
JUNE 2022

ØSTFOLD
UNIVERSITY
COLLEGE

ANOMALY DETECTION &
NOVEL DATA PREPROCESSING
FRAMEWORK FOR UNSW-NB15
NETWORK INTRUSION DATASET

A Novel Data Preprocessing Framework &
Comprehensive Performance Evaluation for
the UNSW-NB15 Network Intrusion Dataset

Sajepan Gnanasivam
Daniel Tveter

Authors

Department of Computer Science
and Communications

Faculty of Computer Science,
Engineering and Economy

MASTER'S THESIS

Abstract

Cyber-attacks are becoming more complex, resulting in increased difficulty detecting
anomalies accurately. In light of this, Anomaly Detection is also a rapidly evolving field of
study in Computer Science and Machine Learning (ML) to counteract this exact problem.
The original Anomaly Detection method required human interactions to detect abnormal
values within a system or dataset. As a result, many Intrusion Detection datasets have
been created, both artificially and by data collection, so that researchers have a space to
implement advanced Machine Learning methods and techniques to mitigate cyber-attacks.
However, the effectiveness of these techniques decreases caused by high-dimensional data.

Although there is a fair amount of research regarding Anomaly Detection using
Intrusion Detection datasets, the results have considerable limitations. For example,
the Machine Learning algorithm the research focuses on, performs considerably better
than other algorithms they compare. In addition, they mainly direct their preprocessing
techniques toward a specific algorithm, making it challenging to compare other research
results.

Therefore, our thesis aims to implement techniques for Supervised Anomaly Detection
with Binary Classification. Furthermore, we explore crucial aspects of data preprocessing
and analysis by proposing our Novel Data Preprocessing Framework (NDPF), combined
with hyperparameter tuning for existing Supervised Machine Learning algorithms for
the UNSW-NB15 dataset. Our proposed NDPF implements feature selection and data
transformation techniques critical to maximizing results without affecting the classification
process.

Furthermore, the thesis consists of quantitative data exploration and documentation
methods. In addition, our research presents an extensive performance analysis for our
implemented algorithms using statistical computation. Six popular ML algorithms:
Artificial Neural Network (ANN), Support Vector Machines (SVM), K-Nearest Neighbor
(KNN), Logistic Regression (LR), Decision Trees (DT), and Random Forest (RF), have
been implemented with Binary Classification. In addition, we determine the performance
of the algorithms using performance metrics such as Accuracy, Recall, Precision, and F1
Score. Further, we hyperparameter tune manually and with the help of the Grid Search
algorithm to get the best possible parameters for each algorithm, maximizing our chosen
performance metrics.

The results indicate that our NDPF performs well-balanced across the six chosen
Machine Learning algorithms. Furthermore, we concluded from the results of our

i

ii

experimentation that the weakest performing algorithm is LR, whereas the most robust
algorithm proved to be ANN. The percentage difference in performance between these
two algorithms is documented to be 6.46% for training accuracy and 8.29% for testing
accuracy. Compared to other research, our NDPF outperforms by an overall balance in
results. Hence, our study in the thesis is highly recommendable for other research.

Keywords— Machine Learning, Anomaly Detection, Supervised Machine Learning algorithm,
Data Preprocessing Framework, Hyperparameter Tuning

Abbrevations

AD Anomaly Detection
AF Activation Function
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface

BCE Binary Cross-Entropy

C4.5 Cervical Segment 4/5
CART Classification and Regression Trees
CSV Comma Separated Variable

DDoS Distributed Denial of Service
DoS Denial of Service
DT Decision Trees

EDA Exploratory Data Analysis
ELU Exponential Linear Unit

FNN Feedforward Neural Network

GAN Generative Adversarial Networks
GD Gradient Descent
GELU Gaussian Error Linear Unit
GS Grid Search

ID3 Iterative Dichotomiser 3
IDS Intrusion Detection System
IG Information Gain

KDE Kernel Density Estimation

iii

iv Abbrevations

KNN K-Nearest Neighbor

LR Logistic Regression

MAE Mean Absolute Error
ME Mean Error
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error

NDPF Novel Data Preprocessing Framework
NN Neural Network

PReLU Parametric ReLU

RBF Radial Basis Function
ReLU Rectified Linear Unit
RF Random Forest
RFE Recursive Feature Elimination
RFECV Recursive Feature Elimination Cross Validation
RMSE Root Mean Squared Error
RS Random Search
RSS Residual Sum of Squares

SELU Scaled Exponential Unit
SLP Single Layer Perceptron
SNN Self-normalizing Neural Network
SOP Sum of Products
SVM Support Vector Machines

Acknowledgments

First and foremost, we are incredibly grateful to our supervisor Nga Dinh, for her
continuous support, invaluable guidance, and patience during our M.Sc study. Her
substantial expertise and knowledge have aided us throughout this academic year. Our
gratitude extends to the Faculty of Computer Science, Engineering and Economy for
the opportunity to undertake our studies at the Department of Computer Science and
Communications at Østfold University College. Finally, we would like to express our
gratitude to our family and friends for their tremendous patience and encouragement.

v

Prerequisites

It is advantageous for the reader to have prior knowledge of Machine Learning, Python
Programming, Statistics, Linear Algebra, and Calculus. Every subject with technical
and theoretical aspects will be explained and presented in appropriate sections. We have
structured our thesis so that the majority of readers get a friendly introduction to the
technology we utilize.

vii

Contents

Abstract i

Abbrevations iii

Acknowledgments v

Prerequisites (Optional) vii

List of Figures xiii

List of Tables xvii

List of Code xix

1 Introduction 1
1.1 Anomaly Detection . 1
1.2 Machine Learning . 2

1.2.1 Anomaly Detection with Machine Learning 2
1.3 Dataset Selection . 3

1.3.1 Dataset Review . 4
1.4 Motivation . 5
1.5 Problem Statement and Objectives . 6
1.6 Contribution . 7
1.7 Thesis Structure . 8

2 Related Work 9
2.1 Supervised and Unsupervised ML Algorithms 9
2.2 Anomaly Detection in UNSW-NB15 . 9
2.3 Anomaly Detection for UNSW-NB15 using Deep Learning 13

3 Essential Machine Learning Concepts 15
3.1 Data . 15

3.1.1 The Four Levels of Measurements 15
3.2 Overfitting and Underfitting . 19

ix

x CONTENTS

3.2.1 Overfitting . 19
3.2.2 Underfitting . 20

3.3 Supervised Learning and Unsupervised Learning 21
3.3.1 Supervised Learning . 22
3.3.2 Unsupervised Learning . 25

3.4 Grid Search . 27
3.4.1 Parameters . 27
3.4.2 Hyperparameters . 27
3.4.3 Hyperparameter Tuning . 28
3.4.4 Cross-Validation . 28
3.4.5 How To Use Grid Search . 29

4 Machine Learning Algorithms 31
4.1 Artificial Neural Network (ANN) . 31

4.1.1 Epoch & Batch Size . 31
4.1.2 Weights and Bias . 32
4.1.3 Layers . 33
4.1.4 Neurons . 33
4.1.5 Cost/Loss Function . 34
4.1.6 Feedforward- and Backpropagation 42
4.1.7 Vanishing- and Exploding Gradients problem 51
4.1.8 Activation Functions . 53

4.2 Logistic Regression (LR) . 68
4.2.1 Logistic Function . 68
4.2.2 Linear Regression . 68
4.2.3 Logistic Regression . 68
4.2.4 How Logistic Regression Predicts the Probabilities 69
4.2.5 Logistic Regression Model . 70
4.2.6 How To Make Predictions With Logistic Regression 70
4.2.7 Prepare The Data For Logistic Regression 71
4.2.8 Hyperparameters . 72

4.3 Support Vector Machines (SVM) . 72
4.3.1 Hyper-Plane . 72
4.3.2 Support-Vectors . 74
4.3.3 Margin . 75
4.3.4 Linear With Non-Separable Cases 76
4.3.5 Nonlinear Data . 79
4.3.6 The Kernel Trick . 80

4.4 Decision tree (DT) . 83
4.4.1 Terminology . 83
4.4.2 Assumptions When Creating a Decision Tree 84
4.4.3 Attribute Selection Measures . 84
4.4.4 Different Algorithms Used In Decision Tree 87

CONTENTS xi

4.4.5 Training The Decision Tree . 91
4.4.6 Pruning Decision Trees . 91
4.4.7 Hyperparameters . 92
4.4.8 Knowing The Advantages And Disadvantages 93

4.5 Random Forest (RF) . 95
4.5.1 Preliminaries . 95
4.5.2 Bagging . 95
4.5.3 Boosting . 96
4.5.4 Ensemble . 97
4.5.5 Difference Between Decision Trees and Random Forest 98
4.5.6 Hyperparameters . 99

4.6 K-Nearest Neighbor (KNN) . 100
4.6.1 K-value . 102

5 Implementation 103
5.1 Tools and Python Libraries . 104

5.1.1 Tools . 104
5.1.2 Python Libraries . 107

5.2 The UNSW-NB15 Dataset . 112
5.2.1 Attack Categories . 112
5.2.2 Structure . 113

5.3 Novel Data preprocessing Framework (NDPF) 114
5.3.1 Data Cleaning . 117
5.3.2 Data Transformation . 117
5.3.3 Data/Dimensionality Reduction . 121

5.4 Algorithm Implementation . 127
5.4.1 User-defined Functions (Custom Functions) 129

6 Performance Evaluation 131
6.1 Performance Metrics . 131
6.2 Logistic Regression Results . 134
6.3 Support Vector Machines Results . 136
6.4 Decision Tree Results . 140
6.5 Random Forest Results . 143
6.6 Artificial Neural Network Results . 146

6.6.1 Experiment 1 . 147
6.6.2 Experiment 2 . 148
6.6.3 Experiment 3 . 149
6.6.4 Experiment 4 . 150
6.6.5 Experiment 5 . 151
6.6.6 Experiment 6 . 152
6.6.7 Experiment 7 . 153

6.7 K-Nearest Neighbor Results . 154
6.8 Performance Evaluation Summary . 158

xii CONTENTS

6.8.1 Score Analysis . 159
6.8.2 Algorithm Runtimes . 160
6.8.3 Performance Comparison with other Research 162

7 Conclusion & Discussion 167
7.1 Contribution . 167
7.2 Concluding Remarks . 168

7.2.1 Background Analysis (B) . 168
7.2.2 Novel Data Preprocessing Framework (P) 169
7.2.3 Algorithm Implementation (A1) 170
7.2.4 Evaluation (E) . 170

7.3 Future Work . 171
7.3.1 Concluding Statement for Future Work 172

7.4 Final Conclusion . 173

Bibliography 189

List of Figures

1.1 Branches of Artificial Intelligence . 3

3.1 The Four Level of Measurements . 16
3.2 The Four Primary Data types . 17
3.3 Numerical- and Categorical Cata . 18
3.4 Overfitting and Underfitting . 21
3.5 Supervised Learning . 22
3.6 Binary Classification and Multi-class Classification 24
3.7 Classification and Regression . 25
3.8 Clustering . 26
3.9 Supervised and Unsupervised Learning Use cases 27
3.10 K-fold Cross-validation . 28

4.1 Generic Neural Network Model . 32
4.2 Artificial Neuron . 34
4.3 Regression Line with Error . 36
4.4 Mean Squared Error and Mean Absolute Error 38
4.5 Cross-Entropy . 39
4.6 Local/Global Minima/Maxima . 41
4.7 Convergence . 41
4.8 Learning Rate η . 42
4.9 Forward Propagation . 43
4.10 The Multilayer Perceptron in our case . 44
4.11 Gradient Descent . 46
4.12 A small proportion of the MLP . 48
4.13 Backpropagation of Delta values from output layer to hidden layer 51
4.14 Vanishing and Exploding Gradients . 52
4.15 Activation Function . 53
4.16 Linear Activation Function . 54
4.17 Sigmoid Functions . 55
4.18 Tanh Functions . 57
4.19 Rectified Liner Unit Activation Function 58
4.20 The Dying RelU Problem . 59

xiii

xiv LIST OF FIGURES

4.21 LeakyReLU Activation Function . 60
4.22 Parametric ReLU Activation Function . 61
4.23 Exponential Linear Units (ELU) Activation Function 62
4.24 SELU Activation Function . 63
4.25 GELU Activation Function . 64
4.26 Softmax Activation Function . 66
4.27 Binary Step Activation Function . 67
4.28 Linear Regression . 69
4.29 Linear Regression Threshold . 71
4.30 2D Hyperplane . 73
4.31 3D Hyperplane . 73
4.32 Support Vectors . 75
4.33 Hinge Loss . 76
4.34 Low C-value With No Additional Predictors 77
4.35 High C-value With No Additional Predictors 77
4.36 Low C-value With Additional Predictors 78
4.37 High C-value With Additional Predictors 78
4.38 Low C-value With Even More Additional Predictors 79
4.39 High C-value With Even More Additional Predictors 79
4.40 2D Non Separable . 80
4.41 Separated Data Points When Added z Dimension 80
4.42 Polynomial Effect . 81
4.43 Radial Basis . 82
4.44 Decision Tree Terminology . 84
4.45 Information Gain . 85
4.46 Entropy Perfect Randomness . 86
4.47 Hinge Function . 90
4.48 Random Forest Classifier . 95
4.49 Bagging Example . 96
4.50 Difference Between Bagging And Boosting 97
4.51 Ensemble Algorithm . 98
4.52 K-Nearest Neighbor Classifier . 100
4.53 Euclidean/Manhattan Distance . 101

5.1 Project Framework for Anomaly Detection 103
5.2 Tools and Libraries . 104
5.3 Normal and attacks distributed . 115
5.4 Time Spent . 116
5.5 Preprocessing Stages . 117
5.6 One-hot-encoding (OHE) . 120
5.7 Correlation plot for UNSW-NB15 Training dataset 122
5.8 Distribution Plot: Feature Selection with RandomForestClassifier() 126
5.9 Regression Plot: Feature Selection with RandomForestClassifier() 126

LIST OF FIGURES xv

6.1 Confusion Matrix . 132
6.2 Logistic Regression Distribution Plot . 134
6.3 Logistic Regression overall Results . 135
6.4 Logistic Regression Regression plot . 135
6.5 Support Vector Machines Distribution Plot 137
6.6 SVM With RBF Kernel With a C Value from 1 To 500 138
6.7 Graph Showing How C Value Impacts The Metrics From 1-15 138
6.8 Graph Showing How C Value Impacts The Metrics From 1-500 139
6.9 Support Vector Machines Overall Results 139
6.10 Support Vector Machines Regression plot 140
6.11 Decision Tree overall Results . 141
6.12 Decision Tree Distribution Plot . 142
6.13 Decision Tree Regression plot . 142
6.14 Random Forest Distribution Plot . 144
6.15 Random Forest overall Results . 144
6.16 Random Forest Regression plot . 145
6.17 Distribution Plot: Experiment 1, 3 Layers 147
6.18 Distribution Plot: Experiment 2, 4 Layers 148
6.19 Distribution Plot: Experiment 3, 4 Layers 149
6.20 Distribution Plot: Experiment 4, 5 Layers 150
6.21 Distribution Plot: Experiment 5, 7 Layers 151
6.22 Distribution Plot: Experiment 6, 9 Layers 152
6.23 Distribution Plot: Experiment 7, 11 Layers 153
6.24 Lineplot with respect to K value from 1 to 70 155
6.25 Barplot with respect to K value from 1 to 70 156
6.26 Error rate with respect to K value from 1 to 70 156
6.27 Error rate with respect to K value from 1 to 200 157
6.28 Distribution Plot for K 1 to 15 . 157
6.29 Comparison of Algorithm Performance . 160
6.31 Total Runtime . 160
6.30 Distribution of Algorithm Performance . 161
6.32 Barplot Comparing other Papers . 165
6.33 Distribution of Algorithm Performances across other Research 166

List of Tables

1.1 Network Intrusion Datasets . 4
1.2 Thesis Objectives . 7

3.1 Hyperparameters for the Grid Search . 29

4.1 Mean Error Notations . 36
4.2 Notations - Gradient Descent . 40
4.3 Backpropagation Notations . 44
4.4 Softmax Notations . 65
4.5 Decision Tree Terminology . 83
4.6 Decision Tree Hyperparameters . 93
4.7 Difference between Decision Trees and Random Forests 98
4.8 Random Forest Hyperparameters . 99

5.2 Most used Functions from Numpy library 108
5.1 Most used Functions from Pandas library 109
5.3 Matplotlib and Seaborn Comparison . 110
5.4 UNSW-NB15 files . 113
5.5 UNSW-NB15 List of Features . 114
5.6 Number of Instances (State) . 119
5.7 Number of Instances (Services) . 119
5.8 Results: Recursive Feature Elimination with Cross-validation (RFECV) . 124
5.9 Feature Selection with RandomForestClassifier() with 10-fold Cross-validation128

6.1 Computer Specifications Used for the Thesis 131
6.2 Logistic Regression Results . 134
6.3 Experiments (C 1 To 15 With rbf Kernel) 136
6.4 Decision Tree Results . 141
6.5 Random Forest Results . 143
6.6 The Structure of the Experiments . 146
6.7 Experiment 1: Activation Function →ReLU and Sigmoid 147
6.8 Experiment 2: Activation Function →ReLU and Sigmoid 148
6.9 Experiment 3: Activation Function →ReLU and Sigmoid 149
6.10 Experiment 4: Activation Function →ReLU and Sigmoid 150

xvii

xviii LIST OF TABLES

6.11 Experiment 5: Activation Function →ReLU and Sigmoid 151
6.12 Experiment 6: Activation Function →ReLU and Sigmoid 152
6.13 Experiment 7: Activation Function →ReLU and Sigmoid 153
6.14 KNN Scores with K from 1 to 70 . 154
6.15 Best results from each algorithm . 158
6.16 Statistical Calculations . 162
6.17 Performance Comparison with other Papers 164
6.18 Categorized Performance Comparison . 164

7.1 Thesis Accomplishment . 168

List of Code

4.1 Mean Squared Error implementation in Python 37
4.2 Mean Absolute Error implementation in Python 37
4.3 Huber Loss Function implementation in Python 38
4.4 Cross Entropy implementation in Python 39
4.5 Sigmoid implementation in Python . 56
4.6 Hyperbolic Tangent (Tanh) implementation in Python 56
4.7 Rectified Linear Unit (ReLU) implementation in Python 58
4.8 LeakyReLU implementation in Python . 60
4.9 Parametric ReLU implementation in Python 61
4.10 Scaled Exponential Liner Units implementation in Python 63
4.11 GELU Activation Function Implementation in Python 65
4.12 Softmax implementation in Python . 66
4.13 Binary Step function implementation in Python 67
5.1 Import of classification libraries . 110
5.2 isnull().sum() function . 117
5.3 Reversing the datasets . 118
5.4 dtype method for checking data types . 119
5.5 pd.get_dummies() function . 120
5.6 StandardScaler() function . 121
5.7 Function that returns all categorical columns in dataset 126
5.8 RandomForestClassifier() on training set 127
5.9 Importing splitted preprocessed dataset 129

xix

Chapter 1

Introduction

The massive growth in cyber threats, coupled with modern organizations’ reliance on the
stability and effectiveness of their IT infrastructure, has prompted a shift in mentality. As
a result, priorities are altering as the downtime increases for systems within information
technology. Furthermore, intrusions, such as brute force, Denial of Service (DoS), Worms,
Exploits, Backdoors, Reconnaissance, Shellcode, or even penetration within a network, are
the most common threat to a network’s security. Similarly, cybercriminals are violently
attempting to interrupt network connections, get illegal access to essential information,
and then steal, distort, or damage essential data structures. Hence, a dynamic approach
to detecting and preventing such intrusions is required. It is a critical challenge in the
field of computer network security that must be addressed. In light of the substantial
number of sophisticated attacks, anomaly detection has been hugely popular[1].

1.1 Anomaly Detection

Network anomaly detection aims to find network abnormalities, where supervised
classification approaches have yielded several successes through many types of research[2]–[4].
The difficulty of discovering unusual patterns in network traffic that do not conform to
predicted typical behavior is called anomaly-based intrusion detection in networks. In
many applications, these nonconforming patterns are referred to as anomalies, aberrations,
outliers, or surprises[5]. Efforts have been undertaken over the last three decades to
develop automated systems for detecting network irregularities[6]. Anomaly detection
in data networks is a vital and rapidly evolving field of study since our every day is
becoming more and more data-driven. With more data and information available than
ever before, it is critical to analyze and evaluate it properly [7]. In a data network,
anomaly detection has a wide range of applications, including credit card fraud detection,
cyber security intrusion detection, and military observation of adversary activity. An
unusual traffic pattern in a computer network, for example, could indicate that a hacked
computer is transferring sensitive data to an unauthorized site[5]. According to Cisco’s
Annual Internet Report, the frequency of breaches and the number of records exposed to
each breach increase. Between 2018 and 2019, attacks between 100 Gbps and 400 Gbps

1

CHAPTER 1. INTRODUCTION

increased by 776%, and the total number of DDoS attacks will double from 7.9 million in
2018 to 15.4 million by 2023[8].

Traditionally, Anomaly Detection was carried out manually by human supervisors.
Its drawbacks are discussed in a conference paper by Bram Steenwinckel[9], where the
author quotes:

“Anomaly detection (AD) systems are either manually built by experts setting
thresholds on data or constructed automatically by learning from the available
data through machine learning (ML).”

Building an Anomaly Detection system is demanding since implementation requires
domain knowledge of the application and skillful implementation capabilities. However,
the help of ML and its ability to predict, makes ML a prime choice for Anomaly Detection.

1.2 Machine Learning

Machine Learning[10] is a field of Artificial Intelligence (AI) and Computer Science, as
shown in Figure 1.1. ML aims to replicate human behavior in the sense of repeating
and gradually increasing precision and accuracy in a task. The term ML was introduced
in a paper by Arthur L. Samuel in 1959[11] regarding the game checkers, whereas a
professional human checkers player was beaten by the computer (IBM 7094). This exact
moment was founded to be a significant milestone for Artificial Intelligence.

ML is a crucial part of the rapidly expanding domain of Data Science1. Various
ML algorithms are trained to output classification or regression predictions utilizing
statistical approaches, revealing crucial data insight. Following that, these findings
support decision-making within software applications and enterprises to add growth for
their assets. Generally, as big data expands and grows, the demand for Data scientists
will rise, necessitating their assistance in identifying the most critical business questions
and, as a result, the data needed to answer them[12].

1.2.1 Anomaly Detection with Machine Learning

Machine learning for anomaly detection necessitates a thorough grasp of the topic, mainly
when handling unstructured data. On the other hand, structured data provides data with
information regarding the area of the subject. Moreover, it is easier for a specific model
to detect when an abnormal event occurs since it defies specific regulations. However,
unstructured data, such as media files (images, mp3, recordings, and videos), carries
minimal meaning and renders the algorithms ineffective until the data is organized
(structured). Secondly, to develop a good model, we need extensive data collection. Any
successful ML model needs datasets as a foundational premise. There has to be good
quality data to back up our claim for our model’s predictions. Especially, large data

1The discipline of obtaining information or insight from diverse sorts of data is known as data science.
Data Science is a field of study that integrates mathematics, statistics, and informatics.

2

1.3. DATASET SELECTION

Figure 1.1: Branches of Artificial Intelligence

collection is beneficial for anomaly detection since a specific model can conclude that an
anomaly is infrequent compared to normal2 occurrences.

Many anomaly detection techniques, mainly Unsupervised Learning (Chapter 3,
Section 3.3.2), have an issue where a significant change (anomaly) in values is hard to
detect since the data is unlabeled. However, Supervised Learning (Chapter 3, Section
3.3.1) approaches needs a labeled dataset, with a feature marking each row of data as
”normal” or ”anomaly”[13]. In light of this, our thesis has mainly focused on Supervised
Learning approaches for anomaly detection, resulting in the need for a structured and
labeled dataset.

1.3 Dataset Selection

What are the characteristics of a good intrusion dataset? It might be challenging to get
a reliable dataset for anomaly detection studies caused by the very nature of technology.
Furthermore, technology is a domain that evolves quickly, where the threats also evolve
with them. As a result, datasets lose their relevance within an insignificant amount of
time. Hence, researchers have developed a set of requirements for prevalent datasets[14].
One of the crucial properties of intrusion detection datasets is the variety of attack

2In the field of Anomaly Detection with ML, the term normal refers to the occurrences that are not
an abnormal value.

3

CHAPTER 1. INTRODUCTION

categories that tries to cover all of the possible threats. Businesses invest significant sums
of money in implementing security countermeasures for adversaries who threaten their
systems. As a result, adversaries adapt and evolve their attack methods to penetrate said
systems, so using datasets created with updated attack categories is essential. Computer
networks can be phenomenally huge and complicated; hence, the dataset must be created
in a realistic environment. Labeling datasets is very crucial, although it can be difficult.
Labels that reflect the real-world attribute are necessary for calculating our models’
accuracy, whether supervised- or unsupervised learning. Datasets must also be well-
received by the scientific community. When researching anomaly detection, our findings
are more likely to be approved by the community if the dataset is relatable[15].

In light of this, we have researched the capabilities of several datasets presented in
Table 1.1, to determine which one to utilize for our thesis.

Table 1.1: Network Intrusion Datasets

Dataset

1 KDD-Cup 1999 4 CICIDS 2017
2 Gure-KDD 5 Bot-IoT
3 NSL-KDD 6 UNSW–NB15

1.3.1 Dataset Review

The first dataset we took into consideration was KDD-Cup 19993[16]. The creators of the
dataset used a cyber range, which allowed cyber-security specialist to exercise network
assaults against real-world targets. A cyber range consists of actual network equipment.
The data from the Cyber range was captured and analyzed by Bro-IDS, an Intrusion
Detection System. As a result, the data was acquired in the form of several CSV files,
where the project researchers processed and labeled the datasets. The KDD-Cup 1999
dataset consists of 4.900.000 rows of data organized into four attack categories: DoS,
user-to-root, remote-to-local, and probing. The whole dataset, including the attack
categories and normal data, is labeled, making it ideal for supervised- and unsupervised
learning. Since it was the sole dataset that permitted research to be extended across
various researchers, KDD-Cup 1999 has been the gold standard for intrusion detection
datasets. However, as time went by, the community started to criticize the realism of the
dataset. First, a dataset from 1999 had less relevancy for research twenty years later since
technology and its cyber security measure evolved and changed. Secondly, they criticized
the dataset further for the redundant data (duplicate data). For example, data will be
duplicated in the cases of DoS attacks, which is expected, but the community voted down
regardless since duplicate data can lead to overfitting4. Finally, the community criticized
the size of the dataset. Researchers only used a subset of the dataset for training and

3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
4Overfitting is explained in Chapter 3, Section 3.2.1

4

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

1.4. MOTIVATION

testing, and when different projects select different subsets of the same dataset, it makes
it challenging to analyze and compare results.

To address this criticism, variations of the KDD-Cup 1999 dataset were developed.
For example, Gure KDD5 was a variation of the KDD-Cup 1999, where they addressed the
issue of detecting the different cyber-attacks. In addition, the researchers added the RAW
network, which included the payload and header data. Another dataset, NSL-KDD6,
approached the criticism for the KDD-Cup 1999 by addressing the distribution of the
dataset by removing duplicate and unnecessary data. Unfortunately, both variations of
the KDD-Cup 1999, the Gure KDD and NSL-KDD shared the same underlying flaw:
they were built on outdated technology that was no longer relevant[15].

The UNSW-NB15[17], is a recent dataset that meets several of the requirements
for a robust dataset. The dataset was developed in 2015, utilizing a network traffic
generator to output artificial network data, including regular and simulated attack data.
Researchers used the Bro-IDS to handle the raw network data, similar to how the
KDD-Cup 1999 dataset was generated. They also employed Argus, an extra security
tool, to add additional features. As a result, the researchers developed nine distinct
forms of attacks and in addition to normal data. Further, UNSW-NB15 has been
acknowledged by the research community, resulting in appearances in several peer-
reviewed journals[18]–[20]. Furthermore, newer intrusion detection datasets have been
developed named CICIDS2017 7 and BoT-IoT8. The CICIDS2017 and BoT-IoT datasets
are not chosen since UNSW-NB15 is more well-established and appreciated by the
community. Hence, we tend to choose to use the UNSW-NB15 for our thesis for the
reasons mentioned. In addition, there is a substantial amount of research done on it
already, making it easier for us to compare the results in Chapter 6, Section 6.8[15].

1.4 Motivation

Anomaly Detection is not a subject that can be concluded with a definite solution since
technology and its threats grow equally. Therefore, the solution for the problem has to
be dynamic and updated continuously based on the threat. If the problem is not handled
by developing regularly, the consequences can be immense in the worst case. To put the
problem in perspective, i.e., a massive cyber-attack on a medical sector can result in a
system shutdown, where the consequences can be fatal.

There are many studies on Anomaly Detection, where the primary limitation lies in
the dataset’s preprocessing[21], [22], which means that research mainly focuses on data
preprocessing directed to enhance the performance of one specific algorithm. For example,
in research, author Kasongo, et al.[21] introduced a Performance Analysis of an intrusion
detection system with a feature selection method. As a result, their research received
the highest score of 88.13% for Decision Trees (DT) and the lowest score of 62.42% for

5http://www.aldapa.eus/res/gureKddcup/README.pdf
6https://www.unb.ca/cic/datasets/nsl.html
7https://www.unb.ca/cic/datasets/ids-2017.html
8https://research.unsw.edu.au/projects/bot-iot-dataset

5

http://www.aldapa.eus/res/gureKddcup/README.pdf
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/bot-iot-dataset

CHAPTER 1. INTRODUCTION

SVM regarding supervised Binary Classification. On the other hand, author Suleiman et
al.[22] conducted similar research regarding supervised classification algorithms. As a
result, their research received the highest score of 90.14% for RF and the lowest score
of 81.91%. Furthermore, Kasongo, et al. indicates that the difference between the best
and worst-performing models is 41.18%, and Suleiman et al., 10.04%. This results in a
well-performing model with their chosen algorithm, but other popular algorithms cannot
compare. This analysis is done in Chapter 6.

1.5 Problem Statement and Objectives

As we have established and will further explain, Cyber-attacks are a severe issue within
the private and public sectors. Consequently, Anomaly Detection has emerged as a
popular and forthcoming topic in Computer Science to mitigate this exact problem.
According to our literature study (Chapter 2), there is a tremendous amount of solid
research on anomaly detection, especially for our chosen dataset, UNSW-NB15.

In order to mitigate this problem, our thesis aims to develop a Novel Preprocessing
Framework (NDPF) to transform the UNSW-NB15 dataset to outperform several
Supervised ML algorithms, compared to other research. An extensive performance
evaluation is conducted on the dataset while considering Binary Classification for six
algorithms: Artificial Neural Networks (ANN), Support Vector Machines (SVM), K-
Nearest Neighbor (KNN), Logistic Regression (LR), Decision Trees (DT), and Random
Forest (RF), where the algorithms are explained in Chapter 4. Furthermore, we
hyperparameter-tune our prediction models to maximize our performance metrics. Finally,
our thesis aims to develop a novel hybrid algorithm that works well with our preprocessing
framework. We have categorized our objectives into four different main categories for
a better overview (Table 1.2): Background Analysis (B), Novel Data Preprocessing
Framework (P), Algorithm Implementation (A), and Evaluation (E).

1. Background Analysis (B) aims to gather the necessary information to execute
our thesis. In the Background Analysis, we have investigated which dataset to
conduct our experiments on, preprocessing methods, performance results from other
research, review, and selection of ML algorithms to conduct our experiments with,
and finally, the development environment.

2. Novel Data Preprocessing Framework (P) aims to implement the techniques
and information gathered on preprocessing methods from the Background Analysis
(B). The goal is to create a Novel Data Preprocessing Framework which performs
well across multiple ML algorithms.

3. Algorithm Implementation (A) firstly aims to implement our selected ML
algorithms from Background Analysis (B), where we maximize our performance
metrics by extensive Hyperparameter tuning. Second, we aim to develop a novel
algorithm comparable to existing ones.

6

1.6. CONTRIBUTION

4. Evaluation (E) aims to conduct a comprehensive performance evaluation with
comparable results against existing research.

Table 1.2: Thesis Objectives

Main
Category Purpose Sub

Category Objective Description

Background
Analysis (B)

To review and determine
appropriate dataset and
methods for our thesis

B1 Dataset Selection Select a suitable and well-balanced Network Intrusion
Dataset.

B2 Preprocessing methods Review preprocessing methods available.
B3 Performance results for other works Review other works for chosen dataset.
B4 Algorithm Review Review popular Machine Learning algorithms.
B5 Algorithm Selection Select appropriate algorithms for selected dataset.
B6 Development Environment Select Development environment and programming language.

Novel Data
Preprocessing
Framework (P)

To create a well-performing
dataset across multiple
algorithms, by developing a
Novel Data Preprocessing Framework

P1

P1.1 Data Cleaning Remove missing and redudant data.
P1.2 Feature Selection Select the most optimal features.
P1.3 Feature Engineering Create or remove features manually based on exisitng data.
P1.4 Data Transformation Transform the dataset, and prepare for implementation.

P2 P2.1 Feature Selection with algorithms Automatic Feature Selection with RFE.
P2.2 Feature Selection, own method Random Forest Classifier with 10-fold Cross-validation.

Algorithm
Implementaiton (A)

Implement our chosen
algorithms, and hyperparameter
tune our models to maximize
our results.

A1

A1.1 Implementation of ANN

Implement the algorithms for the preprocessed Dataset.
Hyperparameter tuning for maximizing results.

A1.2 Implementation of SVM
A1.3 Implementation of KNN
A1.4 Implementation of LR
A1.5 Implementation of DT
A1.6 Implementation of RF

Develop a novel algorithm for
our dataset that performs better or
comparable than existing ones.

A2 Develop a Novel Algorithm Develop a Novel algorithm, for our preprocessed dataset.

Evaluation (E)

Present evidence that our
method performs well
across multiple algorithms,
compared to other
existing works.

E1

E1.1 Comparable results for ANN

Result Comparison with other works
evaluating the corresponding algorithms.

E1.2 Comparable results for SVM
E1.3 Comparable results for KNN
E1.4 Comparable results for LR
E1.5 Comparable results for DT
E1.6 Comparable results for RF

E2 Visualize Results Visualize the results in an informative way.

1.6 Contribution
The main contributions of our thesis have been developed to accomplish our objectives
stated in Table 1.2. In summary, the contributions of our research are:

1. Novel Data Preprocessing Framework: We have developed a Novel Data
Preprocessing Framework for the UNSW-NB15 dataset. The framework applies
several critical techniques to output a dataset that performs accurately and balanced
for multiple algorithms which is proven to be stable.

2. Experimentations and Hyperparameter tuning: We have conducted extensive
experimentations with Hyperparameter tuning to achieve the best performance
metrics possible for each model, where our supervised ML algorithms were implemented
with Binary Classification in mind. In our case, the Binary Classification output
will either be 0 (non-attack/normal) or 1 (attack). The hyperparameter tuning has
been accomplished with Manual- and the Grid Search to select the best possible
parameters for each algorithm, maximizing our results.

3. Performance Evaluation: as a final step, we test our NDPF in combination
with hyperparameter tuning on our selected algorithms. Numerous experiments are
conducted for each algorithm to support our final result. Furthermore, the results

7

CHAPTER 1. INTRODUCTION

from our experimentations are gathered for a performance analysis against each
other. We determine which algorithm performed the best among the six. Finally,
we conduct a comprehensive performance evaluation against other research, where
our proposed framework is proven to outperform and be balanced across multiple
ML algorithms, as seen in Chapter 6, Section 6.8

1.7 Thesis Structure
The rest of this thesis is organized as follows:

• Chapter 2, Related Works introduces existing research from the scientific community
regarding our chosen dataset, UNSW-NB15. The literature study has been
conducted to get an apprehension of efforts that have been made on our topic so
we do not overlap and create duplicate research.

• Chapter 3, Essential Concepts introduces the reader to essential ML concepts
such as data, parameters, hyperparameters, overfitting, underfitting, supervised-
and unsupervised learning, which will be used throughout the thesis.

• Chapter 4, Machine Learning Algorithms introduces in detail the different ML
algorithms used for our thesis, where the algorithms are presented both in text and
visually appealing figures for better understanding. The included algorithms in the
section are ANN (4.1), LR (4.2), SVM (4.3), DT (4.4), RF (4.5), and KNN (4.6).

• Chapter 5, Implementation firstly introduces the different tools and libraries (5.1)
used to develop our project. Furthermore, the Novel Preprocessing Framework
has been explained in detail, including the different phases: Data cleaning-,
transformation, and selection(5.3). Finally, we describe how we implemented
the algorithms mentioned in Chapter 4.

• Chapter 6, Performance Evaluation firstly introduces the Performance Metrics
we have relied on to determine whether our NDPF performed well or not. The
metrics we use are Accuracy, Recall, Precision, and F1 Score. Furthermore, the
experiments and their results for our chosen algorithms are presented. Finally, a
Performance Analysis Summary (6.8) compares our results against other research
papers.

• Chapter 7, Conclusion summarizes the whole thesis regarding our research findings.
This final chapter also includes some intriguing findings and recommendations for
future work.

8

Chapter 2

Related Work

This Chapter presents state-of-the-art ML algorithms for Anomaly Detection. We focus
on existing works with the same chosen dataset, UNSW-NB15, which is a public dataset
for benchmarking purposes. In addition, this Chapter also reviews some deep learning
approaches used for classification with the same dataset.

2.1 Supervised and Unsupervised ML Algorithms

Both supervised, and unsupervised ML algorithms are used for Anomaly Detection.
Supervised ML algorithms assume the distinction in the dataset, which is labeled as
’normal’ or ’abnormal’. The supervised ML algorithms are divided further into parametric
or non-parametric. The parametric supervised ML algorithm summarizes the data with
a fixed set of parameters independent of the sample size. LR and Naive Bayes are
kinds of this type. On the other hand, the non-parametric supervised ML algorithm
does not have any parameters. Instead, they are subject to change depending on the
size of the dataset[23]. KNN, DT, and SVM belong to non-parametric supervised ML
algorithms. Unlike supervised ML algorithms, the unsupervised ones are built without the
dataset being labeled. Unsupervised ML algorithms are further divided into clustering,
association mining, and outlier mining. The clustering model differentiates each cluster
by evaluating the given training dataset. Association mining is to identify events that
often occur together. On the other hand, outlier mining aims to find the pattern which
is different from the majority of dataset[23]. In the scope of this thesis, we focus on
Anomaly Detection detection using supervised ML algorithms with both parametric and
non-parametric.

2.2 Anomaly Detection in UNSW-NB15

There has been a considerable amount of research on using ML algorithms for Anomaly
Detection on the UNSW-NB15 Dataset. A performance analysis was studied in[21].
The authors dealt with both Multi-Class Classification and Binary Classification in

9

CHAPTER 2. RELATED WORK

this research. They first implemented a feature extraction method called a filter-based
feature reduction technique using the extreme gradient boosting (XGBoost) algorithm to
prune some features which do not impact the classification process. The authors then
implemented several ML algorithms, including SVM, KNN, ANN, and DT. Their results
demonstrated that the proposed XGBoost-based feature selection method improved most
algorithms’ Test Accuracy in Binary Classification. Significantly, in the case of the DT
algorithm, the Test Accuracy was improved from 88.13% to 90.85%. In addition, the
Test Accuracy was slightly improved in the case of Multi-Class Classification. Unlike
their works, we only focus on Binary Classification due to time constraints. However, we
test our proposed framework for most of the existing classical ML algorithms, including
LR, SVM, KNN, ANN, DT, and RF.

XGBoost was also used for feature selection in[24] to provide a highly efficient and
accurate data predictive model in the UNSW-NB15 dataset. Here, the XGBoost produced
a subset of 23 out of 39 usable features to distinguish network attack types. The authors
could compute the percentage of records in a particular value range corresponding to
an attack-type through bi-variate analysis. They also used several ML algorithms to
evaluate how XGBoost works on each algorithm. These ML algorithms were Naïve
Bayes, Multilogistic Regression, Neural Network, non-linear SVM, and RF. The (Training
Accuracy, Testing Accuracy) for those algorithms were achieved as follows: (63%, 64%)
with ANN, (56%, 57%) with Multi logistic, (83%, 83%) with Non-linear SVM, (92%,
88%) with XGBoost, (20%, 20%) with Naïve Bayes and (93%, 88%) with RF. Unlike
these two studies, XGBoost is not used for data preprocessing in our proposed NDPF.
However, as shown in Section 6, our proposed NDPF results in better accuracy.

Using the same dataset, Zong et al.[25] proposed a two-stage classifier approach to
investigate network intrusion detection systems based on imbalanced intrusion detection
datasets. The proposed approach separates the training and detection of minority and
majority intrusion classes, aiming to improve the overall detection rate of minority classes
and reduce the error rate. Furthermore, their approach is flexible in the sense that
different ML algorithms can be used for each stage of the network intrusion detection
systems. However, the authors only evaluated the performance of the RF algorithm, and
the accuracy of their approach resulted in 85.78%.

In[26], the authors present an analysis of the relevance of the features in both KDD99
and UNSW-NB15 datasets. The authors use a rough-set theory (RST), a back-propagation
neural network (BPNN), and a discrete variant of the cuttlefish algorithm (D-CFA) for
their evaluation. First, the RST calculated the dependency ratio between the features
and the classes. Then, each feature in the datasets became an input for the BPNN.
Finally, they carried out a feature-selection process over multiple runs. Their results
showed that a few features in the KDD99 dataset could be used to achieve a classification
accuracy above 84%. In addition, some features in both datasets were combined to give
higher accuracy.

Tufan et al.[23] proposed anomaly-based ML models to provide a better projection
for institutional network. In particular, the authors built and implemented two models,
called an ensemble learning model and a convolutional neural network model. The models

10

2.2. ANOMALY DETECTION IN UNSW-NB15

were then applied to the UNSW-NB15 benchmarking dataset. Their findings revealed
high accuracy rates, the CNN model being slightly more accurate.

In[27], Kumar et al. proposed a novel misuse-based intrusion detection system to
detect five categories of threats, such as Exploit, DOS, Probe, Generic and Normal in a
network. In their study, the UNSW-NB15 dataset is considered the offline dataset to
design its own integrated classification-based model based on which malicious activities in
the network are detected. Their data preprocessing consisted of several sub-phases, such
as data reduction and feature reduction. The proposed models were tested in UNSW-
NB15 and a real-time dataset (RTNITP18) with the different types of threats. Their
result showed that the proposed integrated classification-based model is considerably
higher than other existing decision tree-based models regarding the accuracy, attack
detection rate, mean F-measure, average accuracy, attack accuracy, and false alarm rate.

T. Janarthanan and S. Zargari[28] analyzed features in the UNSW-NB15 dataset
to identify the significant features and reduce the number of features in the dataset
by using ML techniques, such as RF and Weka, an open-source ML tool. As a result,
the irrelevant features are omitted from the dataset, resulting in a faster training and
testing process and less resource consumption while maintaining high detection rates.
Their proposed subset of features and their findings are comparable with existing works
concerning features in the KDD-CUP 1999 dataset.

M. Suleiman et al.[22] evaluated the performance of six ML algorithms including
DT (J48), RF, KNN, Nave Bayes, SVM, and ANN on three different types of datasets
such as NSL-KDD, UNSW-NB15, and Phishing with aiming to reduce false positive and
false negative rate. Their finding was that KNN and DT (J48) were the best performing
classifiers regarding detection accuracy, testing time, and false-positive rate. In particular,
their archived accuracy were 89.39%, 90.14%, 86.31%, 50.1%, 86.6% and 81.91% for DT
(J48), RF, KNN, NB, SVM, and ANN, respectively. Compared to this study, in this
thesis, we did not evaluate the performance of the Naive Bayes in the chosen dataset.
Nonetheless, the performance of LR is investigated. The accuracy obtained by our
proposed NDPF is better and comparable with those of the authors.

Another study that analyzes the performance of several ML algorithms with feature
selection on the same chosen dataset was presented in [29]. Chi-Square, a filter-based
feature selection technique, is used for data preprocessing to reduce the irrelevant
and redundant features. Then, many ML algorithms were evaluated, including KNN,
Stochastic Gradient Descent (SGD), DT, RF, LR, and Naïve Bayes in terms of Accuracy,
Mean Squared Error (MSE), Precision, Recall, F1-Score, True Positive Rate (TPR) and
False Positive Rate (FPR). Their results show that the RF classifier outperforms the
other methods in terms of accuracy 99.57%, TPR 0.997, and MSE 0.004. In contrast, the
NB shows the highest MSE of 0.234 and lowest accuracy of 76.59% in the selected group
of classifiers. In this thesis, our proposed NDPF framework achieves better performance
with KNN, DT, RF, and LR.

Intrusion detection in the internet of things (IoT) network using supervised ML
algorithms on application and transport layer features using the UNSW‑NB15 dataset
was presented in [30]. In this study, the authors dealt with the problem of detecting

11

CHAPTER 2. RELATED WORK

and removing malicious packets from entering the network. To this end, they proposed
feature clusters in terms of Flow, Message Queuing Telemetry Transport (MQTT), and
Transmission Control Protocol (TCP) by using features in the UNSW-NB15 dataset.
Several supervised ML algorithms, including RF, SVM, and ANN, were implemented
on the clusters. Using RF, they achieve 98.67%, and 97.37% of accuracy in Binary and
Multi-class Classification. In addition, the authors achieved 96.96%, 91.4%, and 97.54%
of classification accuracy in clusters-based techniques by using RF on Flow and MQTT
features, TCP features, and top features from both clusters.

N. Moustafa et al.[31] demonstrated the complexity of the UNSW-NB15 dataset in
three aspects. First, the authors explained the statistical analysis of the observations
and the attributes. Then, they examined feature correlations in the dataset. After that,
five ML Naive Bayes, DT, ANN, LR, and Expectation–maximization (EM), were used to
evaluate the complexity in terms of accuracy and false alarm rates (FARs). The paper
showed that UNSW-NB15 is more complex than KDD-Cup 1999 and is considered a new
benchmark data set for evaluating network intrusion detection systems.

In another study[32], the authors investigated the performance of various ML
algorithms, including KNN, DT (ID3), LR, SVM, RF, and Adaboost. In their approach,
the dataset is first preprocessed using one-hot encoding and normalization. The experimental
results showed that ML technology had presented the desired performance in the complex
and changeable network traffic data. Their study is somewhat similar to ours, but our
proposed NDPF results in a better performance in most ML algorithms.

Md. Islam1 et al.[33] have used a gradient boosting classifier (LightGBM) to perform
Binary Classification on UNSW-NB15 dataset. The authors performed preprocessing,
feature engineering, and feature selection. Their model achieved 97.21%, 98.33%, and
96.21% with F1 Scores, respectively. Additionally, the model fitted only on train data
and achieved a 92.96% F1 Score on the separate test data.

Another evaluation of ML Algorithms for Anomaly Detection is documented in
[34]. The authors evaluated twelve ML algorithms in their ability to detect anomalous
behaviors. The evaluation was carried out on three publicly available datasets: CICIDS-
2017, UNSW-NB15, and the Industrial Control System (ICS) intrusion detection datasets.
The results showed that the RF algorithm achieved the best performance in terms of
Accuracy, Precision, Recall, F1 Score, and Receiver Operating Characteristic (ROC)
curves on all the datasets.

The performance of SVM is shown in [34]. The authors proposed SVM with a new
scaling method for Binary Classification and Multi Classification experiments. The
performance of the proposed method is evaluated in terms of accuracy, detection rate,
and false-positive rate. The accuracy of the proposed method reaches 85.99% for Binary
Classification compared to 78.47% by Expectation-Maximization (EM) clustering. For
Multi Classification, their proposed SVM method can achieve the testing accuracy of
75.77%, which is 6.17% higher than that of Naive Bayes (NB). In this thesis, we also
evaluate the performance of SVM. As can be seen in Chapter 6, the performance of SVM
in our proposed framework is superior.

12

2.3. ANOMALY DETECTION FOR UNSW-NB15 USING DEEP LEARNING

Another study on intrusion detection systems using feature selection for data preprocessing
with clustering and four ML algorithms on the UNSW-NB15 dataset is presented in
[35]. Here, Naive Bayes, RF, J48, and ZeroR were evaluated. In addition, KNN and EM
are used to cluster the UNSW-NB15 dataset into two clusters depending on the target
attribute attack or regular network traffic. To develop an optimal subset of features,
Correlation-based Feature Selection (CFS) was used, then 4 ML algorithms mentioned
above were applied. The result presented that RF and J48 algorithms performed best
with 97.59%, and 93.78%, respectively.

In [36], Y. Pacheco et al. evaluated the vulnerability of contemporary datasets,
i.e., UNSW-NB15 and Bot-IoT datasets. These datasets represent the modern network
environment against popular adversarial deep learning attack methods. Their study
showed the feasibility of the attacks for both datasets, where adversarial samples
successfully decreased the overall detection performance.

2.3 Anomaly Detection for UNSW-NB15 using Deep Learning

In [37], the authors combined the RF algorithm with the DT algorithm using Anaconda3
and the package management system Conda. In their study, 45 features have been
decreased to the most robust four features. The proposed system detects normal data
and attacks data with a better accuracy using the Deep Learning technique.

G. Amaizu et al.[38] proposed a network intrusion detection model based on deep
neural networks. The model was evaluated in 3 benchmarking datasets: NSL-KDD,
UNSW-NB15, and CSECIC-IDS2018. Experiments results in Python Results showed their
proposed model performs best for NSL-KDD, followed by UNSW-NB15 and CSECIC-
IDS2018, respectively. Model accuracy achieved for these datasets was NSL-KDD
(97.89%), UNSW-NB15 (89.99%), and CSE-CIC-IDS2018 (76.47%) was achieved.

In [39], Al-Zewairi et al. used a Deep Learning Binomial Classifier for network intrusion
detection System with the UNSW-NB15 dataset. The authors executed three different
experiments to determine the optimal activation function, select the essential features,
and test their proposed model on testing data. The evaluation results demonstrate that
the proposed classifier outperforms other models in the literature with 98.99% accuracy
and 0.56% false alarm rate on testing data.

Deep Learning used for Binary Classification is also presented in [40]. The authors
investigated the feasibility of an off-line deep learning model by constructing the detection
engine with multiple advanced deep learning models. Several ML algorithms were
tested on NSL-KDD and UNSW-NB15 datasets. Additionally, the authors developed a
TensorFlow-based deep learning library called NetLearner. They then implemented a
handful of cutting-edge deep learning models for NIDS. Finally, the authors conducted a
quantitative and comparative performance evaluation of those models using NetLearner.

An evaluation of adversarial training on different types of deep neural networks in Deep
Learning-based Intrusion Detection Systems (IDS) of deep neural networks is presented in
[41]. The authors focused on investigating the effectiveness of different attacks and how to
train a resilience deep learning-based IDS using different Neural networks, including ANN,

13

CHAPTER 2. RELATED WORK

Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN). Their
experiments with different deep learning algorithms and different benchmark datasets
showed that defense using adversarial training-based min-max formulation increases the
robustness of the network.

14

Chapter 3

Essential Machine Learning
Concepts

This Chapter will introduce several fundamental ML concepts to help comprehend the rest
of the thesis. We will discuss and describe concepts like Data, Overfitting, Underfitting,
Supervised Learning, and Unsupervised Learning, and finally Hyperparameters and the
Grid Search Algorithm. The terms mentioned are often used in the thesis. Thereby
getting an overview of these sections might be beneficial.

3.1 Data

One of the critical areas to consider in ML is the type of data provided to a model.
Without data, ML today would be impossible. A ML system/algorithm has a better
chance of understanding and making correct predictions about unknown (real-life) data
with a higher quantity. Data are samples or instances from the area that describe the
problem we are trying to address. Data in supervised learning consists of samples, each
of which comprises an input variable that feeds into an output/target variable that the
model will be expected to predict. For example, in classification modeling, the target
variable will be a label or a name, whereas, in regression, the target variable will be
an integer or floating-point number. The input variable data can be in many different
formats, including text, time series, video, and images. Tabular data, often known as
structured data, is the most frequent input data, where the data comes in the form of a
spreadsheet, a database, or a CSV file (Comma Separated Variable File)[42].

3.1.1 The Four Levels of Measurements

The level at which a variable is measured impacts how we examine the given data.
Because variables may be assessed at several levels in many circumstances, we must
decide the level of measurement that will be used before beginning data collection. In
addition, the four levels of measurement (Figure 3.1) are cumulative, going from lowest to

15

CHAPTER 3. ESSENTIAL MACHINE LEARNING CONCEPTS

highest. This implies that they each inherit attributes from previous levels while adding
new ones.

• The Nominal level implies that the data can be labeled independently into
different divisions to categorize it, whereas the categories are unordered.

• The Ordinal level implies that the data can be categorized and ranked (ordered),
whereas the interval between the data points is unknown

• The Interval level implies that the data can be categorized, ranked, and presume
equal intervals. Furthermore, no true zero point1 can be defined on this level.

• The Ratio level implies that the data can be categorized, ranked, and include
equal intervals, where there is also a true zero point[43].

Figure 3.1: The Four Level of Measurements

The Four Primary Data Types

The different data types in ML are essential knowledge to attain for performing Exploratory
Data Analysis (EDA)2 and Feature Engineering. In addition, ML models have different

1Real True Zero is a scale on which 0 represents the scarcity of anything. There is no actual zero on
an interval scale.

2Exploratory Data Analysis (EDA) is a method of analyzing data using visual tools. The main goal is
to use graphical representations to uncover trends and patterns and verify hypotheses.

16

3.1. DATA

requirements to perform well; therefore, in some cases, variables (features) need to be
converted to create acceptable models.

In ML, we can systematize data types into four categories: Numerical-, Categorical-,
Time-Series-, and Text Data(Figure 3.2).

Figure 3.2: The Four Primary Data types

Numerical Data

Numerical data (or Quantitative data) implies that the dataset includes data in the form
of numbers (integers and floating-point numbers). Therefore, the data is interpreted
as measurements, for example, the number of malware attacks. Numerical data is not
sorted or chronologically organized.

Continuous (Interval) and discrete (Ratio) data are two types of numerical data.
Discrete data has unique values, but continuous data can take any value within a range.
In other words, continuous data has floating-point numbers (numbers with decimal
points), whereas discrete data consists of integers (whole numbers)[44].

Categorical Data

Categorical data is a set of information split into different categories. The relationship
between categorical data has no mathematical significance. For example, a numerical
value of 1 for ”attack”, and 0 for ”non-attack” can neither be added together nor
subtracted. Usually, categorical data in datasets are found as a string; therefore, we have
to perform one-hot-encoding to transform the categorical data into numerical data for
processing. ML algorithms only take numerical values to do mathematical operations
and calculations[45].

Categorical Data can be defined into nominal data and Ordinal Data. Nominal data
does not include any numerical value, therefore is used to name variables. Nominal data
is also referred to as labeled data. Gender, color, name, and hair color are examples of
nominal data. The data in Nominal are often acquired through surveys and questionnaires,

17

CHAPTER 3. ESSENTIAL MACHINE LEARNING CONCEPTS

as the answers from respondents allow to be written freely. This method does allow for
a better conclusion in a study but can cause troublesome and irrelevant material for
researchers when they face significant amounts of data[46].

The Ordinal Data type has a predetermined order or rank. The data type is a
collection of discrete integers, where the distance between two integers is unknown. For
example, the distance between the first and second data points may not be the same as
the second and third data points[47].

Figure 3.3 is a comparison of Numerical and Categorical Data.

Figure 3.3: Numerical- and Categorical Cata

Time Series Data

Data points referenced at certain times makeup time-series data. Nonetheless, this
information is usually obtained at consistent time frames. Using Time Series data allows
us to compare minutes, hours, days, weeks, months, and even years. The starting and
ending points are fixed, whereas numerical data is an array of numbers that do not relate
to any specific time points.

Text Data

We have access to a large amount of text data in posts, articles, and blogs. Various ML
algorithms can be employed on such data. Furthermore, various techniques can convert
text data into mathematical vectors (vectorization)[45].

18

3.2. OVERFITTING AND UNDERFITTING

3.2 Overfitting and Underfitting
One of the goals of ML is to create a model that performs well on two types of data:
training and testing (unseen) data. We want the model to learn from previous examples
and apply what it has learned to new situations in the future. Only to measure the
model’s capacity to generalize to new data do we utilize approaches like a train/test split
or k-fold Cross-Validation (refer to Section: 3.4.4 Cross-validation for more information).
The two most familiar causes for unsatisfactory ML algorithm performance are overfitting
and underfitting [48].

3.2.1 Overfitting

Overfitting data occurs when a model is trained to an extent where it learns the
data noise and inaccuracies which impair the ML model’s performance on new data
(testing/validation data). This implies that the model detects noise or random oscillations
in the training data and learns them as new concepts[49]. As a result, the model will
have a good performance on training data but poor generalization on new unseen data.

Nonparametric and nonlinear models, which have more adaptability when learning
a target function, are more prone to overfitting. As a result, many nonparametric ML
techniques incorporate parameters or approaches that restrict and regulate the amount of
detail learned by the model. DT (Section: 4.4), for example, are a versatile nonparametric
ML technique that is prone to overfitting training data. This issue can be solved by
pruning a tree after it has learned to eliminate part of the information it has gathered.

Before we evaluate and run the data, detecting overfitting is nearly impossible.
However, when analyzing ML algorithms, there are two key strategies to reduce overfitting.

• Estimate model accuracy using a resampling strategy.

• Save a validation dataset for later.

K-fold Cross-Validation is the most often used resampling approach. It enables us
to train and test our models’ k-times on different sub-groups of training data, giving
us a performance estimate on validation data. A validation dataset is a portion of
our complete dataset, which we keep hidden from our model. Firstly, we build and
hyperparameter-tune our model relative to the training dataset to assess an overall
performance analysis on how well our tuned model performs on unseen data[50].

It is possible to calculate whether the model is overfitting by utilizing bias and variance.
Bias is a model’s assertions that make a function simpler to learn. The anticipated value
will be distant from the actual value if the model is oversimplified, resulting in additional
bias. A variance occurs when we train the data on training data and acquire a low error
but then change the data and train the same prior model again, resulting in a large error
[51]. Whenever a model is overfitting, the values of variance will be high and bias will be
relatively low. Let us presume that θ2 is the point estimator for a parameter or function
θ (Equation: 3.1). Therefore, bias is the distinction between the estimator’s expected
value and the parameter we want to calculate. If the bias is more significant than zero,

19

CHAPTER 3. ESSENTIAL MACHINE LEARNING CONCEPTS

the estimator is referred to as positively biased; if the bias is less than zero, the estimator
is referred to as negatively biased; and if the bias is precisely zero, the estimate is said
to be unbiased. The variance (Equation: 3.2) is defined as the distinction between the
anticipated value of the squared estimator and the estimators’ squared expectation[52],
[53].

Bias = E[θ̂]− θ (3.1)

Var(θ̂) = E
[
θ̂2
]
−
(
E
[
θ̂
])2

(3.2)

3.2.2 Underfitting

Another typical issue in ML is underfitting, which occurs when the model is unable to
build a connection between the independent and dependent variables (input and output).
Underfitting can be identified by observing the training error the model gives us. The
most prevalent indications of underfitting are high bias and low variance. The model
underfits, when:

• The model may be unable to draw connections from the dataset due to unclean
training data comprising noise or outliers.

• Due to its failure to capture the connection between the input examples and the
target values, the model exhibits a large bias. This is most common when dealing
with many datasets.

• The model is thought to be overly simple—for example, in complicated settings,
we train a linear model.

• Hyperparameters are incorrect. Due to the under-observation of the characteristics,
tuning frequently results in underfitting.

We can avoid underfitting by increasing the duration of the training. Oppositely,
terminating training too early may cause underfitting. There must be a happy medium
where the model maintains a balance of overfitting and underfitting. Adding more features
to the model makes it more accurate. This approach will add complexity to the model,
improving training outcomes. Another way to avoid underfitting is to remove noise from
the training data. Underfitting is frequently caused by the existence of inadequate values
and outliers, which may be eliminated by using data cleaning and preprocessing (Section:
5.3) procedures on the data samples[53].

Figure 3.4 visually represents overfitting and underfitting within three ML applications:
Classification, Regression and Deep Learning.

20

3.3. SUPERVISED LEARNING AND UNSUPERVISED LEARNING

Figure 3.4: Overfitting and Underfitting

3.3 Supervised Learning and Unsupervised Learning

There are two major approaches for implementing ML models: Supervised Learning
and Unsupervised Learning. They differ in terms of how the models have developed
and the requirements for the needed training data. Since each strategy has its own
set of advantages, the project or problem will require either method for solving the
issue. Therefore, it is crucial to grasp the fundamental differences between supervised
and unsupervised learning as ML becomes increasingly popular. If a company wants to
use ML to address an issue, the first step is to comprehend the available data and the
situation[54]

21

CHAPTER 3. ESSENTIAL MACHINE LEARNING CONCEPTS

Figure 3.5: Supervised Learning

3.3.1 Supervised Learning

The main objective of supervised learning is to calculate an estimate for a given function
(f) based on the input (X) and output (y) features. We refer to this in mathematics as
the Problem of Function Approximation[52]. The training phase of a given supervised ML
model[55] requires labeled input and output variables. During the preparation step, a
data scientist may label this training data before it is utilized to train and test the model.
In addition, classification can be done on unknown datasets and predict the output once
the model has established connections between the input and output data. Because
at least some of this methodology involves human control, it is termed supervised ML.
The most considerable portion of data is unlabeled and unprocessed. In most cases,
human engagement is essential to classify data ready for supervised learning appropriately.
Naturally, because vast amounts of precisely labeled training data are required, this may
be a resource-intensive procedure.

As a predictive model, supervised ML (Figure: 3.5) categorizes unknown data into
recognized categories and forecast patterns, whereas it will learn to identify objects and
the properties that categorize them. Supervised ML techniques are frequently used to
train predictive models[54].

The supervised learning category includes both regression and classification tasks.
Classification and regression issues are the two fundamental domains where supervised
ML is beneficial [56]. Each task entails creating a model that learns from training data
and can make predictions on new situations for which we have no information. Every

22

3.3. SUPERVISED LEARNING AND UNSUPERVISED LEARNING

supervised learning method creates relationships between input and output based on
training data.

Classification

The process of converting an input value to a discrete value is known as classification
(shown in Figure 3.7). Our output in classification tasks is usually in the form of classes
or categories. This may include predicting what items or objects there are in an image
(Multi-class Classification) or whether or not it will rain today (Binary-classification).
A model learns classification from labeled training data, which they analyze and train
with. Then, only the features (columns) from the test dataset are utilized to evaluate
the performance. Finally, the mapping learned on the training dataset is used to predict
the output variable. The training dataset should represent the problem and contain
several instances of each class label. Class labels are frequently textual values, such as
”attack” and ”no attack,” and must be converted to numeric values before being fed into
a modeling process. Label encoding is assigning a unique integer to each class label, such
as ”attack” = 1, or ”no attack” = 0.

There is no guarantee that one type of classification problem has one algorithm
that solves the issue best. This is because the procedure, in many cases, is iterative.
Therefore, practitioners are advised to conduct several controlled experiments to determine
which algorithm and configuration best perform for a specific classification problem.
Classification accuracy is a common statistic for evaluating a model’s performance
based on predicted class labels. Although classification accuracy is not ideal, it is an
excellent place to start for many classification problems. The classification accuracy is
the percentage of successfully categorized instances out of all predictions (Equation: 3.3
and 6.1)[57].

accuracy = 100 ∗ Correct Predictions
Total Predictions

(3.3)

There are two primary classification problems we may face:

1. Binary Classification

2. Multi-Class Classification

Binary Classification: When a model can only apply two class labels, it is called
Binary Classification. In most Binary Classification problems, one class represents the
normal condition, and the other represents the aberrant (abnormal) state, where the
normal condition is labeled 0 and the aberrant condition is labeled 1. One of the most
popular use cases for this particular classification method is detecting spam emails. For
example, based on learning trends of what classifies as spam email, a model may be
trained to identify incoming emails as garbage or safe. The most popular algorithm
used for Binary Classification consists of LR (Section: 4.2), KNN (Section: 4.6), SVM
(Section: 4.3), and DT (Section: 4.4). SVM and LR is developed primarily for Binary
Classification since they do not allow more than two classes by default.

23

CHAPTER 3. ESSENTIAL MACHINE LEARNING CONCEPTS

Multi-Class Classification refers to classification problems with more than two
class labels. Multi-class classification, unlike Binary Classification, does not distinguish
between normal and abnormal results. Instead, samples are assigned to one of several
predefined classes. Text translation models, for example, are a sort of Multi-Class
Classification problem that involves predicting a series of words. In face recognition
software, for example, a model may analyze a picture against a large number of possible
class labels to identify the person. Multi-Class Classification is often used with RF, DT,
Gradient Boosting, KNN, and Naive Bayes. In addition, Multi-Class problems can be
solved using Binary Classification algorithms that have been modified, which entails
training numerous Binary Classification models for one or many classes. For example, the
first method, referred to as ”One-vs-Rest”: for each class creates a Binary Classification
model that compares it to all other classes. The second method is called ”One-vs-One”:
for each pair of classes, create a Binary Classification model. We can modify LR and
SVM to apprehend Multi-Class Classification problems. In Figure 3.6 the classification
types are illustrated [57].

Figure 3.6: Binary Classification and Multi-class Classification

Regression

Another supervised learning approach is regression (shown in Figure 3.7), which employs
an algorithm to determine the connection between input (X) and continuous output
values (y).

1. A quantity must be predicted in a regression problem.

2. Real-values or discrete input variables can be used in the regression.

3. A multivariate regression issue is a problem with several input variables.

4. If the input variables are sorted by time, the regression problem is called Time
Series Prediction.

24

3.3. SUPERVISED LEARNING AND UNSUPERVISED LEARNING

Since Regression models output a quantity, the performance of the model must be
expressed as errors, where the most common way to evaluate is by utilizing Root Mean
Squared Error (RMSE), represented in Equation 3.4[54], [58], [59]. There are many
real-world applications for regression. One of the fundamental areas for regression is
finance, which is utilized to predict stock and training outcomes and movements in
the market. Predict the performance of marketing initiatives so that resources may
be allocated and refined. Third, predict changes in market value in industries such as
retail and real estate. Finally, Predict changes in demographic or geographic health
patterns[54]. SVM, LR, Naive Bayes, ANN, KNN, and RF are some of the most used
techniques in Supervised Learning[56].

RMSE =

√∑n
i=1(xi − x̂i)2

n
(3.4)

Figure 3.7: Classification and Regression

3.3.2 Unsupervised Learning

ML models utilizing raw and unlabeled training data are known as unsupervised
learning[60], [61]. Unsupervised learning is frequently used to detect patterns and
trends in raw data or to organize comparable data into categories. Data scientists tend
to use this method to understand a dataset better during the early exploration phase.

Unlike supervised ML, unsupervised ML takes a more hands-off strategy. Although
a person will configure model hyperparameters like the number of cluster points, the
model will analyze large amounts of data efficiently and without human intervention.
As a result, unsupervised ML is well suited to answering queries concerning previously
unknown patterns and relationships inside data. However, because there is less human

25

CHAPTER 3. ESSENTIAL MACHINE LEARNING CONCEPTS

monitoring, the explainability of unsupervised machine learning3 should be given special
attention.

The most considerable portion of data is unlabeled and unprocessed. Unsupervised
learning is a powerful method for extracting information from data by grouping data by
comparable attributes or analyzing datasets for underlying patterns[54].

There are several approaches to this type of learning: Clustering (Figure: 3.8) is
one of the data mining techniques where it groups unlabeled data relying on similarities.
K-means clustering techniques, for example, aggregate related data points into groups,
with the K number representing the size and granularity of the grouping. This method is
helpful for market segmentation, picture compression, and other applications. Clustering
methods include exclusive, overlapping, hierarchical, and probabilistic approaches.

Figure 3.8: Clustering

Another unsupervised learning approach is association, which employs several rules
to discover associations among variables in a dataset. These strategies are commonly
employed in market basket analysis and recommendation engines, such as ”Customers
Who Bought This Item Also Bought”.

When the number of features (or dimensions) in a dataset is too large, Dimensionality
Reduction (Section: 5.3.3) is a learning approach utilized. It keeps the data integrity
while reducing the amount of data inputs to a tolerable size. This approach is frequently
employed in the data preparation step (Section: 5.3)[58]. Figure 3.9 represents the most
used applications in unsupervised- and supervised learning.

3Explainability in ML relates to the procedure of expressing a ML model’s conclusion to a human. A
person can understand the algorithm and its choice or output if it is model explainable.

26

3.4. GRID SEARCH

Figure 3.9: Supervised and Unsupervised Learning Use cases

3.4 Grid Search

Grid Search finds the best hyperparameters from a user-defined grid and evaluates each
combination using Cross-Validation. To execute Grid Search with Cross-Validation, we
can utilize a library from Scikit-learn[62], which imports the Grid Search algorithm.
In addition to manual tuning, we use the Grid Search Algorithm, which outputs the
most optimal parameters for our dataset. Hence, in this Section, we explain Parameters,
Hyperparameters, Cross-Validation, and the Grid Search algorithm.

3.4.1 Parameters

Parameters are the variables used to predict the results of historical data. The algorithm
itself sets the parameters with an optimizer which is inbuilt in the algorithm. That means
that the parameters do not need to be set by the users of the algorithm. Parameters are
part of the training model, and can be the coefficient of variables.

3.4.2 Hyperparameters

Hyperparameters are the variables that the user sets before executing the model.
Depending on the model, the variables significantly impact the model’s accuracy, both
negatively and positively. Hyperparameters are a way to evaluate the parameters of the
model. Examples of hyperparameters can be C and gamma in SVM, K in KNN, and
max depth and criterion in RF and DT.

27

CHAPTER 3. ESSENTIAL MACHINE LEARNING CONCEPTS

3.4.3 Hyperparameter Tuning

Most ML algorithms need to do hyperparameter tuning to get satisfactory results from
the model. There are several ways to tune the hyperparameters for every algorithm,
where one of the methods is a manual search. When doing a manual search, it goes by the
trial and error method, which can be time-consuming. In addition, it can be challenging
to know if there is a better combination of hyperparameters. Another method used by
researchers is Random Search (RS). The algorithm requires a set of hyperparameters
defined by the user, and then it executes the parameters in a random combination of a
amount x, where the user also determines x.

Grid Search takes all the combinations in the grid, with the user specified grid, and
calculates the performance for each iteration. But since the Grid Search algorithm
iterates through every combination, the whole process is very computational heavy and
time-consuming. So this will limit the Grid Search since it will only look through the
variables the user specified, where involving more values into the grid will make the
algorithm more time consuming.

3.4.4 Cross-Validation

The dataset is split into training and testing sets when working with a ML algorithm.
Then the Cross-Validation will further divide the training set into train data and validation
data. The reason the algorithm does this is to validate itself. A popular Cross-Validation
method is the K-fold Cross-Validation [63]. The K-fold Cross-Validation splits the process
up into K partitions. Every iteration will use K − 1 partitions for training and one for
testing. For each iteration, the partition used for testing will be pushed one step further,
as shown in Figure 3.10, and it will use the rest of the partitions for training. Every test
partition will record its performance, and an average score will return to the user. As a
result, executing the K-fold Cross-Validation for every hyperparameter combination will
be time-consuming

Figure 3.10: K-fold Cross-validation

28

3.4. GRID SEARCH

3.4.5 How To Use Grid Search

The gridsearchCV method4, is the Grid Search in combination with Cross-Validation,
which is available in the Scikit-learn library. The method is initialized by calling
GridSearchCV(). Grid Search primarily has four arguments to take into consideration
and is explained in Table 3.1.

Table 3.1: Hyperparameters for the Grid Search

Hyperparameter Description

Estimator The estimator is the model it will find the hyperparameters for,
such as SVR for SVM and DT for the decision tree.

Param_grid A Python dictionary with the names of the hyperparameters
and a list of the parameters as a value.

Scoring Scoring is how it evaluates the performance of the test set.

CV
CV determines the strategy of the Cross-Validation. It can be
an integer to determine the amount of K for the
K-fold Cross-Validation, CV splitter, or some custom function.

Grid Search does not necessarily have to be used on one hyperparameter at a time.
It can work on several hyperparameters simultaneously to get the best combination for
accuracy. When the Grid Search process is over, the best accuracy and hyperparameters
can be fetched with inbuilt methods from the library.

4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html

29

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Chapter 4

Machine Learning Algorithms

4.1 Artificial Neural Network (ANN)

Artificial Neural Networks (ANN), often known as neural networks, are a subset of ML
algorithms that are at the heart of deep learning algorithms. A neural network’s core
concept is to imitate a large number of tightly interconnected brain cells inside a computer
so that it can learn new things, identify patterns, and make decisions in a human-like
approach. A neural network does not need to be explicitly designed; it learns on its own,
just like a brain.

ANNs include an input layer, one or more hidden layers, and an output layer, each
of which links to the layers on either side. They range from a few dozen to hundreds,
thousands, or even millions of artificial neurons known as units or nodes. The connections
between two units are represented by a weight, which might be positive (if one unit
excites another) or negative (if one unit inhibit another). The more significant the impact
of one unit on another, the higher the weight. This is similar to how synapses in the
brain allow brain cells to communicate. If a node’s output exceeds a threshold value, the
node is activated and sends data to the next layer of the network. Otherwise, no data is
sent to the network’s next layer.

Various aspects influence how a neural network operates: Hyperparameter tuning (i.e.,
Learning rate & activation function), dataset size, and model complexity. Furthermore,
Neural networks use training data to learn and increase their accuracy over time. However,
once these learning algorithms have been fine-tuned for accuracy, they become effective
tools in computer science and artificial intelligence, allowing us to categorize high-density
data quickly. For example, human specialists’ manual identification, speech recognition,
or picture recognition tasks can take minutes rather than hours. Figure 4.1 represents a
generic Neural Network model.

4.1.1 Epoch & Batch Size

An epoch is a complete transit of the training data through the algorithm in ML. The
algorithm’s epoch value is a significant hyperparameter (refer to Section 3.4.2, for more

31

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.1: Generic Neural Network Model

information). It denotes the number of epochs or complete runs through the algorithm’s
training or learning phase for the whole training dataset. With each epoch, the dataset’s
internal model parameters are changed. As an outcome, a single batch epoch is named
after the gradient learning algorithm. The batch size of an epoch is usually one and is
always an integer.

The number of epochs equals the number of iterations, and the batch size equals the
whole training dataset. This is rarely the case for practical reasons. More than one epoch
is used in several models. In general, the relationship is d× e = i× b, in which d is the
dataset size, e is the number of epochs, i is the number of iterations, and b is the batch
size.

4.1.2 Weights and Bias

Weights are actual values associated with each feature, and they indicate how important
the feature is in predicting the final result. The relevance of each feature is represented
by the weights associated with it in predicting the output variable. Features with weights
close to 0 are deemed less critical in the prediction process than weights with values of
greater magnitude

Bias (or a constant vector) shifts the activation function towards positive or negative
values. In the line equation, the bias is known as the y-intercept. The neural network
merely performs a matrix multiplication on the inputs and the weights if the bias is not

32

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

included. Therefore, this can easily lead to the dataset being overfitted. Furthermore,
since bias is the inverse of the threshold, bias determines when the activation function is
activated.

4.1.3 Layers

The input layer (the initial data for the network, usually noted as vector X) accepts
various types of data from the outside world, which the network will attempt to learn
about, identify, or process. Then, the data is passed to the rest of the network from this
layer. These input variables can be imported from external sources such as web services
(API) or text-formatted files such as CSV.

The hidden layer serves as a bridge between the input and output layers and is
accountable for neural networks’ high performance and complexity. Moreover, they may
do various tasks simultaneously, such as data transformation and automated feature
generation. The neurons add the bias and determine inputs and weights before performing
an activation function.

The output layer is in control of generating the final product. Therefore, there must
always be one output layer in a neural network. The output layer receives the preceding
values from the above layers (hidden layers), executes the computations using its neurons,
and then produces the output.

4.1.4 Neurons

The neurons, shown in Figure 4.2, add the bias and determine the weighted sum of inputs
and weights before performing an activation function. A neuron can be addressed as a
container with several components:

1. Activation function

2. Input variables

3. Vector of weights

4. Bias

When a neural network is trained on a training set, it is initially given a set of weights.
The ideal weights are then created by optimizing these weights during the training phase.

The first step of the neuron is to calculated the weighted sum of the inputs, shown in
Equation 4.1.

Y =
∑

(weight ∗ input) + bias (4.1)

We can define the inputs in general as x1, x2, ..., xn, and the weights as w1, w2, ..., wn.
The weighted sum is then calculated as in Equation 4.2.

x1w1 + x2w2 + ...+ xnwn (4.2)

33

CHAPTER 4. MACHINE LEARNING ALGORITHMS

After that, the weighted sum is given a bias which is a constant, shown in Equation
4.3.

x1w1 + x2w2 + ...+ xnwn + bias (4.3)

Finally, the computed value is sent to the activation function (AF), which generates
a result, shown in Equation 4.4.

AF (x1w1 + x2w2 + ...+ xnwn + bias) (4.4)

Figure 4.2: Artificial Neuron

4.1.5 Cost/Loss Function

The cost function is a method of assessing the overall performance of our given ML
algorithm or model. It compares the model’s projected and actual outputs to determine
how far off the model was in its predictions. If our predictions differ significantly from
the actual numbers, it returns a more significant number. The cost function indicates
how well our model has improved as we modify it to enhance predictions.

The term ”loss” in ML refers to the difference between the actual value (x-input), and
predicted (y-output) value. The Loss function measures the Loss and outputs the actual
number during the training phase. This particular function is used in many supervised
ML algorithms since they depend on it.

We can differentiate the Loss- and Cost function: We use the term Loss function
when referring to the error for a single training sample. However, when referring to the
average value of the Loss functions across a complete training dataset, we use the term
Cost function.

34

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

We want to optimize the value that the Cost function offers us. Where y represents
the desired output and ŷ represents the actual predicted output from a neural network.
We start summing from the first case i = 1 and work our way through the squares of the
differences between the desired output y and the expected output ŷ for each observation
for each sample.When, a ratio between the weights (and biases) and the cost function is
calculated, the ones with the highest ratio will significantly influence the cost function
and provide us with the most worth.

In ML, there are several cost functions, each with its own set of applications depending
on whether the task is a regression or classification[64].

1. Regression

2. Binary Classification

3. Multi-class Classification

Regression Cost Functions

Regression is a method for examining the relationship between the input and output
variables (independent and dependent variables). In ML, it is utilized as a method for
predictive modeling, whereas an algorithm is employed to predict continuous values.
The cost function in Regression is referred to as the ”Regression Cost function.” The
error is calculated between the actual input and the predicted output based on distance,
with Equation 4.5, Where y is the independent variable (input), and y′ is the dependent
variable (output). Figure 4.3 represents a regression line with the distance of error.

Error = y − y′ (4.5)

Mean Error (ME)
The equation for Mean Error (Equation 4.6) stands as a fundament for other regression
cost functions. First, the total mean error for each training data sample is computed.
Then, the final output can cancel each other out when added together, resulting in a
model with a mean error of zero. This implementation is not recommended; hence, it
lays the groundwork for alternative regression cost functions.

ME =
1

n

n∑
i=1

(yi − ŷi) (4.6)

Mean Squared Error (MSE)
The Mean Squared Error (MSE)is a metric that calculates the distance to a given set of
data points relative to a regression line. A large MSE value means that the given data
points are distributed widely around the regression line (mean), whereas a smaller MSE
value means that the given data points are closer to the regression line. A smaller MSE
value is preferred since it represents data values that are not skewed and includes fewer
errors. Because we are continually squaring the errors, the MSE will not be negative.

35

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.3: Regression Line with Error

The MSE is mathematically defined by Equation 4.7, where the notations are listed in
Table 4.1. The code implementation in Python, is presented in Listing 4.1.

The main advantage is that the MSE function helps assure that our trained model
does not include any predictions on outliers with significant errors. Furthermore, since
MSE squares numbers, the function puts more weight on the errors. One disadvantage is
that the squaring section of the equation magnifies the error if our model produces just
one error. In most cases, we do not worry about the outliers on a dataset and want a
well-performing all-around model[65].

Table 4.1: Mean Error Notations

Notation Explanation

n The number of total data points
yi Observed Values
ŷi Predicted Values

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.7)

36

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

1 import numpy as np
2

3 # Loss Function - Mean Squared Error
4 def loss_mse(y_pred, y_true):
5 squared_err = (y_pred - y_true) ** 2
6 sum_squared_err = np.sum(squared_err)
7 loss = sum_squared_err / y_true.size
8 return loss

Listing 4.1: Mean Squared Error implementation in Python

Mean Absolute Error (MAE)
The Equation 4.8, for Mean Absolute Error (MAE), is only scarcely different from MSE.
The MAE will not be negative in any cases like the MSE since we are applying the
absolute value of the output. Therefore, the MAE directly has an advantage over the
MSE’s disadvantage, meaning: that all of the values (errors) will be defined on a linear
scale since we are taking the absolute value. As a result, the MAE function measures our
models’ performance evenly by not putting as much weight on the outliers as the MSE
does. Python Code implementation is shown in Listing 4.2

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.8)

1 import numpy as np
2

3 # MAE loss function
4 def loss_MAE(y_pred, y_true):
5 absolute_error = np.abs(y_pred - y_true)
6 sum_absolute_error = np.sum(absolute_error)
7 loss = sum_absolute_error / y_true.size
8 return loss

Listing 4.2: Mean Absolute Error implementation in Python

Huber Loss
We now know that the MSE excels at detecting outliers, whereas the MAE ignores them.
Therefore, the MSE function and MAE functions are combined in the Huber loss function
to create something applicable in both situations. We define the Equation 4.9 for Huber
loss with δ and δ2, to make the equation differentiable to keep the derivatives continuous
since the use case of Huber loss is connected to derivations (i.e., Gradient Descent).

According to Equation 4.9, the MSE should be used for loss values less than δ, while
the MAE should be used for loss values more than δ. This successfully combines the
finest qualities of both loss functions.

When we use the MAE for more significant loss values, we reduce the weight we give
outliers while still getting a well-rounded model. In order to keep a quadratic function
in the center, we apply the MSE for the more diminutive loss values. The Python
implementation for Huber Loss is presented in Listing 4.3.

37

CHAPTER 4. MACHINE LEARNING ALGORITHMS

L(δ, f(x)) =

{
1
2 (y − f(x))2 for|y − f(x)| ≤ δ

δ|y − f(x)| − 1
2δ

2 Otherwise
(4.9)

1 import numpy as np
2 # Huber Loss Function
3 def huber_loss(y_pred, y, delta=1.0, n=data_points):
4 mse_huber = n*(y - y_pred)**2
5 mae_huber = delta * (np.abs(y - y_pred) - n * delta)
6 return np.where(np.abs(y - y_pred) <= delta, mse_huber, mae_huber)

Listing 4.3: Huber Loss Function implementation in Python

Figure 4.4 illustrate the difference in MAE, MSE and Huber Loss correspondingly.

Figure 4.4: Mean Squared Error and Mean Absolute Error

Binary Classification Cost Functions

Classification Cost functions diverge from regression cost functions. For example, Cross-
entropy Loss is a well-known Loss function for classification. Cross-entropy, also known as
Log Loss, is utilized to measure the classification efficiency, where the output (probability)
can range between 0 and 1. As the projected probability differs from the actual label,

38

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

Cross-entropy Loss grows. Unlike other Loss functions, Cross-entropy computes the
cumulative entropy across the given distributions[66].

Equation 4.10 represents Binary Cross-Entropy, where pi is the probability of class 1,
whereas the probability of class 0 is defined as 1− pi. Whenever a class value is 0, the
relevant part will remain, and the other section will disappear. The Equation 4.11 can
be used for Multi-Class Classification, where n represents the number of rows, and m
represents the number of classes. Figure 4.5 illustrates Cross-entropy where y = 1 (True
Label)[67], and the Python implementation for Cross-entropy is presented in Listing 4.4.

BCE =
1

n

n∑
i=1

− (yi × log(pi) + (1− yi)× log(1− pi)) (4.10)

BCE(Multi-class) = − 1

n

n∑
i

m∑
j

yij log(pij) (4.11)

Figure 4.5: Cross-Entropy

1 # Calculates the Cross Entropy
2 def Cross_Entropy(y_hat, y):
3 if y == 1:
4 return -log(y_hat)
5 else:
6 return -log(1 - y_hat)

Listing 4.4: Cross Entropy implementation in Python

39

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Gradient Descent

Gradient descent is a widely used optimization algorithm, and it is the most typical
method for optimizing neural networks by locating a function’s local1- or global minima2,
as shown in Figure 4.6[68].

The Gradient Descent is a first-order optimization technique that allows a model
to learn the distinctions between the actual label and the predicted label (y and ŷ)
by minimizing error in the sense of correcting the path of the gradient. As the model
iterates, the learning rate (η) determines the level of the step we take each iteration to
attain the local- or global minimum. The learning rate shown in Figure 4.8, is a positive
constant used to specify the size of the step in the gradient descent algorithm. We use
the subtraction sign to shift the weight vector wi in a direction that reduces E (Cost
function)[69]. Additional tweaking of the parameters results in little or no change in the
loss. This process is known as convergence, shown in Figure 4.7.

The Gradient Descent algorithm begins by initializing a vector with a random weight,
where it gradually updates the stages taken to find a vector (w) that aims to minimize
the error (E). The negative of this vector shows the direction with the highest decline,
as the gradient defines the direction that generates the steepest increase in Error. The
weight vector (w) is changed in the direction that creates the steepest drop and the error
at each step.

We need an efficient approach to calculate the gradient at each step to build a fitting
algorithm that repeatedly updates its weights. By differentiating the Cost function (E),
we can calculate the gradient vector that can be partially derivated. We can express the
update rule for Gradient Descent (Delta Rule) by Equation 4.12, where corresponding
notations are presented in Table 4.2. We will put the equation into practice in Section
4.1.6[70].

Table 4.2: Notations - Gradient Descent

Notation Explanation

d Data point
∆w New Weight vector
wold Old weight vector
E Error
η Learning rate

∆w = wold + η∆w (4.12)

1Local Minima: A function’s local minimum is a position where the function value is less than at
adjacent points but may be higher than at a distant point.

2Global Minima: A global minimum is a point where the function value is less than all other possible
values.

40

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

Figure 4.6: Local/Global Minima/Maxima

Figure 4.7: Convergence

41

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.8: Learning Rate η

4.1.6 Feedforward- and Backpropagation

Firstly, let us define a Feedforward Neural Network (FNN). A Feedforward Neural Network
is an ANN where the nodes are not connected in a cycle. Instead, the information flows
only in a forward direction, where the input from the model makes calculations regarding
the hidden layer to generate a final output. The single-layer perceptron (SLP) is the
most basic form of an FNN. In an SLP, the sequence of inputs feeds into the layer and
gets multiplied by the weights.

The weighted input values are then summed together to form a total value. If the
total of the values is more than a predetermined threshold, which is generally set at
0, the output value is usually 1, and if the total is less than the threshold, the output
value is typically −1. The SLP is a famous feedforward neural network architecture
frequently used for classification. SLPs can also contain ML features. The neural network
utilized the delta rule to compare the outputs of the nodes intended values. This results
in weight adjustment in the training phase to create a more precise output. This training
and learning process results in gradient descent. The technique of updating weights in
Multi-Layered Perceptrons is virtually the same. However, the process is referred to as
backpropagation. In such circumstances, the output values provided by the final layer
are used to alter each hidden layer inside the network[71]–[73].

Feedforward in Neural Networks

Forward propagation is vital in Neural Networks since it helps determine whether
provided weights are suitable for training on the problem[74]. There are two main stages
in forwarding propagation:

Stage one: Summing the products. It entails multiplying the weight vector (w) by
the input vector. This process is recursive until we reach the last layer. It is in the last
layer that decisions are made.

Stage two: Feed the summation of the products from stage one into an Activation
function. Every layer receives the sum of the weight and input vector to produce the

42

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

output layer. The output of one layer is then sent into the input of the subsequent stage,
which is multiplied by the weight vector in that layer. This process is recursive until we
reach the activation function in the output layer.

Figure 4.9 illustrates the process of Forward propagation.

Figure 4.9: Forward Propagation

Backpropogation in Neural Networks

Backpropagation is a shortened form for ”backward propagation of errors” in a neural
network. It is a standard way to train ANNs. The basic concept of backpropagation was
firstly introduced, in the context of flight performance optimization, by Henry J. Kelley
in 1960[75], but the importance was not entirely noticed until a paper published in 1986
by David E. Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin[76]. As
we know by today, backpropagation helps calculate the gradient of a Loss function with
respect to the network’s weights. In a nutshell, backpropagation computes the gradient
in the weight space, allowing us to tune the weight in such a way that we minimize
the error in the prior epoch. By fine-tuning the weights, we may lower error rates and
improve the model’s generalization, making it more dependable[77].

We always start at the output layer and work our way backward, tweaking weights
and biases. We can only modify the weights and biases; however, activations are direct
calculations of those weights and biases, so we can implicitly adjust every aspect of the
neural network to obtain the desired output. The input layer is an exception since this is
where the dataset is allocated. The goal is to determine how the Cost function changes
in response to a certain weight, bias, or activation. We employ partial derivatives in
mathematics because it enables us to compute relationships between neural network
components and the Cost function we seek to minimize. We can successfully modify
the necessary weights (w) and biases (b) to lower the cost function once we know what
influences it. In a mathematical sense, we calculate the partial derivates of the Cost
function, with respect to the weights and bias[70], [78]–[81].

Let us for instance take a simple architecture of a Multilayer Perceptron (MLP), as
shown in Figure 4.10, which in our case is a fully connected feed-forward Neural network,
including only one hidden layer. The notations used for backpropagation is listed in
Table 4.3.

43

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Table 4.3: Backpropagation Notations

Notation Explanation

i ←i1, ..., ii Input node
j ←h1, . . . , hj Hidden node
k ←o1, . . . , ok Output node

wji
The weight for connection between
node i and j

wkj
The weight for connection between
node j and k

d Target value for each ouput node

(x1, d1), . . . , (xl, dl)
Training set with coupled with input
and target ←(input, target)

Figure 4.10: The Multilayer Perceptron in our case

We utilize the Mean Squared Error presented in Equation 4.7 in Section 4.1.5 to
minimize the cost-function for backpropagation by adjusting the bias (b) and weights
(w), where the value returned from the Cost function is often referred as cost or error.

44

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

We determine the adjustment given by the gradients of our cost function and get as low
error/cost as possible. The properties of MSE make it a good fit for calculating the error
in backpropagation since we are relying on derivatives.

However, before we redefine the equation, we have to make two assumptions for our
Cost function to implement backpropagation.

1. We can express the Cost function as an average of Cost functions for every individual
training sample. We refer to this as ”patterns”. We will also assume that the
pattern p is a constant, where Ep can also be written as E

2. We can write the function of the output given by the neural network.

We can redefine equation for MSE (Equation 4.7) as Equation 4.13, where Ep is the
error for every single pattern p

Ep =
1

2

∑
k

(dk − ok)
2 (4.13)

We calculate the difference between the actual target d and the generated output o
for pattern p, with respect to the output units k, we can then define the total error for
all patterns in Equation 4.14.

Etotal =
∑
p

Ep (4.14)

The model can calculate how much to alter the parameter for the function to come near
the predicted output d, which is based on the value for the error function. Backpropagation
applies three differentiation rules we need to consider: Chain Rule (4.15), Composition
of functions (4.16) and the Product Rule (4.17).

δf(x)

δx
=

δf(x)

δg(x)
× δg(x)

δx
(4.15)

∆(f(g(x))) = (f � g) = f ′(g(x))× g′(x) (4.16)

∆(f(x)× g(x)) = f ′g(x)× g + g′(x)× f(x) (4.17)

We can minimize the Cost function using Gradient Descent (Figure: 4.11) in
backpropagation. The algorithm, as mentioned in Section 4.1.5, iteratively derivates and
works through the model to find the global minimum. As a result, our goal is to calculate
the error’s gradient and then take the inverse to get the direction the algorithm has to
descent on Etotal[70].

45

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.11: Gradient Descent

We had earlier defined Equation 4.12 for gradient descent. Let us now redefine the
equation so we can compute for each pattern p given by our model. The computation of
Gradient Descent for our example case is given by algorithm 1. The goal is to compute the
Cost function Etotal by calculating the gradient and updating the weights in our network.
This particular process must be repeated iteratively until we achieve convergence or meet
the criteria[70].

∆w = −δEtotal

δw
= −

∑
p

δEp

δw
=
∑
p

∆pw (4.18)

We can now make the calculations for a generic unit t, which can either be an output
or a hidden unit (node). Firstly we can compute the derivative of error for a given
pattern p, with our defined generic unit t.

δEp

δwti
(4.19)

46

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

Algorithm 1: Gradient Descent
Data: Weights w, learning rate η,Criteria or value ε
Result: Total Error Etotal

1 while Etotal < ε or not_convergence do
2 for ∀w do
3 ∆w = −∂Etotal

∂ (equation: 4.18)
4 wnew ← wold η∆w + . . . (equation 4.12)
5 Calculate output and Etotal

6 end
7 end

We can then redefine the gradient computation from Equation 4.18.

∆p× wti = −
δEp

δwti
(4.20)

As already defined in Equation 4.18,

−∂Etotal

w
= −

∑
p

∂Ep

∂w

def
=
∑
p

∆pw (4.21)

Before applying the chain rule for Equation 4.20, let us define net (Equation: 4.22)
and out (Equation: 4.23). The net equation refers to the scalar product (or dot product)
between the weights and input vectors3. The f in the out refers to the activation function.

net = xTw (4.22)

out = fσ(net) = fσ(x
tw) (4.23)

Let us now apply the chain rule for equation 4.20:

− δEp

δwti
= − δEp

δnett
× nett

δwti
(4.24)

Let us proceed by splitting the right side of the equations into two parts. First the
second part of the equation:

δnett
δwti

=
δ
∑

j wtjoutj

δwti
(4.25)

Recalling the Equations for net 4.22 and 4.23 with respect to generic unit t, with a
as an generic index for the summation internally.

3https://www.mathsisfun.com/algebra/vectors-dot-product.html

47

https://www.mathsisfun.com/algebra/vectors-dot-product.html

CHAPTER 4. MACHINE LEARNING ALGORITHMS

{
nett =

∑
awtaouta

outt = ft(nett)
(4.26)

Except for the situation where j = i, all of the components of 4.25 equals zero. The
equation signifies that we have an input i from our generic unit outi to the generic unit t.
As a result, we achieve:

δ
∑

j wtjoutj

δwti
= 0 + . . .+

δ
∑

j wtjoutj

δwti
+ . . .+ = outi (4.27)

For the first part of Equation 4.24, let us dedicate a new variable and apply the chain
rule (4.15).

δt = − δEp

δnett
= − δEp

δoutt
× δoutt

δnett
= − δEp

δoutt
× f ′

t(nett) (4.28)

Summarizing the redefinition of equation 4.20.

∆p× wti = δt× outi (4.29)

We now have to solve the last portion of equation 4.30:

− δEp

δoutt
(4.30)

We have to separate the situations for where our generic unit t is located.

1. t→ output unit

2. t→ input unit

Figure 4.12 illustrates a small proportion of the MLP, for a better insight.

Figure 4.12: A small proportion of the MLP

48

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

Situation one: t is an output unit (k):

Ep =
1

2

∑
k

(dk − outk)
2 (4.31)

We do have to notice the difference between k and k′, where k refers to a constant
related to out, while derivation, and k′ refers to the summation internally.

−δf(w)n

δw
= n× f(w)n−1 × δf(w)

δw
(4.32)

We combine Equation 4.31 and 4.32:

− δEp

δoutk
= −

1
2 × δ

∑
k′ (dk′ − outk′)

2

δoutk

= −1

2
× 2× (dk − outk)×

δ(dk − outk)

δoutk

= −(dk − outk)× (0− 1) = (dk − outk)

Finally we get:
− δEp

δoutk
= (dk − outk) (4.33)

We can obtain the derivative of the output unit k, by combining Equation 4.28 and
4.33:

δk = − δEp

δoutk
× f ′

k(netk) = (dk − outk)× f ′
k(netk) (4.34)

Since it contains the discrepancy between the generated output and the desired target,
this is an error signal (gradient error).

Situation two: t is an hidden unit (j): Because the error signal is not observable,
it is difficult for the model to allocate the appropriate credit to hidden units. This problem
is often referred to as the Credit Assignment Problem - CAP. The backpropagation
algorithm was developed for this problem since we do not have the essential data to
update weights based on the error for these particular hidden units[70].

We have that t = j, and now let us solve for:

− δEp

δoutj
(4.35)

The fundamental element of the backpropagation method is to incorporate all of
the hidden units’ activities across all of the output units, where we sum them together.
Equation 4.36, represents the variations that occurs on the Error E, with units k in mind.
There are two variables which is dependent on outj : outk and netk, which is the reason
we use

∑
k.

49

CHAPTER 4. MACHINE LEARNING ALGORITHMS

− δEp

δoutj
=
∑
k

− δEp

δnetk
× δnetk

δoutj
(4.36)

We have now decomposed the net of output layer (k) with error in consideration, and
the net of k with output units j. To now solve the equation, notice that the first part
is already solved by us in Equation 4.34, therefore we can focus on the second part of
Equation 4.36.

δnetk
δoutj

=
δ
∑

k′ wkk′outk′

δoutj
= 0 + . . .+

δoutj
δoutj

+ . . .+ 0 = wkj (4.37)

Every partial derivatives are zero, except when k′ = j. We can now combine together
Equation 4.34 and 4.37, where we can define the solution for δj as:

− δEp

δoutj

∑
k

δk × wkj (4.38)

As a result, we may compose the error signal for the hidden units in Situation two as:

δj =
∑
k

(δk × wkj)× f ′
j(netj) (4.39)

The inclusion of the weight wkj in 4.39 signifies that the k is being sent backward
from the output layer to the hidden layer, and this weight is the link between them.
Meaning we are propagating the error signal backward - Backpropagation.

We have now solved the partial derivatives for the output (4.34) and hidden units
(4.39), whereas we can now upgrade the weight. Based on which situation - either
Situation one with t as an output unit or Situation 2 with t as a hidden unit, we can
upgrade the weight with the delta rule (Equation: 4.20), where ∆t takes corresponding
form based on the listed situations (Equation: 4.34 or 4.39)

50

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

Figure 4.13: Backpropagation of Delta values from output layer to hidden layer

The contribution of ∆1, . . . ,∆k at each output unit k in Figure 4.13, which is then
totaled, weighted with the relevant connection weight wkj , and sent to the hidden unit
j. Naturally, this procedure applies to each hidden unit j. In some ways, the related
weight wkj may be considered a measure of how much the unit k is to account for the
error signal. In this situation, the network’s overall liability for the entire error will be
spread according to wkj weights[70].

4.1.7 Vanishing- and Exploding Gradients problem

We will introduce some of the challenges related to activation functions and backpropagation:
Vanishing- and Exploding Gradients.

Gradient

The weighed derivative of the error function is referred to as a gradient. We utilize the
gradient to update the weights in a neural network to minimize the error (Loss function)
throughout backpropagation when traversing from the output layer to the input layer[82].

51

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Vanishing Gradient Problem

When we travel backward with each layer during backpropagation, the derivative or
slope gets less and smaller until it vanishes. When the weight update is very little or
exponentially small, the training period is excessively long, and in the worst situation,
the neural network training is stopped.

A Vanishing Gradient problem is often related to two main activation functions:
Sigmoid (Section: 4.1.8) and TanH (Section: 4.1.8). This phenomenon is caused by
the derivative of the functions operates in values between 0 to 0.25 (TanH) and 0 to 1
(Sigmoid). The new weight values are close to the old weight values, and the modified
weight values are insignificant. As a result, the gradient descent algorithm never reaches
the best solution[82].

Exploding Gradient Problem

During backpropagation, an exploding gradient happens when the derivatives or slope
become more significant as we move backward with each layer. This phenomenon is the
polar opposite of the vanishing gradient problem.

This issue arises due to weights rather than the activation function. The derivatives
are likewise high because of the significant weight values, causing the new weight to differ
significantly from the previous weight and the gradient never to converge. Exploding
gradients can lead to an unstable network that cannot learn from the training data and
cannot be updated at worst, resulting in NaN weight values that cannot be updated. As a
result, it is possible that the system will oscillate about minima, never reaching a global
minimum, as shown in Figure: 4.6).

The Vanishing and Exploding Gradients problem are illustrated in Figure 4.14

Figure 4.14: Vanishing and Exploding Gradients

52

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

4.1.8 Activation Functions

In a neural network, an activation function specifies how the weighted sum of the input
is turned into an output from nodes in a layer. The activation function is often called a
”transfer function”, and a ”squashing function” if its output range is restricted[72], [81].
In addition, many activation functions are non-linear, which is referred to as ”nonlinearity”
in a network architecture.

The activation function chosen has a significant influence on the neural network’s
capabilities and performance, and different activation functions may be utilized in other
sections of the model.

Activation functions are usually differentiable, which means that for a given input
value, the first-order derivative can be determined. This is necessary because neural
networks are commonly learned using the backpropagation of error algorithm, which
involves the derivative of prediction error to adjust the model’s weights. In neural
networks, there are several distinct types of activation functions, albeit possibly only
a few are employed in practice for hidden and output layers. Figure 4.15 illustrates a
generic activation function.

Figure 4.15: Activation Function

Linear Activation Function

Where the output is proportionate to the input, it represents linearity, which is known as
a Linear function or Identity function. Mathematical representation of Linear activation
function, shown in Equation 4.40. The Linear activation function is represented visually
in Figure 4.16.

Linear(x) = x (4.40)

Linear activation function has two fundamental drawbacks:

53

CHAPTER 4. MACHINE LEARNING ALGORITHMS

1. Backpropagation is not conceivable because the function’s derivative is a constant
and has no relationship to the input x.

2. If a Linear activation function is implemented, all layers of the neural network will
collapse into one. The last layer of the neural network will always be a Linear
function of the first layer, regardless of how many layers there are. Hence, a Linear
function effectively reduces the neural network to a single layer.

Figure 4.16: Linear Activation Function

Sigmoid (Logistic)

Studying how a neural network learns complex tasks requires understanding the Sigmoid
function. The Sigmoid function has also been used as a core technology that led to other
efficient and promising supervised learning solutions in deep learning systems.

The Sigmoid function is a particular logistic function indicated by the letters σ(x) or
sig(x). It is provided by Equation 4.41

σ(x) =
1

1 + e−x
(4.41)

Because its domain and range (0, 1) are the set of all real numbers, the Sigmoid
function is also known as a squashing function. As a result, the output is always between
0 and 1 if the function’s input is either a substantial negative or positive value. The same
rules apply for any number in the range of −∞ to +∞.

We can only learn linearly separable issues when we utilize a Linear activation function
in a neural network. With just one hidden layer and a Sigmoid activation function in the

54

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

((a)) Sigmoid Activation Function ((b)) Sigmoid Derivative

Figure 4.17: Sigmoid Functions

hidden layer, the neural network can learn a non-linearly separable problem effectively.
The Sigmoid function may be utilized in neural networks to learn complicated decision
functions since it provides non-linear boundaries when using a non-linear function.

As illustrated in Figure 4.17(a), the greater the input (more positive), the closer the
output value is to 1.0, and the smaller the input (more negative), the closer the output
is to 0.0.

The following are some of the reasons why the Sigmoid/logistic activation function is
so popular:

1. It is widely employed in models where the output is a probability prediction.
Because probability only exists in the range of 0 to 1, the Sigmoid is the best choice
due to its range.

2. The function is differentiable and has a smooth gradient, excluding output value
jumps.

The main disadvantage of the Sigmoid function lies in the derivative, which is
mathematically represented in Equation 4.42. The gradient values are only relevant for
the range −5 to 5, as seen in Figure 4.17(b), and the graph becomes considerably flat in
other regions.

σ′(x) = σ(x)× (1− σ(x)). (4.42)

It suggests that the function has very modest gradients for values more than 5 or less
than −5. The network stops learning as the gradient value approaches zero, resulting in
the Vanishing gradient problem. The Logistic function’s output is asymmetric near zero.
As a result, each neuron’s output will have the same sign, making neural network training

55

CHAPTER 4. MACHINE LEARNING ALGORITHMS

more challenging and unreliable. The Sigmoid activation function can be implemented in
Python, as shown in Listing 4.5.

1 import numpy as np
2

3 # Sigmoid Activation Function
4 def sigmoid(x):
5 return 1/(1+np.exp(-x))
6

7 # Derivative of Sigmoid
8 def sigmoid_derivative(x):
9 return sigmoid(x) * (1- sigmoid(x))

Listing 4.5: Sigmoid implementation in Python

Hyperbolic Tangent (Tanh)

With a difference in an output range of −1 to 1, the Tanh function is remarkably similar
to the Sigmoid (logistic) activation function and has a similar S-shape, shown in Figure
4.18(a)). The greater the input (more positive), the closer the output is to 1.0, and
the lower the input (more negative), the closer the output is to −1.0. The Activation
function is represented mathematically in Equation 4.43

Tanh(x) =
ex − e−x

ex + e−x
(4.43)

The Tanh Activation function offers some advantages:

1. We may translate the output values as strongly negative, neutral, or very positive
Since the Tanh function’s output is centered around Zero.

2. It is widely used in hidden layers of neural networks since its values range from −1
to 1. Consequently, the average of the hidden layer is 0 or very similar to it. It
assists with data centering and makes understanding the next layer easier.

Like the Sigmoid activation function, from Section 4.1.8, it has the difficulty of
vanishing gradients. In addition, the Tanh function has a substantially steeper gradient
(Figure: 4.18(b)) than the Sigmoid function. The Tanh activation can be implemented in
Python as shown in Listing 4.6[83]

1 import numpy as np
2

3 # Hyperbolic Tangent (tanh) Activation Function
4 def tanh(x):
5 return (np.exp(x) - np.exp(-x))/(np.exp(x) + np.exp(-x))
6

7 # tanh derivative
8 def tanh_derivative(x):
9 return 1 - tanh(x) * tanh(x)

Listing 4.6: Hyperbolic Tangent (Tanh) implementation in Python

56

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

((a)) Tanh Activation Function ((b)) Tanh Derivative

Figure 4.18: Tanh Functions

Limitations of Sigmoid and Tanh
The Sigmoid and Tanh functions are both saturated, which is a common issue. This
means that for Tanh and Sigmoid, high values bounce to 1.0, and low values bounce to
−1 or 0. Furthermore, the functions are only responsive to changes in their input around
the mid-region, around 0.5 for Sigmoid and 0.0 for Tanh.

Regardless of whether the summed activation from the node provided as input includes
meaningful information or not, the function has limited sensitivity and saturation. When
the learning algorithm becomes saturated, it becomes problematic to continue adjusting
the weights to enhance the model’s performance.

Rectified Linear Unit (ReLU) Activation Function

ReLU, shown in Figure 4.19, is an abbreviation for Rectified Linear Unit. ReLU has a
derivative function and enables backpropagation while being computationally efficient,
despite its seeming to be a Linear function. The fundamental limitation is that the
ReLU function does not simultaneously fire all neurons. Only if the result of the linear
transformation is less than 0 will the neurons be deactivated.

Mathematical representation of Rectified Linear Unit (ReLU) in Equation 4.44

ReLU(x) = max(0, x) (4.44)

Rectified Linear Unit offers some advantages:

1. Compared to the Tanh and Sigmoid activation functions, the ReLU function is
considerably more computationally efficient. This is because only a small number
of neurons are active.

57

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.19: Rectified Liner Unit Activation Function

2. Due to its linear, non-saturating characteristic, the Gradient Descent converges
fast towards the global minimum of the Loss function

The Dying RelU problem is one of the disadvantages of this function. The gradient
value is 0 on the negative partition of the graph, in Figure: 4.20. As a result, some
neurons’ weights and biases are not updated throughout the backpropagation process.
This can result in neurons that are never fired. Python implementation for ReLU is
represented in Listing 4.7[84].

1 import numpy as np
2

3 # Rectified Linear Unit (ReLU)
4 def ReLU(x):
5 data = [max(0,value) for value in x]
6 return np.array(data, dtype=float)
7

8 # Derivative for ReLU
9 def ReLU_derivative(x):

10 data = [1 if value>0 else 0 for value in x]
11 return np.array(data, dtype=float)

Listing 4.7: Rectified Linear Unit (ReLU) implementation in Python

58

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

Figure 4.20: The Dying RelU Problem

Leaky Rectified Linear Unit (LeakyReLU)

Leaky Rectified Linear Unit (LeakyReLU) typically has an alpha (α) between 0.1 and
0.3. Therefore, the LeakyReLU activation function is widely utilized. However, it has
certain disadvantages compared to the ELU and some advantages when compared to
ReLU.

Instead of a smooth slope, it features a small one for negative numbers, as shown in
Figure 4.21. Furthermore, the coefficient for this particular slope is calculated prior to
training rather than learned during training. This activation function is often used in
applications involving sparse gradients4, such as training Generative Adversarial Networks
(GAN).

The Equation for LeakyReLU 4.45 addresses two significant problems: the dying ReLU
problem since the values of the gradients do not stop at the value zero, and the vanishing
Gradient problem. Correspondingly, the derivative of LeakyReLU is mathematically
represented in Equation 4.46. Finally, the Python implementation for LeakyReLU is
presented in Listing 4.8.

LReLU(x) =

{
x if x > 0

αx if x ≤ 0
(4.45)

LReLU ′(x) =

{
1 if x > 0

α if x ≤ 0
(4.46)

4Sparse gradients indicate that a network is not getting enough information to tweak its weights. A
good example involving sparse gradients is the vanishing gradient problem. In other words, repeatedly
multiplying small numbers yields progressively more minor results. As a result, the little values that
arise as the gradient are insufficient for the network to modify its weights.

59

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.21: LeakyReLU Activation Function

1 import numpy as np
2

3 # Leaky Rectified Linear Unit (leaky ReLU) Activation Function
4 def leakyReLU(x):
5 data = [max(0.05*value,value) for value in x]
6 return np.array(data, dtype=float)
7

8 # Derivative for leaky ReLU
9 def leakyReLU_derivative(x):

10 data = [1 if value>0 else 0.05 for value in x]
11 return np.array(data, dtype=float)

Listing 4.8: LeakyReLU implementation in Python

Parametric ReLU (PReLU)

Parametric ReLU[85], shown in Figure 4.22, is a variation of the ReLU, which seeks to
overcome the challenge of the axis becoming zero on the left half side. As an input a,
the function returns the slope of the negative element of the function, which is used to
determine the most acceptable value of a during backpropagation. The PreLU activation
function can be mathematically expressed as Equation 4.47, where a is the parameter
for the slope (negative values). If the LeakyReLU activation function fails to solve the
issue of dying neurons and essential information is not passed on to the next layer, the
Parametric ReLU is utilized. Depending on the slope parameter a, the performance of
the functions depends on the various problems, which might be a drawback. The Python
implementation for PreLU is presented in Listing 4.9

PReLU(x) = max(ax, x) (4.47)

60

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

Figure 4.22: Parametric ReLU Activation Function

1 import tensorflow as tf
2 import torch.nn as nn
3

4 # Parametric Rectified Linear Unit - LeakyReLU
5 def parametric_relu(_x):
6 alphas = tf.get_variable('alpha', _x.get_shape()[-1],
7 initializer=tf.constant_initializer(0.0),
8 dtype=tf.float32)
9 pos = tf.nn.relu(_x)

10 neg = alphas * (_x - abs(_x)) * 0.5
11

12 return pos + neg

Listing 4.9: Parametric ReLU implementation in Python

Exponential Linear Units (ELU)

The ELU (Exponential Linear Unit)[86], shown in Figure 4.23, is a variation of RelU that
changes the slope of the function’s negative portion. Unlike other activation functions,
ELU contains an additional alpha constant that must be positive.

With the exception of negative inputs, ELU is highly similar to ReLU. Furthermore,
the ELU activation function provides a non-zero gradient for x = 0, eliminating the
problem of dying RelU (Neurons dying). Furthermore, this function is smooth throughout,
including at x = 0. This accelerates the learning process.

The ELU activation function can be presented mathematically as in Equation 4.48.

61

CHAPTER 4. MACHINE LEARNING ALGORITHMS

ELU(x) =

{
x for x ≥ 0

α(ex − 1) for x < 0
(4.48)

The main disadvantage of ELU is that it takes longer to calculate than ReLU and its
variations. This is due to ELU’s usage of an exponential function that is computationally
demanding. During training, however, the quicker convergence rate compensates for
this. As a result, an ELU network will be slower throughout testing than a ReLU neural
network.

Figure 4.23: Exponential Linear Units (ELU) Activation Function

Scaled Exponential Linear Unit (SELU)

The Scaled Exponential Linear Unit (SELU), shown in Figure 4.24, handles normalization
internally, first presented in self-normalizing networks[87]. Self-normalizing Neural
Networks (SNNs), per definition, maintain the zero-mean and unit-variance activations
automatically per neuron5. SELU allows for this standardization by altering the mean
and variance, implying that each layer keeps the mean and variance from the last layer.
Furthermore, since ReLU (Section 4.1.8) cannot produce negative values, SELU has a
direct advantage as it can handle both positive and negative values to shift the mean.
To alter the variance, gradients can be utilized. Raising the activation function requires
an area with a gradient more significant than one[72].

5https://dl.acm.org/doi/10.5555/3294771.3294864

62

https://dl.acm.org/doi/10.5555/3294771.3294864

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

To summarize, SELUs have a great self-normalization property while eliminating
the vanishing gradients problem[88]. The SELU activation function has predefined
parameters: α = 1.6732 and λ = 1.0507. Mathematically the activation function is
represented in Equation 4.49, and the Python implementation for SELU is presented in
Listing 4.10.

SELU(x) =

{
λx if x ≥ 0

λα(ex − 1) if x < 0
(4.49)

Figure 4.24: SELU Activation Function

1 import numpy as np
2

3 # Scaled Exponential Linear Units
4 def SELU(x, lambdaa = 1.0507, alpha = 1.6732):
5 if x >= 0:
6 return lambdaa * x
7 else:
8 return lambdaa * alpha * (np.exp(x) - 1)

Listing 4.10: Scaled Exponential Liner Units implementation in Python

Gaussian Error Linear Unit (GELU)

GELU, known as Gaussian Error Linear Unit[89], is an activation function. GELU can
be described as xφ(x), where the standard Gaussian cumulative distribute function is
involved as φ(x).

63

CHAPTER 4. MACHINE LEARNING ALGORITHMS

GELU, unlike the variations of ReLU, assigns weights to the inputs based on their
values instead of their sign when thresholding. GELU and ReLU are distinguished
because, unlike ReLu, GeLU could be both negative and positive. Compared to ReLU
and ELU, it is observed that GELU activation enhances performance across the board in
computer vision, natural language processing, and speech applications..

We define the Gaussian Error Linear Unit (GELU) in Equation 4.50 since the
cumulative distribution function of a Gaussian is frequently estimated with the error
function. Further, we may approximate GELU with Equation 4.51. The GELU activation
can be implemented in Python, as shown in Listing 4.11[90]. Furthermore, Figure, 4.25
represents a comparison of ELU, ReLU and GELU.

GELU (x) = xP (X ≤ x) = xΦ(x) = x · 1
2

[
1 + erf(x/

√
2)
]

if X ∼ N (0, 1) (4.50)

GELU(x) = 0.5

(
1 + Tanh

[√
2

π
(x+ 0.044715x3)

])
(4.51)

Figure 4.25: GELU Activation Function

64

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

1 from scipy.stats import norm
2

3 def gelu(x):
4 return x*norm.cdf(x)
5 def gelu_approx(x):
6 return .5 * x * 1(1 + tanh(np.sqrt(2/np.pi)*(x+0.044715 * x**3))

Listing 4.11: GELU Activation Function Implementation in Python

Softmax

The Softmax activation function, shown in Figure 4.26, is a well-known function in ML,
particularly in deep learning. In ANN, the Softmax is frequently inserted in the final
layer. Softmax is a function that specializes in converting integers into probabilities.
As a result, the Softmax output produces a vector v, with probabilities of conceivable
prediction. The Softmax activation function can be defined mathematically in Equation
4.52[91], where the notations are presented in Table 4.4. The Python implementation for
Softmax is presented in Listing 4.12.

Table 4.4: Softmax Notations

Notation Explanation

y
The input vector for the Softmax function, which consists of
n classes (possible outcomes)

yi
Refers to the i-th element from the input vector y.
The value can range from −∞ +∞

eyi

e refers to the standard exponential function applied to yi.
An outcome is a small number (Close to 0, but never 0).
Whereas a large number if yi < 0. We can define
e ≈ 2.718, the Euler’s number.∑n

ji
eyi

Refers to a normalization term. It assures that output vector SoftMax(y)i
accumulates to 1 for the i-th class, and that each value is between 0 and 1,
resulting in an acceptable probability distribution

n The number of total classes, possible outcomes.

Softmax(y)i =
e(yi)∑n
ji
e(yj)

(4.52)

65

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.26: Softmax Activation Function

1 from math import exp
2

3 # Softmax Activation Function
4 def SoftMax(inputVector):
5 # Calculating the exponent for each element in the input vector
6 exponents = [exp(j) for j in inputVector]
7

8 # Dividing the exponent of valuue by the sum of the exponents.
9 # Round to 3 decimals.

10 p = [round(exp(i)/sum(exponents), 3) for i in inputVector]
11 return p

Listing 4.12: Softmax implementation in Python

Binary Step

A threshold value determines whether a neuron should be fired or not in a Binary Step
function, shown in Figure 4.27. The input to the activation function is compared to a
threshold; if it is higher, the neuron is activated; if it is lower, the neuron is deactivated,
and its output is not sent on to the next hidden layer. The Binary Step function can
be represented mathematically in Equation 4.53, where the Python implementation is
shown in Listing 4.13[92].

Binary(x) =

{
0 for x < 0

1 for x ≥ 0
(4.53)

The following are some of the drawbacks of the Binary Step function:

1. It cannot offer multi-value outputs. Hence it cannot be utilized to solve Multi-Class
Classification tasks.

2. The step function’s gradient is zero, making the backpropagation procedure difficult.

66

4.1. ARTIFICIAL NEURAL NETWORK (ANN)

1 # Binary Step Activation Function
2 def Binary_step(x):
3 if x < 0:
4 return 0
5 else:
6 return 1

Listing 4.13: Binary Step function implementation in Python

Figure 4.27: Binary Step Activation Function

67

CHAPTER 4. MACHINE LEARNING ALGORITHMS

4.2 Logistic Regression (LR)

Joseph Berkson developed Logistic Regression (LR) in 1944[93]. LR is a statistical model
that predicts an event’s probability out of two choices. This section will explain how LR
works, predicts, and prepares the data for the algorithm.

4.2.1 Logistic Function

Logistic Regression is based on the Logistic function algorithm, which also can be called
the Sigmoid function. The Logistic function was developed for ecology to show the
growth of the population. The S-shaped function maxes out at a relatively quick pace.
The function can take any number and map it into a value between 1 and 0. However,
it will never be exactly one or zero [42]. The Sigmoid function can be referred to in
Section 4.1.8, with Figure 4.17 representing the S-curve. Let us restate the Equation
from Section 4.1.8 as Equation 4.54, where e is Euler’s number and x is any given value
from the input.

σ(x) =
1

1 + e−x
(4.54)

4.2.2 Linear Regression

The x is the independent input variable in Linear Regression, and y is the dependent
output variable. Figure 4.28 shows the separation line made by Equation 4.55, independent
and dependent variable. Linear regression finds the relationship between output and
input variables and then draws a line that maps the input data to the output data. The
line which is drawn represents the relationship between the independent variables. It
does this by avoiding outliers and covering as many input variables as possible.

y = a0 + a1 × x+ e (4.55)

4.2.3 Logistic Regression

The equation for LR is similar to the Logistic function. LR takes an input value (x) and
combines it linearly with weights (β) to predict the output (y). The difference between
logistic function and LR is the output. Instead of getting a number between 0 and 1, the
LR gets a binary output (1 or 0). LR can be mathematically represented with Equation
4.56:

y =

(
e(b0×b1×x)

1 + e(b0+b1×x)

)
(4.56)

Here y will be the output it predicts, b1 is the coefficient from the output of x, and
b0 is the bias. Every column in the training data has a coefficient that it learns. This
value is a significant value to store in the memory.

68

4.2. LOGISTIC REGRESSION (LR)

Figure 4.28: Linear Regression

4.2.4 How Logistic Regression Predicts the Probabilities

LR finds the probability of the first class. The first class can be represented with Equation
4.57. This is the probability that the input X belongs to the class Y = 1.

P (X) = P (Y = 1|X) (4.57)

To make predictions, they need to be transformed by the Logistic function. This
makes it so the predictions are no longer arranged as a linear combination. It is easier to
understand Linear Regression since it is a linear model. The model can be stated with
Equation 4.58.

P (X) =
e(b0+b1×X)

1 + e(b0+b1×X)
(4.58)

The Equation for Probability Model rewritten is shown in Equation 4.59

ln(p(X)

1− p(X))
= b0 + b1×X (4.59)

When the right side is calculated, it will be linear again, and the left side will be the
log of the probability from the first class. The left side ratio is the odds of the default

69

CHAPTER 4. MACHINE LEARNING ALGORITHMS

class. Calculating the odds takes the probability of an event happening divided by the
probability of an event not happening. It can be represented with Equation 4.60

ln(odds) = b0 + b1×X (4.60)

The left side is now the probit6. There are multiple ways to transform those equations.
The transformation process is performed using the probit link function for the Linear
Regression equation. From Equation 4.60, it can move the exponent to the right side and
get the final Equation 4.61, which helps to understand the linear combination combined
with the odds of the first class.

odds = e(b0+b1×X) (4.61)

4.2.5 Logistic Regression Model

When finding the coefficient β value, it has to be estimated from the training data, and
it is done by using a maximum-likelihood estimator. The maximum-likelihood estimator
makes assumptions about how the data is distributed. It is a popular method used by
other ML algorithms7. The better the coefficient value, the closer the prediction gets to
the predicted class. So if the predicted class belongs to the default class, the number
will be close to one, but if it belongs to the other class, it will be close to 0. When the
maximum-likelihood method is used for LR, its primary goal is to find a coefficient value
that reduces the error by the maximum amount in the predicted probability compared
to the actual value.

4.2.6 How To Make Predictions With Logistic Regression

Predictions with LR are made by feeding numbers into the LR equation. For example,
predicting if an animal is a dog or a cat based on its weight. The animal’s weight is 20kg.
By defining it more formally, it will be P (dog|weight = 20). Having given the coefficient
b0 = −15 and b1 = 0.7, and feeding those values into the Equation for LR 4.56, results in
y = e(−15+0.7×20)/(1+e(−15+0.7×20)). This will give an output of 0.735, meaning it is highly
likely for the animal to be a dog since the dog is the primary class, and the value is close
to 1. Looking at it as binary prediction, anything above 0.5 is a dog, and anything under
is a cat. A representation of this can be shown in Figure 4.29.

6The probit model is a type of regression where the dependent variable can take only two values(binary
outcome variables)

7https://machinelearningmastery.com/logistic-regression-for-machine-learning/

70

https://machinelearningmastery.com/logistic-regression-for-machine-learning/

4.2. LOGISTIC REGRESSION (LR)

Figure 4.29: Linear Regression Threshold

4.2.7 Prepare The Data For Logistic Regression

As with most other ML algorithms, the preprocessing of the data is essential. Here
Logistic Regression and Linear Regression have the same relationships and distribution,
some of the same data preprocessing methods can be used for them both.

• Remove Correlated Inputs: If there are many inputs with high correlation,
the model can overfit. This goes for Linear Regression and Logistic Regression.
Calculating the input correlations by pair and removing the ones with too high
correlation prevents the algorithm from overfitting.

• Remove Noise: Removing outliers and data that can misclassify from the training
data will help LR perform better. Since LR assumes that there are no outliers or
misclassified data.

• Gaussian Distribution: Transforming the input variables will make it easier to
expose the linear relationship. By exposing the relationship, the model can become
more accurate. Since LR is a linear algorithm, it assumes a linear relationship
between the output variable and the input variable. A few methods that can be
used to transform the input variables are Box-Cox, log, and root[42].

• Binary Output Variable: The output needs to be a binary output value since
the algorithm will predict the probability of a sample belonging to the first class.

• Fail To Converge: If the data has many highly correlated inputs or is very sparse,
the maximum-likelihood estimator that finds the coefficient value might fail to
converge (refer to Section 4.1.5, Figure 4.7 for more information).

71

CHAPTER 4. MACHINE LEARNING ALGORITHMS

4.2.8 Hyperparameters

Let us define the essential hyperparameters for LR:

• Penalty: This parameter specifies which norm the penalty calculation is going to
use. It can be either l2, l1, elasticnet(combination of l1 and l2), or none. Some
penalties do not work with all the solvers.

• C: This parameter works as it does in SVM. It decided how strong the regularization
would be. It must be a positive float number.

• RandomState: This parameter only works for a few solvers, and it defines the
randomness of the splits. It must be an integer or a random state instance.

• Solver: Solvers are algorithms that LR will use for the optimization problem.
There are five different solvers in the Scikit-learn library for LR: newton-cg, lbfgs,
sag, saga, liblinear8. Each solver has different usecases: liblinear is better for small
datasets than sag and saga, which are faster for bigger datasets. Liblinear cannot
handle the multi-class problem as it is only used for one versus the rest problems.

• max_iter: This parameter defines the number of iterations it takes for the solvers
to converge.

4.3 Support Vector Machines (SVM)

Support-Vector Machine (SVM) is a supervised ML algorithm used for regression and
classification problems. Vladimir Vapnik developed this algorithm with his colleagues
in 1992 at AT&T Bell laboratories[94]. SVM is a very robust prediction algorithm. It
is based on the statistical learning framework proposed by Vapnik. When the training
data is fed into the algorithm, it will categorize into two categories, making SVM a
non-probabilistic binary linear classifier. SVM will map all new data points that it will
predict into a space. The training data separates into categories to maximize the distance
between the classes, where the latest data points will then fall into one of the classes.
SVM can also perform non-linear classification by using a technique where it maps the
data to a higher dimension. This is called the kernel trick, which will be explained in
Section 4.3.6.

4.3.1 Hyper-Plane

Hyperplanes are the decision boundary for SVM. The hyperplane is the line that separates
the different data points fed into the algorithm. The data points go into either side of
the hyperplane and are then classified to their class. A hyperplane does not necessarily
need to be a line. The data is mapped to a higher dimension depending on the input

8https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

72

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

4.3. SUPPORT VECTOR MACHINES (SVM)

features. So if the input features are two, then the hyperplane is just a line, shown in
Figure: 4.30. But if the input feature is three, it will be a plane, shown in Figure: 4.31.
The dimensions of the hyperplane are equal to the dimensions of the data minus one.
When the dimension of the input features exceeds three, it becomes hard to imagine how
it looks. The Equation for Hyperplane is shown in 4.62.

b0 + b1 × x1 + b2 × x2...+ bn × xn = 0 (4.62)

Figure 4.30: 2D Hyperplane

Figure 4.31: 3D Hyperplane

73

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Linear Separable Cases

When SVM got has two input features, and the data points got a clearly separable case,
as shown in Figure 4.30, then it needs to find the most optimal line to separate them. In
the case of this example, there are many lines that can be made to separate the classes.
As a result, the data points above the line will be fitting into Equation 4.64, and the
data points below the line will fit into Equation 4.65, for the hyperplane 4.63.

b0 + b1 × x1 + b2 × x2 = 0 (4.63)

b0 + b1 × x1 + b2 × x2 > 0 (4.64)

b0 + b1 × x1 + b2 × x2 < 0 (4.65)

Separating The Data

Data separation is done based on the data points which shared the same property.
As observed in Figure 4.30, the green- and orange data points receive two properties,
respectively. The generalized formula for separating the points can be calculated with
Equation 4.66. But in most cases, datasets do not look like this. Most of them will have
data points on the wrong side of the hyperplane, and this is where support vectors and
margin come in for aid.

y × (b0 + b1 × x1 + b2 × x2) > 0 (4.66)

4.3.2 Support-Vectors

Support vectors are the points that lie closest to the decision boundary (the hyperplane).
Those data points are the most challenging for the algorithm to classify. We can see the
data points marked with a circle in Figure 4.32. Those data points directly affect the
hyperplane, and any modifications will change the hyperplane. Any other data points
besides support vectors will not impact the hyperplane. The point of the support vectors
is to maximize the margin between the hyperplane and support vectors on both sides.

74

4.3. SUPPORT VECTOR MACHINES (SVM)

Figure 4.32: Support Vectors

4.3.3 Margin

Margin is the distance between the hyperplane and the support vectors on each side.
The margin is the ”line” that makes sure that new data points are on the right side of
the hyperplane, where the SVM algorithm tries to maximize this margin. The dotted
line in Figure 4.32 shows the margin on both sides.

Cost Function And Gradient Updates

We need to maximize the margin between the hyperplane and the data points. To achieve
this, we use a loss function, for example the Hinge Loss function, which is mathematically
represented in Equation 4.67.

l(y) = max(0, 1− yi × (xi − b)) (4.67)

Here yi and xi refer to the instance in the training set, b is the bias, and 1 is the loss
of any given instance. So, breaking it down, we get Equation 4.68.

l =

{
0 if y × (w × x) ≥ 1

1 −y × (w × x) otherwise
(4.68)

The Hinge Loss function Cost function is optimized explicitly for SVM. Hinge loss
separates the boundary into −1 on the left side and +1 on the right side. So when a
point is predicted, it is checked against the actual value. So if the actual value is +1
and the predicted value is −0.25, then the hinge loss equals 1.25. Figure 4.33 shows a
visualization of the hinge loss. The y axis represents the amount of loss, and the x-axis
represents the distance from the boundary line or hyperplane. The gradient updates are

75

CHAPTER 4. MACHINE LEARNING ALGORITHMS

only done when a data point is misclassified. Then the loss is included as a regularization
parameter, and then it updates the weights. If there is no misclassification, the gradient
parameters stay the same.

Figure 4.33: Hinge Loss

4.3.4 Linear With Non-Separable Cases

Most realistic datasets cannot be 100% divided into two classes without having some sort
of misclassification. So when the hyperplane tries to separate the classes, it needs either
let the misclassification happen to some degree or use the kernel trick. Firstly, we will
discuss the results if we let misclassification happen.

Soft Margin

The soft margin allows misclassification to happen, but the error still needs to be
minimized. We also have to deal with more constraints when dealing with misclassification
errors. Therefore, we also need a Loss function, where one of the more used ones is called
the Hinge Loss function, which is mathematically represented in Equation 4.68. The C
parameter is the one that controls the trade-off between how much loss it should have
and maximizing the margin.

Degree Of Tolerance (C)

The C is a parameter in SVM which determines the tolerance of the decision boundary;
in other words, the C parameter is the degree of tolerance. This is important for both

76

4.3. SUPPORT VECTOR MACHINES (SVM)

linear and non-linear data. The higher we set the C value, the more the penalty the
algorithm gets when it misclassifies. A smaller margin will have fewer support vectors to
depend on.

In Figure 4.34, we can see that the hyperplane did not separate all the training points
correctly. This is because the C value is low, which can lead to misclassification. However,
a higher C value does not necessarily result in a higher accuracy. This statement is
discussed followingly.

Figure 4.34: Low C-value With No Additional Predictors

In Figure 4.35 the C value is higher than in the last Figure 4.34, and we can observe
that the hyperplane successfully separated all the training points.

Figure 4.35: High C-value With No Additional Predictors

77

CHAPTER 4. MACHINE LEARNING ALGORITHMS

In Figure 4.36, we can observe a equally low C value as in Figure 4.34, but with more
predictors added, where some of them are misclassified due to the low C value.

Figure 4.36: Low C-value With Additional Predictors

In Figure 4.37, it is the same C value as in 4.35, but here the hyperplane has
successfully separated all the training points and also separated the new predictor points.

Figure 4.37: High C-value With Additional Predictors

In Figure 4.38, we see that low C values have done an excellent job of separating the
new predictors. The only misclassified element is the one data point from the training
set. This shows that the C value does not necessarily need to be as high as possible to
get the best results.

78

4.3. SUPPORT VECTOR MACHINES (SVM)

Figure 4.38: Low C-value With Even More Additional Predictors

In Figure 4.39, we have the same predictors and train points as in Figure 4.38, but
with a high C value, and here, some data is misclassifiedd. So this shows that determining
a C value is a trial and error process, to find the optimal value that separates the training
data and testing data.

Figure 4.39: High C-value With Even More Additional Predictors

4.3.5 Nonlinear Data

In Figure 4.30, a line can separate the data into two classes. However, when observing
slightly more complex dataset, as shown in Figure 4.40, it is clear that no line can separate
this dataset without going through a process to change the dimensions of the data. So to
work around this problem, the SVM maps the dataset into a higher dimension.

79

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.40: 2D Non Separable

Mapping Into a Higher Dimension

To map the example in Figure 4.40, to a higher dimension, it adds a dimension z which
will give example shown in Figure 4.41, a way to separate the data with a line. This
process is called the Kernel Transformation (the Kernel Trick).

Figure 4.41: Separated Data Points When Added z Dimension

4.3.6 The Kernel Trick

SVM uses kernels which are mathematical formulas that take low dimensional input
space and transform them into high dimensional space. There are different kernels like

80

4.3. SUPPORT VECTOR MACHINES (SVM)

((a)) Polynomial Separable ((b)) Raw Dataset

Figure 4.42: Polynomial Effect

Linear, Polynomial, Radial Basis Function (RBF), and Sigmoid. Many more kernels
are available for SVM, but the mentioned kernels are the most frequently used, hence
the only ones included in the Scikit-learn library. RBF is usually the most preferred
kernel[95]. The scalar product between two points in a very appropriate feature space is
returned by the kernel functions. The different kernels are just different ways of making
the hyperplane decision boundary between the classes. The linear and polynomial kernels
are less computational-heavy than RBF, but they also usually provide worse accuracy
than the RBF or other Gaussian kernels. For the kernel formulas, x and xi are the data
we are trying to classify.

Linear Kernel

The linear kernel is the simplest of the kernels and can only do linear separation of data.
It is mainly used when there is a high amount of features in text classification problem.
The linear kernel is quicker, and relatively simple compared to the other kernels. When
tuning the linear kernel, only the C parameter needs to be taken into consideration. The
linear kernel is represented in Equation 4.69.

K(x, y) = (xt × y + c) (4.69)

Polynomial Kernel

The polynomial kernel is a sort of transformer which generates new features. This is done
by using the polynomial combination of all the features we already have. The equation
for the polynomial kernel is represented in Equation 4.70.

K(x, y) = (α× xt × y + c)d (4.70)

81

CHAPTER 4. MACHINE LEARNING ALGORITHMS

For example, a line with x and y, where x = [−2,−1, 0, 1, 2] and y = [1, 1, 0, 1, 1], as
shown in Figure 4.42(b). We have five points that lay on a line, which is impossible to
separate. By using the transformation x2, we get new points. The new point will then
be x = [4, 1, 0, 1, 4], now we can see that it is possible to separate the green dots from
the red dot as illustrated in Figure 4.42.

Radial Basis Function (RBF) Kernel

The radial basis function kernel is a process that generates new features by calculating
the distance between all data points to a specific data point’s center. The Gaussian
radial function is the most common of the RBF kernels[95]. The radial basis function is
represented in Equation 4.71.

K(x, y) = exp(−γ||x− y||2) (4.71)

The gamma parameter is responsible for controlling the influence on the new features
of the K(x, y) decision boundary. The higher the gamma parameter is, the more it will
influence the features on K(x, y), and the boundary will be more versatile. Observing
the exact Figure as on the polynomial kernel with the straight line (Figure: 4.42(b)), it’s
still impossible to separate them with a line. But with the RBF kernel, we can get a new
graph as shown in Figure 4.43, where we can separate the data points.

Figure 4.43: Radial Basis

82

4.4. DECISION TREE (DT)

Sigmoid Kernel

The Sigmoid kernel (hyperbolic tangent kernel) is from the neural network algorithm,
which is used as an activation function. The Sigmoid kernel works like a two-layered
perceptron neural network. The Sigmoid kernel is represented mathematically in Equation
4.72. There are two parameters to tune in the Sigmoid kernel, the C value and the alpha
value. The Sigmoid kernel have been quite popular in SVM due to it coming from ANN
[96].

K(x, y) = tanh(α× xT × y + c) (4.72)

4.4 Decision tree (DT)

Decision trees (DT) is a supervised ML algorithm used for regression and classification
problems. DT is one of the most popular ML algorithms out there[97]. The objective
is to make a model that can predict a value based on a target variable. To make the
model, it first needs to make rules based on the training features. The model is easy
to understand and interpret, and multiple tools can be used to visualize it. It is often
utilized for multiple tasks, such as ML and data mining.

4.4.1 Terminology

Table 4.5: Decision Tree Terminology

Terminology Description

Root node
The root node is a representation of the whole dataset/population.
The root node will then be divided into multiple homogeneous
sets based on the dataset’s size.

Leaf node A leaf node also can be called a terminal node. This is where
nodes stop splitting when there is no more data to split.

Decision node A decision node is where a sub-node is split into more sub-nodes.

Splitting Splitting is when the current node is divided
into two or more sub-nodes.

Branch/sub-tree A branch or sub-tree is a section in the entirety of the tree.

Pruning When pruning a DT, it removes a sub-node of
a decision node. It is like the opposite process of splitting.

Parent A parent node is the node of the sub-nodes, and the
subnodes are the child node of the parent node.

Figure 4.44 shows an overview of the terms mentioned in Table 4.5.

83

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Figure 4.44: Decision Tree Terminology

4.4.2 Assumptions When Creating a Decision Tree

When creating a DT, there are some assumptions to consider. Before anything is done,
the whole training set is considered the tree’s root. The DT algorithm prefers categorical
values over continuous values. If continuous values are going to be used, they need to be
discretized9 before building the model. Every attribute record is distributed recursively
based on the values each attribute holds. The DT algorithm places the root node
or an internal node by applying a statistical method to it, explained in Section 4.4.3.
When representing a DT, it uses the Sum of products (SOP). SOP is also known as
the Disjunctive Normal Form. The product part is every branch from the leaf node
to the root with the same class in conjunction with values. The sum is the different
branches that end in the same class form. The main goal of the DT algorithm is to find
out which attribute provides the most information and make that the root, and each
level below the root. There are several ways to find out which attribute gives the most
information—some of the most common ways to make attribute selection are described
in Section 4.4.3.

4.4.3 Attribute Selection Measures

Attributes are considered as the root, in the beginning. An attribute selection method
needs to be applied when deciding which attribute is the root and which goes on each level.
If this is done by selecting random attributes, the performance will likely be inadequate.
There are multiple attribute selectors used for different tasks explained below. They
calculate the values of each attribute and sort them from highest to lowest. In the case
of Information Gain (IG), the highest value will be the root. Gini index attributes will
be continuous, and IG the attributes will be categorical.

9The process of mapping values in to discrete values. Example 0.0-0.5 -> 1, 0.5-1.0 -> 2 and so on

84

4.4. DECISION TREE (DT)

Information Gain (IG)

Information Gain (IG) is a statistical property used to make a DT. The higher the IG,
the better the separation is. IG should be high, and entropy should be as small as
possible. IG is a way to separate attributes in the training examples based on the target
classification. In this Figure 4.45, we can observe that the figure to the right got even
splits in both nodes, giving a low IG. In the figure to the left, the IG is high because the
content in the nodes is uneven.

Figure 4.45: Information Gain

IG is represented in Equation 4.73. When IG is calculating, it takes the entropy from
before the split and the average entropy from after the split. Entropy(T) is the dataset
before the split, and K is the number of subsets made by the split. Furthermore, (T,X)
is the subset after the split.

InformationGain = Entropy(T)−
K∑
j=i

Entropy(T,X) (4.73)

Gini Index

Gini index is used by the Classification and Regression Tree (CART) algorithm, which is
Cost function that is used to check if a split in a dataset is good or not. The Gini index
can be calculated with Equation 4.74.

Gini = 1−
C∑
i=1

(pi)
2 (4.74)

It takes the squared probability for every class. When the squared probability is calculated,
subtract it from 1 to get a value. The higher the value gets, the higher the heterogeneity.
Gini index only works with categorical target variables and only performs binary splits.
The target variable is either failure or success.

85

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Entropy

Entropy is information about how random the current data is. If the entropy is high, it
is hard to guess the outcome. Figure 4.46 shows that when the x-axis is in the middle,
the entropy is at the highest, giving the outcome a 50/50 for either outcome, while far
to the right and far to the left, the outcome will be corresponding to the side the value
resides. The Entropy can be calculated with Equation 4.75.

E(S) =
c∑

i=1

−pi × log2×pi (4.75)

Here Pi is the most frequent element in the class. Furthermore, it can be either − or +
depending on the split in the class. Entropy is also used to calculate IG.

Figure 4.46: Entropy Perfect Randomness

Gain Ratio

The C4.5 algorithm is an improved version of the ID3. It uses Gain Ratio instead of IG,
which is a modified IG. IG tends to bias towards attributes with many values for the
root node. The Gain Ratio reduces this bias. It deals with this problem by taking the
number of branches into account before the splits. Gain ratio, calculated with Equation
4.76, uses IG as part of the equation, and it’s divided by Intrinsic Information, shown in
Equation 4.77.

GainRatio =
InformationGain

IntrinsicInformation
(4.76)

86

4.4. DECISION TREE (DT)

IntrinsicInformation = −
(∑ T,X

T
× log2×

T,X

T

)
(4.77)

The Intrinsic Information is the entropy of the sub dataset’s distribution.

Reduction in Variance

Reduction in variance is an algorithm used for regression problems where the target
variables are continuous. It uses the standard formula for calculating the variance and
uses this value to choose the best split. The one with the lowest variance is the one
that is chosen as the common value to split the population. Variance is represented in
Equation 4.78.

V ariance =

∑
(X −X)2)

n
(4.78)

The Reduction in Variance first calculates the variance for each node. Then it calculates
the variance for each of the splits. This is done based on the weight of the average node
variance. Then it selects the split with the lowest variance. This process is recursive
until all the nodes are homogeneous.

Chi-Square

Chi-Square is used for the Chi-Squared Automatic Interaction Detector. It is one of the
oldest DT classification methods. The Chi-Square works by taking the difference between
the child nodes and the parent nodes and measuring it by the sum of the square of the
standardized differences between the observed outcome and the expected outcome. If
Chi-Square receives a high value, it gets a high statistical significance of the difference
between the parent and child nodes. The Chi-Square is calculated by Equation 4.79,
where O is the observed score, and E is the expected score.

χ2 =
∑ (O − E)2

E
(4.79)

Chi-Square first needs to calculate the individual node. To do this, it takes the deviation
for both success and failure. Then it takes the sum of the chi-squares from both failure
and success splits and calculates the Chi-Square for an individual node.

4.4.4 Different Algorithms Used In Decision Tree

Since DT can do both regression and classification, it has multiple algorithms based on
the target variable it will predict. Those algorithms decide how the nodes will be split
and the number of splits. A node’s purity10 increases based on the target variable. The
splits will happen on all available variables, and then it finds the split that gives the
most homogenous sub-nodes. Some of the most common algorithms used in DT are: ID3,
C4.5, CART, CHAID, and MARS.

10If a node is pure all of the data points belong to a single class. And if a node is impure then there is
a even distribution in the class.

87

CHAPTER 4. MACHINE LEARNING ALGORITHMS

The Iterative Dichotomiser 3 (ID3)

The Iterative Dichotomiser 3 (ID3) algorithm is used to make a DT and is the precursor
to the C4.5 algorithm. The ID3 algorithm was invented by Ross Quinlan in 1986[98].
ID3 algorithm starts with the raw dataset S and sets that as root node. The algorithm
then iterates through the entire dataset for every unused attribute of dataset S. Then it
calculates the Information Gain(IG(S)) or entropy(H(S)) of the attribute. It selects the
one with the most significant IG or smallest entropy from the calculated values. The
training set S is then separated by the attribute selected by the calculations, then it
produces a subset of the data. The node is then split into child nodes based on the
population of the node. The algorithm keeps recursing for each subset until it’s done,
and it is only considering unused attributes so far in the algorithm. The recursion stops
when:

1. When all elements remaining in a subset belong to the same class, in this case, the
node is turned into a terminal node and gets labeled with the class name.

2. When all of the attributes have been selected and all of the remaining examples do
not belong to the same class. If this happens, the node is made into a terminal
node, and the example of the most common case will be the label.

3. When there is no example in the parent node’s set that’s found and matches a
value of the selected attribute, if this is the case, then a terminal node is created.
The label of this node will be from the parent node’s most common example.

C4.5

The C4.5 algorithm is an extension of the ID3 algorithm and is developed by the same
author Ross Quinlan[99]. This algorithm is mainly used for classification and is often
called a statistical classifier. C4.5 algorithm builds the tree the same way as ID3 with IG
and entropy. The dataset S consists of samples that are already classified. Each sample
of Sn has a dimension vector where each of those vectors has an attribute value of the
sample and a class it falls into. The algorithm chooses the attribute that most effectively
separates the dataset into subsets, which is done for each node in the tree. The splits are
based on the IG, and the IG value has to be normalized for the algorithm to work. The
highest value here will be responsible for making the decision. This process recurses until
it is done. It has a few base rules it follows for when something does not fit elsewhere.

1. If all the values in a sample belong to the same class, it creates a terminal node for
that DT.

2. If the information gained from a feature is irrelevant, the algorithm makes a decision
node higher up in the DT and uses the expected value from the class.

3. If a class that previously has been unseen occurs, it will do the same as when the
IG is irrelevant.

88

4.4. DECISION TREE (DT)

Classification And Regression Trees (CART)

The CART algorithm is binary tree, which was developed in 1986 by Leo Breiman[100].
The CART algorithm is used for classification, and the criterion that it uses is the Gini
impurity index, as shown in Equation 4.74. The CART algorithm has three main steps:

1. First, the algorithm has to find the best split. The amount of splits possible is less
than the number of unique features. It has to find the one that gives the maximum
split for the splitting criterion.

2. Then it has to find the split for the current node. Use the best split from step 1.

3. Then lastly, split the node bases on the best split found in step 2. Repeat the steps
until the stopping criteria are reached.

Chi-Square Automatic Interaction Detection (CHAID)

CHAID is the oldest DT algorithm and was developed by Gordon V in 198011[101]. This
algorithm is used for classification problems, and it expects that the dataset it receives
has a categorical target variable. It uses a Chi-Square, as shown in Equation 4.79, to test
and find which of the feature is the most dominant in the entire dataset. For regression
problems, it uses F-test12. The algorithm can take different data as input, such as ordinal,
continuous, nominal, and analysis data.

The CHAID works algorithm by:

1. Firstly it has to find a variable considered as the root node. This can be either a
dependent variable or the target variable.

2. It builds a tree to predict the outcome of a dependent variable based on how the
given variables merge. When the algorithm gets the data, it splits the continuous
predictors into categories where the number of observations is about the same.

3. Then all the predictors are cross-tabulated to find the best results, and it is
impossible to split the predictors further.

4. CHAID splits the target variable into two or more parent nodes. The parent nodes
are then split into child nodes using a statistical approach.

Multivariate Adaptive Regression Spline (MARS)

Jerome H. Friedman developed the MARS algorithm in 1991[102], [103]. The MARS
algorithm is used for regression, to predict continuous target variables. MARS algorithm
is based on Linear regression, which assumes a relationship between output and inputs
in most cases. However, since most real-life examples cannot be linearly separated, linear

11https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/
chaid/

12A F-test is used to evaluate a hypothesis. It checks the quality of two variances from different classes

89

https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/chaid/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/chaid/

CHAPTER 4. MACHINE LEARNING ALGORITHMS

regression rarely works on its own. This is where the MARS algorithm comes in. MARS
is a sort of ensemble method but for Linear functions along with a Hinge function, as
shown in Equation 4.80.

h(x− c) = max(0, x− c) =

{
x− c if x > 0

0 if x < c
(4.80)

Here c is the constant. c is known as a knot. An example of combined Linear Hinge
function is shown in Figure 4.47. The green dots in this figure are the observations done,
and the blue line is the algorithm’s prediction. Here, it is clear that no single line can
separate this data.

Figure 4.47: Hinge Function

So the MARS algorithm combines multiple linear functions by using hinges. The
MARS algorithm operates in two stages: backward and forward stages. The forward stage
generates the candidate’s functions, which are produced in pairs and will only be added
to the model if its error is lower than before. The number of features can be controlled
with a hyperparameter. The backward stage is a pruning stage. The functions that do
not give anything in the form of performance will be deleted. It finds out which function
does not give any to the model by using an approximation of the Cross-Validation score.
The goal of this score is to penalize how complex the model is. By performing the two

90

4.4. DECISION TREE (DT)

steps, the algorithm will find multiple linear functions which can be put together to split
the data as shown in the Figure 4.47.

4.4.5 Training The Decision Tree

Algorithm 2 shows the process of training the DT algorithm. Firstly it checks if the
stop criteria have been accomplished. If the stop criteria have not been reached, all the
attribute splits will be calculated based on their value, and the nodes will be labeled
according to the optimal split value. Then it proceeds to split the nodes into multiple
nodes, one node for each of the unique values in the specific attribute. Then it recurses
on the same process over and over on all of the subsets until it reaches the stop criteria.
This will contain all the data with the matching values from the chosen attribute. If it
has reached the stop criteria, the current node will be labeled with the most common
value in the training set out of all the classes.

Algorithm 2: Decision Tree[104]
Data: Training Set S, Input Feature Set A, Target Feature y, Split Criterion

SplitC , Stop Criterion StopC ,
1 GrowTree(S,A,C, SplitC , StopC)
2 if StopC(S) = False then
3 for all ai ∈ A do
4 find ai with best optimized SplitC(S)
5 end
6 label current Node with a
7 for all values vi ∈ a do
8 label outoing edge with vi
9 Ssub = S where a = vi

10 create subNode = GrowTree(S,A,C, SplitC , StopC)
11 end
12 end
13 else
14 CurrentNode = Leaf
15 label currentNode with ci where ci is most common value of C ∈ S

16 end

4.4.6 Pruning Decision Trees

DT can easily overfit if there are no limits to the tree. The tree will have 100% accuracy
by making a single leaf for every observation in the dataset. If the tree has one leaf for
every observation in the dataset, the predicting of testing and validation sets will be
affected. A way to stop overfitting DT is to prune them.

91

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Pre-Pruning

Pre-pruning brings the DT to an early stop by giving it constraints, which it then
evaluates. Those constraints can either be from the IG or gini impurity measures. The
conditions are measured at each node in the tree. If one of the conditions is met, the
subtree will be pruned. By pruning, a tree replaces a decision node with a terminal node.
The advantage of pre-pruning is that it stops the model from overfitting, which is a big
issue for DT. It also increases the model’s efficiency and makes it faster to process.

Post-Pruning

Post-pruning is pruning the tree after it has been built. The tree builds the defined
model as usual, and then it gets pruned from the bottom and up. Post-pruning is based
on the same measures as pre-pruning, either Gini impurity or IG. This process starts at
the decision node at the bottom of the tree and decides whether or not to keep it. If the
algorithm decides not to keep it, the decision node will be changed to a terminal node.
This process can take away a subtree and replace it with a single terminal node.

Cost-Complexity Pruning

A pruning technique that goes under the post pruning process is cost-complexity pruning.
This technique calculates a score of the tree with the use of Equation 4.81, where yi is
the value of the predicted variable, f(xi) is the predicted value of yi and n is the upper
limit. The TreeScore, shown in Equation 4.82, is calculated by taking the Residual Sum
of Squares (RSS)13 and alpha score14 and the number of leaves in a subtree.

RSS =

n∑
i=1

(yi − f(xi))
2 (4.81)

TreeScore = RSS + α (4.82)

The TreeScore is calculated for all subtrees in the entire tree. Then it picks the
subtree with the lowest score. It is essential to find the correct alpha score. The algorithm
executes Cross-Validation to find an alpha score. Then the process above is repeated with
a different alpha score from the cross-validation until it has a sequence of trees. Each of
the tree’s TreeScores is calculated, and the one that gives the lowest score averagely will
have its alpha score recommended.

4.4.7 Hyperparameters

Table 4.6 represents the different hyperparameters for DT.

13RSS is a equation used to measure the variance in the data
14The alpha score keeps track of the weakest nodes, and those are the first to be pruned

92

4.4. DECISION TREE (DT)

Table 4.6: Decision Tree Hyperparameters

Hyperparameter Description

criterion
The criterion parameter chooses which function the algorithm
uses to measure the split. Entropy and log_loss are used for
the IG approach, while ”gini” is used for the Gini impurity loss.

splitter The splitter chooses what kind of method to use to split each node.
The choices are between random and best splits.

max_depth
The max_depth parameter decides the depth of the tree.
If this parameter is undefined, the tree will grow until all the leaves
contain less than the min sample split’s samples or until they are pure.

min_samples_split

This parameter can be an int or a float number. If it is an int, it is
considered the minimum amount of samples required to split a node.
If it is a float number, it will be a fraction of the minimum number
of samples for each split.

max_leaf_nodes This defines the number of leaf nodes the tree can have. The best
nodes are the ones with the best impurity ranking.

max_features is a parameter to decide the number of features it considers when
looking for the best split. It can be integer, float, log2, or sqrt.

ccp_alpha
This parameter is a part of a pruning process often used as a pre
pruning process. The cost-complexity pruning process finds a
float number bigger than a subtree’s complexity cost.

4.4.8 Knowing The Advantages And Disadvantages

There are some advantages and disadvantages with DT. Knowing the limitation of the
algorithm makes it easier to know when to use it and when not to use it. Alternatively,
what to do with the DT in some cases.

Advantages

Decision tree is a robust algorithm with many advantages, such as:

1. It works with categorical and numerical data and variables.

2. It does not need as much data cleaning as some other ML algorithms to work well.

3. It is a simple algorithm to understand and got lots of tools that help visualize the
tree.

4. It can solve problems with many different outputs.

93

CHAPTER 4. MACHINE LEARNING ALGORITHMS

Disadvantages

Decision tree got some weaknesses that are good to keep in mind before choosing an
algorithm for a dataset.

1. DT is highly affected by noisy data.

2. It does not deal with big datasets very well.

3. If the outcome of the dataset is uncertain or linked with other outcomes, the tree
can become very complex.

4. DT also only deal with binary outcomes, so that can reduce the amount of
complexity.

5. It can easily overfit, but this can be reduced by doing some pruning or using RF
instead.

94

4.5. RANDOM FOREST (RF)

4.5 Random Forest (RF)

Random Forest (RF) is a robust algorithm for regression, classification, and other tasks
which involves constructing a significant amount of DT when training. RF is an ensemble
learning method developed by Leo Breiman and Adele Cutler in 2006 [105], but prior to
this, Tin Kam Ho developed the first Random Decision Forest in 1995 [106]. In 2009 the
trademark is now owned by Minitab, inc [107].

Figure 4.48: Random Forest Classifier

4.5.1 Preliminaries

RF is an ensemble method that uses DTs to make a forest as shown in Figure 4.48. So
to understand the RF, one got to have complete knowledge of the DT algorithm (Refer
to Section 4.4 for more information). Using RF solves one of the significant issues DTs
have, which is overfitting. A DT can grow very deep, which causes the overfitting of
the training sets. RF uses the same dataset for multiple DTs. Each DT is trained on
different parts of the training set, and then it takes the average score from the trees to
reduce the variance. This technique usually increases the model’s performance, but it
can increase bias and be harder to interpret.

4.5.2 Bagging

Bagging is also known as Bootstrap Aggregation. Bootstrap Aggregation is the technique
that RF applies for its majority voting. Majority voting works by taking random sample
from the dataset and generating a model from this sample. This method is called Row
Sampling. When every model is trained independently, the results are saved. Then, when
all the models are done with their individual performance, a majority vote combines all

95

CHAPTER 4. MACHINE LEARNING ALGORITHMS

the results into one. This sequence is called Aggregation. We can describe Bootstrap
Aggregation by an example: each samples shown in Figure 4.49 is selecting data from
the original dataset. When selecting from the actual dataset, it is with replacement, so
there is a chance for each of the samples to contain some of the same values. Each of the
samples is now trained individually, where the results is sent to the ensemble classifier,
where the majority vote decides the final outcome.

Figure 4.49: Bagging Example

4.5.3 Boosting

Boosting is when an algorithm train weak learners to become strong learners, which is a
sequential process. Each model tries to fix the error of the prior model to reduce Bias.
Boosting is easily prone to overfitting, which is one of the main disadvantages, but this
can be avoided with pruning. The frequently used Boosting techniques are:

• GBM

• XGBM

• CatBoost

• AdaBoost

Summarizing Bagging and Boosting:

96

4.5. RANDOM FOREST (RF)

1. Bagging is when the training data are split into a subset with replacements, and
the final results are based on majority voting, such as RF.

2. Boosting is when the weak learners are combined to make one strong learner. It
does this by making the models in a sequential pattern so the last model will have
the best performance.

Figure 4.50 illustrates how Bagging and Boosting work.

Figure 4.50: Difference Between Bagging And Boosting

4.5.4 Ensemble

The ensemble method’s goal is to increase the performance of any statistical learning
or a model’s fitting technique. Ensemble methods create a combination of linear fitting
methods instead of a single fit method. The ensemble method can be trained and used
to make predictions, therefore, making it a supervised ML algorithm. It takes a group of
weak learners and merges them to make a strong learner, which increases the model’s
performance. What ensemble methods do is reduce variance and bias errors. Those
factors are the ones that cause the difference between the predicted values and the actual
values in any given model. Also, noise can affect this outcome, but this is dealt with by
reducing the Variance and Bias. All of the errors can be capture for continuous variables
with Mean Squared Error (MSE), shown in Equation 4.83.

MSE = E

[(
Y − f (x)

)2]
(4.83)

Y is the actual value, f (x) is the predicted target variable value, and E is the expected
mean.

Applying Bagging, as shown in Figure: 4.51, and Boosting techniques to a model can
help with reducing the variance and makes the model more robust. It uses a combination

97

CHAPTER 4. MACHINE LEARNING ALGORITHMS

of classifiers, which is good if the classifiers are unstable. An ensemble which consists of
a highly unstable single classifier, will result in poor performance.

Figure 4.51: Ensemble Algorithm

There are two different methods for ensemble algorithms. First, one is Boosting
methods, where and the estimators are built in a sequence to reduce bias on the combined
estimator. In comparison, the other method is an average method. This method builds
several trees simultaneously and takes the average value from their predictions. The
combined tree it creates often performs better and with reduced variance.

4.5.5 Difference Between Decision Trees and Random Forest

Table 4.7 explains the difference between Decision Trees and Random Forests.

Table 4.7: Difference between Decision Trees and Random Forests

Decision Tree Random Forest

1

Decision trees can easily
overfit if the tree is left
to grow without any form
of pruning.

Random forest uses subsets
of the dataset for each tree,
and the output from all the
trees will be put into a majority vote.
This usually solves the overfitting
issue in most cases

2

Decision trees are very
fast and require less
computational power to
perform the task

Random forest takes a longer
time and uses more computation
power to perform the task.

3

When building a decision
tree, a set of features will
be imported into the tree,
and from this, a set of rules
will be formulated to make
the rules it uses to
make predictions

Random forest takes random
observations and builds
decision trees. The average
from those trees will be
the prediction it makes.
So in the case of random forest,
it will not make any rules

98

4.5. RANDOM FOREST (RF)

4.5.6 Hyperparameters

The hyperparameters for RF are explained in this Table 4.8. Some of the parameters in
RF and DT overlap. The overlapping features are explained in the Decision Tree Section
4.4.7)

Table 4.8: Random Forest Hyperparameters

Hyperparameter Description

n_estimators Parameter to define the number of trees in RF.

min_samples_leaf

Parameter to define the number of samples required
to be in a leaf node at each stage. A split will only be
considered at any given depth in the tree if it leaves
the min sample leaf number in the right and left node.

n_jobs
States how many jobs are running in parallel. Defining
-1 will use all of the cores in the processor to
work on this problem.

random_state

Controls the randomness of which features to consider
when sampling them for the best split at each node.
It also controls how random the bootstrapping is when
picking the samples for tree building.

oob_score
is only used when bootstrapping is enabled. This
parameter controls if it is going to use out-of-bag
samples to estimate the generalization score.

99

CHAPTER 4. MACHINE LEARNING ALGORITHMS

4.6 K-Nearest Neighbor (KNN)

The supervised ML algorithm K-Nearest Neighbor (KNN)[108] algorithm can address
both classification and regression tasks[109], [110]. The KNN assumes that similar data
points exist in closest proximity meaning that there are near to each other, as shown in
Figure: 4.52. Distance metrics such as Euclidean distance, Hamming distance, Manhattan
distance and Minkowski distance are utilized to estimate the distance between points for
locating the closest similar points.

KNN can implement Anomaly Detection (also called outlier detection) by categorizing
training data as points, and the class with the closest point aggregates it as an input.
The algorithm generalizes pleasingly for training datasets with many inputs, where the
training set may be expanded at any moment. Significant speed gains may be realized by
sorting the data according to each feature and utilizing complicated data structures such
as kd-trees15. Furthermore, the KNN approach can be enhanced in speed and stability
concerning the order of data presentation by substituting the sort operation with the
computation of order statistics[80], [111].

Figure 4.52: K-Nearest Neighbor Classifier

The Euclidean distance (Equation: 4.84) uses the Pythagorean Theorem at heart:
a2+ b2 = c2. In Equation 4.84, xi and yi are the coordinators of the ith featured element,
respectively, and n is the total number of features in the dataset. The order of the norm
is represented by the parameter p in Minkowski Distance (Equation: 4.85). Manhattan

15https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html

100

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html

4.6. K-NEAREST NEIGHBOR (KNN)

Figure 4.53: Euclidean/Manhattan Distance

distance is represented by defining the order (p) to 1, and when the order (p) equals 2,
represents the Euclidean distance. We can utilize the Euclidean Distance, calculated by
Equation: 4.84, Minkowski Distance, calculated by Equation 4.85, Manhattan Distance
calculated by Equation 4.86, for KNN implementation. Figure 4.53 is visual representation
of the Euclidean-, Minkowski- and Manhattan distances.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (4.84)

d(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(4.85)

d(x, y) =

n∑
i=1

|xi − yi| (4.86)

The main advantages of KNN:

1. The algorithm is simple and straightforward to implement

2. There is no need to create a model, tweak parameters, or make any further
assumptions

3. The algorithm is highly adaptable. It has classification, regression, and search
capabilities.

101

CHAPTER 4. MACHINE LEARNING ALGORITHMS

One of the most significant disadvantages is that the algorithm gets much slower as
the number of input/independent -variables increases. Meaning the volume of data has
a significant impact on the runtime for the algorithm. Thus, KNN is not suitable for
applications where real-time data output is crucial. However, with proficient computer
resources, KNN can be very useful for identifying similar objects. The main steps of the
KNN is shown in Algorithm 3.

Algorithm 3: K-Nearest Neighbor (KNN)
Data: K-value, dataframe
Result: Class (attack or non-attack)

1 Load preprocessed splitted training and testing datasets.
2 for training_points do
3 Calculate d(x, yi) with i = 1, 2, ..., n where d denotes the Euclidean Distance

between points (Equation 4.84)
4 Sort calculated distances in ascending order
5 Get top K rows from the sorted array
6 Assign a class to the training data point, based on majority voting
7 end
8 return predicted_class

4.6.1 K-value

We run the KNN algorithm numerous times with different values of K to find the K that
decreases the number of errors we encounter while retaining the algorithm’s capacity to
generate correct predictions when it has given data it has not seen before. There are
some aspects to consider when choosing the K value. First, our predictions become less
stable as we reduce the value of K to 1 (overfitting and high variance), where the error
will always be zero since the algorithm chooses the nearest Class to assign the datapoint.
Second, as the value of K increases, our predictions become more stable due to majority
voting and averaging, and hence more likely to be accurate, which is up to a certain
point. We eventually will start to see an increase in the number of errors and know that
we have pushed the value of K too much.

Before implementing the algorithm, we should consider preparing the data through
three stages in the preprocessing phase: Data Scaling, Feature Selection, and Missing value
imputation (Section: 5.3). We want to scale the dataset with the help of normalization
(standardization) so the algorithm can allocate correct predictions in the feature space.
If there are too many features, KNN may not operate effectively. As a result, procedures
like feature selection and analysis may be used to reduce dimensionality. If one of the
feature data for a given sample in the training set is missing, we will be unable to find or
compute the distance from that location. As a result, either deletion or imputation is
necessary[112].

102

Chapter 5

Implementation

In this Chapter, we present the variety of methods used to implement the ML Algorithms
presented in Chapter 4. Firstly, we will discuss the necessary tools and libraries we
have used to get the desired results. Furthermore, we demonstrate our proposed NDPF
for the UNSW-NB15 dataset. The results gained from these implementations will be
documented for performance analysis in Chapter 6.

Figure 5.1: Project Framework for Anomaly Detection

103

CHAPTER 5. IMPLEMENTATION

Figure 5.1 shows the steps taken to implement our project framework. The first step
of the whole project is Dataset Import, where the goal is to assess the chosen dataset.
The UNSW-NB15 dataset can be acquired from UNSW Sydney’s website1 where the
data is publicly open for any developer or researcher to access free of charge.

The second phase of the project is the development of our Novel Data Preprocessing
Framework (NDPF), shown in Section 5.3. The RAW dataset undergoes several necessary
preprocessing steps so that our ML models can apprehend and run the dataset without
any errors. The main preprocessing steps include Data cleaning, Data Reduction, Data
transformation, and splitting of the datasets into input and output variables.

The final two phases of the project focus simultaneously on ML algorithm development
and implementation and documentation of the predictions. First, the training dataset is
utilized for training the algorithms regarding Binary Classification, mentioned in Chapter
4, which include: K-Nearest Neighbor, Artificial Neural Network, Random Forest, Decision
Tree, Support Vector Machines, and Logistic Regression. Finally, the testing sets validate
the models, where the results are documented. The Result documentation is then
analyzed for further inspection using various methods.

5.1 Tools and Python Libraries
This Section will present a variety of tools used for our thesis. The tools used are essential
and provide different purposes to complete our project. Mainly, we use Python 3 as the
programming language of choice. Even though Python is a slow interpreter language,
compared to Java, C, and C++, the Python libraries’ ease of use and availability are much
more substantial. Figure 5.2 is a visual representation of our used tools and libraries.

Figure 5.2: Tools and Libraries

5.1.1 Tools

This Section introduces the necessary tools for our thesis: Python, Jupyter Notebook,
Visual Studio Code, Github, Overleaf, Draw.io, and Anaconda.

1www.research.unsw.edu.au/projects/unsw-nb15-dataset

104

www.research.unsw.edu.au/projects/unsw-nb15-dataset

5.1. TOOLS AND PYTHON LIBRARIES

Python

Python is a dynamically typed, interpreted language2 with a concise and efficient syntax.
Python’s programming language is widely used and was created by Guido Van Rossum
and published in 1991[113]. The programming language is frequently used to create
websites and software, automate processes, and analyze data. Python is a general-purpose
programming language, which means it can be used to develop a wide range of applications
and is not tailored to any particular issue. It has become one of the most widely used
programming languages because it is friendly for beginners and has versatility. According
to a poll done by industry analytic company RedMonk, Python was the second-most
famous programming languages[114] in 2021. There are many applications for Python:

1. Machine Learning and Data Analysis

2. Web application development

3. Automation of processes and scripting

4. Testing and prototyping software

5. Everyday tasks

In the world of Data Science, Python has become a pillar that allows data scientists
and analysts to perform complicated statistical computations, produce data and visualize,
develop and design ML algorithms, and have high flexibility within data manipulation.
TensorFlow and Keras are two Python frameworks that let programmers create data
analysis and ML systems more rapidly and effectively[115]. In addition, scientific computer
languages such as R and Matlab are helpful for analysis, but they are challenging to
incorporate into production applications. Unlike programming languages like C, C++3,
or Java4, the time spent developing the code is minimal. As an outcome, developers
may devote more effort to AI and ML algorithms and heuristics. In our case, Python 3
has been the only programming language we have used for the exact reasons mentioned
above.

Jupyter Notebook

A Jupyter Notebook5 is a free, open-source IDE that lets data scientists create and
share documents with live code, equations, and other multimedia elements. We can use
Jupyter Notebooks for Exploratory Data Analysis (EDA), data preprocessing (cleaning,
transformation, visualization), modeling with statistics, ML, and deep learning.

Jupyter notebook are particularly excellent for presenting the work that has undergone.
The notebook contains cells that can be run one after another for better understanding

2A programming language that executes the program, line by line
3https://docs.microsoft.com/en-us/cpp/?view=msvc-170
4https://docs.oracle.com/en/java/
5https://jupyter.org/

105

https://docs.microsoft.com/en-us/cpp/?view=msvc-170
https://docs.oracle.com/en/java/
https://jupyter.org/

CHAPTER 5. IMPLEMENTATION

and structured code. The cells in the notebook can also be used as a markdown cell,
where we can take notes and give helpful information to other developers[116], [117].

Visual Studio Code

Microsoft’s Visual Studio Code (VS Code)6 is a free, open-source text editor. Although
the editor is moderately lightweight, it has powerful extensions that make it an excellent
development environment. The platform supports a wide variety of programming
languages: Python, Java, C++, CSS, and so on. In addition, it can identify whether any
code snippets are missing. Variable definitions and standard variable syntaxes are also
generated automatically. For example, if a variable is utilized in a program and the user
forgets to define it, intelli-sense will declare it for the user. At the same time, numerous
projects, including various files/folders, can be opened. These projects/folders might be
connected or unrelated to one another. Resources may be retrieved and saved through
the Git Hub Repo online repository. Resource pulling also refers to copying code made
publicly available on the internet. This code can be modified and saved at a later time.

One of the main reasons for us choosing Visual Studio Code as a developing platform
for our thesis is due to the extensions, especially Jupyter Notebook (.ipynb files). The
editor made it easy for us to have multiple files open, reading .csv files at a glance and
even restructure the file tree.

Github

Github is a cloud-based service that allows developers to store and manage code while
tracking and controlling versions. Version control aids developers in tracking and
managing changes to the code of a software project. Version control becomes increasingly
important as a software project expands. We, as developers, can branch out sub-divisions
of the project and make changes and modifications to a section of a code without
jeopardizing the project as a whole. After branching, we can merge the section back
into the main source code, which in hand can be published (or already published) after
checking that the code is operating correctly. The central aspect of this process is to
record the changes and backtrack if necessary[118], [119]. For our project, Github has
been beneficial in tracking changes and sharing code files among us.

Overleaf

Overleaf provides a free online academic writing environment. The tool is used to create
various documents from blog posts, journal articles, academic articles, posters, slide
shows, books, essays, and so on. Although the system is based on LATEX, it gives Overleaf
a mature rich-text editor that one can use. LATEX, is a documentation preparation system
created by Leslie Lamport in 1986[120]. Overleaf allows real-time editing. For producing
technical papers, LATEX, facilities for typesetting mathematics make this an appealing
choice. We have explicitly used Overleaf for documentation and writing for our thesis.

6https://code.visualstudio.com/

106

https://code.visualstudio.com/

5.1. TOOLS AND PYTHON LIBRARIES

Draw.io

Draw.io7 is a proprietary program for creating diagrams and charts created by Seibert
Media8. We can use the software’s automated layout option or design our own unique
layout. They include a considerable number of shapes and hundreds of graphic components
to let us create a one-of-a-kind illustration or chart. In addition, the drag-and-drop
capability makes creating a professional-looking diagram or chart a breeze. Every chart
and diagram that is not generated by Seaborn or Matplotlib (Section: 5.1.2) is drawn by
us in Draw.io

Anaconda

Anaconda9 is an open-source package manager focusing on data science for the Python
and R programming languages. The purpose of Anaconda is to make managing packages
(libraries) and deployment easier for the developer. Python environments are sensitive
to versions across multiple libraries, where they have to be compatible with each other.
Anaconda solves this challenge by an in-built control for versions before installing them
to our Python Environment. Anaconda comes with over 250 in-built packages pre-
installed, where over 7500 more packages can be installed from open-source databases.
The Anaconda software is one of many data scientists’ most used package managers.

5.1.2 Python Libraries

This Section introduces the necessary libraries for our thesis: Pandas, Numpy, Matplotlib,
Seaborn, Scikit-learn, and Keras.

Pandas

The Pandas library is a powerful tool for working with data in the form of tabular
data(excel, csv, SQL, JSON, . . .), which may be presented in spreadsheets and databases.
We can utilize the library to examine, clean and process data, where the dataset is often
referred to as a DataFrame in Pandas10.

The library is versatile since we can do several filtering methods for rows and columns
or on a condition. Furthermore, there are several methods to slice, select, and extract the
data which only we contradict necessary. In combination with the power of Matplotlib,
Pandas can bring data into figures (plotting) with minimal effort. There are several
plotting types: scatter, boxplot, barplot, and more.

We can apply simple statistics such as (mean, median, min, max, counts, etc). Those
conditions can be used for the whole or sections of the dataset. The split-apply-combine
method is another name for it. The library also offers strategies to manipulate textual
data to apply ML models to our dataset. Table 5.1 represents the most used Pandas

7https://drawio-app.com/
8https://info.seibert-media.net/display/DRAWIO/draw.io+Home
9https://www.anaconda.com/

10https://pandas.pydata.org/docs/pandas.pdf

107

https://drawio-app.com/
https://info.seibert-media.net/display/DRAWIO/draw.io+Home
https://www.anaconda.com/
https://pandas.pydata.org/docs/pandas.pdf

CHAPTER 5. IMPLEMENTATION

functions for our thesis11. In our project, the Pandas library has been an absolute
necessity for data manipulation and preprocessing.

Numpy

Numpy (Numerical Python), created by Travis Oliphant[121] in 2005, is one of the most
critical Python libraries, where its most common use is for Scientific Calculations on
Python arrays. The open-source library also works in the domain of Fourier Transform,
Matrices, and Linear Algebra. In Python, we work with arrays, which are extremely slow
for processing, where Numpy has integrated an object of type ndarray which is up to 50
times faster than Python lists. Table 5.2, represents the most used Numpy functions12.

Table 5.2: Most used Functions from Numpy library

Function Description

min() Find the Minimum value from a ndarray
max() Find the Maximum value from a ndarray
std() Find the Standard Deviation from a ndarray
median() Find the Median from a ndarray
percentile() Find the Percentile from a ndarray
linspace() Create an evenly spaced range of values from an interval
shape() Find the Shape of a ndarray
reshape() Reshape a ndarray
sort() Returns a sorted ndarray

Matplotlib & Seaborn

The graphic depiction of data is known as data visualization. It breaks down a large
dataset into little graphs, making data analysis and prediction easier. It is a crucial
component of data science that helps people comprehend and access complex data.
Matplotlib[122] and Seaborn[123] are the foundations of Python data visualization.

Matplotlib is a Python package that helps plot graphs using other Python libraries
like Numpy and Pandas. It is a robust Python data visualization tool. It is used to draw
2D graphs of arrays and create visually appealing figures. In addition, it makes use of
Pyplot13 to provide a free and open-source MATLAB14-like interface.

Seaborn is a Python package that works with Matplotlib, Pandas and Numpy to
plot graphs and figures. We can consider Seaborn to be built upon the Matplotlib
library to create univariate and bivariate data representations visually. Seaborn decorates
Matplotlib visuals with beautiful, attractive graphics[124]. Table 5.3, represents a
comparison of Seaborn and Matplotlib.

11https://pandas.pydata.org/docs/reference/
12https://numpy.org/doc/
13Pyplot is a set of functions that allow Matplotlib to behave similarly to MATLAB
14https://www.mathworks.com/products/matlab.html

108

https://pandas.pydata.org/docs/reference/
https://numpy.org/doc/
https://www.mathworks.com/products/matlab.html

5.1. TOOLS AND PYTHON LIBRARIES

Table 5.1: Most used Functions from Pandas library

Use case Function Description

Input/output read_csv()
Read a .csv file and transform
to a DataFrame

Input/output DataFrame.to_csv()
Save a DataFrame as a .csv
file to allocated path

Missing Data isna()
Returns any missing values
from DataFrame

Missing Data isnull()
Returns any missing values
from DataFrame

Missing Data notna()
Returns any non-missing
values from DataFrame

Missing Data notnull()
Returns any non-missing
values from DataFrame

Data Manipulation melt()
Changes the DataFrame
from wide to long.

Data Manipulation merge() Merges DataFrame

Data Manipulation get_dummies()
Convert Categorical variables
into dummy(indicator) variables.

Data Manipulation unique()
Returns unique values
from Dataframe

Index Index.values()
Returns an array of the data in the
feature/index

Index Index.is_unique()
Returns if the index/feature
has unique values

Index Index.has_duplicates()
Returns if the index/feature has
duplicate values

Index Index.hasnans()
Returns TRUE if the
index/feature has NAN

Index Index.dtype()
Returns the data type
for the data in the index/feature

Selecting Index.isin()
Returns an array of booleans
whether the given value
corresponds to the index value.

109

CHAPTER 5. IMPLEMENTATION

Table 5.3: Matplotlib and Seaborn Comparison

Use case Matplotlib Seaborn

Functionality
Used to create simplistic graphs.
Barplot, histplot, scatterplot, lineplot,
and piecharts

Seaborn includes a number of data
visualization patterns and visualizations.
It employs intriguing themes. It facilitates
the compilation of all data into a
single graphic.

Visualization

Matplotlib is a graphical tool
for data visualization in
Python that works well with
Numpy and Pandas. Pyplot
has many of the same capabilities
and syntax as MATLAB. Therefore,
users of MATLAB can easily adapt this.

Seaborn is more experienced
with Pandas data frames. In Python,
it employs a simple collection of
techniques to create stunning images.

Data Frames
and Arrays

Matplotlib is good at working
with data frames and arrays.
Figures and axes are treated as objects.
It has a number of domain specific
plotting APIs. As a result, operations
like plot() can operate without arguments.

Seaborn is far more structured and
useful than Matplotlib, because it
considers the entire dataset as a single
entity.Because Seaborn is not very stateful,
arguments are necessary when using
methods like plot()

Scikit-Learn

Scikit-learn[125] is a popular ML toolkit for the programming language Python. Scikit-
learn focuses on ML methods, statistical, mathematical, and various algorithms, which
serve as the foundation for many ML technologies. In addition, Scikit-learn is a free
tool that is extremely useful in constructing many different types of algorithms. David
Cournapeau and Matthieu Brucher started the project as of Scikit-learn 2007, where the
leadership for the project shifted to Fabian Pedregosa and others, and the first public
release of the platform took place in 2011[125].

Classification, regression, and clustering techniques are the essential Scikit-learn
features for ML. Scikit-learn, for example, allows work on RF, in which individual digital
trees store node information aggregated in numerous tree topologies to produce a forest
approach. Another way to put it is that each tree has clustered nodes in a tree topology,
and the analysis from many trees is combined to create a global strategy that crunches
data more precisely to reveal conclusions. In addition to RF, Scikit-learn can aid with
gradient boosting, vector machines, and other ML features that are important for getting
results. Scikit-learn, as a comprehensive resource, interacts with visualization and other
tools like Matplotlib and Seaborn[126]. Listing 5.1, represents some of the imports from
the Scikit-learn library.

1 # Importing Logistic Regression Classifier Library
2 from sklearn.linear_model import LogisticRegression
3

110

5.1. TOOLS AND PYTHON LIBRARIES

4 # Import Support Vector Machines Classifier Library
5 from sklearn.svm import SVC
6

7 # Import K-Nearest Neighbor Classifier Library
8 from sklearn.neighbors import KNeighborsClassifier
9

10 # Import Decision Tree Classifier Library
11 from sklearn.tree import DecisionTreeClassifier
12

13 # Import Random Forest Classifier Library
14 from sklearn.ensemble import RandomForestClassifier
15

16 # Import Multi Layer Perceptron (ANN) Classifier Library
17 from sklearn.neural_network import MLPClassifier

Listing 5.1: Import of classification libraries

Keras

Keras15 is a Google-developed high-level deep learning API for creating neural networks.
It is built in Python and is used to simplify neural network construction. It also allows
for the calculation of numerous neural networks in the backend. Keras is simple to
understand and use since it gives a high-level Python frontend with the flexibility of
different backends for computation. Keras is slower than other deep learning frameworks
because of this, yet it is incredibly user-friendly.

Keras lets us swap back and forth between several backends. Keras supports the
following frameworks:

• Tensorflow16

• PlaidML17

• Theano18

• MXNet19

• CNTK(Microsoft Cognitive Tool)20

TensorFlow is one of the only five frameworks that has accepted Keras as its official
high-level API. Keras is a deep learning framework built on TensorFlow and has integrated
modules for all neural network operations. At the same time, we may use the Tensorflow
Core API to create custom computations using tensors, computation graphs, sessions, and
other things, giving us complete freedom and control over our application and allowing

15https://keras.io/
16https://www.tensorflow.org/
17https://www.intel.com/content/www/us/en/artificial-intelligence/plaidml.html
18https://theano-pymc.readthedocs.io/en/latest/
19https://mxnet.apache.org/versions/1.9.1/
20https://docs.microsoft.com/en-us/cognitive-toolkit/

111

https://keras.io/
https://www.tensorflow.org/
https://www.intel.com/content/www/us/en/artificial-intelligence/plaidml.html
https://theano-pymc.readthedocs.io/en/latest/
https://mxnet.apache.org/versions/1.9.1/
https://docs.microsoft.com/en-us/cognitive-toolkit/

CHAPTER 5. IMPLEMENTATION

us to execute our ideas in a short amount of time[127]. We have used Keras explicitly for
developing our ANN Models.

5.2 The UNSW-NB15 Dataset

Dataset is the most crucial aspect of a network security analysis. The amount of the
data also impacts the performance of ML algorithms. Therefore, selecting the most
significant features from the input data can simplify the modeling process and result
in faster and more accurate predictions. Frequently, datasets contain multiple useless,
redundant features, which is disadvantageous to the accuracy of the results. In light of
this, the UNSW-NB15 dataset is selected. The dataset has also been widely used in
many types of research.

The UNSW-NB15 dataset was created by researchers from the Australian Center
for Cyber Security (ACCS) in 2015 with 49 features and nine attack categories[17].
The UNSW-NB15 dataset is more sophisticated and reflective of current attacks and
regular network traffic, making it suitable for evaluating network intrusion techniques.
The dataset unprocessed (RAW) network packages were generated using the IXIA
PerfectStorm system21 in UNSW Canberra’s Cyber Range Lab. The goal was to produce
a hybrid of genuine modern regular activities and synthetic recent attack behaviors.
Whereas 100 GB of RAW traffic was captured using the tcpdump program (Pcap
files)[17]. The datasets are allocated in a cloudstor database, where the data are
categorized into folders: Argus, BRO, CSV, PCAP, and Reports. Argus is a network and
system monitoring tool. Its purpose is to keep track of network services, servers, and
other network equipment. The BRO is an anomaly-based Intrusion Detection System
(IDS), where the files for this particular system are located in a folder correspondingly.
The CSV (Comma Separated Values) folder is the data our project mainly focuses on,
where the dataset providers offers already split training and testing sets[31], [128].

5.2.1 Attack Categories

The dataset includes nine different attack categories: Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode, and Worms[1], [129].

1. Fuzzers is a method for adversaries (hackers) to automatically crash a system or
program by injecting randomly generated data.

2. Exploits takes advantage of security vulnerabilities in the system or network. As
a result, the adversary knows a problem within a specific application and takes
leverage with that knowledge.

21The PerfectStorm module from xia is a scaleable solution for testing convergent multi-play services,
application delivery systems, and network security platforms on both wired and wireless networks
(www.keysight.com/us/en/products/network-test/network-test-hardware/perfectstorm.html)

112

www.keysight.com/us/en/products/network-test/network-test-hardware/perfectstorm.html

5.2. THE UNSW-NB15 DATASET

3. Denial of Service (DoS) attack shuts down networks and machines and denies
access to the original owner or user. Denial of Service attacks is carried out by
overwhelming the target computer of the network with information until it crashes.
Victims of Denial of Service attacks are often high-profile private and public targets,
such as businesses, banks, and companies within the media, resulting in the victim
using vast sums of money to fix the damage.

4. Worm is a harmful software that continuously duplicates itself and spreads through
a network to other computers. Worm virus exploits flaws within the security software
to steal crucial data, establish backdoors that may be exploited to connect to the
network, damage data, and perform other types of abuse.

5. Reconnaissance refers to information gathering by unwanted adversaries. The
approach for this attack is either remotely or on-site, using various techniques as
well as Social Engineering. Some of the most common Reconnaissance attacks are
gathering data about packets (sniffing), ping sweeping, port scanning, and phishing.

6. Shellcode is when adversaries transmit code instructions to an arbitrary software
with malicious intent to execute hostile activities.

The mentioned network attack types are merely a tiny fraction of malicious network
activities, where the possibilities are endless for one with harmful intentions.

5.2.2 Structure

The number of records in the UNSW-NB15 dataset is 2, 540, 044 which is stored in four
.csv files represented in Table 5.4. Each of the datasets contains attack and normal records.
A training set and a testing set were created from the data collection, named UNSW-
NB15_training-set.csv and UNSW-NB15_testing-set.csv, respectively. The training set
has 82, 332 records, while the testing set contains 175, 341 records, including attack and
normal records. Do note that the training and testing sets are reversed. Finally, Table
5.5 represents the distinct features included in the UNSW-NB15 dataset, and their data
types.

Table 5.4: UNSW-NB15 files

File name File Size Records Features

UNSWNB15_1.csv 161.2 MB 700000 49
UNSWNB15_2.csv 157.6 MB 700000 49
UNSWNB15_3.csv 147.4 MB 700000 49
UNSWNB15_4.csv 91.3 MB 440044 49
UNSWNB15_testing-set.csv 31.5 MB 175341 45
UNSWNB15_training-set.csv 15.0 MB 82332 45

113

CHAPTER 5. IMPLEMENTATION

Table 5.5: UNSW-NB15 List of Features

Feature
Number

Feature
Name

Data
Type

Feature
Number

Feature
Name

Data
Type

f1 srcip nominal f26 res_bdy_len integer
f2 sport integer f27 Sjit Float
f3 dstip nominal f28 Djit Float
f4 dsport integer f29 Stime Timestamp
f5 proto nominal f30 Ltime Timestamp
f6 state nominal f31 Sintpkt Float
f7 dur Float f32 Dintpkt Float
f8 sbytes Integer f33 tcprtt Float
f9 dbytes Integer f34 synack Float
f10 sttl Integer f35 ackdat Float
f11 dttl Integer f36 is_sm_ips_ports Binary
f12 sloss Integer f37 ct_state_ttl Integer
f13 dloss Integer f38 ct_flw_http_mthd Integer
f14 service nominal f39 is_ftp_login Binary
f15 Sload Float f40 ct_ftp_cmd integer
f16 Dload Float f41 ct_srv_src integer
f17 Spkts integer f42 ct_srv_dst integer
f18 Dpkts integer f43 ct_dst_ltm integer
f19 swin integer f44 ct_src_ ltm integer
f20 dwin integer f45 ct_src_dport_ltm integer
f21 stcpb integer f46 ct_dst_sport_ltm integer
f22 dtcpb integer f47 ct_dst_src_ltm integer
f23 smeansz integer f48 attack_cat nominal
f24 dmeansz integer f49 Label binary
f25 trans_depth integer

Before performing data preprocessing, we wanted to observe how balanced the
UNSW-NB15 dataset was. Figure 5.3 shows that the distribution between attack labels
and normal (non-attack) labels is slightly imbalanced, this problem is known as Class
Imbalance. To be precise, the attack labels make up 63.907% of the total number of labels,
whereas the normal labels make up 36.092%. The slight imbalance would not significantly
impact our models and performance evaluation, where we can confirm whether our results
are valid with the help of several performance metrics.

5.3 Novel Data preprocessing Framework (NDPF)

Before any ML algorithm is applied to a dataset, the data has to be preprocessed so that
the processed data is in the format that the model can comprehend. RAW data is obtained
from a domain contextually to address an issue and propose a solution. Therefore, RAW

114

5.3. NOVEL DATA PREPROCESSING FRAMEWORK (NDPF)

Figure 5.3: Normal and attacks distributed

data must virtually always be transformed before being used as a foundation for ML
models (Figure 5.5). Hence, our goal is to create a Novel Data Preprocessing Framework
(NDPF), to preprocess and transform the UNSW-NB15 dataset. Figure 5.4 shows the
usual time spent when working on ML projects, estimated by us.

The initial stage in our NDPF is to acquire the dataset before applying it to any
model. This dataset will consist of data acquired from various sources and merged to
make a dataset. A dataset can also be generated by using several Python APIs to collect
information, where we can finally save the dataset in one of many formats: CSV, HTML,
or XLSX[130]

The data from the domain is most likely organized in a single big table with rows and
columns, where we have to consider that each column/feature inherits multiple data types.
For example, the numerical variables include floating points, integers, ranks, percentages,
and currency, whereas categorical variables include names, categories, and labels which
consist of letters, signs, and words. The final form of variable could be binary, which
includes 0 and 1, being TRUE and FALSE. The challenge is that ML algorithms are based on
numerical data, meaning they only accept, in most cases, numerical values representing
vectors and matrices from Linear Algebra[42].

The results can still vary even though our NDPF fulfills each model’s requirement,
and even when an algorithm’s assumptions are disregarded or entirely broken, it is normal
for it to perform as well as or more significant than other techniques. This is a typical
occurrence that must be considered while developing and evaluating ML algorithms.
Therefore, exemplary quality data is essential for training ML models. Conversely, data

115

CHAPTER 5. IMPLEMENTATION

Figure 5.4: Time Spent

with poor quality might refer to a ”poor representation” of the problem that has to be
solved, where the model will fail to convey the necessary dynamics for learning how to
translate instances of inputs to outputs[42].

1. Complex Data: Raw data often includes condensed, complicated nonlinear
connections that must be uncovered.

2. Messy Data: Raw data comprises statistical noise, mistakes, missing numbers,
and instances that contradict each other.

To summarize, data preparation leads to better data and, as a result, greater model
performance.

The UNSW-NB15 contains categorical and non-similar scale features that must be
preprocessed to make the dataset compliant with a ML algorithm. To ensure that the
selected dataset is converted into a suitable one, we develop our NDPF with data cleaning,
data transformation, and data reduction, as shown in Figure 5.5.

1. Data Cleaning: aims to process missing and irrelevant data-points.

2. Data Transformation: aims to convert data into a readable format for a given
ML model.

3. Data reduction: aims to narrow down the dimensionality of the dataset to
improve model efficiency and accuracy.

116

5.3. NOVEL DATA PREPROCESSING FRAMEWORK (NDPF)

Figure 5.5: Preprocessing Stages

5.3.1 Data Cleaning

The first phase of our NDPF is Data Cleaning, which aims to fix the problem with
incomplete, inconsistent, corrupt, duplicate, and noisy data.

However, first, missing or irrelevant data needs to be processed. Missing data points
is a common attribute that many datasets have. Even if the data looks valid, results and
algorithms are untrustworthy if the data is inaccurate. Redundant observations are most
likely to occur during the data gathering process. We can address the missing values in
Python by using Listing 5.2. There are several approaches to solving this problem.

1. Dropping duplicate values: Dropping a duplicate row or column and keeping
the first instance is one of the solutions to this problem. The reason for doing this
is not to make the specific data point take advantage of or be biased.

2. Dropping missing values: Dropping rows and columns that includes a not a
number (NaN) field or an empty object (NULL) values.

3. Data imputation: Estimating missing values is used if a small percentage of the
data is lost. Data imputation techniques such as mean, median, or mode values are
the most common approach to apprehend this problem.

1 # To check if train and test datasets inhibits missing values
2 train.isnull().sum()
3 test.isnull().sum()

Listing 5.2: isnull().sum() function

After a thorough analysis, the UNSW-NB15 does not exhibit any missing values to
remove or perform data imputation.

5.3.2 Data Transformation

The second phase our NDPF is Data Transformation, which converts the data into
a known format readable to a ML model. Data normalization transforms numerical

117

CHAPTER 5. IMPLEMENTATION

columns into a standard scale (−1.0 to 1.0 or 0.0 to 1.0). This process transforms the data
columns without distorting the differences in the data range, meaning it will maintain
the dynamic range of the dataset, which makes it easier for the algorithm to determine
the relative link between data points.

Reversed Datasets

The UNSW-NB15 dataset has the training and testing set samples reversed (Listing:
5.3), caused by an error from the publishers. This means that the testing set samples
are double the training set size. We promptly fix the issue by running an if statement
on both sets and checking whether the training set has fewer or larger samples than the
testing set. As a result, the testing set contains 175, 341 rows and 45 columns instead of
the training set, corresponding to 82, 332 rows and 45 columns.

1 if train.shape < test.shape:
2 # Reversing the dataset
3 train, test = test, train
4 else:
5 print("The dataset, is already reversed")
6 return train, test

Listing 5.3: Reversing the datasets

Feature Engineering

The process of changing the RAW data into features that better describe the underlying
problem to predictive models, resulting in enhanced model accuracy on unseen data, is
known as feature engineering. Feature engineering depends on domain knowledge in a
specific field to select and transform features from a dataset. It is evident that many
features can share requirements characteristics. The procedure entails a combination of
data analysis, rule-of-thumb use, and judgment.

The feature engineering process starts with analyzing the various values for each
feature for the dataset. Then, by executing train['state'].value_counts22 from the pandas
library, we output the row count for each distinct value in a feature, in this case, ’state’.
Table 5.6 represents the row counts for the states ’FIN’, ’INT’, ’CON’, and ’REQ’ are
more significant than the others. Therefore, the states with lower row counts have been
renamed ’Others’. This process is called binning.

22https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

118

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html

5.3. NOVEL DATA PREPROCESSING FRAMEWORK (NDPF)

Table 5.6: Number of Instances (State)

State Count State Count
INT 82275 ECO 12
FIN 77825 PAR 1
CON 13152 URN 1
REQ 1991 NO 1
RST 83

The ’-’ value is present under the ’service’ feature, which equals 47, 153. This value is
converted to ’Others’ since the dataset description informs us that the value is a service
that is not frequently used. The same method is replicated for the ’service’ and ’proto’
features. We also observed the row counts for those features and renamed the values to
’Others’. The purpose of this procedure is to reduce the complexity of the model. Table
5.7 represents the row counts for the distinct values of the ’services’ column.

Table 5.7: Number of Instances (Services)

Services Count Service Count

- 47153 ssh 204
dns 21367 ssl 30
http 8287 snmp 29
smtp 1851 dhcp 26
ftp 1552 radius 9
ftp-data 1396 irc 5
pop3 423

Categorical Features

Our ML algorithm cannot process Categorical data points, meaning the transformation
of the data points into a readable format is essential for the model to run without
errors. Therefore, we drop the ’attack_cat’ feature since our model performs Binary
Classification. We address the different data types for each feature, by implementing
Listing 5.4 in Python.

1 # Addressing the different Data types for each column
2 train.dtypes
3 test.dtypes

Listing 5.4: dtype method for checking data types

Many data science tools can only function with numerical values as input, which is
especially true in terms of ML. For example, if we try to input string-based category
(dtype object) data, the designated model will output an error. Hence, to make the
categorical features readable by the model, one-hot encoding needs to be implemented.

119

CHAPTER 5. IMPLEMENTATION

As a result, we transform each categorical value into a new categorical column (dummy
indicator variables) and assign a binary value of 1 or 0 to the columns using one-hot
encoding, as shown in Figure: 5.6. A binary vector is used to represent each integer
value. The pd_dummies()23 function from the Pandas library accomplished exactly this
assignment, as presented in Listing 5.5.

1 # Using get_dummies to make the categorical values usable.
2 x_train = pd.get_dummies(x_train)
3 x_test = pd.get_dummies(x_test)

Listing 5.5: pd.get_dummies() function

Figure 5.6: One-hot-encoding (OHE)

Normalization

In ML, normalization is a method for preparing data. Normalizing is converting the
values of each numerical feature to the same scale. But, the technique is not necessary for
every dataset, only for the dataset where the values of the feature ranges are significant.
Nevertheless, normalization and standardization help several ML methods, primarily
when Euclidean distance (KNN Section: 4.6) is utilized. For instance, say one of the KNN
variables is in the 1000s, while another variable is 0.1s, the highest value will heavily
influence the distance calculation. Therefore, normalization and standardization may be
advantageous in this situation[131].

The UNSW-NB15 dataset has a broad dynamic range of values, indicating that
normalization needs to be applied to the numerical columns. The core concept of
standardizing/normalizing is to individually delegate µ = 0, and σ = 1 for the features of
X. Standardscaler()24 will independently normalize the features so that each column/feature
will produce µ = 0, and σ = 1, as mentioned. Python implementation for StandardScaler()
is presented in Listing 5.6.

23https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
24https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html

120

https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. StandardScaler.html

5.3. NOVEL DATA PREPROCESSING FRAMEWORK (NDPF)

x equals the observation, µ is the mean, and σ is the standard deviation. The
Equation for standard deviation (Equation: 5.3) is achievable by taking the equation
for standardization (Equation: 5.1) and combining it with the mean for each sample
(Equation: 5.2).

z =
x− µ

σ
(5.1)

µ =
1

N

N∑
i=1

(xi) (5.2)

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (5.3)

1 # Using standard scaler to normalize data on non categorical columns
2 scaler = StandardScaler()
3 x_train[non_cat_cols] = scaler.fit_transform(x_train[non_cat_cols])
4 x_test[non_cat_cols] = scaler.transform(x_test[non_cat_cols])

Listing 5.6: StandardScaler() function

5.3.3 Data/Dimensionality Reduction

Dealing with a large amount of data for analysis comes with difficulty. The dimensionality
of a dataset refers to the number of features or input variables. The ’Curse of Dimensionality’
refers to how adding more input data makes predicting modeling more challenging to
apprehend. Hence, data reduction (dimensionality reduction) improves storage efficiency
and lowers data storage and analysis expenses. The concept of data reduction is to
decrease the number of features or dimensionality. Data reduction is, in our case, done
in Feature Selection. Data visualization frequently employs high-dimensionality statistics
and dimensionality reduction methods. However, in applied ML, the same approaches
may be used to reduce a classification or regression dataset to better train a prediction
model[132]. Firstly, we analyze the dataset by looking at the correlation matrix.

Correlation

Correlation is the degree to which two variables are linearly related. If there is an
extensive dataset with many columns, displaying the correlation matrix as a heatmap
is a rapid approach to assess relationships between columns. When a dependent and
independent variable has a high correlation value, the independent variable affects the
final output.

• −1 implies a perfect negative linear correlation between two variables.

• 0 implies that there is no linear relationship between two variables

121

CHAPTER 5. IMPLEMENTATION

• 1 implies a perfect positive linear correlation between two variables.

The Pearson r correlation is the most extensively utilized statistical approach for
determining the degree of linearly related variables. The Pearson correlation between
any two variables x, y can be calculated by using Equation 5.4, where n is number of
observations, and i-denotes the i-th observation.

rxy =
n
∑

xiyi −
∑

xi
∑

yi√
n
∑

x2i − (
∑

xi)2
√
n
∑

y2i − (
∑

yi)2
(5.4)

Figure 5.7 shows a graphical representation of the correlation matrix for several
features with coefficient values given by a color scale.

Figure 5.7: Correlation plot for UNSW-NB15 Training dataset

122

5.3. NOVEL DATA PREPROCESSING FRAMEWORK (NDPF)

Feature Selection

Feature selection is one of the core concepts in ML. This process hugely impacts the
performance of any ML model. When developing a predictive model, the primary objective
is to reduce the number of input variables. The number of input variables included in a
model’s training stage dramatically influences the performance, meaning feature selection
and data cleaning should be the first and most crucial step of the developing phase.

Reducing the number of input variables lessens the computational cost and, in many
cases, enhances the performance of a given model. The process has two given approaches:

1. Automatically determine input variables using various algorithms

2. Manually choose input variables to remove from the model.

The benefits of reducing the number of input variables are:

1. Reduce overfitting i.e, the dataset will become less redundant, which in hand will
make fewer opportunities to make a decision based on noise,

2. Accuracy improvement i.e, training data will be less misleading, which will improve
accuracy

3. Training Time reduction i.e, the complexity of the algorithm decreases.

It is best to pick features by analyzing just the training set in all feature selection
operations. This prevents overfitting.

Method 1 - Recursive Feature Elimination (RFE)
Recursive Feature Elimination (RFE) is a well-known feature selection algorithm used
to identify which features in a training dataset are more significant in predicting the
target variable. RFE works by searching for a subset of features in the training dataset,
starting with all features and successfully eliminating them until the targeted number
remains. The method can be accomplished by re-fitting the model using the provided
ML technique, ranking features by relevance, excluding the least important features,
and fitting the model again. This procedure is executed until only a certain amount
of features are left. Features are evaluated by using either a ML model or a statistical
technique. In our work, RFE was executed with Cross-validation (CV). As a result,
the algorithm has concluded with the top features and has left us with the following
features to drop: is_sm_ips_ports, dwin, ct_ftp_cmd, is_ftp_login, where the results from
the algorithm are represented in Table 5.8. RFE is described in Algorithm 4[133]

123

CHAPTER 5. IMPLEMENTATION

Algorithm 4: Recursive Feature Elimination (RFE)
Data: Training Data D = {f1, f2 . . . fn}
Result: Feature Ranking R = rf1 , rf2 . . . rfn

1 for each feature fi in D do
2 D′ = D − fi
3 Train the classifier with D′

4 Compute the classification accuracy
5 Determine the accuracy loss of the classifier, after eliminating fi
6 end
7 Calculate the loss for every feature {f1, f2 . . . fn}
8 Compute the rank of each feature R = rf1 , rf2 . . . rfn , with the loss in

consideration

Table 5.8: Results: Recursive Feature Elimination with Cross-validation (RFECV)

Feature Support Rank Grid_score Feature Support Rank Grid_score

dur True 1 0.82251 proto True 1 0.8662
dtcpb True 1 0.95708 service True 1 0.87824
tcprtt True 1 0.9573 state True 1 0.89052
synack True 1 0.95798 spkts True 1 0.89932
ackdat True 1 0.95903 dpkts True 1 0.93425
smean True 1 0.95907 sbytes True 1 0.93292
dmean True 1 0.95972 dbytes True 1 0.94531
trans_depth True 1 0.96004 djit True 1 0.95715
ct_srv_dst True 1 0.96196 rate True 1 0.94964
response_body_len True 1 0.96054 dttl True 1 0.95658
ct_state_ttl True 1 0.96087 sload True 1 0.95606
ct_dst_ltm True 1 0.96057 dload True 1 0.95691
ct_src_dport_ltm True 1 0.9613 sloss True 1 0.95532
ct_dst_sport_ltm True 1 0.96089 dloss True 1 0.95753
ct_dst_src_ltm True 1 0.96168 sinpkt True 1 0.95808
ct_flw_http_mthd True 1 0.96183 dinpkt True 1 0.95807
ct_src_ltm True 1 0.962 sttl True 1 0.95513
ct_srv_src True 1 0.96083 is_sm_ips_ports False 2 0.96201
swin True 1 0.95745 dwin False 3 0.95742
stcpb True 1 0.95677 ct_ftp_cmd False 4 0.96231
sjit True 1 0.95734 is_ftp_login False 5 0.96162

Method 2 - Random Forest Classifier with Cross-validation
After RFE, we implemented RF Classifier to select our features, which resulted in more
significant results. RF feature selection falls under the area of Embedded techniques,
which are highly accurate, generalize better, and are interpretable. Filter and wrapper
methods are combined in embedded methods. Algorithms with built-in feature selection
techniques are used to implement them.

If the task is classification, Gini impurity or information entropy/gain are used to
classify the impurities. Then, the impurity for regression is calculated by using the

124

5.3. NOVEL DATA PREPROCESSING FRAMEWORK (NDPF)

variance. As a result, it is easy to figure out how much each feature reduces impurity
while training a tree. Of course, the feature that decreases the impurity most is the most
valuable. The impurity decrease from each feature in a RF may be averaged across trees
to establish the variable’s final significance. To better understand, features picked at the
top of the trees are typically more essential than those at the bottom of the trees, as top
splits generally result in more considerable information gains[134].

Our method using RF Classifier as the foundation included six steps:

1. Importing necessary libraries.

2. Defining custom functions.

3. Preparation of data

4. Running Random Forest Classifier for training data (and 10-fold cross-validation)

5. Running Random Forest Classifier for testing and training data (and 10-fold cross-
validation).

6. Save the output.

The process started with importing necessary libraries, including NumPy25, Pandas26,
Sci-kit learn (label encoder27, StandardScaler28, metrics29, StratifiedKFold30,
RandomForestClassifier31), and tqdm notebook32.

The second step of the process utilized one of our functions to import the training
and testing dataset while dropping ”attack_id” and ”id.” Furthermore, we tend to inspect
whether the dataset is reversed or not by running an if statement. Finally, we also
utilized a function that appended all categorical columns (Listing 5.7) into an empty
list. We also initialize the StratifiedKFold() with parameter tuning, where n_splits= 10,
seed = 1, and shuffle = True. Finally, for step two, we create a dictionary ”importance_dict”
where all of the features from the dataset are listed.

The final step executes RandomForestClassifier() for a total of four times, where two
of them include 10-fold Cross-validation. Firstly we apply the algorithm on the training
dataset two times, where one with 10-fold Cross-Validation applied, then append it to the
importance_dict, as shown in Listing 5.8. We conduct the same process for the training

25www.numpy.org/doc/
26www.pandas.pydata.org/pandas-docs/stable/
27www.scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.

html
28www.scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.

html?highlight=standardscaler#sklearn.preprocessing.StandardScaler
29www.scikit-learn.org/stable/modules/classes.html?highlight=metrics#module-sklearn.

metrics
30www.scikit-learn.org/stable/modules/generated/sklearn.model_selection.

StratifiedKFold.html
31www.scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
32www.tqdm.github.io/docs/notebook/

125

www.numpy.org/doc/
www.pandas.pydata.org/pandas-docs/stable/
www.scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
www.scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
www.scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standardscaler#sklearn.preprocessing.StandardScaler
www.scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standardscaler#sklearn.preprocessing.StandardScaler
www.scikit-learn.org/stable/modules/classes.html?highlight=metrics#module-sklearn.metrics
www.scikit-learn.org/stable/modules/classes.html?highlight=metrics#module-sklearn.metrics
www.scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
www.scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
www.scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
www.scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
www.tqdm.github.io/docs/notebook/

CHAPTER 5. IMPLEMENTATION

and testing datasets combined, for further inspection and analysis. Finally calculate the
mean value for from all the investigations, together. Figure 5.8, and 5.9, represents the
density and distribution of the results.

Figure 5.8: Distribution Plot: Feature Selection with RandomForestClassifier()

Figure 5.9: Regression Plot: Feature Selection with RandomForestClassifier()

1 def get_categorical_columns(train):
2 categorical_columns = []
3 for col in train.columns:
4 if train[col].dtype == 'object':
5 categorical_columns.append(col)
6 return categorical_columns

Listing 5.7: Function that returns all categorical columns in dataset

126

5.4. ALGORITHM IMPLEMENTATION

1 # Initializing RandomForestClassifier
2 clf = RandomForestClassifier(random_state=1)
3 # Fitting x_train and y_train
4 clf.fit(X, Y)
5 feature_importance = clf.feature_importances_
6 # Adding the values into a new column 'train'
7 importance_dict['train'] = feature_importance

Listing 5.8: RandomForestClassifier() on training set

By analyzing our results from Table 5.9, we conclude with dropping the following
features: response_body_len, spkts, ct_flw_http_mthd, trans_depth, dwin, ct_ftp_cmd, and
is_ftp_login. In addition we, drop ID since it does not contribute to any additional
valuable information. We also tend to drop attack_cat, since our work mainly focuses on
Binary Classification.

5.4 Algorithm Implementation

Not every algorithm is suitable for every dataset in ML. Even though one algorithm may
excel in performance over another, it might not be the most appropriate in a real-world
scenario. Therefore, in our thesis, we have implemented six different algorithms, with
different parameter combinations to get a comprehension of the overall performance
evaluation to conclude, which algorithm performs best on our preprocessed dataset.
Every algorithm we have employed is thoroughly explained in Chapter 4. We chose
those particular algorithms since they are well-known and strong supervised learning
algorithms. Furthermore, other researchers use them on the same dataset, making it
easier to compare and evaluate.

There are many limitations with ML projects regarding how computational heavy
many of the algorithms are and how time-consuming they can become, especially when
running hyperparameter tuning. This was an essential factor when considering what
parameters and how big the grid would be for hyperparameter tuning. For example,
several algorithms took as long as eight days to export our desired results in our thesis,
even though the CPU were operating with all available cores.

The theory behind every ML algorithm implemented is necessary knowledge. Therefore,
it is essential to understand how the algorithms work and how their parameters affect
the model outcome. For example, using the knowledge of how parameters work for DT
and RF helps us define reasonable parameter ranges. Prior knowledge of the parameters
and libraries can help choose parameter values closer to correct. In addition, reading the
documentation for each algorithm and knowing the default parameters can help mitigate
algorithm runtime significantly and even understand to avoid overfitting and underfitting.

At the beginning phase of the thesis, we had some underlying statements and
assumptions that Neural Networks would be the algorithm that performs best, both with
and without tuning, as it is a robust algorithm. The reason is that ANN can learn highly
complex relations and non-linear data, which is essential when looking at real-life data

127

CHAPTER 5. IMPLEMENTATION

Table 5.9: Feature Selection with RandomForestClassifier() with 10-fold Cross-validation

Feature Train Train
(10-fold) Train + Test Train + Test

(10-fold) Mean

sttl 16.2550945 15.0421223 10.9670924 13.3090943 13.8933509
ct_state_ttl 8.9619085 11.5963044 11.2640431 9.03038 10.213159
dload 4.5674637 6.7575214 6.3604314 5.7830982 5.8671287
dttl 7.3116212 4.9804259 3.8173527 3.6431592 4.9381398
rate 4.253581 4.5679322 5.0098576 4.5295328 4.5902259
dmean 4.9919352 4.3480433 3.2015804 2.6198709 3.7903574
sload 3.310175 4.232429 4.4274681 5.2797084 4.3124451
ackdat 1.8057622 3.3503576 2.5293968 2.5270787 2.5531488
sbytes 3.0677247 3.1999918 4.4615967 4.2624629 3.747944
tcprtt 3.2027874 2.7853994 2.2972975 2.6713096 2.7391985
dbytes 3.1836302 2.7355933 3.4009155 3.5361747 3.2140784
ct_srv_dst 3.4354459 2.7254739 3.7892882 3.5091879 3.3648489
smean 2.7068465 2.679014 4.1435376 3.9979471 3.3818363
synack 2.6543144 2.6709122 3.0291934 2.7321854 2.7716513
dur 2.8625865 2.5687961 1.6937501 2.6213817 2.4366286
dinpkt 2.284652 2.556445 2.9892422 2.706975 2.6343286
ct_dst_src_ltm 2.1452773 2.3582964 3.5216035 3.8578813 2.9707646
sinpkt 2.87987 2.2483162 1.7933931 2.3789027 2.3251205
ct_srv_src 2.2793012 2.1567363 2.6123842 2.5902471 2.4096672
sjit 2.0277716 1.6794793 1.9847377 1.4587462 1.7876837
dpkts 2.32241 1.5607976 2.0820009 1.9278532 1.9732654
state 1.8591436 1.4902598 1.4022439 1.6092294 1.5902192
djit 1.4709708 1.2658864 1.4040854 1.3296465 1.3676473
proto 1.3879482 1.1960054 1.282419 1.1212633 1.246909
ct_dst_sport_ltm 0.4876 0.9264636 0.8568151 1.456689 0.9318919
ct_src_ltm 0.9419657 0.8391595 0.9396028 0.8849734 0.9014253
sloss 0.771581 0.8139839 1.0211508 1.1551714 0.9404718
dloss 0.5812025 0.8081575 0.5817343 0.6356618 0.651689
ct_dst_ltm 0.7757124 0.7965062 0.854861 0.869824 0.8242259
dtcpb 0.7774476 0.7763523 0.985237 0.8448853 0.8459806
spkts 0.9049584 0.7596935 1.1612101 0.989895 0.9539393
stcpb 0.7602875 0.7487856 0.7873531 0.8709101 0.7918341
ct_src_dport_ltm 0.7642101 0.612859 0.6188303 0.6197144 0.6539034
is_sm_ips_ports 0.4688463 0.5994069 0.397046 0.3685598 0.4584648
swin 0.5698937 0.5640329 0.5702751 0.6874545 0.597914
service 0.456995 0.4701579 0.8793855 0.8146467 0.6552963
response_body_len 0.1542974 0.1706953 0.4137625 0.3367497 0.2688762
ct_flw_http_mthd 0.1703705 0.1573909 0.2392378 0.2111502 0.1945374
trans_depth 0.0927764 0.1241565 0.1221516 0.144337 0.1208554
dwin 0.0757839 0.05687 0.0864489 0.0530457 0.0680371
is_ftp_login 0.0103945 0.0115616 0.0110969 0.010804 0.0109642
ct_ftp_cmd 0.0074555 0.0112277 0.0088904 0.0122116 0.0099463
128

5.4. ALGORITHM IMPLEMENTATION

as most of the actual data is not linear. Finally, our last assumption was that DT and
RF will be prone to overfitting without proper tuning of the hyperparameters.

As of year 2022, most algorithms do not need to be implemented from scratch. In
Python, we tend to use the Scikit-learn library33(Section: 5.1.2) for implementing the
desired algorithms. The library contains all necessary implementation documents and
guides for how they work and how each parameter affects the output; hence, there was
no need to implement the code from scratch. This also made it easier for us to compare
other works since the majority of research implements ML algorithms using Scikit-learn.

5.4.1 User-defined Functions (Custom Functions)

When we define functions ourselves to do a specific task, they are referred to as User-
defined functions. Functions that already is included with Python are referred to as
built-in functions, whereas functions originating from libraries are referred to as library
functions. There are several advantages of creating user-defined functions:

1. Maintaining and debugging is easier since the user-defined functions assist in
decomposing a big program into smaller sections.

2. Reduce redundancy of code. A function can be called whenever it is needed.

3. Developers who are working on a huge project might divide their work by creating
distinct functions.

We have decided to create several user-defined functions in a file named UNSW_DF.py.
The functions primarily used are for importing datasets. The thesis project has undergone
different types of experiments, which require different imports of the dataset, meaning
in some cases, we need to import the preprocessed dataset (Listing: 5.9) and, in other
cases, the original RAW dataset. We also have created functions where we can plot the
Correlation matrix for a given section of a dataset. Since we work with many different
files and algorithms, we minimize redundancy by implementing precisely this.

1 def DF_XY():
2 """Loads preprocessed dataset, and splits into inputs and output.
3 Returns:
4 x_train, x_test, y_train, y_test: preprocessed splitted dataset
5 """
6 try:
7 train = pd.read_csv("../Dataset/train_pp3.csv")
8 test = pd.read_csv("../Dataset/test_pp3.csv")
9 x_train, y_train = train.drop(["label"], axis=1), train["label"]

10 x_test, y_test = test.drop(["label"], axis=1), test["label"]
11 except:
12 print("Could not load dataset, try again..")
13 return x_train, x_test, y_train, y_test

Listing 5.9: Importing splitted preprocessed dataset

33https://scikit-learn.org/stable/

129

https://scikit-learn.org/stable/

Chapter 6

Performance Evaluation

This Chapter conducts a comprehensive Performance Evaluation for our six selected
ML algorithms: ANN, SVM, KNN, LR, DT, and RF. Firstly, we will introduce the
performance metrics: Accuracy, Recall, F1 Score, and Precision, which will be utilized to
evaluate our experiments. Next, the parameter selection for each algorithm is executed
with manual- and Grid Search (Section: 3.4.2). Finally, after gathering the result together
and nominating the best-performing model among the six, we extensively compared it
with other research, using the same dataset and algorithms. The evaluations for both
settings will be presented in tables and visually represented data. Our experiments were
conducted on four different computers, where the specifications are presented in Table
6.1.

Table 6.1: Computer Specifications Used for the Thesis

Computer Specifications
Processor Memory (RAM) Operative System Graphics Card

1 Intel Core i9-9900K
@3.60GHz

32GB DDR4,
@3200 MHz Windows 10 Education Asus Geforce RTX 2080,

8GB GDDR6

2 Intel Core i7-9700
@3.0 GHz

16GB DDR4
@2667 MHz Windows 10 Pro Intel UHD Graphics 630

3 Intel Core i9 9880H
@2.3 GHz

32GB DDR4,
@2667 MHz macOS Catalina 10.15.4 AMD Radeon Pro 5500M,

4GB GDDR6

4 Intel Core i7-2600K
@ 3.40GHz

16GB DDR3,
@1600MHz Windows 10 Home Nvidia GeForce GTX 1060,

3GB GDDR5

6.1 Performance Metrics

When evaluating the performance of the models in a Binary Classification problem, we
can use the confusion matrix[135], which is shown in this Figure 6.1. This is also called
an error matrix which is a two-by-two matrix, and it is used to form the evaluation

131

CHAPTER 6. PERFORMANCE EVALUATION

metrics[136]. The confusion matrix represents the predicted and actual outcomes and
the four outcomes it can have:

1. True Positive: True positive is when the predicted outcome is positive, and the
actual outcome is positive.

2. False Positive: False positive is when the predicted outcome is positive, and the
actual outcome is negative.

3. False Negative: False negative is when the predicted outcome is negative, and
the actual outcome is positive.

4. True Negative: True negative is when the predicted outcome is negative, and the
actual outcome is negative.

Figure 6.1: Confusion Matrix

The metrics used to evaluate our models are Accuracy, Recall, Precision, F1 and
Running time.

Accuracy

Accuracy is utilized to check if the prediction made by the model is correct or not. This
is based on all the model’s predictions, including the misclassified ones. This metric is
calculated by Equation 6.1.

Accuracy =
TP + TN

(TP + TN + FP + FN)
(6.1)

Accuracy is best used when the target variables in the data are close to balanced. If
data is skewed highly in one direction, such as 90− 10% (distribution) difference, and
the model predicts the same value output for all predictions, the accuracy will be 90%.

132

6.1. PERFORMANCE METRICS

Recall

Recall gives us information about what portion of true anomalies were classified. This
metric is determined by Equation 6.2.

Recall =
TP

(TP + FN)
(6.2)

Recall will check if the classifier can detect whether the outcome is positive or not. If
the recall value is close to 100%, it means few false negatives, and if the value is close to
0%, it is few true positives.

Precision

Precision represents the ratio of true positives to all predicted positives. In our case, how
many of the output labeled as attacks are actual attacks? This metric is determined by
Equation 6.3.

Precision =
TP

(TP + FP)
(6.3)

Precision will check if the positive outcome is actually positive or not. If the precision
score is low, it tells us that many instances are false positives. A low precision score
means few true positives, and a high score means few false positives.

F1 Score

F1 Score uses a mean value method to determine the overall performance of the anomaly
detection model by incorporating both Recall and Precision scores. It is a balanced
out score for both of the metrics. The reason for having an F1 Score is that recall and
precision can affect each other. By reducing one of the metrics, the other can increase
and the other way around. This metric is calculated by Equation 6.4.

F1 Score =
2× (Recall × Precision)

Precision×Recall
(6.4)

In order to get a high F1 Score, both Recall and Precision need to be high, as it goes
towards the minimum for them both. The scoring goes between 0 and 100%.

The primary metric used for evaluation in this thesis is accuracy. The datasets’ output
label is skewed 64− 36, and we went for accuracy as our primary metric with F1 Score
as a second metric. The difference between training accuracy and the testing accuracy
is essential when looking at the accuracy metric. Depending on the importance of the
prediction, the difference between training and testing has to reflect the importance.
When observing medical predictions such as if a person has a tumor or not, the difference
has to be extremely low. However, the difference can be higher when looking at less
critical aspects, such as predicting if a person wins a chess match. In our case, we tried
to keep the difference between 10− 11%.

133

CHAPTER 6. PERFORMANCE EVALUATION

6.2 Logistic Regression Results

The evaluation criteria for LR are Accuracy, F1-Score, Precision, and Recall. The metrics
are explained in Section 6.1. Firstly, we executed the LR model with default parameters
from the Scikit-learn library. The result from the first model was 81.33% for the testing
set and 93.54% for the training set. Then we used a manual search to see if it was possible
to find hyperparameters that could further increase the performance of LR. The results
of the search are represented in Table 6.2, and Figure 6.3. The best results was received
with the newton-cg solver and a low C value giving an accuracy of 81.83%. Figures 6.2,
6.4 show the distribution for the metrics on the training set.

Table 6.2: Logistic Regression Results

max_Iter C Penalty solver train_acc test_acc F1 precision recall runtime(s)

100 1 l2 lbfgs 0.93548 0.81338 0.85257 0.75447 0.97999 2.1
1000 1 l2 lbfgs 0.93522 0.81250 0.85198 0.75351 0.98005 1.2
1000 5 l2 sag 0.93520 0.81206 0.85162 0.75325 0.97955 116
250 3 l1 saga 0.93423 0.80904 0.84927 0.75103 0.97708 44
500 2 l2 lbfgs 0.93587 0.81502 0.85387 0.75560 0.98151 9.2
1500 4 l2 newton-cg 0.93646 0.81585 0.85451 0.75621 0.98218 11.7
100 0.5 none newton-cg 0.93757 0.81832 0.85639 0.75845 0.98312 36
450 0.3 none newton-cg 0.93757 0.81832 0.85630 0.75845 0.98312 35
500 0.1 l1 saga 0.93467 0.81020 0.85026 0.75164 0.97866 84
1250 2 l1 saga 0.93500 0.81144 0.85117 0.75270 0.9792 200
1250 2 none lbfgs 0.93760 0.8184 0.85635 0.75856 0.98308 22
300 0.5 none lbfgs 0.93693 0.81642 0.85497 0.75658 0.98277 5.7
1600 10 none lbfgs 0.93759 0.81835 0.85632 0.75849 0.98312 30
1500 10 l2 saga 0.93545 0.81308 0.85243 0.75395 0.98048 181
2000 100 l2 lbfgs 0.93750 0.81798 0.85607 0.75812 0.98305 38

Figure 6.2: Logistic Regression Distribution Plot

The Grid Search algorithm for LR had some limitations due to having matching
errors between penalties and solvers. The sag and saga solver were not included in the
grid search because they did not work with several penalties such as l1 and elasticnet.
Sag and saga did not perform well in the manual search, therefore a separate Grid Search

134

6.2. LOGISTIC REGRESSION RESULTS

Figure 6.3: Logistic Regression overall Results

Figure 6.4: Logistic Regression Regression plot

135

CHAPTER 6. PERFORMANCE EVALUATION

for those solvers was not included. The result of the Grid Search was solver = liblinear,
C = 100, max_iter = 10, and penalty = l1. With those parameters, the model’s accuracy
was 81.17%. Where the model’s performance did not increase in performance for further
Grid Search executions.

Both manual and Grid Search hyperparameter tuning did not highly impact Logistic
Regression’s performance. The difference between the accuracy with default parameters
and the highest accuracy from the manual search is approximately 0.5%. The highest
difference between all the models is 0.93%. Meaning any further tuning would most likely
not yield considerably more increased results. LR is not the algorithm with the best
performance on our NDPF compared to other algorithms, explained later in Section 6.8.
However, it did outperform other papers using the same dataset, for example Kasongo et
al.[21] which received 79.59%—comparing that against our best result at 81.83%, results
in a percentage difference of 2.2%.

6.3 Support Vector Machines Results

The SVM model’s performance is affected by multiple different parameters. The
parameters can affect the model’s run time and accuracy, which depends on the task it
will perform. The parameters we tested are different C values, gamma value, and kernels
to optimize the model’s accuracy on our preprocessed dataset. We used various metrics
to evaluate the performance of each model in order to cover the various features of the
scoring outcome. The performance metrics used are: Accuracy, Recall, Precision and
F1-score, as mentioned in Chapter (6.1).

Table 6.3: Experiments (C 1 To 15 With rbf Kernel)

C Test Accuracy F1 Precision Recall Error

1 0.8157 0.8560 0.7514 0.9945 0.1842
2 0.8194 0.8584 0.7555 0.9937 0.1805
3 0.8220 0.8601 0.7583 0.9933 0.1780
4 0.8234 0.8609 0.7602 0.9924 0.1765
5 0.8249 0.8619 0.7620 0.9920 0.1750
6 0.8258 0.8624 0.7631 0.9914 0.1742
7 0.8266 0.8629 0.7641 0.9910 0.1734
8 0.8273 0.8634 0.7651 0.9906 0.1727
9 0.8279 0.8637 0.7659 0.9902 0.1720
10 0.8288 0.8643 0.7669 0.9900 0.1711
11 0.8294 0.8647 0.7676 0.9899 0.1706
12 0.8297 0.8649 0.7681 0.9896 0.1703
13 0.8303 0.8652 0.7687 0.9895 0.1697
14 0.8304 0.8652 0.7689 0.9892 0.1696
15 0.8305 0.8653 0.7692 0.9889 0.1695

136

6.3. SUPPORT VECTOR MACHINES RESULTS

Figure 6.5: Support Vector Machines Distribution Plot

In Figure 6.7, and Table 6.3, we observe that the accuracy of the model increases
from 81.57% when C is 1, and up to 83.05% when C is 15. The accuracy steadily rises
here. The total run time for the SVM models with C from 1 to 15 was 151 minutes
(approximately two and a half hour).

To further experiment with the C value, we executed the model with a C from 1 to
500 to determine how it affected the accuracy. Furthermore, in Figure 6.6, we can observe
that the results keep increasing up to 84.04%. As we can see from the Figure, the accuracy
declines slightly at specific points. Figure 6.8 represents how the other metrics behaved
on C 1 to 500. The reason for the drop in accuracy is explained thoroughly in Chapter 4,
Section 4.3. The total run time for C 1 − 500 was 12765 minutes (approximately 212
hours or 8.8 days).

After experimenting with C values between 1 to 500, we executed manual tuning to
increase the model’s performance. By testing out multiple kernels, C values, and gamma
values in different combinations, we ended up with results shown in Figure 6.9, 6.5, and
6.10. The experiments did not yield any increase in the model’s performance. However,
most of the results from the different parameters are around 93% on the training set
beside the Sigmoid kernel. The last method to get a higher accuracy from the SVM model
is to try the Grid Search algorithm. Executing Grid Search on SVM might be problematic
because it is time-consuming and computational heavy, even for a single iteration. The
Grid Search parameter grid included different kernels (rbf and poly), different gamma
values (multiple values under 1 and auto and scale), and different C values (10, 50, 100
up to 500). The parameters the Grid Search recommended after running resulted in:
C=500, gamma = 0.0001, and the rbf kernel, and the accuracy of this model was 93.56% on
the training set. Hence, the Grid Search algorithm performed more insufficiently than
the manual tuning.

Running experiments on SVM with our preprocessed dataset gave satisfactory results
when compared to other projects, for example Kasongo et al. documented an accuracy of
62.42% on its SVM Binary Classification [21]. As a conclusion, our SVM model’s highest
performance was 84.04% with the expected kernel rbf.

137

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.6: SVM With RBF Kernel With a C Value from 1 To 500

Figure 6.7: Graph Showing How C Value Impacts The Metrics From 1-15

138

6.3. SUPPORT VECTOR MACHINES RESULTS

Figure 6.8: Graph Showing How C Value Impacts The Metrics From 1-500

Figure 6.9: Support Vector Machines Overall Results

139

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.10: Support Vector Machines Regression plot

6.4 Decision Tree Results

When evaluating the DT’s performance, we utilize the metrics mentioned in Section
6.1: Accuracy, F1-Score, Precision, and Recall. It is essential to tune DT as it overfits
rather quickly. When we executed the DT model with default parameters1 on our
preprocessed dataset, we received an accuracy of 99.81%. The reason for this high
accuracy is overfitting which DT is known for when the trees are not pruned. The first
method we used to avoid overfitting and increase accuracy was a pre-pruning method
for finding an alpha score. After running the cost complexity pruning on the model,
it received an alpha value of 0.0002. Adding the alpha value to the model stopped it
from overfitting and resulted in an accuracy of 96.95% on the training set, and 86.68%
on the testing set. The next step was to execute a manual search with the rest of the
parameters and several alpha score values to see if the result could be improved. The
accuracy was increased by running the manual search with multiple different values on
every parameter. The results and plots from the search are represented in Table 6.4, and
Figures 6.12, 6.11, 6.13. The best results were 87.266% on the testing set and 96.41% on
the training set.

1https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html

140

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

6.4. DECISION TREE RESULTS

Table 6.4: Decision Tree Results

criterion min
SL

min
SS

max
depth

max
features ccp_alpha train_acc test_acc F1 precision recall runtime(s)

entropy 15 15 50 20 0.000000002 0.96417 0.87257 0.89365 0.82674 0.97233 0.8
entropy 15 15 75 20 0 0.96521 0.86949 0.8917 0.8209 0.97586 0.8
entropy 5 5 90 20 0.002 0.93407 0.82761 0.86379 0.76445 0.9928 1.1
entropy 10 15 20 25 0.000002 0.96275 0.86825 0.89055 0.82065 0.97346 1.8
entropy 20 25 50 30 0.0000002 0.96142 0.87126 0.89294 0.82358 0.97505 1.5
entropy 20 25 55 45 0.0000002 0.96397 0.87266 0.89414 0.82439 0.97679 1.7
entropy 30 30 65 20 0.02 0.91949 0.76377 0.82264 0.70118 0.99499 0.9
gini 1 2 none none 0 0.99816 0.86406 0.88571 0.82453 0.95669 0.2
gini 5 5 40 5 0.02 0.90438 0.77174 0.82665 0.71035 0.98848 0.4
gini 15 10 45 12 0.002 0.93363 0.80985 0.85266 0.74356 0.99927 0.6
gini 23 17 60 27 0.00002 0.95847 0.86858 0.89103 0.81976 0.97586 1.1
gini 25 25 50 35 0.0000002 0.96174 0.86975 0.8919 0.82122 0.97581 1.2
gini 30 30 50 30 0.000000002 0.95868 0.86997 0.89209 0.82135 0.97617 1.1
gini 45 35 65 25 0.000000002 0.95575 0.86749 0.89131 0.81778 0.97937 0.8

Figure 6.11: Decision Tree overall Results

The last method to try to increase the performance of the DT model is Grid Search.
which is explained in Section 3.4. The parameters in Grid Search included: criterion,
min_samples_leaf, min_samples_split, splitter, and max_depth. Due to high memory usage,
and time-complexity, we removed several parameters. The remaining parameters consist
of 5 − 8 distinct values. The results from the Grid Search was criterion = entropy,
min samples leaf = 17, min samples split = 7, max depth = 53, and splitter = random. The
performance was surprisingly below what it was with default parameters with a testing

141

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.12: Decision Tree Distribution Plot

accuracy of 86.29%, and training accuracy of 95.66%t. This is because the combination
of parameters available to the search does not have a combination that yields a higher
result. The search did not involve the default parameters since they have already been
tested, and executing a search with more parameters would be time-consuming for our
thesis, which we could not afford.

The best result from the DT model came from a manual search at 87.266% for the
testing set. This performance is comparable to other studies using the same dataset, for
example Kasongo et al.[21], which received an accuracy of 88.13%—having less than one
percent difference. With a more extensive Grid Search, it should be possible to increase
the performance even further to match the results.

Figure 6.13: Decision Tree Regression plot

142

6.5. RANDOM FOREST RESULTS

6.5 Random Forest Results

The evaluation metrics used for RF is Recall, F1-Score, Accuracy, and Recall, as mentioned
in Section 6.1. The first RF algorithm was executed with default hyperparameters2. The
results of the RF with default parameter is 87.13% on the testing set and 99.81% on the
training set. The high difference between the testing and training accuracy, where the
training accuracy almost reaches 100%, indicates overfitting. We executed a series of
manual searches with different hyperparameter values to resolve the issue of overfitting.
The results are represented in Table 6.5, and Figure 6.15. The majority of the final results
are partially equal with default parameters, where the training is prone to overfitting.
The performance metrics are visually represented on the training set,in Figure 6.14, and
6.16

Table 6.5: Random Forest Results

criterion n_estimators max
depth

min
SS

min
SL train_acc test_acc F1 precision recall runtime(s)

gini 100 None 2 1 0.99816 0.8713 0.89398 0.81801 0.98551 8.5
gini 200 None 2 1 0.99817 0.87222 0.89473 0.81878 0.98621 16.1
gini 200 20 2 1 0.98625 0.87034 0.89359 0.81512 0.98879 15.8
gini 200 50 2 1 0.99817 0.87213 0.89467 0.81858 0.98637 16.3
gini 200 70 20 10 0.97095 0.86806 0.89204 0.81171 0.99003 14.4
gini 200 100 4 2 0.99338 0.8706 0.89374 0.81566 0.98835 16.6
gini 1000 50 2 1 0.99817 0.87236 0.89491 0.81851 0.98703 76.3
gini 1000 None 2 1 0.99817 0.87203 0.89466 0.81816 0.98694 76.7
gini 2000 50 20 10 0.97117 0.86848 0.89237 0.81215 0.99016 153.4
entropy 100 None 2 1 0.99817 0.87263 0.89491 0.81992 0.985 10.8
entropy 200 None 2 1 0.99817 0.87399 0.89603 0.82094 0.98626 19.3
entropy 200 20 2 1 0.98157 0.87094 0.89396 0.81621 0.98809 18.5
entropy 200 50 2 1 0.99817 0.87329 0.8955 0.82018 0.98606 20.4
entropy 200 70 20 10 0.97192 0.87066 0.89387 0.81524 0.9893 16.6
entropy 200 100 4 2 0.99425 0.87221 0.8949 0.8178 0.98804 17.3
entropy 1000 50 2 1 0.99817 0.87329 0.89554 0.82001 0.98639 83.6
entropy 1000 None 2 1 0.99817 0.87282 0.89518 0.81947 0.9863 84.8
entropy 2000 50 20 10 0.97191 0.87058 0.89381 0.81521 0.98919 166.1

We applied Grid Search with the Random Forest Classifier to improve, and stop
the model from overfitting. The hyperparameters involved in the Grid were bootstrap,
criterion, max_depth, max_features, min_samples_leaf, min_samples_split, and n_estimators.
Searching for alpha score and executing cost complexity pruning is unnecessary for
RF algorithms as it performs bootstrap aggregation (Refer to Section4.5.2, for more
information). The result of the Grid Search algorithm was bootstrap = "True" , max_depth= 50,
max_features = auto, min_samples_leaf = 2, min_samples_split = 10, and n_estimators = 200.
Utilizing those hyperparameters in the model gave RF an accuracy of 87.21% on the
testing set and 98.82% on the training set.

After performing the Grid Search, further testing was needed to see if we could make
the accuracy of testing and training not deviate too much. We executed several manual

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

143

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.14: Random Forest Distribution Plot

Figure 6.15: Random Forest overall Results

144

6.5. RANDOM FOREST RESULTS

searches with more and deeper trees, which helped with the difference between training
and testing accuracy. The results of those experiments were 86.93% on the testing set,
and 96.29% on the training set.

The first experiment with RF was run with default parameters and overfitted on the
training set. With manual search, the results did not improve much as most training sets
still overfit, where the test accuracy did not improve much. The grid search improved the
deviation between testing and training accuracy bringing the training accuracy a slightly
down and testing accuracy slightly up. Our final experimentations for RF, included more
and deeper trees aside from the suggestions from Grid Search algorithm. There we no
improvements in the accuracy, but the difference is accuracy between the training and
testing datasets was brought down to less than 10%, which is an improvement in itself.

Figure 6.16: Random Forest Regression plot

145

CHAPTER 6. PERFORMANCE EVALUATION

6.6 Artificial Neural Network Results
A total number of seven experiments were conducted for ANN. Every experiment was
run for 200 epochs, with a different number of layers and neurons, which is presented
in Table 6.6. Out of the seven experiments, Experiment 7, in Section 6.6.7 received the
best overall performance metrics. The model received a training accuracy of 94.796%, a
testing accuracy of 88.62%, an F1-score of 96.473%, precision of 84.914%, and recall of
96.473%.

The experiments started with executing the Grid Search algorithm in sections. Firstly,
the parameters we tried to output was epochs with a range from 80 to 180, batchsize with
a range from 100 to 200, and optimizer with the options SGD, RMSprop, Adagrad, Adadelta,
Adam, Adamx and Nadam. The Grid Search resulted with the best parameter values of epochs
= 180, batchsize = 100, and optimizer = adam. The complete results and scores from
Experiment 1 to 7 are presented in Table 6.7 to 6.13 correspondingly. The Distribution
plots from Figure 6.17 to 6.23 describe where the range of the selected metrics is heavily
distributed.

Table 6.6: The Structure of the Experiments

Neuron Structure

Experiment Layers Input Hidden Output
1 3 50 25 1
2 4 53 36-21 1
3 4 500 250-100 1
4 5 100 75-50-25 1
5 7 200 150-125-100-50-25 1
6 9 200 175-150-125-100-75-50-25 1
7 11 300 250-200-175-150-125-100-75-50-25 1

146

6.6. ARTIFICIAL NEURAL NETWORK RESULTS

6.6.1 Experiment 1

Table 6.7: Experiment 1: Activation Function →ReLU and Sigmoid

E L Train
Accuracy

Test
Accuracy

Train
Error

Test
Error

Train
Precision

Test
Precision

Train
F1

Test
F1

Train
Recall

Test
Recall Runtime(s)

0 3 0.69222 0.56673 0.30778 0.43327 0.69246 0.56048 0.98548 0.98736 0.98548 0.98736 5.867
10 3 0.94535 0.84021 0.05465 0.15979 0.93767 0.77988 0.98519 0.9889 0.98519 0.9889 57.784
20 3 0.94781 0.86173 0.05219 0.13827 0.95201 0.81206 0.97234 0.97439 0.97234 0.97439 103.388
30 3 0.9503 0.87411 0.0497 0.12589 0.95921 0.82863 0.96815 0.97247 0.96815 0.97247 171.73
40 3 0.95061 0.87371 0.04939 0.12629 0.95912 0.82217 0.96872 0.9833 0.96872 0.9833 219.354
50 3 0.95062 0.86631 0.04938 0.13369 0.95766 0.8188 0.97035 0.97238 0.97035 0.97238 270.148
60 3 0.95035 0.87819 0.04965 0.12181 0.96348 0.83472 0.96357 0.97104 0.96357 0.97104 346.828
70 3 0.95273 0.86166 0.04727 0.13834 0.95532 0.80904 0.97621 0.98008 0.97621 0.98008 392.657
80 3 0.95325 0.86835 0.04675 0.13165 0.95864 0.81949 0.97331 0.97584 0.97331 0.97584 419.284
90 3 0.95199 0.87195 0.04801 0.12805 0.96128 0.82777 0.96847 0.96905 0.96847 0.96905 490.22
100 3 0.95313 0.85 0.04687 0.15 0.95299 0.79808 0.97945 0.97399 0.97945 0.97399 625.392
110 3 0.9533 0.88075 0.0467 0.11925 0.96885 0.84109 0.96233 0.96592 0.96233 0.96592 643.316
120 3 0.95359 0.87543 0.04641 0.12457 0.96345 0.82803 0.96856 0.97657 0.96856 0.97657 736.758
130 3 0.95421 0.87237 0.04579 0.12763 0.96407 0.82502 0.96883 0.97498 0.96883 0.97498 743.281
140 3 0.95416 0.86092 0.04584 0.13908 0.95914 0.81165 0.97415 0.97324 0.97415 0.97324 788.155
150 3 0.95502 0.8669 0.04498 0.1331 0.9592 0.81673 0.9754 0.97765 0.9754 0.97765 940.978
160 3 0.95459 0.87214 0.04541 0.12786 0.96282 0.82852 0.97076 0.96817 0.97076 0.96817 959.898
170 3 0.95553 0.87106 0.04447 0.12894 0.96195 0.82399 0.97315 0.97384 0.97315 0.97384 1000.398
180 3 0.9559 0.8654 0.0441 0.1346 0.95981 0.81697 0.97609 0.97368 0.97609 0.97368 1032.018
190 3 0.95409 0.84536 0.04591 0.15464 0.95104 0.78995 0.98316 0.97962 0.98316 0.97962 1074.764
200 3 0.95558 0.8586 0.04442 0.1414 0.95829 0.80727 0.97727 0.97626 0.97727 0.97626 1201.868

Figure 6.17: Distribution Plot: Experiment 1, 3 Layers

147

CHAPTER 6. PERFORMANCE EVALUATION

6.6.2 Experiment 2

Table 6.8: Experiment 2: Activation Function →ReLU and Sigmoid

E L Train
Accuracy

Test
Accuracy

Train
Error

Test
Error

Train
Precision

Test
Precision

Train
F1

Test
F1

Train
Recall

Test
Recall Runtime(s)

0 4 0.40377 0.41358 0.59623 0.58642 0.61335 0.44619 0.33546 0.2697 0.33546 0.2697 6.442
10 4 0.94596 0.84877 0.05404 0.15123 0.94164 0.79069 0.98142 0.98648 0.98142 0.98648 72.386
20 4 0.94845 0.85765 0.05155 0.14235 0.94852 0.8026 0.9773 0.9833 0.9773 0.9833 134.273
30 4 0.94896 0.85676 0.05104 0.14324 0.94897 0.80203 0.97758 0.98233 0.97758 0.98233 189.392
40 4 0.95163 0.86172 0.04837 0.13828 0.95625 0.81341 0.97347 0.97176 0.97347 0.97176 279.237
50 4 0.95192 0.86919 0.04808 0.13081 0.9615 0.82552 0.96812 0.96676 0.96812 0.96676 316.571
60 4 0.95268 0.86309 0.04732 0.13691 0.95693 0.81343 0.97433 0.97496 0.97433 0.97496 375.444
70 4 0.95468 0.86808 0.04532 0.13192 0.96103 0.82023 0.97286 0.97386 0.97286 0.97386 473.372
80 4 0.95551 0.86591 0.04449 0.13409 0.9627 0.81916 0.97231 0.97077 0.97231 0.97077 502.388
90 4 0.95569 0.85985 0.04431 0.14015 0.95848 0.80899 0.97723 0.97587 0.97723 0.97587 584.255
100 4 0.95553 0.86717 0.04447 0.13283 0.96034 0.81675 0.97492 0.97825 0.97492 0.97825 600.386
110 4 0.95656 0.86755 0.04344 0.13245 0.96357 0.82192 0.97297 0.96949 0.97297 0.96949 660.851
120 4 0.95559 0.86533 0.04441 0.13467 0.9636 0.8221 0.97144 0.96402 0.97144 0.96402 799.548
130 4 0.95784 0.86989 0.04216 0.13011 0.96405 0.82119 0.97439 0.97629 0.97439 0.97629 810.371
140 4 0.95773 0.86461 0.04227 0.13539 0.9623 0.81831 0.97614 0.96932 0.97614 0.96932 904.388
150 4 0.95889 0.86394 0.04111 0.13606 0.96185 0.81253 0.9784 0.97869 0.9784 0.97869 1033.609
160 4 0.95756 0.8654 0.04244 0.1346 0.96437 0.81915 0.97362 0.9696 0.97362 0.9696 986.509
170 4 0.95757 0.85591 0.04243 0.14409 0.95828 0.80659 0.98035 0.97119 0.98035 0.97119 1199.68
180 4 0.95921 0.86143 0.04079 0.13857 0.96659 0.81751 0.97373 0.96338 0.97373 0.96338 1196.063
190 4 0.95902 0.85489 0.04098 0.14511 0.96021 0.80454 0.98042 0.9728 0.98042 0.9728 1247.348
200 4 0.95947 0.86449 0.04053 0.13551 0.96349 0.81835 0.9775 0.96896 0.9775 0.96896 1232.639

Figure 6.18: Distribution Plot: Experiment 2, 4 Layers

148

6.6. ARTIFICIAL NEURAL NETWORK RESULTS

6.6.3 Experiment 3

Table 6.9: Experiment 3: Activation Function →ReLU and Sigmoid

E L Train
Accuracy

Test
Accuracy

Train
Error

Test
Error

Train
Precision

Test
Precision

Train
F1

Test
F1

Train
Recall

Test
Recall Runtime(s)

0 4 0.65357 0.53636 0.34643 0.46364 0.80962 0.5867 0.64196 0.53443 0.64196 0.53443 19.652
10 4 0.94664 0.879 0.05336 0.121 0.9638 0.84087 0.95757 0.96237 0.95757 0.96237 143.346
20 4 0.95074 0.85364 0.04926 0.14636 0.94989 0.79891 0.97928 0.98114 0.97928 0.98114 255.482
30 4 0.95475 0.86827 0.04525 0.13173 0.96172 0.82133 0.97221 0.97225 0.97221 0.97225 386.58
40 4 0.95638 0.87556 0.04362 0.12444 0.96851 0.83486 0.96736 0.96486 0.96736 0.96486 542.611
50 4 0.95968 0.86451 0.04032 0.13549 0.96366 0.81666 0.97763 0.97218 0.97763 0.97218 703.872
60 4 0.96183 0.86452 0.03817 0.13548 0.97043 0.82444 0.97359 0.95793 0.97359 0.95793 815.17
70 4 0.96769 0.86325 0.03231 0.13675 0.97205 0.81716 0.98073 0.96828 0.98073 0.96828 928.028
80 4 0.96863 0.85356 0.03137 0.14644 0.96939 0.80767 0.98502 0.96345 0.98502 0.96345 1086.155
90 4 0.9711 0.85229 0.0289 0.14771 0.97124 0.80426 0.98675 0.96711 0.98675 0.96711 1238.601
100 4 0.97282 0.8597 0.02718 0.1403 0.97514 0.8135 0.98519 0.96684 0.98519 0.96684 1409.363
110 4 0.97398 0.85824 0.02602 0.14176 0.97812 0.8137 0.98378 0.96303 0.98378 0.96303 1482.121
120 4 0.97689 0.85422 0.02311 0.14578 0.98063 0.81116 0.9855 0.95835 0.9855 0.95835 1602.806
130 4 0.97808 0.85313 0.02192 0.14687 0.98131 0.80945 0.98658 0.95901 0.98658 0.95901 1685.302
140 4 0.97922 0.85545 0.02078 0.14455 0.98217 0.81101 0.9874 0.96153 0.9874 0.96153 1879.609
150 4 0.98019 0.8562 0.01981 0.1438 0.98233 0.81227 0.98868 0.96093 0.98868 0.96093 1903.517
160 4 0.97893 0.85829 0.02107 0.14171 0.98218 0.81678 0.98695 0.9574 0.98695 0.9574 2166.658
170 4 0.97553 0.86124 0.02447 0.13876 0.98335 0.8234 0.98065 0.95222 0.98065 0.95222 2310.715
180 4 0.98388 0.85008 0.01612 0.14992 0.98522 0.8102 0.99118 0.95034 0.99118 0.95034 2503.043
190 4 0.98581 0.84916 0.01419 0.15084 0.98582 0.80735 0.99344 0.95359 0.99344 0.95359 2603.326
200 4 0.98547 0.86149 0.01453 0.13851 0.98955 0.82149 0.98909 0.95621 0.98909 0.95621 2799.418

Figure 6.19: Distribution Plot: Experiment 3, 4 Layers

149

CHAPTER 6. PERFORMANCE EVALUATION

6.6.4 Experiment 4

Table 6.10: Experiment 4: Activation Function →ReLU and Sigmoid

E L Train
Accuracy

Test
Accuracy

Train
Error

Test
Error

Train
Precision

Test
Precision

Train
F1

Test
F1

Train
Recall

Test
Recall Runtime(s)

0 5 0.56236 0.52325 0.43764 0.47675 0.74164 0.565 0.54784 0.5829 0.54784 0.5829 14.794
10 5 0.94508 0.88636 0.05492 0.11364 0.96597 0.85178 0.95287 0.9608 0.95287 0.9608 99.899
20 5 0.95019 0.86722 0.04981 0.13278 0.95562 0.81755 0.97195 0.97684 0.97195 0.97684 172.029
30 5 0.95254 0.86486 0.04746 0.13514 0.95821 0.81611 0.97268 0.97404 0.97268 0.97404 257.248
40 5 0.95253 0.86741 0.04747 0.13259 0.95938 0.81959 0.97138 0.97348 0.97138 0.97348 318.451
50 5 0.95759 0.86138 0.04241 0.13862 0.95858 0.81051 0.98003 0.97655 0.98003 0.97655 457.806
60 5 0.95706 0.85979 0.04294 0.14021 0.95886 0.8094 0.97892 0.97492 0.97892 0.97492 556.663
70 5 0.96012 0.86559 0.03988 0.13441 0.9663 0.8192 0.97542 0.96995 0.97542 0.96995 663.043
80 5 0.96042 0.86523 0.03958 0.13477 0.96755 0.81888 0.97454 0.96971 0.97454 0.96971 727.776
90 5 0.9609 0.85874 0.0391 0.14126 0.96552 0.81247 0.97746 0.96654 0.97746 0.96654 776.263
100 5 0.96284 0.86029 0.03716 0.13971 0.96747 0.81425 0.9783 0.9668 0.9783 0.9668 814.886
110 5 0.96453 0.8635 0.03547 0.1365 0.9701 0.81823 0.97804 0.96689 0.97804 0.96689 941.734
120 5 0.9648 0.86163 0.0352 0.13837 0.97078 0.81773 0.97771 0.96345 0.97771 0.96345 1024.809
130 5 0.96772 0.86007 0.03228 0.13993 0.9714 0.81341 0.98147 0.96788 0.98147 0.96788 1197.564
140 5 0.96669 0.86616 0.03331 0.13384 0.97493 0.82469 0.97616 0.96126 0.97616 0.96126 1424.26
150 5 0.96768 0.86304 0.03232 0.13696 0.97676 0.82558 0.97573 0.95248 0.97573 0.95248 1453.881
160 5 0.96786 0.86788 0.03214 0.13212 0.97533 0.82451 0.97751 0.96554 0.97751 0.96554 1401.025
170 5 0.96984 0.85585 0.03016 0.14415 0.97125 0.80788 0.98484 0.96852 0.98484 0.96852 1471.855
180 5 0.97043 0.86465 0.02957 0.13535 0.97701 0.8207 0.97961 0.96499 0.97961 0.96499 1651.516
190 5 0.97012 0.85838 0.02988 0.14162 0.97359 0.81399 0.98276 0.96281 0.98276 0.96281 1893.724
200 5 0.97167 0.86236 0.02833 0.13764 0.97753 0.81907 0.98093 0.96268 0.98093 0.96268 1905.795

Figure 6.20: Distribution Plot: Experiment 4, 5 Layers

150

6.6. ARTIFICIAL NEURAL NETWORK RESULTS

6.6.5 Experiment 5

Table 6.11: Experiment 5: Activation Function →ReLU and Sigmoid

E L Train
Accuracy

Test
Accuracy

Train
Error

Test
Error

Train
Precision

Test
Precision

Train
F1

Test
F1

Train
Recall

Test
Recall Runtime(s)

0 7 0.29313 0.38654 0.70687 0.61346 0.42479 0.3209 0.10891 0.10227 0.10891 0.10227 22.068
10 7 0.94734 0.84679 0.05266 0.15321 0.94538 0.79016 0.9792 0.98273 0.9792 0.98273 146.489
20 7 0.95115 0.87288 0.04885 0.12712 0.95776 0.82256 0.97106 0.98068 0.97106 0.98068 251.588
30 7 0.95283 0.85535 0.04717 0.14465 0.95356 0.80264 0.97834 0.9777 0.97834 0.9777 382.763
40 7 0.95591 0.86284 0.04409 0.13716 0.96171 0.81532 0.974 0.97077 0.974 0.97077 511.486
50 7 0.95817 0.87141 0.04183 0.12859 0.96787 0.828 0.97077 0.96742 0.97077 0.96742 610.832
60 7 0.96112 0.8652 0.03888 0.1348 0.96783 0.82084 0.97529 0.96603 0.97529 0.96603 692.81
70 7 0.96386 0.85985 0.03614 0.14015 0.96798 0.81383 0.97929 0.96656 0.97929 0.96656 918.052
80 7 0.96498 0.86675 0.03502 0.13325 0.97343 0.82695 0.97516 0.95857 0.97516 0.95857 1071.846
90 7 0.96801 0.86551 0.03199 0.13449 0.97386 0.82068 0.97929 0.96704 0.97929 0.96704 1206.126
100 7 0.96863 0.86848 0.03137 0.13152 0.97671 0.82805 0.97721 0.96062 0.97721 0.96062 1319.535
110 7 0.97074 0.86381 0.02926 0.13619 0.97507 0.81855 0.98212 0.967 0.98212 0.967 1366.005
120 7 0.97272 0.86256 0.02728 0.13744 0.97975 0.82007 0.98017 0.96129 0.98017 0.96129 1350.649
130 7 0.97388 0.85008 0.02612 0.14992 0.97209 0.79976 0.99005 0.97077 0.99005 0.97077 1506.367
140 7 0.97782 0.86303 0.02218 0.13697 0.98135 0.81904 0.98615 0.96429 0.98615 0.96429 1567.633
150 7 0.97828 0.85439 0.02172 0.14561 0.98029 0.80957 0.98795 0.96179 0.98795 0.96179 1727.497
160 7 0.97942 0.85714 0.02058 0.14286 0.98112 0.81219 0.98879 0.96329 0.98879 0.96329 1888.443
170 7 0.98117 0.85684 0.01883 0.14316 0.98388 0.81291 0.98853 0.9612 0.98853 0.9612 2018.96
180 7 0.97892 0.86414 0.02108 0.13586 0.98408 0.8219 0.98497 0.96162 0.98497 0.96162 2302.948
190 7 0.98257 0.8625 0.01743 0.1375 0.98667 0.82048 0.98773 0.9604 0.98773 0.9604 2346.387
200 7 0.98367 0.85651 0.01633 0.14349 0.98486 0.81296 0.99124 0.96034 0.99124 0.96034 2462.489

Figure 6.21: Distribution Plot: Experiment 5, 7 Layers

151

CHAPTER 6. PERFORMANCE EVALUATION

6.6.6 Experiment 6

Table 6.12: Experiment 6: Activation Function →ReLU and Sigmoid

E L Train
Accuracy

Test
Accuracy

Train
Error

Test
Error

Train
Precision

Test
Precision

Train
F1

Test
F1

Train
Recall

Test
Recall Runtime(s)

0 9 0.31446 0.44174 0.68554 0.55826 0.10166 0.04993 0.00092 0.00077 0.00092 0.00077 25.631
10 9 0.94733 0.85975 0.05267 0.14025 0.9506 0.8057 0.97319 0.98213 0.97319 0.98213 166.815
20 9 0.95151 0.86587 0.04849 0.13413 0.95665 0.81521 0.97284 0.97812 0.97284 0.97812 298.34
30 9 0.95343 0.8594 0.04657 0.1406 0.95819 0.80997 0.97408 0.97289 0.97408 0.97289 465.589
40 9 0.95415 0.86155 0.04585 0.13845 0.95678 0.8093 0.97676 0.97931 0.97676 0.97931 619.571
50 9 0.95774 0.86346 0.04226 0.13654 0.96459 0.82094 0.97366 0.96179 0.97366 0.96179 746.712
60 9 0.96077 0.86582 0.03923 0.13418 0.96862 0.82244 0.97392 0.96455 0.97392 0.96455 989.225
70 9 0.96466 0.86013 0.03534 0.13987 0.96754 0.81258 0.98098 0.9696 0.98098 0.9696 1094.852
80 9 0.96461 0.86224 0.03539 0.13776 0.96834 0.81414 0.98004 0.97161 0.98004 0.97161 1268.777
90 9 0.96848 0.86298 0.03152 0.13702 0.97426 0.82066 0.97956 0.9612 0.97956 0.9612 1511.303
100 9 0.96945 0.86202 0.03055 0.13798 0.97508 0.81925 0.98017 0.96155 0.98017 0.96155 1608.575
110 9 0.97382 0.86013 0.02618 0.13987 0.9781 0.81521 0.98355 0.96462 0.98355 0.96462 1713.426
120 9 0.97592 0.85556 0.02408 0.14444 0.97667 0.81122 0.98823 0.9614 0.98823 0.9614 1881.962
130 9 0.97326 0.86316 0.02674 0.13684 0.97678 0.8167 0.9841 0.96894 0.9841 0.96894 2108.117
140 9 0.97611 0.8586 0.02389 0.1414 0.97875 0.81291 0.98632 0.96537 0.98632 0.96537 2234.959
150 9 0.97738 0.86443 0.02262 0.13557 0.98175 0.82187 0.98507 0.96234 0.98507 0.96234 2363.852
160 9 0.97636 0.85936 0.02364 0.14064 0.97898 0.81483 0.98645 0.96354 0.98645 0.96354 2413.329
170 9 0.98037 0.86033 0.01963 0.13967 0.98303 0.8162 0.98822 0.96325 0.98822 0.96325 2506.88
180 9 0.97856 0.85801 0.02144 0.14199 0.98302 0.81693 0.98553 0.95645 0.98553 0.95645 2676.926
190 9 0.98383 0.85633 0.01617 0.14367 0.9845 0.81119 0.99185 0.96327 0.99185 0.96327 2746.525
200 9 0.98541 0.86128 0.01459 0.13872 0.98855 0.81946 0.99002 0.95943 0.99002 0.95943 3041.102

Figure 6.22: Distribution Plot: Experiment 6, 9 Layers

152

6.6. ARTIFICIAL NEURAL NETWORK RESULTS

6.6.7 Experiment 7

Table 6.13: Experiment 7: Activation Function →ReLU and Sigmoid

E L Train
Accuracy

Test
Accuracy

Train
Error

Test
Error

Train
Precision

Test
Precision

Train
F1

Test
F1

Train
Recall

Test
Recall Runtime(s)

0 11 0.32277 0.44386 0.67723 0.55614 0.59757 0.3007 0.01524 0.00759 0.01524 0.00759 32.085
10 11 0.94622 0.84615 0.05378 0.15385 0.9432 0.78815 0.98001 0.98546 0.98001 0.98546 237.798
20 11 0.94796 0.8862 0.05204 0.1138 0.96806 0.84914 0.95505 0.96473 0.95505 0.96473 455.409
30 11 0.95182 0.87864 0.04818 0.12136 0.96657 0.83673 0.9625 0.96859 0.9625 0.96859 667.354
40 11 0.95432 0.85569 0.04568 0.14431 0.95504 0.80652 0.97897 0.97079 0.97897 0.97079 886.623
50 11 0.95533 0.86375 0.04467 0.13625 0.95911 0.81577 0.97598 0.97207 0.97598 0.97207 1120.929
60 11 0.95979 0.85707 0.04021 0.14293 0.963 0.80922 0.97852 0.96881 0.97852 0.96881 1359.187
70 11 0.96309 0.86342 0.03691 0.13658 0.97026 0.81942 0.97568 0.96448 0.97568 0.96448 1668.132
80 11 0.96177 0.86038 0.03823 0.13962 0.96534 0.81224 0.97898 0.97086 0.97898 0.97086 1796.055
90 11 0.9644 0.86258 0.0356 0.13742 0.97228 0.81782 0.9755 0.9655 0.9755 0.9655 2017.732
100 11 0.97035 0.8641 0.02965 0.1359 0.9758 0.82068 0.98077 0.96376 0.98077 0.96376 2164.269
110 11 0.97137 0.86415 0.02863 0.13585 0.97759 0.82027 0.98041 0.96462 0.98041 0.96462 2486.649
120 11 0.97256 0.8567 0.02744 0.1433 0.9753 0.81167 0.98462 0.96325 0.98462 0.96325 2628.038
130 11 0.96974 0.85569 0.03026 0.14431 0.97206 0.80766 0.98383 0.96857 0.98383 0.96857 2932.004
140 11 0.97816 0.85596 0.02184 0.14404 0.97959 0.81075 0.9885 0.96325 0.9885 0.96325 3294.701
150 11 0.97137 0.86206 0.02863 0.13794 0.97753 0.81868 0.98048 0.96268 0.98048 0.96268 3505.01
160 11 0.97576 0.86599 0.02424 0.13401 0.98274 0.82576 0.98162 0.95897 0.98162 0.95897 3637.188
170 11 0.97672 0.85878 0.02328 0.14122 0.97788 0.81083 0.98814 0.96976 0.98814 0.96976 3898.866
180 11 0.97654 0.8586 0.02346 0.1414 0.98088 0.81307 0.98472 0.96506 0.98472 0.96506 4229.4
190 11 0.97507 0.86475 0.02493 0.13525 0.98271 0.82556 0.98062 0.95648 0.98062 0.95648 4429.623
200 11 0.97366 0.85416 0.02634 0.14584 0.97681 0.8076 0.98468 0.96504 0.98468 0.96504 4379.668

Figure 6.23: Distribution Plot: Experiment 7, 11 Layers

153

CHAPTER 6. PERFORMANCE EVALUATION

6.7 K-Nearest Neighbor Results

The KNN algorithm was implemented on the preprocessed UNSW-NB15 dataset, where
we used the performance metrics, Accuracy, F1-Score, Precision, and Recall as mentioned
in Section 6.8 for evaluating the output.

Table 6.14 presents the result of our first experiment with the values of K from 1 to
70. Furthermore, the model became less stable due to majority voting and averaging,
resulting in a less accurate algorithm.

For example, the average training accuracy for K(1− 70) equals 94.6635%, whereas
the testing accuracy averaged 83.5129% for the whole experiment. By analyzing the
results from Table 6.14 and Figures 6.24 and 6.25 plotted from the output, we can observe
that K = 1 is overfitting, because the model assigns every first neighbor it encounters,
and uses for prediction. Furthermore, at K = 2 in Figure 6.27, we can observe that the
error is minimal. We can conclude that the predictions become less stable and accurate as
the K value increases for the K range from 1 to 70. To observe closer, we have included
Figure 6.28 which represents the distribution of the metrics for K 1 to 15.

Table 6.14: KNN Scores with K from 1 to 70

K train_acc test_acc precision F1 recall K train_acc test_acc precision F1 recall

1 99.71199 85.27911 81.48893 87.64123 94.79838 36 94.40576 83.3552 77.53901 86.66355 98.22201
2 96.52163 87.10829 85.70341 88.70274 91.91962 37 94.39036 83.04183 77.10104 86.47198 98.43598
3 96.71668 85.08964 80.58249 87.64692 96.069 38 94.37838 83.28232 77.44662 86.6161 98.24848
4 95.8498 86.31881 83.19691 88.34485 94.17189 39 94.34188 83.01511 77.0596 86.45696 98.46466
5 95.87661 84.62809 79.77909 87.36876 96.55431 40 94.34644 83.23859 77.36393 86.59517 98.32789
6 95.43803 85.62284 81.68095 87.94541 95.2506 41 94.32648 83.00418 77.0271 86.4552 98.51319
7 95.48081 84.36938 79.27285 87.23073 96.96462 42 94.32306 83.18515 77.29448 86.56105 98.35216
8 95.27492 85.25847 80.84063 87.75883 95.97194 43 94.31508 82.91187 76.9244 86.39217 98.5176
9 95.2407 84.14468 78.87946 87.10283 97.24036 44 94.32477 83.1062 77.18394 86.51301 98.40731
10 95.07645 84.87101 80.11616 87.53328 96.46387 45 94.30994 82.88758 76.88032 86.38047 98.55952
11 95.02683 84.04266 78.67092 87.0531 97.43448 46 94.29626 83.04183 77.11416 86.46831 98.4051
12 94.98463 84.67303 79.74179 87.42213 96.73961 47 94.27002 82.84992 76.82826 86.35775 98.58599
13 94.92874 83.92241 78.45655 86.98747 97.59993 48 94.282 83.00661 77.05122 86.45084 98.46245
14 94.87798 84.40825 79.29325 87.2645 97.01756 49 94.24778 82.77462 76.75106 86.30473 98.57496
15 94.866 83.75601 78.21251 86.88438 97.71905 50 94.27059 82.89608 76.93037 86.37472 98.46245
16 94.84205 84.23213 78.99265 87.16204 97.21609 51 94.25405 82.7564 76.71477 86.29699 98.61467
17 94.78958 83.68314 78.07132 86.84849 97.8492 52 94.26603 82.90944 76.92268 86.39023 98.5154
18 94.77019 84.14954 78.80367 87.12637 97.41463 53 94.24493 82.73818 76.67581 86.29006 98.66099
19 94.71259 83.64184 77.95873 86.83686 97.997 54 94.26318 82.8815 76.87278 86.37655 98.56172
20 94.71544 84.05359 78.61624 87.07763 97.58008 55 94.22554 82.73332 76.66141 86.28937 98.68305
21 94.68749 83.59447 77.8751 86.81176 98.06538 56 94.21641 82.8815 76.85985 86.38024 98.59261
22 94.68806 83.88597 78.37761 86.9713 97.68155 57 94.2147 82.71996 76.6351 86.28366 98.71173
23 94.64814 83.50095 77.75078 86.75171 98.1095 58 94.2204 82.85843 76.82459 86.36728 98.61687
24 94.65271 83.81553 78.24729 86.93461 97.79185 59 94.18562 82.70782 76.61377 86.27772 98.73158
25 94.58142 83.44508 77.6767 86.71592 98.13597 60 94.19816 82.81592 76.77014 86.34046 98.63672
26 94.574 83.75844 78.14173 86.90509 97.88229 61 94.17307 82.68353 76.57937 86.26348 98.75143
27 94.5107 83.40985 77.60655 86.69971 98.20656 62 94.18904 82.77341 76.72587 86.31077 98.63231
28 94.50499 83.67585 78.03052 86.85189 97.922 63 94.16851 82.61308 76.5089 86.2137 98.7382
29 94.46792 83.27989 77.44774 86.61338 98.23965 64 94.17877 82.75883 76.69542 86.305 98.66761
30 94.49986 83.54346 77.84124 86.76998 98.01244 65 94.16223 82.62158 76.50899 86.22217 98.76026
31 94.4742 83.2471 77.37998 86.59924 98.31245 66 94.16794 82.72968 76.66478 86.28476 98.6654
32 94.47648 83.50095 77.74884 86.75223 98.11392 67 94.13543 82.58393 76.46305 86.19803 98.77349
33 94.42173 83.17301 77.27257 86.555 98.37201 68 94.15539 82.70539 76.62847 86.27103 98.68967
34 94.428 83.36977 77.59559 86.66277 98.12936 69 94.13315 82.57907 76.45151 86.19658 98.78893
35 94.40291 83.10863 77.19414 86.51259 98.38966 70 94.14455 82.69931 76.61644 86.26846 98.7029

154

6.7. K-NEAREST NEIGHBOR RESULTS

Figure 6.24: Lineplot with respect to K value from 1 to 70

The error rate for the model is also calculated and presented in Figure 6.26. We can
analyze that the error rate increases as K increases. The error rate E is calculated with
Equation 6.5:

Model Error = (100− accuracy) (6.5)

The decrease in accuracy as the K value increases brought up a question, which
refers to the next experiment to confirm our assertion: investigate whether a higher K
value than 70 results in better or worse model performance. We conducted the same
experiment with K ranging from 1 to 200. We can analyze from Figure 6.27 that our
assertion can be confirmed: The KNN Algorithm’s performance becomes less stable
and accurate as the K-value increases. The total runtime for this experiment was 9672
minutes, approximately 161.2 hours.

Finally, the KNN Algorithm implementation and experiments resulted in the best
score at K(2). The model received a training accuracy of 96.52163%, testing accuracy
of 87.10829%, Precision of 85.70341%, F1-Score of 88.70274%, and Recall of 91.91962%
respectively.

155

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.25: Barplot with respect to K value from 1 to 70

Figure 6.26: Error rate with respect to K value from 1 to 70

156

6.7. K-NEAREST NEIGHBOR RESULTS

Figure 6.27: Error rate with respect to K value from 1 to 200

Figure 6.28: Distribution Plot for K 1 to 15

157

CHAPTER 6. PERFORMANCE EVALUATION

6.8 Performance Evaluation Summary

The Performance Evaluation Summary will recap the experiments done and the best
result from each algorithm. The best-achieved result for each algorithm from the
experimentations is presented in Table 6.15. The Rank represents the order in which
algorithm performed the best, where Rank 1 indicates the best performing model,
and Rank 6 indicates the worst performing model. The Parameter column shows the
parameters used for that particular experiment. Finally, the runtime and runtimeGS show
the manual search and Grid Search time it took to run each algorithm’s experiments in
total. The Table also included conventional statistics such asmean,max,min, and diff(min,max)
for evaluation purposes. The percentage difference (increase/decrease) is calculated by
Equation 6.6, where V1 is the first value, and V2 is the result of the percentage functioning
on V1.

|V1 − V2|
(V 1+V 2)

2

× 100 (6.6)

Table 6.15: Best results from each algorithm

Rank Algorithm Parameters Train
Acc

Test
Acc F1 Precision Recall Runtime Runtime

GS

1 ANN Epochs=20,
11 Layers 94.796 88.62 96.473 84.914 96.473 179499 323671

2 RF

criterion=entropy,
n_estimators=200,
maxDepth=none,
minSS=2,
minSL=1

99.817 87.399 89.603 82.094 98.626 19.3 49440

3 DT

criterion=entropy,
minSL=20,
minSS=25,
maxdepth=55,
maxfeatures=45,
ccpAlpha=0.0000002

96.397 87.266 89.414 82.439 97.679 14 7680

4 KNN K=2 96.521 87.11 88.702 85.703 91.919 580320 NaN

5 SVM C=500 95.169 84.04 86.959 79.027 96.662 56526 763200

6 LR

maxIter=1600,
C=10,
Penalty=None,
solver=lbfgs

93.759 81.835 85.632 75.849 98.312 815.9 8040

Statistics

Mean 96.077 86.045 89.464 81.671 96.612 136199 230406
Max 99.817 88.620 96.473 85.703 98.626 580320 763200
Min 93.759 81.835 85.632 75.849 91.919 14.0 7680

Difference (min, max) 6.46% 8.29% 12.66% 12.99% 7.30% 4145043% 9838%

158

6.8. PERFORMANCE EVALUATION SUMMARY

6.8.1 Score Analysis

Observing Table 6.15 in combination with barplot 6.29, we can analyze the four performance
metrics used in our thesis for the implemented algorithms.

• Training Accuracy: the average training accuracy across our six implemented
algorithms equals 96.077%, with the best score of 99.817% for RF. The difference
between the lowest and highest scores is 6.46%. This indicates a minimal error in
training accuracy distributed among the algorithms.

• Testing Accuracy: the average testing accuracy across our six implemented
algorithms equals 86.045%, with the best score of 88.62% for ANN. The difference
between the lowest and highest scores is 8.29%. The combined results indicated
that the algorithms perform well on our NDPF and output great results on unseen
data.

• Precision: the average precision score for our implementation resulted in 81.671%,
the best precision score of 81.671% for KNN, and the worst of 75.849%. The
difference between the best and worst precision scores is 12.99%. The precision
results indicate that the algorithms return more relevant feedback than irrelevant.

• Recall: the average recall score for our implementation resulted in 96.612%, with
the best score of 98.626% for RF and the worst score of 91.919% for KNN. The
difference between the worst and best scores is 7.30%. The results for recall indicate
that our models predict a high amount of actual positives, meaning the results are
relevant.

• F1: the average F1-Score for our models resulted in 89.464%, with the highest
score of 96.473% for ANN and the lowest score of 85.632% for LR. The difference
between the worst and best scores is 12.66%. The results indicate a balanced
correlation between precision and recall, making our results valid.

The F1-Score is instrumental when comparing different ML algorithms on the same
dataset. For example, a higher F1-Score indicates reasonably high recall and precision
scores. Observing barplot 6.29, we can notice that the difference between the minimum
and maximum values for recall and precision is relatively high. Hence F1 is an acceptable
middle ground metric to rely on when such events occur to determine whether the results
are valid.

Distribution plot 6.30 shows the distribution of the scores for each algorithm combined.
For example, a score of 1 (100%) indicates a perfect prediction for any given performance
metric in our thesis. Hence, the distribution plot 6.30 displays the ranges and how
well the metrics are distributed among each algorithm. We can witness that, i.e., the
combined distribution of the scores for ANN deviates minimally, implying that most of
the metrics performed relatively equal.

Furthermore, by observing Table 6.15 and barplot 6.29, we can conclude that ANN
outperformed the five other algorithms with accuracy and F1-Score consideration.

159

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.29: Comparison of Algorithm Performance

6.8.2 Algorithm Runtimes

The total run time from the manual- and grid search resulted in 547 hours (approximately
23 days) divided on multiple computers. The time estimate excludes the failed attempts
like crashing and not being able to finish. Figure 6.31 illustrates the total time each
algorithm consumed in seconds for running experiments, both with manual hyperparameter
tuning and Grid Search.

By observing Table 6.15 and barplot 6.31, we can witness that DT has fastest runtime
among the five algorithms, which resulted in a total runtime of 7694 s ≈ 2.137 h. Where
we can also conclude the slowest longest runtime of 819726 s ≈ 227.701 h for SVM.

Figure 6.31: Total Runtime

160

6.8. PERFORMANCE EVALUATION SUMMARY

Figure 6.30: Distribution of Algorithm Performance
161

CHAPTER 6. PERFORMANCE EVALUATION

6.8.3 Performance Comparison with other Research

To compare our models’ performance against other research, we searched for papers that
utilized the same dataset (UNSW-NB15) and algorithms like us. We utilized databases
like IEEE3, Google Scholar4, and ScienceDirect5 for searching appropriate papers.

There are several limitations when searching for research to compare. Firstly, other
research does not include multiple algorithms on their testing platform. Instead, they
tend to focus on one or two algorithms at most. Second, the performance metrics
included in their evaluation report do not have both training and testing accuracy.
This makes it particularly challenging to know how their model performs on training
and unseen testing data. Hence, there are some missing values in Table 6.17, where
scores are represented in percentage (%). The statistical calculations we utilize such
as mean,max,min, diff(min,max), diff(min, our), and diff(max, our), are explained in
Table 6.16.

Table 6.16: Statistical Calculations

Statistical Calculation Description

mean Refers to the average score for the column
max Refers to the maximum score from the column
min Refers to the minimum score from the column
diff(min,max) Refers to the difference in percentage for the lowest and highest score.
diff(min, our) Refers to the difference in percentage for the smallest score and our score
diff(max, our) Refers to the difference in percentage for the highest score and our score

Comparing the results of the papers for each algorithm, we utilize Table 6.17, 6.18,
and Figure 6.32. When mentioning improvement, we refer to the the percentage difference
(increase/decrease).

• ANN: in Table 6.17 and Figure 6.32. Our model scored a testing accuracy of
88.62%, proving it performed better than multiple papers from our comparison
lot. Comparing our score with the lowest scoring paper for ANN, we can witness
an improvement of 8.95% in testing accuracy and 15.73% in training accuracy. In
contrast, Paper 5[37] outperforms our ANN model with a score of 89%, where the
difference between our framework and their project is equal to 0.43%, which is
minimal. The Table shows that Paper 5 only focuses on one algorithm, which is a
crucial takeaway for our thesis.

• SVM: in Table 6.17 and Figure 6.32. Our model scored a testing accuracy of 84.04%,
proving it scored better than multiple papers from the same table. Comparing our
score with the lowest scoring paper for SVM, we can witness an improvement of
40.07% in testing accuracy and 34.08% in training accuracy, which is tremendous.

3https://www.ieee.org
4https://scholar.google.com
5https://www.sciencedirect.com

162

https://www.ieee.org
https://scholar.google.com
https://www.sciencedirect.com

6.8. PERFORMANCE EVALUATION SUMMARY

Regarding SVM, Paper 12[35] excels in testing accuracy with an improvement of
3.18% compared to ours.

• DT: in Table 6.17 and Figure 6.32. Our model scored a testing accuracy of 87.266%,
proving it scored better than multiple papers from the same table. If we compare
our score with the lowest scoring paper, we can notice an improvement of 36.35% in
testing accuracy and 4.63% in training accuracy. The results show that even though
other research papers score relatively high on training accuracy, their models do not
have accurate predictions on unseen data. Paper 2[21] received a testing accuracy
of 88.13%, and Paper 10[34] of 88.5%. Both papers outperformed our model for
DT. Paper 10 has a score improvement of 1.39% compared to ours.

• RF: our second-best performing model, in Table 6.17 and Figure 6.32. Our model
scored a testing accuracy of 87.399%, proving it scored better than multiple papers.
Comparing our score with the lowest scoring paper, we notice an improvement of
36.56% in testing accuracy and 10.74% in training accuracy. Paper 10[34], and
paper 12[35] outperforms our RF model with 87.7%, and 90.4% in testing accuracy,
correspondingly.

• KNN: in Table 6.17 and Figure 6.32. Our model scored a testing accuracy of 87.11%.
Comparing our score with the lowest scoring paper, we notice an improvement of
5.08% in testing accuracy and 13.33% in training accuracy. Our model received the
highest score among the papers, with an improvement of 0.93% for testing accuracy,
but for the training accuracy, Paper 2[21] received a slightly better improvement of
0.25%.

• LR: our weakest performing model in Table 6.17 and Figure 6.32. Our model
received a testing accuracy of 81.835%. Comparing our score with the lowest
scoring paper, we notice an improvement of 8.68% in testing accuracy and 0.58%
in training accuracy. Regarding LR, our model got outperformed by Paper 6[31]
and Paper 11[137]

Concluding, our Novel Data Preprocessing Framework (NDPF) and algorithm implementation
with hyperparameter tuning show an average high performance across all the tested
algorithms. Across all six algorithms used in our thesis, the average performance for testing
accuracy is 86.045%, and 96.076% for training. The key takeaway for our performance
summary comparing other papers is that our methods include several algorithms to
compare and introduce several performance metrics to support our claims. In addition,
our thesis uses the same Preprocessed Dataset from our NDPF to implement every
algorithm presented. Furthermore, from our performance comparison, the difference
between the highest-scoring research and ours differs in ±3.5%. Finally, analyzing the
distribution plot 6.33, in general, ANN is the most robust algorithm for our chosen
dataset, UNSW-NB15. The distribution of the scores does not deviate hugely compared
to the other algorithms.

163

CHAPTER 6. PERFORMANCE EVALUATION

Table 6.17: Performance Comparison with other Papers

ANN SVM KNN LR DT RF

Train Test Train Test Train Test Train Test Train Test Train Test

Our Thesis 94.796 88.62 95.169 84.04 96.521 87.11 93.759 81.835 96.397 87.266 99.817 87.399

Paper 1 [138] 93.71 93.23 94.2 95.43
Paper 2 [21] 94.48 86.71 70.98 62.42 96.76 83.18 93.22 79.59 93.65 88.13
Paper 3 [22] 81.91 86.8 86.31 90.14
Paper 4 [30] 94.78 97.69 98.67
Paper 5 [37] 96 89
Paper 6 [31] 81.34 83.15 85.56
Paper 7 [32] 87.05 85.17 92.13 90.34
Paper 8 [33] 93.54 94.99 96.08
Paper 9 [139] 92.28 95.82 97.49
Paper 10 [34] 82.7 82.9 75.3 88.5 87.7
Paper 11 [137] 81.34 83.15 85.56
Paper 12 [35] 81.91 86.8 86.31 90.14
Paper 13 [38] 88
Paper 14 [36] 60 64 64
Paper 15 [39] 81.34 81.13 85.46
Paper 16 [40] 81.5
Paper 17 [41] 97

Statistics

Mean 93.161 84.551 88.328 74.952 91.694 84.875 93.437 80.693 94.531 83.497 95.424 82.310
Max 97.0 89.000 97.690 86.800 96.760 87.110 93.759 83.150 96.397 88.500 99.817 90.140
Min 81.340 81.340 70.980 60.000 85.170 82.900 93.220 75.300 92.130 64.000 90.140 64.000

Diff(min, max) 18.42% 9.42% 37.63% 44.67% 13.61% 5.08% 0.58% 10.42% 4.63% 38.28% 10.74% 40.84%
Diff(min, our) 15.73% 8.95% 34.08% 40.07% 13.33% 5.08% 0.58% 8.68% 4.63% 36.35% 10.74% 36.56%
Diff(max, our) -2.27% -0.43% -2.58% -3.18% -0.25% 0.93% 0.23% -1.58% 0.60% -1.39% 1.16% -3.04%

Table 6.18: Categorized Performance Comparison

ANN DT RF

Training Testing Training Testing Training Testing

Our Thesis 94.796 88.62 Our Thesis 96.397 87.266 Our Thesis 99.817 87.399

Paper 2 [21] 94.48 86.71 Paper 1 [138] 94.2 Paper 1 [138] 95.43
Paper 3 [22] 81.91 Paper 2 [21] 93.65 88.13 Paper 3 [22] 90.14
Paper 4 [30] 94.78 Paper 6 [31] 85.56 Paper 4 [30] 98.67
Paper 5 [37] 96 89 Paper 7 [32] 92.13 Paper 7 [32] 90.34
Paper 6 [31] 81.34 Paper 8 [33] 94.99 Paper 8 [33] 96.08
Paper 10 [34] 82.7 Paper 9 [139] 95.82 Paper 9 [139] 97.49
Paper 11 [137] 81.34 Paper 10 [34] 88.5 Paper 10 [34] 87.7
Paper 12 [35] 81.91 Paper 11 [137] 85.56 Paper 12 [35] 90.14
Paper 13 [38] 88 Paper 14 [36] 64 Paper 14 [36] 64
Paper 15 [39] 81.34 Paper 15 [39] 85.46
Paper 17 [41] 97

SVM LR KNN

Training Testing Training Testing Training Testing

Our Thesis 95.169 84.04 Our Thesis 93.759 81.835 Our Thesis 96.521 87.11

Paper 2 [21] 70.98 62.42 Paper 1 [138] 93.23 Paper 1 [138] 93.71
Paper 3 [22] 86.8 Paper 2 [21] 93.22 79.59 Paper 2 [21] 96.76 83.18
Paper 4 [30] 97.69 Paper 6 [31] 83.15 Paper 3 [22] 86.31
Paper 7 [32] 87.05 Paper 8 [33] 93.54 Paper 7 [32] 85.17
Paper 9 [139] 92.28 Paper 10 [34] 75.3 Paper 10 [34] 82.9
Paper 12 [35] 86.8 Paper 11 [137] 83.15 Paper 12 [35] 86.31
Paper 14 [36] 60 Paper 15 [39] 81.13
Paper 16 [40] 81.5

164

6.8. PERFORMANCE EVALUATION SUMMARY

Figure 6.32: Barplot Comparing other Papers

165

CHAPTER 6. PERFORMANCE EVALUATION

Figure 6.33: Distribution of Algorithm Performances across other Research

166

Chapter 7

Conclusion & Discussion

In this thesis, we aimed to address issues related to Network Intrusion Datasets with
limitations regarding data preprocessing. Accordingly, the thesis objectives were presented
in Section 1.5. As a result, we introduced the main elements of our work: the development
of a Novel Data Preprocessing Framework (NDPF), the extensive hyperparameter tuning,
and a comprehensive Performance Evaluation of our approach. The transformed UNSW-
NB15 intrusion detection dataset aims to perform well on multiple ML algorithms. In
order to evaluate the performance of the proposed framework, a comprehensive evaluation
was done with six selected supervised ML algorithms: Artificial Neural Network, Support
Vector Machine, K-Nearest Neighbor, Logistic Regression, Random Forest, and Decision
Trees, and were compared against each other, and other research that used the same
dataset. With the results from our experimentations, we can determine which algorithm
performed best and if our proposed Novel Data Preprocessing Framework helped achieve
satisfactory results. Furthermore, we will suggest some intriguing ideas for future work,
which could improve the final result.

7.1 Contribution

When developing the NDPF, our chosen dataset, UNSW-NB15, went through an iterative
process in several phases: Data Cleaning, Data Reduction, and Data Transformation.
By applying these particular phases, we made the dataset optimized for ML algorithms.
Data preprocessing is the essential step in any ML project, which also happens to be the
most time-consuming process. The impact of preprocessing is enormous, where a slight
difference in our methods can affect a given ML model either positively or negatively.
The negative downside for a preprocessing method that does not consider the dataset
can be the difference between an overfitting model and not.

Furthermore, we implemented the algorithms using Python inclusive libraries such as
Scikit-learn and Keras. The ML models have an arbitrary amount of parameters to tune.
Hence, our approach conducted an extensive hyperparameter tuning, divided into two
methods, manual search and Grid Search. The manual search method implies that we set
the parameters of our estimation, which requires domain knowledge within the algorithm

167

CHAPTER 7. CONCLUSION & DISCUSSION

we hyperparameter tune. The manual search, as the name implies, is an iterative process.
Further, the Grid Search algorithm is a technique to run a set of parameters until every
combination is fulfilled, hence a brute-force method. Both approaches for hyperparameter
tuning are exceptionally time-consuming, but they guarantee the best possible solution
for our proposed method.

Finally, we conducted a Performance Analysis regarding our preprocessing framework,
combined with hyperparameter tuning. The grounds for evaluation were based on
several well-known performance metrics: Accuracy, Recall, Precision, and F1 Score. We
documented and evaluated the results from numerous experiments for each algorithm
and compared them against each other. In addition, a performance comparison was
conducted against other research papers using the same dataset as the final analysis. It
was to see whether our NDPF is effective. Finally, statistical analysis was performed
to point out the differences in performance between our proposed framework with the
existing solutions.

7.2 Concluding Remarks

Here we discuss the objectives stated in Chapter 1. Table 7.1 shows our objectives in
addition to our accomplishment level.

Table 7.1: Thesis Accomplishment

Main
Category Purpose Sub

Category Objective Description Accomplishment
level

Background
Analysis (B)

To review and determine
appropriate dataset and
methods for our thesis

B1 Dataset Selection Select a suitable and well-balanced Network Intrusion
Dataset. High

B2 Preprocessing methods Review preprocessing methods available. High
B3 Performance results for other works Review other works for chosen dataset. High
B4 Algorithm Review Review popular Machine Learning algorithms. High
B5 Algorithm Selection Select appropriate algorithms for selected dataset. High
B6 Development Environment Select Development environment and programming language. High

Novel Data
Preprocessing
Framework (P)

To create a well-performing
dataset across multiple
algorithms, by developing a
Novel Preprocessing Framework

P1

P1.1 Data Cleaning Remove missing and redundant data. High
P1.2 Feature Selection Select the most optimal features. High
P1.3 Feature Engineering Create or remove features manually based on existing data. High
P1.4 Data Transformation Transform the dataset, and prepare for implementation. High

P2 P2.1 Feature Selection with algorithms Automatic Feature Selection with RFE. Low
P2.2 Feature Selection, own method Random Forest Classifier with 10-fold Cross-validation. High

Algorithm
Implementation (A)

Implement our chosen
algorithms, and hyperparameter
tune our models to maximize
our results.

A1

A1.1 Implementation of ANN

Implement the algorithms for the preprocessed Dataset.
Hyperparameter tuning for maximizing results.

High
A1.2 Implementation of SVM High
A1.3 Implementation of KNN High
A1.4 Implementation of LR High
A1.5 Implementation of DT High
A1.6 Implementation of RF High

Develop a novel algorithm for
our dataset that performs better
than existing ones.

A2 Develop a Novel Algorithm Develop a Novel algorithm, for our preprocessed dataset. Unaccomplished

Evaluation (E)

Present evidence that our
method performs well
across multiple algorithms,
compared to other
existing works.

E1

E1.1 Comparable results for ANN

Result Comparison with other works
evaluating the corresponding algorithms.

Medium-High
E1.2 Comparable results for SVM Medium-High
E1.3 Comparable results for KNN High
E1.4 Comparable results for LR Medium-High
E1.5 Comparable results for DT Medium-High
E1.6 Comparable results for RF Medium-High

E2 Visualize Results Visualize the results in an informative way. High

7.2.1 Background Analysis (B)

The objective of Background Analysis (B) was to gather research and information
regarding five subjects: dataset, preprocessing, algorithm, and development environment.

168

7.2. CONCLUDING REMARKS

• Sub-Category B1: Data selection aimed to select the most appropriate network
intrusion detection dataset for our project. After numerous comparisons and
reviews with other network intrusion datasets such as KDD-Cup 1999, NSL-KDD,
Gure-KDD, CICIDS2017, and BoT-IoT, we decided to select the UNSW-NB15
dataset, which is widely used by the scientific community. In addition, we chose
the dataset based on the number of research already done, making it easier for us
to compare results. We can therefore conclude that the accomplishment level of
Sub-category B1 equals High, shown in Table 7.1

• Sub-Category B2: We reviewed several preprocessing techniques to achieve a
high-performing dataset. Based on our results, our review process can be claimed
an accomplishment level of High.

• Sub-Category B3: Referring to the literature study, we have established an
overview of existing research on our dataset and topic, hence accomplishment level,
High.

• Sub-Categories B4 and B5: According to Chapter 4 describing the different
ML algorithms, we have chosen the most appropriate ones based on community
favorites and popularity: ANN, SVM, LR, KNN, DT, and RF. Choosing popular
ML algorithms implies that the existing research on the topic usually consists of
those algorithms, making performance comparison more manageable. Hence, our
selection of ML algorithms is the most suitable, resulting in accomplishment level,
High.

• Sub-Category B6: According to Section 5.1, we have chosen the most suitable
tools for our project. Visual Studio Code is an excellent IDE for developing any
code. Furthermore, combining the Visual Studio Code IDE with Python and
Anaconda package manager makes the project flow considerably more practical.
Hence, the selection of tools and libraries results accomplishment level of, High.

7.2.2 Novel Data Preprocessing Framework (P)

The objective of our proposed Novel Data Preprocessing Framework (P) was to develop
a framework with essential data preprocessing techniques, enhanced to a point where the
dataset performs well on multiple algorithms.

• Sub-Category P1: We successfully made a Novel Data Preprocessing Framework
(NDPF) that performed well across multiple algorithms. The NDPF includes several
techniques such as data cleaning, feature selection, feature engineering, and data
transformation. According to our results, we can claim the level of accomplishment
as High.

• Sub-Category P2: Firstly, feature selection with RFE returned features of high
importance, resulting in inaccurate performance. Therefore, feature selection with
RFE receives an accomplishment level of Low. On the other hand, our feature

169

CHAPTER 7. CONCLUSION & DISCUSSION

selection method successfully extracted the essential features from the UNSW-NB15
dataset, resulting in an accomplishment level of High.

7.2.3 Algorithm Implementation (A1)

Algorithm Implementation (A) aimed for two objectives: (A1) Implementing existing
ML algorithms for our NDPF, and (A2) Develop a Novel algorithm utilizing our NDPF.

• Sub-Category A1: We implemented all of the six algorithms from our algorithm
selection (B5) using existing libraries from Scikit-learn. We hyperparameter tuned
our models during implementation and results gathering with manual search and
Grid Search. Our performance evaluation (Chapter 6) was based on these exact
implementations and their results. Hence, the implementation of existing ML
algorithms receives an accomplishment level of High.

• Sub-Category A2: Our thesis aimed to develop a novel algorithm, which in
combination with our NDPF, outperforms existing research using the UNSW-NB15
dataset. Unfortunately, due to time constraints, we could not deliver this objective.
There are several time-consuming aspects to our current experimentations and
analysis methods. Accordingly, we have referred to some ideas for future work
(Section 7.3) regarding the further development of our thesis. Hence, we can conclude
that the accomplishment level for this particular objective is Unaccomplished.

7.2.4 Evaluation (E)

• Sub-Category E1: We presented in detail the experimentations’ results, which
were firstly compared among the six selected algorithms. Finally, we offered detailed
evidence that our NDPF, combined with Hyperparameter tuning, performed well-
balanced compared to other research using the same dataset, UNSW-NB15. The
results from our experimentation and comparison show that the output is not
necessarily the best performing, but across multiple algorithms, our NDPF satisfies
the overall outcomes. Hence, this objective receives an accomplishment level of
Medium-High. The results are intriguing and open up possibilities for other research
to append our NDFP.

• Sub-Category E2: The performance analysis for each section was visualized
adequately to support our claims. The visualization was confined to tables,
distribution plots, bar plots, line plots, and others.

The majority of the objective stated by us in Chapter 1 receives an accomplishment
level of High. There are some aspects to consider when referring to our Unaccomplished
objective A2 regarding the Novel algorithm development. As mentioned earlier, some
intriguing ideas and concepts will be referred to and shortly explained in Section 7.3,
Future Work

170

7.3. FUTURE WORK

7.3 Future Work
One of the goals of this thesis was to develop a novel algorithm, but due to time constraints
mentioned earlier, we did not get around to this. However, we have come up with a
few possible ways to enhance a few of the algorithms for future work. The ideas involve
making algorithms less computational heavy or performing better. We will list the ideas
here and briefly explain the thoughts behind the ideas.

Feature Selection

There are several ways to execute feature selection. There are possibilities to rank the
features by utilizing an algorithm for feature selection. Further, we feed the rank data
into an ML algorithm, which focuses on training with the essential features. As a result,
this can reduce the training complexity by spending less time on features that do not
contribute much information.

Single Learners in Ensemble algorithm

In an ensemble algorithm, we can enhance the single learners. The weak learners become
more of an asset, resulting in a more robust ensemble algorithm. For example, in RF, we
can assign each tree a weight depending on how strong the weak learner can select the
appropriate tree.

Improved Hyperparameter tuning

There are already several hyperparameter tuning methods that might be more useful
than Grid Search. For example, Gu et al.[140] adopted a more recent and improved
tuning method, namely FOA-F-SVM. While this method is not entirely new, it can
be an excellent way to improve our work, especially for SVM, a computational heavy,
brute-force algorithm.

Decision Tree Pruning

Pruning work on DT is essential to avoid overfitting and to improve accuracy. A possible
pruning method that gives estimators such as accuracy, tree complexity, attribute selectors,
and other metrics a score. This score will be used to easier prune a tree by knowing
which of the leaves it can take away. The ones with the lowest score will be taken away
first. The score is calculated by using Bayes minimum risk method. This method can
prove to be faster than traditional cost complexity pruning [141].

ANN Optimizers

One way to enhance ANN is to explore the different optimizers. For example, there are
many different optimizers for ANN1 and several ways to use them. Ramesh et al.[142]

1https://keras.io/api/optimizers/

171

https://keras.io/api/optimizers/

CHAPTER 7. CONCLUSION & DISCUSSION

proposed a Text-to-Image generation application, where the critical takeaway which is
relevant for our thesis is the utilization of multiple ANN optimizers during model training.
It is also possible to look into enhancing a specific optimizer explicitly suited for the task
at hand.

SVM Kernels

The kernels in SVM have a basis for improvements, which can enhance the algorithm.
However, when experimenting with SVM, many kernels have not been tested in our thesis.
At the same time, the kernels are how the algorithm performs the calculations to map
the data to higher dimensions. Therefore, as a result of optimizing the kernels, both
accuracy and run time might be improved.

KNN

KNN utilizes a brute-force method to calculate the distance to the neighbor of a given
point. However, executing the algorithm with brute force has a high time complexity for
training[143]. Therefore, exploring different methods to calculate the distance between
points without visiting every neighbor might be a way to enhance the algorithm [144].

Multi-Class Classification

The UNSW-NB15 dataset also includes nine different attack categories in correlation with
the label (0 or 1), meaning the dataset can be utilized for Multi-Class Classification. Multi-
Class Classification has more than two output classes, contrary to Binary Classification
with one output. With Multi-Class Classification, the algorithm can determine its kind of
attack, in addition to the label. Future work can involve testing our NDPF for Multi-Class
Classification for an even more comprehensive Performance Evaluation, which can weigh
our claims more.

Apply our NDPF to other datasets

Applying our NDPF to other intrusion detection datasets, we can determine whether the
limitations of data preprocessing and intrusion detection datasets still apply. For future
work, we can practice the following datasets: KDD-Cup 1999, NSL-KDD, Gure-KDD,
BoT-IoT, and CICIDS2017.

7.3.1 Concluding Statement for Future Work

Future work has many possible ways to increase and enhance the performance for different
aspects of our thesis. For example, Hyperparameter tuning and even slight changes in
parameters can result in simpler time-complexity. The above-mentioned ideas are only a
tiny fraction of possible enhancements and methods to explore in the future

172

7.4. FINAL CONCLUSION

7.4 Final Conclusion
Comparing our results with those from the other 17 other papers, using the same dataset,
UNSW-NB15, we could analyze the results tables, bar plots, and distribution plots, that
ANN excels in performance in every aspect. In our experimentation, ANN received an
accuracy of 88.62% and an F1 score of 96.47%, making the algorithm recommendable for
any project. To finalize our findings compared with other papers, our chosen ML models,
ANN, KNN, DT, RF, LR, and SVM, performed comparably to the other research.
Nevertheless, other papers on several algorithms slightly outperformed ours, with a
percentage difference of ±3.5%. However, the critical takeaway is that the other research
mainly focuses on one or two algorithms, where they centralize the preprocessing of
their dataset to those specific algorithms. On the other hand, our NDPF transforms
the dataset to perform in a balanced manner across multiple algorithms, making it
remarkably stable. Therefore, we can conclude our Novel Data Preprocessing Framework
(NDPF) as a success and make recommendations for other future studies.

173

Publications

1. Sajepan Gnanasivam, Daniel Tveter and Nga Dinh. ”Anomaly Intrusion Detection
for Data Network Using K-Nearest Neighbor”, submitted to IEEE International
Symposium on Local and Metropolitan Area Network, 2022.

2. Sajepan Gnanasivam, Daniel Tveter and Nga Dinh. ”Performance Evaluation
for Anomaly Intrusion Detection in Data Networks”, submitted to IEEE Global
Communications Conference, 2022.

3. Sajepan Gnanasivam, Daniel Tveter and Nga Dinh. ”Performance Assessment
for Intrusion Detection using Supervised Machine Learning Algorithms on the
UNSW-NB15 dataset”, to be submitted to Journal of Big Data, 2022.

175

Performance Evaluation for Anomaly Intrusion
Detection in Data Networks

Sajepan Gnanasivam∗, Daniel Tveter∗, Nga Dinh∗
∗ Department of Computer Science and Communications

Faculty of Computer Science, Engineering and Economics
Østfold University College (HiOF), Norway

{sajepan.gnanasivam, daniel.tveter, thi.t.dinh}@hiof.no

Abstract—The number of computers connected to the Internet
and hostile attacks on data networks increases daily. Therefore,
anomaly detection, which finds network abnormalities using
supervised classification approaches, is essential. Thus, this paper
focuses on anomaly detection for data networks and uses the
UNSW-NB15 dataset, including over 82,000 samples and 49
features. Due to their various origins, most real-world datasets
are prone to missing, inconsistent, and noisy data. Implementing
data mining algorithms to this noisy data would produce poor
results. Consequently, data preprocessing is critical for improving
overall performance. Our preprocessing method includes several
necessary procedures: data- cleaning, -transformation, and fea-
ture selection (dimensionality reduction and feature engineering).
This paper conducts performance evaluation by extensive ex-
perimentation on several data mining techniques and presents
a novel preprocessing method. Data mining techniques such
as Artificial Neural Network (ANN), Support Vector Machines
(SVM), Logistic Regression (LR), and Decision Tree (DT) are
implemented, performing binary classification. The experiments
maximize accuracy to discover the right set of hyper-parameters.
The results from the experiments indicate that ANN excels with a
training accuracy of 98.58%, DT with 96.02%, SVM with 95.1%,
and LR with 93.76%. The achieved results are comparable and, in
many cases, better than existing works due to our preprocessing
framework.

Index Terms—Anomaly Detection, Machine Learning, Super-
vised Methods, Feature Engineering, Data Networks

I. INTRODUCTION

The massive growth in cyber threats, coupled with modern
organizations’ reliance on the stability and effectiveness of
their IT infrastructure, has prompted a shift in mentality. As
a result, priorities are altering as the downtime increases for
systems within information technology. Intrusions, such as
brute force, denial of service, or even penetration within a
network, are the most common threat to a network’s secu-
rity. Furthermore, cyber criminals are violently attempting to
interrupt network connections, get illegal access to essen-
tial data, and then steal, distort, or damage essential data
structures. Hence, a dynamic approach to detect and prevent
such intrusions is required. It is a critical challenge in the
field of computer network security that must be addressed.
In light of this, anomaly detection has been hugely popular
[1]. The goal of network anomaly detection is to find network
abnormalities, where supervised classification approaches have
yielded several successes through many types of research.

The difficulty of discovering unusual patterns in network
traffic that do not conform to predicted typical behavior is re-

ferred to as anomaly-based intrusion detection in networks. In
many applications, these nonconforming patterns are referred
to as anomalies, aberrations, outliers, or surprises [2]. Efforts
have been undertaken over the last three decades to develop
automated systems for detecting network irregularities [3].

Anomaly detection in data networks is a vital and rapidly
evolving field of study since our everyday is becoming more
and more data-driven. With more data and information avail-
able than ever before, it is critical to analyze and evaluate it
properly [4]. In data network, anomaly detection has a wide
range of applications, including credit card fraud detection,
cyber security intrusion detection, and military observation of
adversary activity. An unusual traffic pattern in a computer
network, for example, could indicate that a hacked computer
is transferring sensitive data to an unauthorized site [2].
According to Cisco’s Annual Internet Report, the frequency
of breaches and the number of records exposed to each breach
are increasing. Between 2018 and 2019, attacks between
100 Gbps and 400 Gbps increased by 776%, and the total
number of DDoS attacks will double from 7.9 million in
2018 to 15.4 million by 2023 [5]. Due to the importance of
anomaly detection, this paper focuses on detecting aberrations
in computer networking.

Several machine learning (ML) algorithms were applied
in performance analysis on the UNSW-NB15 dataset [6].
The proposed method included a feature selection technique
utilizing XGboost. As a final result with binary classification,
ANN received a training accuracy of 94.49%, LR with 93.76,
SVM with 70.98%, and DT with 93.65% In another study
[1], network abnormality in the UNSW-NB15 dataset is de-
tected using a time-based statistical analysis. According to the
findings, the labeled dataset may be utilized to accurately train
both supervised and unsupervised ML systems. In addition, the
authors discovered that the suggested model might be applied
to detect network anomalies that have not been addressed
previously in network traffic by extracting features from the
network packet using unsupervised learning. Furthermore, in
[7], the authors present a framework to detect malicious
behavior in cloud environments also based on UNSW-NB15
dataset.DT, RF, Naive Bayes, KNN, LR, and SVM are among
the ML algorithms used by the authors. The results reveal that
with feature selection, DT received an accuracy of 96.77%, LR
with 74.73% and SVM with 68.05%.

This paper focuses on anomaly intrusion detection on the
UNSW-NB15 dataset while considering binary classification.
In the experimental phase, we focused on four different
supervised ML algorithms: ANN, SVM, DT, and LR. Our ex-
tensive experiments show that the implemented ML algorithms
performed better or were comparable to other research done
on the same dataset [6]. However, prior to any experiments or
hyperparameter tuning, the dataset had to undergo a prepro-
cessing method to transform the dataset into a readable format.
With the preprocessed dataset, we could do hyperparameter
tuning. First, each algorithm went through two methods,
either manual tuning or an algorithm that goes through a
set parameter grid to find the optimal parameters for each
algorithm. Then, the algorithms are evaluated based on the
four metrics: accuracy, recall, precision, and F1-score, where
accuracy is the primary metric for our evaluation compared to
other researchers.

The main contributions of this paper can be summarized
as follows: 1) Propose a novel data preprocessing frame-
work. Our preprocessing framework includes several necessary
procedures: data- cleaning, -reduction (feature selection and
feature engineering), and -transformation; 2) Hyperparameter
tuning to select the best parameters for each ML algorithm;
3) We investigate the performance of four supervised ML
algorithms through extensive experiments with a total runtime
of 272 hours (11.5 days). With our novel data preprocessing
framework and hyperparameter tuning, our results are superior
to other research with the same dataset and ML algorithms [6]
for binary classification.

II. DATASET

Dataset is the most crucial aspect of a network security
analysis. The amount of the data also impacts the performance
of ML algorithms. Selecting the most significant features
from the input data can simplify the modeling process and
result in faster and more accurate detection rates. Frequently,
datasets contain multiple useless, redundant features, which is
disadvantageous to the accuracy of the results. In light of this,
the UNSW-NB15 dataset is selected. The dataset has also been
widely used in many researches [8]–[10].

The UNSW-NB15 dataset was created by researchers from
the Australian Center for Cyber Security (ACCS) in 2015
[10], [11] with 49 features. The UNSW-NB15 dataset is
more sophisticated and reflective of current attack and normal
network traffic, making it suitable for evaluating network
intrusion techniques. The number of records in the UNSW-
NB15 dataset is 2,540,044 which is stored in four .csv files
represented in Table I. Each of the dataset contains attack and
normal records. A training set and a testing set were created
from the data collection, named UNSW-NB15 training-set.csv
and UNSW-NB15 testing-set.csv, respectively. The training
set has 82,332 records while the testing set contains 175,341
records including attack and normal records. Do note that the
training and testing sets are reversed.

TABLE I
DATASET OVERVIEW

File name File Size Records Features
UNSWNB15 1.csv 161.2 MB 700000 49
UNSWNB15 2.csv 157.6 MB 700000 49
UNSWNB15 3.csv 147.4 MB 700000 49
UNSWNB15 4.csv 91.3 MB 440044 49
UNSW NB15 testing-set.csv 31.5 MB 175341 45
UNSW NB15 training-set.csv 15.0 MB 82332 45

III. DATA PREPROCESSING

Before any ML algorithm is applied to a dataset, the data
has to be preprocessed so that the processed data is in the
format that the model can comprehend (fig 1). The UNSW-
NB15 contains categorical and non-similar scale features that
need to be preprocessed in order to make the dataset compliant
with a ML algorithm [1]. To ensure that the selected dataset is
converted into a suitable one, we perform data preprocessing
with data cleaning, data transformation, and data reduction.

Fig. 1. The complete framework

A. Data Cleaning

Data Cleaning aims to fix the problem with incomplete,
inconsistent, and noisy data. But first, the data that is missing
or irrelevant needs to be processed. Missing data points is a
common attribute that many datasets have. There are several
approaches to solve this problem (1) Duplicating values rows
or columns that occur more than twice in the same dataset.
Dropping a duplicate row or column and keeping the first
instance is one of the solutions to this problem. The reason for
doing this is not to make the specific data point take advantage
of or be biased. (2) Dropping rows and columns that includes a
not a number (NaN) field or an empty object (NULL) values.
(3) Estimating missing values is used if a small percentage
of the data is lost. Data imputation techniques such as mean,
median, or mode values are the most common approach to
apprehend this problem.

After a thorough analysis, the UNSW-NB15 does not exhibit
any missing values to remove or perform data imputation.

B. Data Transformation

The second phase of data preprocessing is Data Trans-
formation which aims to convert the data into a known
format readable to a ML model. Data normalization transforms
numerical columns into a standard scale (-1.0 to 1.0 or 0.0

to 1.0). This process transforms the data columns without
distorting the differences in the data range, meaning it will
maintain the dynamic range of the dataset.

1) Reversed Datasets: The UNSW-NB15 dataset has the
training and testing set samples reversed, caused by an error
from the publishers. This means that the testing set samples
are double the training set size. We promptly fix the issue by
running an if statement on both sets and checking whether
the training set has fewer or larger samples than the testing
set. The testing set contains 175,341 rows and 45 columns
opposed to the training set, corresponding to 82,332 rows and
45 columns.

2) Feature Engineering: The process of changing the raw
data into features that better describe the underlying problem
to predictive models, resulting in enhanced model accuracy
on unseen data, is known as feature engineering. Feature
engineering depends on domain knowledge in a specific field
to select and transform features from a dataset. It is evident
that many features can share requirements characteristics. The
procedure entails a combination of data analysis, rule-of-
thumb use, and judgment.

The feature engineering process starts with analyzing the
various values for each feature for the dataset. Then, by run-
ning train[’state’].value_counts from the pandas
library, we output the row count for each distinct value in a
feature, in this case, ’state’. Observing the table shows that the
row counts for the states ’FIN’, ’INT’, ’CON’ and ’REQ’ are
more significant than the others. Therefore, the states which
have lower row counts are renamed to ’Others’.

The ’-’ value is present under the ’service’ feature, which
equals 47,153. This value is converted to ’Others’ since the
dataset description informs us that the value is a service that
is not frequently used. The same method is replicated for the
’service’ and ’proto’ features. We also observe the row counts
for those features and renamed the values to ’Others’. The
purpose of this procedure is to reduce the complexity of the
model.

3) Categorical Columns: Our ML algorithm cannot process
Categorical data points, meaning the transformation of the
data points into a readable format is essential for the model
to run without errors. Therefore, we drop the ’label’ feature
since our model performs binary classification. Further, to
make the categorical features readable by the model, one-hot
encoding needed to be implemented. Therefore, we transform
each categorical value into a new categorical column and
assign a binary value of 1 or 0 to those columns using one-
hot encoding. A binary vector is used to represent each integer
value. The pd_dummies() function from the Pandas library
accomplished exactly this assignment.

4) Normalization: The UNSW-NB15 dataset has a broad
dynamic range of values, indicating that normalization needs
to be applied on the numerical columns. The core concept of
standardizing/normalizing is to individually delegate µ = 0,
and σ = 1 for the features of X . Standardscaler()
will independently normalize the features so that each colum-
n/feature will produce µ = 0, and σ = 1. x equals to the

observation, µ is the mean and σ is the standard deviation. The
mathematical representation for Standard Deviation is given in
equation 1

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (1)

C. Data Reduction

Dealing with a large amount of data for analysis comes with
difficulty. Data reduction aims to improve storage efficiency
and lower data storage and analysis expenses. The concept of
Dimensionality Reduction is to reduce the number of features
or dimensionality. Data reduction is, in our case, done in
the Feature Selection. But firstly, we analyze the dataset by
looking at the correlation matrix.

1) Correlation: Correlation is the degree to which two
variables are linearly related is expressed by correlation. If
there is an extensive dataset with many columns, displaying
the correlation matrix as a heatmap is a rapid approach
to assess relationships between columns. When a dependent
and independent variable has a high correlation value, the
independent variable affects the output.

The Pearson r correlation is the most extensively utilized
statistical approach for determining the degree of linearly
related variables. The Pearson correlation between any two
variables x, y can be calculated by using Equation (2), where n
is number of observations, and i-denotes the i-th observation.

rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2
(2)

Fig. 2 shows a graphical representation of the correlation
matrix for several features with coefficient values given by a
color scale.

2) Feature Selection: Feature selection is one of the core
concepts in ML. This process hugely impacts the performance
of any ML model. When developing a predictive model, the
primary objective is to reduce the number of input variables.
The number of input variables included in a model’s training
stage dramatically influences the performance, meaning fea-
ture selection and data cleaning should be the first and most
crucial step of the developing phase.

Reducing the number of input variables lessens the compu-
tational cost and, in many cases, enhances the performance of
a given model. The process has two given approaches:

1) Automatically determine input variables using various
algorithms

2) Manually choose input variables to remove from the
model.

The benefits of reducing the number of input variables
are (1) reduce overfitting i.e, the dataset will become less
redundant, which in hand will make fewer opportunities to
make a decision based on noise, (2) accuracy improvement
i.e, training data will be less misleading, which will improve
accuracy, and (3) training time reduction i.e, the complexity
of the algorithm decreases.

Fig. 2. Correlation plot for UNSW-NB15 Training dataset

3) Method 1 - Recursive Feature Elimination (RFE): RFE
is a well-known feature selection algorithm used to identify
which features in a training dataset are more significant in
predicting the target variable. RFE works by searching for
a subset of features in the training dataset, starting with
all features and successfully eliminating them until the tar-
geted number remains. The method can be accomplished
by re-fitting the model using the provided ML technique,
ranking features by relevance, excluding the least impor-
tant features, and fitting the model again. This procedure is
executed until only a certain amount of features are left.
Features are evaluated by using either a ML model or a
statistical technique. In our work, RFE has concluded with
the top features and has left us with the following fea-
tures to drop: attack_cat, id, response_body_len,
spkts, ct_flw_http_mthd, trans_depth, dwin,
ct_ftp_cmd and is_ftp_login, which we tend to drop.

IV. SUPERVISED MACHINE LEARNING ALGORITHMS

A. Artificial Neural Network (ANN)

Artificial Neural Networks (ANN), often known as neural
networks, are a subset of ML algorithms that are at the heart of
deep learning algorithms. A neural network’s core concept is
to imitate a large number of tightly interconnected brain cells
inside a computer so that it can learn new things, identify
patterns, and make decisions in a human-like approach.

ANNs include an input layer, one or more hidden layers, and
an output layer, each of which links to the layers on either side.
They range from a few dozen to hundreds, thousands, or even
millions of artificial neurons known as units. The connections
between two units are represented by a weight, which might
be positive (if one unit excites another) or negative (if one unit

repels another). The greater the impact of one unit on another,
the higher the weight.

Neural networks use training data to learn and increase their
accuracy over time. However, once these learning algorithms
have been fine-tuned for accuracy, they become effective tools
in computer science and artificial intelligence, allowing us to
categorize high-density data quickly. For example, human spe-
cialists’ manual identification, speech recognition, or picture
recognition tasks can take minutes rather than hours.

B. Support Vector Machines (SVM)

Support vector machine is one of the most robust ML
algorithms. Its also highly flexible and can work with both
regression and classification problems. SVM’s main objective
is to separate any given dataset into different classes. The way
it separates the dataset is by finding the optimal hyperplane
using the support vectors. Some advantage of SVM is that
it got multiple kernels which got different use for differ-
ent issues. SVM is also quite effective for data with high-
dimensional input features. One downside to SVM is that it
requires extensive tuning to the parameters, significantly when
the input dimension exceeds the number of samples the dataset
has, quickly leading to overfitting.

C. Logistic Regression (LR)

Logistic regression (LR) can do both binary and multiclass
classification, which is the primary use for this ML algorithm.
Even though the algorithm has regression in its name, it is
rarely used for regression tasks. When used for multiclass
classification, it uses the one versus all concept to learn.
Logistic regression uses either the sigmoid function(5) or a
variation. This is applied to the linear model (3) and gives
an output between 0 and 1. The output is the probability of
belonging to the class labeled as 1, where the value 0.5 is
referred to as the soft boundary to the algorithm. The distance
between the boundary increases as the output goes towards 1
or 0. The equation given for logistic regression (4), where y
is a process of σ

y = b+ w1x1 + w2x2 + ...+ wnxn (3)

σ(y) =
1

1 + e−y
(4)

σ(K) =
1

1 + e−k
c (5)

D. Decision tree (DT)

Decision trees are a supervised learning algorithm method
used for regression and classification problems. The objective
is to make a model that can predict a value based on a target
variable. To make the model, it first needs to make rules based
on the training features. The model is easy to understand and
interpret, and multiple tools can be used to visualize it.

V. PERFORMANCE EVALUATION

The preprocessing and the build of the ML algorithms is
executed on a computer with the following specifications:
operating system is macOS Catalina(10.15.4) with Intel Core
i9 9880H, @2.3 GHz CPU, AMD Radeon Pro 5500M with
4GB GDDR6 graphics card, and 32GB DDR4 memory @2667
MHz. Jupyter lab and Visual Studio code have been our
development environment with Anaconda distribution. Python
version 3.8.8 has been used as the only programming language
to analyze and develop our project.

A. Performance Metrics

We look at four different measurements when analyzing
the algorithms in this paper; Accuracy (ACC), Recall (RCL),
Precision (PRC), and F1-score. Out of those four, we aimed
to maximize ACC for each algorithm.

1) Accuracy: Based on the input or training data, ACC is
used to recognize patterns and correlations among variables in
a dataset. ACC is defined by (6)

ACC =
TP + TN

(TP + FP + FN + TN)
(6)

In (6), True Positive (TP) is where the actual class is positive
and the predictor class is positive. In our case, if the outcome
label is 1 (attacked) and the predicted value is 1. True Negative
(TN), i.e, outcome label is 0 (not attacked) on the predicted
and 0 on the actual label class. False Negative (FN) and False
Positive (FP) are when the predicted and the actual class
contradict each other. FP is when the label output is 0 and
the predicted value is 1. On the other hand, FN is when the
label output is 1 and the predicted value is 0.

2) Recall: RCL offers information on the percentage of
the real anomalies that have been classified. RCL provides
information about the percentage of the true anomalies that
were classified. This equation determines this measure (7).

RCL =
TP

(TP + FN)
(7)

3) Precision: PRC is the number of correct predictions
of the positive observations compared to the total amount of
predicted positive observations. So in our case, it is how many
attacks that were labeled as an attack are actually attacked (8).

PRC =
TP

(TP + FP)
(8)

4) F1-Score: The F1-score metric incorporates both Recall
and Precision scores and uses a mean value approach to
estimate the overall performance of the anomaly detection
algorithm. This is used to calculate the equation (9).

F1 =
2× (Recall × Precision)

Precision+Recall
(9)

B. Artificial Neural Network (ANN)

A total number of seven experiments were conducted for
ANN. Every experiment was run for 200 epochs, with a
different number of layers and neurons, which is presented in
Table II. The experiments’ best accuracy of 98.5% is achieved
with nine layers. The experiments have a different number
of layers and neurons. The first experiment has three layers
with a neuron structure of 50(input), 25(hidden), 1(output).
The second experiment has four layers with neurons struc-
ture: 53-36-21-1. The third experiment has four layers with
neurons structure: 500-250-100-1. The fourth experiment has
five layers with neurons structure: 100-75-50-25-1. The fifth
experiment has seven layers with neurons structure: 200-150-
125-100-50-25-1. The sixth experiment has nine layers with
neurons structure: 200-175-150-125-100-75-50-25-1. Finally,
the seventh experiment included eleven layers with neurons
structure: 300-250-200-175-150-125-100-75-50-25-1.

TABLE II
ANN EXPERIMENTS

L Epoch Train
Acc

Test
Acc F1 PRC RCL Time(s)

3 170 0.955 0.872 0.975 0.959 0.975 941.0
4 200 0.959 0.864 0.978 0.963 0.978 1232.6
4 190 0.986 0.849 0.993 0.986 0.993 2603.3
5 200 0.972 0.862 0.981 0.978 0.981 1905.8
7 200 0.984 0.857 0.991 0.985 0.991 2462.5
9 200 0.985 0.861 0.990 0.989 0.990 3041.1
11 140 0.978 0.856 0.989 0.980 0.989 3294.7

C. Support Vector Machine (SVM)

Using the preprocessed dataset with the default parameters
on SVM, we received an accuracy of 81.57% on binary
classification. Running an extensive search on the C value
determines the trade-off between misclassification loss and
maximizing the margin. At C equal to 500, gamma equal
to scale, with RBF kernel, we got an accuracy of 84.03%.
Table III shows the results of the best results, and some other
experiments from the tuning phase.

TABLE III
SVM EXPERIMENTS

Kernel rbf poly poly rbf
C 500 500 250 250
Gamma scale scale auto auto
Train ACC 0.951 0.947 0.945 0.948
Test ACC 0.840 0.830 0.834 0.832
F1 0.869 0.861 0.867 0.864
PRC 0.790 0.781 0.775 0.780
RCL 0.966 0.960 0.983 0.968
Time(s) 2590 5300 1850 1530

D. Logistic Regression (LR)

LR resulted in an accuracy of 81.4% on the testing dataset,
with a max iteration of 1000 on the preprocessed dataset. To
get higher accuracy with LR, we had to find optimal values
for the parameters: C, max iter, penalty, and solver. Using the
grid search algorithm, we got the following values shown in

Table IV. With the tuned parameters, the accuracy increased
to 81.8%.

TABLE IV
LR EXPERIMENT

Max iter 100 10 25 50
C 100 10 25 50
Penalty l2 none l2 l2
Solver newton-cg lbfgs saga sag
Train ACC 0.937 0.930 0.931 0.932
Test ACC 0.818 0.807 0.805 0.807
F1 0.856 0.847 0.846 0.848
PRC 0.758 0.753 0.747 0.749
RCL 0.983 0.967 0.976 0.976
Time(s) 0.1 0.1 0.1 5.3

E. Decision Tree

The DT algorithm went through several steps. The first
model resulted in an accuracy of 86.3% on the testing set with
no parameter tuning. Then, to increase the accuracy of the DT
model, post pruning techniques were applied. The post pruning
provided the DT model with slightly better accuracy of 86.4%.
In the last experiment, we used the grid search algorithm. The
results are shown in Table V with 87.28% being the best.

TABLE V
DT EXPERIMENT

Criterion gini gini entropy entropy
Min samples leaf 20 10 10 15
Min samples split 14 10 10 15
Max features 16 15 15 20
Ccp alpha 2× 10−17 2× 10−7 2× 10−7 2× 10−9

Train ACC 0.960 0.967 0.968 0.964
Test ACC 0.867 0.868 0.872 0.872
F1 0.980 0.889 0.893 0.894
PRC 0.818 0.824 0.825 0.822
RCL 0.976 0.966 0.973 0.980
Time(s) 0.6 0.6 0.6 0.9

In table VI we compare the results from our project with
another study [6], which proves that our novel preprocessing
framework is better and stable across multiple ML algorithms.

TABLE VI
RESULTS COMPARISON

Algorithm train acc train acc [6] test acc test acc [6]
ANN 0.985 0.944 0.861 0.942
DT 0.968 0.936 0.872 0.933
SVM 0.951 0.709 0.840 0.706
LR 0.937 0.932 0.818 0.928

VI. CONCLUSION

To receive accurate predictions with binary classification,
this research investigated a novel framework for data pre-
processing on the UNSW-NB15 dataset, in combination with
several ML algorithms. The original UNSW-NB15 dataset
was first preprocessed with data cleaning, transformation, and
reduction. The comprehensive preprocessing has undergone an
iterative process, intending to improve and get better results.

Fig. 3. Performance Comparison

The data preprocessing and hyperparameter tuning have been
our project’s utmost critical work. The ML algorithms were
run extensively with manual and automated hyperparameter
tuning to find the most optimal parameters for our prepro-
cessed dataset to create satisfactory results. The results (fig 3)
indicate that our novel preprocessing method is comparable
and, in many cases, superior correlated to other studies.
Therefore, our project aims to support other researchers who
intend to use our preprocessing methods and hyperparameter
tuning settings for future studies.

REFERENCES

[1] D. Sujana, S. Hegde, C. Pankaj, S. Suresh, P. Ramakrishna et al., “Tem-
poral based network packet anomaly detection using machine learning,”
in 2021 IEEE International Conference on Electronics, Computing and
Communication Technologies (CONECCT). IEEE, 2021, pp. 1–6.

[2] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: methods, systems and tools,” Ieee communications surveys &
tutorials, vol. 16, no. 1, pp. 303–336, 2013.

[3] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible
evaluation of anomaly-based intrusion-detection methods,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 40, no. 5, pp. 516–524, 2010.

[4] J. Long, F. Fang, and H. Luo, “A survey of machine learning-based
iot intrusion detection techniques,” in 2021 IEEE 6th International
Conference on Smart Cloud (SmartCloud). IEEE, 2021, pp. 7–12.

[5] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, “A survey and
taxonomy on task offloading for edge-cloud computing,” IEEE Access,
vol. 8, pp. 186 080–186 101, 2020.

[6] S. M. Kasongo and Y. Sun, “Performance analysis of intrusion detection
systems using a feature selection method on the unsw-nb15 dataset,”
Journal of Big Data, vol. 7, no. 1, pp. 1–20, 2020.

[7] P. Jha and A. Sharma, “Framework to analyze malicious behaviour
in cloud environment using machine learning techniques,” in 2021
International Conference on Computer Communication and Informatics
(ICCCI). IEEE, 2021, pp. 1–12.

[8] L. Zhiqiang, G. Mohi-Ud-Din, L. Bing, L. Jianchao, Z. Ye, and
L. Zhijun, “Modeling network intrusion detection system using feed-
forward neural network using unsw-nb15 dataset,” in 2019 IEEE 7th
International Conference on Smart Energy Grid Engineering (SEGE).
IEEE, 2019, pp. 299–303.

[9] M. Hammad, W. El-medany, and Y. Ismail, “Intrusion detection sys-
tem using feature selection with clustering and classification machine
learning algorithms on the unsw-nb15 dataset,” in 2020 International
Conference on Innovation and Intelligence for Informatics, Computing
and Technologies (3ICT). IEEE, 2020, pp. 1–6.

[10] M. Zeeshan, Q. Riaz, M. A. Bilal, M. K. Shahzad, H. Jabeen, S. A.
Haider, and A. Rahim, “Protocol-based deep intrusion detection for dos
and ddos attacks using unsw-nb15 and bot-iot data-sets,” IEEE Access,
vol. 10, pp. 2269–2283, 2021.

[11] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),”
in 2015 military communications and information systems conference
(MilCIS). IEEE, 2015, pp. 1–6.

Anomaly Intrusion Detection for Data Networks
Using K-Nearest Neighbor

Sajepan Gnanasivam∗, Daniel Tveter∗, Nga Dinh∗
∗ Department of Computer Science and Communications.

Faculty of Computer Science, Engineering and Economics.
Østfold University College (HiOF), Norway

{sajepan.gnanasivam, daniel.tveter, thi.t.dinh}@hiof.no

Abstract—With the explosively increasing number of comput-
ers connected to the Internet and the rise in hostile attacks on
data networks, it is crucial than ever to protect the computer
networks. In light of this, anomaly detection has been hugely
popular. The goal of anomaly detection is to find network
abnormalities where supervised classification approaches have
yielded several successes through many types of research.

This paper aims to evaluate and analyze the performance of
K-Nearest Neighbor (KNN) binary classification with Euclidean-
and Minkowski distance calculations for network intrusions.
The UNSW-NB15 dataset, including over 82,000 samples and
49 features, is used in the paper. In addition, preprocessing in
which the dataset has undergone different phases such as data-
cleaning, reduction, and transformation is performed. Finally, the
performance of KNN is evaluated through extensive experiments
to discover the right K-value for the preprocessed dataset.
The results show that the accuracy, precision, and F1-measure
decrease as the K-value increases. Nevertheless, the highest score
at K equal to 2 with an accuracy of 87.107% is achieved.

Index Terms—Anomaly Detection, KNN, Machine Learning,
Supervised Methods, Data Network.

I. INTRODUCTION

The massive growth in cyber threats, coupled with modern
organizations’ reliance on the stability and effectiveness of
their IT infrastructure, has prompted a shift in mentality. As
a result, priorities are altering as the downtime increases for
systems within information technology. Intrusions, such as
brute force, denial of service, or even penetration within a
network, are the most common threat to a network’s secu-
rity. Furthermore, cyber criminals are violently attempting to
interrupt network connections, get illegal access to essential
data, and then steal, distort, or damage essential data struc-
tures. Hence, a dynamic approach to detect and prevent such
intrusions is required. It is a critical challenge in the field of
computer network security that must be addressed. In light
of this, anomaly detection has been hugely popular due to
these issues [1]. The goal of network anomaly detection is
to find network abnormalities, where supervised classification
approaches have yielded several successes through many types
of research.

Anomaly detection in data networks is a vital and rapidly
evolving field of study since our everyday is becoming more
and more data-driven. With more data and information avail-
able than ever before, it is critical to analyze and evaluate it
properly [2]. In data network, anomaly detection has a wide

range of applications, including credit card fraud detection,
cyber security intrusion detection, and military observation of
adversary activity. An unusual traffic pattern in a computer
network, for example, could indicate that a hacked computer
is transferring sensitive data to an unauthorized site [3].
According to Cisco’s Annual Internet Report, the frequency
of breaches and the number of records exposed to each breach
are increasing. Between 2018 and 2019, attacks between
100 Gbps and 400 Gbps increased by 776%, and the total
number of DDoS attacks will double from 7.9 million in
2018 to 15.4 million by 2023 [4]. Due to the importance of
anomaly detection, this paper focuses on detecting aberrations
in computer networking.

Machine Learning has been efficiently used in anomaly
detection. An ensemble feature selection method [5] is applied
on the TON IoT dataset [6]. Here, the authors use multiple
classifiers to evaluate the performance of each model. In
particular, Random Forest has the best accuracy of 99.23%
and a F1-score of 98.90% among the seven classifiers whereas
Decision Tree has the quickest execution time. K-Nearest
Neighbor (KNN) achieves a accuracy of 83.41% and F1-score
of 74.81%. In another study [1], network abnormality in the
UNSW-NB15 dataset is detected using a time-based statistical
analysis. According to the findings, the labeled dataset may be
utilized to accurately train both supervised and unsupervised
machine learning systems. In addition, the authors discovered
that the suggested model might be applied to detect network
anomalies that have not been addressed previously in network
traffic by extracting features from the network packet using
unsupervised learning. Furthermore, in [7], the authors present
a framework to detect malicious behavior in cloud environ-
ments also based on UNSW-NB15 dataset. Decision Tree,
Random Forest, Naive Bayes, KNN, Linear Regression, and
SVM are among the machine learning algorithms used by the
authors. The results reveal that with feature selection, Random
Forest surpassed all other models with accuracy, sensitivity,
and specificity of 97.84%, 98.04%, and 97.68%, respectively.
Decision trees and KNN came second and third, respectively,
with 96.77% and 80.45% accuracy.

Machine Learning algorithms such as Decision Tree (DT)
[8] and Support Vector Machines (SVM) [9] have been used
extensively for the UNSW-NB15 dataset. However, there is
not enough attention for KNN, whereas KNN has better pre-

diction accuracy on other datasets [10], [11]. Hence, this paper
proposes an anomaly intrusion detection framework using the
KNN based on the UNSW-NB15 dataset. The framework
includes a data preprocessing phase and an implementation
phase to evaluate the performance of KNN with different
K-values. In the data preprocessing phase, our works on
data cleaning, data transformation, and data reduction are
documented. In the implementation phase, we implement
and perform binary classification with a KNN model with
extensive different K-values on our preprocessed dataset to
determine the algorithm’s performance. The models are eval-
uated concerning the accuracy, recall, precision, and F1-score
performance metrics for K-values up to 200. Based on our
evaluation, the best setting of K value is recommended.

The rest of the paper is organized as follows. Section II is
the introduction of the UNSW-NB15 dataset which is selected
to conduct the analysis and experiments. Section III presents
our comprehensive works on data preprocessing including
data cleaning, data transformation, and data reduction. The
KNN Machine Learning algorithm is described in section
IV. In section V, we evaluate the performance of KNN on
our preprocessed UNSW-NB15 dataset. Finally, section VI
concludes this paper.

II. DATASET

Dataset is the most crucial aspect of a network security
analysis. The amount of the data also impacts the performance
of Machine Learning algorithms. Selecting the most significant
features from the input data can simplify the modeling process
and result in faster and more accurate detection rates. Fre-
quently, datasets contain multiple useless, redundant features,
which is disadvantageous to the accuracy of the results. In
light of this, the UNSW-NB15 dataset is selected. The dataset
has also been widely used in many researches [12]–[14].

The UNSW-NB15 dataset was created by researchers from
the Australian Center for Cyber Security (ACCS) in 2015
[14], [15] with 49 features. The UNSW-NB15 dataset is
more sophisticated and reflective of current attack and normal
network traffic, making it suitable for evaluating network
intrusion techniques. The number of records in the UNSW-
NB15 dataset is 2,540,044 which is stored in four .csv files
represented in Table I. Each of the dataset contains attack and
normal records. A training set and a testing set were created
from the data collection, named UNSW-NB15 training-set.csv
and UNSW-NB15 testing-set.csv, respectively. The training
set has 82,332 records while the testing set contains 175,341
records including attack and normal records. Do note that the
training and testing sets are reversed.

III. DATA PREPROCESSING

Before any Machine Learning algorithm is applied to a
dataset, the data has to be preprocessed so that the pro-
cessed data is in the format that the model can comprehend.
The UNSW-NB15 contains categorical and non-similar scale
features that need to be preprocessed in order to make the
dataset compliant with a Machine Learning algorithm [1]. To

TABLE I
DATASET OVERVIEW

File name File Size Records Features
UNSWNB15 1.csv 161.2 MB 700000 49
UNSWNB15 2.csv 157.6 MB 700000 49
UNSWNB15 3.csv 147.4 MB 700000 49
UNSWNB15 4.csv 91.3 MB 440044 49
UNSW NB15 testing-set.csv 31.5 MB 175341 45
UNSW NB15 training-set.csv 15.0 MB 82332 45

ensure that the selected dataset is converted into a suitable
one, we perform data preprocessing with data cleaning, data
transformation, and data reduction.

A. Data Cleaning

Data Cleaning aims to fix the problem with incomplete,
inconsistent, and noisy data. But first, the data that is missing
or irrelevant needs to be processed.

Missing data points is a common attribute that many
datasets have. There are several approaches to solve this
problem:

1) Duplicating values rows or columns that occur more
than twice in the same dataset. Dropping a duplicate
row or column and keeping the first instance is one of
the solutions to this problem. The reason for doing this
is not to make the specific data point take advantage of
or be biased.

2) Dropping rows and columns that includes a not a number
(NaN) field or an empty object (NULL) values.

3) Estimating missing values is used if a small percentage
of the data is lost. Data imputation techniques such as
mean, median, or mode values are the most common
approach to apprehend this problem.

After a thorough analysis, the UNSW-NB15 does not exhibit
any missing values to remove or perform data imputation.

B. Data Transformation

The second phase of data preprocessing is Data Transfor-
mation which aims to convert the data into a known format
readable to a machine learning model. Data normalization
transforms numerical columns into a standard scale (-1.0 to
1.0 or 0.0 to 1.0). This process transforms the data columns
without distorting the differences in the data range, meaning
it will maintain the dynamic range of the dataset.

1) Reversed Datasets: The UNSW-NB15 dataset has the
training and testing set samples reversed, caused by an error
from the publishers. This means that the testing set samples
are double the training set size. We promptly fix the issue by
running an if statement on both sets and checking whether
the training set has fewer or larger samples than the testing
set. The testing set contains 175,341 rows and 45 columns
opposed to the training set, corresponding to 82,332 rows and
45 columns.

2) Feature Engineering: The process of changing the raw
data into features that better describe the underlying problem
to predictive models, resulting in enhanced model accuracy
on unseen data, is known as feature engineering. Feature
engineering depends on domain knowledge in a specific field
to select and transform features from a dataset. It is evident
that many features can share requirements characteristics. The
procedure entails a combination of data analysis, rule-of-
thumb use, and judgment.

The feature engineering process starts with analyzing the
various values for each feature for the dataset. Then, by run-
ning train[’state’].value_counts from the pandas
library, we output the row count for each distinct value in a
feature, in this case, ’state’. Observing the table shows that the
row counts for the states ’FIN’, ’INT’, ’CON’ and ’REQ’ are
more significant than the others. Therefore, the states which
have lower row counts are renamed to ’Others’.

The ’-’ value is present under the ’service’ feature, which
equals 47,153. This value is converted to ’Others’ since the
dataset description informs us that the value is a service that
is not frequently used. The same method is replicated for the
’service’ and ’proto’ features. We also observe the row counts
for those features and renamed the values to ’Others’. The
purpose of this procedure is to reduce the complexity of the
model.

3) Categorical Columns: Our machine learning algorithm
cannot process Categorical data points, meaning the transfor-
mation of the data points into a readable format is essential for
the model to run without errors. Therefore, we drop the ’label’
feature since our model performs binary classification. Further,
to make the categorical features readable by the model, one-hot
encoding needed to be implemented. Therefore, we transform
each categorical value into a new categorical column and
assign a binary value of 1 or 0 to those columns using one-
hot encoding. A binary vector is used to represent each integer
value. The pd_dummies() function from the Pandas library
accomplished exactly this assignment.

4) Normalization: The UNSW-NB15 dataset has a broad
dynamic range of values, indicating that normalization needs
to be applied on the numerical columns. The core concept of
standardizing/normalizing is to individually delegate µ = 0,
and σ = 1 for the features of X . Standardscaler()
will independently normalize the features so that each colum-
n/feature will produce µ = 0, and σ = 1. x equals to the
observation, µ is the mean and σ is the standard deviation.
The equation for standard deviation (3) is achievable by taking
the equation for standardization (1) and combining it with the
mean for each sample (2).

z =
x− µ

σ
(1)

µ =
1

N

N∑
i=1

(xi) (2)

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (3)

C. Data Reduction

Dealing with a large amount of data for analysis comes with
difficulty. Data reduction aims to improve storage efficiency
and lower data storage and analysis expenses. The concept of
Dimensionality Reduction is to reduce the number of features
or dimensionality. Data reduction is, in our case, done in
the Feature Selection. But firstly, we analyze the dataset by
looking at the correlation matrix.

1) Correlation: Correlation is the degree to which two
variables are linearly related is expressed by correlation. If
there is an extensive dataset with many columns, displaying
the correlation matrix as a heatmap is a rapid approach
to assess relationships between columns. When a dependent
and independent variable has a high correlation value, the
independent variable affects the output.

The Pearson r correlation is the most extensively utilized
statistical approach for determining the degree of linearly
related variables. The Pearson correlation between any two
variables x, y can be calculated by using Equation (4), where n
is number of observations, and i-denotes the i-th observation.

rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2
(4)

Fig. 1 shows a graphical representation of the correlation
matrix for several features with coefficient values given by a
color scale.

Fig. 1. Correlation plot for UNSW-NB15 Training dataset

2) Feature Selection: Feature selection is one of the core
concepts in Machine Learning. This process hugely impacts
the performance of any Machine Learning model. When de-
veloping a predictive model, the primary objective is to reduce
the number of input variables. The number of input variables
included in a model’s training stage dramatically influences
the performance, meaning feature selection and data cleaning
should be the first and most crucial step of the developing
phase.

Reducing the number of input variables lessens the compu-
tational cost and, in many cases, enhances the performance of
a given model. The process has two given approaches:

1) Automatically determine input variables using various
algorithms

2) Manually choose input variables to remove from the
model.

The benefits of reducing the number of input variables
are (1) reduce overfitting i.e, the dataset will become less
redundant, which in hand will make fewer opportunities to
make a decision based on noise, (2) accuracy improvement
i.e, training data will be less misleading, which will improve
accuracy, and (3) training time reduction i.e, the complexity
of the algorithm decreases.

3) Method 1 - Recursive Feature Elimination (RFE): RFE
is a well-known feature selection algorithm used to identify
which features in a training dataset are more significant in
predicting the target variable. RFE works by searching for
a subset of features in the training dataset, starting with all
features and successfully eliminating them until the targeted
number remains. The method can be accomplished by re-fitting
the model using the provided machine learning technique,
ranking features by relevance, excluding the least important
features, and fitting the model again. This procedure is exe-
cuted until only a certain amount of features are left. Features
are evaluated by using either a machine learning model or a
statistical technique. In our work, RFE has concluded with
the top features and has left us with the following fea-
tures to drop: attack_cat, id, response_body_len,
spkts, ct_flw_http_mthd, trans_depth, dwin,
ct_ftp_cmd and is_ftp_login, which we tend to drop.

IV. K-NEAREST NEIGHBOR ALGORITHM

The supervised Machine Learning KNN algorithm can
address both classification and regression tasks [16], [17]. The
KNN assumes that similar data points exist in close proximity
meaning that there are near to each other. Distance metrics
such as Euclidean distance, Hamming distance, Manhattan
distance and Minkowski distance are utilized to estimate
the distance between points for locating the closest similar
points. In this paper, we use Euclidean Distance, calculated
by (5) and Minkoswki Distance, calculated by (6), for KNN
implementation. In equation (5), xi and yi are the coordinators
of the ith featured element, respectively.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (5)

d(x, y) = (
n∑

i=1

|xi − yi|p)1/p (6)

The main advantages of KNN: (1) The algorithm is sim-
ple and straightforward to implement, (2) There is no need
to create a model, tweak parameters, or make any further
assumptions, (3) The algorithm is highly adaptable. It has
classification, regression, and search capabilities. One of the
most significant disadvantages is that the algorithm gets
much slower as the number of input/independent -variables
increases. Meaning the volume of data has a significant impact
on the runtime for the algorithm. Thus, KNN is not suitable for
applications where real-time data output is crucial. However,
with proficient computer resources, KNN can be very useful
for identifying similar objects. The main steps of the KNN is
shown in Algorithm 1.

Algorithm 1 K-Nearest Neighbor (KNN) Algorithm
Input: K-value, dataframe in
Output: Class (Attack or Non-attack) out

Initialization :
1: Load preprocessed splitted training and testing datasets.

LOOP Process
2: for training data points do
3: Calculate Euclidean Distance given by equation (5)
4: Sort calculated distances in ascending order
5: Get top K rows from the sorted array
6: Assign a class to the training data point, based on

majority voting
7: end for
8: return predicted class

V. PERFORMANCE EVALUATIONS

The preprocessing and the build of the KNN model is
executed on a computer with the following specifications:
operating system is macOS Catalina(10.15.4) with Intel Core
i9 9880H, @2.3 GHz CPU, AMD Radeon Pro 5500M with
4GB GDDR6 graphics card, and 32GB DDR4 memory @2667
MHz. Jupyter lab and Visual Studio code have been our
development environment with anaconda distribution. Python
version 3.8.8 has been used as the only programming language
to analyze and develop our project.

The performance of the KNN is affected by the chosen K
value. KNN is run numerous times with different values of K
to determine which K was the most suitable for our dataset.
To evaluate the performance of each model, we have used
different metrics to cover the various aspects of the scoring
output. The metrics are Accuracy, Recall, Precision, F1 and
Running time. The scoring is calculated in combinations of
True-Positive (TP), True-Negative (TN), False-Positive (FP),
and False-Negative (FN).

1) Accuracy: The accuracy is utilized to recognize correla-
tions and patterns between variables in a dataset based

on the input or training data. This metric is calculated
by equation (7).

Accuracy =
TP + TN

(TP + TN + FP + FN)
(7)

2) Recall: Recall gives us information about what portion
of true anomalies were classified. This metric is deter-
mined by equation (8).

Recall =
TP

(TP + FN)
(8)

3) Precision: Precision represents the ratio of true positives
to all predicted positives. In our case, how many of the
output labeled as attacks, are actual attacks? This metric
is determined by equation (9).

Precision =
TP

(TP + FP)
(9)

4) F1 measure: F1 measure uses a mean value method to
determines the overall performance of the anomaly de-
tection model by incorporating both Recall and Precision
scores. This matric is calculated by equation (10).

F1−measure =
2× (Recall × Precision)

Precision×Recall
(10)

Table (II) presents the result of our experiment with the
values of K from 1 to 15. Our predictions become less stable as
we increase the value of K to 15. Thus, the predictions become
less stable due to majority voting and averaging, and less
accurate. The average accuracy for K(1, 15) equals 84.899%,
where the highest score was 87.107% for K(2) and the lowest
score of 84.755% for K(15). Fig. 2 represents a bar plot of the
different K values, ranging from 1 to 15. We can see which K
value performs best by analyzing the plot’s accuracy, precision,
recall, and F1-measure.

TABLE II
EXPERIMENTS (K 1 TO 15)

K Accuracy F1 Precision Recall Runtime
1 0.8528 0.8764 0.8149 0.9479 3m 39s
2 0.8710 0.8870 0.8570 0.9192 3m 51s
3 0.8508 0.8764 0.8057 0.9606 4m 3s
4 0.8633 0.8835 0.8321 0.9417 4m 17s
5 0.8462 0.8736 0.7977 0.9655 4m 15s
6 0.8561 0.8794 0.8167 0.9525 3m 50s
7 0.8436 0.8723 0.7927 0.9696 3m 49s
8 0.8525 0.8775 0.8083 0.9596 3m 52s
9 0.8414 0.8710 0.7887 0.9724 3m 50s
10 0.8487 0.8753 0.8012 0.9646 3m 52s
11 0.8404 0.8705 0.7866 0.9743 3m 54s
12 0.8467 0.8742 0.7974 0.9673 3m 50s
13 0.8392 0.8698 0.7845 0.9760 3m 53s
14 0.8440 0.8726 0.7928 0.9701 3m 52s
15 0.8375 0.8688 0.7821 0.9771 3m 51s

The decrease in accuracy as the K value increases ought
up to a question, which refers to the next experiment i.e,
investigate whether a higher K value results in better or worse
model accuracy.

Fig. 2. Metrics Scores with respect to K value from 1 to 15

Fig. 3 presents the error rate (model accuracy = 100 −
(error rate × 100)) of KNN with K ranging from 1 to 40.
It can be seen from the figure that the error rate increases as
K increases. In other words, the accuracy of the KNN models
worsens as the K-value increases. The total runtime for this
experiment was 153.4 minutes (approximately 2.5 hours).

Fig. 3. Mean Error rate with respect to K value from 1 to 40

To confirm this assertion, we conducted the same exper-
iment with K from 1 to 200, shown in Fig. (4). We can
see from the figure that the model accuracy drops as the K
increases. The total runtime for this experiment is 828 minutes
(approximately 13.8 hours).

VI. CONCLUSION

This paper evaluated the performance of the KNN Machine
Learning technique with the best performing K-value on the
UNSW-NB15 dataset. The original UNSW-NB15 data set was
first preprocessed with data cleaning, data transformation,
and data reduction. The comprehensive preprocessing has
undergone an iterative process, intending to improve and get
better results. The KNN was then run extensively with a wide
range of K values from 1 to 200. Based on our experiments
for K-values from 1 to 200, we conclude that K equal to 2
performed the best with the highest model accuracy of 87.10%.
Nonetheless, the results also indicate that increasing K-value
results in worse performance in our case.

Fig. 4. Mean Error rate with respect to K value from 1 to 200

The results are meaningful due to the fact that there is
a shortage of research on the KNN on our chosen dataset.
Hence, future studies should address how the KNN model
can be improved or developed to understand the implication
of these results for our dataset. In addition, our research
will be valuable for other practitioners who wish to develop
the algorithm further, implying how the K-value affects the
accuracy.

REFERENCES

[1] V. K. B. P, S. DV, S. Hegde, C. Pankaj, S. Suresh, and P. Ramakrishna,
“Temporal based Network Packet Anomaly Detection using Machine
Learning,” in 2021 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT), Jul. 2021,
pp. 1–6.

[2] J. Long, F. Fang, and H. Luo, “A Survey of Machine Learning-based
IoT Intrusion Detection Techniques,” in 2021 IEEE 6th International
Conference on Smart Cloud (SmartCloud), Nov. 2021, pp. 7–12.

[3] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
Anomaly Detection: Methods, Systems and Tools,” IEEE Communica-
tions Surveys Tutorials, vol. 16, no. 1, pp. 303–336, 2014.

[4] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, “A Survey
and Taxonomy on Task Offloading for Edge-Cloud Computing,” IEEE
Access, vol. 8, pp. 186 080–186 101, 2020.

[5] G. Guo, “A Machine Learning Framework for Intrusion Detection
System in IoT Networks Using an Ensemble Feature Selection Method,”
in 2021 IEEE 12th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), Oct. 2021, pp. 0593–
0599.

[6] N. Moustafa, M. Keshky, E. Debiez, and H. Janicke, “Federated TON iot
Windows Datasets for Evaluating AI-Based Security Applications,” in
2020 IEEE 19th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). Guangzhou, China:
IEEE, Dec. 2020, pp. 848–855.

[7] P. Jha and A. Sharma, “Framework to Analyze Malicious Behaviour
in Cloud Environment using Machine Learning Techniques,” in 2021
International Conference on Computer Communication and Informatics
(ICCCI), Jan. 2021, pp. 1–12.

[8] U. Ahmad, H. Asim, M. T. Hassan, and S. Naseer, “Analysis of
classification techniques for intrusion detection,” in 2019 International
Conference on Innovative Computing (ICIC), 2019, pp. 1–6.

[9] D. Jing and H.-B. Chen, “Svm based network intrusion detection for
the unsw-nb15 dataset,” in 2019 IEEE 13th International Conference
on ASIC (ASICON), 2019, pp. 1–4.

[10] H. BENADDI, K. IBRAHIMI, and A. BENSLIMANE, “Improving
the intrusion detection system for nsl-kdd dataset based on pca-fuzzy
clustering-knn,” in 2018 6th International Conference on Wireless Net-
works and Mobile Communications (WINCOM), 2018, pp. 1–6.

[11] S. Jaiswal, K. Saxena, A. Mishra, and S. K. Sahu, “A knn-aco approach
for intrusion detection using kddcup’99 dataset,” in 2016 3rd Interna-
tional Conference on Computing for Sustainable Global Development
(INDIACom), 2016, pp. 628–633.

[12] L. Zhiqiang, G. Mohi-Ud-Din, L. Bing, L. Jianchao, Z. Ye, and
L. Zhijun, “Modeling Network Intrusion Detection System Using
Feed-Forward Neural Network Using UNSW-NB15 Dataset,” in 2019
IEEE 7th International Conference on Smart Energy Grid Engineering
(SEGE), Aug. 2019, pp. 299–303.

[13] M. Hammad, W. El-medany, and Y. Ismail, “Intrusion Detection System
using Feature Selection With Clustering and Classification Machine
Learning Algorithms on the UNSW-NB15 dataset,” in 2020 Inter-
national Conference on Innovation and Intelligence for Informatics,
Computing and Technologies (3ICT), Dec. 2020, pp. 1–6.

[14] M. Zeeshan, Q. Riaz, M. A. Bilal, M. K. Shahzad, H. Jabeen, S. A.
Haider, and A. Rahim, “Protocol Based Deep Intrusion Detection for
DoS and DDoS attacks using UNSW-NB15 and Bot-IoT data-sets,”
IEEE Access, pp. 1–1, 2021.

[15] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Military Communications and Information Systems Conference
(MilCIS), Nov. 2015, pp. 1–6.

[16] P. Wang, Y. Zhang, and W. Jiang, “Application of K-Nearest Neighbor
(KNN) Algorithm for Human Action Recognition,” in 2021 IEEE
4th Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), vol. 4, Jun. 2021, pp. 492–
496.

[17] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative anal-
ysis of k-nearest neighbor and modified k-nearest neighbor algorithm
for data classification,” in 2017 2nd International conferences on In-
formation Technology, Information Systems and Electrical Engineering
(ICITISEE), Nov. 2017, pp. 294–298.

Bibliography

[1] D. Sujana, S. Hegde, C. Pankaj, S. Suresh, P. Ramakrishna, et al., “Temporal
based network packet anomaly detection using machine learning,” in 2021 IEEE
International Conference on Electronics, Computing and Communication Technologies
(CONECCT), IEEE, 2021, pp. 1–6.

[2] S. Naseer, Y. Saleem, S. Khalid, et al., “Enhanced network anomaly detection
based on deep neural networks,” IEEE Access, vol. 6, pp. 48 231–48 246, 2018. doi:
10.1109/ACCESS.2018.2863036.

[3] E. Anthi, L. Williams, M. Słowińska, G. Theodorakopoulos, and P. Burnap, “A
supervised intrusion detection system for smart home iot devices,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 9042–9053, 2019. doi: 10.1109/JIOT.2019.
2926365.

[4] Z. K. Maseer, R. Yusof, N. Bahaman, S. A. Mostafa, and C. F. M. Foozy,
“Benchmarking of machine learning for anomaly based intrusion detection systems
in the cicids2017 dataset,” IEEE Access, vol. 9, pp. 22 351–22 370, 2021. doi:
10.1109/ACCESS.2021.3056614.

[5] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly detection:
Methods, systems and tools,” Ieee communications surveys & tutorials, vol. 16,
no. 1, pp. 303–336, 2013.

[6] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible evaluation of
anomaly-based intrusion-detection methods,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 5, pp. 516–524,
2010.

[7] J. Long, F. Fang, and H. Luo, “A survey of machine learning-based iot intrusion
detection techniques,” in 2021 IEEE 6th International Conference on Smart Cloud
(SmartCloud), IEEE, 2021, pp. 7–12.

[8] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, “A survey and taxonomy on
task offloading for edge-cloud computing,” IEEE Access, vol. 8, pp. 186 080–186 101,
2020.

189

https://doi.org/10.1109/ACCESS.2018.2863036
https://doi.org/10.1109/JIOT.2019.2926365
https://doi.org/10.1109/JIOT.2019.2926365
https://doi.org/10.1109/ACCESS.2021.3056614

BIBLIOGRAPHY

[9] B. Steenwinckel, “Adaptive anomaly detection and root cause analysis by fusing
semantics and machine learning,” in The Semantic Web: ESWC 2018 Satellite
Events, A. Gangemi, A. L. Gentile, A. G. Nuzzolese, et al., Eds., Cham: Springer
International Publishing, 2018, pp. 272–282, isbn: 978-3-319-98192-5.

[10] T. M. Mitchell et al., “Machine learning,” 1997.
[11] A. L. Samuel, “Some studies in machine learning using the game of checkers,”

IBM Journal of research and development, vol. 3, no. 3, pp. 210–229, 1959.
[12] I. C. Education, What is machine learning? Jul. 2020. [Online]. Available: https:

//www.ibm.com/cloud/learn/machine-learning.
[13] A. Networks, What is anomaly detection? definition amp; faqs, Apr. 2022. [Online].

Available: https://www-stage.avinetworks.com/glossary/anomaly-detection/.
[14] W. Haider, J. Hu, J. Slay, B. Turnbull, and Y. Xie, “Generating realistic intrusion

detection system dataset based on fuzzy qualitative modeling,” Journal of Network
and Computer Applications, vol. 87, pp. 185–192, 2017, issn: 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2017.03.018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1084804517301273.

[15] S. McElwee, How to decide on a dataset for detecting cyber-attacks, Feb. 2022.
[Online]. Available: https://towardsdatascience.com/how-to-decide-on-a-
dataset-for-detecting-cyber-attacks-c92e4f78e7a7.

[16] S. Stolfo, W. Lee, A. Prodromidis, and P. Chan, “Cost-based modeling for fraud
and intrusion detection: Results from the jam project,” vol. 2, Feb. 2000, 130–144
vol.2, isbn: 0-7695-0490-6. doi: 10.1109/DISCEX.2000.821515.

[17] M. Nour and S. Jill, The unsw-nb15 dataset, Nov. 2015. [Online]. Available:
https://research.unsw.edu.au/projects/unsw-nb15-dataset.

[18] N. Moustafa and J. Slay, “Unsw-nb15: A comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set),” in 2015 Military
Communications and Information Systems Conference (MilCIS), 2015, pp. 1–6.
doi: 10.1109/MilCIS.2015.7348942.

[19] S. Choudhary and N. Kesswani, “Analysis of kdd-cup’99, nsl-kdd and unsw-
nb15 datasets using deep learning in iot,” Procedia Computer Science, vol. 167,
pp. 1561–1573, 2020, International Conference on Computational Intelligence
and Data Science, issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.
2020.03.367. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877050920308334.

[20] T. Janarthanan and S. Zargari, “Feature selection in unsw-nb15 and kddcup’99
datasets,” in 2017 IEEE 26th International Symposium on Industrial Electronics
(ISIE), 2017, pp. 1881–1886. doi: 10.1109/ISIE.2017.8001537.

[21] S. M. Kasongo and Y. Sun, “Performance analysis of intrusion detection systems
using a feature selection method on the unsw-nb15 dataset,” Journal of Big Data,
vol. 7, no. 1, 2020. doi: 10.1186/s40537-020-00379-6.

190

https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://www-stage.avinetworks.com/glossary/anomaly-detection/
https://doi.org/https://doi.org/10.1016/j.jnca.2017.03.018
https://www.sciencedirect.com/science/article/pii/S1084804517301273
https://www.sciencedirect.com/science/article/pii/S1084804517301273
https://towardsdatascience.com/how-to-decide-on-a-dataset-for-detecting-cyber-attacks-c92e4f78e7a7
https://towardsdatascience.com/how-to-decide-on-a-dataset-for-detecting-cyber-attacks-c92e4f78e7a7
https://doi.org/10.1109/DISCEX.2000.821515
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/https://doi.org/10.1016/j.procs.2020.03.367
https://doi.org/https://doi.org/10.1016/j.procs.2020.03.367
https://www.sciencedirect.com/science/article/pii/S1877050920308334
https://www.sciencedirect.com/science/article/pii/S1877050920308334
https://doi.org/10.1109/ISIE.2017.8001537
https://doi.org/10.1186/s40537-020-00379-6

BIBLIOGRAPHY

[22] M. F. Suleiman and B. Issac, “Performance comparison of intrusion detection
machine learning classifiers on benchmark and new datasets,” 2018 28th International
Conference on Computer Theory and Applications (ICCTA), 2018. doi: 10.1109/
iccta45985.2018.9499140.

[23] E. Tufan, C. Tezcan, and C. Acarturk, “Anomaly-based intrusion detection by
machine learning: A case study on probing attacks to an institutional network,”
IEEE Access, vol. 9, pp. 50 078–50 092, Jan. 2021. doi: 10.1109/ACCESS.2021.
3068961.

[24] A. Husain, A. Salem, C. Jim, and G. Dimitoglou, “Development of an efficient
network intrusion detection model using extreme gradient boosting (xgboost)
on the unsw-nb15 dataset,” in 2019 IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), 2019, pp. 1–7. doi: 10.1109/
ISSPIT47144.2019.9001867.

[25] W. Zong, Y.-W. Chow, and W. Susilo, “A two-stage classifier approach for
network intrusion detection: 14th international conference, ispec 2018, tokyo,
japan, september 25-27, 2018, proceedings,” in Jan. 2018, pp. 329–340, isbn:
978-3-319-99806-0. doi: 10.1007/978-3-319-99807-7_20.

[26] M. Al-Daweri, K. A. Zainol Ariffin, S. Abdullah, and M. Senan, “An analysis of
the kdd99 and unsw-nb15 datasets for the intrusion detection system,” Symmetry,
vol. 12, p. 1666, Oct. 2020. doi: 10.3390/sym12101666.

[27] V. Kumar, D. Sinha, A. Das, D. S. Pandey, and R. Goswami, “An integrated rule
based intrusion detection system: Analysis on unsw-nb15 data set and the real time
online dataset,” Cluster Computing, vol. 23, Jun. 2020. doi: 10.1007/s10586-
019-03008-x.

[28] T. Janarthanan and S. Zargari, “Feature selection in unsw-nb15 and kddcup’99
datasets,” 2017 IEEE 26th International Symposium on Industrial Electronics
(ISIE), pp. 1881–1886, 2017.

[29] G. Kocher and D. G. Kumar Ahuja, “Analysis of machine learning algorithms with
feature selection for intrusion detection using unsw-nb15 dataset,” International
Journal of Network Security Its Applications, vol. 13, pp. 21–31, Jan. 2021. doi:
10.5121/ijnsa.2021.13102.

[30] M. Ahmad, Q. Riaz, M. Zeeshan, H. Tahir, S. A. Haider, and M. S. Khan,
“Intrusion detection in internet of things using supervised machine learning based
on application and transport layer features using unsw-nb15 data-set,” EURASIP
Journal on Wireless Communications and Networking, vol. 2021, no. 1, 2021. doi:
10.1186/s13638-021-01893-8.

[31] N. Moustafa and J. Slay, “The evaluation of network anomaly detection systems:
Statistical analysis of the unsw-nb15 data set and the comparison with the kdd99
data set,” Information Security Journal: A Global Perspective, vol. 25, no. 1-3,
pp. 18–31, 2016. doi: 10.1080/19393555.2015.1125974.

191

https://doi.org/10.1109/iccta45985.2018.9499140
https://doi.org/10.1109/iccta45985.2018.9499140
https://doi.org/10.1109/ACCESS.2021.3068961
https://doi.org/10.1109/ACCESS.2021.3068961
https://doi.org/10.1109/ISSPIT47144.2019.9001867
https://doi.org/10.1109/ISSPIT47144.2019.9001867
https://doi.org/10.1007/978-3-319-99807-7_20
https://doi.org/10.3390/sym12101666
https://doi.org/10.1007/s10586-019-03008-x
https://doi.org/10.1007/s10586-019-03008-x
https://doi.org/10.5121/ijnsa.2021.13102
https://doi.org/10.1186/s13638-021-01893-8
https://doi.org/10.1080/19393555.2015.1125974

BIBLIOGRAPHY

[32] Y. Li, W. Xu, and Q. Ruan, “Research on the performance of machine learning
algorithms for intrusion detection system,” Journal of Physics: Conference Series,
vol. 1693, no. 1, p. 012 109, Dec. 2020. doi: 10.1088/1742-6596/1693/1/012109.
[Online]. Available: https://doi.org/10.1088/1742-6596/1693/1/012109.

[33] M. K. Islam, P. Hridi, M. S. Hossain, and H. S. Narman, “Network anomaly
detection using lightgbm: A gradient boosting classifier,” 2020 30th International
Telecommunication Networks and Applications Conference (ITNAC), 2020. doi:
10.1109/itnac50341.2020.9315049.

[34] N. Elmrabit, F. Zhou, F. Li, and H. Zhou, “Evaluation of machine learning
algorithms for anomaly detection,” in 2020 International Conference on Cyber
Security and Protection of Digital Services (Cyber Security), 2020, pp. 1–8. doi:
10.1109/CyberSecurity49315.2020.9138871.

[35] M. Hammad, W. El-medany, and Y. Ismail, “Intrusion detection system using
feature selection with clustering and classification machine learning algorithms
on the unsw-nb15 dataset,” in 2020 International Conference on Innovation and
Intelligence for Informatics, Computing and Technologies (3ICT), 2020, pp. 1–6.
doi: 10.1109/3ICT51146.2020.9312002.

[36] Y. Pacheco and W. Sun, “Adversarial machine learning: A comparative study on
contemporary intrusion detection datasets,” Proceedings of the 7th International
Conference on Information Systems Security and Privacy, 2021. doi: 10.5220/
0010253501600171.

[37] V. Kanimozhi and P. Jacob, Unsw-nb15 dataset feature selection and network
intrusion detection. [Online]. Available: https : / / www . researchgate . net /
profile/Prem-Jacob/publication/333175638_ES2080017519/links/5cdef62d92851c4eabaa0430/
ES2080017519.pdf.

[38] G. C. Amaizu, C. I. Nwakanma, J.-M. Lee, and D.-S. Kim, “Investigating network
intrusion detection datasets using machine learning,” in 2020 International
Conference on Information and Communication Technology Convergence (ICTC),
2020, pp. 1325–1328. doi: 10.1109/ICTC49870.2020.9289329.

[39] M. Al-Zewairi, S. Almajali, and A. Awajan, “Experimental evaluation of a multi-
layer feed-forward artificial neural network classifier for network intrusion detection
system,” in 2017 International Conference on New Trends in Computing Sciences
(ICTCS), 2017, pp. 167–172. doi: 10.1109/ICTCS.2017.29.

[40] J. Yan, D. Jin, C. W. Lee, and P. Liu, “A comparative study of off-line deep learning
based network intrusion detection,” in 2018 Tenth International Conference on
Ubiquitous and Future Networks (ICUFN), 2018, pp. 299–304. doi: 10.1109/
ICUFN.2018.8436774.

[41] R. A. Khamis and A. Matrawy, “Evaluation of adversarial training on different
types of neural networks in deep learning-based idss,” in 2020 International
Symposium on Networks, Computers and Communications (ISNCC), 2020, pp. 1–6.
doi: 10.1109/ISNCC49221.2020.9297344.

192

https://doi.org/10.1088/1742-6596/1693/1/012109
https://doi.org/10.1088/1742-6596/1693/1/012109
https://doi.org/10.1109/itnac50341.2020.9315049
https://doi.org/10.1109/CyberSecurity49315.2020.9138871
https://doi.org/10.1109/3ICT51146.2020.9312002
https://doi.org/10.5220/0010253501600171
https://doi.org/10.5220/0010253501600171
https://www.researchgate.net/profile/Prem-Jacob/publication/333175638_ES2080017519/links/5cdef62d92851c4eabaa0430/ES2080017519.pdf
https://www.researchgate.net/profile/Prem-Jacob/publication/333175638_ES2080017519/links/5cdef62d92851c4eabaa0430/ES2080017519.pdf
https://www.researchgate.net/profile/Prem-Jacob/publication/333175638_ES2080017519/links/5cdef62d92851c4eabaa0430/ES2080017519.pdf
https://doi.org/10.1109/ICTC49870.2020.9289329
https://doi.org/10.1109/ICTCS.2017.29
https://doi.org/10.1109/ICUFN.2018.8436774
https://doi.org/10.1109/ICUFN.2018.8436774
https://doi.org/10.1109/ISNCC49221.2020.9297344

BIBLIOGRAPHY

[42] J. Brownlee, Why data preparation is so important in machine learning, Jun. 2020.
[Online]. Available: https://machinelearningmastery.com/data-preparation-
is-important/.

[43] Levels of measurement: Nominal, ordinal, interval, ratio. [Online]. Available:
https://www.scribbr.com/statistics/levels-of-measurement/.

[44] A. Zhang, Data types from a machine learning perspective with examples, Nov. 2021.
[Online]. Available: https://towardsdatascience.com/data-types-from-a-
machine-learning-perspective-with-examples-111ac679e8bc.

[45] S. Maddali, How important is data in machine learning? Aug. 2021. [Online].
Available: https://medium.com/nerd-for-tech/how-important-is-data-in-
machine-learning.

[46] Formplus, Categorical data: Definition, Oct. 2019. [Online]. Available: https:
//www.formpl.us/blog/categorical-data.

[47] J. Hale, 7 data types: A better way to think about data types for machine learning,
Apr. 2021. [Online]. Available: https://towardsdatascience.com/7-data-
types-a-better-way-to-think-about-data-types-for-machine-learning.

[48] J. Brownlee, How to avoid overfitting in deep learning neural networks, Dec. 2018.
[Online]. Available: https://machinelearningmastery.com/introduction-
to-regularization-to-reduce-overfitting-and-improve-generalization-
error/.

[49] Deepcheck, What is overfitting in machine learning, Aug. 2021. [Online]. Available:
https://deepchecks.com/glossary/overfitting-in-machine-learning/.

[50] J. Brownlee, Overfitting and underfitting with machine learning algorithms, Mar.
2016. [Online]. Available: https://machinelearningmastery.com/overfitting-
and-underfitting-with-machine-learning-algorithms/.

[51] Geeksforgeeks, Ml: Underfitting and overfitting, Oct. 2021. [Online]. Available:
https : / / www . geeksforgeeks . org / underfitting - and - overfitting - in -
machine-learning/.

[52] S. Raschka, Biasvariancedecomp: Bias-variance decomposition for classification
and regression losses, 2014. [Online]. Available: http://rasbt.github.io/
mlxtend/user_guide/evaluate/bias_variance_decomp/#example-1-bias-
variance-decomposition-of-a-decision-tree-classifier.

[53] P. Baheti, Overfitting vs underfitting in machine learning [differences], 2022.
[Online]. Available: https://www.v7labs.com/blog/overfitting-vs-underfitting.

[54] Seldon, Supervised vs unsupervised learning explained, Oct. 2021. [Online]. Available:
https://www.seldon.io/supervised-vs-unsupervised-learning-explained.

193

https://machinelearningmastery.com/data-preparation-is-important/
https://machinelearningmastery.com/data-preparation-is-important/
https://www.scribbr.com/statistics/levels-of-measurement/
https://towardsdatascience.com/data-types-from-a-machine-learning-perspective-with-examples-111ac679e8bc
https://towardsdatascience.com/data-types-from-a-machine-learning-perspective-with-examples-111ac679e8bc
https://medium.com/nerd-for-tech/how-important-is-data-in-machine-learning
https://medium.com/nerd-for-tech/how-important-is-data-in-machine-learning
https://www.formpl.us/blog/categorical-data
https://www.formpl.us/blog/categorical-data
https://towardsdatascience.com/7-data-types-a-better-way-to-think-about-data-types-for-machine-learning
https://towardsdatascience.com/7-data-types-a-better-way-to-think-about-data-types-for-machine-learning
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://deepchecks.com/glossary/overfitting-in-machine-learning/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
http://rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/#example-1-bias-variance-decomposition-of-a-decision-tree-classifier
http://rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/#example-1-bias-variance-decomposition-of-a-decision-tree-classifier
http://rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/#example-1-bias-variance-decomposition-of-a-decision-tree-classifier
https://www.v7labs.com/blog/overfitting-vs-underfitting
https://www.seldon.io/supervised-vs-unsupervised-learning-explained

BIBLIOGRAPHY

[55] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” in Machine
Learning Techniques for Multimedia: Case Studies on Organization and Retrieval,
M. Cord and P. Cunningham, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 21–49, isbn: 978-3-540-75171-7. doi: 10.1007/978-3-540-75171-7_2.
[Online]. Available: https://doi.org/10.1007/978-3-540-75171-7_2.

[56] P. Baheti, Supervised vs. unsupervised learning [differences amp; examples],
2020. [Online]. Available: https://www.v7labs.com/blog/supervised-vs-
unsupervised-learning.

[57] J. Brownlee, 4 types of classification tasks in machine learning, Apr. 2020. [Online].
Available: https://machinelearningmastery.com/types-of-classification-
in-machine-learning/.

[58] J. Delua, Supervised vs. unsupervised learning: What’s the difference? Mar. 2021.
[Online]. Available: https : / / www . ibm . com / cloud / blog / supervised - vs -
unsupervised-learning.

[59] J. Brownlee, Difference between classification and regression in machine learning,
May 2017. [Online]. Available: https://machinelearningmastery.com/classification-
versus-regression-in-machine-learning/.

[60] Z. Ghahramani, “Unsupervised learning,” in Advanced Lectures on Machine
Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003,
Tübingen, Germany, August 4 - 16, 2003, Revised Lectures, O. Bousquet, U. von
Luxburg, and G. Rätsch, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 72–112, isbn: 978-3-540-28650-9. doi: 10.1007/978-3-540-28650-9_5.
[Online]. Available: https://doi.org/10.1007/978-3-540-28650-9_5.

[61] M. E. Celebi and K. Aydin, Unsupervised Learning Algorithms, 1st. Springer
Publishing Company, Incorporated, 2016, isbn: 3319242091.

[62] Sklearn.modelselection.gridsearchcv. [Online]. Available: https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.GridSearchCV.
html.

[63] Tune hyperparameters with gridsearchcv, Jul. 2021. [Online]. Available: https:
//www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-
gridsearchcv.

[64] S. Shah, Cost function: Types of cost function machine learning, Feb. 2021. [Online].
Available: https://www.analyticsvidhya.com/blog/2021/02/cost-function-
is-no-rocket-science/.

[65] G. Seif, Understanding the 3 most common loss functions for machine learning
regression, May 2019. [Online]. Available: https://towardsdatascience.com/
understanding-the-3-most-common-loss-functions-for-machine-learning-
regression/.

194

https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1007/978-3-540-75171-7_2
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning
https://www.v7labs.com/blog/supervised-vs-unsupervised-learning
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1007/978-3-540-28650-9_5
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-gridsearchcv
https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-gridsearchcv
https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-gridsearchcv
https://www.analyticsvidhya.com/blog/2021/02/cost-function-is-no-rocket-science/
https://www.analyticsvidhya.com/blog/2021/02/cost-function-is-no-rocket-science/
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression/
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression/
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression/

BIBLIOGRAPHY

[66] J. Brownlee, A gentle introduction to cross-entropy for machine learning, Oct. 2019.
[Online]. Available: https://machinelearningmastery.com/cross-entropy-
for-machine-learning/.

[67] S. Saxena, Binary cross entropy/log loss for binary classification, Mar. 2021.
[Online]. Available: https : / / www . analyticsvidhya . com / blog / 2021 / 03 /
binary-cross-entropy-log-loss-for-binary-classification/.

[68] C. Mc., Machine learning fundamentals (i): Cost functions and gradient descent,
Nov. 2017. [Online]. Available: https://towardsdatascience.com/machine-
learning-fundamentals-via-linear-regression-41a5d11f5220.

[69] R. M, The ascent of gradient descent, Sep. 2019. [Online]. Available: https://blog.
clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f.

[70] D. Goglia, Backpropagation for dummies, Jul. 2021. [Online]. Available: https://
medium.com/analytics-vidhya/backpropagation-for-dummies-e069410fa585.

[71] DeepAI, Feed forward neural network, May 2019. [Online]. Available: https:
/ / deepai . org / machine - learning - glossary - and - terms / feed - forward -
neural-network.

[72] P. Baheti, 12 types of neural networks activation functions: How to choose? May
2022. [Online]. Available: https://www.v7labs.com/blog/neural-networks-
activation-functions/.

[73] M. Nielsen, Neural networks and deep learning - latexstudio, Dec. 2019. [Online].
Available: https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.
pdf.

[74] L. Singh, Forward and backward propagation-understanding it to master the
model training process, Jul. 2021. [Online]. Available: https://medium.com/
geekculture/forward-and-backward-propagation-understanding-it-to-
master-the-model-training-process-3819727dc5c1.

[75] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal, vol. 30, no. 10,
pp. 947–954, 1960.

[76] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[77] D. Johnson, Back propagation neural network: What is backpropagation algorithm
in machine learning? May 2022. [Online]. Available: https://www.guru99.com/
backpropogation-neural-network.html.

[78] A. Goh, “Back-propagation neural networks for modeling complex systems,”
Artificial Intelligence in Engineering, vol. 9, no. 3, pp. 143–151, 1995, issn: 0954-
1810. doi: https : / / doi . org / 10 . 1016 / 0954 - 1810(94) 00011 - S. [Online].
Available: https://www.sciencedirect.com/science/article/pii/095418109400011S.

195

https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-loss-for-binary-classification/
https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-loss-for-binary-classification/
https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220
https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://medium.com/analytics-vidhya/backpropagation-for-dummies-e069410fa585
https://medium.com/analytics-vidhya/backpropagation-for-dummies-e069410fa585
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://www.v7labs.com/blog/neural-networks-activation-functions/
https://www.v7labs.com/blog/neural-networks-activation-functions/
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://medium.com/geekculture/forward-and-backward-propagation-understanding-it-to-master-the-model-training-process-3819727dc5c1
https://medium.com/geekculture/forward-and-backward-propagation-understanding-it-to-master-the-model-training-process-3819727dc5c1
https://medium.com/geekculture/forward-and-backward-propagation-understanding-it-to-master-the-model-training-process-3819727dc5c1
https://www.guru99.com/backpropogation-neural-network.html
https://www.guru99.com/backpropogation-neural-network.html
https://doi.org/https://doi.org/10.1016/0954-1810(94)00011-S
https://www.sciencedirect.com/science/article/pii/095418109400011S

BIBLIOGRAPHY

[79] R. Aswini Priyanka, C. Ashwitha, R. Arun Chakravarthi, and R. Prakash, “Face
recognition model using back propagation,” International Journal of Engineering
amp; Technology, vol. 7, no. 3.34, p. 237, 2018. doi: 10.14419/ijet.v7i3.34.
18973.

[80] K.-L. Du and M. N. Swamy, “Multilayer perceptrons: Architecture and error
backpropagation,” Neural Networks and Statistical Learning, pp. 83–126, 2013.
doi: 10.1007/978-1-4471-5571-3_4.

[81] C. Hansen, Activation functions explained - gelu, selu, elu, relu and more, Aug.
2019. [Online]. Available: https://mlfromscratch.com/activation-functions-
explained/#subscribe.

[82] M. Patel, Vanishing and exploding gradients in neural networks, Jan. 2021.
[Online]. Available: https://medium.datadriveninvestor.com/vanishing-
and-exploding-gradients-in-neural-networks-bddd4504e59c.

[83] Keshav, Hyperbolic tangent (tanh) activation function [with python code], 2018.
[Online]. Available: https://vidyasheela.com/post/hyperbolic-tangent-
tanh-activation-function-with-python-code.

[84] ——, Relu activation function [with python code], 2018. [Online]. Available: https:
//vidyasheela.com/post/relu-activation-function-with-python-code.

[85] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015. doi: 10.48550/ARXIV.
1502.01852. [Online]. Available: https://arxiv.org/abs/1502.01852.

[86] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network
learning by exponential linear units (elus), 2015. doi: 10.48550/ARXIV.1511.
07289. [Online]. Available: https://arxiv.org/abs/1511.07289.

[87] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing
neural networks,” 2017. doi: 10.48550/ARXIV.1706.02515. [Online]. Available:
https://arxiv.org/abs/1706.02515.

[88] T. Böhm, An introduction to selus and why you should start using them as your
activation functions, Aug. 2018. [Online]. Available: https://towardsdatascience.
com/gentle-introduction-to-selus-b19943068cd9.

[89] D. Hendrycks and K. Gimpel, Gaussian error linear units (gelus), 2016. doi:
10.48550/ARXIV.1606.08415. [Online]. Available: https://arxiv.org/abs/
1606.08415.

[90] A. Shrivastav, Gaussian error linear unit (gelu), Dec. 2021. [Online]. Available:
https://iq.opengenus.org/gaussian-error-linear-unit/.

[91] K. E. Koech, Softmax activation function - how it actually works, Sep. 2020.
[Online]. Available: https://towardsdatascience.com/softmax-activation-
function-how-it-actually-works-d292d335bd78.

[92] M. Debnath, Binary step function, Nov. 2021. [Online]. Available: https://iq.
opengenus.org/binary-step-function/.

196

https://doi.org/10.14419/ijet.v7i3.34.18973
https://doi.org/10.14419/ijet.v7i3.34.18973
https://doi.org/10.1007/978-1-4471-5571-3_4
https://mlfromscratch.com/activation-functions-explained/#subscribe
https://mlfromscratch.com/activation-functions-explained/#subscribe
https://medium.datadriveninvestor.com/vanishing-and-exploding-gradients-in-neural-networks-bddd4504e59c
https://medium.datadriveninvestor.com/vanishing-and-exploding-gradients-in-neural-networks-bddd4504e59c
https://vidyasheela.com/post/hyperbolic-tangent-tanh-activation-function-with-python-code
https://vidyasheela.com/post/hyperbolic-tangent-tanh-activation-function-with-python-code
https://vidyasheela.com/post/relu-activation-function-with-python-code
https://vidyasheela.com/post/relu-activation-function-with-python-code
https://doi.org/10.48550/ARXIV.1502.01852
https://doi.org/10.48550/ARXIV.1502.01852
https://arxiv.org/abs/1502.01852
https://doi.org/10.48550/ARXIV.1511.07289
https://doi.org/10.48550/ARXIV.1511.07289
https://arxiv.org/abs/1511.07289
https://doi.org/10.48550/ARXIV.1706.02515
https://arxiv.org/abs/1706.02515
https://towardsdatascience.com/gentle-introduction-to-selus-b19943068cd9
https://towardsdatascience.com/gentle-introduction-to-selus-b19943068cd9
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://iq.opengenus.org/gaussian-error-linear-unit/
https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78
https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78
https://iq.opengenus.org/binary-step-function/
https://iq.opengenus.org/binary-step-function/

BIBLIOGRAPHY

[93] J. Cramer, The origins of logistic regression, Jan. 2003. [Online]. Available: https:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=360300.

[94] N. Cristianini and E. Ricci, “Support vector machines,” in Encyclopedia of
Algorithms, M.-Y. Kao, Ed. Boston, MA: Springer US, 2008, pp. 928–932, isbn:
978-0-387-30162-4. doi: 10.1007/978-0-387-30162-4_415. [Online]. Available:
https://doi.org/10.1007/978-0-387-30162-4_415.

[95] A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, “Classification of
tweets data based on polarity using improved RBF kernel of SVM,” International
Journal of Information Technology, 2020. doi: 10.1007/s41870-019-00409-4.

[96] H.-T. Lin and C.-J. Lin, “A study on sigmoid kernels for svm and the training of
non-psd kernels by smo-type methods,” Neural Computation, Jun. 2003.

[97] X. Wu, V. Kumar, J. R. Quinlan, et al., “Top 10 algorithms in data mining,”
Knowledge and information systems, vol. 14, no. 1, pp. 1–37, 2008.

[98] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1,
pp. 81–106, 1986. doi: 10.1007/bf00116251.

[99] J. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[100] K. A. Grajski, L. Breiman, G. V. Di Prisco, and W. J. Freeman, “Classification of

eeg spatial patterns with a tree-structured methodology: Cart,” IEEE Transactions
on Biomedical Engineering, vol. BME-33, no. 12, pp. 1076–1086, 1986. doi: 10.
1109/TBME.1986.325684.

[101] G. V. Kass, “An exploratory technique for investigating large quantities of
categorical data,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 29, no. 2, pp. 119–127, 1980, issn: 00359254, 14679876. [Online].
Available: http://www.jstor.org/stable/2986296 (visited on 06/04/2022).

[102] J. H. Friedman, “Multivariate Adaptive Regression Splines,” The Annals of
Statistics, vol. 19, no. 1, pp. 1–67, 1991. doi: 10.1214/aos/1176347963. [Online].
Available: https://doi.org/10.1214/aos/1176347963.

[103] S. Dobilas, Mars: Multivariate adaptive regression splines�-�how to improve on
linear regression? Feb. 2022. [Online]. Available: https://towardsdatascience.
com/mars-multivariate-adaptive-regression-splines-how-to-improve-
on-linear-regression-e1e7a63c5eae.

[104] L. Rokach and O. Maimon, Data Mining With Decision Trees: Theory and
Applications, 2nd. USA: World Scientific Publishing Co., Inc., 2014, isbn: 9789814590075.

[105] L. Breiman, Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. doi: 10.1023/a:
1010933404324.

[106] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference
on document analysis and recognition, IEEE, vol. 1, 1995, pp. 278–282.

[107] Random forests trademark of minitab, llc - registration number 3185828 - serial
number 78642027 :: Justia trademarks. [Online]. Available: https://trademarks.
justia.com/786/42/random-78642027.html.

197

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=360300
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=360300
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/s41870-019-00409-4
https://doi.org/10.1007/bf00116251
https://doi.org/10.1109/TBME.1986.325684
https://doi.org/10.1109/TBME.1986.325684
http://www.jstor.org/stable/2986296
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1176347963
https://towardsdatascience.com/mars-multivariate-adaptive-regression-splines-how-to-improve-on-linear-regression-e1e7a63c5eae
https://towardsdatascience.com/mars-multivariate-adaptive-regression-splines-how-to-improve-on-linear-regression-e1e7a63c5eae
https://towardsdatascience.com/mars-multivariate-adaptive-regression-splines-how-to-improve-on-linear-regression-e1e7a63c5eae
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://trademarks.justia.com/786/42/random-78642027.html
https://trademarks.justia.com/786/42/random-78642027.html

BIBLIOGRAPHY

[108] A. Mucherino, P. J. Papajorgji, and P. M. Pardalos, “Chapter 4,” in Data Mining
in Agriculture. Springer New York, 2009, pp. 83–106.

[109] P. Wang, Y. Zhang, and W. Jiang, “Application of K-Nearest Neighbor (KNN)
Algorithm for Human Action Recognition,” in 2021 IEEE 4th Advanced Information
Management, Communicates, Electronic and Automation Control Conference
(IMCEC), vol. 4, Jun. 2021, pp. 492–496. doi: 10.1109/IMCEC51613.2021.
9482165.

[110] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis of k-
nearest neighbor and modified k-nearest neighbor algorithm for data classification,”
in 2017 2nd International conferences on Information Technology, Information
Systems and Electrical Engineering (ICITISEE), Nov. 2017, pp. 294–298. doi:
10.1109/ICITISEE.2017.8285514.

[111] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Tracking the best hyperplane
with a simple budget perceptron,” Machine Learning, vol. 69, no. 2-3, pp. 143–167,
2007. doi: 10.1007/s10994-007-5003-0.

[112] S. Patwardhan, Knn algorithm: What is knn algorithm: How does knn function,
Apr. 2021. [Online]. Available: https://www.analyticsvidhya.com/blog/2021/
04/simple-understanding-and-implementation-of-knn-algorithm/.

[113] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[114] S. O. |. |. 5, S. O’Grady, and N. *, The redmonk programming language rankings:
June 2021, Aug. 2021. [Online]. Available: https://redmonk.com/sogrady/2021/
08/05/language-rankings-6-21/.

[115] Coursera, What is python used for? a beginner’s guide, May 2022. [Online].
Available: https://www.coursera.org/articles/what-is-python-used-for-
a-beginners-guide-to-using-python.

[116] T. Kluyver, B. Ragan-Kelley, F. Pérez, et al., “Jupyter notebooks – a publishing
format for reproducible computational workflows,” in Positioning and Power in
Academic Publishing: Players, Agents and Agendas, F. Loizides and B. Schmidt,
Eds., IOS Press, 2016, pp. 87–90.

[117] Databricks, What is a jupyter notebook? Feb. 2022. [Online]. Available: https:
//databricks.com/glossary/jupyter-notebook.

[118] github, Github, 2020. [Online]. Available: https://github.com/.
[119] Kinsta, What is github? a beginner’s introduction to github, May 2021. [Online].

Available: https://kinsta.com/knowledgebase/what-is-github/.
[120] L. Lamport, Latex: A document preparation system, adison, 1986.
[121] T. Oliphant, Guide to NumPy. Jan. 2006.
[122] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science &

Engineering, vol. 9, no. 3, pp. 90–95, 2007. doi: 10.1109/MCSE.2007.55.

198

https://doi.org/10.1109/IMCEC51613.2021.9482165
https://doi.org/10.1109/IMCEC51613.2021.9482165
https://doi.org/10.1109/ICITISEE.2017.8285514
https://doi.org/10.1007/s10994-007-5003-0
https://www.analyticsvidhya.com/blog/2021/04/simple-understanding-and-implementation-of-knn-algorithm/
https://www.analyticsvidhya.com/blog/2021/04/simple-understanding-and-implementation-of-knn-algorithm/
https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/
https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/
https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://databricks.com/glossary/jupyter-notebook
https://databricks.com/glossary/jupyter-notebook
https://github.com/
https://kinsta.com/knowledgebase/what-is-github/
https://doi.org/10.1109/MCSE.2007.55

BIBLIOGRAPHY

[123] M. Waskom, O. Botvinnik, D. O’Kane, et al., Mwaskom/seaborn: V0.8.1 (september
2017), version v0.8.1, Sep. 2017. doi: 10.5281/zenodo.883859. [Online]. Available:
https://doi.org/10.5281/zenodo.883859.

[124] I. Srivastava, Difference between matplotlib vs seaborn, Nov. 2021. [Online].
Available: https://www.geeksforgeeks.org/difference-between-matplotlib-
vs-seaborn/.

[125] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning
in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[126] T. Techopedia, What is scikit-learn? - definition from techopedia, Aug. 2019.
[Online]. Available: https://www.techopedia.com/definition/33860/scikit-
learn.

[127] Simplilearn, What is keras and why it so popular in 2021: Simplilearn, Sep.
2021. [Online]. Available: https://www.simplilearn.com/tutorials/deep-
learning-tutorial/what-is-keras.

[128] N. Moustafa and J. Slay, “The evaluation of network anomaly detection systems:
Statistical analysis of the unsw-nb15 data set and the comparison with the kdd99
data set,” Information Security Journal: A Global Perspective, vol. 25, no. 1-
3, pp. 18–31, 2016. doi: 10 . 1080 / 19393555 . 2015 . 1125974. eprint: https :
//doi.org/10.1080/19393555.2015.1125974. [Online]. Available: https:
//doi.org/10.1080/19393555.2015.1125974.

[129] N. Hoque, M. H. Bhuyan, R. Baishya, D. Bhattacharyya, and J. Kalita, “Network
attacks: Taxonomy, tools and systems,” Journal of Network and Computer
Applications, vol. 40, pp. 307–324, 2014, issn: 1084-8045. doi: https://doi.
org / 10 . 1016 / j . jnca . 2013 . 08 . 001. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/S1084804513001756.

[130] K. Goyal, Data preprocessing in machine learning: 7 easy steps to follow, Jul. 2021.
[Online]. Available: https://www.upgrad.com/blog/data-preprocessing-in-
machine-learning/.

[131] DeepChecks, What is normalization in machine learning, Aug. 2021. [Online].
Available: https://deepchecks.com/glossary/normalization-in-machine-
learning/.

[132] Zach, How to read a correlation matrix, Jan. 2020. [Online]. Available: https:
//www.statology.org/how-to-read-a-correlation-matrix/.

[133] K. E. Rao and G. A. Rao, “Ensemble learning with recursive feature elimination
integrated software effort estimation: A novel approach,” Evolutionary Intelligence,
vol. 14, no. 1, pp. 151–162, 2020. doi: 10.1007/s12065-020-00360-5.

[134] A. Dubey, Feature selection using random forest, Dec. 2018. [Online]. Available:
https : / / towardsdatascience . com / feature - selection - using - random -
forest-26d7b747597f.

199

https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
https://www.geeksforgeeks.org/difference-between-matplotlib-vs-seaborn/
https://www.geeksforgeeks.org/difference-between-matplotlib-vs-seaborn/
https://www.techopedia.com/definition/33860/scikit-learn
https://www.techopedia.com/definition/33860/scikit-learn
https://www.simplilearn.com/tutorials/deep-learning-tutorial/what-is-keras
https://www.simplilearn.com/tutorials/deep-learning-tutorial/what-is-keras
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/https://doi.org/10.1016/j.jnca.2013.08.001
https://doi.org/https://doi.org/10.1016/j.jnca.2013.08.001
https://www.sciencedirect.com/science/article/pii/S1084804513001756
https://www.sciencedirect.com/science/article/pii/S1084804513001756
https://www.upgrad.com/blog/data-preprocessing-in-machine-learning/
https://www.upgrad.com/blog/data-preprocessing-in-machine-learning/
https://deepchecks.com/glossary/normalization-in-machine-learning/
https://deepchecks.com/glossary/normalization-in-machine-learning/
https://www.statology.org/how-to-read-a-correlation-matrix/
https://www.statology.org/how-to-read-a-correlation-matrix/
https://doi.org/10.1007/s12065-020-00360-5
https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f
https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f

BIBLIOGRAPHY

[135] D. Medved, Deep learning applications for biomedical data and natural language
processing, Aug. 2018. [Online]. Available: https://portal.research.lu.se/
en/publications/deep-learning-applications-for-biomedical-data-and-
natural-langua.

[136] M. Sunasra, Performance metrics for classification problems in machine learning,
Feb. 2019. [Online]. Available: https://medium.com/@MohammedS/performance-
metrics-for-classification-problems-in-machine-learning-part-i-
b085d432082b.

[137] D. Jing and H.-B. Chen, “Svm based network intrusion detection for the unsw-
nb15 dataset,” in 2019 IEEE 13th International Conference on ASIC (ASICON),
2019, pp. 1–4. doi: 10.1109/ASICON47005.2019.8983598.

[138] G. Kocher and G. Kumar, “Performance analysis of machine learning classifiers for
intrusion detection using unsw-nb15 dataset,” Computer Science amp; Information
Technology (CS amp; IT), 2020. doi: 10.5121/csit.2020.102004.

[139] R. Pujari, Network attack detection and classification using machine learning
models based on unsw-nb15. Nov. 2020. [Online]. Available: https://i-rakshitpujari.
medium.com/network-attack-detection-and-classification-using-machine-
learning-models-based-on-unsw-nb15-a645bba73987.

[140] Q. Gu, Y. Chang, X. Li, Z. Chang, and Z. Feng, “A novel f-svm based on foa
for improving svm performance,” Expert Systems with Applications, vol. 165,
p. 113 713, 2021. doi: 10.1016/j.eswa.2020.113713.

[141] A. M. Ahmed, A. Rizaner, and A. H. Ulusoy, “A novel decision tree classification
based on post-pruning with bayes minimum risk,” PLOS ONE, vol. 13, no. 4,
2018. doi: 10.1371/journal.pone.0194168.

[142] A. Ramesh, M. Pavlov, G. Goh, et al., Zero-shot text-to-image generation, Feb.
2021. [Online]. Available: https://arxiv.org/abs/2102.12092.

[143] J. Adamczyk, K nearest neighbors computational complexity, Sep. 2020. [Online].
Available: https://towardsdatascience.com/k-nearest-neighbors-computational-
complexity-502d2c440d5.

[144] B. Wang, X. Gan, X. Liu, et al., “A novel weighted knn algorithm based on rss
similarity and position distance for wi-fi fingerprint positioning,” IEEE Access,
vol. 8, pp. 30 591–30 602, 2020. doi: 10.1109/ACCESS.2020.2973212.

200

https://portal.research.lu.se/en/publications/deep-learning-applications-for-biomedical-data-and-natural-langua
https://portal.research.lu.se/en/publications/deep-learning-applications-for-biomedical-data-and-natural-langua
https://portal.research.lu.se/en/publications/deep-learning-applications-for-biomedical-data-and-natural-langua
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://doi.org/10.1109/ASICON47005.2019.8983598
https://doi.org/10.5121/csit.2020.102004
https://i-rakshitpujari.medium.com/network-attack-detection-and-classification-using-machine-learning-models-based-on-unsw-nb15-a645bba73987
https://i-rakshitpujari.medium.com/network-attack-detection-and-classification-using-machine-learning-models-based-on-unsw-nb15-a645bba73987
https://i-rakshitpujari.medium.com/network-attack-detection-and-classification-using-machine-learning-models-based-on-unsw-nb15-a645bba73987
https://doi.org/10.1016/j.eswa.2020.113713
https://doi.org/10.1371/journal.pone.0194168
https://arxiv.org/abs/2102.12092
https://towardsdatascience.com/k-nearest-neighbors-computational-complexity-502d2c440d5
https://towardsdatascience.com/k-nearest-neighbors-computational-complexity-502d2c440d5
https://doi.org/10.1109/ACCESS.2020.2973212

BIBLIOGRAPHY

201

	Abstract
	Abbrevations
	Acknowledgments
	Prerequisites (Optional)
	List of Figures
	List of Tables
	List of Code
	Introduction
	Anomaly Detection
	Machine Learning
	Anomaly Detection with Machine Learning

	Dataset Selection
	Dataset Review

	Motivation
	Problem Statement and Objectives
	Contribution
	Thesis Structure

	Related Work
	Supervised and Unsupervised ML Algorithms
	Anomaly Detection in UNSW-NB15
	Anomaly Detection for UNSW-NB15 using Deep Learning

	Essential Machine Learning Concepts
	Data
	The Four Levels of Measurements

	Overfitting and Underfitting
	Overfitting
	Underfitting

	Supervised Learning and Unsupervised Learning
	Supervised Learning
	Unsupervised Learning

	Grid Search
	Parameters
	Hyperparameters
	Hyperparameter Tuning
	Cross-Validation
	How To Use Grid Search

	Machine Learning Algorithms
	Artificial Neural Network (ANN)
	Epoch & Batch Size
	Weights and Bias
	Layers
	Neurons
	Cost/Loss Function
	Feedforward- and Backpropagation
	Vanishing- and Exploding Gradients problem
	Activation Functions

	Logistic Regression (LR)
	Logistic Function
	Linear Regression
	Logistic Regression
	How Logistic Regression Predicts the Probabilities
	Logistic Regression Model
	How To Make Predictions With Logistic Regression
	Prepare The Data For Logistic Regression
	Hyperparameters

	Support Vector Machines (SVM)
	Hyper-Plane
	Support-Vectors
	Margin
	Linear With Non-Separable Cases
	Nonlinear Data
	The Kernel Trick

	Decision tree (DT)
	Terminology
	Assumptions When Creating a Decision Tree
	Attribute Selection Measures
	Different Algorithms Used In Decision Tree
	Training The Decision Tree
	Pruning Decision Trees
	Hyperparameters
	Knowing The Advantages And Disadvantages

	Random Forest (RF)
	Preliminaries
	Bagging
	Boosting
	Ensemble
	Difference Between Decision Trees and Random Forest
	Hyperparameters

	K-Nearest Neighbor (KNN)
	K-value

	Implementation
	Tools and Python Libraries
	Tools
	Python Libraries

	The UNSW-NB15 Dataset
	Attack Categories
	Structure

	Novel Data preprocessing Framework (NDPF)
	Data Cleaning
	Data Transformation
	Data/Dimensionality Reduction

	Algorithm Implementation
	User-defined Functions (Custom Functions)

	Performance Evaluation
	Performance Metrics
	Logistic Regression Results
	Support Vector Machines Results
	Decision Tree Results
	Random Forest Results
	Artificial Neural Network Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7

	K-Nearest Neighbor Results
	Performance Evaluation Summary
	Score Analysis
	Algorithm Runtimes
	Performance Comparison with other Research

	Conclusion & Discussion
	Contribution
	Concluding Remarks
	Background Analysis (B)
	Novel Data Preprocessing Framework (P)
	Algorithm Implementation (A1)
	Evaluation (E)

	Future Work
	Concluding Statement for Future Work

	Final Conclusion

	Bibliography

