Classifium and H2O, with
XGBoost only as its base learner, for their classification accuracy with 7 different
data sets. The y-axis of the graph represents the accuracy categories in the interval
of 10%, and the x-axis represents the distribution of 7 different data sets.

H2O model was generated using only XGBoost classifier as its base learner. We
were interested to find how XGBoost will perform with the H2O hyperparameter
tuning pipeline. From the classification result we observed that Classifium outperformed
H2O-XGBoost by 0.000619% of classification accuracy when trained and tested with
the Adult data set. Similarly Classifium outperformed H2O-XGBoost with very
slight difference of 0.000101% of classification accuracy with the Bank data set. We
can say both algorithms performed equally with this data set. Again, Classifium
outperformed H2O by 0.014055% of difference with the Dota data set. And similarly,
Classifium outperformed H2O-XGBoost by 0.004356% of difference in classification
accuracy with the Flavours of Physics data set. Similarly, when tested with the
Forest Cover Type data set, Classifium outperformed H2O-XGBoost by 0.016544%
of difference in classification accuracy which is a significant difference. Similarly
Classifium outperformed H2O-XGBoost by 0.002815% and 0.003153% of difference
in classification accuracy when tested with MiniBooNE and Porto Seguro data sets
respectively.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.2.
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Figure 5.4: Classification accuracy of H2O(XGBoost) and Classifium with the
different data sets.

The graph illustrates the comparative results between Classifium and H2O, with
XGBoost only as its base learner, for their classification accuracy with 7 different
data sets. The y-axis of the graph represents the accuracy categories in the interval
of 10%, and the x-axis represents the distribution of 7 different data sets.

H2O model was generated using only XGBoost classifier as its base learner. We
were interested to find how XGBoost will perform with the H2O hyperparameter
tuning pipeline. From the classification result we observed that Classifium outperformed
H2O-XGBoost by 0.000619% of classification accuracy when trained and tested with
the Adult data set. Similarly Classifium outperformed H2O-XGBoost with very
slight difference of 0.000101% of classification accuracy with the Bank data set. We
can say both algorithms performed equally with this data set. Again, Classifium
outperformed H2O by 0.014055% of difference with the Dota data set. And similarly,
Classifium outperformed H2O-XGBoost by 0.004356% of difference in classification
accuracy with the Flavours of Physics data set. Similarly, when tested with the
Forest Cover Type data set, Classifium outperformed H2O-XGBoost by 0.016544%
of difference in classification accuracy which is a significant difference. Similarly
Classifium outperformed H2O-XGBoost by 0.002815% and 0.003153% of difference
in classification accuracy when tested with MiniBooNE and Porto Segura data sets
respectively.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.2.
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5.3.5 Classifium versus H2O

Figure 5.5: Classification accuracy of H2O and Classifium with the different data
sets.

The graph illustrates the comparative results between Classifium and H2O, with
all possible algorithms ensemble as its base learner, for their classification accuracy
with 7 different data sets. The y-axis of the graph represents the accuracy categories
in the interval of 10%, and the x-axis represents the distribution of 7 different data
sets.

Classification models were generated out of H2O by letting it to run single
algorithm and assembling all algorithms that it supports. From the figure 5.5 we can
see that H2O beat Classifium for its classification accuracy with the Adult data set
by 0.001347% of difference. But with the Bank and Dota data set, Classifium beat
the H2O by slight difference of by the slight difference of 0.000101% and 0.000261%
respectively in classification accuracy. Similarly, with the Flavours of Physics data set,
Classifium outperformed H2O by 0.002283% of difference in classification accuracy.
And with the Forest Cover Type data set, Classifium outperformed H2O by the
difference of 0.017566% in classification accuracy. And similarly, with the MiniBooNE
and Porto Seguro data sets, Classifium beat H2O by the difference of 0.001493% and
0.001586% of classification accuracy respectively.
The difference between the classification accuracy is calculated based on the classification
results presented in the table 5.1.
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Figure 5.5: Classification accuracy of H2O and Classifium with the different data
sets.

The graph illustrates the comparative results between Classifium and H2O, with
all possible algorithms ensemble as its base learner, for their classification accuracy
with 7 different data sets. The y-axis of the graph represents the accuracy categories
in the interval of 10%, and the x-axis represents the distribution of 7 different data
sets.
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results presented in the table 5.1.

59



CHAPTER 5. RESULTS

5.4 Results obtained from the statistical Significance
test

In the section 5.3, we presented the comparative graph illustrating the difference in
classification accuracy made by Classifium and other algorithms. We also discussed
the differences between the classification accuracy of Classifium against XGBoost,
LightGBM, CatBoost and H2O when implemented with the all 7 data sets. So, far
we could say that Classifium outperformed every other algorithm with 7 data sets in
majority of classification task. But to further establish the confidence in our results,
we performed the statistical significance test between the classification accuracy
obtained from Classifium and other 5 different algorithms with the same data set.
The table below shows the results obtained from our test for each case. The
mathematical calculations performed to calculate the significance test is presented
at Appendix B of this document.

Algorithms:

with
Data sets

Classifium
Versus

XGBoost

Classifium
Versus

LightGBM

Classifium
Versus

CatBoost

Classifium
Versus
H2O

(Ensemble)

Classifium
Versus
H2O

(XGBoost)

Adult Equal Equal Equal Equal Equal

Bank Equal Equal Equal Equal Equal

Dota Equal Equal Equal Equal Better

Flavours
of

Physics
Equal Equal Equal Equal Equal

Forest
Cover
Type

Better Better Better Better Equal

MiniBoo
NE Equal Equal Equal Equal Better

Porto
Seguro Equal Better Equal Equal Equal

Table 5.3: Table illustrating the statistical significance
testing results.
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In the above given table 5.3, the first horizontal row represents the list of
algorithms whose classification results are tested against the results of Classifium
with similar data set. And the first vertical column presents the different data
sets. The other cells of the table contains the results of statistical significance test
performed between the Classifium and each of 5 other algorithms with each data set.

During our test, we had formulated two hypothesis, H0 and H1 as null hypothesis
and alternative hypothesis. Our null hypothesis (H0) states that there is no any
significant difference between the classification accuracy between two algorithms
with the same data set. And our alternate hypothesis states that there is significant
difference between the classification accuracy of two algorithms with the same data
set. The cell having the value ’Better’, denotes that the difference in classification
accuracy obtained between Classifium and other algorithm with the same data set is
statistical significant. That means every time Classifium will perform better than
the other algorithm when tested with the other data samples from the same data set.
The cell having value ’Equal’ denotes that there is no any statistical significant
difference between the results obtained from two algorithms, Classifium and other,
with the same data set. That means the difference obtained in their classification
accuracy can not generalize that the same kind of results will be obtained when
tested with the other set of samples from the same data set.

From the above table we conclude that the difference in classification accuracy
obtained between Classifium and XGBoost with Forest Cover Type data set is
statistically significant. That means Classifium performed better than XGBoost with
Forest Cover Type data set.
Similarly the difference in classification accuracy obtained between Classifium and
LightGBM with Forest Cover Type data set and Porto Seguro data set are also
statistically significant.
Similarly the difference in classification accuracy obtained between Classifium and
CatBoost with the Forest Cover Type data set is statistically significant.
Likewise, the difference in classification accuracy obtained between the Classifium
and H2O with Forest Cover Type data set is also statistically significant.
And the difference in classification accuracy obtained between the Classifium and
H2O-XGBoost with the Dota and the MiniBooNE data sets are also statistically
significant.
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Chapter 6

Discussion

In this chapter we will present the discussion of our results on the basis of goal,
research question, and results of our study.

6.1 Evaluation
Gradient boosting technique is one of the most effective and efficient techniques
for classification and regression tasks in the machine learning domain. XGBoost,
LightGBM, and CatBoost are the latest modern implementation of gradient boosting
techniques. The automatic machine learning technique, Classifium, is also based on
the gradient boosting technique. H2O, which is also an automatic machine learning
technique, supports Gradient Boosting Machine and XGBoost algorithms for its
base learner. During our study, we were interested in finding how manually tuned
gradient boosting algorithms like XGBoost, LightGBM, CatBoost, and automatic
machine learning library like H2O with built-in hyperparameter tuning pipeline will
perform compared with another automatic machine learning algorithm Classifium
with built-in hyperparameter tuning pipeline, in terms of classification accuracy.

From our study, we found that, in the majority of classification tasks with 7
data sets, Classifium performed better than the other algorithms when tested for
their classification accuracy with the same set of 7 different data sets. We also
realized that the hyperparameter tuning pipeline has a significant role in boosting
the classification accuracy of manually tuned algorithms like XGBoost, LightGBM
and CatBoost. We also performed a statistical significance test for finding whether
our findings were statistically correct or they were correct only by chance. As an
answer, we found that Classifium performed better than other algorithms which were
tested against it for at least one data set, while with the rest of the other data set,
classification accuracy of Classifium was either equal or comparable. The results
are presented in tables 5.1, 5.2, and 5.3 in detail. For carrying out our research, we
formulated a research question given in Section 2.1. The same research question is
presented below:
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CHAPTER 6. DISCUSSION

Research question : Can automated machine learning approach like Classifium
generates the classification results comparable with the results generated by the
manually and carefully tuned gradient boosting machine learning libraries like
xgboost, LightGBM, CatBoost and automatic machine learning library like H2O?

We conducted an extensive study for finding the results of our research question.
For this, at first, we performed the hyperparameter tuning of XGBoost, LightGBM
and CatBoost carefully following the hyperparameter tuning pipeline, which we have
proposed in sections 3.2, 3.3, and 3.4 of this document. Since Classifium and H2O
are automatic machine learning algorithms, they are supplied with their own built-in
pipelines for optimizing hyperparameters, we did not have to formulate one for them.
We used 7 different data sets, presented at section 3.5, to perform the classification
using the algorithms XGBoost, LightGBM, CatBoost, H2O and Classifium. The
classification accuracies from test data sets were used for comparative analysis.

6.2 Findings
During tuning the hyperparameters of gradient boosting based machine learning
algorithms, XGBoost, LightGBM and CatBoost, we found that there exists some
difference in classification accuracies, made by algorithms with default hyperparameters
and algorithms with optimized hyperparameters. Also, we found that it is very
important to find out the right set of hyperparameters of any algorithms for
tuning them. We choose the set of hyperparameters for every algorithms based on
their official documents and our experience. For XGBoost we choose 9 different
hyperparameters, learning rate, number of trees, maximum depth, minimum child
weight, sub-sample, column sample, regularization alpha, regularization lambda and
gamma. While tuning process we found that learning rate, number of trees and
depth had a greater impact on classification accuracies. These hyperparameters also
contributed on controlling the overfitting problems. Similarly, other hyperparameters
like column sampling, sub-sampling rate, regularization parameters also had an impact
on accuracies and overfitting problems. For example when tuning XGBoost with
Forest Cover Type data set, at first with only default hyperparameters, we obtained
the training accuracy as 0.8975%. But when the learning rate was decreased to 0.1 and
the number of trees was increased to 5000, the training accuracy raised to 0.945976%,
which is a significant increment in accuracy. Likewise when other hyperparameters
were adjusted, the overall testing accuracy hiked to 0.968155%. In another example,
when XGBoost was tuned with Dota data set, its training accuracy was increased from
0.587338% to 0.5921801% after adjusting sub-sample and colsample. These are the
representative cases that we discussed here regarding the impact of hyperparameters
tuning on overall accuracy. Details about the hyperparameter tuning process and
results of XGBoost with 7 data sets can be found in Appendix A of this document.

Similarly, we choose 10 different hyperparameters of LightGBM for the hyperparameter
tuning process. And they were learning rate, number of trees, maximum depth of tree,
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number of leaves, minimum number of data in a leaf, minimum gain to split, bagging
fraction, feature fraction, and regularization parameters, lambda l1 and lambda l2.
We follow the official document of LightGBM while selecting hyperparameters for
the tuning process. We observed that similar to XGBoost, hyperparameter tuning
enhanced the accuracy of LightGBM models. For example, with adult data set
the training accuracy of model with default hyperparameters was 0.868656%. But
when tuned, the training accuracy was raised to 0.871334%. Similarly, the accuracy
increased with other data sets as well. An interesting observation we made during
tuning process of LightGBM was with the Dota data set. We followed the iterative
tuning approach, that means after reaching at the end of hyperparameter tuning
pipeline, we began the whole process again from the start of pipeline, but this time
with the latest optimized value from previous set of process. This approach helped
to increase the testing accuracy of the model. The same approach was tried with
the Forest Cover Type data set, but, no significant difference in testing accuracy
was found. And also it required extra computational time. Details about the
hyperparameter tuning process and results of LightGBM can be found in Appendix
A of this document.

Same as for XGBoost and LightGBM, we followed the official document of
CatBoost for selecting important hyperparameters for the hyperparameter tuning
process. We took only 7 different hyperparameters of CatBoost and performed the
hyperparameter tuning with the 7 different data sets. The hyperparameters used
were learning rate, number of trees, maximum depth, regularization parameters,
random strength, border count and bagging temperature. From our experiment we
observed that only learning rate, number of trees, depth and regularization parameter
contributed most to increase the accuracy of the model. But the hyperparameter
tuning process led to higher classification accuracy with all data sets. Details about
the hyperparameter tuning process and results of CatBoost can be found in Appendix
A of this document.

When comparing the results only between XGBoost, LightGBM and CatBoost
after the hyperparameter tuning process, we found that XGBoost outperformed
LightGBM and CatBoost with the Dota, Forest COver Type and Porto Seguro data
set. Similarly, LightGBM beat XGBoost and CatBoost with Adult and MiniBooNE
data set. And CatBoost beat XGBoost and LightGBM with the Bank and the
Flavours of physics data set.
While tuning hyperparameters of XGBoost, LightGBM and CatBoost with 7 different
data sets, we also found that it takes XGBoost a longer time for training than it
takes for LightGBM and CatBoost with the same data set. For example, it took
165.7 hours to perform complete hyperparameter tuning of XGBoost with the Forest
Cover Type data set on GPU. But with the same data set it only took 7.84 hours
for LightGBM and 100.96 hours for CatBoost for completing the hyperparameter
tuning process. From this observation, we concluded that XGBoost performed better
than LightGBM and CatBoost in the majority of classification tasks with a higher
classification accuracies. But it took it longest time among the three algorithms for
hyperparameter tuning process. After XGBoost, in terms of hyperparameter tuning
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process, CatBoost took longest time. Finally, we found that LightGBM took less
time to complete hyperparameter tuning process.

When building classification models with H2O, we found that it supports different
machines learning algorithms as its base learner. For example, XGBoost, Gradient
Boosting Machine, Deep Learning, Naive Bayes, Random Forest and et cetera. It has
its own built-in algorithms to select appropriate base learner and its hyperparameter
for a any given task. Also, it generates the model assembling possible base learner
as a stack. For our experiment we followed two different approach while developing
classification models with H2O. At first, we assigned only XGBoost as its base learner.
For tuning its hyperparameters, H2O used its own built-in algorithm, which is not
published yet. It also performs 5-fold cross validation training with the training data
set by default.
Following this approach we obtained the classification models for all the 7 data sets.
When comparing its result with the results obtained from Classifium with the same
data sets, we found that classification accuracies of models obtained with Classifium
were higher. After performing the statistical significance test with the same results,
we found that Classifium had performed better than H2O with XGBoost as base
learner, with the Dota and the MiniBooNE data set.
As a second approach, we performed modelling H2O enabling it to assemble all of
its base learner in a stack. When comparing the classification accuracy of stacked
H2O models with Classifium, we found that stacked H2O had higher classification
accuracy than Classifium with the Adult data set only. With rest of the other data
set, Classifium had higher classification accuracy. When the same results were tested
for the statistical significance, we observed that Classifium had performed better
than H2O with the Forest Cover Type data set. And, with the rest of the other data
set, its classification accuracy were found to be equal with the accuracy obtained
with the stacked ensemble H2O models.

After performing the hyperparameter tuning and modeling with XGBoost,
LightGBM, CatBoost and H2O, we model Classifium with the same set of 7 data sets.
When comparing the classification accuracy of Classifium with the other algorithms
with the same data set, we found that in majority of classification task, Classifium
outperformed other algorithms. Classifium, with its built-in auto-hyperparameter
tuning pipeline, was found to be effective for both, binary and multi-class classification
task. For binary classification Classifium outperformed all other algorithms taken for
our study, with majority of data set. While performing the multi-class classification
task with the Forest Cover Type data set, Classifium gave the accuracy of 0.971873%,
which is the highest among the other classification accuracy from all algorithms
considered in this study for comparison. Also, when the classification accuracies were
tested for statistical significance, we found that Classifium had performed better
than other algorithm at least with the one data set out of 7 data set.
But it required a lot of time for Classifium to generate the classification models
after data pre-processing and hyperparameter tuning process. For example, with
the Forest Cover Type data set, it took 260 hours for Classifium to complete its
modeling.
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For tuning hyperparameters of XGBoost, LightGBM and CatBoost we had done
some data pre-processing. We transformed the categorical columns of all data set into
numerical by applying one-hot encoding technique. Also, we replaced the missing
value with a special function from Numpy, np.NAN. XGBoost and LightGBM have
built-in mechanism to handle np.NAN as missing entity. For CatBoost, we placed a
special string ”NAN” where values were missing. CatBoost treats this string as a
missing value.
Unlike in XGBoost, LightGBM and CatBoost, for handling categorical and numerical
data types, it is only required in Classifium to name the columns as ”nominal” or
”ordinal”. Also, missing values can be simply denoted by ”?” character.

In the result section of this document, we can see that the testing accuracy of
some algorithm with some data set is higher than the training accuracy. This was
due to the stratified repeated cross validation technique. Due to this technique, only
80% of data could get trained in each iteration. For example, with the Forest Cover
Type data set, we had divided the whole data set into equal two portions, training
set and testing set. And we had implemented 5-Fold cross validation, repeated for
only one time. Every time, 4 folds were used as training and remaining 1 fold was
used for testing. So, 80% of data could get trained in each iteration. Whereas in
testing, whole 100% data could get tested, yielding the better result.

From this experiment we observed that, selecting classification models, data
pre-processing and manual hyperparameter tuning process following the pipeline are
tedious works. It requires direct human involvement throughout the process. So,
there always exists a possibility of human error. From our study we found that these
limitations of manual hyperparameter tuning process can be mitigated in automatic
machine learning algorithms like Classifium and H2O. Further, during experiment we
found that Classifium performed better than H2O with almost all data sets. So, from
the result, we concluded that we can answer our research question by stating that
Classifium can be an easy solution as being automatic machine learning algorithm
for classification task.
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Chapter 7

Conclusion and Future Work

In this chapter, we present our conclusion about this thesis work and the possible
future improvements that we observed during our research.

7.1 Conclusion
The objective of our study is to compare the classification accuracy of the automated
machine learning algorithm Classifium with the manually tuned gradient boosting
algorithms like XGBoost, LightGBM and CatBoost, and another automated machine
learning algorithm H2O. In our experiment, we used seven data sets, from UCI, for
training and testing of the five algorithms. We implemented the hyperparameter
tuning pipeline for the tuning of hyperparameters of XGBoost, LightGBM, and
CatBoost. We modelled the 7 data sets with our 5 algorithms and recorded their
classification accuracy. While modelling, we carried out repeated stratified cross
validation training for each model with the training data set. We obtained the best
set of hyperparameters by fitting these models with the grid search cross validation
method. Using the best set of hyperparameters, we performed tests on the testing
data sets separately. We observed, after implementing with the hyperparameter
tuning pipeline, that XGBoost and CatBoost performed better than LightGBM in
terms of classification accuracy, but required more training time than LightGBM.
In our next step, we trained and tested the automated machine learning algorithm
Classifium for the same seven data sets. For reference, we also trained and tested H2O
in two different approaches; a) Since H2O supports many different machine learning
algorithms like Distributed Random Forest, Deep Learning, Gradient Boosting
Machines, XGBoost, Navie Bayes, and et cetera, H2O models the data set with each
algorithm and after, also assemble them together into a stack and perform training
and testing with the stacked ensemble model. b) H2O can be run only by selecting
specific algorithm as its base learner. So in our second approach we choose XGBoost
for its base learner and model the data set using the hyperparameter tuning pipeline
of H2O.

After training and testing of the five algorithms, we compared the classification
accuracy of Classifium with the others and found that the accuracy of Classifium was
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higher than the other algorithms for the majority of the 7 data sets. When compared
with the XGBoost for its classification accuracy with the 7 data set, we found that
Classifium outperformed XGboost with the Dota, Forest Cover Type, MiniBooNE and
Porto Seguro data set. Similarly, when compared with the LightGBM, classification
accuracy of Classifium was found higher with the Dota, Flavours of Physics, Forest
Cover Type, and Porto Seguro data set. And again, when compared with the
classification accuracy of CatBoost, we found that Classifium performed better
with the Adult, Dota, Forest Cover Type, and Porto Seguro data set. Likewise we
found that the classification accuracy of Classifium was better than the classification
accuracy of H2O modeled with the Dota, Flavours of Physics, Forest Cover Type,
MiniBooNE, and Porto Seguro data set following approach (a), implemented with its
own automatic hyperparameter tuning pipeline. And also, when H2O was modeled
following the approach (b), only using XGBoost for its base learner, we found that
classification accuracy was lower than that of Classifium when trained and tested
with the same data sets, Adult, Bank, Dota, Flavours of Physics, Forest Cover Type,
MiniBooNE and Porto Seguro. From this we concluded that the hyperparameter
tuning pipeline implemented in Classifium performed better than the hyperparameter
tuning pipline implemented in H2O.

For further validation of the results, we also carried out statistical significance test
between the obtained accuracies from Classifium with the obtained accuracies from
XGBoost, LightGBM, CatBoost, and H2O with the both approaches. The results
obtained from the statistical significance test show that the Classifium performed
better than the other algorithms in at least one data set while performing equally
in others. Based on the results from training and testing of the five algorithms,
and further validated by the statistical significance test, we can conclude that the
classification accuracy obtained from Classifium, an automated machine learning
algorithm, can be better or equal with that from manually tuned algorithms like
XGBoost, LightGBM and CatBoost.

Also, we discovered that by implementing stratified repeated K-Fold cross
validation techniques, we could overcome the problem of target class imbalance.
We implemented this method for every algorithm with all data sets.
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7.2 Future Work
During this project, we observed that there are some aspects that can be improved
in future. We realised that, since Classifium can only be used for classification task,
it should also be able to work for regression task. Also, since Classifium requires a
lot of time for training, it can be developed for supporting graphical processing unit.

We have found that XGBoost, LightGBM and CatBoost are implemented in
many Kaggle competition in which they are placed best. So it would be more easier
to implement XGBoost, LightGBM and CatBoost, if they are provided with the
automatic hyperparameter tuning pipeline.

Also, we can raise a question whether the automatic hyperparameter searching
algorithm like Hyperband, when implemented with gradient boosting algorithms like
XGBoost, LightGBM and CatBoost, can generate the classification results comparable
to the results obtained from hyperparameter tuning pipeline of Classifium? This can
also be one direction for the future work.
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Appendix A

Hyperparameters tuning pipeline

A.1 Source code

1 def hypertune(model , param):
2 cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=10,
3 random_state=36)
4 grid_search = GridSearchCV(model , param , cv=cv, scoring =
5 ('accuracy '), return_train_score = True,
6 verbose = 2)
7 start = time.time()
8 grid_search.fit(X_train , y_train)
9 stop = time.time()

10 sec = stop-start
11 minu = sec/60
12 hrs = minu/60
13 print("\n")
14 print('Total time required for execution:', hrs)
15 print("\n")
16 print('best parameters are:', grid_search.best_params_)
17 print('CV accuracy:', grid_search.best_score_)
18 print("\n")
19 print("The cross validation results are:", grid_search.cv_results_)
20

21 hypertune(model1 , params1)
22 //number of repetition , n_repeats , was different for different data sets.
23 //Criteria of finding the value for n_repeats is explained in section 3.7
24 //of this document.

Listing A.1: Implementation of RepeatedStratifiedKFold() method with gridserach()
function while performing hyperparameter tuning of algorithms XGBoost LightGBM
and CatBoost.
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A . l Source code

1 def hypertune(model, param):
2 c v = RepeatedStratifiedKFold(n_splits=5, n_repeats=10,
3 random_state=36)
4

5

6

7

8

9

10

11

12

13

14

15

16

grid_search = GridSearchCV(model, param, cv=cv, scoring
('accuracy'), return train score True,
verbose = 2)

start= time.time()
grid_search.fit(X_train, y_train)
s t o p = time.time()
s e c = stop-start
minu = sec/60
h r s = minu/60
print("\n")
print('Total time required for execution: ', hrs)
print("\n")
print('best parameters are: ', grid_search.best_params_)
print('CV accuracy: ', grid_search.best_score_)
print("\n")
print("The cross validation results are:", grid_search.cv_results_)

17

18

19

20

21 hypertune(model1, params1)
22 //number of repetition, n_repeats, was different for different data sets.
23 //Criteria of finding the value for n_repeats is explained in section 3.7
24 //of this document.

Listing A.l: Implementation of RepeatedStratifiedKFold() method with gridserach()
function while performing hyperparameter tuning of algorithms XGBoost LightGBM
and CatBoost.
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APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

1 model1 = XGBClassifier(learning_rate = 0.3, gamma = 0,
2 max_depth = 6, min_child_weight = 1,
3 subsample =1, colsample_bytree = 1,
4 reg_lambda=1, objective ='binary:logistic ',
5 tree_method='hist', scale_pos_weight=1,
6 n_estimators = 100, n_jobs = -1,
7 use_label_encoder=False , missing = np.NAN)
8 params1 = {'learning_rate ':[0.1,0.2,0.3], 'n_estimators ':
9 range(100,550,50)}

Listing A.2: General model of XGBoost used for hyperparameter tuning.

1 model1 = LGBMClassifier(learning_rate=0.1, num_iteration=100,
2 max_depth = -1, num_leaves = 31,
3 min_data_in_leaf = 20, min_gain_to_split = 0,
4 bagging_fraction =1, feature_fraction = 1,
5 lambda_l1 = 0, lambda_l2 = 0,
6 scale_pos_weight =1,n_jobs = -1,
7 objective = 'binary ',device_type = 'cpu')
8 params1 = {'learning_rate ':[1, 2, 3], 'num_iteration ': range(100, 550, 50)}
9

10 hypertune(model1 , params1)

Listing A.3: General model of LightGBM used for hyperparameter tuning

1 model1 = CatBoostClassifier(iterations=1470,learning_rate=0.1,
2 cat_features = nominal , depth=7,
3 l2_leaf_reg=3.2,random_strength=0.8,
4 border_count=254,bagging_temperature = 1,
5 loss_function='Logloss ', eval_metric='Accuracy ')
6 params1 = {'learning_rate ':[0.01,0.1,0.2],'iterations ':range(1450, 1505, 10)}
7

8 hypertune(model1 , params1)
9

10 //In the above given function , the categorical values are passed to the
11 //algorithm in an array of categorical feature named 'nominal '
12 //through a parameter called 'cat_features '.

Listing A.4: General model of CatBoost used for hyperparameter tuning
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1 model1
2

3

4

5

6

XGBClassifier(learning_rate = 0.3, gamma= 0,
max_depth = 6, min_child_weight = 1,
subsample =1, colsample_bytree = 1,
reg_lambda=1, objective ='binary:logistic',
tree_method='hist', scale_pos_weight=1,
n_estimators = 100, n_jobs = -1,

7 use_label_encoder=False, missing= np.NAN)
s params1 = {'learning_rate ':[0.1,0.2,0.3], 'n_estimators':
g range(100,550,50)}

Listing A.2: General model of XGBoost used for hyperparameter tuning.

1 model1 = LGBMClassifier(learning_rate=0.1, num_iteration=100,
2

3

4

5

6

max_depth = -1, num_leaves = 31,
min_data_in_leaf = 20, min_gain_to_split
bagging_fraction =1, feature_fraction = 1,
lambda_l1 = 0, lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

0,

7 objective= 'binary',device_type = 'cpu')
s params1 = {'learning_rate':[1, 2, 3], 'num_iteration': range(100, 550, 50)}
9

10 hypertune(model1, params1)

Listing A.3: General model of LightGBM used for hyperparameter tuning

1 model1 = CatBoostClassifier(iterations=1470,learning_rate=0.1,
2 cat_features = nominal, depth=7,
3 12_leaf_reg=3.2,random_strength=0.8,
4 border_count=254,bagging_temperature = 1,
5 loss_function='Logloss', eval_metric='Accuracy')
6 params1 = {'learning_rate':[0.01,0.1,0.2],'iterations':range(1450, 1505, 10)}
7

s hypertune(model1, params1)
9

10 //In the above given function, the categorical values are passed to the
11 //algorithm in an array of categorical feature named 'nominal'
12 //through a parameter called 'cat_features '.

Listing A.4: General model of CatBoost used for hyperparameter tuning
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A.2 Hyperparameter tuning pipeline for XGBoost

A.2.1 XGBoost with the Adult data set

Hyperparameter tuning of XGBClassifier()
with Adult data set.

Steps XGBClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’n_
estim
ators’:
range(
100,

550, 50)

’learning
_rate’:

0.1,

’n_
estim
ators’:

150

Accuracy:

0.870209

Time:
0.36 hrs

2 Tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’

)

’max_
depth’:
range
(3,10),

’min_
child_
weight’:
range(
0, 8)

{’max_
depth’:

6,

’min_
child_
weight’:

0}

Accuracy:

0.87045

Time:

0.47 hrs

3 Tune
gamma
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A . 2 Hyperparameter tuning pipeline for X G B o o s t

A.2.1 XGBoost with the Adult data set

Hyperparameter tuning of XGBClassifier()
with Adult data set.

Steps XGBClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_ 'learning
rate': 'learningrate=0.3,n_ estimators -

= 100, max_depth = 6, [0.1, 0.2, - rate': Accuracy:
min_child weight = l, 0.3], 0.1,

gamma=0, subsample = l, 'n 0.870209
colsample_bytree = l, -

reg_alpha=0, reg_lambda=l, estim 'n
- Time:ators': estimmissing=np.NAN, tree_method= range( ators': 0.36 hrs

'gpu_hist',
objective = 'binary:logistic') 100, 150

550, 50)

2 Tune max_ depth and
mm - child_weight

XGBClassifier(learning_ 'maxrate=0.1,n_ estimators - {'max_
= 150, max_depth = 6, depth': depth': Accuracy:
min_child weight = l, range 6,

gamma=0, subsample = l, (3,10), 0.87045
colsample_bytree = l, 'minreg_alpha=0, reg_lambda=l, - 'min Time:child -

missing=np.NAN, tree_method= - childweight': -

'gpu_hist', range( weight': 0.47 hrs
objective = 'binary:logistic' 0}

) 0, 8)

3 Tune
gamma
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Table A.1 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Adult data set.
XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’

)

’gamma’:
[0, 1, 2,

3,
4, 5, 6]

’gamma’:
0

Accuracy:

0.87045

Time:

0.03 hrs

4 Tune subsample and
colsample_bytree

XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’

)

{’sub
sample’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9,1]

’col
sample_
bytree’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, 1]

’col
sample_
bytree’:

0.3,
’sub

sample’:
1

Accuracy:

0.871785

Time:

0.77 hrs

5 Tune reg_alpha and
reg_lambda
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Table A. l continued from previous page
Hyperparameter tuning of XGBClassifier()

with Adult data set.
XGBClassifier(learning_
rate=0. l ,n_ estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic'

)

'gamma':
[O, l, 2,

3,
4, 5, 6]

'gamma':
0

Accuracy:

0.87045

Time:

0.03 hrs

4 Tune subsample and
colsample_ bytree

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic'

)

{'sub
sample':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,

0.9,1]

'col
sample_
bytree':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, l]

'col
sample_
bytree':

0.3,
'sub

sample':
l

Accuracy:

0.871785

Time:

0.77 hrs

5 Tune reg_alpha and
reg_lambda
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Table A.1 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Adult data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 0.3,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’

)

{’reg_
alpha’:
[0.0001,
0.001,
0.01,

0.1, 0,
1, 2, 3],

’reg_
lambda’:

[1,2,3,
4, 5]}

’reg_
alpha’:

0,
’reg_

lambda’:
1

Accuracy:

0.871785

Time:

0.09 hrs

6 Tune
learning_rate

XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 0.3,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’

)

’learning
_rate’:
[0.001,

0.01, 0.1,
0.2,0.3],

’learning
_rate’:

0.1

Accuracy:

0.871785

Time:

0.03 hrs

Create the final model
with the value of the optimized parameters.

model =
XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 0.3,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’

)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:

0.871785

Testing
Accuracy:
0.875225

The efficiency of the model with testing data was found to be: 0.875225
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Table A. l continued from previous page
Hyperparameter tuning of XGBClassifier()

with Adult data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = 0.3,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic'

)

{'reg_
alpha':
[0.0001,
0.001,
0.01,

0.1, 0,
l, 2, 3],

'reg_
lambda':

[1,2,3,
4, 5]}

'reg_
alpha':

0,
'reg_

lambda':
l

Accuracy:

0.871785

Time:

0.09 hrs

Tune
learning_ ra te

XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = 0.3,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic'

)

'learning
rate':

[0.001,
0.01, 0.1,
0.2,0.3],

'learning
rate':
0.1

Accuracy:

0.871785

Time:

0.03 hrs

Create the final model
with the value of the optimized parameters.

model=
XGBClassifier(learning_
rate=0.1,n_estimators

= 150, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = 0.3,

reg_alpha=0, reg_lambda=l, print('Testing accuracymissing=np.NAN, tree_method=
'gpu_hist',

objective = 'binary:logistic'
)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

score:',
accuracy_score

(y_tes t , y_predict))

cv
Training

Accuracy:

0.871785

Testing
Accuracy:
0.875225

The efficiency of the model with testing data was found to be: 0.875225
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Table A.1 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Adult data set.
Table A.1: Hyperparameter tuning pipeline for the
XGBClassifier() with the Adult data set.
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Table A. l continued from previous page
Hyperparameter tuning of XGBClassifier()

with Adult data set.
Table A.l : Hyperparameter tuning pipeline for the
XGBClassifier() with the Adult data set.
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A.2.2 XGBoost with the Bank data set

Hyperparameter tuning of XGBClassifier()
with Bank data set.

Steps XGBClassifier() Parameter
Grid

Optimized
Value

CV
Training:

1 Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’n_
estim
ators’:
range(
100,

550, 50)

’learning
_rate’:

0.1,
’n_

estim
ators’:

100

Accuracy:

0.915651

Time:

0.32 hrs

2 Tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’max_
depth’:
range
(3,10),

’min_
child_
weight’:
range(
0, 8)

’max_
depth’:

4,

’min_
child_
weight’:

2

Accuracy:

0.916734

Time:
0.32 hrs

3 Tune
gamma

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’gamma’:
[0, 1, 2,

3,
4, 5, 6]

’gamma’:
2

Accuracy:

0.916758

Time:

0.02
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A.2.2 XGBoost with the Bank data set

Hyperparameter tuning of XGBClassifier()
with Bank data set.

Steps XGBClassifier() Parameter
Grid

Optimized
Value

cv
Training:

l Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.1, 0.2,
0.3],

'n
estim
ators':
range(
100,

550, 50)

'learning
rate':-

0.1,
'n

estim
ators':

100

Accuracy:

0.915651

Time:

0.32 hrs

2
Tune max_ depth and

mm_child_ weight
XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'max
depth':
range
(3,10),

'min
child

weight':
range(
0, 8)

'max
depth':

4,

'min
child

weight':
2

Accuracy:

0.916734

Time:
0.32 hrs

3 Tune
gamma

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'gamma':
[0, l, 2,

3,
4, 5, 6]

'gamma':
2

Accuracy:

0.916758

Time:

0.02
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Table A.2 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Bank data set.

4 Tune subsample and
colsample_bytree

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’sub
sample’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9,1]

’col
sample_
bytree’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, 1]

’sub
sample’:

0.9,

’col
sample_
bytree’:

1

Accuracy:

0.916972

Time:

0.29 hrs

5 Tune reg_alpha and
reg_lambda

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample = 0.9,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’reg_
alpha’:
[0.0001,
0.001,
0.01,

0.1, 0,
1, 2, 3],

’reg_
lambda’:

[1,2,3,
4, 5]}

’reg_
alpha’:
0.01,
’reg_

lambda’:
1

Accuracy:

0.917015

Time:

0.12 hrs

6 Tune
learning_rate
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Table A . 2 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Bank data set.

4 Tune subsample and
colsample_ bytree

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

{'sub
sample':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,

0.9,1]

'col
sample_
bytree':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, l]

'sub
sample':

0.9,

'col
sample_
bytree':

l

Accuracy:

0.916972

Time:

0.29 hrs

5 Tune reg_alpha and
reg_lambda

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample = 0.9,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

{'reg_
alpha':
[0.0001,
0.001,
0.01,

0.1, 0,
l, 2, 3],

'reg_
lambda':

[1,2,3,
4, 5]}

'reg_
alpha':
0.01,
'reg_

lambda':
l

Accuracy:

0.917015

Time:

0.12 hrs

6 Tune
learning_rate
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Table A.2 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Bank data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample = 0.9,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:
[0.001,
0.01,

0.1, 0.2,
0.3],
’n_

estim
ators’:
range(
100,

550, 50)

’learning
_rate’:

0.1,

’n_
estim
ators’:

100

Accuracy:

0.917015

Time:
0.19 hrs

Create the final model
with the value of the optimized parameters.

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample = 0.9,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:

0.917015

Testing
Accuracy:
0.916525

The efficiency of the model with testing data was found to be: 0.916525

Table A.2: Hyperparameter tuning pipeline for the
XGBClassifier() with the Bank data set.
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Table A . 2 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Bank data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample = 0.9,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.001,
0.01,

0.1, 0.2,
0.3],
'n

estim
ators':
range(
100,

550, 50)

'learning
rate':-

0.1,

'n
estim
ators':

100

Accuracy:

0.917015

Time:
0.19 hrs

Create the final model
with the value of the optimized parameters.

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 4,
min_child weight = 2,

gamma=2, subsample = 0.9,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print ('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

cv
Training

Accuracy:

0.917015

Testing
Accuracy:
0.916525

The efficiency of the model with testing data was found to be: 0.916525

Table A.2: Hyperparameter tuning pipeline for the
XGBClassifier() with the Bank data set.
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A.2.3 XGBoost with the Dota data set

Hyperparameter tuning of XGBClassifier()
with Dota data set.

Steps XGBClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’n_
estim
ators’:
range(
100,

550, 50)

’learning
_rate’:

0.1,
’n_

estim
ators’:

200

Accuracy:

0.584595

2 Tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’max_
depth’:
range
(3,10),

’min_
child_
weight’:
range(
0, 8)

’max_
depth’:

4,

’min_
child_
weight’:

4

Accuracy:

0.587201

3 Tune
gamma

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’gamma’:
[0, 1, 2,

3,
4, 5, 6]

’gamma’:
1

Accuracy:

0.587338
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A.2.3 XGBoost with the Dota data set

Hyperparameter tuning of XGBClassifier()
with Dota data set.

Steps XGBClassifier() Parameter
Grid

Optimized
Value

cv
Training

l Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.1, 0.2,
0.3],

'n
estim
ators':
range(
100,

550, 50)

'learning
rate':-

0.1,
'n

estim
ators':

200

Accuracy:

0.584595

2
Tune max_depth and

mm_child_ weight
XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

3

'max- 'maxdepth': -

depth':range 4,(3,10), Accuracy:

'min
- 'min 0.587201child -

- childweight': -

range( weight':

0, 8) 4

Tune
gamma

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'gamma':
[O, l, 2,

3,
4, 5, 6]

'gamma':
l

Accuracy:

0.587338
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Table A.3 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Dota data set.

4 Tune subsample and
colsample_bytree

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’sub
sample’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9,1]

’col
sample_
bytree’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, 1]

’sub
sample’:

0.4

’col
sample_
bytree’:

0.8,

Accuracy:

0.5921801

5 Tune reg_alpha and
reg_lambda

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’reg_
alpha’:
[0.0001,
0.001,
0.01,

0.1, 0,
1, 2, 3],

’reg_
lambda’:

[1,2,3,
4, 5]}

’reg_
alpha’:

3,
’reg_

lambda’:
4

Accuracy:

0.59347979

5.1 Re-tune
reg_alpha andreg_lambda
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Table A .3 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Dota data set.

4 Tune subsample and
colsample_ bytree

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

{'sub
sample':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,

0.9,1]

'col
sample_
bytree':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, l]

'sub
sample':

0.4

'col
sample_
bytree':

0.8,

Accuracy:

0.5921801

5 Tune reg_alpha and
reg_lambda

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

{'reg_
alpha':
[0.0001,
0.001,
0.01,

0.1, 0,
l, 2, 3],

'reg_
lambda':

[1,2,3,
4, 5]}

'reg_
alpha':

3,
'reg_

lambda':
4

Accuracy:

0.59347979

5.1 Re-tune
reg_alpha andreg_lambda
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Table A.3 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Dota data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’reg_
alpha’:
[4,5, 6,
7, 8,

9, 10],

’reg_
lambda’:
[1,2,3,4,

5,6]

’reg_
alpha’:

6,
’reg_l

ambda’:
2

Accuracy:

0.593530

6 Tune learning_rate
and n_estimators

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=6, reg_lambda=2,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:
[0.001,
0.01,

0.1, 0.2,
0.3],
’n_

estim
ators’:
range(
100,

550, 50)

’learning
_rate’:

0.1,
’n_

estim
ators’:

500

Accuracy:

0.59606

6.1 Re-tune learning_rate
and n_estimators

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=6, reg_lambda=2,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:
[0.001,
0.01,

0.1, 0.2,
0.3],
’n_

estim
ators’:
range(
450,
1050,
50)

’learning
_rate’:

0.1,
’n_

estimators’:
600

0.5962794

92

APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

Table A .3 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Dota data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'reg_
alpha':
[4,5, 6,

7, 8,
9, 10],

'reg_
lambda':
[1,2,3,4,

5,6]

'reg_
alpha':

6,
'reg_l

ambda':
2

Accuracy:

0.593530

6 Tune learning_rate
and n estimators

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=6, reg_lambda=2,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.001,
0.01,

0.1, 0.2,
0.3],
'n

estim
ators':
range(
100,

550, 50)

'learning
rate':-

0.1,
'n

estim
ators':

500

Accuracy:

0.59606

6.1 Re-tune learning_rate
and n estimators

XGBClassifier(learning_
rate=0.1,n_estimators

= 200, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=6, reg_lambda=2,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.001,
0.01,

0.1, 0.2,
0.3],
'n

estim
ators':
range(

450,
1050,
50)

'learning
rate':-

0.1,
'n

estimators':
600

0.5962794
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Table A.3 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Dota data set.
Create the final model

with the value of the optimized parameters.

XGBClassifier(learning_
rate=0.1,n_estimators

= 600, max_depth = 4,
min_child weight = 4,

gamma=0, subsample = 0.4,
colsample_bytree = 0.8,

reg_alpha=6, reg_lambda=2,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.5962794

Testing
Accuracy:

0.594859

The testing accuracy of the model with testing data set was obtained as:
0.59485924

Table A.3: Hyperparameter tuning pipeline for the
XGBClassifier() with the Dota data set.
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Hyperparameter tuning of XGBClassifier()
with Dota data set.

Create the final model
with the value of the optimized parameters.

XGBClassifier(learning_ model.fit(X_train,
y_train) cvrate=0.1,n_ estimators

= 600, max_depth = 4, Training

min_child weight = 4, y_predict = model. Accuracy:
predict 0.5962794gamma=0, subsample= 0.4, (X_test)colsample_bytree = 0.8,

reg_alpha=6, reg_lambda=2, Testing

missing=np.NAN, tree_method= print ('Testing accuracy Accuracy:

'gpu_hist', score:',

objective = 'binary:logistic') accuracy_score 0.594859
(y_tes t , y_predict))

The testing accuracy of the model with testing data set was obtained as:
0.59485924

Table A .3 continued from previous page

Table A.3: Hyperparameter tuning pipeline for the
XGBClassifier() with the Dota data set.
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A.2.4 XGBoost with the Flavours of Physics data set.

Hyperparameter tuning of XGBClassifier()
with Flavours of Physics data set.

Steps XGBClassifier() Parameter
Grid

Optimized
Value

CV
Training:

1 Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’n_
estim
ators’:
range(
100,

550, 50)

learning
_rate:

0.1

n_
estim
ators:
450

Accuracy:

0.89104

Time:
0.5 hrs

2 Tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’max_
depth’:
range
(3,10),

’min_
child_
weight’:
range(
0, 8)

’max_
depth’:

5,

’min_
child_
weight’:

7

Accuracy:

0.89209

Time:

1.85 hrs

2.1 Re-tune
min_child_weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 5,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’min_
child_
weight’:
range(5,

10)

’min_
child_
weight’:

7

Accuracy:

0.89209

Time:

0.07 hrs
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A.2.4 XGBoost with the Flavours of Physics data set .

Hyperparameter tuning of XGBClassifier()
with Flavours of Physics data set.

Steps XGBClassifier() Parameter Optimized
Grid Value

cv
Training:

l Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_ estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.1, 0.2,
0.3],

'n
estim
ators':
range(
100,

550, 50)

learning
rate:
0.1

n-

estim
ators:
450

Accuracy:

0.89104

Time:
0.5 hrs

2 Tune max_depth and
mm_child_ weight

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 6,
min_child weight = l,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

'max
depth':
range
(3,10),

'min
child

weight':
range(
0, 8)

'max
depth':

5,

'min
child

weight':
7

Accuracy:

0.89209

Time:

1.85 hrs

2.1 Re-tune
mm_child_ weight

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 5,
min_child weight = l,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

'min
child

weight':
range(5,

10)

'min
child

weight':
7

Accuracy:

0.89209

Time:

0.07 hrs
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.

3 Tune
gamma

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’gamma’:
[0, 1, 2,

3,
4, 5, 6]

’gamma’:
0

Accuracy:

0.89209

Time:

0.06 hrs

4 Tune subsample and
colsample_bytree

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’sub
sample’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9,1]

’col
sample_
bytree’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, 1]

’sub
sample’:

0.9

’col
sample_
bytree’:

0.9,

Accuracy:

0.89297

Time:

1.30 hrs

5 Tune reg_alpha and
reg_lambda
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.

3 Tune
gamma

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'gamma':
[O, l, 2,

3,
4, 5, 6]

'gamma':
0

Accuracy:

0.89209

Time:

0.06 hrs

4 Tune subsample and
colsample_ bytree

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample= l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

{'sub
sample':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,

0.9,1]

'col
sample_
bytree':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, l]

'sub
sample':

0.9

'col
sample_
bytree':

0.9,

Accuracy:

0.89297

Time:

1.30 hrs

5 Tune reg_alpha and
reg_lambda
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’reg_
alpha’:
[0.0001,
0.001,
0.01,

0.1, 0,
1, 2, 3],

’reg_
lambda’:

[1,2,3,
4, 5]}

’reg_
alpha’:

2,

’reg_
lambda’:

5

Accuracy:

0.89379

Time:

0.65 hrs

5.1 Re-tune reg_alpha and
reg_lambda

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’reg_
alpha’:
[0.0001,
0.001,
0.01,

0.1, 0,
1, 2, 3],

’reg_
lambda’:

[1,2,3,
4, 5,

6, 7, 8]

’reg_
alpha’:

2,

’reg_
lambda’:

5

Accuracy:

0.89379

Time:

1.0 hrs

6 Tune learning_rate
and n_estimators
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

{'reg_
alpha':
[0.0001,
0.001,
0.01,

0.1, 0,
l, 2, 3],

'reg_
lambda':

[1,2,3,
4, 5]}

'reg_
alpha':

2,

'reg_
lambda':

5

Accuracy:

0.89379

Time:

0.65 hrs

5.1 Re-tune reg_alpha and
reg_lambda

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

'reg_
alpha':
[0.0001,
0.001,
0.01,

0.1, 0,
l, 2, 3],

'reg_
lambda':

[1,2,3,
4, 5,

6, 7, 8]

'reg_
alpha':

2,

'reg_
lambda':

5

Accuracy:

0.89379

Time:

1.0 hrs

6
Tune learning_rate
and n estimators
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=2, reg_lambda=5,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:
[0.001,
0.01,
0.1,

0.2,0.3],

’n_
estim
ators’:
range(
100,
600,
50)

’learning
_rate’:

0.1,

’n_
estim
ators’:

550

Accuracy:

0.89383

Time:

0.61 hrs

6.1 Re-tune
n_estimators

XGBClassifier(learning_
rate=0.1,n_estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=2, reg_lambda=5,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’n_
estimators’:
range(450,
850, 50)

’n_
estimators’:

600

Accuracy:

0.89390

Time:

0.18 hrs

Create the final model
with the value of the optimized parameters.

XGBClassifier(learning_
rate=0.1,n_estimators

= 600, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=2, reg_lambda=5,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

Training
Accuracy:
0.89390

Testing
Accuracy:
0.890895

The testing accuracy of the model with testing data set is: 0.890895
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=2, reg_lambda=5,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

6.1

[0.001, 'learning0.01, rate': Accuracy:0.1, -

0.2,0.3], 0.1,
0.89383

'n
- 'n Time:estim -

ators': estim

range( ators': 0.61 hrs
550100,

600,
50)

Re-tune
n- estimators

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 450, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=2, reg_lambda=5,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'n
estimators':
range(450,
850, 50)

'n
estimators':

600

Accuracy:

0.89390

Time:

0.18 hrs

Create the final model
with the value of the optimized parameters.

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 600, max_depth = 5,
min_child weight = 7,

gamma=0, subsample = 0.9,
colsample_bytree = 0.9,

reg_alpha=2, reg_lambda=5,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

Training
Accuracy:
0.89390

Testing
Accuracy:
0.890895

The testing accuracy of the model with testing data set is: 0.890895
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.
Table A.4: Hyperparameter tuning pipeline for the
XGBClassifier() with the Flavours of Physics data set.
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Table A.4 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Flavours of Physics data set.
Table A.4: Hyperparameter tuning pipeline for the
XGBClassifier() with the Flavours of Physics data set.
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A.2.5 XGBoost with the Forest Cover Type data set

Hyperparameter tuning of XGBClassifier()
with Forest Cover Type data set.

Steps XGBClassifier() Parameter
Grid

Optimized
Value

CV
Training:

1 Fix learning_rate at 0.1 and tune n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

n_
estim
ator:

range(
100,
5050,
50)

5000

Accuracy:
0.945976

Time:
28 hrs

2 Tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

’max_
depth’:
range
(3,7),

’min_
child_
weight’:
range(
0, 8)

6

0

Accuracy:
0.954806

Time:
3.4 hrs

2.1 Re-tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

max_
depth:
range
(6,11),

min_
child_
weight:
range
(0,3)

10

0

Accuracy:
0.960744

Time:
10.9 hr

2.2 Re-tune
max_depth
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A.2.5 XGBoost with the Forest Cover Type data set

Hyperparameter tuning of XGBClassifier()
with Forest Cover Type data set.

Steps XGBClassifier() Parameter Optimized CV
Grid Value Training:

l Fix learning_rate at 0.1 and tune n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.1,n_estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

n-

estim
ator:

range(
100,
5050,
50)

5000

Accuracy:
0.945976

Time:
28 hrs

2 Tune max_ depth and
mm_child_ weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l, 'min_

reg_alpha=0, reg_lambda=l, child_
missing=np.NAN, tree_method= weight':

'gpu_hist', range(
objective = 'multi:softprob') 0, 8)

'max
depth':
range
(3,7),

6
Accuracy:
0.954806

Time:
3.4 hrs

0

2.1 Re-tune max_depth and
mm_child_ weight

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

max
depth:
range
(6,11),

mm
child
weight:
range
(0,3)

10

0

Accuracy:
0.960744

Time:
10.9 hr

2.2 Re-tune
max_depth
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Table A.5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

max_
depth:
range
(10,
13)

12

Accuracy:
0.961453

Time:
7.5 hr

2.3 Re-tune
max_depth

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

max_
depth:
range
(12,
15)

14

Accuracy:
0.962062

Time:
11 hrs

2.4 Re-tune
max_depth

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

max_
depth:
range
(15,
19)

18

Accuracy:
0.962193

Time:
17 hrs

2.5 Re-tune
max_depth
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Hyperparameter tuning of XGBClassifier()
with Forest Cover Type data set.

XGBClassifier(learning_
rate=0.1,n_ estimators

= 5000, max_depth = 6, max Accuracy:min_child weight = 0, depth: 0.961453gamma=0, subsample = l,
colsample_bytree = l, range 12

reg_alpha=0, reg_lambda=l, (10, Time:

missing=np.NAN, tree_method= 13) 7.5 hr

'gpu_hist',
objective = 'multi:softprob')

2.3 Re-tune
max_depth

XGBClassifier(learning_
rate=0.1,n_ estimators

= 5000, max_depth = 6, max Accuracy:min_child weight = 0,
gamma=0, subsample = l, depth: 0.962062

colsample_bytree = l, range 14

reg_alpha=0, reg_lambda=l, (12, Time:

missing=np.NAN, tree_method= 15) 11 hrs

'gpu_hist',
objective = 'multi:softprob')

2.4 Re-tune
max_depth

XGBClassifier(learning_
rate=0.1,n_ estimators

= 5000, max_depth = 6, max Accuracy:min_child weight = 0, depth: 0.962193gamma=0, subsample = l,
colsample_bytree = l, range 18

reg_alpha=0, reg_lambda=l, (15, Time:

missing=np.NAN, tree_method= 19) 17 hrs

'gpu_hist',
objective = 'multi:softprob')

2.5 Re-tune
max_depth

Table A . 5 continued from previous page
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Table A.5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

max_
depth:

range(19,
20)

19

Accuracy:
0.962276

Time:
7 hrs

2.6 Re-tune
max_depth

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

max_
depth:

range(20,
23)

20

Accuracy:
0.962262

Time:
21 hrs

3 Tune
gamma

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

gamma:
[0, 1, 2] 0

Accuracy:
0.962276

Time:
8 hrs

3.1 Re-tune
gamma
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Table A . 5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 6,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

max
depth:

range(19,
20)

19

Accuracy:
0.962276

Time:
7 hrs

2.6 Re-tune
max_depth

XGBClassifier(learning_
rate=0.1,n_ estimators

= 5000, max_depth = 6, Accuracy:min_child weight = 0, max 0.962262gamma=0, subsample = l, depth: 20colsample_bytree = l, range(20, Time:reg_alpha=0, reg_lambda=l, 23) 21 hrsmissing=np.NAN, tree_method=
'gpu_hist',

objective = 'multi:softprob')

3 Tune
gamma

XGBClassifier(learning_
rate=0.1,n_ estimators

= 5000, max_depth = 20, Accuracy:min_child weight = 0, 0.962276gamma=0, subsample = l, gamma: 0colsample_bytree = l, [0, l, 2] Time:reg_alpha=0, reg_lambda=l, 8 hrsmissing=np.NAN, tree_method=
'gpu_hist',

objective = 'multi:softprob')

3.1 Re-tune
gamma
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Table A.5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

gamma:
[0, 0.5,
0.75]

0

Accuracy:
0.962276

Time:
8 hrs

4 Tune subsample and
colsample_bytree

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

sub
sample:
[0.8,0.9

,1],
col

sample_
bytree:

[0.8,
0.9,1]

0.9

0.9

Accuracy:
0.963246

Time:
10.4 hrs

4.1 Re-tune subsample and
colsample_bytree

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

sub
sample:

[0.9,
0.95],
col

sample_
bytree:

[0.9,
0.95]

0.95

0.95

Accuracy:
0.963683

Time:
7.5 hhrs

5 Tune reg_alpha and
reg_lambda

102

APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

Table A . 5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
XGBClassifier(learning_
rate=0. l ,n_ estimators

= 5000, max_depth = 20,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

gamma:
[O, 0.5,
0.75]

0

Accuracy:
0.962276

Time:
8 hrs

4 Tune subsample and
colsample_ bytree

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 5000, max_depth = 20,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

sub
sample:
[0.8,0.9

, l ] ,
col

sample_
bytree:

[0.8,
0.9,1]

0.9

0.9

Accuracy:
0.963246

Time:
10.4 hrs

4.1 Re-tune subsample and
colsample_ bytree

XGBClassifier(learning_
rate=0. l ,n_ estimators

= 5000, max_depth = 20,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

sub
sample:

[0.9,
0.95],

col
sample_
bytree:

[0.9,
0.95]

0.95

0.95

Accuracy:
0.963683

Time:
7.5 hhrs

5 Tune reg_alpha and
reg_lambda
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Table A.5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight =0 ,

gamma=0, subsample = 0.95,
colsample_bytree = 0.95,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

reg_
alpha:
[0.01,
0.1,
0],

reg_
lambda:

[0.01,
0.1]

0

0.1

Accuracy:
0.963794

Time:
17.5 hrs

6 Tune
learning_rate

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight =0 ,

gamma=0, subsample = 0.95,
colsample_bytree = 0.95,

reg_alpha=0, reg_lambda=0.1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’multi:softprob’)

learning
_rate:
[0.01,
0.1,
0.2]

0.1

Accuracy:
0.963794

Time:
8.5 hrs

Create the final model
with the value of the optimized parameters.

model =
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight =0 ,

gamma=0, subsample = 0.95,
colsample_bytree = 0.95,

reg_alpha=0, reg_lambda=0.1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’
multi:softprob

’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.963794

Testing
Accuracy:
0.968155

The efficiency of the model with testing data was found to be:
0.968155
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Table A . 5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight =0 ,

gamma=0, subsample = 0.95,
colsample_bytree = 0.95,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

reg_
alpha:
[0.01,
0.1,
Ol,

reg_
lambda:

[0.01,
0.1]

0

0.1

Accuracy:
0.963794

Time:
17.5 hrs

Tune
learning_ ra te

XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight =0 ,

gamma=0, subsample = 0.95,
colsample_bytree = 0.95,

reg_alpha=0, reg_lambda=0.1,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'multi:softprob')

learning
rate:-

[0.01,
0.1,
0.2]

0.1

Accuracy:
0.963794

Time:
8.5 hrs

Create the final model
with the value of the optimized parameters.

model=
XGBClassifier(learning_
rate=0.1,n_estimators

= 5000, max_depth = 20,
min_child weight =0 ,

gamma=0, subsample = 0.95,
colsample_bytree = 0.95,

reg_alpha=0, reg_lambda=0.1,
missing=np.NAN, tree_method= print('Testing accuracy

'gpu_hist',
objective = '

multi:softprob
')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

score:',
accuracy_score

(y_tes t , y_predict))

cv
Training

Accuracy:
0.963794

Testing
Accuracy:
0.968155

The efficiency of the model with testing data was found to be:
0.968155
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Table A.5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
Table A.5: Hyperparameter tuning pipeline for the
XGBClassifier() with the Forest Cover Type data set.
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Table A . 5 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Forest Cover Type data set.
Table A.5: Hyperparameter tuning pipeline for the
XGBClassifier() with the Forest Cover Type data set.
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A.2.6 XGBoost with the MiniBooNE data set.

Hyperparameter tuning of XGBClassifier()
with MiniBooNE data set

Steps XGBClassifier() Parameters
Grid

Optimized
Value CV Training

1 Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’n_
estim
ators’:
range(
100,

550, 50)

learning
_rate:
0.2

n_
estim
ators:
500

Accuracy:

0.944714

Time:

0.60 hrs

1.1 Re-tune
n_estimators

XGBClassifier(learning_
rate=0.2,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

n_
estim
ators:
range(
450,
900,
50)

n_
estim
ators:

850

Accuracy:

0.94532

Time:

1.18 hrs

1.2 Re-tune
n_estimators

XGBClassifier(learning_
rate=0.2,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’n_esti
mators’:
range(
800,
1550,
50)

’n_esti
mators’:
1300

Accuracy:

0.94571

Time:

0.97 hrs
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A.2.6 XGBoost with the MiniBooNE data set.

Hyperparameter tuning of XGBClassifier()
with MiniBooNE data set

Steps XGBClassifier() Parameters
Grid

Optimized
Value CV Training

l Tune learning_rate and n_estimators
with other default parameters

XGBClassifier (learning_
ra te=0.3,n_ estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.1, 0.2,
0.3],

'n
estim
ators':
range(
100,

550, 50)

learning
rate:-

0.2

n-

estim
ators:
500

Accuracy:

0.944714

Time:

0.60 hrs

l . l
Re-tune
n estimators

XGBClassifier (learning_
ra te=0.2,n_ estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

n- Accuracy:
estim n-

ators: estim 0.94532
range( ators:
450, Time:
900, 850
50) 1.18 hrs

1.2 Re-tune
n estimators

XGBClassifier (learning_
ra te=0.2,n_ estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'n esti
mators':
range(
800,
1550,
50)

'n esti
mators':
1300

Accuracy:

0.94571

Time:

0.97 hrs
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Table A.6 continued from previous page
Hyperparameter tuning of XGBClassifier()

with MiniBooNE data set

2 Tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.2,n_estimators

= 1300, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’max_
depth’:
range
(3,10),

’min_
child_
weight’:
range(
0, 8)

’max_
depth’:
7,

’min_
child_
weight’:
0

Accuracy:

0.946596

Time:

4.38 hrs

3 Tune
gamma

XGBClassifier(learning_
rate=0.2,n_estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’gamma’ :
[0, 1, 2,
3,
4, 5, 6]

’gamma’:
0

Accuracy:

0.946596

Time:

0.30 hrs

4 Tune subsample and
colsample_bytree
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Hyperparameter tuning of XGBClassifier()
with MiniBooNE data set

2 Tune max_depth and
mm - child_weight

XGBClassifier (learning_ 'max- 'maxrate=0.2,n_ estimators depth': depth': Accuracy:= 1300, max_depth = 6, range
min_child weight = l, (3,10), 7,

gamma=0, subsample = l, 0.946596

colsample_bytree = l, 'min
- 'min Time:reg_alpha=0, reg_lambda=l, child -

- childmissing=np.NAN, tree_ method= weight': -

'gpu_hist', range( weight': 4.38 hrs

objective = 'binary:logistic') 0, 8) 0

3 Tune
gamma

XGBClassifier (learning_
rate=0.2,n_ estimators Accuracy:= 1300, max_depth = 7,
min_child weight = 0, 'gamma' : 0.946596gamma=0, subsample = l, [0, l, 2, 'gamma':
colsample_bytree = l, 3, 0 Time:reg_alpha=0, reg_lambda=l, 4, 5, 6]

missing=np.NAN, tree_ method= 0.30 hrs'gpu_hist',
objective = 'binary:logistic')

4 Tune subsample and
colsample_ bytree

Table A .6 continued from previous page
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Table A.6 continued from previous page
Hyperparameter tuning of XGBClassifier()

with MiniBooNE data set

XGBClassifier(learning_
rate=0.2,n_estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’sub
sample’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9,1]

’col
sample_
bytree’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, 1]

’sub
sample’:
1

’col
sample_
bytree’:
1,

Accuracy:

0.946596

Time:

14.72

5 Tune reg_alpha and
reg_lambda

XGBClassifier(learning_
rate=0.2,n_estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

{’reg_
alpha’:
[0.0001,
0.001,
0.01,

0.1, 0,
1, 2, 3],

’reg_
lambda’:

[1,2,3,
4, 5]}

’reg_
alpha’:
0,

’reg_
lambda’:
1

Accuracy:

0.946596

Time:

5.59 hrs

6 Tune learning_rate
and n_estimators
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Table A .6 continued from previous page
Hyperparameter tuning of XGBClassifier()

with MiniBooNE data set

XGBClassifier (learning_
ra te=0.2,n_ estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

{'sub
sample':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,

0.9,1]

'col
sample_
bytree':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, l]

'sub
sample':
l

'col
sample_
bytree':
l,

Accuracy:

0.946596

Time:

14.72

5 Tune reg_alpha and
reg_lambda

XGBClassifier (learning_
ra te=0.2,n_ estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

{'reg_
alpha':
[0.0001,
0.001,
0.01,

0.1, 0,
l, 2, 3],

'reg_
lambda':

[1,2,3,
4, 5]}

'reg_
alpha':
0,

'reg_
lambda':
l

Accuracy:

0.946596

Time:

5.59 hrs

6 Tune learning_rate
and n estimators
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Table A.6 continued from previous page
Hyperparameter tuning of XGBClassifier()

with MiniBooNE data set

XGBClassifier(learning_
rate=0.2,n_estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:
[0.001,
0.01,
0.1,
0.2,0.3],
n_esti
mators:
range(
1200,
1400,
50)

’learning
_rate’:
0.2

n_esti
mators:
1300

Accuracy:

0.94659

Time:

7 hrs

Create the final model
with the value of the optimized parameters.

model =
XGBClassifier(learning_
rate=0.2,n_estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

Training
Accuracy:

0.946596

Testing
Accuracy:
0.946856

The efficiency of the model with testing data was found to be:
0.946856

Table A.6: Hyperparameter tuning pipeline for the
XGBClassifier() with the MiniBooNE data set.
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Table A .6 continued from previous page
Hyperparameter tuning of XGBClassifier()

with MiniBooNE data set

XGBClassifier (learning_
rate=0.2,n_estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_ method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.001,
0.01,
0.1,
0.2,0.3],
n esti
mators:
range(
1200,
1400,
50)

'learning
rate':

0.2

n esti
mators:
1300

Accuracy:

0.94659

Time:

7 hrs

Create the final model
with the value of the optimized parameters.

model = model.fit(X_train,
XGBClassifier (learning_ y_train)
rate=0.2,n_estimators

= 1300, max_depth = 7,
min_child weight = 0,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l, print('Testing accuracy
missing=np.NAN, tree_ method= score:',

'gpu_hist', accuracy_score
objective = 'binary:logistic') (y_tes t , y_predict))

y_predict = model.
predict

(X_test)

Training
Accuracy:

0.946596

Testing
Accuracy:
0.946856

The efficiency of the model with testing data was found to be:
0.946856

Table A.6: Hyperparameter tuning pipeline for the
XGBClassifier() with the MiniBooNE data set.
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A.2. HYPERPARAMETER TUNING PIPELINE FOR XGBOOST

A.2.7 XGBoost with the Porto Seguro data set.

Hyperparameter tuning of XGBClassifier()
with Porto Seguro data set

Steps XGBClassifier() Parameter
Grid

Optimized
Value

CV
Training:

1 Tune learning_rate and n_estimators
with other default parameters

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’n_
estim
ators’:
range(
100,

550, 50)

0.01

350

Accuracy:
0.588497

Time:
0.5 hrs

1.1 Re-tune n_estimators
and learning_rate

XGBClassifier(learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

n_esti
mator:
range(
300,

400,10)
learning
_rate:
[0.001,
0.01]

350

0.01

Accuracy:
0.588497

Time:
0.47 hrs

2 Tune max_depth and
min_child_weight

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 6,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’max_
depth’:
range
(3,10),

’min_
child_
weight’:
range(
0, 3)

4

1

Accuracy:
0.590499

Time:
0.6 hrs
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A.2.7 XGBoost with the Porto Seguro data set .

Hyperparameter tuning of XGBClassifier()
with Porto Segura data set

Steps XGBClassifier() Parameter Optimized
Grid Value

cv
Training:

l Tune learning_rate and n_estimators
with other default parameters

XGBClassifier (learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'learning
rate':

[0.1, 0.2,
0.3],

'n
estim
ators':
range(
100,

550, 50)

0.01

350

Accuracy:
0.588497

Time:
0.5 hrs

l. l Re-tune n estimators
and learning_rate

XGBClassifier (learning_
rate=0.3,n_estimators

= 100, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

n esti
mator:
range(
300,

400,10)
learning

rate:-

[0.001,
0.01]

350

0.01

Accuracy:
0.588497

Time:
0.47 hrs

2 Tune max_ depth and
mm_child_ weight

XGBClassifier (learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 6,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'max
depth':
range
(3,10),

'min
child

weight':
range(
0, 3)

4

l

Accuracy:
0.590499

Time:
0.6 hrs
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Table A.7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Seguro data set

3 Tune
gamma

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’gamma’:
[0, 1, 2,

3,
4, 5, 6]

0

Accuracy:
0.590499

Time:
0.03 hrs

3.1 Re-tune
gamma

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

gamma:
[0.001,

0.1
,0.02,
0.2]

0.2

Accuracy:
0.590591

Time:
0.04 hrs

3.2 Re-tune
gamma

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

gamma:
[0.2,

0.25,0.3,
0.4]

0.3

Accuracy:
0.590596

Time:
0.03 hrs

3.3 Re-tune
gamma
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Hyperparameter tuning of XGBClassifier()
with Porto Segura data set

3 Tune
gamma

XGBClassifier(learning_
rate=0.01,n_ estimators
= 350, max_depth = 4, Accuracy:min_child weight = l, 'gamma':

gamma=0, subsample= l, [0, l, 2, 0.590499
0colsample_bytree = l, 3, Time:reg_alpha=0, reg_lambda=l, 4, 5, 6] 0.03 hrsmissing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

3.1 Re-tune
gamma

XGBClassifier(learning_
rate=0.01,n_ estimators
= 350, max_depth = 4, gamma: Accuracy:min_child weight = l, [0.001, 0.590591gamma=0, subsample= l, 0.1 0.2colsample_bytree = l, ,0.02, Time:reg_alpha=0, reg_lambda=l, 0.2] 0.04 hrsmissing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

3.2 Re-tune
gamma

XGBClassifier(learning_
rate=0.01,n_ estimators
= 350, max_depth = 4, Accuracy:min_child weight = l, gamma:

gamma=0, subsample= l, [0.2, 0.590596
0.3colsample_bytree = l, 0.25,0.3, Time:reg_alpha=0, reg_lambda=l, 0.4] 0.03 hrsmissing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

3.3 Re-tune
gamma

Table A. 7 continued from previous page
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Table A.7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Seguro data set
XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

gamma:
[0.3,0.35,

0.375]
0.3

Accuracy:
0.590596

Time:
0.03 hrs

4 Re-tune
n_estimators

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

n_esti
mator:
range(
300,

400,10)

350

Accuracy:
0.590596

Time:
0.09 hrs

4.1 Re-tune
n_estimators

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

n_esti
mator:
range(
340,

360,2)

350

Accuracy:
0.590596

Time:
0.09 hrs

5 Tune subsample and
colsample_bytree
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Table A. 7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Segura data set
XGBClassifier (learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

gamma:
[0.3,0.35,

0.375]
0.3

Accuracy:
0.590596

Time:
0.03 hrs

4 Re-tune
n estimators

XGBClassifier (learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

n esti
mator:
range(
300,

400,10)

350

Accuracy:
0.590596

Time:
0.09 hrs

4.1 Re-tune
n estimators

XGBClassifier (learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

n esti
mator:
range(
340,

360,2)

350

Accuracy:
0.590596

Time:
0.09 hrs

5 Tune subsample and
colsample_ bytree
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Table A.7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Seguro data set

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’sub
sample’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9,1]

’col
sample_
bytree’:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, 1]

0.5

0.4

Accuracy:
0.593188

Time:
0.8 hrs

5.1 Re-tune subsample
and colsample_bytree

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 1,
colsample_bytree = 1,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

sub
sample:
[0.45,
0.5,

0.55],
col

sample_
bytree:
[0.35,
0.4,
0.45]

0.5

0.4

Accuracy:
0.593188

Time:
0.07 hrs

6 Tune reg_alpha and
reg_lambda
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Table A. 7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Segura data set

XGBClassifier(learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

'sub
sample':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,

0.9,1]

'col
sample_
bytree':
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9, l]

0.5

0.4

Accuracy:
0.593188

Time:
0.8 hrs

5.1 Re-tune subsample
and colsample_bytree

XGBClassifier(learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = l,
colsample_bytree = l,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

sub
sample:

[0.45,
0.5,

0.55],
col

sample_
bytree:
[0.35,
0.4,
0.45]

0.5

0.4

Accuracy:
0.593188

Time:
0.07 hrs

6 Tune reg_alpha and
reg_lambda
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Table A.7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Seguro data set

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’reg_
alpha’:
[0,0.1,
0.2,
0.3,

0.0001,
0.0002,
0.0003,
0.0004,

1],
’reg_

lambda’:
[0.01,

0.1,1,2,
1.5]

0.2

1.5

Accuracy:
0.593485

Time:
0.42 hrs

6.1 Re-tune reg_alpha
and reg_lambda

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0, reg_lambda=1,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

’reg_
alpha’:

[0.2,0.23,
0.25,
0.27],
’reg_

lambda’:
[1.2,1.3,

1.5,
1.7,1.9]

0.2

1.5

Accuracy:
0.593485

Time:
0.37 hrs

7 Tune n_estimators
and learning_rate

XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0.2, reg_lambda=1.5,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

n_esti
mator:

range(300,
450,25)
learning
_rate:
[0.001,
0.01,

0.1,0.2]

425

0.01

Accuracy:
0.593772

Time:
0.19 hrs

7.1 Re-tune
n_estimators
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Table A. 7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Segura data set

XGBClassifier (learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0, reg_lambda=l,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

'reg_
alpha':
[0,0.1,
0.2,
0.3,

0.0001,
0.0002,
0.0003,
0.0004,

l],
'reg_

lambda':
[0.01,

0.1,1,2,
1.5]

0.2

1.5

Accuracy:
0.593485

Time:
0.42 hrs

6.1 Re-tune reg_alpha
and reg_lambda

XGBClassifier (learning_ 'reg_
rate=0.01,n_estimators alpha':
= 350, max_depth = 4, [0.2,0.23,
min_child weight = l, 0.25,

gamma=0.3, subsample = 0.5, 0.27],
colsample_bytree = 0.4, 'reg_

reg_alpha=0, reg_lambda=l, lambda':
missing=np.NAN, tree_method= [1.2,1.3,

'gpu_hist', 1.5,
objective = 'binary:logistic') l. 7,1.9]

0.2

1.5

Accuracy:
0.593485

Time:
0.37 hrs

7 Tune n estimators
and learning_rate

XGBClassifier (learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0.2, reg_lambda=l.5,
missing=np.NAN, tree_method=

'gpu_hist',
objective = 'binary:logistic')

n esti
mator:

range(300,
450,25)
learning

rate:-

[0.001,
0.01,

0.1,0.2]

425

0.01

Accuracy:
0.593772

Time:
0.19 hrs

7.1 Re-tune
n estimators
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Table A.7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Seguro data set
XGBClassifier(learning_
rate=0.01,n_estimators
= 350, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0.2, reg_lambda=1.5,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

n_esti
mator:
range(
425,

500,5)

450 Accuracy:
0.594033

Create the final model
with the value of the optimized parameters.

XGBClassifier(learning_
rate=0.01,n_estimators
= 450, max_depth = 4,
min_child weight = 1,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0.2, reg_lambda=1.5,
missing=np.NAN, tree_method=

’gpu_hist’,
objective = ’binary:logistic’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

Training
Accuracy:
0.594033

Testing
Accuracy:
0.595298

The accuracy of the model on the test data set was found to be:
0.595298

Table A.7: Hyperparameter tuning pipeline for the
XGBClassifier() with the Porto Seguro data set.
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Table A. 7 continued from previous page
Hyperparameter tuning of XGBClassifier()

with Porto Segura data set
XGBClassifier(learning_
rate=0.0l ,n_ estimators
= 350, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0.2, reg_lambda=l.5,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

n esti
mator:
range(
425,

500,5)

450 Accuracy:
0.594033

Create the final model
with the value of the optimized parameters.

XGBClassifier(learning_
rate=0.0l ,n_ estimators
= 450, max_depth = 4,
min_child weight = l,

gamma=0.3, subsample = 0.5,
colsample_bytree = 0.4,

reg_alpha=0.2, reg_lambda=l.5,
missing=np.NAN, tree_method=

'gpu_hist' ,
objective = 'binary:logistic')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print ('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

Training
Accuracy:
0.594033

Testing
Accuracy:
0.595298

The accuracy of the model on the test data set was found to be:
0.595298

Table A.7: Hyperparameter tuning pipeline for the
XGBClassifier() with the Porto Segura data set.
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A.3 Hyperparameter tuning pipeline for LightGBM

A.3.1 LightGBM with the Adult data set

Hyperparameter tuning of LGBMClassifier()
with Adult data set

Steps LGBMClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’num_itera
tion’:
range(
100,

550, 50)

0.1

100

Accuracy:

0.869656

Time:

0.6 hrs

1.1 Re-tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:
[0.01,
0.1],

’num_itera
tion’:

range(50,
150, 10)

0.1

80

Accuracy:
0.870101

Time:
0.17 hrs

1.2 Re_tune
num_teration
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A . 3 Hyperparameter tuning pipeline for LightGBM

A.3.1 LightGBM with the Adult data set

Hyperparameter tuning of LGBMClassifier()
with Adult data set

Steps LGBMClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learning Accuracy:

num_iteration=lO0, - rate': 0.1
max_depth = -1, [0.1, 0.2, 0.869656

num_leaves = 31, min_data_in_leaf 0.3],
= 20, min_gain_to_split = 0, 'num itera

bagging_fraction = l , tion':
feature_fraction = l, lambda_ll = 0, range( Time:

lambda 12 = 0 100, 100
- '

scale_pos_weight =1,n_jobs = -1, 550, 50) 0.6 hrs
objective='binary')

l. l Re-tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learning

num_iteration=lO0, - rate': 0.1 Accuracy:max_depth = -1, [0.01, 0.870101num_leaves = 31, min_data_in_leaf 0.1],
= 20, min_gain_to_split = 0,

bagging_fraction = l , 'num itera Time:feature_fraction = l, lambda_ll = 0, tion': 80 0.17 hrslambda 12 = 0 range(50,
- '

scale_pos_weight =1,n_jobs = -1, 150, 10)
objective='binary')

1.2 Re- tune
num teration
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Table A.8 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with Adult data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=100,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’num_itera
tion’:

range(75,
85)

75

Accuracy:
0.870147

Time:
0.07 hrs

2 Tune max_depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

[10, 20, 30],

’min_
gain_
to_

split’:
[0, 1, 2],

20

1

Accuracy:
0.870505

Time:
0.04 hrs

2.1

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:
range(
15,25),

’min_
gain_
to_

split’:
[0.8,0.9,

1,1.1,1.2],

17

1

Accuracy:
0.870556

Time:
0.43 hrs

3 Tune min_data_in_leaf
and num_leaves
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Table A.8 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with Adult data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=lO0,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'num itera
tion':

range(75,
85)

75

Accuracy:
0.870147

Time:
0.07 hrs

2
I

Tune max_ depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':

[10, 20, 30],

'min
gain_
to

split':
[0, l, 2],

20

l

Accuracy:
0.870505

Time:
0.04 hrs

2.1 1

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':
range(
15,25),

'min
gain_
to

split':
[0.8,0.9,

1,1.1,1.2],

17

l

Accuracy:
0.870556

Time:
0.43 hrs

3
I

Tune min data m leaf
and num leaves
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Table A.8 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with Adult data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=75,
max_depth = 17,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_
data_

in_leaf’:
[10,20,
30,40]
’num_
leaves’:
[10,20,
30,40

]

20

30

Accuracy:
0.870428

Time:
0.09 hrs

3.1 Re-tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = 17,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_
data_

in_leaf’:
range(
15,25),

’num_
leaves’:
(25,35)

17

32

Accuracy:
0.870715

Time:
0.67 hrs

4 Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = 1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9, 1],

feature_
fraction:
[0.1, 0.2,
0.3, 04,
0.5, 0.6,
0.7, 0.8,
0.9, 1]

0.1

0.4

Accuracy:
0.871334

Time:
0.7 hrs
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Table A.8 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with Adult data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=75,
max_depth = 17,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = l,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

3.1

'min
-

data-

m- leaf':
[10,20,
30,40]
'num-

leaves':
[10,20,
30,40

l
- data - m- leafRe-tune min

and num leaves

20

30

Accuracy:
0.870428

Time:
0.09 hrs

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = 17,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = l,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min
-

data
m leaf':
range(
15,25),

'num-

leaves':
(25,35)

17

32

Accuracy:
0.870715

Time:
0.67 hrs

4 Tune bagging_fraction
and feature fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = l,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction :
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9, l],

feature
fraction:
[0.1, 0.2,
0.3, 04,
0.5, 0.6,
0.7, 0.8,
0.9, l]

0.1

0.4

Accuracy:
0.871334

Time:
0.7 hrs
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Table A.8 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with Adult data set

4.1 Re-Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = 1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’bagging_
fraction’:
[0.05, 0.1,

0.15]
,

’feature_
fraction’:
[0.35, 0.4,

0.45]

0.05

0.4

Accuracy:
0.871334

Time:
0.05 hrs

5 Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = 1,

bagging_fraction =0.05,
feature_fraction = 0.4, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0,1,2,3,4],

lambda_l2:
[0,1,2,3,4]

0

0

Accuracy:
0.871334

Time:
0.09 hrs

5.1 Re-Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = 1,

bagging_fraction =0.05,
feature_fraction = 0.4, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0.01,0.1,

0],

lambda_l2:
[0.01,0.1,

0]

0

0

Accuracy:
0.871334

Time:
0.05 hrs

Create the final model
with the value of the optimized parameters.

118

APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

Table A.8 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with Adult data set

4.1 Re-Tune bagging_fraction
and feature fraction-

LGBMClassifier( learning
_rate=0.1, 'bagging_

num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = l,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

fraction':
[0.05, 0.1,

0.15]

''feature
fraction':
[0.35, 0.4,

0.45]

0.05

0.4

Accuracy:
0.871334

Time:
0.05 hrs

5 Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.1,

num_iteration=75, lambda 11:
max_depth = 17, [0,1,2,3,4],

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = l,

bagging_fraction =0.05,
feature_fraction = 0.4, lambda_ll = 0, lambda 12:

lambda_l2 = 0, [0,1,2,3,4]
scale_pos_weight =1,n_jobs = -1,

objective='binary')

0

0

Accuracy:
0.871334

Time:
0.09 hrs

5.1 Re-Tune lambda 11-

and lambda 12
LGBMClassifier( learning

_rate=0.1,
num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = l,

bagging_fraction =0.05,
feature_fraction = 0.4, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[0.01,0.1,

Ol,

lambda 12:
[0.01,0.1,

O]

0

0

Accuracy:
0.871334

Time:
0.05 hrs

Create the final model
with the value of the optimized parameters.
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Table A.8 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with Adult data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=75,
max_depth = 17,

num_leaves = 32, min_data_in_leaf
= 17, min_gain_to_split = 1,

bagging_fraction =0.05,
feature_fraction = 0.4, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.871334

Testing
Accuracy:
0.875389

The accuracy of the model with testing data was found to be:
0.875389

Table A.8: Hyperparameter tuning pipeline for the
LGBMClassifier() the Adult data set.
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Hyperparameter tuning of LGBMClassifier()
with Adult data set

LGBMClassifier( learning model.fit(X_ train,
_rate=0.1, y_train) cvnum_iteration=75, Trainingmax_depth = 17, y_predict = model. Accuracy:num_leaves = 32, min_data_in_leaf predict

= 17, min_gain_to_split = l, (X_test) 0.871334

bagging_fraction =0.05, Testingfeature_fraction = 0.4, lambda_ll = 0, print('Testing accuracy Accuracy:lambda 12 = 0 score:',
- ' 0.875389scale_pos_weight =1,n_jobs = -1, accuracy_score

objective='binary') (y_tes t , y_predict))
The accuracy of the model with testing data was found to be:

0.875389

Table A.8 continued from previous page

Table A.8: Hyperparameter tuning pipeline for the
LGBMClassifier() the Adult data set.
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A.3.2 LightGBM with the Bank data set

Hyperparameter tuning of LGBMClassifier()
with the Bank data set

Steps LGBMClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.1, 0.2,
0.3],

’num_itera
tion’:
range(
100,

550, 50)

0.1

100

Accuracy:
0.869416

Time:

0.18 hrs

1.1 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.1, 0.2,
0.3,
1]

’n_esti
mators’:
range(

50, 250,
25)

0.1

50

Accuracy:
0.916117

Time:

0.4 hrs

1.2 Re-Tune learning_rate
and num_iteration
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A.3.2 LightGBM with the Bank data set

Hyperparameter tuning of LGBMClassifier()
with the Bank data set

Steps LGBMClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learning Accuracy:num_iteration=lO0, - rate': 0.869416max_depth = -1, [0.1, 0.2, 0.1

num_leaves = 31, min_data_in_leaf 0.3],
= 20, min_gain_to_split = 0, 'num itera

bagging_ fraction = l , tion': Time:feature_fraction = l, lambda_ll = 0, range( 100
lambda_l2 = 0, 100, 0.18 hrsscale_pos_weight =1,n_jobs = -1, 550, 50)

objective='binary')

l. l Re-Tune learning_rate
and num- iteration

LGBMClassifier( learning 'learning
_rate=0.1, - rate':

num_iteration=lO0, [0.1, 0.2, 0.1 Accuracy:
max_depth = -1, 0.3, 0.916117

num_leaves = 31, min_data_in_leaf l]
= 20, min_gain_to_split = 0,

bagging_ fraction = l , 'n
- esti Time:

feature_fraction = l, lambda_ll = 0, mators':
lambda_l2 = 0, range( 50 0.4 hrs

scale_pos_weight =1,n_jobs = -1, 50, 250,
objective='binary') 25)

1.2 Re-Tune learning_rate
and num- iteration

120
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Table A.9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=100,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’learning
_rate’:
[0.001,
0.01,
0.1]

’n_esti
mators’:
range(40,

60, 2)

0.1

40

Accuracy:
0.916369

Time:

0.2 hrs

1.3 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’n_esti
mators’:
range(35,

45)

39

Accuracy:
0.916524

Time:

0.04 hrs

2 Tune max_depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:
[10, 20,

30],

’min_
gain_
to_

split’:
[0, 1, 2]

20

2

Accuracy:
0.916709

Time:

hrs

2.1 Re-Tune max_depth
and min_gain_to_split
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Table A. 9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=lO0,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'learning
rate':

[0.001,
0.01,
0.1]

'n esti
mators':
range(40,

60, 2)

0.1

40

Accuracy:
0.916369

Time:

0.2 hrs

1.3 Re-Tune
num iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=lO0,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'n esti
mators':
range(35,

45)

39

Accuracy:
0.916524

Time:

0.04 hrs

2
Tune max_ depth

and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':
[10, 20,

30],

'min
gain_
to

split':
[0, l, 2]

20

2

Accuracy:
0.916709

Time:

hrs

2.1 Re-Tune max_ depth
and min_gain_to_split

121
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Table A.9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

range(10,
25),

’min_
gain_

to_split’:
[1.8, 1.9,
2, 2.1,2.2]

11

2.1

Accuracy:
0.916801

Time:

0.02 hrs

3 Tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = 11,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 2.1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data
_in_leaf’:

[10,20,
30, 40],

’num_
leaves’:
[10,20,
30,40],

30

20

Accuracy:
0.917073

Time:

0.05 hrs

3.1 Re-Tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = 11,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 2.1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data
_in_leaf’:
range(25,

36),

’num_l
eaves’:

range(15,
26)

26

18

Accuracy:
0.917297

Time:

0.39 hrs

4 Tune bagging_fraction
and feature_fraction
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Table A. 9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':

range(lO,
25),

'min
gain_

to_split':
[1.8, 1.9,

2, 2.1,2.2]

11

2.1

Accuracy:
0.916801

Time:

0.02 hrs

3
Tune min data m leaf

and num leaves
LGBMClassifier( learning

_rate=0.1,
num_iteration=39,
max_depth = 11,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 2.1,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min data
m leaf':
[10,20,
30, 40],

'num-

leaves':
[10,20,
30,40],

30

20

Accuracy:
0.917073

Time:

0.05 hrs

3.1 Re-Tune min data m leaf
and num leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = 11,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 2.1,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min data
m leaf':

range(25,
36),

'num l
eaves':

range(15,
26)

26

18

Accuracy:
0.917297

Time:

0.39 hrs

4 Tune bagging_ fraction
and feature fraction
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Table A.9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :
[0.1, 0.25,

0.5,
0.75, 1],
feature_
fraction:

[0.1, 0.25,
0.5, 0.5,
0.75, 1]

0.1

1

Accuracy:
0.917297

Time:

0.078 hrs

4.1 Re-Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :
[0.05, 0.1,

0.15

0.2, 0.25],
feature_
fraction:

[0.8, 0.85,
0.9,

0.95, 1]

0.05

1

Accuracy:
0.917297

Time:

0.08 hrs

5 Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =0.05,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0, 1, 2, 3],

lambda_l2:
[0, 1, 2, 3]

0

0

Accuracy:
0.917297

Time:

0.04 hrs

5.1 Re-Tune lambda_l1
and lambda_l2
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Table A. 9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set
LGBMClassifier( learning

_ rate=0.1,
num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction :
[0.1, 0.25,

0.5,
0.75, l],
feature
fraction:
[0.1, 0.25,
0.5, 0.5,
0.75, l]

0.1

l

Accuracy:
0.917297

Time:

0.078 hrs

4.1 Re-Tune bagging_fraction
and feature fraction

LGBMClassifier( learning bagging_
_rate=0.1, fraction:

num_iteration=39, [0.05, 0.1,
max_depth = 11, 0.15

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

0.2, 0.25],
feature
fraction:
[0.8, 0.85,

0.9,
0.95, l]

0.05

l

Accuracy:
0.917297

Time:

0.08 hrs

5 Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =0.05,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[0, l, 2, 3],

lambda 12:
[0, l, 2, 3]

0

0

Accuracy:
0.917297

Time:

0.04 hrs

5.1 Re-Tune lambda 11-

and lambda 12
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Table A.9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =0.05,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0, 0.1, 0.2,

0.3],

lambda_l2:
[0, 0.1, 0.2,

0.3]

0

0

Accuracy:
0.917297

Time:
0.04 hrs

Create the final model
with the value of the optimized parameters.

LGBMClassifier( learning
_rate=0.1,

num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =0.05,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.917297

Testing
Accuracy:
0.915893

The accuracy of the model with testing data was found to be:
0.915893

Table A.9: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Bank data set.
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Table A. 9 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Bank data set
LGBMClassifier( learning

_rate=0.1, lambda 11:
num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =0.05,
feature_fraction = l, lambda_ll = 0, lambda 12:

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

[0, 0.1, 0.2,
0.3],

[0, 0.1, 0.2,
0.3]

0

0

Accuracy:
0.917297

Time:
0.04 hrs

Create the final model
with the value of the optimized parameters.

LGBMClassifier( learning model.fit(X_train,
_rate=0.1, y_train)

num_iteration=39,
max_depth = 11,

num_leaves = 18, min_data_in_leaf
= 26, min_gain_to_split = 2.1,

bagging_fraction =0.05,
feature_fraction = l, lambda_ll = 0, print('Testing accuracy

lambda_l2 = 0, score:',
scale_pos_weight =1,n_jobs = -1, accuracy_score

objective='binary') (y_tes t , y_predict))

y_predict = model.
predict

(X_test)

cv
Training

Accuracy:
0.917297

Testing
Accuracy:
0.915893

The accuracy of the model with testing data was found to be:
0.915893

Table A.9: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Bank data set.
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A.3.3 LightGBM with the Dota data set.

Hyperparameter tuning of LGBMClassifier()
with the Dota data set

Steps LGBMClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’num_itera
tion’:

range(100,
550, 50)

0.1

100

Accuracy:
0.587996

Time:
0.42 hrs

1.1 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:
[0.001,
0.01,
0.1]

’num_itera
tion’:

range(80,
150, 10)

0.1

100

Accuracy:
0.587996

Time:
0.15 hrs

2 Tune max_depth
and min_gain_to_split
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A.3.3 LightGBM with the Dota data set .

Hyperparameter tuning of LGBMClassifier()
with the Dota data set

Steps LGBMClassifier () Parameter Optimized cv
Grid Value Training

l Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learning

num_iteration=lO0, - rate': Accuracy:max_depth = -1, [0.1, 0.2, 0.1 0.587996num_leaves = 31, min_data_in_leaf 0.3]
= 20, min_gain_to_split = 0,

bagging_ fraction = l , 'num- itera Time:feature_fraction = l, lambda_ll = 0, tion': 100 0.42 hrslambda_l2 = 0, range(lO0,
scale_pos_weight =1,n_jobs = -1, 550, 50)

objective='binary')

l. l Re-Tune learning_rate
and num- iteration

LGBMClassifier( learning 'learning_rate=0.1, rate':num_iteration=lO0, -

max_depth = -1, [0.001, 0.1 Accuracy:

num_leaves = 31, min_data_in_leaf 0.01, 0.587996

= 20, min_gain_to_split = 0, 0.1]

bagging_ fraction = l , 'num itera Time:feature_fraction = l, lambda_ll = 0, - 100tion': 0.15 hrslambda_l2 = 0, range(80,scale_pos_weight =1,n_jobs = -1,
objective='binary') 150, 10)

2 Tune max_ depth
and min_gain_to_split
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=100,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’max_
depth’:

[10, 20, 30],

’min_gain
_to_split’:

[0, 1, 2]

20

1

Accuracy:
0.590512

Time:
0.05 hrs

2.1 Re-Tune max_depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

range(16,
30, 2)

’min_gain
_to_split’:
[0.8, 0.9,1,
1.1, 1.2]

29

1.2

Accuracy:
0.591230

Time:
0.27 hrs

2.2 Re-Tune max_depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

range(29,
35)

’min_gain
_to_split’:

[1.2,1.3,
1.4,1.5]

29

1.2

Accuracy:
0.591230

Time:
0.1 hrs

3 Tune min_data_in_leaf
and num_leaves
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=lO0,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'max
depth':

[10, 20, 30],

'min_gain
_to_split ' :

[0, l, 2]

20

l

Accuracy:
0.590512

Time:
0.05 hrs

2.1 Re-Tune max_ depth
and min_gain_to_split

LGBMClassifier( learning 'max_
_ rate=0.1, depth':

num_iteration=lO0, range(16,
max_depth = -1, 30, 2)

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min_gain
_to_split ' :
[0.8, 0.9,1,

l . l , 1.2]

29

1.2

Accuracy:
0.591230

Time:
0.27 hrs

2.2 Re-Tune max_ depth
and min_gain_to_split

LGBMClassifier( learning 'max_
_ rate=0.1, depth':

num_iteration=lO0, range(29,
max_depth = -1, 35)

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min_gain
_to_split ' :

[1.2,1.3,
1.4,1.5]

29

1.2

Accuracy:
0.591230

Time:
0.1 hrs

3 Tune min data m leaf
and num leaves
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=100,
max_depth = 29,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 1.2,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data
_in_leaf’:

[10,20,
30, 40],

’num_
leaves’:
[10,20,
30,40],

40

40

Accuracy:
0.591541

Time:
0.09 hrs

3.1 Re-Tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = 29,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 1.2,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data
_in_leaf’:
range(34,

46,2),

’num_
leaves’:

range(34,
46,2)

44

40

Accuracy:
0.591677

Time:
0.22 hrs

4 Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction:
[0.1, 0.2,
0.3,0.4,
0.5, 0.6,
0.7,0.8,
0.9,1],

feature_
fraction:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9,1]

0.1

0.3

Accuracy:
0.592566

Time:
0.7 hrs
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=lO0,

max_ depth = 29,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 1.2,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'min data
m leaf':
[10,20,
30, 40],

'num-

leaves':
[10,20,
30,40],

40

40

Accuracy:
0.591541

Time:
0.09 hrs

3.1 Re-Tune min data m leaf
and num leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=lO0,
max_ depth = 29,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 1.2,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min data
m leaf':

range(34,
46,2),

'num-

leaves':
range(34,

46,2)

44

40

Accuracy:
0.591677

Time:
0.22 hrs

4 Tune bagging_fraction
and feature fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=lO0,
max_ depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction:
[0.1, 0.2,
0.3,0.4,
0.5, 0.6,
0.7,0.8,
0.9,1],

feature
fraction:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9,1]

0.1

0.3

Accuracy:
0.592566

Time:
0.7 hrs
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set

4.1 Re-Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction:
[0.05,0.1,

0.15],
feature_
fraction:

[0.25, 0.3,
0.35]

0.05

0.3

Accuracy:
0.592567

Time:
0.06 hrs

5 Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0, 1, 2, 3],

lambda_l2:
[0, 1, 2, 3]

1

1

Accuracy:
0.593052

Time:
0.11 hrs

5.1 Re-Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0.8,0.9, 1,
0.1, 1.2],

lambda_l2:
[0.8,0.9,1,
0.1, 1.2],

0.9

0.8

Accuracy:
0.593154

Time:

5.2 Re-Tune
lambda_l2

128

APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set

4.1 Re-Tune bagging_fraction
and feature fraction-

LGBMClassifier( learning
_rate=0.1,

num_iteration=lO0,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction:
[0.05,0.1,

0.15],
feature
fraction:
[0.25, 0.3,

0.35]

0.05

0.3

Accuracy:
0.592567

Time:
0.06 hrs

5 Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.1,

num_iteration=lO0,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[0, l, 2, 3],

lambda 12:
[0, l, 2, 3]

l

l

Accuracy:
0.593052

Time:
0.11 hrs

5.1 Re-Tune lambda 11-

and lambda 12
LGBMClassifier( learning

_rate=0.1,
num_iteration=lO0,

max_depth = 29,
num_leaves = 40, min_data_in_leaf

= 44, min_gain_to_split = 1.2,
bagging_fraction =0.05,

feature_fraction = 0.3, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

lambda 11:
[0.8,0.9, l,
0.1, 1.2],

lambda 12:
[0.8,0.9,1,
0.1, 1.2],

0.9

0.8

Accuracy:
0.593154

Time:

5.2 Re-Tune
lambda 12
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=100,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l2:
[0.6, 0.7,

0.8]
0.8

Accuracy:
0.593154

Time:
0.03 hrs

Re-start the whole tuning process from step 1, but with the
LGBMClassifier() function with optimized values

from step 5.2.

6 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’num_itera
tion’:

range(100,
550, 50)

0.1

150

Accuracy:
0.593193

Time:
0.19 hrs

6.1 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:
[0.001,

0.0.01, 0.1]

’num_itera
tion’:

range(100,
150, 5)

0.1

115

Accuracy:
0.593300

Time:
0.26 hrs
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=lO0,

max_ depth = 29,
num_leaves = 40, min_data_in_leaf

= 44, min_gain_to_split = 1.2,
bagging_fraction =0.05,

feature_fraction = 0.3, lambda_ll = 0.9,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

lambda 12:
[0.6, 0.7,

0.8]
0.8

Accuracy:
0.593154

Time:
0.03 hrs

Re-start the whole tuning process from step l, but with the
LGBMClassifier() function with optimized values

from step 5.2.

6 Re-Tune learning_rate
and num iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=lO0,
max_ depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'learning
rate':

[0.1, 0.2,
0.3]

'num itera
tion':

range(lO0,
550, 50)

0.1

150

Accuracy:
0.593193

Time:
0.19 hrs

6.1 Re-Tune learning_rate
and num iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=lO0,
max_ depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'learning
rate':

[0.001,
0.0.01, 0.1]

'num itera
tion':

range(lO0,
150, 5)

0.1

115

Accuracy:
0.593300

Time:
0.26 hrs
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set

7 Re-Tune max_depth, min_gain_to_split,
min_data_in_leaf and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

range(15,
30, 2),

’min_gain_
to_split’:
[0.8,0.9,
1,1.1,
1.2, 2,
2.5, 3],

’min_data_
in_leaf’:
[10,20,
30, 40],

’num_
leaves’:
[10,20,
30,40]

19,

0.9,

30,

20

Accuracy:
0.594256

Time:
7 hrs

7.1 Re-Tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 0.9,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data
_in_leaf’:
range(24,

36,2)

’num_
leaves’:

(14, 26,2)

30

20

Accuracy:
0.594256

Time:
0.2 hrs

8 Re-Tune bagging_fraction
and feature_fraction
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set

7 Re-Tune max_depth, min_gain_to_split,
mm data m leaf and num leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 29,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 1.2,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':

range(15,
30, 2),

'min_gain_
to_split':
[0.8,0.9,

1,1.1,
1.2, 2,
2.5, 3],

'min data-

m leaf':
[10,20,
30, 40],

'num-

leaves':
[10,20,
30,40]

19,

0.9,

30,

20

Accuracy:
0.594256

Time:
7 hrs

7.1 Re-Tune min data m leaf
and num leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 40, min_data_in_leaf
= 44, min_gain_to_split = 0.9,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min
- data

- m- leaf': 30 Accuracy:range(24, 0.59425636,2)

'num Time:
- 0.2 hrsleaves': 20

(14, 26,2)

8 Re-Tune bagging_fraction
and feature fraction
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9,1],

feature_
fraction:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9,1]

0.1

0.3

Accuracy:
0.594256

Time:
0.6 hrs

8.1 Re-Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction:

[0.05, 0.1,
0.15],

feature_
fraction:

[0.25, 0.3,
0.35]

0.1

0.3

Accuracy:
0.594256

Time:
0.05 hrs

9 Re-Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.1,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0.8,0.9, 1,

0.1,
1.2, 2, 3],

lambda_l2:
[0.6, 0.7,
0.8,0.9, 1,
0.1, 1.2,
1.5, 2, 3]

0.9

0.8

Accuracy:
0.594256

Time:
0.25 hrs
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with the Dota data set

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9,1],

feature
fraction:
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7,0.8,
0.9,1]

0.1

0.3

Accuracy:
0.594256

Time:
0.6 hrs

8.1 Re-Tune bagging_fraction
and feature fraction-

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.05,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction:
[0.05, 0.1,

0.15],
feature
fraction:
[0.25, 0.3,

0.35]

0.1

0.3

Accuracy:
0.594256

Time:
0.05 hrs

9 Re-Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_ fraction =0.l,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[0.8,0.9, l,

0.1,
1.2, 2, 3],

lambda 12:
[0.6, 0.7,

0.8,0.9, l,
0.1, 1.2,
1.5, 2, 3]

0.9

0.8

Accuracy:
0.594256

Time:
0.25 hrs
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set

10 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.1,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0.8,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’num_itera
tion’:

range(115,
550, 50)

0.1

165

Accuracy:
0.594407

Time:
0.2 hrs

10.1 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.1,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0.8,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’num_itera
tion’:

range(115,
200, 10)

115 Accuracy:
0.594451

Create the final model
with the value of the optimized parameters.

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.1,
feature_fraction = 0.3, lambda_l1 = 0.9,

lambda_l2 = 0.8,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.594451

Testing
Accuracy:
0.593751

The accuracy of the model with testing data was found to be:
0.593751
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Hyperparameter tuning of LGBMClassifier()

with the Dota data set

10 Re-Tune learning_rate
and num iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_ fraction =0.l,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0.8,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'learning
rate':

[0.1, 0.2,
0.3]

'num itera
tion':

range(115,
550, 50)

0.1

165

Accuracy:
0.594407

Time:
0.2 hrs

10.1 Re-Tune
num iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_fraction =0.1,
feature_fraction = 0.3, lambda_ll = 0.9,

lambda_l2 = 0.8,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'num itera
tion':

range(115,
200, 10)

115 Accuracy:
0.594451

Create the final model
with the value of the optimized parameters.

LGBMClassifier( learning model.fit(X_train,
_rate=0.1, y_train)

num_iteration=115,
max_depth = 19,

num_leaves = 20, min_data_in_leaf
= 30, min_gain_to_split = 0.9,

bagging_ fraction =0.l,
feature_fraction = 0.3, lambda_ll = 0.9, print('Testing accuracy

lambda_l2 = 0.8, score:',
scale_pos_weight =1,n_jobs = -1, accuracy_score

objective='binary') (y_tes t , y_predict))

y_predict = model.
predict

(X_test)

cv
Training

Accuracy:
0.594451

Testing
Accuracy:
0.593751

The accuracy of the model with testing data was found to be:
0.593751
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Table A.10 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Dota data set
Table A.10: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Dota data set.
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Table A.10: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Dota data set.

133



APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

A.3.4 LightGBM with the Flavours of Physics data set

Hyperparameter tuning of LGBMClassifier() with
Flavours of Physics data set

Steps LGBMClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’num_itera
tion’:

range(100,
550, 50)

0.1

400

Accuracy:

0.890017

Time:

0.05 hrs

1.1 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.01, 0.1,
0.15]

’num_itera
tion’:

range(380,
420,5)

0.1

390

Accuracy:

0.890239

Time:

0.08 hrs

1.2 Re-Tune learning_rate
and num_iteration
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A.3.4 LightGBM with the Flavours of Physics data set

Hyperparameter tuning of LGBMClassifier() with
Flavours of Physics data set

Steps LGBMClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learning

num_iteration=lO0, - rate': Accuracy:
max_depth = -1, [0.1, 0.2, 0.1

num_leaves = 31, min_data_in_leaf 0.3] 0.890017
= 20, min_gain_to_split = 0,

bagging_fraction = l , 'num itera Time:
feature_fraction = l, lambda_ll = 0, tion': 400

lambda 12 = 0 range(lO0, 0.05 hrs
- '

scale_pos_weight =1,n_jobs = -1, 550, 50)
objective='binary')

l. l Re-Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learning

num_iteration=lO0, - rate': 0.1 Accuracy:
max_depth = -1, [0.01, 0.1,

num_leaves = 31, min_data_in_leaf 0.15] 0.890239
= 20, min_gain_to_split = 0,

bagging_fraction = l , 'num itera Time:
feature_fraction = l, lambda_ll = 0, tion': 390lambda 12 = 0 range(380, 0.08 hrs

- '
scale_pos_weight =1,n_jobs = -1, 420,5)

objective='binary')

1.2 Re-Tune learning_rate
and num- iteration
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=100,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’learning
_rate’:

[0.1]

’num_itera
tion’:

range(385,
395)

0.1

392

Accuracy

0.890254

Time:

0.09 hrs

2 Tune max_depth
and min_data_in_leaf

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_depth’:
range(10,

30, 5),

’min_data
_in_leaf’:
range(20,

40, 5)

15

25

Accuracy:

0.890989

Time:
0.45 hrs

2.1 Re-Tune max_depth
and min_data_in_leaf

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_depth’:
range(14,

17, 1),

’min_data
_in_leaf’:
range(22,

27, 1)

15

25

Accuracy:

0.890989

Time:
0.03 hrs

3 Tune min_gain_to_split
and num_leaves
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=lO0,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'learning
rate':
[0.1]

'num itera
tion':

range(385,
395)

0.1

392

Accuracy

0.890254

Time:

0.09 hrs

2
Tune max_ depth

and min data m leaf
LGBMClassifier( learning

_rate=0.1,
num_i teration=392,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'max_depth':
range(lO,

30, 5),

'min data
m leaf':

range(20,
40, 5)

15

25

Accuracy:

0.890989

Time:
0.45 hrs

2.1 Re-Tune max_ depth
and min data m leaf

LGBMClassifier( learning
_rate=0.1,

num_i teration=392,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max_depth':
range(14,

17, l ) ,

'min data
m leaf':

range(22,
27, l)

15

25

Accuracy:

0.890989

Time:
0.03 hrs

3 Tune min_gain_to_split
and num leaves
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=392,
max_depth = 15,

num_leaves = 31, min_data_in_leaf
= 25, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_gain
_to_split’:
[0, 1, 2, 3],

’num_
leaves’:

[15,20,25,
30]

0

20

Accuracy:
0.891038

Time:
0.02 hrs

3.1 Re-Tune min_gain_to_split
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = 15,

num_leaves = 31, min_data_in_leaf
= 25, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_gain
_to_split’:
[0, 0.1, 0.2,

0.3],

’num_
leaves’:

[18,19, 20,
21, 22]

0.2

21

Accuracy:
0.891231

Time:
0.03 hrs

4 Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :

[0.1, 0.2, 0.3,
0.4, 0.5, 0.6,

0.7, 0.8,
0.9, 1],

feature_
fraction:

[0.1, 0.2, 0.3,
04, 0.5, 0.6,

0.7, 0.8,
0.9, 1]

0.1

1

Accuracy:
0.891231

Time:
0.13 hrs

4.1 Re-Tune bagging_fraction
and feature_fraction
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set
LGBMClassifier( learning

_rate=0.1,
num_i teration=392,

max_depth = 15,
num_leaves = 31, min_data_in_leaf

= 25, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'min_gain
_to_split ' :
[0, l, 2, 3],

'num-

leaves':
[15,20,25,

30]

0

20

Accuracy:
0.891038

Time:
0.02 hrs

3.1 Re-Tune min_gain_to_split
and num leaves

LGBMClassifier( learning
_rate=0.1,

num_i teration=392,
max_depth = 15,

num_leaves = 31, min_data_in_leaf
= 25, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min_gain
_to_split ' :
[0, 0.1, 0.2,

0.3],

'num-

leaves':
[18,19, 20,

21, 22]

0.2

21

Accuracy:
0.891231

Time:
0.03 hrs

4 Tune bagging_fraction
and feature fraction

LGBMClassifier( learning
_rate=0.1,

num_i teration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction :

[0.1, 0.2, 0.3,
0.4, 0.5, 0.6,

0.7, 0.8,
0.9, l],

feature
fraction:

[0.1, 0.2, 0.3,
04, 0.5, 0.6,

0.7, 0.8,
0.9, l]

0.1

l

Accuracy:
0.891231

Time:
0.13 hrs

4.1 Re-Tune bagging_fraction
and feature fraction
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :
[0.05,0.08,

0.09,
0.10,0.12,
0.15,0.17],

feature_
fraction:

[0.93,0.95,
0.96,0.97,

0.98,0.99,1]

0.05

0.99

Accuracy:
0.891231

Time:
0.08 hrs

5 Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =0.05,
feature_fraction = 0.99, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0, 1, 2, 3],

lambda_l2:
[0, 1, 2, 3]

3

1

Accuracy:
0.892435

Time:

0.02 hrs

5.1 Re-Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =0.05,
feature_fraction = 0.99, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[ 2, 3, 4, 5],

lambda_l2:
[1.2, 1.5,
1.7,1.9]

2

1.2

Accuracy:
0.892622

Time:
0.02 hrs

5.2 Re-Tune lambda_l1
and lambda_l2
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set

LGBMClassifier( learning
_rate=0.1,

num_i teration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction :
[0.05,0.08,

0.09,
0.10,0.12,
0.15,0.17],

feature
fraction:

[0.93,0.95,
0.96,0.97,

0.98,0.99,1]

0.05

0.99

Accuracy:
0.891231

Time:
0.08 hrs

5 Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.1,

num_i teration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =0.05,
feature_fraction = 0.99, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[0, l, 2, 3],

lambda 12:
[0, l, 2, 3]

3

l

Accuracy:
0.892435

Time:

0.02 hrs

5.1 Re-Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.1,

num_i teration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =0.05,
feature_fraction = 0.99, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[ 2, 3, 4, 5],

lambda 12:
[1.2, 1.5,
l. 7,1.9]

2

1.2

Accuracy:
0.892622

Time:
0.02 hrs

5.2 Re-Tune lambda 11
and lambda 12
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =0.05,
feature_fraction = 0.99, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[ 1.9, 2, 2.1,
2.3, 2.4,2.5],

lambda_l2:
[1.1, 1.2, 1.3,

1.4, 1.5]

2

1.2

Accuracy:
0.892622

Time:
0.05 hrs

Create the final model
with the value of the optimized parameters.

LGBMClassifier( learning
_rate=0.1,

num_iteration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =0.05,
feature_fraction = 0.99, lambda_l1 = 2,

lambda_l2 = 1.2,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.892622

Testing
Accuracy:
0.890747

The accuracy of the model with testing data was found to be:
0.890747

Table A.11: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Flavours of Physics data set.
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Table A.11 continued from previous page
Hyperparameter tuning of LGBMClassifier() with

Flavours of Physics data set
LGBMClassifier( learning

_rate=0.1, lambda 11:
num_i teration=392,

max_depth = 15,
num_leaves = 21, min_data_in_leaf

= 25, min_gain_to_split = 0.2,
bagging_fraction =0.05,

feature_fraction = 0.99, lambda_ll = 0, lambda 12:
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

[ 1.9, 2, 2.1,
2.3, 2.4,2.5],

[ l . l , 1.2, 1.3,
1.4, 1.5]

2

1.2

Accuracy:
0.892622

Time:
0.05 hrs

Create the final model
with the value of the optimized parameters.

LGBMClassifier( learning model.fit(X_train,
_rate=0.1, y_train)

num_i teration=392,
max_depth = 15,

num_leaves = 21, min_data_in_leaf
= 25, min_gain_to_split = 0.2,

bagging_fraction =0.05,
feature_fraction = 0.99, lambda_ll = 2, print('Testing accuracy

lambda_l2 = 1.2, score:',
scale_pos_weight =1,n_jobs = -1, accuracy_score

objective='binary') (y_tes t , y_predict))

y_predict = model.
predict

(X_test)

cv
Training

Accuracy:
0.892622

Testing
Accuracy:
0.890747

The accuracy of the model with testing data was found to be:
0.890747

Table A.11: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Flavours of Physics data set.
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A.3.5 LightGBM with the Forest Cover Type data set

Hyperparameter tuning of LGBMClassifier()
with the Forest Cover Type data set

Steps LGBMClassifier() Parameter
Range

Optimized
Value Training

1 Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
iterations:
range(150,

550,50)

learning_
rate: [0.1,

0.2,
0.3]

450

0.1

Accuracy:
0.878218

Time:
1.3 hrs

1.1 Re-tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
iterations:
range(425,

480,25)

learning_
rate: [
0.0001,

0.001,0.01,
0.1,0.15]

450

0.1

Accuracy:
0.878218

Time:
0.37 hrs

2 Tune max_depth
and min_gain_to_split
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A.3.5 LightGBM with the Forest Cover Type data set

Hyperparameter tuning of LGBMClassifier()
with the Forest Cover Type data set

Steps LGBMClassifier () Parameter Optimized TrainingRange Value

l Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, num

num_iteration=lO0, iterations:
max_depth = -1, range(150, 450 Accuracy:

num_leaves = 31, min_data_in_leaf 550,50) 0.878218
= 20, min_gain_to_split = 0,

bagging_ fraction = l , learning_ Time:
feature_fraction = l, lambda_ll = 0, rate: [0.1, 0.1 1.3 hrs

lambda_l2 = 0, 0.2,
scale_pos_weight =1,n_jobs = -1, 0.3]

objective='binary')

l. l Re-tune learning_rate
and num- iteration

LGBMClassifier( learning num_rate=0.1, iterations:num_iteration=lO0, range(425, Accuracy:max_depth = -1, 450
num_leaves = 31, min_data_in_leaf 480,25) 0.878218

= 20, min_gain_to_split = 0, learning_bagging_ fraction = l , rate: [ Time:feature_fraction = l, lambda_ll = 0, 0.1
lambda_l2 = 0, 0.0001, 0.37 hrs

0.001,0.01,scale_pos_weight =1,n_jobs = -1, 0.1,0.15]objective='binary')

2 Tune max_ depth
and min_gain_to_split
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Table A.12 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Forest Cover Type data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=450,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’max_
depth’:
[10, 20,

30],

’min_gain_
to_split’:

[0,0.5,1,1.5]

10

0.5

Accuracy:
0.89279

Time:
0.2 hrs

2.1 Re- Tune max_depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

[7,8,9,10],

’min_gain_
to_split’:

[0.4,0.5,0.6]

8

0.5

Accuracy:
0.902745

Time:
0.36 hrs

3 Tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0.5,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data_
in_leaf’:[10,
20, 30, 40],

’num_
leaves’:[10,
20,31,40]

20

40

Accuracy:
0.905323

Time:
0.3 hrs

3.1 Re-tune min_data_in_leaf
and num_leaves
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Table A.12 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Forest Cover Type data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=450,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'max
depth':
[10, 20,

30],

'min_gain_
to_split':

[0,0.5,1,1.5]

10

0.5

Accuracy:
0.89279

Time:
0.2 hrs

2.1 Re- Tune max_ depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':

[7,8,9,10],

'min_gain_
to_split':

[0.4,0.5,0.6]

8

0.5

Accuracy:
0.902745

Time:
0.36 hrs

3 Tune min data m leaf
and num leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0.5,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min data-

in_leaf':[10,
20, 30, 40],

'num-

leaves':[10,
20,31,40]

20

40

Accuracy:
0.905323

Time:
0.3 hrs

3.1 Re-tune min data m leaf
and num leaves
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Table A.12 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Forest Cover Type data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=450,

max_depth = 8,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0.5,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’min_data_
in_leaf’:[16,
18, 20, 22,

24],
’num_

leaves’:[36,
38,40, 42,

44]

16

44

Accuracy:
0.908607

Time:
0.69 hrs

3.2 Re-tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0.5,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data_
in_leaf’:
[12,14,

15,16,17],

’num_
leaves’:
[43, 44,

45, 46,48]

16

44

Accuracy:
0.908607

Time:
0.55 hrs

4 Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9, 1],

feature_
fraction:
[0.1, 0.2,
0.3, 04,
0.5, 0.6,
0.7, 0.8,
0.9, 1]

0.1

1

Accuracy:
0.908607

Time:
2.28 hrs
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Table A.12 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Forest Cover Type data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=450,

max_depth = 8,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0.5,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'min data-

in_leaf':[16,
18, 20, 22,

24],
'num

leaves':[36,
38,40, 42,

44]

16

44

Accuracy:
0.908607

Time:
0.69 hrs

3.2 Re-tune min data m leaf-

and num leaves
LGBMClassifier( learning

_rate=0.1,
num_iteration=450,

max_depth = 8,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0.5,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'min data-

m leaf':
[12,14,

15,16,17],

'num-

leaves':
[43, 44,

45, 46,48]

16

44

Accuracy:
0.908607

Time:
0.55 hrs

4 Tune bagging_fraction
and feature fraction

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

bagging_
fraction :
[0.1, 0.2,
0.3, 0.4,
0.5, 0.6,
0.7, 0.8,
0.9, l],

feature
fraction:
[0.1, 0.2,
0.3, 04,
0.5, 0.6,
0.7, 0.8,
0.9, l]

0.1

l

Accuracy:
0.908607

Time:
2.28 hrs
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Table A.12 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Forest Cover Type data set

5 Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_fraction =0.1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0,0.8,0.9,1,

1.1,1.2],
lambda_l2:
[0,0.1,0.2,

0.3,
0.4]

0

0

Accuracy:
0.908607

Time:
0.28 hrs

6 Re-tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_fraction =0.1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
iterations:
range(450,
1050,50)

learning
_rate:

[0.001,0.01,
0.1]

650

0.1

Accuracy:
0.908721

Time:
1.35 hrs

6.1 Re-tune
num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_fraction =0.1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
iterations:
range(600,

700,
10)

610

Accuracy:
0.908721

Time:
0.16 hrs

Create the final model
with the value of the optimized parameters.
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Table A.12 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Forest Cover Type data set

5 Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_fraction =0.1,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[0,0.8,0.9,1,

1.1,1.2],
lambda 12:
[0,0.1,0.2,

0.3,
0.4]

0

0

Accuracy:
0.908607

Time:
0.28 hrs

6 Re-tune learning_rate
and num iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_fraction =0.1,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

num
iterations:
range(450,
1050,50)

learning
rate:-

[0.001,0.01,
0.1]

650

0.1

Accuracy:
0.908721

Time:
1.35 hrs

6.1 Re-tune
num iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=450,
max_depth = 8,

num_leaves = 44, min_data_in_leaf
= 16, min_gain_to_split = 0.5,

bagging_fraction =0.1,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

num
iterations:
range(600,

700,
10)

610

Accuracy:
0.908721

Time:
0.16 hrs

Create the final model
with the value of the optimized parameters.
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Table A.12 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Forest Cover Type data set
LGBMClassifier( learning

_rate=0.1,
num_iteration=610,

max_depth = 8,
num_leaves = 44, min_data_in_leaf

= 16, min_gain_to_split = 0.5,
bagging_fraction =0.1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training
accuracy:

0.908721

Testing
accuracy:
0.919009

The accuracy of the model with testing data was found to be:
0.919009

Table A.12: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Forest Cover Type data set.
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Hyperparameter tuning of LGBMClassifier()
with the Forest Cover Type data set

LGBMClassifier( learning model.fit(X_ train, cv_rate=0.1, y_train) Trainingnum_iteration=610,
max_depth = 8, y_predict = model. accuracy:

num_leaves = 44, min_data_in_leaf predict 0.908721= 16, min_gain_to_split = 0.5, (X_test)
bagging_fraction =0.1,

feature_fraction = l, lambda_ll = 0, print('Testing accuracy Testinglambda_l2 = 0, score:',
scale_pos_weight =1,n_jobs = -1, accuracy_score accuracy:

objective='binary') (y_test , y_predict)) 0.919009

The accuracy of the model with testing data was found to be:
0.919009

Table A.12 continued from previous page

Table A.12: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Forest Cover Type data set.
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A.3.6 LightGBM with the MiniBooNE data set

Hyperparameter tuning of LGBMClassifier()
with the MiniBooNE data set

Steps LGBMClassifier() Parameter
Range

Optimized
Value Training

1 Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:
[1, 2, 3]

’num_
iteration’:
range(100,
550, 50)

1

100

Accuracy:

0.916352

Time:

0.12 hrs

1.1 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.01, 0.1,
0.2, 0.3]

’num_itera
tion’:

range(100,
550,50)

0.2

500

Accuracy:

0.944103

Time:

0.35 hrs

1.2 Re-Tune learning_rate
and num_iteration
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A.3.6 LightGBM with the MiniBooNE data set

Hyperparameter tuning of LGBMClassifier()
with the MiniBooNE data set

Steps LGBMClassifier() Parameter Optimized TrainingRange Value

l Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learningnum_iteration=lO0, rate': Accuracy:

max_depth = -1, - l
num_leaves = 31, min_data_in_leaf [ l , 2, 3] 0.916352

= 20, min_gain_to_split = 0, 'numbagging_ fraction = l , - Time:iteration':feature_fraction = l, lambda_ll = 0, range(lO0, 100
lambda_l2 = 0, 550, 50) 0.12 hrs

scale_pos_weight =1,n_jobs = -1,
objective='binary')

l. l Re-Tune learning_rate
and num- iteration

LGBMClassifier( learning
_rate=0.1, 'learning

num_iteration=lO0, - rate': 0.2 Accuracy:
max_depth = -1, [0.01, 0.1,

num_leaves = 31, min_data_in_leaf 0.2, 0.3] 0.944103
= 20, min_gain_to_split = 0,

bagging_ fraction = l , 'num itera Time:
feature_fraction = l, lambda_ll = 0, tion': 500lambda_l2 = 0, range(lO0, 0.35 hrs

scale_pos_weight =1,n_jobs = -1, 550,50)
objective='binary')

1.2 Re-Tune learning_rate
and num- iteration

144



A.3. HYPERPARAMETER TUNING PIPELINE FOR LIGHTGBM

Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’learning
_rate’:

[0.01, 0.1,
0.2, 0.3]

num_
iteration:
range(100,

850,50)

0.2

800

Accuracy

0.944851

Time:

0.9 hrs

1.3 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’num_
iteration’:
range(800,
1250,50)

1200

Accuracy:

0.945467

Time:
0.9 hrs

1.4 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’num_
iteration’:

range(
1200,

1550,50)

1500

Accuracy:

0.945795

Time:
0.28 hrs

1.5 Re-Tune
num_iteration
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Hyperparameter tuning of LGBMClassifier()
with the MiniBooNE data set

LGBMClassifier( learning 'learning
rate':_rate=0.1, -

num_iteration=lO0, [0.01, 0.1, Accuracy
max_depth = -1, 0.2, 0.3] 0.2

num_leaves = 31, min_data_in_leaf 0.944851
= 20, min_gain_to_split = 0,

bagging_ fraction = l , Time:
feature_fraction = l, lambda_ll = 0, 800

lambda_l2 = 0, num 0.9 hrsiteration:scale_pos_weight =1,n_jobs = -1, range(lO0,objective='binary') 850,50)

1.3 Re-Tune
num- iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=lO0, Accuracy:max_depth = -1, 'numnum_leaves = 31, min_data_in_leaf -

iteration': 0.945467= 20, min_gain_to_split = 0, range(800, 1200
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0, 1250,50) Time:

lambda_l2 = 0, 0.9 hrs

scale_pos_weight =1,n_jobs = -1,
objective='binary')

1.4 Re-Tune
num- iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=lO0, Accuracy:max_depth = -1, 'num-

num_leaves = 31, min_data_in_leaf iteration': 0.945795= 20, min_gain_to_split = 0, range( 1500
bagging_ fraction = l , 1200, Time:feature_fraction = l, lambda_ll = 0, 1550,50) 0.28 hrslambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

1.5 Re-Tune
num- iteration

Table A.13 continued from previous page
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=100,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’num_
iteration’:

range(
1500,

2050,50)

2000

Accuracy:
0.946071

Time:
0.6 hrs

1.6 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’num_
iteration’:

range(
2000,

2550,50)

2450

Accuracy:
0.946297

Time:
0.8 hrs

1.7 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’num_
iteration’:

range(
2400,

2510,10)

2430

Accuracy:
0.946343

Time:
0.8 hrs

1.8 Re-Tune
num_iteration
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Hyperparameter tuning of LGBMClassifier()
with the MiniBooNE data set

LGBMClassifier( learning
_rate=0.2,

num_iteration=lO0, Accuracy:max_depth = -1, 'num- 0.946071num_leaves = 31, min_data_in_leaf iteration':
= 20, min_gain_to_split = 0, range( 2000

bagging_ fraction = l , 1500, Time:feature_fraction = l, lambda_ll = 0, 2050,50) 0.6 hrslambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

1.6 Re-Tune
num- iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=lO0, Accuracy:max_depth = -1, 'num- 0.946297num_leaves = 31, min_data_in_leaf iteration':
= 20, min_gain_to_split = 0, range( 2450

bagging_ fraction = l , 2000, Time:feature_fraction = l, lambda_ll = 0, 2550,50) 0.8 hrslambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

l. 7 Re-Tune
num- iteration

LGBMClassifier( learning
_rate=0.2,

num_iteration=lO0, Accuracy:max_depth = -1, 'num- 0.946343num_leaves = 31, min_data_in_leaf iteration':
= 20, min_gain_to_split = 0, range( 2430

bagging_ fraction = l , 2400, Time:feature_fraction = l, lambda_ll = 0, 2510,10) 0.8 hrslambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

1.8 Re-Tune
num- iteration

Table A.13 continued from previous page
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=100,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’num_
iteration’:

range(
2420,

2440,2)

2430

Accuracy:
0.946343

Time:
0.08 hrs

2 Tune max_depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:
[10, 20,
30, 40],

’num_
leaves’:
[10, 20,
30, 40]

30

40

Accuracy:
0.946676

Time:
1 hrs

2.1 Re-Tune max_depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

range(30,
41)

’num_
leaves’:

range(40,
51)

34

37

Accuracy:
0.946922

Time:
10 hrs

3 Tune min_data_in_leaf
and num_leaves
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=lO0,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'num-

iteration':
range(
2420,

2440,2)

2430

Accuracy:
0.946343

Time:
0.08 hrs

2
Tune max_ depth

and min_gain_to_split
LGBMClassifier( learning

_rate=0.2,
num_iteration=2430,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'max
depth':
[10, 20,
30, 40],

'num-

leaves':
[10, 20,
30, 40]

30

40

Accuracy:
0.946676

Time:
l hrs

2.1 Re-Tune max_ depth
and min_gain_to_split

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':

range(30,
41)

'num-

leaves':
range(40,

51)

34

37

Accuracy:
0.946922

Time:
10 hrs

3 Tune min data m leaf
and num leaves
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=2430,

max_depth = 34,
num_leaves = 37, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’min_data
_in_leaf’:
range(15,

40, 5)

’min_gain
_to_split’:
[0, 1, 2, 3]

35

0

Accuracy:
0.946953

Time:
0.59 hrs

3.1 Re-Tune min_data_in_leaf
and num_leaves

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = 34,

num_leaves = 37, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’min_data
_in_leaf’:
range(32,

38, 1)

’min_gain
_to_split’:

[0, 0.01,
0.1, 0.2]

34

0

Accuracy:
0.946974

Time:
1.5 hrs

4 Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = 34,

num_leaves = 37, min_data_in_leaf
= 34, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’bagging_
fraction’ :
[0.1, 0.3,

0.5,
0.7, 0.9, 1],
’feature_
fraction’:
[0.1, 0.3,
0.5, 0.7,
0.9,1]

0.1

1

Accuracy:
0.946974

Time:
1.44 hrs

4.1 Re-Tune bagging_fraction
and feature_fraction
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=2430,

max_ depth = 34,
num_leaves = 37, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'min data
m leaf':

range(15,
40, 5)

'min_gain
_to_split ' :
[0, l, 2, 3]

35

0

Accuracy:
0.946953

Time:
0.59 hrs

3.1 Re-Tune min data m leaf
and num leaves

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_ depth = 34,

num_leaves = 37, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'min data
m leaf':

range(32,
38, l)

'min_gain
_to_split ' :

[0, 0.01,
0.1, 0.2]

34

0

Accuracy:
0.946974

Time:
1.5 hrs

4 Tune bagging_ fraction
and feature fraction-

LGBMClassifier( learning
_ rate=0.2,

num_iteration=2430,
max_ depth = 34,

num_leaves = 37, min_data_in_leaf
= 34, min_gain_to_split = 0,

bagging_ fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'bagging_
fraction' :
[0.1, 0.3,

0.5,
0.7, 0.9, l],
'feature
fraction':
[0.1, 0.3,
0.5, 0.7,

0.9,1]

0.1

l

Accuracy:
0.946974

Time:
1.44 hrs

4.1 Re-Tune bagging_fraction
and feature fraction
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=2430,

max_depth = 34,
num_leaves = 37, min_data_in_leaf

= 34, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

’bagging_
fraction’ :
[0.05, 0.1,
0.15, 0.2],
’feature_
fraction’:

[0.93, 0.95,
0.97,1]

0.05

1

Accuracy:
0.946974

Time:
1.4 hrs

5 Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = 34,

num_leaves = 37, min_data_in_leaf
= 34, min_gain_to_split = 0,

bagging_fraction =0.05,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0, 1, 2, 3],

lambda_l2:
[0, 1, 2, 3]

0

0

Accuracy:
0.946974

Time:
0.8 hrs

5.1 Re-Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = 34,

num_leaves = 37, min_data_in_leaf
= 34, min_gain_to_split = 0,

bagging_fraction =0.05,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda_l1:
[0, 0.1, 0.2,

0.3],

lambda_l2:
[0, 0.1, 0.2,

0.3]

0

0

Accuracy:
0.946974

Time:
0.95

Create the final model
with the value of the optimized parameters.
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=2430,

max_depth = 34,
num_leaves = 37, min_data_in_leaf

= 34, min_gain_to_split = 0,
bagging_ fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'bagging_
fraction' :
[0.05, 0.1,
0.15, 0.2],
'feature
fraction':

[0.93, 0.95,
0.97,1]

0.05

l

Accuracy:
0.946974

Time:
1.4 hrs

5 Tune lambda 11
and lambda 12

LGBMClassifier( learning
_rate=0.2,

num_iteration=2430,
max_depth = 34,

num_leaves = 37, min_data_in_leaf
= 34, min_gain_to_split = 0,

bagging_fraction =0.05,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda 11:
[0, l, 2, 3],

lambda 12:
[0, l, 2, 3]

0

0

Accuracy:
0.946974

Time:
0.8 hrs

5.1 Re-Tune lambda 11-

and lambda 12
LGBMClassifier( learning

_rate=0.2,
num_iteration=2430,

max_depth = 34,
num_leaves = 37, min_data_in_leaf

= 34, min_gain_to_split = 0,
bagging_fraction =0.05,

feature_fraction = l, lambda_ll = 0, lambda 12:
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

lambda 11:
[0, 0.1, 0.2,

0.3],

[0, 0.1, 0.2,
0.3]

0

0

Accuracy:
0.946974

Time:
0.95

Create the final model
with the value of the optimized parameters.
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Table A.13 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the MiniBooNE data set
LGBMClassifier( learning

_rate=0.2,
num_iteration=2430,

max_depth = 34,
num_leaves = 37, min_data_in_leaf

= 34, min_gain_to_split = 0,
bagging_fraction =0.05,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

Training
Accuracy:
0.946974

Testing
Accuracy:
0.947624

The accuracy of the model with testing data was found to be:
0.947624

Table A.13: Hyperparameter tuning pipeline for the
LGBMClassifier() with the MiniBooNE data set.
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Hyperparameter tuning of LGBMClassifier()
with the MiniBooNE data set

LGBMClassifier( learning model.fit(X_train,
_rate=0.2, y_train)

num_iteration=2430, Training
max_ depth = 34, y_predict = model. Accuracy:

num_leaves = 37, min_data_in_leaf predict 0.946974
= 34, min_gain_to_split = 0, (X_test)

bagging_fraction =0.05, Testing
feature_fraction = l, lambda_ll = 0, print('Testing accuracy Accuracy:

lambda_l2 = 0, score:', 0.947624
scale_pos_weight =1,n_jobs = -1, accuracy_score

objective='binary') (y_tes t , y_predict))
The accuracy of the model with testing data was found to be:

0.947624

Table A.13 continued from previous page

Table A.13: Hyperparameter tuning pipeline for the
LGBMClassifier() with the MiniBooNE data set.
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A.3.7 LightGBM with the Porto Seguro data set

Hyperparameter tuning of LGBMClassifier()
with the Porto Seguro data set

Steps LGBMClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
itera
tions:
range(
150,

850,50)

learning
_rate:
[0.001,

0.01,0.1]

400

0.01

Accuracy:
0.590509

Time:
2.7hrs

1.1 Re-Tune learning_rate
and num_iteration

LGBMClassifier( learning
_rate=0.1,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
itera
tions:

[380,400,
420]

learning
_rate:
[0.01]

450

0.01

Accuracy:
0.590536

Time:
0.14hrs

1.2 Re-Tune
num_iteration
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A.3.7 LightGBM with the Porto Seguro data set

Hyperparameter tuning of LGBMClassifier()
with the Porto Segura data set

Steps LGBMClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate
and num- iteration

LGBMClassifier( learning num
itera_rate=0.1, tions: 400

num_iteration=lO0, range( Accuracy:max_depth = -1,
num_leaves = 31, min_data_in_leaf 150, 0.590509

= 20, min_gain_to_split = 0, 850,50)

bagging_fraction = l , Time:feature_fraction = l, lambda_ll = 0, learning 2.7hrslambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1, - rate: 0.01

objective= 'binary') [0.001,
0.01,0.1]

l . l Re-Tune learning_rate
and num- iteration

LGBMClassifier( learning num_rate=0.1, iteranum_iteration=lO0, tions: Accuracy:max_depth = -1, [380,400, 450 0.590536num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0, 420]

bagging_fraction = l , Time:feature_fraction = l, lambda_ll = 0, learning 0.01 0.14hrslambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1, - rate:

objective= 'binary') [0.01]

1.2 Re-Tune
num- iteration
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Seguro data set
LGBMClassifier( learning

_rate=0.01,
num_iteration=100,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction =1,

feature_fraction = 1, lambda_l1 = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

num_
itera
tions:

[370,380,
390]

370

Accuracy

0.590592

Time:

0.15 hrs

1.3 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.01,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
itera
tions:

[360,365,
370,375]

360

Accuracy:

0.590615

Time:
0.2 hrs

1.4 Re-Tune
num_iteration

LGBMClassifier( learning
_rate=0.01,

num_iteration=100,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

num_
itera
tions:

[350,355,
360]

355

Accuracy:

0.590712

Time:
0.15 hrs

2 Tune max_depth, num_leaves,
min_data_in_leaf, and min_gain_to_split
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Segura data set
LGBMClassifier ( learning

_rate=0.01,
num_iteration=lO0,

max_depth = -1,
num_leaves = 31, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

num
itera
tions:

[370,380,
390]

370

Accuracy

0.590592

Time:

0.15 hrs

1.3 Re-Tune
num iteration

LGBMClassifier ( learning
_rate=0.01,

num_iteration=lO0,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

num
itera
tions:

[360,365,
370,375]

360

Accuracy:

0.590615

Time:
0.2 hrs

1.4 Re-Tune
num iteration

LGBMClassifier ( learning
_rate=0.01,

num_iteration=lO0,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

num
itera
tions:

[350,355,
360]

355

Accuracy:

0.590712

Time:
0.15 hrs

2
Tune max_depth, num_leaves,

min_data_in_leaf, and min_gain_to_split
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Seguro data set

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:
[10, 20,

30],

’min_
data_
in_
leaf’:

[20, 30, 40],

’min_
gain_

to_split’:
[0,0.5,1,

1.5]

’num_
leaves’:

[20,30,40]

20

40

0

20

Accuracy
0.592265

Time:
4.18 hrs

2.1 Re-Tune max_depth, num_leaves,
min_data_in_leaf, and min_gain_to_split

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

[15,20,25],

’min_
data_
in_
leaf’:

[35,40,45],

’min_
gain_

to_split’:
[0,0.1,0.2]

’num_
leaves’:

[15,20,25]

20

40

0

20

Accuracy:
0.592265

Time:
3.14 hrs
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Segura data set

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_ weight =1,n_jobs = -1,

objective= 'binary')

'max
depth':
[10, 20,

30],

'min
data

m-

leaf':
[20, 30, 40],

'min
gain_

to_split':
[0,0.5,1,

1.5]

'num-

leaves':
[20,30,40]

20

40

0

20

Accuracy
0.592265

Time:
4.18 hrs

2.1 Re-Tune max_depth, num_leaves,
min_data_in_leaf, and min_gain_to_split

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_ weight =1,n_jobs = -1,

objective= 'binary')

'max
depth':

[15,20,25],

'min
data

m-

leaf':
[35,40,45],

'min
gain_

to_split':
[0,0.1,0.2]

'num-

leaves':
[15,20,25]

20

40

0

20

Accuracy:
0.592265

Time:
3.14 hrs
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Seguro data set

2.2 Re-Tune max_depth, num_leaves,
min_data_in_leaf, and min_gain_to_split

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

[18,20,22],

’min_
data_
in_
leaf’:

[38,40,42],

’min_
gain_

to_split’:
[0,0.01]

’num_
leaves’:

[18,20,22]

18

40

0

20

Accuracy:
0.592265

Time:
3 hrs

2.3 Re-Tune min_data_in_leaf
and max_depth

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = -1,

num_leaves = 20, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

’max_
depth’:

[16, 17, 18],

’min_
data_
in_
leaf’:

[39, 40, 41]

16

40

Accuracy:
0.592266

Time:
5.8 hrs

3 Tune bagging_fraction
and feature_fraction
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Segura data set

2.2 Re-Tune max_depth, num_leaves,
min_data_in_leaf, and min_gain_to_split

LGBMClassifier ( learning
_rate=0.01,

num_iteration=355,
max_depth = -1,

num_leaves = 31, min_data_in_leaf
= 20, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

'max
depth':

[18,20,22],

'min
data

m-

leaf':
[38,40,42],

'min
gain_

to_split':
[0,0.01]

'num-

leaves':
[18,20,22]

18

40

0

20

Accuracy:
0.592265

Time:
3 hrs

2.3 Re-Tune min data m leaf- - -

and max_ depth
LGBMClassifier ( learning

_rate=0.01,
num_iteration=355,

max_depth = -1,
num_leaves = 20, min_data_in_leaf

= 20, min_gain_to_split = 0,
bagging_fraction = l ,

feature_fraction = l, lambda_ll = 0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

'max-

depth': Accuracy:
[16, 17, 18], 16 0.592266

'min
-

data 40m- Time:
leaf': 5.8 hrs

[39, 40, 41]

3 Tune bagging_ fraction
and feature fraction
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Seguro data set

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :

[0.1, 0.2, 0.3,
0.4,0.5, 0.6,

0.7, 0.8,
0.9, 1],

feature_
fraction:

[0.1, 0.2, 0.3,
04,0.5, 0.6,

0.7, 0.8,
0.9, 1]

0.1

0.3

Accuracy:
0.593058

Time:
5.67 hrs

3.1 Re-Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :
[0.05, 0.1,

0.15]

feature_
fraction:

[0.25, 0.3,
0.35]

0.05

0.25

Accuracy:
0.593210

Time:
0.4 hrs

3.2 Re-Tune bagging_fraction
and feature_fraction

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =1,
feature_fraction = 1, lambda_l1 = 0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

bagging_
fraction :

[0.03, 0.04,
0.05,

0.06, 0.07]

feature_
fraction:

[0.23, 0.24,
0.25,

0.26, 0.27]

0.03

0.24

Accuracy:
0.593413

Time:
1.41 hrs
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Segura data set

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_ weight =1,n_jobs = -1,

objective= 'binary')

bagging_
fraction :

[0.1, 0.2, 0.3,
0.4,0.5, 0.6,

0.7, 0.8,
0.9, l],

feature
fraction:

[0.1, 0.2, 0.3,
04,0.5, 0.6,

0.7, 0.8,
0.9, l]

0.1

0.3

Accuracy:
0.593058

Time:
5.67 hrs

3.1 Re-Tune bagging_fraction
and feature fraction-

LGBMClassifier( learning
_ rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_ weight =1,n_jobs = -1,

objective= 'binary')

bagging_
fraction :
[0.05, 0.1,

0.15]

feature
fraction:
[0.25, 0.3,

0.35]

0.05

0.25

Accuracy:
0.593210

Time:
0.4 hrs

3.2 Re-Tune bagging_fraction
and feature fraction

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction = l ,
feature_fraction = l, lambda_ll = 0,

lambda_l2 = 0,
scale_pos_ weight =1,n_jobs = -1,

objective= 'binary')

bagging_
fraction :

[0.03, 0.04,
0.05,

0.06, 0.07]

feature
fraction:

[0.23, 0.24,
0.25,

0.26, 0.27]

0.03

0.24

Accuracy:
0.593413

Time:
1.41 hrs
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Seguro data set

4 Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =0.03,
feature_fraction=0.24, lambda_l1=0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda
_l1:

[0,1,2,3],

lambda
_l2:

[0,1,2,3]

0

1

Accuracy:
0.593592

Time:
0.85 hrs

5 Re-Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =0.03,
feature_fraction=0.24, lambda_l1=0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective=’binary’)

lambda
_l1:

[0.1,0.2,0.3],

lambda
_l2:

[0.8,0.9,1,
1.1]

0.1

0.8

Accuracy:
0.593906

Time:
1 hrs

5.1 Re-Tune lambda_l1
and lambda_l2

LGBMClassifier( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =0.03,
feature_fraction=0.24,

lambda_l1=0.1,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

lambda_
l2:

[0.6,
0.7, 0.8]

0.8

Accuracy:
0.593906

Time:
0.13hrs
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Segura data set

4 Tune lambda 11
and lambda 12

LGBMClassifier ( learning
_rate=0.01,

num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =0.03,
feature_fraction=0.24, lambda_ll=0,

lambda_l2 = 0,
scale_pos_weight =1,n_jobs = -1,

objective='binary')

lambda
11:

[0,1,2,3],

lambda
12:-

[0,1,2,3]

0

l

Accuracy:
0.593592

Time:
0.85 hrs

5 Re-Tune lambda 11-

and lambda 12
LGBMClassifier ( learning

_rate=0.01,
num_iteration=355,

max_depth = 16,
num_leaves = 20, min_data_in_leaf

= 40, min_gain_to_split = 0,
bagging_fraction =0.03,

feature_fraction=0.24, lambda_ll=0,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

lambda
11:-

[0.1,0.2,0.3],

lambda
12:

[0.8,0.9,1,
l. ll

0.1

0.8

Accuracy:
0.593906

Time:
l hrs

5.1 Re-Tune lambda 11-

and lambda 12
LGBMClassifier ( learning

_rate=0.01,
num_iteration=355,

max_depth = 16,
num_leaves = 20, min_data_in_leaf

= 40, min_gain_to_split = 0,
bagging_fraction =0.03,
feature_fraction=0.24,

lambda_ll=0.1,
lambda_l2 = 0,

scale_pos_weight =1,n_jobs = -1,
objective='binary')

lambda
12:

[0.6,
0.7, 0.8]

0.8

Accuracy:
0.593906

Time:
0.13hrs
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Table A.14 continued from previous page
Hyperparameter tuning of LGBMClassifier()

with the Porto Seguro data set
Create the final model

with the value of the optimized parameters.
LGBMClassifier( learning

_rate=0.01,
num_iteration=355,
max_depth = 16,

num_leaves = 20, min_data_in_leaf
= 40, min_gain_to_split = 0,

bagging_fraction =0.03,
feature_fraction=0.24,

lambda_l1=0.1,
lambda_l2 = 0.8,

scale_pos_weight =1,n_jobs = -1,
objective=’binary’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.593906

Testing
Accuracy:
0.593455

The accuracy of the model with testing data was found to be:
0.593455

Table A.14: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Porto Seguro data set.
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Hyperparameter tuning of LGBMClassifier()
with the Porto Segura data set

Create the final model
with the value of the optimized parameters.

LGBMClassifier( learning model.fit(X_ train,_rate=0.01, y_train) cv
num_iteration=355, Training

max_depth = 16, y_predict = model. Accuracy:
num_leaves = 20, min_data_in_leaf predict 0.593906

= 40, min_gain_to_split = 0, (X_test)bagging_fraction =0.03,
feature_fraction=0.24, print('Testing accuracylambda_ll=0.1, Testing

lambda_l2 = 0.8, score:', Accuracy:
scale_pos_weight =1,n_jobs = -1, accuracy_score 0.593455

objective= 'binary') (y_test , y_predict))

The accuracy of the model with testing data was found to be:
0.593455

Table A.14 continued from previous page

Table A.14: Hyperparameter tuning pipeline for the
LGBMClassifier() with the Porto Segura data set.
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A.4 Hyperparameter tuning pipeline for CatBoost

A.4.1 CatBoost with the Adult data set

Hyperparameter tuning of CatBoostClassifier()
with the Adult data set

Steps CatBoostClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’iterations’:
range(100,
550, 50)

0.1

200

Accuracy:

0.868980

Time:

3.6 hrs

1.1 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:
[0.001,
0.01,
0.1]

’iterations’:
range(150,
250, 25)

0.1

200

Accuracy:

0.868980

Time:

0.69 hrs

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(180,
225, 10)

200

Accuracy:
0.868980

Time:
0.36 hrs

1.3 Re-Tune
iterations
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A . 4 Hyperparameter tuning pipeline for C a t B o o s t

A.4.1 CatBoost with the Adult data set

Hyperparameter tuning of CatBoostClassifier()
with the Adult data set

Steps CatBoostClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=l00, 'learning Accuracy:

learning_rate=0.1, depth=S, - rate': 0.1 0.86898012- leaf_ reg= l ,random_strength= l, [0.1, 0.2,
border_count=254, 0.3]

bagging_temperature= l,
cat_features = nominal, 'iterations': 200 Time:loss_function='Logloss', range(lO0,
eval_metric='Accuracy') 550, 50) 3.6 hrs

l. l Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l00, 'learning Accuracy:
rate':learning_rate=0.1, depth=S, - 0.1

12 leaf_ reg= l ,random_strength= l, [0.001, 0.868980
- 0.01,border_count=254, 0.1]bagging_temperature= l,

cat_features = nominal, 'iterations': Time:loss_function='Logloss', range(150, 200
eval_metric='Accuracy') 250, 25) 0.69 hrs

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S, Accuracy:12- leaf_ reg= l ,random_strength= l, 'iterations': 0.868980border_count=254, range(180, 200bagging_temperature= l,

cat_features = nominal, 225, 10) Time:

loss_function='Logloss', 0.36 hrs

eval_metric='Accuracy')

1.3 Re-Tune
iterations
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations=100,

learning_rate=0.1, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(190,

211, 5)
200

Accuracy:
0.868980

Time:
0.36 hrs

2 Tune
depth

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[6,7,

8,9,10]
10

Accuracy:
0.865288

Time:
0.08 hrs

2.1 Re-Tune
depth

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[7,8,

9,10,11]
7

Accuracy:
0.869874

TIme:
1.3 hrs

2.2 Re-Tune
depth

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[4,5,6,7] 5

Accuracy:
0.87055

Time:
0.2 hrs

3 Tune
l2_leaf_reg
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations= l 00,

learning_rate=0.1, depth=S,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'iterations':
range(190,

211, 5)
200

Accuracy:
0.868980

Time:
0.36 hrs

2 Tune
depth

CatBoostClassifier (iterations= 200,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

depth:
[6,7,

8,9,10]
10

Accuracy:
0.865288

Time:
0.08 hrs

2.1 Re-Tune
depth

CatBoostClassifier(iterations= l 00,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

depth:
[7,8,

9,10,11]
7

Accuracy:
0.869874

Time:
1.3 hrs

2.2 Re-Tune
depth

CatBoostClassifier (iterations= 200,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

depth:
[4,5,6,7] 5

Accuracy:
0.87055

Time:
0.2 hrs

3 Tune
12_leaf_reg
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations=200,

learning_rate=0.1, depth=5,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:

[0,1,2,3,
4,5]

1

Accuracy:
0.87055

Time:
0.3 hrs

3.1 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:

[0.8,0.9,
1,1.1,1.2]

0.8

Accuracy:
0.870707

Time:
0.27 hrs

3.2 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:

[0.4,0.5,0.6,
0.7,0.8]

0.8

Accuracy:
0.870707

Time:
0.26 hrs

4 Tune
random_strength

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0,1,2,3,4]

1

Accuracy:
0.870707

Time:
0.26 hrs

4.1 Re-Tune
random_strength
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations=200,

learning_rate=0.1, depth=b,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'12 leaf
_reg':

[0,1,2,3,
4,5]

l

Accuracy:
0.87055

Time:
0.3 hrs

3.1 Re-Tune
12_leaf_reg

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=b,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'12 leaf
_reg':

[0.8,0.9,
1,1.1,1.2]

0.8

Accuracy:
0.870707

Time:
0.27 hrs

3.2 Re-Tune
12_leaf_reg

CatBoostClassifier(iterations=200,
learning_rate=0.1, dcpth=ö,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'12 leaf
_reg':

[0.4,0.5,0.6,
0.7,0.8]

0.8

Accuracy:
0.870707

Time:
0.26 hrs

4 Tune
random_strength

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=b,

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

random
strength:
[0,1,2,3,4]

l

Accuracy:
0.870707

Time:
0.26 hrs

4.1 Re-Tune
random_strength
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations=200,

learning_rate=0.1, depth=5,
l2_leaf_reg=0.8,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0.8,0.9,1,
1.1,1.2]

1

Accuracy:
0.870707

Time:
0.27 hrs

5 Tune
border_count

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

border_
count:

[128,254]
254

Accuracy:
0.870707

Time:
0.02 hrs

5.1 Re-Tune
border_count

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

border_
count:

[250,251,
252,

253,254]

254

Accuracy:
0.870707

Time:
0.28 hrs

6 Tune
bagging_temperature

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

bagging_
tempera

ture:
[0,1,2,3]

0

Accuracy:
0.870707

Time:
0.27 hrs

6.1 Re-Tune
bagging_temperature
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier (iterations= 200,

learning_rate=0.1, depth=S,
12_leaf_reg=0.8,random_strength=l,

border_count=254,
bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

random
strength:
[0.8,0.9,1,
1.1,1.2]

l

Accuracy:
0.870707

Time:
0.27 hrs

5 Tune
border count-

CatBoostClassifier (iterations= 200,
learning_rate=0.1, depth=S,

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

border
count:

[128,254]
254

Accuracy:
0.870707

Time:
0.02 hrs

5.1 Re-Tune
border count-

CatBoostClassifier (iterations= 200,
learning_rate=0.1, depth=S,

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

border
count:

[250,251,
252,

253,254]

254

Accuracy:
0.870707

Time:
0.28 hrs

6 Tune
bagging_temperature

CatBoostClassifier (iterations= 200,
learning_rate=0.1, depth=S,

12_leaf_reg=0.8,random_strength=l, bagging_
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

tempera
ture:

[0,1,2,3]

0

Accuracy:
0.870707

Time:
0.27 hrs

6.1 Re-Tune
bagging_temperature
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations=200,

learning_rate=0.1, depth=5,
l2_leaf_reg=0.8,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

bagging_
tempera

ture:
[0,0.5, 0.8,

0.9,1]

0

Accuracy:
0.870707

Time:
0.27 hrs

7 Re-tune learning_rate
and iterations

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:
[0.1,0.2,

0.3],
’iterations’:
range(100,

255,
50)

0.1

250

Accuracy:
0.870816

Time:
0.4 hrs

7.1 Re-tune learning_rate
and iterations

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:
[0.001,

0.01,0.1],

’iterations’:
range(200,

355,
25)

0.1

225

Accuracy:
0.870877

Time:
1.4 hrs

7.2 Re-tune
iterations

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(200,

255,
10)

240

Accuracy:
0.870973

Time:
0.35 hrs

7.3 Re-tune
iterations
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations=200,

learning_rate=0.1, depth=b, bagging_12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

tempera
ture:

[0,0.5, 0.8,
0.9,1]

0

Accuracy:
0.870707

Time:
0.27 hrs

7 Re-tune learning_rate
and iterations

CatBoostClassifier(iterations=200, 'learning
learning_rate=0.1, depth=b, _rate ' :

12_leaf_reg=0.8,random_strength=l, [0.1,0.2,
border_count=254, 0.3],

bagging_temperature= l, 'iterations':
cat_features = nominal, range(lO0,
loss_function='Logloss', 255,
eval_metric='Accuracy') 50)

0.1

250

Accuracy:
0.870816

Time:
0.4 hrs

7.1 Re-tune learning_rate
and iterations

CatBoostClassifier(iterations=200,
learning_rate=0.1, dcpth=ö,

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'learning
rate':

[0.001,
0.01,0.1],

'iterations':
range(200,

355,
25)

0.1

225

Accuracy:
0.870877

Time:
1.4 hrs

7.2 Re-tune
iterations

CatBoostClassifier(iterations=200,
learning_rate=0.1, depth=b,

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

iterations:
range(200,

255,
10)

240

Accuracy:
0.870973

Time:
0.35 hrs

7.3 Re-tune
iterations
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Table A.15 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Adult data set
CatBoostClassifier(iterations=200,

learning_rate=0.1, depth=5,
l2_leaf_reg=0.8,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(235

,246)
241 Accuracy:

0.871021

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=241,
learning_rate=0.1, depth=5,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.871021

Testing
Accuracy:
0.874815

The accuracy of the model on the test data set was found to be:
0.874815

Table A.15: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Adult data set.
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Hyperparameter tuning of CatBoostClassifier()
with the Adult data set

CatBoostClassifier (iterations= 200,
learning_rate=0.1, depth=S,

12- leaf_reg=0.8,random_strength=l, iterations:border_count=254, range(235 241 Accuracy:
bagging_ temperature= l, 0.871021
cat_features = nominal, ,246)

loss_function='Logloss',
eval_metric='Accuracy')

Create the final model
with the value of the optimized parameters.

model.fit(X_train,

CatBoostClassifier (iterations= 241, y_train) cv
learning_rate=0.1, depth=S, y_predict = model. Training

12- leaf_reg=0.8,random_strength=l, predict Accuracy:
border_count=254, (X_test) 0.871021

bagging_ temperature= l,
cat_features = nominal, print('Testing accuracy Testing
loss_function='Logloss', Accuracy:
eval_metric='Accuracy') score:', 0.874815accuracy_score

(y_tes t , y_predict))
The accuracy of the model on the test data set was found to be:

0.874815

Table A.15 continued from previous page

Table A.15: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Adult data set.
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A.4.2 CatBoost with the Bank data set

Hyperparameter tuning of CatBoostClassifier()
with the Bank data set

Steps CatBoostClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=1000,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’iterations’:
range(100,
550, 50)

0.1

100

Accuracy:
0.915829

Time:
0.9 hrs

1.1 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=1000,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:
[0.001,
0.01,
0.1]

’iterations’:
range(80,
120, 10)

0.1

80

Accuracy:
0.916314

Time:
0.47 hrs

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=1000,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(50,

85, 5)
70

Accuracy:
0.916746

Time:
0.2 hrs

2 Tune
depth

164

APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

A.4.2 CatBoost with the Bank data set

Hyperparameter tuning of CatBoostClassifier()
with the Bank data set

Steps CatBoostClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=l000, 'learning
learning_rate=0.1, depth=S, - rate': Accuracy:12- leaf_ reg= l ,random_strength= l, [0.1, 0.2, 0.1 0.915829border_count=254, 0.3]

bagging_temperature= l, Time:cat_features = nominal, 'iterations': 100 0.9 hrsloss_function='Logloss', range(lO0,
eval_metric='Accuracy') 550, 50)

l. l Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l000, 'learning

learning_rate=0.1, depth=S, - rate': Accuracy:
12 leaf_ reg= l ,random_strength= l, [0.001, 0.1 0.916314- 0.01,border_count=254, 0.1]bagging_temperature= l,

cat_features = nominal, 'iterations': 80 Time:
loss_function='Logloss', range(80, 0.47 hrs
eval_metric='Accuracy') 120, 10)

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=l000,
learning_rate=0.1, depth=S, Accuracy:12- leaf_ reg= l ,random_strength= l, 'iterations': 0.916746border_count=254, range(50, 70bagging_temperature= l,

cat_features = nominal, 85, 5) Time:

loss_function='Logloss', 0.2 hrs

eval_metric='Accuracy')

2 Tune
depth
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Table A.16 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Bank data set
CatBoostClassifier(iterations=70,

learning_rate=0.1, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[5,6,7,8,

9,10]
7

Accuracy:
0.916902

Time:
0.26 hrs

3 Tune
l2_leaf_reg

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:

[0,1,2,3,
4]

1

Accuracy:
0.916902

Time:
0.1 hrs

3.1 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:

[0.7,0.8,
0.9,1,1.1,

1.2]

0.8

Accuracy:
0.916988

Time:
0.12 hrs

4 Tune
random_strength

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0,1,2,3]

1

Accuracy:
0.916988

Time:
0.09 hrs

4.1 Re-Tune
random_strength
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Table A.16 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Bank data set
CatBoostClassifier(iterations=70,

learning_rate=0.1, depth=S,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

depth:
[5,6,7,8,

9,10]
7

Accuracy:
0.916902

Time:
0.26 hrs

3
Tune

12_leaf_reg
CatBoostClassifier(iterations=70,

learning_rate=0.1, depth=?',
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

12 leaf
_reg:

[0,1,2,3,
4]

l

Accuracy:
0.916902

Time:
0.1 hrs

3.1 Re-Tune
12_leaf_reg

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=?',

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

12 leaf
_reg:

[0.7,0.8,
0.9,1,1.1,

1.2]

0.8

Accuracy:
0.916988

Time:
0.12 hrs

4 Tune
random_strength

CatBoostClassifier(iterations=70,
learning_rate=0.1, dcpth=?,

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

random
strength:
[0,1,2,3]

l

Accuracy:
0.916988

Time:
0.09 hrs

4.1 Re-Tune
random_strength
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Table A.16 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Bank data set
CatBoostClassifier(iterations=70,

learning_rate=0.1, depth=7,
l2_leaf_reg=0.8,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0.8,0.9,
1,1.1,
1.2]

1

Accuracy:
0.916988

Time:
0.12 hrs

5 Tune
border_count

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

border_
count:

[128,254]
254

Accuracy:
0.916988

Time:
0.02 hrs

5.1 Re-Tune
border_count

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

border_
count:

[250,251,
252,

253,254]

254

Accuracy:
0.916988

Time:
0.12 hrs

6 Tune
bagging_temperature

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

bagging_
tempera

ture:
[0,1,2,3,4]

0

Accuracy:
0.916988

Time:
0.12 hrs

6.1 Re-Tune
bagging_temperature
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Table A.16 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Bank data set
CatBoostClassifier(iterations=70,

learning_rate=0.1, dcpth=?,
12_leaf_reg=0.8,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

random
strength:
[0.8,0.9,

l , l . l ,
1.2]

l

Accuracy:
0.916988

Time:
0.12 hrs

5 Tune
border count-

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=?',

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

border
count:

[128,254]
254

Accuracy:
0.916988

Time:
0.02 hrs

5.1 Re-Tune
border count-

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=?',

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

border
count:

[250,251,
252,

253,254]

254

Accuracy:
0.916988

Time:
0.12 hrs

6 Tune
bagging_ temperature

CatBoostClassifier(iterations=70,
learning_rate=0.1, dcpth=?,

12_leaf_reg=0.8,random_strength=l, bagging_
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

tempera
ture:

[0,1,2,3,4]

0

Accuracy:
0.916988

Time:
0.12 hrs

6.1 Re-Tune
bagging_ temperature
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Table A.16 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Bank data set
CatBoostClassifier(iterations=70,

learning_rate=0.1, depth=7,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

bagging_
tempera

ture:
[0, 0.5,0.8,

0.9,1]

0

Accuracy:
0.916988

Time:
0.12 hrs

7 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:
[0.1,0.2,

0.3],
’iterations’:

range
(50,155,

20)

0.1

70

Accuracy:
0.916988

Time:
0.6 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=7,

l2_leaf_reg=0.8,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.916988

Testing
Accuracy:
0.917399

The accuracy of the model on the test data set was found to be:
0.917399

Table A.16: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Bank data set.
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Table A.16 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Bank data set
CatBoostClassifier(iterations=70,

learning_rate=0.1, dcpth=?,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

bagging_
tempera

ture:
[O, 0.5,0.8,

0.9,1]

0

Accuracy:
0.916988

Time:
0.12 hrs

7 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=70, 'learning
learning_rate=0.1, depth=?', _rate ' :

12_leaf_reg=0.8,random_strength=l, [0.1,0.2,
border_count=254, 0.3],

bagging_temperature= 0, 'iterations':
cat_features = nominal, range
loss_function='Logloss', (50,155,
eval_metric='Accuracy') 20)

0.1

70

Accuracy:
0.916988

Time:
0.6 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=70,
learning_rate=0.1, depth=?',

12_leaf_reg=0.8,random_strength=l,
border_count=254,

bagging_ temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

cv
Training

Accuracy:
0.916988

Testing
Accuracy:
0.917399

The accuracy of the model on the test data set was found to be:
0.917399

Table A.16: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Bank data set.
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A.4.3 CatBoost with the Dota data set.

Hyperparameter tuning of CatBoostClassifier()
with the Dota data set

Steps CatBoostClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and iterations
with other parameters

CatBoostClassifier(iterations=1000,
learning_rate=0.03, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(100,
1000,100)

learning_
rate:

[0.03,0.01,
0.1]

900

0.03

Accuracy:
0.586077

Time:
3.5 hrs

1.1 Re-Tune
iterations

CatBoostClassifier(iterations=1000,
learning_rate=0.03, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(
900,

1500,100)

1400

Accuracy:
0.588506

Time:
5.8 hrs

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=1000,
learning_rate=0.03, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(
1400,

2050,100)

1900

Accuracy:
0.589443

Time:
9.6 hrs

1.3 Re-Tune
iterations
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A.4.3 CatBoost with the Dota data set .

Hyperparameter tuning of CatBoostClassifier()
with the Dota data set

Steps CatBoostClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate and iterations
with other parameters

CatBoostClassifier(iterations=l000, iterations:
learning_rate=0.03, depth=S, range(lO0, 900 Accuracy:

12- leaf_reg=l,random_strength=l, 1000,100) 0.586077
border_count=254,

bagging_temperature= l, learning_
cat_features = nominal, rate: Time:
loss_ function='Logloss', [0.03,0.01, 0.03 3.5 hrs
eval_metric='Accuracy') 0.1]

l . l Re-Tune
iterations

CatBoostClassifier(iterations=l000,
learning_rate=0.03, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, iterations: 0.588506
border_count=254, range( 1400bagging_temperature= l, 900,

cat_features = nominal, 1500,100) Time:
loss_ function='Logloss', 5.8 hrs
eval_metric='Accuracy')

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=l000,
learning_rate=0.03, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, iterations: 0.589443
border_count=254, range( 1900bagging_temperature= l, 1400,

cat_features = nominal, 2050,100) Time:
loss_ function='Logloss', 9.6 hrs
eval_metric='Accuracy')

1.3 Re-Tune
iterations
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Table A.17 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Dota data set
CatBoostClassifier(iterations=1000,

learning_rate=0.03, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(
1850,

2050,50)

1900

Accuracy:
0.589443

Time:
8.15 hrs

2 Tune
depth

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[4,5,6] 6

Accuracy:
0.590667

Time:
4.8 hrs

2.1 Re-Tune
depth

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[6,7,8] 6

Accuracy:
0.590667

Time:
5 hrs

3 Tune
l2_leaf_reg

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=6,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:

[1,2,3,4]
3

Accuracy:
0.590667

Time:
7 hrs

3.1 Re-Tune
l2_leaf_reg
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Table A.17 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Dota data set
CatBoostClassifier(iterations=l000,

learning_rate=0.03, depth=S,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

iterations:
range(
1850,

2050,50)

1900

Accuracy:
0.589443

Time:
8.15 hrs

2 Tune
depth

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

depth:
[4,5,6] 6

Accuracy:
0.590667

Time:
4.8 hrs

2.1 Re-Tune
depth

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

depth:
[6,7,8] 6

Accuracy:
0.590667

Time:
5 hrs

3 Tune
12_leaf_reg

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=B,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

12 leaf
_reg:

[1,2,3,4]
3

Accuracy:
0.590667

Time:
7 hrs

3.1 Re-Tune
12_leaf_reg
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Table A.17 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Dota data set
CatBoostClassifier(iterations=1900,

learning_rate=0.03, depth=6,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:
[2.8,3,
3.2]

3

Accuracy:
0.590667

Time:
5.7 hrs

4 Tune
random_strength

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:

[1,2,3]
3

Accuracy:
0.590769

Time:
5.7 hrs

4.1 Re-Tune
random_strength

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:

[3,4,5]
3

Accuracy:
0.590769

Time:
5.9 hrs

4.2 Re-Tune
random_strength

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[2.8,3,3.

2]

3

Accuracy:
0.590769

Time:
5.9 hrs

5 Re-Tune
iterations
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Table A.17 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Dota data set
CatBoostClassifier(iterations=1900,

learning_rate=0.03, depth=B,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

12 leaf
_reg:
[2.8,3,
3.2]

3

Accuracy:
0.590667

Time:
5.7 hrs

4 Tune
random_strength

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=B, Accuracy:

12- leaf_reg=3,random_strength=l, random 0.590769
border_count=254, strength: 3bagging_temperature= l, [1,2,3]cat_features = nominal, Time:

loss_ function='Logloss', 5.7 hrs
eval_metric='Accuracy')

4.1 Re-Tune
random_strength

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=B, Accuracy:12- leaf_reg=3,random_strength=l, random 0.590769border_count=254, strength: 3bagging_temperature= l,

[3,4,5] Time:cat_features = nominal,
loss_ function='Logloss', 5.9 hrs

eval_metric='Accuracy')

4.2 Re-Tune
random_strength

CatBoostClassifier(iterations=1900,
learning_rate=0.03, depth=B, Accuracy:12- leaf_reg=3,random_strength=l, random 0.590769border_count=254, strength: 3bagging_temperature= l, [2.8,3,3. Time:cat_features = nominal, 2] 5.9 hrsloss_ function='Logloss',

eval_metric='Accuracy')

5 Re-Tune
iterations
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Table A.17 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Dota data set
CatBoostClassifier(iterations=1900,

learning_rate=0.03, depth=6,
l2_leaf_reg=3,random_strength=3,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
[1900,
2500]

2500

Accuracy:
0.590784

Time:
1.8 hrs

6 Re-tune
learning rate

CatBoostClassifier(iterations=2500,
learning_rate=0.03, depth=6,

l2_leaf_reg=3,random_strength=3,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

learning_
rate:

[0.03,0.01,
0.1]

0.03

Accuracy:
0.590784

Time:
1.77 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=2500,
learning_rate=0.03, depth=6,

l2_leaf_reg=3,random_strength=3,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.590784

Testing
Accuracy:
0.592838

The accuracy of the model on the test data set was found to be:
0.592838

Table A.17: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Dota data set.
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Table A.17 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Dota data set
CatBoostClassifier(iterations=1900,

learning_rate=0.03, depth=B,
12_leaf_reg=3,random_strength=3,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

iterations:
[1900,
2500]

2500

Accuracy:
0.590784

Time:
1.8 hrs

6 Re-tune
learning rate

CatBoostClassifier(iterations=2500,
learning_rate=0.03, depth=B,

12_leaf_reg=3,random_strength=3, learning_
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

rate:
[0.03,0.01,

0.1]

0.03

Accuracy:
0.590784

Time:
1.77 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=2500,
learning_rate=0.03, depth=B,

12_leaf_reg=3,random_strength=3,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_ function='Logloss',
eval_metric='Accuracy')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

cv
Training

Accuracy:
0.590784

Testing
Accuracy:
0.592838

The accuracy of the model on the test data set was found to be:
0.592838

Table A. l 7: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Dota data set.
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A.4.4 CatBoost with the Flavours of Physics data set

Hyperparameter tuning of CatBoostClassifier()
with the Flavours of Physics data set

Steps CatBoostClassifier() Parameter
Range

Optimized
Value

CV
Training

1 Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.03,0.01,
0.1, 0.2,

0.3]

’iterations’:
range(100,
550, 50)

0.1

500

Accuracy:
0.890836

Time:
5.6 hrs

1.1 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.001, 0.01,
0.1]

’iterations’:
range(500,
850, 50)

0.1

800

Accuracy:
0.891645

Time:
9.5 hrs

1.1 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(800,
1550, 50)

1250

Accuracy:
0.892494

Time:
10 hrs

1.2 Re-Tune
iterations
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A.4.4 CatBoost with the Flavours of Physics data set

Hyperparameter tuning of CatBoostClassifier()
with the Flavours of Physics data set

Steps CatBoostClassifier() Parameter Optimized cv
Range Value Training

l Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=l00, 'learning

learning_rate=0.1, depth=S, - rate': Accuracy:
12 leaf_ reg= l ,random_strength= l, [0.03,0.01, 0.1 0.890836- 0.1, 0.2,border_count=254, 0.3]bagging_temperature= l,

cat_features = nominal, 'iterations': 500 Time:
loss_function= 'Logloss', range(lO0, 5.6 hrs
eval_metric='Accuracy') 550, 50)

l. l Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l00, 'learning
learning_rate=0.1, depth=S, - rate': 0.1 Accuracy:12- leaf_ reg= l ,random_strength= l, [0.001, 0.01, 0.891645border_count=254, 0.1]

bagging_temperature= l, Time:cat_features = nominal, 'iterations': 9.5 hrsloss_function= 'Logloss', range(500, 800
eval_metric='Accuracy') 850, 50)

l. l Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S, Accuracy:

12- leaf_ reg= l ,random_strength= l, 'iterations': 0.892494
border_count=254, range(800, 1250bagging_temperature= l,

cat_features = nominal, 1550, 50) Time:
loss_function= 'Logloss', 10 hrs
eval_metric='Accuracy')

1.2 Re-Tune
iterations
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Table A.18 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Flavours of Physics data set
CatBoostClassifier(iterations=100,

learning_rate=0.1, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(
1200,

1300, 25)

1225

Accuracy:
0.892499

Time:
3.3 hrs

1.3 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(
1215,

1240, 5)

1225

Accuracy:
0.892499

Time:
4 hrs

2 Tune
depth

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[5,6,7,8,9,10] 6

Accuracy:
0.893999

Time:
4 hrs

3 Tune
l2_leaf_reg

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=6,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf_
reg:[0,1,2,

3,4]
3

Accuracy:
0.894187

Time:
2.25 hrs

3.1 Re-Tune
l2_leaf_reg
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Table A.18 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Flavours of Physics data set
CatBoostClassifier(iterations=l00,

learning_rate=0.1, dcpth=S,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'iterations':
range(
1200,

1300, 25)

1225

Accuracy:
0.892499

Time:
3.3 hrs

1.3 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.1, dcpth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'iterations':
range(
1215,

1240, 5)

1225

Accuracy:
0.892499

Time:
4 hrs

2

CatBoostClassifier(iterations=1225,
learning_rate=0.1, dcpth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

3

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=G,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

3.1

Tune
depth

Accuracy:
0.893999

depth: 6[5,6,7,8,9,10]
Time:
4 hrs

Tune
12_leaf_reg

Accuracy:

12 leaf 0.894187
-

reg:[0,1,2, 3
3,4] Time:

2.25 hrs

Re-Tune
12_leaf_reg
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Table A.18 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Flavours of Physics data set
CatBoostClassifier(iterations=1225,

learning_rate=0.1, depth=6,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf_
reg:[2.8,2.9,3,

3.1,3.2]
3

Accuracy:
0.894187

Time:
2.23

4 Tune
random_strength

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0,1,2,3]

1

Accuracy:
0.894187

Time:
1.8 hrs

4.1 Re-Tune
random_strength

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0.8,0.9,1,
1.1,1.2]

1

Accuracy:
0.894187

Time:
2.29 hrs

5 Tune
border_count

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

border_
count:

[128, 200,
254]

254

Accuracy:
0.894187

Time:
1.2 hrs

6 Tune
bagging_temperature
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Table A.18 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Flavours of Physics data set
CatBoostClassifier(iterations=1225,

learning_rate=0.1, depth=B,
12_leaf_ reg= l ,random_strength= l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

12 leaf
reg:[2.8,2.9,3,

3.1,3.2]
3

Accuracy:
0.894187

Time:
2.23

4 Tune
random_strength

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=B,

12_leaf_reg=3,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

random
strength:
[0,1,2,3]

l

Accuracy:
0.894187

Time:
1.8 hrs

4.1 Re-Tune
random_strength

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=B,

12_leaf_reg=3,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

random
strength:
[0.8,0.9,1,
1.1,1.2]

l

Accuracy:
0.894187

Time:
2.29 hrs

5 Tune
border count-

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=B,

12_leaf_reg=3,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

border
count:

[128, 200,
254]

254

Accuracy:
0.894187

Time:
1.2 hrs

6 Tune
bagging_ temperature
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Table A.18 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Flavours of Physics data set
CatBoostClassifier(iterations=1225,

learning_rate=0.1, depth=6,
l2_leaf_reg=3,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

bagging_
temperature:

[0,1,2,3 ]
0

Accuracy:
0.894187

Time:
1.8 hrs

6.1 Re-Tune
bagging_temperature

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

bagging_
temperature:
[0,0.1,0.2,0.3 ]

0

Accuracy:
0.894187

Time:
1.8 hrs

7 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning_rate’:
[0.01,0.1,0.2]

’iterations’:
range(1200,
1300, 25)

0.1

1200

Accuracy:
0.894270

Time:
5.5 hrs

7.1 Re-Tune
iterations

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(
1180,

1235, 10)

1180

Accuracy:
0.894409

Time:
2.2 hrs

7.2 Re-Tune
iterations
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Hyperparameter tuning of CatBoostClassifier()
with the Flavours of Physics data set

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=G, Accuracy:

12- leaf_reg=3,random_strength=l, bagging_ 0.894187
border_count=254, temperature: 0bagging_temperature= l, [0,1,2,3]cat_features = nominal, Time:

loss_function='Logloss', 1.8 hrs
eval_metric='Accuracy')

6.1 Re-Tune
bagging_temperature

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=G, Accuracy:

12- leaf_reg=3,random_strength=l, bagging_ 0.894187
border_count=254,

bagging_temperature= l, temperature: 0

cat_features = nominal, [0,0.1,0.2,0.3] Time:
loss_function='Logloss', 1.8 hrs
eval_metric='Accuracy')

7 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=G, 'learning_rate': 0.1 Accuracy:

12- leaf_reg=3,random_strength=l, [0.01,0.1,0.2] 0.894270
border_count=254,

bagging_temperature= 0, 'iterations':
cat_features = nominal, range(1200, 1200 Time:
loss_function='Logloss', 1300, 25) 5.5 hrs
eval_metric='Accuracy')

7.1 Re-Tune
iterations

CatBoostClassifier(iterations=1225,
learning_rate=0.1, depth=G, Accuracy:

12- leaf_reg=3,random_strength=l, 'iterations': 0.894409
border_count=254, range( 1180bagging_temperature= 0, 1180,

cat_features = nominal, 1235, 10) Time:
loss_function='Logloss', 2.2 hrs
eval_metric='Accuracy')

7.2 Re-Tune
iterations

Table A.18 continued from previous page
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Table A.18 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Flavours of Physics data set
CatBoostClassifier(iterations=1225,

learning_rate=0.1, depth=6,
l2_leaf_reg=3,random_strength=1,

border_count=254,
bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
range(
1150,

1185, 10)

1180

Accuracy:
0.894409

Time:
1.7 hrs

7.3
CatBoostClassifier(iterations=1225,

learning_rate=0.1, depth=6,
l2_leaf_reg=3,random_strength=1,

border_count=254,
bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
[1175,
1180]

1175

Accuracy:
0.894414

Time:
0.3 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=1175,
learning_rate=0.1, depth=6,

l2_leaf_reg=3,random_strength=1,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.894414

Testing
Accuracy:
0.892790

The accuracy of the model on the test data set was found to be:
0.892790

Table A.18: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Flavours Of Physics data
set.
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Table A.18 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Flavours of Physics data set
CatBoostClassifier(iterations=1225,

learning_rate=0.1, depth=B,
12_leaf_reg=3,random_strength=l,

border_count=254,
bagging_temperature= 0,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

'iterations':
range(
1150,

1185, 10)

1180

Accuracy:
0.894409

Time:
l. 7 hrs

7.3 I
CatBoostClassifier(iterations=1225,

learning_rate=0.1, depth=B,
12_leaf_reg=3,random_strength=l,

border_count=254,
bagging_temperature= 0,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

'iterations':
[1175,
1180]

1175

Accuracy:
0.894414

Time:
0.3 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=l 175,
learning_rate=0.1, depth=B,

12_leaf_reg=3,random_strength=l,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

cv
Training

Accuracy:
0.894414

Testing
Accuracy:
0.892790

The accuracy of the model on the test data set was found to be:
0.892790

Table A.18: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Flavours Of Physics data
set.
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A.4.5 CatBoost with the Forest Cover Type data set.

Hyperparameter tuning of CatBoostClassifier()
with the Forest Type Cover data set

Steps CatBoostClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’iterations’:
range(100,
550, 50)

0.3

500

Accuracy:
0.923984

Time:
1.2 hrs

1.1 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.28, 0.3,
0.35]

’iterations’:
range(500,
1050, 50)

0.35

1000

Accuracy:
0.941419

Time:
3.6

1.2 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.35, 0.38,
0.4]

’iterations’:
range(
1000,

1550, 50)

0.4

1500

Accuracy:
0.947033

Time:
6 hrs

1.3 Re-Tune learning_rate
and iterations
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A.4.5 CatBoost with the Forest Cover Type data set .

Hyperparameter tuning of CatBoostClassifier()
with the Forest Type Cover data set

Steps CatBoostClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=l00, 'learning
learning_rate=0.1, depth=S, - rate': 0.3 Accuracy:

12- leaf_reg=l,random_strength=l, [0.1, 0.2, 0.923984
border_count=254, 0.3]

bagging_temperature= l,
cat_features = nominal, 'iterations': 500 Time:

loss_function='MultiClass', range(lO0, 1.2 hrs
eval_metric='Accuracy') 550, 50)

l . l Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l00, 'learning
learning_rate=0.1, depth=S, - rate': 0.35 Accuracy:

12- leaf_reg=l,random_strength=l, [0.28, 0.3, 0.941419
border_count=254, 0.35]

bagging_temperature= l,
cat_features = nominal, 'iterations': 1000 Time:

loss_function='MultiClass', range(500, 3.6
eval_metric='Accuracy') 1050, 50)

1.2 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l00, 'learning

learning_rate=0.1, depth=S, - rate': Accuracy:
12 leaf_reg=l,random_strength=l, [0.35, 0.38, 0.4 0.947033- 0.4]border_count=254,

bagging_temperature= l, 'iterations':cat_features = nominal, range( 1500 Time:
loss_function='MultiClass', 6 hrs

eval_metric='Accuracy') 1000,
1550, 50)

1.3 Re-Tune learning_rate
and iterations
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.4, 0.45]

’iterations’:
range(
1500,
2550,
100)

0.4

2500

Accuracy:
0.950685

Time:
6.6 hrs

1.4 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.4, 0.42]

’iterations’:
range(
2500,

3050,100)

0.4

3000

Accuracy:
0.951560

Time:
5.04 hrs

1.5 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=100,
learning_rate=0.4, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’iterations’:
range(
3000,

3550,100)

3500

Accuracy:
0.952

Time:
2.7 hrs

1.6 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.4, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’iterations’:
range(
3500,

4000,100)

4000

Accuracy:
0.952420

Time:
3.2 hrs

1.7 Re-Tune
iterations
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set

CatBoostClassifier(iterations=l00, 'learning
rate':learning_rate=0.1, depth=S, - Accuracy:

12 leaf_reg=l,random_strength=l, [0.4, 0.45] 0.4 0.950685-

border_count=254, 'iterations':bagging_temperature= l, range(cat_features = nominal, 2500 Time:
loss_function='MultiClass', 1500, 6.6 hrs

eval_metric='Accuracy') 2550,
100)

1.4 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l00, 'learning
learning_rate=0.1, depth=S, - rate': 0.4 Accuracy:

12- leaf_reg=l,random_strength=l, [0.4, 0.42] 0.951560
border_count=254,

bagging_temperature= l, 'iterations':
cat_features = nominal, range( 3000 Time:

loss_function='MultiClass', 2500, 5.04 hrs
eval_metric='Accuracy') 3050,100)

1.5 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.4, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, 'iterations': 0.952
border_count=254, range( 3500bagging_temperature= l, 3000,

cat_features = nominal, 3550,100) Time:
loss_function='MultiClass', 2.7 hrs

eval_metric='Accuracy')

1.6 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.4, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, 'iterations': 0.952420
border_count=254, range( 4000bagging_temperature= l, 3500,

cat_features = nominal, 4000,100) Time:
loss_function='MultiClass', 3.2 hrs

eval_metric='Accuracy')

1.7 Re-Tune
iterations
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set
CatBoostClassifier(iterations=100,

learning_rate=0.4, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’iterations’:
range(
4000,

5050,100)

5000

Accuracy:
0.953085

Time:
1.2 hrs

1.8 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.4, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

iterations:
range(
5000,

5550, 100)

5000

Accuracy:
0.953085

Time:
1.8 hrs

1.9 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.4, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’iterations’:
range(
4800,

5250,50)

5150

Accuracy:
0.953105

Time:
6.6 hrs

1.10 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.4, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’iterations’:
[5125,
5150,
5175]

5125

Accuracy:
0.953181

Time:
7 hrs

2 Tune
depth
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Hyperparameter tuning of CatBoostClassifier()
with the Forest Type Cover data set

CatBoostClassifier(iterations=l00,
learning_rate=0.4, depth=S, Accuracy:12- leaf_reg=l,random_strength=l, 'iterations': 0.953085border_count=254, range( 5000bagging_temperature= l, 4000, Time:cat_features = nominal, 5050,100) 1.2 hrsloss_function='MultiClass',

eval_metric='Accuracy')

1.8 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.4, depth=S, iterations: Accuracy:

12- leaf_reg=l,random_strength=l, range( 0.953085
border_count=254,

bagging_temperature= l, 5000, 5000

cat_features = nominal, 5550, 100) Time:
loss_function='MultiClass', 1.8 hrs

eval_metric='Accuracy')

1.9 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.4, depth=S, Accuracy:12- leaf_reg=l,random_strength=l, 'iterations': 0.953105border_count=254, range( 5150bagging_temperature= l, 4800, Time:cat_features = nominal, 5250,50) 6.6 hrsloss_function='MultiClass',

eval_metric='Accuracy')

1.10 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.4, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, 'iterations': 0.953181
border_count=254, [5125, 5125bagging_temperature= l, 5150,

cat_features = nominal, 5175] Time:
loss_function='MultiClass', 7 hrs

eval_metric='Accuracy')

2 Tune
depth

Table A.19 continued from previous page
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set
CatBoostClassifier(iterations=5125,

learning_rate=0.4, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’depth’:
[4,5,6,7

,8,9]
9

Accuracy:
0.954055

Time:
3.8 hrs

2 Re-Tune
depth

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’depth’:[9,10,
11] 10

Accuracy:
0.954465

Time:
3.4 hrs

3 Tune
l2_leaf_reg

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=10,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:

[1,2,3,4]
1

Accuracy:
0.954465

Time:
4.2 hrs

3.1 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=10,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:

[0,0.8,0.9,
1,

1.1, 1.2]

1.2

Accuracy:
0.95452

Time:
5.17 hrs

3.2 Re-Tune
l2_leaf_reg
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Hyperparameter tuning of CatBoostClassifier()
with the Forest Type Cover data set

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, 'depth': 0.954055
border_count=254, [4,5,6,7 9bagging_temperature= l,

cat_features = nominal, ,8,9] Time:
loss_function='MultiClass', 3.8 hrs

eval_metric='Accuracy')

2 Re-Tune
depth

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, 0.954465
border_count=254, 'depth':[9,10, 10bagging_temperature= l, 11]

cat_features = nominal, Time:
loss_function='MultiClass', 3.4 hrs

eval_metric='Accuracy')

3 Tune
12- leaf_reg

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=Ifl, Accuracy:

12- leaf_reg=l,random_strength=l, '12 leaf 0.954465
border_count=254, -

bagging_temperature= l, _reg': l

cat_features = nominal, [1,2,3,4] Time:
loss_function='MultiClass', 4.2 hrs

eval_metric='Accuracy')

3.1 Re-Tune
12- leaf_reg

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=Ifl, '12 leaf Accuracy:

12 leaf_reg=l,random_strength=l, - 0.95452- _reg':border_count=254, [0,0.8,0.9, 1.2bagging_temperature= l,
cat_features = nominal, l, Time:

loss_function='MultiClass', l . l , 1.2] 5.17 hrs
eval_metric='Accuracy')

3.2 Re-Tune
12 leaf_reg-

Table A.19 continued from previous page
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set
CatBoostClassifier(iterations=5125,

learning_rate=0.4, depth=10,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:

[1.2,1.3,
1.4]

1.2

Accuracy:
0.95452

Time:
3.25 hrs

4 Re-Tune
learning_rate

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=10,

l2_leaf_reg=1.2,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate:’

[0.01,0.03,
0.1
0.4]

0.1

Accuracy:
0.955604

Time:
4.29 hrs

5 Tune
random_strength

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=10,

l2_leaf_reg=1.2,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’random_
strength’:

[0.5,1,1.5,2,
3]

0.5

Accuracy:
0.955783

Time:
5 hrs

5.1 Re-Tune
random_strength

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=10,

l2_leaf_reg=1.2,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’random_
strength’:

[0.4,0.5,0.6]
0.6

Accuracy:
0.955794

Time:
3.5 hrs

5.2 Re-Tune
random_strength
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set
CatBoostClassifier(iterations=5125,

learning_rate=0.4, depth=In,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,

loss_function='MultiClass',
eval_metric='Accuracy')

'12 leaf
_reg':

[1.2,1.3,
1.4]

1.2

Accuracy:
0.95452

Time:
3.25 hrs

4 Re-Tune
learning_ ra te

CatBoostClassifier(iterations=5125,
learning_rate=0.4, depth=In,

12_leaf_reg=l.2,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,

loss_function='MultiClass',
eval_metric='Accuracy')

'learning
rate:'

[0.01,0.03,
0.1
0.4]

0.1

Accuracy:
0.955604

Time:
4.29 hrs

5 Tune
random_strength

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=In,

12_leaf_reg=l.2,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,

loss_function='MultiClass',
eval_metric='Accuracy')

'random-

strength':
[0.5,1,1.5,2,

3]

0.5

Accuracy:
0.955783

Time:
5 hrs

5.1 Re-Tune
random_strength

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=In,

12_leaf_reg=l.2,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,

loss_function='MultiClass',
eval_metric='Accuracy')

'random-

strength':
[0.4,0.5,0.6]

0.6

Accuracy:
0.955794

Time:
3.5 hrs

5.2 Re-Tune
random_strength

181



APPENDIX A. HYPERPARAMETERS TUNING PIPELINE

Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set
CatBoostClassifier(iterations=5125,

learning_rate=0.1, depth=10,
l2_leaf_reg=1.2,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’random_
strength’:
[0.6, 0.7,

0.8]

0.8

Accuracy:
0.955949

Time:
3.5 hrs

5.3 Re-Tune
random_strength

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=10,

l2_leaf_reg=1.2,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’random_
strength’:
[0.8,0.9,1]

0.8

Accuracy:
0.955949

Time:
3.5 hrs

6 Re-Tune
iterations

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=10,

l2_leaf_reg=1.2,random_strength=0.8,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’iterations’:
[5125,
5625]

5625

Accuracy:
0.956217

Time:
2.4 hrs

6.1 Re-Tune
iterations

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=10,

l2_leaf_reg=1.2,random_strength=0.8,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’iterations’:
[ 5625,
6125]

6125

Accuracy:
0.956348

Time:
1.61 hrs

7 Re-Tune
learning_rate
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Hyperparameter tuning of CatBoostClassifier()
with the Forest Type Cover data set

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=Ifl, Accuracy:

12- leaf_reg=l.2,random_strength=l, 'random 0.955949
border_count=254, strength': 0.8bagging_temperature= l, [0.6, 0.7,

cat_features = nominal, 0.8] Time:
loss_function='MultiClass', 3.5 hrs

eval_metric='Accuracy')

5.3 Re-Tune
random_strength

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=Ifl, Accuracy:

12- leaf_reg=l.2,random_strength=l, 'random 0.955949
border_count=254, strength': 0.8bagging_temperature= l, [0.8,0.9,1]cat_features = nominal, Time:

loss_function='MultiClass', 3.5 hrs
eval_metric='Accuracy')

6 Re-Tune
iterations

CatBoostClassifier(iterations=5125, Accuracy:learning_rate=0.1, depth=Ifl, 0.95621712- leaf_reg=l.2,random_strength=0.8, 'iterations':border_count=254, [5125, 5625bagging_temperature= l,
cat_features = nominal, 5625]

Time:loss_function='MultiClass', 2.4 hrseval_metric='Accuracy')

6.1 Re-Tune
iterations

CatBoostClassifier(iterations=5125,
learning_rate=0.1, depth=Ifl, Accuracy:

12- leaf_reg=l.2,random_strength=0.8, 'iterations': 0.956348
border_count=254, [ 5625, 6125bagging_temperature= l,

cat_features = nominal, 6125] Time:
loss_function='MultiClass', 1.61 hrs

eval_metric='Accuracy')

7 Re-Tune
learning_rate

Table A.19 continued from previous page
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set
CatBoostClassifier(iterations=6125,

learning_rate=0.1, depth=10,
l2_leaf_reg=1.2,random_strength=0.8,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.01,0.03,
0.1,0.4]

0.4

Accuracy:
0.956348

Time:
6.2 hrs

7.1 Re-Tune
learning_rate

CatBoostClassifier(iterations=6125,
learning_rate=0.1, depth=10,

l2_leaf_reg=1.2,random_strength=0.8,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.4, 0.5,
0.6]

0.4

Accuracy:
0.956348

Time:
6.2 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=6125,
learning_rate=0.4, depth=10,

l2_leaf_reg=1.2,random_strength=0.8,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,

loss_function=’MultiClass’,
eval_metric=’Accuracy’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.956348

Testing
Accuracy:
0.960062

The accuracy of the model on the test data set was found to be:
0.960062

Table A.19: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Forest Cover Type data
set.
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Table A.19 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Forest Type Cover data set
CatBoostClassifier(iterations=6125,

learning_rate=0.1, depth=In,
12_leaf_reg=l.2,random_strength=0.8,

border_count=254,
bagging_temperature= l,
cat_features = nominal,

loss_function='MultiClass',
eval_metric='Accuracy')

'learning
rate':

[0.01,0.03,
0.1,0.4]

0.4

Accuracy:
0.956348

Time:
6.2 hrs

7.1 Re-Tune
learning_ ra te

CatBoostClassifier(iterations=6125,
learning_rate=0.1, depth=In,

12_leaf_reg=l.2,random_strength=0.8,
border_count=254,

bagging_temperature= l,
cat_features = nominal,

loss_function='MultiClass',
eval_metric='Accuracy')

'learning
rate':

[0.4, 0.5,
0.6]

0.4

Accuracy:
0.956348

Time:
6.2 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=6125,
learning_rate=0.4, depth=In,

12_leaf_reg=l.2,random_strength=0.8,
border_count=254,

bagging_temperature= l,
cat_features = nominal,

loss_function='MultiClass',
eval_metric='Accuracy')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

cv
Training

Accuracy:
0.956348

Testing
Accuracy:
0.960062

The accuracy of the model on the test data set was found to be:
0.960062

Table A.19: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Forest Cover Type data
set.
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A.4.6 CatBoos with the MiniBooNE data set.

Hyperparameter tuning of CatBoostClassifier()
with the MiniBooNE data set

Steps CatBoostClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’iterations’:
range(100,
550, 50)

0.1

500

Accuracy:
0.944575

Time:
1.3 hrs

1.1 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.001,0.01,
0.1]

’iterations’:

range(500,
1050, 50)

0.1

1000

Accuracy:
0.945554

Time:
4.7 hrs

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(1000,

1550,
50)

1450

Accuracy:
0.945743

Time:
2.25 hrs

1.3 Re-Tune
iterations
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A.4.6 CatBoos with the MiniBooNE data set .

Hyperparameter tuning of CatBoostClassifier()
with the MiniBooNE data set

Steps CatBoost Classifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate and iterations
with other default parameters

CatBoostClassifier(iterations=l00, 'learning
learning_rate=0.1, depth=S, - rate': Accuracy:

12- leaf_ reg= l ,random_strength= l, [0.1, 0.2, 0.1 0.944575
border_count=254, 0.3]

bagging_temperature= l,
cat_features = nominal, 'iterations': 500 Time:
loss_function= 'Logloss', range(lO0, 1.3 hrs
eval_metric='Accuracy') 550, 50)

l. l Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=l00, 'learning
learning_rate=0.1, depth=S, - rate': 0.1 Accuracy:

12- leaf_ reg= l ,random_strength= l, [0.001,0.01, 0.945554
border_count=254, 0.1]

bagging_temperature= l, 'iterations':
cat_features = nominal, 1000 Time:
loss_function= 'Logloss', range(500, 4.7 hrs
eval_metric='Accuracy') 1050, 50)

1.2 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S, Accuracy:

12- leaf_ reg= l ,random_strength= l, iterations: 0.945743
border_count=254, range(lO00, 1450bagging_temperature= l, 1550,

cat_features = nominal, 50) Time:
loss_function= 'Logloss', 2.25 hrs
eval_metric='Accuracy')

1.3 Re-Tune
iterations
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Table A.20 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the MiniBooNE data set
CatBoostClassifier(iterations=100,

learning_rate=0.1, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

iterations:
range(1410,
1495, 20)

1470

Accuracy:
0.945769

Time:
1.3 hrs

1.4 Re-Tune
iterations

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’iterations’:
[1465,1470,

175]
1470

Accuracy:
0.945769

Time:
0.9 hrs

2 Tune
depth

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[7,8,9] 7

Accuracy:
0.946287

Time:
0.93 hrs

2.1 Re-Tune
depth

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

depth:
[5,6,7] 7

Accuracy:
0.946287

Time:
0.48 hrs

3 Tune
l2_leaf_reg
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Hyperparameter tuning of CatBoostClassifier()
with the MiniBooNE data set

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S, Accuracy:

12- leaf_ reg= l ,random_strength= l, iterations: 0.945769
border_count=254, range(1410, 1470bagging_temperature= l,

cat_features = nominal, 1495, 20) Time:
loss_function= 'Logloss', 1.3 hrs
eval_metric='Accuracy')

1.4 Re-Tune
iterations

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S, Accuracy:

12- leaf_ reg= l ,random_strength= l, 'iterations': 0.945769
border_count=254, [1465,1470, 1470bagging_temperature= l,

cat_features = nominal, 175] Time:
loss_function= 'Logloss', 0.9 hrs
eval_metric='Accuracy')

2 Tune
depth

CatBoostClassifier(iterations= 1470,
learning_rate=0.1, depth=S, Accuracy:

12- leaf_ reg= l ,random_strength= l, 0.946287
border_count=254, depth: 7bagging_temperature= l, [7,8,9]

cat_features = nominal, Time:
loss_function= 'Logloss', 0.93 hrs
eval_metric='Accuracy')

2.1 Re-Tune
depth

CatBoostClassifier(iterations= 1470,
learning_rate=0.1, depth=S, Accuracy:

12- leaf_ reg= l ,random_strength= l, 0.946287
border_count=254, depth: 7bagging_temperature= l, [5,6,7]

cat_features = nominal, Time:
loss_function= 'Logloss', 0.48 hrs
eval_metric='Accuracy')

3 Tune
12 leaf_reg-

Table A.20 continued from previous page
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Table A.20 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the MiniBooNE data set
CatBoostClassifier(iterations=1470,

learning_rate=0.1, depth=7,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:

[0,1,2,3]
3

Accuracy:
0.946333

Time:
0.7 hrs

3.1 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=7,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:
[3,4,5]

3

Accuracy:
0.946333

Time:
0.6 hrs

3.2 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=7,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:

[2.8,2.9,3,
3.1,3.2]

3.2

Accuracy:
0.946358

Time:
0.8 hrs

3.3 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=7,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

l2_leaf
_reg:

[3.2,3.3,
3.4,3.5]

3.2

Accuracy:
0.946358

Time:
0.6 hrs

4 Tune
random_strength
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Table A.20 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the MiniBooNE data set
CatBoostClassifier(iterations=1470,

learning_rate=0.1, dcpth=?, Accuracy:
12- leaf_ reg= l ,random_strength= l, 12 leaf 0.946333

border_count=254, -

bagging_temperature= l, _reg: 3

cat_features = nominal, [0,1,2,3] Time:
loss_function= 'Logloss', 0.7 hrs
eval_metric='Accuracy')

3.1 Re-Tune
12 leaf_reg-

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=?', Accuracy:

12- leaf_ reg= l ,random_strength= l, 12 leaf 0.946333
border_count=254, -

bagging_temperature= l, _reg: 3

cat_features = nominal, [3,4,5] Time:
loss_function= 'Logloss', 0.6 hrs
eval_metric='Accuracy')

3.2 Re-Tune
12- leaf_reg

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=?', Accuracy:

12- leaf_ reg= l ,random_strength= l, 12- leaf 0.946358
border_count=254, _reg: 3.2bagging_temperature= l, [2.8,2.9,3,

cat_features = nominal, 3.1,3.2] Time:
loss_function= 'Logloss', 0.8 hrs
eval_metric='Accuracy')

3.3 Re-Tune
12- leaf_reg

CatBoostClassifier(iterations=1470,
learning_rate=0.1, dcpth=?, Accuracy:

12- leaf_ reg= l ,random_strength= l, 12- leaf 0.946358
border_count=254, _reg: 3.2bagging_temperature= l, [3.2,3.3,

cat_features = nominal, 3.4,3.5] Time:
loss_function= 'Logloss', 0.6 hrs
eval_metric='Accuracy')

4 Tune
random_strength
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Table A.20 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the MiniBooNE data set
CatBoostClassifier(iterations=1470,

learning_rate=0.1, depth=7,
l2_leaf_reg=3.2,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0,1,2,3]

1

Accuracy:
0.946358

Time:
0.6 hrs

4.1 Re-Tune
random_strength

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=7,

l2_leaf_reg=3.2,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0.8,0.9,1,
1.1,1.2]

0.8

Accuracy:
0.946487

Time:
0.9 hrs

4.2 Re-Tune
random_strength

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=7,

l2_leaf_reg=3.2,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

random_
strength:
[0.7, 0.8]

0.8

Accuracy:
0.946487

Time:
0.38 hrs

5 Tune
border_count

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=7,

l2_leaf_reg=3.2,random_strength=0.8,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

border_count:
[128,200,254] 254

Accuracy:
0.946487

Time:
0.4 hrs

6 Tune
bagging_temperature
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Table A.20 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the MiniBooNE data set
CatBoostClassifier(iterations= 1470,

learning_rate=0.1, dcpth=?,
12_leaf_reg=3.2,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

random
strength:
[0,1,2,3]

l

Accuracy:
0.946358

Time:
0.6 hrs

4.1 Re-Tune
random_strength

CatBoostClassifier(iterations= 1470,
learning_rate=0.1, depth=?',

12_leaf_reg=3.2,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

random
strength:
[0.8,0.9,1,
1.1,1.2]

0.8

Accuracy:
0.946487

Time:
0.9 hrs

4.2 Re-Tune
random_strength

CatBoostClassifier(iterations= 1470,
learning_rate=0.1, depth=?',

12_leaf_reg=3.2,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

random
strength:
[0.7, 0.8]

0.8

Accuracy:
0.946487

Time:
0.38 hrs

5 Tune
border count-

CatBoostClassifier(iterations= 1470,
learning_rate=0.1, dcpth=?,

12_leaf_reg=3.2,random_strength=0.8,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

border count:
[128,200,254] 254

Accuracy:
0.946487

Time:
0.4 hrs

6 Tune
bagging_ temperature
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Table A.20 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the MiniBooNE data set
CatBoostClassifier(iterations=1470,

learning_rate=0.1, depth=7,
l2_leaf_reg=3.2,random_strength=0.8,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

bagging_
temperature:

[0,1,2,3]
0

Accuracy:
0.946487

Time:
1 hrs

7 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=1470,
learning_rate=0.1, depth=7,

l2_leaf_reg=3.2,random_strength=0.8,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.01, 0.1,
0.2]

’iterations’:
range(1450,
1505, 10)

0.1

1490

Accuracy:
0.946605

Time:
2.83 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=1490,
learning_rate=0.1, depth=7,

l2_leaf_reg=3.2,random_strength=0.8,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.946605

Testing
Accuracy:
0.947056

The accuracy of the model on the test data set was found to be:
0.947056

Table A.20: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the MiniBooNE data set.
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Table A.20 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the MiniBooNE data set
CatBoostClassifier(iterations=1470,

learning_rate=0.1, dcpth=?,
12_leaf_reg=3.2,random_strength=0.8,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

bagging_
temperature:

[0,1,2,3]
0

Accuracy:
0.946487

Time:
l hrs

7 Re-Tune learning_rate
and iterations

CatBoostClassifier(iterations=1470, 'learning
learning_rate=0.1, depth=?', _rate ' :

12_leaf_reg=3.2,random_strength=0.8, [0.01, 0.1,
border_count=254, 0.2]

bagging_temperature= 0,
cat_features = nominal, 'iterations':
loss_function='Logloss', range(1450,
eval_metric='Accuracy') 1505, 10)

0.1

1490

Accuracy:
0.946605

Time:
2.83 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=1490,
learning_rate=0.1, depth=?',

12_leaf_reg=3.2,random_strength=0.8,
border_count=254,

bagging_temperature= 0,
cat_features = nominal,
loss_function= 'Logloss',
eval_metric='Accuracy')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

cv
Training

Accuracy:
0.946605

Testing
Accuracy:
0.947056

The accuracy of the model on the test data set was found to be:
0.947056

Table A.20: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the MiniBooNE data set.
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A.4. HYPERPARAMETER TUNING PIPELINE FOR CATBOOST

A.4.7 CatBoost with the Porto Seguro data set.

Hyperparameter tuning of CatBoostClassifier()
with the Porto Seguro data set

Steps CatBoostClassifier() Parameter
Grid

Optimized
Value

CV
Training

1 Tune learning_rate and iterations
with other parameters

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’learning
_rate’:

[0.1, 0.2,
0.3]

’iterations’:
range(100,
550, 50)

0.1

100

Accuracy:

0.583559

Time:

3.5 hrs

2 Tune
depth

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’depth’:
[7,8,9,10,

11]
7

Accuracy:

0.591098

Time:

0.3 hrs

2.1 Re-Tune
depth

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’depth’:
[5,6,7] 5

Accuracy:
0.592368

Time:
0.06 hrs

2.2 Re-Tune
depth
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A.4.7 CatBoost with the Porto Seguro data set .

Hyperparameter tuning of CatBoostClassifier()
with the Porto Segura data set

Steps CatBoostClassifier() Parameter Optimized cv
Grid Value Training

l Tune learning_rate and iterations
with other parameters

CatBoostClassifier(iterations=l00, 'learning Accuracy:

learning_rate=0.1, depth=S, - rate': 0.1 0.58355912- leaf_reg=l,random_strength=l, [0.1, 0.2,
border_count=254, 0.3]

bagging_temperature= l,
cat_features = nominal, 'iterations': 100 Time:loss_function='Logloss', range(lO0,
eval_metric='Accuracy') 550, 50) 3.5 hrs

2 Tune
depth

CatBoostClassifier(iterations=l00, Accuracy:learning_rate=0.1, depth=S,
12- leaf_reg=l,random_strength=l, 'depth': 0.591098border_count=254, [7,8,9,10, 7bagging_temperature= l,

cat_features = nominal, 11] Time:

loss_function='Logloss', 0.3 hrseval_metric='Accuracy')

2.1 Re-Tune
depth

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S, Accuracy:

12- leaf_reg=l,random_strength=l, 0.592368
border_count=254, 'depth': 5bagging_temperature= l, [5,6,7]

cat_features = nominal, Time:
loss_function='Logloss', 0.06 hrs
eval_metric='Accuracy')

2.2 Re-Tune
depth
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Table A.21 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Porto Seguro data set
CatBoostClassifier(iterations=100,

learning_rate=0.1, depth=8,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’depth’:
[3,4,5] 3

Accuracy:
0.593495

Time:
0.05 hrs

2.3 Re-Tune
depth

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=8,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’depth’:
[1,2,3] 3

Accuracy:
0.593495

Time:
0.03

3 Tune
l2_leaf_reg

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=3,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:
[1,2,3]

1

Accuracy:
0.593495

Time:
0.1 hrs

3.1 Re-Tune
l2_leaf_reg

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=3,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’l2_leaf
_reg’:
[0,1]

1

Accuracy:
0.593495

Time:
0.01 hrs

4 Tune
random_strength
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Table A.21 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Porto Segura data set
CatBoostClassifier(iterations=l00,

learning_rate=0.1, depth=S,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'depth':
[3,4,5] 3

Accuracy:
0.593495

Time:
0.05 hrs

2.3 Re-Tune
depth

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'depth':
[1,2,3] 3

Accuracy:
0.593495

Time:
0.03

3 Tune
12_leaf_reg

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'12 leaf
_reg':
[1,2,3]

l

Accuracy:
0.593495

Time:
0.1 hrs

3.1 Re-Tune
12_leaf_reg

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'12 leaf
_reg':
[0,1]

l

Accuracy:
0.593495

Time:
0.01 hrs

4 Tune
random_strength
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Table A.21 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Porto Seguro data set
CatBoostClassifier(iterations=100,

learning_rate=0.1, depth=3,
l2_leaf_reg=1,random_strength=1,

border_count=254,
bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’random_
strength’:

[0,1,2]
1

Accuracy:
0.593495

Time:
0.06 hrs

5 Tune
border_count

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=3,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’border_
count’:

[128, 200,
254]

254

Accuracy:
0.593495

Time:
0.06 hrs

6 Tune
bagging_temperature

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=3,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

’bagging_
temperature’:

[0,1,2]
0

Accuracy:
0.593495

Time:
0.06 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=100,
learning_rate=0.1, depth=3,

l2_leaf_reg=1,random_strength=1,
border_count=254,

bagging_temperature= 1,
cat_features = nominal,
loss_function=’Logloss’,
eval_metric=’Accuracy’)

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print(’Testing accuracy
score:’,

accuracy_score
(y_test, y_predict))

CV
Training

Accuracy:
0.593495

Testing
Accuracy:
0.592164
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Table A.21 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Porto Segura data set
CatBoostClassifier(iterations=l00,

learning_rate=0.1, depth=S,
12_leaf_reg=l,random_strength=l,

border_count=254,
bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'random-

strength':
[0,1,2]

l

Accuracy:
0.593495

Time:
0.06 hrs

5 Tune
border count-

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'border
count':

[128, 200,
254]

254

Accuracy:
0.593495

Time:
0.06 hrs

6 Tune
bagging_temperature

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S.

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

'bagging_
temperature':

[0,1,2]
0

Accuracy:
0.593495

Time:
0.06 hrs

Create the final model
with the value of the optimized parameters.

CatBoostClassifier(iterations=l00,
learning_rate=0.1, depth=S,

12_leaf_reg=l,random_strength=l,
border_count=254,

bagging_temperature= l,
cat_features = nominal,
loss_function='Logloss',
eval_metric='Accuracy')

model.fit(X_train,
y_train)

y_predict = model.
predict

(X_test)

print('Testing accuracy
score:',

accuracy_score
(y_tes t , y_predict))

cv
Training

Accuracy:
0.593495

Testing
Accuracy:
0.592164
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Table A.21 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Porto Seguro data set
The accuracy of the model on the test data set was found to be:

0.592164
Table A.21: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Porto Seguro data set.
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Table A.21 continued from previous page
Hyperparameter tuning of CatBoostClassifier()

with the Porto Segura data set
The accuracy of the model on the test data set was found to be:

0.592164
Table A.21: Hyperparameter tuning pipeline for the
CatBoostClassifier() with the Porto Segura data set.
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Appendix B

Statistical significance test.

For proving statistical significance of the results obtained from algorithms, we will
follow a method discussed by Tom M. Mitchel in his book ’Machine Learning’ at
chapter 5, section 5.5.

Here, we will compare the results of Classifium from all 7 different data sets,
against the results from all other algorithms with the same 7 different data sets.

For proving different accuracy obtained from two different algorithm with same
data sets are not just the results by chance, but that they are statistically significant,
we will conduct a statistical significance test as given below.

Let us assume that our alternate hypothesis (H1) states that, based on the
different results obtained from the two different algorithms tested with the same
sample data set, algorithms’ classification accuracy on the whole data set are different
and algorithms are comparable. And let our null hypothesis (H0) states that, based
on the different results obtained from the two different algorithms tested with same
sample data set, algorithms’ classification accuracy on whole data set are not different,
so, algorithms are not comparable. In order to find the correct meaning from the
results, we can perform the hypothesis testing.

Let us suppose two different accuracies from two algorithms be acc(h1) and
acc(h2).

Let d represents the difference between the accuracy obtained from two hypothesis
on same data set D. i.e, the difference between accD(h1) and accD(h2) can be
represented as:

d = accD(h1)− accD(h2)

But during our experiment we took only the part of our data for training
and testing. So, the difference in accuracy obtained from sample data set can be
represented by:
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follow a method discussed by Tom M. Mitchel in his book 'Machine Learning' at
chapter 5, section 5.5.

Here, we will compare the results of Classifium from all 7 different data sets,
against the results from all other algorithms with the same 7 different data sets.

For proving different accuracy obtained from two different algorithm with same
data sets are not just the results by chance, but that they are statistically significant,
we will conduct a statistical significance test as given below.

Let us assume that our alternate hypothesis ( H l ) states tha t , based on the
different results obtained from the two different algorithms tested with the same
sample data set, algorithms' classification accuracy on the whole data set are different
and algorithms are comparable. And let our null hypothesis (HO) states that , based
on the different results obtained from the two different algorithms tested with same
sample data set, algorithms' classification accuracy on whole data set are not different,
so, algorithms are not comparable. In order to find the correct meaning from the
results, we can perform the hypothesis testing.

Let us suppose two different accuracies from two algorithms be acc(hl) and
acc(h2).

Let d represents the difference between the accuracy obtained from two hypothesis
on same data set D. i.e, the difference between accD(hl) and accD(h2) can be
represented as:

d= accD(hl) - accD(h2)

But during our experiment we took only the part of our data for training
and testing. So, the difference in accuracy obtained from sample data set can be
represented by:
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APPENDIX B. STATISTICAL SIGNIFICANCE TEST.

d̂ = acc(h1)− acc(h2)

For a random variable d̂ obeying a Normal distribution with mean d and variance
σ2, the N% confidence interval estimate for d is d̂± ZNσ

Concluding that if d is > 0, and d̂ falls between the interval of d, then we can say
that the difference in accuracy is true or significant for whole data set by at least
95% of probability.

Since we will be testing for the statistical significance between the accuracy obtained
from the two different algorithms trained and tested with the same data set, n will
be the same for both distribution. So, standard deviation of accuracy will be

σ2 = acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

σ =
√

acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

Now the confidence interval will be defined as,

d = d̂± (ZN) ∗ σ

Since our sample are larger in number, so, from the table given by Tom M.
Mitchel, we will use 1.96 as value for ZN Now, if our d̂ lies between this interval, and
d>0, then we can say that our observations are statistically significant by 95% of
confidence.
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d= acc(hl) - acc(h2)

For a random variable d obeying a Normal dist_ribution with mean d and variance
J 2 , the N% confidence interval estimate for d is d± Z NJ

Concluding that if d is > 0, and d falls between the interval of d, then we can say
that the difference in accuracy is true or significant for whole data set by at least
95% of probability.

Since we will be testing for the statistical significance between the accuracy obtained
from the two different algorithms trained and tested with the same data set, n will
be the same for both distribution. So, standard deviation of accuracy will be

J2 = a c c ( h l ) ( l - a c c ( h l ) ) + acc(h2) (1-acc(h2) )
nl n

J=
ace( h l ) ( l - a c e (h l ) ) + ace( h 2 )( l - a c e (h2))

nl n

Now the confidence interval will be defined as,

Since our sample are larger in number, so, fro the table given by Tom M.
Mitchel, we will use 1.96 as value for ZN Now, if our d lies between this interval, and
dc-D, then we can say that our observations are statistically significant by 95% of
confidence.
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B.1. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE XGBOOST AND

THE CLASSIFIUM

B.1 Statistical significance test between the classification
accuracy obtained from the XGBoost and the
Classifium

In this section we will calculate the statistical significance between the results obtained
from the two different algorithms, XGBoost and Classifium, with the same data sets.
The calculation for each case is demonstrated in the sub-sections below:

B.1.1 Porto Seguro
Let the classification accuracy obtained from XGBoost and Classifium with the Porto
Seguro data set be represented by acc(h1) and acc(h2) respectively.

From our experimentation result, we found that,

acc(h1) = 0.595298 and acc(h2) = 0.598544

Let their difference be represented by d̂

d̂ = acc(h1)− acc(h2)

d̂ = 0.595298− 0.598544

d̂ = −0.003246

Now, lets find the approximate variance of two observation over their distribution:

σ2 = acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

Since the size of sample in which both algorithms were tested was 21695. So we
will replace ’n’ in the given equation with the value of sample size, that is 21695.

σ2 = 0.595298(1−0.595298)
21695

+ 0.598544(1−0.598544)
21695

σ =
√
0.000022181

σ = 0.004709671

Now, lets find the confidence interval.

d = d̂± (ZN) ∗ σ
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B.l. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE XGBOOST AND

THE CLASSIFIUM

B. l Statistical significance test between the classification
accuracy obtained from the XGBoost and the
Classifium

In this section we will calculate the statistical significance between the results obtained
from the two different algorithms, XGBoost and Classifium, with the same data sets.
The calculation for each case is demonstrated in the sub-sections below:

B. l. l Porto Segura

Let the classification accuracy obtained from XGBoost and Classifium with the Porto
Segura data set be represented by acc(hl) and acc(h2) respectively.

From our experimentation result, we found that ,

acc(hl) = 0.595298 and acc(h2) = 0.598544

Let their difference be represented by d

d= acc(hl) - acc(h2)

d= 0.595298 - 0.598544

d = -0.003246

Now, lets find the approximate variance of two observation over their distribution:

J2 = a c c ( h l ) ( l - a c c ( h l ) ) + acc(h2) (1-acc(h2) )
nl n

Since the size of sample in which both algorithms were tested was 21695. So we
will replace 'n' in the given equation with the value of sample size, that is 21695.

2 _ 0.595298(1-0.595298) + 0.598544(1-0.598544)
J - 21695 21695

J=  0.000022181 

J= 0.004709671

Now, lets find the confidence interval.
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APPENDIX B. STATISTICAL SIGNIFICANCE TEST.

d = −0.003246± (1.96) ∗ 0.004709671

d = −0.003246± 0.009230955

d = -0.012476955

≤ d̂ ≤ (0.005984955)

The difference d̂, lies between the confidence interval but d < 0, so we can not
say that our result is 95% statistically significant. And, we have to accept the null
hypothesis (H0) and reject the alternative hypothesis (H1).

B.1.2 Flavours of Physics
Let the classification accuracy obtained from XGBoost and Classifium with the
Flavours of Physics data set be represented by acc(h1) and acc(h2) respectively.

From our experimentation result, we found that,

acc(h1) = 0.892701 and acc(h2) = 0.89158

Let their difference be given by d̂, suchthat,

d̂ = acc(h1)− acc(h2)

d̂ = 0.892701− 0.89158

d̂ = 0.001121

Now, lets find the approximate variance of the two observations over their
distribution:

σ2 = acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

Since the size of sample in which both algorithms were tested was 33775. So we
will replace ’n’ in the given equation with the value of sample size, that is 33775.

σ2 = 0.892701(1−0.892701)
33775

+ 0.89158(1−0.89158)
33775

σ =
√
0.000005698

σ = 0.002387048

Now, lets find the confidence interval.
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B.1. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE XGBOOST AND

THE CLASSIFIUM

d = d̂± (ZN) ∗ σ

d = 0.001121± (1.96) ∗ 0.002387048

d = 0.001121± 0.004678615

d = (-0.003557615) ≤ d̂ ≤ (0.005799615)
From the above confidence interval we can say that, since our d is not absolutely

> 0, we reject alternative hypothesis (H1) and accept null hypothesis (H0). And
conclude that there is no any statistical significance between the obtained results
and both algorithms on the same whole data set is similar.

B.1.3 MiniBooNE
Let the classification accuracy obtained from XGBoost and Classifium with the
MiniBooNE data set be denoted by acc(h1) and and acc(h2).

N = 65031
From our experimentation result, we found that,
acc(h1) = 0.946856 and acc(h2) = 0.947057
So, their difference will be

d̂ = acc(h1)− acc(h2)

d̂ = 0.946856− 0.947057

d̂ = (-0.000201)

Now, lets find the approximate variance of two observation over their distribution:

σ2 = acc(h1)(1−acc(h1))
n

+ acc(h2)(1−acc(h2))
n

Since the size of the sample in which both algorithms were tested was 65031.
So we will replace ’n’ in the given equation with the value of sample size, that is 65031.

σ2 = 0.946856(1−0.946856)
65031

+ 0.947057(1−0.947057)
65031

σ =
√
0.000001545

σ = 0.00124298

Now, lets find the confidence interval.

d = d̂± (ZN) ∗ σ
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d= 0.001121 ± (1.96) * 0.002387048

d= 0.001121 ± 0.004678615

d= (-0.003557615) :Sd :S (0.005799615)
From the above confidence interval we can say that, since our d is not absolutely

> 0, we reject alternative hypothesis (Hl) and accept null hypothesis (HO). And
conclude that there is no any statistical significance between the obtained results
and both algorithms on the same whole data set is similar.

B.1.3 MiniBooNE
Let the classification accuracy obtained from XGBoost and Classifium with the
MiniBooNE data set be denoted by acc(hl) and and acc(h2).

N= 65031
From our experimentation result, we found that ,
acc(hl) = 0.946856 and acc(h2) = 0.947057
So, their difference will be

d= acc(hl) - acc(h2)

d= 0.946856 - 0.947057

d= (-0.000201)

Now, lets find the approximate variance of two observation over their distribution:

J2 = a c c ( h l ) ( l - a c c ( h l ) ) + acc(h2) (1-acc(h2) )
n n

Since the size of the sample in which both algorithms were tested was 65031.
So we will replace 'n' in the given equation with the value of sample size, that is 65031.

2 _ 0.946856(1-0.946856) + 0.947057(1-0.947057)
J - 65031 65031

J=  0.000001545 

J= 0.00124298

Now, lets find the confidence interval.
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d = (−0.000201)± (1.96) ∗ 0.00124298

d = (−0.000201)± 0.002436241

d = (-0.002637241) ≤ d̂ ≤ (0.002235241)

From the above confidence interval we can say that, since our d is not absolutely
> 0, we reject alternative hypothesis (H1) and accept null hypothesis (H0). And
conclude that there is no any statistical significance between the obtained results.

B.1.4 Adult
Let the classification accuracy obtained from XGBoost and Classifium with the Adult
data set be represented by acc(h1) and acc(h2) respectively.
From our experimentation result, we found that,

acc(h1) = 0.875225 and acc(h2) = 0.87523

Let their difference be represented by d̂.

So,

d̂ = acc(h1)− acc(h2)

d̂ = 0.875225− 0.87523

d̂ = (-0.000005)

Now, lets find the approximate variance of two observation over their distribution:

σ2 = acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

Here the sample size is 24420, so n = 24420.

σ2 = 0.875225(1−0.875225)
24420

+ 0.87523(1−0.87523)
24420

σ =
√
0.000008944

σ = 0.002990652

Now, lets find the confidence interval.

d = d̂± (ZN) ∗ σ
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d= (-0.000201) ± (1.96) * 0.00124298

d= (-0.000201) ± 0.002436241

d= (-0.002637241) :SJ :S (0.002235241)

From the above confidence interval we can say that, since our d is not absolutely
> 0, we reject alternative hypothesis (Hl) and accept null hypothesis (HO). And
conclude that there is no any statistical significance between the obtained results.

B.1.4 Adult
Let the classification accuracy obtained from XGBoost and Classifium with the Adult
data set be represented by acc(hl) and acc(h2) respectively.
From our experimentation result, we found that ,

acc(hl) = 0.875225 and acc(h2) = 0.87523

Let their difference be represented by d.

So,

d= acc(hl) - acc(h2)

d= 0.875225 - 0.87523

d= (-0.000005)

Now, lets find the approximate variance of two observation over their distribution:

J2 = a c c ( h l ) ( l - a c c ( h l ) ) + acc(h2) (1-acc(h2) )
nl n

Here the sample size is 24420, so n= 24420.

2 _ 0.875225(1-0.875225) + 0.87523(1-0.87523)
J - 24420 24420

J =  0.000008944 

J= 0.002990652

Now, lets find the confidence interval.
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d = (−0.000005)± (1.96) ∗ 0.002990652

d = (−0.000005)± 0.005861678

d = (-0.005866678) ≤ d̂ ≤ (0.005856678)

From the above confidence interval we can say that, since our d is not absolutely
> 0, we reject the alternative hypothesis (H1) and accept the null hypothesis (H0).
And conclude that there is no any statistical significance between the obtained
results.

B.1.5 Dota
Let the accuracy obtained from XGBoost and Classifium with the Dota data set be
represented by acc(h1) and acc(h2) respectively.
From our experimentation result, we found that,

acc(h1) = 0.594859 and acc(h2) = 0.597529
Let the difference between acc(h1) and acc(h2) be reppresented by d̂.

So,

d̂ = acc(h1)− acc(h2)

d̂ = 0.594859− 0.597529

d̂ = (-0.00267)

Now, lets find the approximate variance of two observation over their distribution:

σ2 = acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

Here sample size is 51471, so, n = 51471

σ2 = 0.594859(1−0.594859)
51471

+ 0.597529(1−0.597529)
51471

σ =
√
0.000009355

σ = 0.003058594

Now, lets find the confidence interval.

d = d̂± (ZN) ∗ σ
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d= (-0.000005) ± (1.96) * 0.002990652

d= (-0.000005) ± 0.005861678

d= (-0.005866678) :Sd :S (0.005856678)

From the above confidence interval we can say that, since our d is not absolutely
> 0, we reject the alternative hypothesis (Hl ) and accept the null hypothesis (HO).
And conclude that there is no any statistical significance between the obtained
results.

B.1.5 Dota

Let the accuracy obtained from XGBoost and Classifium with the Dota data set be
represented by acc(hl) and acc(h2) respectively.
From our experimentation result, we found that ,

acc(hl) = 0.594859 and acc(h2) = 0.597529
Let the difference between acc(hl) and acc(h2) be reppresented by d.

So,

d= acc(hl) - acc(h2)

d= 0.594859 - 0.597529

d = (-0.00267)

Now, lets find the approximate variance of two observation over their distribution:

J2 = a c c ( h l ) ( l - a c c ( h l ) ) + acc(h2) (1-acc(h2) )
nl n

Here sample size is 51471, so, n= 51471

2 _ 0.594859(1-0.594859) + 0.597529(1-0.597529)
J - 51471 51471

J =  0.000009355 

J= 0.003058594

Now, lets find the confidence interval.
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d = (−0.00267)± (1.96) ∗ 0.003058594

d = (−0.00267)± 0.005994845

d = (-0.008664845) ≤ d̂ ≤ (0.003324845)

From the above confidence interval we can say that, since our d is not absolutely
> 0, we reject alternative hypothesis (H1) and accept null hypothesis (H0). And
conclude that there is no any statistical significance between the obtained results.
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d= (-0.00267) ± (1.96) * 0.003058594

d= (-0.00267) ± 0.005994845

d= (-0.008664845) :Sd :S (0.003324845)

From the above confidence interval we can say that , since our d is not absolutely
> 0, we reject alternative hypothesis (Hl) and accept null hypothesis (HO). And
conclude that there is no any statistical significance between the obtained results.
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THE CLASSIFIUM

B.1.6 Bank
Let the classification accuracy obtained from XGBoost and Classifium with the Bank
data set be represented by acc(h1) and acc(h2) respectively.

From our experimentation result, we found that,
acc(h1) = 0.916525 and acc(h2) = 0.915995
So, their difference will be

d̂ = acc(h1)− acc(h2)

d̂ = 0.916525− 0.915995

d̂ = (0.00053)

Now, lets find the approximate variance of two observation over their distribution:

σ2 = acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

Here the sample size is 51471, so n = 51471

σ2 = 0.916525(1−0.916525)
20593

+ 0.915995(1−0.915995)
20593

σ =
√
0.000007452

σ = 0.002729835

Now, lets find the confidence interval.

d = d̂± (ZN) ∗ σ

d = (0.00053)± (1.96) ∗ 0.002729835

d = (0.00053)± 0.005350477

d = (- 0.004820477) ≤ d̂ ≤ (0.005880477)

From the above confidence interval we can say that, since our d is not absolutely
> 0, we reject alternative hypothesis (H1) and accept null hypothesis (H0). And
conclude that there is no any statistical significance between the obtained results.
So, the both algorithm performed same.
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B.1.6 Bank
Let the classification accuracy obtained from XGBoost and Classifium with the Bank
data set be represented by acc(hl) and acc(h2) respectively.

From our experimentation result, we found that ,
acc(hl) = 0.916525 and acc(h2) = 0.915995
So, their difference will be

d= acc(hl) - acc(h2)

d= 0.916525 - 0.915995

d= (0.00053)

Now, lets find the approximate variance of two observation over their distribution:

J2 = a c c ( h l ) ( l - a c c ( h l ) ) + acc(h2) (1-acc(h2) )
nl n

Here the sample size is 51471, so n= 51471

2 _ 0.916525(1-0.916525) + 0.915995(1-0.915995)
J - 20593 20593

J=  0.000007452 

J= 0.002729835

Now, lets find the confidence interval.

d= (0.00053) ± (1.96) * 0.002729835

d= (0.00053) ± 0.005350477

d= (- 0.004820477) :Sd :S (0.005880477)

From the above confidence interval we can say that, since our d is not absolutely
> 0, we reject alternative hypothesis (Hl) and accept null hypothesis (HO). And
conclude that there is no any statistical significance between the obtained results.
So, the both algorithm performed same.
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B.1.7 Forest Cover Type
Let the the classification accuracy obtained from XGBoost and Classifium with the
Forest Cover Type data set be denoted as acc(h1) and acc(h2) respectively.

N = 2090505
From our experimentation result, we found that,
acc(h1) = 0.968155 and acc(h2) = 0.971873

Let the difference between acc(h1) and acc(h2) be represented by d̂.
So,

d̂ = acc(h1)− acc(h2)

d̂ = 0.968155− 0.971873

d̂ = (- 0.003718)

Now, lets find the approximate variance of two observation over their distribution:

σ2 = acc(h1)(1−acc(h1))
n1

+ acc(h2)(1−acc(h2))
n

σ2 = 0.968155(1−0.968155)
2090505

+ 0.971873(1−0.971873)
2090505

σ =
√
0.000000028

σ = 0.000167332

Now, lets find the confidence interval.

d = d̂± (ZN) ∗ σ

d = (−0.003718)± (1.96) ∗ 0.000167332

d = (−0.003718)± 0.000167332

d = (- 0.003885332) ≤ d̂ ≤ (−0.003550668)

From the above confidence interval we can say that, since our d does not include
0, and includes d̂, so, we accept the alternative hypothesis (H1) and reject the null
hypothesis (H0). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.
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B.1.7 Forest Cover T y p e
Let the the classification accuracy obtained from XGBoost and Classifium with the
Forest Cover Type data set be denoted as acc(hl) and acc(h2) respectively.

N= 2090505
From our experimentation result, we found that ,
acc(hl) = 0.968155 and acc(h2) = 0.971873

Let the difference between acc(hl) and acc(h2) be represented by d.
So,

d= acc(hl) - acc(h2)

d= 0.968155 - 0.971873

d= (-0.003718)

Now, lets find the approximate variance of two observation over their distribution:

J2 = a c c ( h l ) ( l - a c c ( h l ) ) + acc(h2) (1-acc(h2) )
nl n

2 _ 0.968155(1-0.968155) + 0.971873(1-0.971873)
J - 2090505 2090505

J=  0.000000028 

J= 0.000167332

Now, lets find the confidence interval.

d= (-0.003718) ± (1.96) * 0.000167332

d= (-0.003718) ± 0.000167332

d= (- 0.003885332) :SJ :S (-0.003550668)

From the above confidence interval we can say that, since our d does not include
0, and includes d, so, we accept the alternative hypothesis (Hl) and reject the null
hypothesis (HO). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.
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B.2. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE LIGHTGBM AND

THE CLASSIFIUM

B.2 Statistical significance test between the classification
accuracy obtained from the LightGBM and
the Classifium

On this section we will calculate for the statistical significance between the results
obtained from LightGBM and Classifium with 7 different data sets.

B.2.1 Porto Seguro
Let the accuracy obtained from LightGBM be denoted by acc(h1) and the accuracy
obtained from Classifium be denoted by acc(h2).

From our experiment, we found that,
acc(h1) = 0.593455 and acc(h2) = 0.598544
Let the difference between acc(h1) and acc(h2) be represented by d̂.
So, d̂ = acc(h1)-acc(h2)
d̂ = 0.593455 - 0.598544
d̂ = - 0.005089

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 21695, so, n = 21695

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.593455∗(1−0.593455)
21695

+ 0.598544∗(1−0.598544)
21695

σ2 =
√
0.000022197

σ = 0.004711369

Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d = −0.005089± 1.96 ∗ 0.004711369

203

B.2. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE LIGHTGBM AND

THE CLASSIFIUM

B.2 Statistical significance test between the classification
accuracy obtained from the LightGBM and
the Classifium

On this section we will calculate for the statistical significance between the results
obtained from LightGBM and Classifium with 7 different data sets.

B.2.1 Porto Segura

Let the accuracy obtained from LightGBM be denoted by acc(hl) and the accuracy
obtained from Classifium be denoted by acc(h2).

From our experiment, we found that ,
acc(hl) = 0.593455 and acc(h2) = 0.598544
Let the difference between acc(hl) and acc(h2) be represented by d.
So, d= acc(hl)-acc(h2)
d= 0.593455 - 0.598544
d= - 0.005089

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 21695, so, n = 21695

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.593455*(1-0.593455) + 0.598544*(1-0.598544)
J - 21695 21695

J2 =  o.000022197 

J = 0.004711369

Now, lets find the confidence interval

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d= -0.005089 ± 1.96 * 0.004711369
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d= −0.009800369 ≤ d̂ ≤ −0.000377631

From the above confidence interval we can say that, since our d does not include
0, and includes d̂, so, we accept the alternative hypothesis (H1) and reject the null
hypothesis (H0). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.

B.2.2 Flavours of Physics
let the classification accuracy obtained by LightGBM and Classifium with the
Flavours of Physics data set be denoted by acc(h1) and acc(h2).

From our experiment, we found that,
acc(h1) = 0.890747 and acc(h2) = 0.89158
Let the difference between acc(h1) and acc(h2) be represented by d̂.
So, d̂ = acc(h1)-acc(h2)
d̂ = 0.890747 - 0.89158
d̂ = - 0.000833

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 33775, so, n = 33775

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.890747∗(1−0.890747)
33775

+ 0.89158∗(1−0.89158)
33775

σ2 =
√
0.000005743

σ = 0.002396456

Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d = −0.000833± 1.96 ∗ 0.002396456
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d= -0.009800369 :::;d :S -0.000377631

From the above confidence interval we can say that, since our d does not include
0, and includes d,so, we accept the alternative hypothesis (Hl) and reject the null
hypothesis (HO). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.

B.2.2 Flavours of Physics

let the classification accuracy obtained by LightGBM and Classifium with the
Flavours of Physics data set be denoted by acc(hl) and acc(h2).

From our experiment, we found that ,
acc(hl) = 0.890747 and acc(h2) = 0.89158
Let the difference between acc(hl) and acc(h2) be represented by d.
So, d= acc(hl)-acc(h2)
d= 0.890747 - 0.89158
d= - 0.000833

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 33775, so, n = 33775

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.890747*(1-0.890747) + 0.89158*(1-0.89158)
J - 33775 33775

J2 =  0.000005743 

J = 0.002396456

Now, lets find the confidence interval

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d= -0.000833 ± 1.96 * 0.002396456
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d= −0.005530054 ≤ d̂ ≤ 0.003864054

Though the given interval, d, contains difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithm performed equally on this
data set.

B.2.3 MiniBooNE
let the classification accuracy obtained by LightGBM and Classifium with the
MiniBooNE data set be denoted by acc(h1) and acc(h2).

From our experiment, we found that,
acc(h1) = 0.947624 and acc(h2) = 0.947057
Let the difference between acc(h1) and acc(h2) be represented by d̂.
So, d̂ = acc(h1)-acc(h2)
d̂ = 0.947624 - 0.947057
d̂ = - 0.000833

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 65031, so, n = 65031

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.947624∗(1−0.947624)
65031

+ 0.947057∗(1−0.947057)
65031

σ2 =
√
0.000001534

σ = 0.001238548

Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d = 0.001238548± 1.96 ∗ 0.001238548
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d= -0.005530054 :::;d :S 0.003864054

Though the given interval, d, contains difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithm performed equally on this
data set.

B.2.3 MiniBooNE

let the classification accuracy obtained by LightGBM and Classifium with the
MiniBooNE data set be denoted by acc(hl) and acc(h2).

From our experiment, we found that ,
acc(hl) = 0.947624 and acc(h2) = 0.947057
Let the difference between acc(hl) and acc(h2) be represented by d.
So, d= acc(hl)-acc(h2)
d= 0.947624 - 0.947057
d= - 0.000833

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 65031, so, n= 65031

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.947624*(1-0.947624) + 0.947057*(1-0.947057)
J - 65031 65031

J2 =  0.000001534 

J = 0.001238548

Now, lets find the confidence interval

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d= 0.001238548 ± 1.96 * 0.001238548
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d= −0.24151686 ≤ d̂ ≤ 0.243993956

Though the given interval, d, contains difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithm performed equally on this
data set.

B.2.4 Adult
let the classification accuracy obtained by LightGBM and Classifium with the Adult
data set be denoted by acc(h1) and acc(h2).

From our experiment, we found that,
acc(h1) = 0.875389 and acc(h2) = 0.87523
Let the difference between acc(h1) and acc(h2) be represented by d̂.
So, d̂ = acc(h1)-acc(h2)
d̂ = 0.875389 - 0.87523
d̂ = 0.000159

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 24420, so, n = 24420

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.875389∗(1−0.875389)
24420

+ 0.87523∗(1−0.87523)
24420

σ2 =
√
0.000008939

σ = 0.002989816

Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d = 0.000159± 1.96 ∗ 0.002989816
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d= -0.24151686 :::;d :S 0.243993956

Though the given interval, d, contains difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithm performed equally on this
data set.

B.2.4 Adult
let the classification accuracy obtained by LightGBM and Classifium with the Adult
data set be denoted by acc(hl) and acc(h2).

From our experiment, we found that ,
acc(hl) = 0.875389 and acc(h2) = 0.87523
Let the difference between acc(hl) and acc(h2) be represented by d.
So, d= acc(hl)-acc(h2)
d = 0.875389 - 0.87523
d= 0.000159

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 24420, so, n= 24420

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.875389*(1-0.875389) + 0.87523*(1-0.87523)
J - 24420 24420

J2 =  0.000008939 

J = 0.002989816

Now, lets find the confidence interval

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d= 0.000159 ± 1.96 * 0.002989816
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d= −0.585844936 ≤ d̂ ≤ 0.586162936

Though the given interval, d, contains difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithm performed equally on this
data set.

B.2.5 Dota
let the classification accuracy obtained by LightGBM and Classifium with the Dota
data set be denoted by acc(h1) and acc(h2).

From our experiment, we found that,
acc(h1) = 0.593751 and acc(h2) = 0.597529
Let the difference between acc(h1) and acc(h2) be represented by d̂.
So, d̂ = acc(h1)-acc(h2)
d̂ = 0.593751 - 0.597529
d̂ = - 0.003778

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 51471, so, n = 51471

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.593751∗(1−0.593751)
51471

+ 0.597529∗(1−0.597529)
51471

σ2 =
√
0.000009359

σ = 0.003059248

Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d = −0.003778± 1.96 ∗ 0.003059248
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hypothesis (Hl). And conclude that the both algorithm performed equally on this
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data set be denoted by acc(hl) and acc(h2).

From our experiment, we found that ,
acc(hl) = 0.593751 and acc(h2) = 0.597529
Let the difference between acc(hl) and acc(h2) be represented by d.
So, d= acc(hl)-acc(h2)
d= 0.593751 - 0.597529
d= - 0.003778

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 51471, so, n= 51471

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.593751*(1-0.593751) + 0.597529*(1-0.597529)
J - 51471 51471

J2 =  0.000009359 

J = 0.003059248

Now, lets find the confidence interval

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d= -0.003778 ± 1.96 * 0.003059248
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d = −0.003778± 0.599612608

d= −0.603390608 ≤ d̂ ≤ 0.595834608

Though the given interval, d, contains difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithm performed equally on this
data set.

B.2.6 Bank
let the classification accuracy obtained by LightGBM and Classifium with the Bank
data set be denoted by acc(h1) and acc(h2).

From our experiment, we found that,
acc(h1) = 0.915893 and acc(h2) = 0.915995
Let the difference between acc(h1) and acc(h2) be represented by d̂.
So, d̂ = acc(h1)-acc(h2)
d̂ = 0.915893 - 0.915995
d̂ = - 0.000102

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 20593, so, n = 20593

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.915893∗(1−0.915893)
20593

+ 0.915995∗(1−0.915995)
20593

σ2 =
√
0.000007477

σ = 0.00273441

Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,
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hypothesis (Hl). And conclude that the both algorithm performed equally on this
data set.

B.2.6 Bank

let the classification accuracy obtained by LightGBM and Classifium with the Bank
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acc(hl) = 0.915893 and acc(h2) = 0.915995
Let the difference between acc(hl) and acc(h2) be represented by d.
So, d= acc(hl)-acc(h2)
d = 0.915893 - 0.915995
d= - 0.000102

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 20593, so, n = 20593

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.915893*(1-0.915893) + 0.915995*(1-0.915995)
J - 20593 20593
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d = −0.000102± 1.96 ∗ 0.003059248

d = −0.000102± 0.53594436

d= −0.53604636 ≤ d̂ ≤ 0.53584236

Though the given interval, d, contains difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithm performed equally on this
data set.

B.2.7 Forest Cover Type
let the classification accuracy obtained from the LightGBM and Classifium with the
same data set, Forest Cover Type, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.919009 and acc(h2) = 0.971873

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.919009 - 0.971873

d̂ = -0.052864

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.919009∗(1−0.919009)
290505

+ 0.971873∗(1−0.971873)
290505

σ2 =
√
0.00000035

σ = 0.000591608

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ
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d= -0.000102 ± 1.96 * 0.003059248

d= -0.000102 ± 0.53594436

d= -0.53604636 :::;d :S 0.53584236

Though the given interval, d, contains difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithm performed equally on this
data set.

B.2 .7 Forest Cover Type

let the classification accuracy obtained from the LightGBM and Classifium with the
same data set, Forest Cover Type, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.919009 and acc(h2) = 0.971873

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.919009 - 0.971873

d = -0.052864

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.919009*(1-0.919009) + 0.971873*(1-0.971873)
J - 290505 290505

J2 =  0.00000035 

J = 0.000591608

Now, lets find the confidence interval for d
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For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.052864± 1.96 ∗ 0.000591608

d = −0.052864± 0.001159552

d= −0.054023552 ≤ d̂ ≤ −0.051704448

From the above confidence interval we can say that, since our d does not include
0, and includes d̂, so, we accept the alternative hypothesis (H1) and reject the null
hypothesis (H0). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.
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For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = -0.052864 ± 1.96 * 0.000591608

d= -0.052864 ± 0.001159552

d= -0.054023552 :S d :S -0.051704448

From the above confidence interval we can say that , since our d does not include
0, and includes d, so, we accept the alternative hypothesis (Hl) and reject the null
hypothesis (HO). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.
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B.3. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE CATBOOST AND

THE CLASSIFIUM

B.3 Statistical significance test between the classification
accuracy obtained from the CatBoost and the
Classifium

In this section we will perform the statistical significance test between the results
obtained by training and testing CatBoost and Classifium with the same data sets.
And analyze, whether the result obtained from the sample of data is statistically
significant to whole data set or not.

Both the algorithms were trained and tested with the 7 different data sets. In
below sub-sections, we will analyse for statistical significance between the classification
results obtained from CatBoost and Classifium with the similar data set.

B.3.1 Porto Seguro
let the classification accuracy obtained from CatBoost and Classifium with the same
Porto Seguro data set, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.592164 and acc(h2) = 0.598544

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.592164 - 0.598544

d̂ = - 0.00638

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 21695, so, n = 21695

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.592164∗(1−0.592164)
21695

+ 0.598544∗(1−0.598544)
21695

σ2 =
√
0.000022208

σ = 0.004712536

Now, lets find the confidence interval for d.
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B .3 Statistical significance test between the classification
accuracy obtained from the CatBoost and the
Classifium

In this section we will perform the statistical significance test between the results
obtained by training and testing CatBoost and Classifium with the same data sets.
And analyze, whether the result obtained from the sample of data is statistically
significant to whole data set or not.

Both the algorithms were trained and tested with the 7 different data sets. In
below sub-sections, we will analyse for statistical significance between the classification
results obtained from CatBoost and Classifium with the similar data set.

B.3.1 Porto Segura

let the classification accuracy obtained from CatBoost and Classifium with the same
Porto Segura data set, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.592164 and acc(h2) = 0.598544

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.592164 - 0.598544

d= - 0.00638

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 21695, so, n = 21695

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.592164*(1-0.592164) + 0.598544*(1-0.598544)
J - 21695 21695

J2 =  0.000022208 

J = 0.004712536

Now, lets find the confidence interval for d.
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d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.00638± 1.96 ∗ 0.004712536

d = −0.00638± 0.009236571

d= −0.015616571 ≤ d̂ ≤ 0.002856571

Though the given interval, d, contains difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.3.2 Flavours of Physics
let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Flavours of Physics, be denoted as acc(h1) and acc(h2).

From our experiment, we found that,

acc(h1) = 0.892790 and acc(h2) = 0.89158
Let the difference between acc(h1) and acc(h2) be represented by d̂.
So, d̂ = acc(h1)-acc(h2)
d̂ = 0.892790 - 0.89158
d̂ = 0.00121

Now, lets find the approximate variance of two observation over their distribution:

Here the sample size is 33775, so, n = 33775

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.892790∗(1−0.892790)
33775

+ 0.89158∗(1−0.89158)
33775

σ2 =
√
0.000005696

σ = 0.002386629
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For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.00638 ± 1.96 * 0.004712536

d= -0.00638 ± 0.009236571

d= -0.015616571 :::;d :S 0.002856571

Though the given interval, d, contains difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.3.2 Flavours of Physics

let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Flavours of Physics, be denoted as acc(hl) and acc(h2).

From our experiment, we found that ,

acc(hl) = 0.892790 and acc(h2) = 0.89158
Let the difference between acc(hl) and acc(h2) be represented by d.
So, d= acc(hl)-acc(h2)
d= 0.892790 - 0.89158
d= 0.00121

Now, lets find the approximate variance of two observation over their distribution:
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n n
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Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d = 0.00121± 1.96 ∗ 0.002386629

d = 0.00121± 0.004677793

d= −0.003467793 ≤ d̂ ≤ 0.005887793

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.3.3 MiniBooNE
let the classification accuracy obtained from CatBoost and Classifium with the same
data set, MiniBooNE, be denoted as acc(h1) and acc(h2) respectively.

From our experiment, we found that,

acc(h1) = 0.947056 and acc(h2) = 0.947057
Let the difference between acc(h1) and acc(h2) be represented by d̂.

So, d̂ = acc(h1)-acc(h2)

d̂ = 0.947056 - 0.947057

d̂ = -0.000001

Now, lets find the approximate variance of the two observations over their
distribution:

Here the sample size is 65031, so, n = 65031

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.947056∗(1−0.947056)
65031

+ 0.947057∗(1−0.947057)
65031
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Now, lets find the confidence interval

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval.

So,

d= 0.00121 ± 1.96 * 0.002386629

d= 0.00121 ± 0.004677793

d= -0.003467793 :::;d :S 0.005887793

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.3.3 MiniBooNE
let the classification accuracy obtained from CatBoost and Classifium with the same
data set, MiniBooNE, be denoted as acc(hl) and acc(h2) respectively.

From our experiment, we found that ,

acc(hl) = 0.947056 and acc(h2) = 0.947057
Let the difference between acc(hl) and acc(h2) be represented by d.

So, d = acc(hl )-acc(h2)

d= 0.947056 - 0.947057

d= -0.000001

Now, lets find the approximate variance of the two observations over their
distribution:

Here the sample size is 65031, so, n= 65031

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.947056*(1-0.947056) + 0.947057*(1-0.947057)
J - 65031 65031
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σ2 =
√
0.000001542

σ = 0.001241773

Now, lets find the confidence interval

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.000001± 1.96 ∗ 0.001241773

d = −0.000001± 0.002433875

d= −0.002434875 ≤ d̂ ≤ 0.002432875

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.3.4 Adult
let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Adult, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.874815 and acc(h2) = 0.87523

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.874815 - 0.87523

d̂ = -0.000415

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n = 24420
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J2 =  0.000001542 

J = 0.001241773

Now, lets find the confidence interval

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.000001 ± 1.96 * 0.001241773

d= -0.000001 ± 0.002433875

d= -0.002434875 :::;d :S 0.002432875

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.3.4 Adult

let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Adult, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.874815 and acc(h2) = 0.87523

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d= 0.874815 - 0.87523

d= -0.000415

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n= 24420
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σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.874815∗(1−0.874815)
24420

+ 0.87523∗(1−0.87523)
24420

σ2 =
√
0.000008956

σ = 0.002992658

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.000415± 1.96 ∗ 0.002992658

d = −0.000415± 0.00586560968

d= −0.00628061 ≤ d̂ ≤ 0.00545061

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.3.5 Dota
let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Dota, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.592838 and acc(h2) = 0.597529

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.592838 - 0.597529

d̂ = -0.004691
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J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.874815*(1-0.874815) + 0.87523*(1-0.87523)
J - 24420 24420

J2 =  0.000008956 

J = 0.002992658

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.000415 ± 1.96 * 0.002992658

d= -0.000415 ± 0.00586560968

d= -0.00628061 :::;d :S 0.00545061

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.3.5 Dota

let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Dota, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.592838 and acc(h2) = 0.597529

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.592838 - 0.597529

d= -0.004691
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Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 51471, so, n = 51471

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.592838∗(1−0.592838)
51471

+ 0.597529∗(1−0.597529)
51471

σ2 =
√
0.000009362

σ = 0.003059739

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.004691± 1.96 ∗ 0.003059739

d = −0.004691± 0.005997088

d= −0.010688088 ≤ d̂ ≤ 0.001306088

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.3.6 Bank
let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Bank, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.917399 and acc(h2) = 0.915995

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)
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Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 51471, so, n= 51471

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.592838*(1-0.592838) + 0.597529*(1-0.597529)
J - 51471 51471

J2 =  0.000009352 

J = 0.003059739

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.004691 ± 1.96 * 0.003059739

d= -0.004691 ± 0.005997088

d= -0.010688088 :::;d :S 0.001306088

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.3.6 Bank

let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Bank, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.917399 and acc(h2) = 0.915995

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

216



B.3. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE CATBOOST AND

THE CLASSIFIUM

d̂ = 0.917399 - 0.915995

d̂ = 0.001404

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 20593, so, n = 20593

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.917399∗(1−0.917399)
20593

+ 0.915995∗(1−0.915995)
20593

σ2 =
√
0.000007416

σ = 0.002723233

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = 0.001404± 1.96 ∗ 0.002723233

d = 0.001404± 0.005337537

d= −0.003933537 ≤ d̂ ≤ 0.006741537

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.3.7 Forest Cover Type
let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Forest Cover Type, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.960062 and acc(h2) = 0.971873
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d = 0.917399 - 0.915995

d= 0.001404

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 20593, so, n = 20593

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.917399*(1-0.917399) + 0.915995*(1-0.915995)
J - 20593 20593

J2 =  0.000007416 

J = 0.002723233

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= 0.001404 ± 1.96 * 0.002723233

d= 0.001404 ± 0.005337537

d= -0.003933537:::;d :S 0.006741537

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.3 .7 Forest Cover Type

let the classification accuracy obtained from CatBoost and Classifium with the same
data set, Forest Cover Type, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.960062 and acc(h2) = 0.971873
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Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.960062 - 0.971873

d̂ = -0.011811

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.960062∗(1−0.960062)
290505

+ 0.971873∗(1−0.971873)
290505

σ2 =
√
0.000000226

σ = 0.000475395

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.011811± 1.96 ∗ 0.000475395

d = −0.011811± 0.000931774

d= −0.012742774 ≤ d̂ ≤ −0.010879226

Here, the given interval, d, contains the difference value d̂, and also it does not
include 0 inside the interval. So, we reject the null hypothesis (H0) and accept the
alternative hypothesis (H1). And conclude that Classifium performed better than
CatBoost in terms of classification accuracy in this data set.
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Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d= 0.960062 - 0.971873

d= -0.011811

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.960062*(1-0.960062) + 0.971873*(1-0.971873)
J - 290505 290505

J2 =  0.000000226 

J = 0.000475395

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.011811 ± 1.96 * 0.000475395

d= -0.011811 ± 0.000931774

d= -0.012742774:::;d :S -0.010879226

Here, the given interval, d, contains the difference value d, and also it does not
include 0 inside the interval. So, we reject the null hypothesis (HO) and accept the
alternative hypothesis (Hl). And conclude that Classifium performed better than
CatBoost in terms of classification accuracy in this data set.
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CLASSIFIUM

B.4 Statistical significance test between the classification
accuracy obtained from the H2O and the Classifium

In this section we will perform the statistical significance test between the results
obtained by training and testing H2O and Classifium with the same datasets. And
analyze, whether the result obtained from the same sample of data is statistically
significant to whole data set or not.

Both the algorithms were trained and tested with the 7 different data sets.
In the below sub-sections, we will analyse for statistical significance between the
classification results obtained from H2O and Classifium with the similar data set.
Here H2O is trained and tested with ensemble of all possible base learners it supports,
Gradient Boosting Machine, Distributed Random Forest, Deep Learning, XGBoost,
Navie Bias Classifier, and so on. The classification accuracy from the final stacked
ensemble model of H2O, is used here against the accuracy results obtained from
Classifium with the same data sets to find the statistical significance between their
different results.

B.4.1 Porto Seguro
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Porto Seguro, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.596958 and acc(h2) = 0.598544

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.596958 - 0.598544

d̂ = -0.001586

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 21695, so, n = 21695

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.596958∗(1−0.596958)
21695

+ 0.598544∗(1−0.598544)
21695

σ2 =
√
0.000022166
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B .4 Statistical significance test between the classification
accuracy obtained from the H20 and the Classifium

In this section we will perform the statistical significance test between the results
obtained by training and testing H2O and Classifium with the same datasets. And
analyze, whether the result obtained from the same sample of data is statistically
significant to whole data set or not.

Both the algorithms were trained and tested with the 7 different data sets.
In the below sub-sections, we will analyse for statistical significance between the
classification results obtained from H20 and Classifium with the similar data set.
Here H2O is trained and tested with ensemble of all possible base learners it supports,
Gradient Boosting Machine, Distributed Random Forest, Deep Learning, XGBoost,
Navie Bias Classifier, and so on. The classification accuracy from the final stacked
ensemble model of H2O, is used here against the accuracy results obtained from
Classifium with the same data sets to find the statistical significance between their
different results.

B.4.1 Porto Segura

let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Porto Segura, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.596958 and acc(h2) = 0.598544

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.596958 - 0.598544

d= -0.001586

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 21695, so, n = 21695

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.596958*(1-0.596958) + 0.598544*(1-0.598544)
J - 21695 21695

J2 =  0.000022166 
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σ = 0.004708078

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.001586± 1.96 ∗ 0.004708078

d = −0.001586± 0.009227833

d= −0.010813833 ≤ d̂ ≤ 0.007641833
Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.4.2 Flavours of Physics
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Flavours of Physics, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.889297 and acc(h2) = 0.89158

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.889297 - 0.89158

d̂ = -0.002283

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 33775, so, n = 33775

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.889297∗(1−0.889297)
33775

+ 0.89158∗(1−0.89158)
33775
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J = 0.004708078

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.001586 ± 1.96 * 0.004708078

d= -0.001586 ± 0.009227833

d= -0.010813833 :::;d :S 0.007641833
Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.4.2 Flavours of Physics

let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Flavours of Physics, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.889297 and acc(h2) = 0.89158

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d= 0.889297 - 0.89158

d= -0.002283

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 33775, so, n = 33775

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.889297*(1-0.889297) + 0.89158*(1-0.89158)
J - 33775 33775
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σ2 =
√
0.000005777

σ = 0.002403539

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.002283± 1.96 ∗ 0.002403539

d = −0.002283± 0.004710936

d= −0.006993936 ≤ d̂ ≤ 0.002427936
Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.4.3 MiniBooNE
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, MiniBooNE, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.945564 and acc(h2) = 0.947057

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.945564 - 0.947057

d̂ = -0.001493

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 65031, so, n = 65031

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n
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J2 =  0.000005777 

J = 0.002403539

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.002283 ± 1.96 * 0.002403539

d= -0.002283 ± 0.004710936

d= -0.006993936 :::;d :S 0.002427936
Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.4.3 MiniBooNE
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, MiniBooNE, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.945564 and acc(h2) = 0.947057

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.945564 - 0.947057

d= -0.001493

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 65031, so, n = 65031

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n
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σ2 = 0.945564∗(1−0.945564)
65031

+ 0.947057∗(1−0.947057)
65031

σ2 =
√
0.000001563

σ = 0.0012502

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.001493± 1.96 ∗ 0.0012502

d = −0.001493± 0.002450392

d= −0.003943392 ≤ d̂ ≤ 0.000957392
Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.4.4 Adult
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Adult, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.876577 and acc(h2) = 0.87523

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.876577 - 0.87523

d̂ = 0.001347

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n = 24420
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2 _ 0.945564*(1-0.945564) + 0.947057*(1-0.947057)
J - 65031 65031

J2 =  0.000001563 

J = 0.0012502

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.001493 ± 1.96 * 0.0012502

d= -0.001493 ± 0.002450392

d= -0.003943392 :::;d :S 0.000957392
Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.4.4 Adult
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Adult, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.876577 and acc(h2) = 0.87523

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d = 0.876577 - 0.87523

d= 0.001347

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n= 24420
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σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.876577∗(1−0.876577)
24420

+ 0.87523∗(1−0.87523)
24420

σ2 =
√
0.000008902

σ = 0.002983622

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = 0.001347± 1.96 ∗ 0.002983622

d = 0.001347± 0.005847899

d= −0.004500899 ≤ d̂ ≤ 0.007194899

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.4.5 Dota
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Dota, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.597268 and acc(h2) = 0.597529

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.597268 - 0.597529

d̂ = -0.000261
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J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.876577*(1-0.876577) + 0.87523*(1-0.87523)
J - 24420 24420

J2 =  0.000008902 

J = 0.002983622

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= 0.001347 ± 1.96 * 0.002983622

d= 0.001347 ± 0.005847899

d= -0.004500899 :::;d :S 0.007194899

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.4.5 Dota

let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Dota, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.597268 and acc(h2) = 0.597529

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.597268 - 0.597529

d= -0.000261

223



APPENDIX B. STATISTICAL SIGNIFICANCE TEST.

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 51471, so, n = 51471

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.597268∗(1−0.597268)
51471

+ 0.597529∗(1−0.597529)
51471

σ2 =
√
0.000009346

σ = 0.003057123

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.000261± 1.96 ∗ 0.003057123

d = −0.000261± 0.005991961

d= −0.006252961 ≤ d̂ ≤ 0.005730961

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.4.6 Bank
let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Dota, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.915894 and acc(h2) = 0.915995

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)
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Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 51471, so, n= 51471

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.597268*(1-0.597268) + 0.597529*(1-0.597529)
J - 51471 51471

J2 =  0.000009345 

J = 0.003057123

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.000261 ± 1.96 * 0.003057123

d= -0.000261 ± 0.005991961

d= -0.006252961 :::;d :S 0.005730961

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.4.6 Bank

let the classification accuracy obtained from ensemble H2O and Classifium with the
same data set, Dota, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.915894 and acc(h2) = 0.915995

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)
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d̂ = 0.915894 - 0.915995

d̂ = -0.000101

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n = 24420

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.915894∗(1−0.915894)
24420

+ 0.915995∗(1−0.915995)
24420

σ2 =
√
0.000006306

σ = 0.002511175

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.000101± 1.96 ∗ 0.002511175

d = −0.000101± 0.004921903

d= −0.005022903 ≤ d̂ ≤ 0.004820903

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.4.7 Forest Cover Type
Let the classification accuracy obtained from the H2O with the stacked ensemble
model and Classifium, with the same data set, Forest Cover Type, be denoted as
acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.954307 and acc(h2) = 0.971873
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d = 0.915894 - 0.915995

d= -0.000101

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n= 24420

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.915894*(1-0.915894) + 0.915995*(1-0.915995)
J - 24420 24420

J2 =  0.000006306 

J = 0.002511175

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.000101 ± 1.96 * 0.002511175

d= -0.000101 ± 0.004921903

d= -0.005022903 :::;d :S 0.004820903

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.4 .7 Forest Cover Type

Let the classification accuracy obtained from the H2O with the stacked ensemble
model and Classifium, with the same data set, Forest Cover Type, be denoted as
acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.954307 and acc(h2) = 0.971873
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Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.954307 - 0.971873

d̂ = -0.017566

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.954307∗(1−0.954307)
290505

+ 0.971873∗(1−0.971873)
290505

σ2 =
√
0.000000244

σ = 0.000493964

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.017566± 1.96 ∗ 0.000493964

d = −0.017566± 0.000968169

d= −0.018534169 ≤ d̂ ≤ −0.016597831

From the above confidence interval we can say that, since our d does not include
0, and includes d̂, so, we accept the alternative hypothesis (H1) and reject the null
hypothesis (H0). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.
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Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d= 0.954307 - 0.971873

d= -0.017566

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.954307*(1-0.954307) + 0.971873*(1-0.971873)
J - 290505 290505

J2 =  0.000000244 

J = 0.000493964

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.017566 ± 1.96 * 0.000493964

d= -0.017566 ± 0.000968169

d= -0.018534169 :::;d :S -0.016597831

From the above confidence interval we can say that, since our d does not include
0, and includes d, so, we accept the alternative hypothesis (Hl) and reject the null
hypothesis (HO). And conclude that the difference between the classification accuracy
from two algorithms are statistically significant with 95% of confidence.
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XGBOOST AS BASE LEARNER AND THE CLASSIFIUM

B.5 Statistical significance test between the classification
accuracy obtained from the H2O with XGBoost
as base learner and the Classifium

In this section we will perform the statistical significance test between the results
obtained by training and testing H2O with XGBoost only as its base learner, and
the Classifium with the same data sets. And analyze, whether the result obtained
from the same sample of data is statistically significant to whole data set or not.

B.5.1 Porto Seguro
let the classification accuracy obtained from XGBoost base H2O and Classifium with
the same data set, Porto Seguro, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.595391 and acc(h2) = 0.598544

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.595391 - 0.598544

d̂ = -0.003153

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 21695, so, n = 21695

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.595391∗(1−0.595391)
21695

+ 0.598544∗(1−0.598544)
21695

σ2 =
√
0.00002218

σ = 0.004709565

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
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B . 5 Statistical significance test between the classification
accuracy obtained from the H20 with XGBoos t
as base learner and the Classifium

In this section we will perform the statistical significance test between the results
obtained by training and testing H2O with XGBoost only as its base learner, and
the Classifium with the same data sets. And analyze, whether the result obtained
from the same sample of data is statistically significant to whole data set or not.

B.5.1 Porto Segura

let the classification accuracy obtained from XGBoost base H2O and Classifium with
the same data set, Porto Segura, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.595391 and acc(h2) = 0.598544

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.595391 - 0.598544

d= -0.003153

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 21695, so, n = 21695

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.595391*(1-0.595391) + 0.598544*(1-0.598544)
J - 21695 21695

J2 =  0.00002218 

J = 0.004709565

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
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interval. So,

d = −0.003153± 1.96 ∗ 0.004709565

d = −0.003153± 0.009230747

d= −0.012383747 ≤ d̂ ≤ 0.006077747

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.5.2 Flavours of Physics
let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Porto Seguro, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.887224 and acc(h2) = 0.89158

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.887224 - 0.89158

d̂ = -0.004356

Now, lets find the approximate variance of the two observations over their
distribution. Here the sample size is 33775, so, n = 33775

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.887224∗(1−0.887224)
33775

+ 0.89158∗(1−0.89158)
33775

σ2 =
√
0.000005825

σ = 0.002413504

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ
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interval. So,

d= -0.003153 ± 1.96 * 0.004709565

d= -0.003153 ± 0.009230747

d= -0.012383747:::;d :S 0.006077747

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.5.2 Flavours of Physics

let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Porto Segura, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.887224 and acc(h2) = 0.89158

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d= 0.887224 - 0.89158

d= -0.004356

Now, lets find the approximate variance of the two observations over their
distribution. Here the sample size is 33775, so, n = 33775

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.887224*(1-0.887224) + 0.89158*(1-0.89158)
J - 33775 33775

J2 =  0.000005825 

J = 0.002413504

Now, lets find the confidence interval for d
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For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.004356± 1.96 ∗ 0.002413504

d = −0.004356± 0.004730468

d= −0.009086468 ≤ d̂ ≤ 0.000374468

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.5.3 MiniBooNE
let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, MiniBooNE, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.944242 and acc(h2) = 0.947057

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.944242 - 0.947057

d̂ = -0.002815

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 65031, so, n = 65031

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.944242∗(1−0.944242)
65031

+ 0.947057∗(1−0.947057)
65031

σ2 =
√
0.000001581

σ = 0.001257378

229

B.5. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE H2O WITH

XGBOOST AS BASE LEARNER AND THE CLASSIFIUM

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.004356 ± 1.96 * 0.002413504

d= -0.004356 ± 0.004730468

d= -0.009086468 :::;d :S 0.000374468

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.5.3 MiniBooNE

let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, MiniBooNE, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.944242 and acc(h2) = 0.947057

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.944242 - 0.947057

d= -0.002815

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 65031, so, n = 65031

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.944242*(1-0.944242) + 0.947057*(1-0.947057)
J - 65031 65031

J2 =  0.000001581 

J = 0.001257378
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Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.002815± 1.96 ∗ 0.001257378

d = −0.002815± 0.002464461

d= −0.005279461 ≤ d̂ ≤ −0.000350539

Here, the given interval, d, contains the difference value d̂, and also it does not
include 0 inside the interval. So, we reject the null hypothesis (H0) and accept the
alternative hypothesis (H1). And conclude that Classifium performed better than
H2O having only XGBoost as its base learner, in terms of classification accuracy in
this data set.

B.5.4 Adult
let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Adult, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.874611 and acc(h2) = 0.87523

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.874611 - 0.87523

d̂ = -0.000619

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n = 24420

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.874611∗(1−0.874611)
24420

+ 0.87523∗(1−0.87523)
24420
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Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.002815 ± 1.96 * 0.001257378

d= -0.002815 ± 0.002464461

d= -0.005279461 :::;d :S -0.000350539

Here, the given interval, d, contains the difference value d, and also it does not
include 0 inside the interval. So, we reject the null hypothesis (HO) and accept the
alternative hypothesis (Hl). And conclude that Classifium performed better than
H2O having only XGBoost as its base learner, in terms of classification accuracy in
this data set.

B.5.4 Adult
let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Adult, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.874611 and acc(h2) = 0.87523

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d= 0.874611 - 0.87523

d= -0.000619

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 24420, so, n= 24420

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.874611*(1-0.874611) + 0.87523*(1-0.87523)
J - 24420 24420
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σ2 =
√
0.000008963

σ = 0.002993827

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.000619± 1.96 ∗ 0.002993827

d = −0.000619± 0.005867901

d= −0.006486901 ≤ d̂ ≤ 0.005248901

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the null hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.5.5 Dota
let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Dota, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.583474 and acc(h2) = 0.597529

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.583474 - 0.597529

d̂ = -0.014055

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 51471, so, n = 51471
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J2 =  0.000008963 

J = 0.002993827

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.000619 ± 1.96 * 0.002993827

d= -0.000619 ± 0.005867901

d= -0.006486901 :::;d :S 0.005248901

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the null hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.5.5 Dota

let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Dota, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.583474 and acc(h2) = 0.597529

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

d= 0.583474 - 0.597529

d= -0.014055

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 51471, so, n= 51471
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σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.583474∗(1−0.583474)
51471

+ 0.597529∗(1−0.597529)
51471

σ2 =
√
0.000009394

σ = 0.003064963

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.014055± 1.96 ∗ 0.003064963

d = −0.014055± 0.006007327

d= −0.020062327 ≤ d̂ ≤ −0.008047673

Here, the given interval, d, contains the difference value d̂, and also it does not
include 0 inside the interval. So, we reject the null hypothesis (H0) and accept the
alternative hypothesis (H1). And conclude that Classifium performed better than
H2O having only XGBoost as its base learner, in terms of classification accuracy in
this data set.

B.5.6 Bank
let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Bank, be denoted as acc(h1) and acc(h2) respectively.
From our experiment, we found that,

acc(h1) = 0.915894 and acc(h2) = 0.915995

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)

d̂ = 0.915894 - 0.915995

d̂ = -0.000101
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J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.583474*(1-0.583474) + 0.597529*(1-0.597529)
J - 51471 51471

J2 =  0.000009394 

J = 0.003064963

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.014055 ± 1.96 * 0.003064963

d= -0.014055 ± 0.006007327

d= -0.020062327:::;d :S -0.008047673

Here, the given interval, d, contains the difference value d, and also it does not
include 0 inside the interval. So, we reject the null hypothesis (HO) and accept the
alternative hypothesis (Hl). And conclude that Classifium performed better than
H2O having only XGBoost as its base learner, in terms of classification accuracy in
this data set.

B.5.6 Bank

let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Bank, be denoted as acc(hl) and acc(h2) respectively.
From our experiment, we found that ,

acc(hl) = 0.915894 and acc(h2) = 0.915995

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d= acc(hl)-acc(h2)

d = 0.915894 - 0.915995

d= -0.000101
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B.5. STATISTICAL SIGNIFICANCE TEST BETWEEN THE
CLASSIFICATION ACCURACY OBTAINED FROM THE H2O WITH

XGBOOST AS BASE LEARNER AND THE CLASSIFIUM

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 20593, so, n = 20593

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.915894∗(1−0.915894)
20593

+ 0.915995∗(1−0.915995)
20593

σ2 =
√
0.000007477

σ = 0.00273441

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.000101± 1.96 ∗ 0.00273441

d = −0.000101± 0.005359444

d= −0.005460444 ≤ d̂ ≤ 0.005258444

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the hull hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.

B.5.7 Forest Cover Type
let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Forest Cover Type, be denoted as acc(h1) and acc(h2)
respectively.
From our experiment, we found that,

acc(h1) = 0.955329 and acc(h2) = 0.971873

Let the difference between acc(h1) and acc(h2) be represented by d̂. So,

d̂ = acc(h1)-acc(h2)
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Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 20593, so, n = 20593

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.915894*(1-0.915894) + 0.915995*(1-0.915995)
J - 20593 20593

J2 =  0.000007477 

J = 0.00273441

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.000101 ± 1.96 * 0.00273441

d= -0.000101 ± 0.005359444

d= -0.005460444 :::;d :S 0.005258444

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the hull hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.

B.5 .7 Forest Cover Type

let the classification accuracy obtained from the XGBoost based H2O and Classifium
with the same data set, Forest Cover Type, be denoted as acc(hl) and acc(h2)
respectively.
From our experiment, we found that ,

acc(hl) = 0.955329 and acc(h2) = 0.971873

Let the difference between acc(hl) and acc(h2) be represented by d.So,

d = acc(hl )-acc(h2)

233



APPENDIX B. STATISTICAL SIGNIFICANCE TEST.

d̂ = 0.955329 - 0.971873

d̂ = -0.016544

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

σ2 = acc(h1)∗(1−acc(h1))
n

+ acc(h2)∗(1−acc(h2))
n

σ2 = 0.955329∗(1−0.955329)
290505

+ 0.971873∗(1−0.971873)
290505

σ2 =
√
0.000000241

σ = 0.000490918

Now, lets find the confidence interval for d

d = d̂± (ZN) ∗ σ

For the larger sample value, according to Tom M. Mitchel on his book ’Machine
Learn-ing’ at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d = −0.016544± 1.96 ∗ 0.000490918

d = −0.000101± 0.000962199

d= −0.001063199 ≤ d̂ ≤ 0.000861199

Though the given interval, d, contains the difference value d̂, but also it includes 0
inside the interval. So, we accept the hull hypothesis (H0) and rejects the alternative
hypothesis (H1). And conclude that the both algorithms performed equally on this
data set.
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d= 0.955329 - 0.971873

d= -0.016544

Now, lets find the approximate variance of the two observations over their
distribution:
Here the sample size is 290505, so, n = 290505

J2 = a c c ( h l ) * ( l - a c c ( h l ) ) + acc(h2)*(1-acc(h2))
n n

2 _ 0.955329*(1-0.955329) + 0.971873*(1-0.971873)
J - 290505 290505

J2 =  0.000000241 

J = 0.000490918

Now, lets find the confidence interval for d

For the larger sample value, according to Tom M. Mitchel on his book 'Machine
Learn-ing' at chapter 5, section 5.2.2, value of ZN should be 1.96 for 95% confidence
interval. So,

d= -0.016544 ± 1.96 * 0.000490918

d= -0.000101 ± 0.000962199

d= -0.001063199 :::;d :S 0.000861199

Though the given interval, d, contains the difference value d, but also it includes 0
inside the interval. So, we accept the hull hypothesis (HO) and rejects the alternative
hypothesis (Hl). And conclude that the both algorithms performed equally on this
data set.
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