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Abstract

FEnergy consumption forecasting in smart homes has become an important research area
due to its potential for optimizing energy consumption and reducing costs. However,
accurate forecasting can be challenging due to the time-varying nature of energy
consumption patterns, the availability and quality of data from different household
appliances, and the challenges associated with identifying the efficient and appropriate
clusters for time-series data. In this thesis, we address these challenges by proposing
an intelligent data processing approach that utilizes time-series clustering techniques to
improve energy and load forecasting for smart home appliances.

In this thesis, we address the challenge of energy consumption forecasting in smart
homes utilizing intelligent data processing. We focus on the correlation between the energy
consumption of different household appliances, which is an important factor that can be
utilized to develop intelligent data processing schemes. The energy consumption data of
home appliances is logged as time-series, which can be utilized for several analyses. These
time-series act as input to machine learning-based forecasting algorithms. Our research
focuses on clustering the time-series of several appliances in a household, and then using
the obtained clustering information to improve the performance of a forecasting algorithm
where clustered time-series from a set of appliances are fed together as an input.

To perform clustering on time-series data of several household appliances, we used the
k-shape algorithm, which extracts the shapes of different time series and provides cluster
information by computing their pairwise cross-correlation. We proposed two time-series
clustering approaches based on k-shape algorithm: ”Static” and "Dynamic” time-series
clustering. The Static time-series clustering approach does not consider time-of-the-day,
while the Dynamic time-series clustering approach considers this parameter and performs
clustering based on time-of-the-day.

Time-series from appliances of a particular cluster are fused together as an input to a
forecasting scheme. We forecasted the 24-hr energy consumption of a particular appliance
by considering its historical data and its cluster members’ data. The experiments for
clustering and forecasting are performed on a real dataset of 43 appliances in a household.
Improved day-ahead forecasting is observed using the proposed intelligent data processing
approach which would potentially result in improved flexibility when implemented in a
real environment.

This thesis contributes to the literature by proposing an intelligent data processing
approach for energy consumption forecasting in smart homes. Our approach utilizes time-
series clustering techniques to improve the accuracy of energy consumption forecasting
and load forecasting for smart home appliances. Our results demonstrate that clustering
time-series data can be an effective way to identify patterns in energy consumption that
can improve forecasting accuracy.



The organization of the thesis is as follows: Chapter 1 provides an introduction to
the topic and outlines the key objectives. Chapter 2 includes the literature review, which
focuses on energy forecasting and clustering methods. Chapter 3 focuses on time-series
clustering techniques for the prediction of smart home appliances. Chapter 4 presents the
practical implementation and performance evaluation of the proposed techniques. Finally,
Chapter 5 concludes the thesis and provides suggestions for future research.

In conclusion, the proposed intelligent data processing approach has the potential to
enhance the accuracy of energy consumption predictions for smart homes. Our study
provides a foundation for further research into the application of time-series clustering
techniques for energy consumption forecasting in smart homes.
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Chapter 1

Introduction

There is a growing demand for creative solutions to effectively use the produced energy as
the globe struggles to address the issues of climate change and the need for sustainable
living. Moreover, there is a rising demand for energy because of the rising population and
urbanization. Management of energy usage has thus become essential to contemporary
civilization. With technological advancements and computing resources, smart homes
are a new trend in the electricity market where smart metering plays a central role in
these developments. Generally, smart meters record, process and upload their data to
the server [1]. Hence, smart meters keep track of the energy consumption of several
household appliances which can also be utilized to develop optimal scheduling algorithms.
Moreover, when optimal appliance scheduling is implemented at a major scale, this can
result in low electricity costs to the consumer and can also result in improved flexibility
in the energy market [2]. Energy efficiency and energy flexibility are important concepts
in the context of smart homes, as they can help reduce energy consumption, lower energy
bills, and decrease greenhouse gas emissions. Flexibility is important to maintaining or
restoring a system’s stability since the system can only be balanced by responding flexibly
to continually changing variables, such as fluctuating electricity demand at smart homes.
However, there are several challenges associated with these developments.

Smart Meter,
with HAN chip 5

! " -

Computing server

Figure 1.1: An illustration of a technology-enabled smart home
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The Internet of Things (IoT), a network of networked computing devices with the
capacity to transmit sensor data via internet protocols, has made several applications
possible, including smart homes, e-health, smart transportation, etc., in the preceding
decade [3]. IoT-enabled smart homes can give computer devices better monitoring and
control [4]. By utilizing smart meters, smart plugs, home area networks (HAN), and
internet-connected products, these IoT system capabilities can be used to create novel
energy flexibility solutions for smart buildings and households. Figure 1.1 shows an
example of an IoT-enabled smart home that incorporates these other technologies. The
usage of various types of sensors integrated into smart devices in IoT-enabled smart homes
and buildings leads to the collection of significant volumes of data that can be analyzed
to create data-driven prediction and control algorithms [5] [6].

The data observed from several household appliances generally shows the uncertainty
in energy consumption patterns [7]. This random behaviour of users in a household makes
it very challenging to forecast short-term and long-term energy consumption. However,
several statistical forecasting algorithms have been developed in past. Moreover, with
the advancements in the domain of data acquisition and artificial intelligence, several
machine learning algorithms have also been developed. The performance of machine
learning algorithms is difficult to generalize on different types of dataset and requires
an exhaustive feature extraction process.

Data-driven approaches, which offer big data analytics, real-time monitoring,
forecasting, and machine learning techniques, have a huge potential to further improve
energy flexibility in smart homes [8]. Also, integrating artificial intelligence (AI) with
data gleaned from smart homes can be extremely important for the development of
energy management systems in the future. Consequently, with precise load forecasting,
ideal energy scheduling, prompt predictive maintenance, enhanced demand response, and
customized energy management, Al and IoT can aid in boosting energy flexibility [9].

Furthermore, With the development of numerous solutions thanks to technological
advancements like wireless sensors, HAN devices, and the Internet of Things (IoT). IoT
networks have successfully monitored and managed tasks in a variety of applications,
including smart homes and buildings, e-health, etc. In smart homes, various systems
and appliances, such as lighting, heating, ventilation, and air conditioning (HVAC), are
automated using IoT (Internet of Things) technology [10]. Thus, this technology is used
to track the wasteful use of electricity in buildings and aids in the remote management of
smart appliances. Smart appliances can be set to automatically turn off when not in use,
and smart lighting can turn off when a room is empty. Users of smart homes benefit from
better energy consumption and reduced utility costs.

1.1 AT for Smart Homes

By analysing patterns in energy consumption and providing insights to help reduce energy
waste, artificial intelligence (AI), the technology that enables machines to learn and think
like humans, can be integrated into smart home energy management solutions to make
them even more effective. To increase energy efficiency and decrease energy consumption,
artificial intelligence (AI) has gained popularity. Smart homes IoT-enabled equipment that
includes sensors that collect data on energy consumption and use that data to optimize
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energy use are used to achieve this. Al can examine this data to find patterns in energy
use and offer suggestions for maximizing energy utilization while taking user comfort into
account [11]. When no one is home or it is not necessary to maintain a certain temperature,
for example, a smart thermostat can modify the temperature in a home based on occupancy
and the outside temperature. To lessen reliance on fossil fuels, smart houses can also be
connected to alternative energy sources like solar or wind power. By anticipating when
the greatest energy will be produced and then using that energy when it is most needed,
artificial intelligence can maximize the usage of renewable energy.

Al can be utilized to reduce energy use in commercial structures like office buildings
and shopping malls in addition to smart homes. Al is also essential for the creation
of sustainable smart cities when used on a broad scale. These cities employ cutting-
edge infrastructure and technologies to raise the standard of living of their citizens while
lessening their negative effects on the environment. By collecting data from sensors and
other devices and using predictive models to forecast energy demand and optimize energy
distribution, AT can assist in managing the energy consumption of large communities. Al
can be used, for instance, to assess patterns of energy usage in various city areas and
modify the distribution of energy as necessary. This can minimize prices, lessen energy
waste, and balance the strain on the energy grid. Copenhagen, which started using Al to
improve its heating system, is one example of a smart city application [12]. By analyzing
weather patterns and optimizing building heating, the device significantly lowers energy
consumption.

At the level of smart homes and cities, the future of Al-enabled energy management
solutions is quite promising. The ability of AI to learn and adapt over time is a
fundamental benefit in energy management. Machine learning algorithms improve in
accuracy as more data is gathered, allowing for more efficient energy management. This
is crucial in the context of smart cities because of how much data may be created there.
AT can assist in managing and making sense of this data, revealing insights that might
guide the development of infrastructure and energy regulations.

The advantages of adopting Al in energy management also present certain difficulties.
The challenge of protecting data security and privacy is one of the major issues. Large
volumes of data must be gathered and analyzed to employ Al, and some of this data
may include sensitive information about users of smart homes. Also, users are less eager
to supply service providers with information about their household’s energy usage. The
combination of an edge computing framework with AT technology, however, can lessen this
problem. The central server is not required to receive user data under the edge computing
concept. It performs intelligent judgments and processing data at end users. As it is
extended to the level of a smart city, a further problem is a requirement for compatibility
across various systems and devices. To maintain interoperability and compatibility, it is
necessary to create common standards and protocols.

In summary, applying Al to energy management has the potential to revolutionize
how we use and handle energy. Researchers and industry professionals are now looking to
apply Al to bigger regions such as smart cities considering the continued success of smart
homes. In terms of managing sustainable energy, the application of Al in smart cities has
the potential to revolutionize the industry. While there are obstacles to be overcome, Al
can be a vital component of creating a sustainable future for future generations.
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1.2 Background and Motivation

Between 2010 and 2050, the demand for electricity is expected to double. Since providing
the electrical power that will be required in the future is challenging, extensive study
is being done in this area. Technical developments related to the Internet of Things
(IoT) have opened some exciting possibilities for reducing this problem. Setting specific
timing of the appliances leads to increased flexibility at the home level[13]. Due to
energy consumption uncertainties, this is difficult at the same time and necessitates highly
accurate forecasting of appliance-level energy use. Energy prices were already growing as a
result of the post-lockdown increase in energy demand, but now that Russia has attacked
Ukraine, the energy markets are much more uncertain and unstable, which is having an
impact on all EU people. The REPower EU [14] plan can be used to address all of the ways
in which the EU has responded to these concerns through various programs and actions.
The REPower EU plan, which adds 225 billion euros to the Fit for 55 plan [15] of the
European Green Deal, is designed to hasten the transition to a sustainable, equitable, and
advantageous energy system for all Europeans. The following are a few pertinent actions
encouraged by the plan.

o Improved permitting of RES projects (to accelerate RES deployment)

o Increase the European renewable target for 2030 from 40

o EU-coordination demand reduction plans in case of gas supply disruption

o Investments in an integrated and adapted gas and electricity infrastructure network

In accordance with the aforementioned goals, the EU has made the decision to speed
up its energy transition plans in response to the current situation. To do this, it is
encouraging greater adoption of RESs along with investments in new infrastructure, but
it is also acknowledging the power of demand response and flexibility for a more resilient
System.

Furthermore, the development and assessment of machine learning algorithms that
allow the analysis of demand attribution and consumption behaviour depend heavily on
real-world domestic power demand facts. The main technology for intelligent smart-
grid management systems that seek a balance of power supply and demand is thought
to be the disaggregation of domestic household electricity use. The development of
methods for information retrieval, behaviour analysis, and forecasting is necessary to
enable both relevant retrospective insights and prospective recommendations on consumer
energy consumption. The flexibility of energy use in smart homes can be greatly increased
by scheduling appliances. Consumers may lower their carbon footprint, save money on
their energy bills, and contribute to a more sustainable future by utilizing these methods.
Consumers used fossil fuel power plants exclusively to produce the electricity they needed
in the past, which resulted in greenhouse gas emissions. But, in today’s world, conventional
electricity networks are unable to satisfy this expanding human need. FKEngineers and
researchers continuously create innovative electricity generation theories for renewable
and sustainable energy sources [16]. However, the complexity and dynamics of the power
grid have greatly risen as a result of the adoption of renewable energy sources (RES).
Researchers have given serious thought to ways to reduce and manage energy use to
maximize financial savings and long-term environmental sustainability [17].



1.2. BACKGROUND AND MOTIVATION

1.2.1 Energy Forecasting

The practice of predicting future energy demand or supply is known as energy
forecasting. It is dependent on several variables, including population expansion, economic
development, weather patterns, and technical improvements. Increasing the accuracy of
renewable energy forecasting is essential for power system planning, management, and
operations as renewable energy becomes more prevalent in the worldwide electric energy
grid. Moreover, Forecasting’s primary premise is that the future will in some way resemble
the past in terms of patterns or distribution. Accurate forecasting depends on seeing
patterns or hidden information in historical data. The growth of energy forecasting is
undoubtedly aided by the development of artificial intelligence (AI) and machine learning
(ML) approaches. [18] ,[19]. The forecast horizon, or the amount of time into the future
for which projections need to be created, is a key idea in energy forecasting. Moreover,
using this technology, along with consumer-managed demand response or even automated
and remote-controlled appliances that respond to prices, gives the opportunity to improve
energy efficiency and minimize peak demand. Energy markets are tasked with performing
price and system supply and demand balancing [20]. The effectiveness of a home energy
management system is significantly influenced by energy forecasts for appliances in homes.
This system can choose the most effective energy allocation strategy and find a healthy
balance between energy production and consumption[21].

Load Forecasting

Future load prediction is known as load forecasting, and it is crucial for the energy
management system and for more effective planning of the power system. Due to its effect
on the economy and the dependable operation of power systems, a significant number of
studies on accurate short-term load forecasting (STLF) have been published in recent years.
It guarantees the power system’s dependable performance, which results in a consumer-
supplied power supply that is never interrupted [22]. Accurate load forecasting makes
it simple to carry out power system activities like scheduling, maintenance, tariff rate
adjustment, and contract review [23].

Consumer load demand varies cyclically throughout the duration of a 24-hour day. It
is caused by customers regular, everyday activities, which change depending on the time of
day, such as during work hours, school hours, and the night. As a result, the load demand
for a power utility changes throughout the day. The load demand for a week from Monday
to Sunday, which varies with each hour of the week, is shown in Figure 1.2. It is evident that
the pattern of load demand, with its fluctuating peak load demand, repeats throughout the
week. The load demand generally declines throughout the night, reaching its lowest level
in the morning. But, as the day wears on, the load demand starts to rise as individuals
begin to engage in activities. When fewer people are out and about after midnight, the
load demand begins to decline once more. Due to various social events that individuals
participate in on different days of the week, the load demand also fluctuates on certain
days. The load data should be carefully examined, and dynamics should be understood,
to create a decent forecast model. To obtain accurate forecasts, the required operations
must be carried out on load data based on its behaviour and fluctuation. Furthermore, the
load consumption is often higher on working days than on rest days since factories, offices,
and other places of employment will restart their output. As a result, there are differences
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Figure 1.2: Load Profile of one Week [24].

in the load demand patterns of working days and weekends. The load pattern may also be
impacted by the regional traditions and customs[24]. Additionally, consumer segmentation
enables the utility to comprehend individual and groups of broadband networks delivering
specialized services. As not all spectrum allocations are identical, every customer requires
a unique set of individualized energy-saving tips at various times of the day. By doing so,
this would enhance the efficacy of energy efficiency programs and also positively impact the
efficacy of demand response programs that attempt to shift energy usage to avoid peaks
or shorten the duration of peaks for broadband networks with high spectrum allotment.

1.2.2 Intelligent Data Processing and Energy Prediction

Intelligent data processing and energy forecasting are crucial components of smart homes
that can assist optimize energy use and cut costs. Intelligent data processing is the
process of analyzing data obtained from various sensors and gadgets used in the home
using cutting-edge algorithms and machine learning approaches. Data on energy use,
temperature, humidity, and occupancy are some examples of this data. Smart home
systems can generate forecasts about future energy demand and usage by analyzing this
data to find patterns. Smart home systems can improve energy use and cut expenses by
automatically altering settings, such temperature and lighting, to match projected energy
demand. This is done by precisely estimating energy need.
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1.3. PROBLEM STATEMENT AND RESEARCH OBJECTIVES

Energy consumption can be optimized, prices can be cut, and a more sustainable and
effective home environment may be produced by smart houses by fusing intelligent data
processing and energy forecasting.

1.3 Problem Statement and Research Objectives

Data observed by smart meters from a single or a couple of appliances does not provide
a transparent vision of energy consumption patterns in homes. For this, we need to
combine the data observed from several different appliances. Thus, intelligent data
processing can play a significant role to monitor and control household devices in an
optimal manner. Furthermore, the data observed from different appliances can be fused
in an intelligent manner such that it can improve flexibility in smart homes. Therefore,
intelligent data processing becomes challenging and crucial for smart homes and their
flexibility[25]. Moreover, to improve the performance of machine learning methods, some
data processing strategies have also been explored. Recent developments in data processing
and machine learning for industrial prognosis by focusing on research trends, opportunities
and unexplored challenges are presented in[26]. To promote environmental sustainability,
the concepts, tools and methods of integrating multi-sensor data combining and machine
learning methods are described in[27].

The appliances which possess similarities in their consumption patterns and usage
behaviour can be utilized as an addition input to forecasting algorithms to improve their
performance. However, identifying the similarity in energy consumption patterns of several
home appliances for data processing is very critical and challenging due to time varying
nature of consumption patterns.

Based on the above-discussed problem statement, we are identified following objectives
of this thesis and the associated challenges.

1.3.1 Objectives

o To develop a more accurate energy consumption forecasting model for smart homes
using machine learning techniques: One of the primary objectives of the thesis
could be to improve the accuracy of energy consumption forecasting in smart homes.
This objective could be achieved by developing a more robust and intelligent data
processing algorithm that can help in improving the performance of machine learning-
based forecasting models. Intelligent data processing would mainly consider the
correlation between different household appliances’ energy consumption. The model
could be trained on historical energy consumption data and evaluated on unseen
data to determine its accuracy.

o Intelligent data processing on appliances’ data will be the time-series clustering which
would help in improving energy consumption forecasting accuracy in smart homes.
The thesis could also focus on exploring the effectiveness of time-series clustering in
improving energy consumption forecasting accuracy. This could involve exploring
and selecting an appropriate clustering method. The effectiveness of clustering in
improving forecasting accuracy could be evaluated by comparing the performance of
a clustering-based forecasting model to a baseline model that does not use clustering.
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o To explore the potential of incorporating other factors mainly the "time of the day’

b}

for energy consumption forecasting: Another possible objective of the thesis could be
to investigate the potential of different ways of performing Intelligent data processing
(time-series clustering) based on time of the day. This would involve performing
time-dependent and time-independent clustering of energy consumption data for
improving the forecasting accuracy of appliances. The effectiveness of different ways
of time-clustering methods would be evaluated by comparing the performance of the
model.

An illustration of the overall framework of the proposed idea in the thesis is presented

in Figure 1.3.
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Figure 1.3: An illustration of the overall framework of the proposed idea in the thesis

1.3.2 Potential Challenges

e The time-varying nature of energy consumption patterns in smart homes can make

accurate forecasting challenging: Energy consumption patterns in smart homes can
vary significantly depending on various factors, including time of day, season, and
occupancy. This variability can make accurate forecasting challenging, especially if
the forecasting model does not consider the correlation between different household
appliances.

The availability and quality of data from different household appliances may vary,
which could affect the accuracy of the forecasting model: The accuracy of the
forecasting model could be affected by the availability and quality of data from
different household appliances. Some appliances may not be equipped with smart
meters, while others may have faulty meters that provide inaccurate data. In such
cases, the accuracy of the forecasting model could be compromised.

Identifying the optimal number of clusters and appropriate clustering method for
time-series data can be challenging: Time-series clustering involves identifying
patterns in the time-series data and grouping similar time-series together. However,
identifying the optimal number of clusters and appropriate clustering methods can
be challenging, especially if the data is noisy or contains outliers.



1.4. ORGANIZATION OF THESIS

1.3.3 Deliverables

In this thesis, we are addressing the challenge of energy consumption forecasting in
smart homes utilising intelligent data processing. The correlation between the energy
consumption of different household appliances is an important factor which can be
utilized to develop intelligent data processing schemes. Energy consumption data of home
appliances is logged as time-series which can be utilized for several analyses. These time-
series act as input to machine learning-based forecasting algorithms. This thesis focuses
on clustering the time-series of several appliances in a household. More details about
time-series clustering are discussed in the next chapters. Next, the obtained clustering
information is utilized to improve the performance of a forecasting algorithm where
clustered time-series from a set of appliances are fed together as an input. The main
contributions of this thesis are summarized as follows.

a. To perform clustering on time-series data of several household appliances, we used the k-
shape algorithm, which extracts the shapes of different time series and provides cluster
information by computing their pairwise cross-correlation. The motivation behind using
k-shape algorithm over other clustering algorithms is discussed in Chapter 2.

b. Time-series from appliances of a particular cluster are fused together as an input to
a forecasting scheme. We forecasted the 24-hr energy consumption of a particular
appliance by considering its historical data and its cluster members’ data.

c. We proposed two time-series clustering approaches based on k-shape algorithm. These
two different time-series clustering approaches named ”Static” and "Dynamic” time-
series clustering. Static time-series clustering does not depend on time-of-the-day while
dynamic time-series clustering considers this parameter and performs clustering based
on time of the day.

d. The experiments for clustering and forecasting are performed on a real dataset of 43
appliances in a household. An improved day-ahead forecasting is observed using the
proposed intelligent data processing approach which can further result in improved
flexibility when implemented in real environment.

1.4 Organization of Thesis

Chapter 1: Introduction

Chapter 1 provides an introduction to the topic and outlines the key objectives. It also
introduces the concepts of smart homes, energy forecasting, and load forecasting. Also
provide a brief background and motivation for the study, highlighting the importance of
accurate forecasting for optimizing energy consumption and reducing costs. The chapter
concludes by outlining the structure of the thesis, which focuses on using time-series
clustering techniques to improve energy and load forecasting for smart home appliances.

Chapter 2: Literature Review

Chapter 2 includes the literature review. The chapter is divided into two main sections:
a review of energy forecasting and clustering methods. The section on energy forecasting
highlights the most promising techniques for smart home applications, while a review of
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clustering methods focuses on statistical methods and machine learning-based methods.
The section discusses commonly used statistical methods for clustering. It also covers
popular machine learning-based methods. The strengths and weaknesses of each method
are discussed, with a particular focus on their suitability for time-series data.

Chapter 3: Time-Series Clustering for Smart Homes Appliances
Prediction

Chapter 3 focuses on time-series clustering techniques for the prediction of smart home
appliances. The first technique is static time series clustering which does not consider time-
of-the-day as a key parameter for implementing the k-shape algorithm. This method can
effectively identify clusters of appliances’ energy usage patterns in smart homes that remain
constant over time. In contrast, the second technique, dynamic time series clustering, is
a dynamic approach to clustering time series data that considers time-of-the-day as a key
parameter for performing clusters. This technique is ideal for identifying energy usage
patterns in smart homes that change over time. Both techniques have the potential to
enhance the accuracy of energy usage predictions for smart homes.

Chapter 4: Implementation and Performance Evaluation

Chapter 4 focuses on the practical implementation and performance evaluation of the
two time-series clustering techniques proposed in Chapter 3, namely Static Time Series
Clustering and Dynamic Time Series Clustering. In Section 4.1, a detailed description of
the data set used for the experiments is provided, including the features of the data set and
the pre-processing steps applied to prepare the data for clustering. Section 4.2 presents
the performance evaluation of the Static Time Series Clustering technique, including a
discussion of the results and the accuracy of the energy consumption forecasting. Similarly,
Section 4.3 describes the performance evaluation of the Dynamic Time Series Clustering
technique, including a comparison of the forecasting results with those of the Static Time
Series Clustering technique. Finally, Section 4.4 presents a discussion of the findings,
highlighting the strengths and limitations of each technique.

Chapter 5: Conclusion and Future Scope

Chapter 5 presents the conclusion and future scope of the study. The chapter provides
a summary of the main findings and acknowledges the challenges and limitations of the
study, including potential sources of uncertainty and variability. It also outlines several
areas for future research, such as the integration of other data sources and the use of
more advanced clustering algorithms to improve prediction accuracy. Finally, the chapter
concludes with a brief discussion of the potential implications of the research for smart
homes and the broader field of data analytics.

Chapter 6: Publications

This chapter lists the accepted research paper and the ongoing research paper as well.






Chapter 2

Literature Review

For the power and energy sector, forecasting has been crucial. Thousands of papers
on forecasting electricity demand, prices, and renewable generation (like wind and solar
power) have been written by academics and industry professionals. Numerous influential
review articles and original research papers have been among the thousands of energy
forecasting and clustering papers that have been published over the past few decades. This
section discusses the development of numerous approaches to reviewing various clustering
and reviewing energy forecasting that is important to our thesis work.

2.1 Review of Energy Forecasting

"Internet of Things” (IoT) technology makes it possible for two-way communication
between the Smart grid and end users, enabling demand response programs that encourage
consumiers to cut back on their energy use during times of high demand. In order to provide
real-time monitoring and control of the energy system, IoT technology serves as a vital
link between the physical parts of the smart grid and the digital infrastructure.

For energy forecasting, loT devices and smart grid technology must be integrated
for a number of reasons. First and foremost, precise forecasting and planning of energy
resources is critical for preserving grid stability and preventing power outages. Real-time
data provided by IoT sensors on numerous aspects, such as weather conditions and building
occupancy, plays a crucial part in this process. Second, IoT technology can make it
easier to accurately anticipate energy production, which is necessary for the integration of
renewable energy sources into the energy system. Furthermore, demand response programs
can be implemented with the help of smart grid technology, relieving the grid’s load and
preventing the need for expensive infrastructure upgrades by motivating users to use less
energy during times of high demand.

2.1.1 Smart Grid and IoT

A new idea in smart grids called a micro-grid (MG) increases the efficiency and resilience
of power networks by enabling intelligent control of consumer power usage and integrating
dispersed generation resources like solar and wind energy [28]. Different components of
the smart grid are presented in Figure 2.1. The stability and consistency of micro-grids are
guaranteed by a home energy management system (HEMS) [29]. It is sometimes referred
to as the method involving domestic users’ utilization of home appliances. Because of
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the high demand for power in the household sector, HEMS is essential to a smart grid
control system. It functions by permitting variances in the demand curve based on each
user profile. The variance happens because of a user’s participation in the electric power
market. Intelligent sensors that are housed at the database-running software are used
during the entire operation. The sensors support the user’s profile saving at multiple
usage points. To enable the power supply, an advanced metering infrastructure (AMI),
also known as a smart meter, acts as a connecting connector between the electrical grid
and appliances. This load consumption that considers cost and energy is given priority by
HEMS [30].

ENERGY INFORMATION
MARKET TECHNOLOGY

INTELLIGENT
COMMUNICATION|

DISTRIBUTED
ENERGY SOURCES
INTEGRATION

GRID SECURIT

Figure 2.1: Components of Smart Grid [7].

A home habitat typically uses different amounts of energy depending on the time of
day, the day of the week, and the season. Time of Use (ToU) pricing was consequently
adopted in a variety of scenarios to entice energy consumers to schedule their loads
during less expensive off-peak times [31] [32]. Nowadays, residential appliances with value-
added smart behaviours can change the execution time to benefit financially from smart
metering and varied rates [33]. An Internet of Things-based smart control system for home
appliances was suggested in [34]. Despite load-shifting systems and fluctuating tariffs, this
approach optimizes energy consumption based on user behaviour. By modifying appliance
usage habits to reduce demand during peak hours, new energy management mechanisms
save energy costs. Renewable energy production, appliance scheduling, and load balancing
are crucial in this context. Experts have sought to replace peak electricity demand with
small-scale renewable energy generators, such as photovoltaic (PV) panels, because of
the smart grid concept. As a result, it lowers the direct electricity consumption of home
appliances.

Furthermore, by flattening the load curve, load shifting further reduces the demand
for electricity at peak times. In fact, load balancing is crucial for modern smart homes to
optimize their energy use [35]. Simple load-shifting techniques, however, can have negative
impacts by introducing additional peak times [36]. Hence, once the peak load is spread
out over numerous off-peak hours, a load-shifting method is advantageous [37]-[39]. Using
a home load balancing method, the authors of [40] suggested scheduling several users who
use the same energy source. The primary goal of [41] which uses game theory to maximize
egotistical users on the demand side, was to minimize financial expense. Corresponding [42]
loads were moved to more cost-effective times while considering individuals’ willingness
to change their energy consumption. However, frequent delays in the operation of the
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device reduce consumer satisfaction [43]. Hence, load-shifting techniques that offer great
financial optimization and little disturbance will be beneficial.

By altering energy, consumption patterns can benefit both consumers and grid
operators by reducing overall peak demand, recent smart house layouts have concentrated
on increasing customer satisfaction, reducing energy usage, and cutting costs [44]. But
creating a smart home architecture that meets all the objectives is a difficult undertaking.
Due to frequent disruptions in appliance performance and prolonged completion times,
load balancing and power scheduling can have a negative impact on customer comfort.
Hence, scheduling procedures should ensure fewer disruptions and the shortest wait times.

Moreover, many household demand models have been presented over the past few
decades to help in energy management studies. Long-term and short-term are the two
broad categories into which they can be separated. Short-term models are essential
for planning the production and procurement of power, dependability and security
analysis, economic dispatch, and system maintenance schedules [45]. On the other hand,
long-term models are frequently employed to estimate changes in demand under new
technological advancements or the introduction of energy use rules, as well as supply
capacity augmentation. Various models call for various modeling techniques. A dis-
aggregated top-down strategy is frequently utilized for long-term ones, whereas bottom-up
approaches are typically employed for short-term ones [46]. Individual end-users are not
considered in the top-down approach, which sees each sector as an energy node. On the
other hand, the bottom-up method identifies how much each end-use contributes to total
energy consumption.

There has been numerous research addressing different energy parameters. The
daily energy cost permitted home temperature ranges, energy use, peak energy use,
and consumer comfort were among the factors examined [47], 2020conditional. It has
also been investigated how consumption plans with set prices, time-of-use pricing, and
real-time pricing affect consumers. Homod et al. introduced the Takagi-Sugeno fuzzy-
based technique to meet energy demand in real time. For heating, ventilation, and air
conditioning (HVAC) systems that utilize distributed energy resources, non-controllable
appliances (NCAs), and battery storage systems, an energy-based operational model was
created. Several groups of temperature average data for the entire year were created via
clustering, which was employed by output variables. The strategy did not consider the
other frequently utilized household loads because it was optimized for HVAC systems [48].

2.1.2 Forecasting Methods

Forecasting energy demand over the short, very short, medium, and long terms requires the
application of clustering techniques in the power system. The accuracy of energy demand
projections can be increased by using clustering to assist discover patterns and trends in
the data. The data can be divided into various groups, each with its own distinct traits
and trends, using clustering methods. This may result in more precise and dependable
predictions of energy demand, which may then be utilized to improve energy production
and distribution for increased efliciency and sustainability of the power system. Moreover,
the deregulated economy, power requirement (or electricity load) forecasting is crucial
for utility businesses. Applications range from power infrastructure expansion through
load shedding, contract appraisal, and electricity production and purchase. For energy
prediction, a growing number of numerical strategies have been put forth. Figure 2.5
depicts the various power requirement prediction intervals and their uses for short, medium,
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Power system load forecasting
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Figure 2.2: Types of Load Forecasting in Power System and Application [24].

and long-term perception of energy, control, planning, and management systems that
are dependable and efficient Optimal reserve capacity, accuracy, and reliable, corporate
planning for unit commitments, and best reserve capacity handling are the main goals of
power companies for load forecasting [24].

About a century has passed since long-term load estimates were first utilized for
planning [49]. Throughout the latter half of the 20th century, transmission and
distribution planning made extensive use of spatial load forecasting, which provides
information on where, when, and how much the demand for energy would increase. Several
geographic load forecasting techniques were discussed in the tutorial review by Willis and
North Cote-Green at the time, and some of them are still employed in the market today [50].
Short-term load forecasting gradually caught the attention of scholars and practitioners
as power firms began to strive for operational excellence.

The forecasting of load, generation, prices, and other factors is a necessity for the
energy sector. All sectors of the energy industry are using these projections to plan and
run their corporate operations as well as their power systems. Although predicting kWh
usage is one way to define energy forecasting, Researchers use a broader definition that
refers to forecasting in the energy industry. They concentrate on issues pertaining to power
systems, such as electricity demand and costs, as well as the production of wind and solar
energy. Furthermore, electricity price forecasting has gained more and more attention
from the business community and academia since the 1980s because of deregulation and
the expansion of electricity markets. In the 1990s and 2000s, load forecasters experimented
with a variety of forecasting methods, with artificial neural networks (ANN) becoming
particularly well-liked. An excellent technique-focused analysis pointed out numerous
important problems in theory and practice while taking a logical look at the hoopla
surrounding ANN for load forecasting in the 1990s [51]. Probabilistic load forecasting
has gained popularity in the last ten years.
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2.1.3 Statistical Methods for Forecasting

Statistical techniques can be categorized into different groups based on the models they
are used to examine and investigate the collection, analysis, explanation, presentation,
and association of data [52]. The three main components of forecasting are input variables
(past and present data), forecasting estimation methods (analysis of trends), and output
variables (future predictions), as shown in Figure 2.3. Forecasting involves making
predictions for the future based on the analysis of trends of past and present data. The
researched methods can be roughly categorized into stand-alone and hybrid based on the
variety of trend analysis methodologies applied. While hybrid methods combine multiple
stand-alone techniques, standalone methods only use one technique for trend analysis. The
majority of the time, hybridization is done to improve prediction accuracy and rationalize
or provide dependable forecast output.

Past and : | Future
Erid 1 Analysis of trends | predictions
i
Pt Method 1
o i
- u
! Method 2 o
Input e | | Output
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Lo -
1 1 1
I 1 1
i i
Do Method n |
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Figure 2.3: Basic Estimate or Forecasting Model Architecture [53].

Both top-down and bottom-up models have been developed to predict energy demand
in the context of electric energy use. As an illustration, a few research [54]—[56] use
historical aggregate energy data to regress energy consumption as a function of top-
level macroeconomic variables including population, GDP, stock index, import, and
export. From a representative sample of individual homes, the bottom-up methodologies
extrapolate the expected energy consumption of regional levels [46]. The bottom-up
methodology employs both statistical and engineering models. To regress the link between
end-users and energy consumption, statistical models use a variety of statistical approaches,
including regression [57], [58] ARIMA [59], [60] Kalman filtering [61], [62] and neural
networks [63]—-[65]. The assumption of historical data availability is a flaw in statistical
techniques that affects both long-term and short-term models and frequently restricts
the use of these models. Engineering models, on the other hand, use data regarding
building attributes and end uses to calculate energy usage. Engineering models are the
only practical way to properly build energy consumption estimates for a sector without
previous energy consumption data. Although the data is harder to collect due to privacy
concerns, they are more suited for assessing the effects of scheduling household appliances.
The user’s comfort hasn’t been taken into sufficient consideration in these works because
they exclusively concentrate on energy minimization. User comfort can be used to gauge
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the possibility of residential DR. By fully utilizing it, homeowners can create a VESS that
successfully balances fluctuating peaks and real-time demands.
In this section, an overview of various statistical methods of forecasting is presented.

Autoregression (AR)

According to its name, autoregression is the linear combination of previous values from a
time series ("regression”), presuming a relationship between the present and earlier values
("auto”). Lag, also known as order p, refers to the number of prior values employed in
the regression. A weighted average of the past values, lag, additional white noise and a
constant c¢ are used to estimate the future value:

P
e=c+ sz’yt—i + € (2.1)
i=1
Here w are the weights of each lag. The Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) plot can be used to calculate the number of lags / and
order p. If, then we can define order p.

¢ The ACF is sinusoidal or exponentially decaying

o At lag p, the PACF experiences a sizable rise, but not after

Also, can test several orders P and then choose a model based on a criterion, such
as Akaike’s Information Criterion (AIC), if the ACF and PACF plots are not helpful.
The AIC aids us in locating models that can deliver decent outcomes with the fewest
parameters, even though it does not always find the optimum model. Therefore, we
essentially test various ordering before selecting the model with the lowest AIC. However,
keep in mind that a low AIC does not imply that the model produces accurate forecasts.
Time series without a trend or seasonality should be utilized with autoregression, which
limits the order of the autoregression. High order (number of lags) suggests the need for
extra parameters, such as the addition of a Moving Average (MA).

It’s important to remember that the amount of time we can predict a target depends
on the sequence we chose. For instance, if we select an order P of 1, we are only able to
forecast the subsequent time step. We could anticipate four-time steps into the future if
we used an order p of 4, The model feeds back the anticipated values and utilizes them to
predict the following time step if we wish to predict more than one time-step [66].

Moving Average (MA)

The historical forecast errors are combined linearly to create the moving average. The
strategy thus depends on the relationship between the target value and earlier white noise
error terms. It is important to distinguish this method from moving average smoothing:

q
Je=c+ Z Oi€t—i + € (2.2)

i=1
In the present scenario, the weights of each lag are represented by , where represent
for white noise (i.e., the difference between the forecasted and actual value). When using
the Autocorrelation Function (ACF) plot, it is possible to determine the order ¢ of the
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moving average, which represents the width of the moving average window. We can
determine the order if

o A significant spike in the ACF occurs at lag q, but none follows, and

¢ The PACF is sinusoidal or exponentially decaying.

The Moving Average (MA) method is usually appropriate for stationary time series
[66].

Autoregressive Moving Average (ARMA)

The Moving Average of order ¢ is combined with the Autoregression of order p to create
the Autoregressive Moving Average. As a result, the method illustrates how a time series
interacts with itself and random noise at earlier time steps:

P q
Je=c+ Z DilYi—i + Z Oice_i + € (2.3)
i=1 i=1

Here, the moving average is represented by the second summation term whereas the
autoregressive component is represented by the first summation term.

The ACF and PACF graphs may not be very helpful if both the p and q components
are present, making it difficult to choose the appropriate ordering for them in our ARMA
model. They might, however, suggest the sequence and direct us to a reasonable beginning
point for our hyperparameter adjustment. Alternatively, we can test several combinations
of p and q and then select the orders depending on a predetermined criterion, such as the
AIC.

The ARMA method is similar to Autoregression (AR) and Moving Average (MA) in
that it only performs well for stationary time series [66].

Autoregressive Integrated Moving Average (ARIMA)

The autoregressive integrated moving average (ARIMA) models are a versatile class of
models used for predicting time series data. These models employ a differencing technique
to transform a temporal series into a stationary series, assuming that the statistical
characteristics of a random variable remain consistent over time. The ARIMA equation
for a time series utilizes the delays of the dependent variable and the prediction error as
predictors, providing a linear equation framework that serves as a general approach for
time series forecasting.

One specific variant of ARIMA models is the ARIMA with eXternal input (ARIMAX)
model, proposed by Newsham and Birt (2010) for forecasting energy demand in an office
building [67]. In their study, they incorporated occupancy data as an external predictor
to improve the accuracy of the model.

Chujai et al. (2013) introduced ARIMA and autoregressive moving average (ARMA)
models for analyzing time series data on home electric usage [68]. They found that the
ARIMA model was the most effective for determining the optimal forecasting period.

For short-term load forecasting, Mohamed et al. (2011) employed a double seasonal
ARIMA model [69]. Their study focused on accurately predicting energy load within
shorter time intervals.
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As is common knowledge, ARIMA is mostly employed to forecast future values using
data from historical time series. Its primary use is for short-term forecasting with at least
3840 previous data points and a manageable number of outliers. It is advised to look for
alternative approaches if you don’t have at least 38 data points.

By adding a differencing order d to the ARMA model, we may directly incorporate
the differencing rather than performing it in a separate phase, giving us an Autoregressive
Integrated Moving Average model. When the order d is 1, the timeseries is only differed
once; when the order d is 2, the timeseries is differed twice.

o Plotting our timeseries to compare how the differencing order affects the results.
o utilizing statistical tests like the Augmented Dickey-Fuller (ADF) test
« alternatively examine the ACF and PACF charts

o employ autoSarima.

The ARIMA is computationally more expensive than the approaches mentioned above,
even though it typically yields superior results. Additionally, we must adjust more
hyperparameters [70].

Seasonal Autoregressive Integrated Moving Average (SARIMA)

There are numerous ways that can be used for time series modeling. The seasonal auto-
regressive integrated moving average (SARIMA) model is one of the most well-liked and
often utilized seasonal time series forecasting models. The SARIMA model is widely
utilized because of its statistical characteristics and the well-known Box [71] that was
used to build the model. Numerous fields have successfully embraced the SARIMA model
[72]-[74]. Although the SARIMA model’s tremendous success in academic research and
industry applications over the past three decades, its presumption of a linear model form
causes it to have a significant drawback. Simply said, the time series values are believed
to have a linear correlation structure, hence the SARIMA model is unable to detect any
nonlinear patterns. The use of linear models to solve difficult problems in the actual world
is not always appropriate [75].

Furthermore, we can add a seasonal component to the ARIMA model if our time series
contains one. The resulting Seasonal Autoregressive Integrated Moving Average executes
an extra Autoregression, Integration, and Moving Average for the seasonal component
while also back shifting one of its seasonal components. As a result, the

(p,d,q)

and (P, D,Q)m components, where P, D,and@ are the parameters of the seasonsal
component m, can be used to indicate the SARIMA. Finding the proper parameters for
the model takes much longer than for an ARIMA model, even though it provides for a
better forecast [70].

2.1.4 Machine Learning (ML) Based Methods

The recent excitement in the field of AI/ML is largely a result of the development of
computing technologies. Energy forecasting has adopted several cutting-edge AI/ML
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approaches, including deep learning [76], [77] reinforcement learning [78] and transfer
learning [79]. The physical properties of the processes involved can be useful for modeling
and variable selection in machine learning-based methods for load, wind, solar, and price
forecasting, it should be noted. Exogenous data use does not just mean incorporating
raw meteorological data into machine learning algorithms. Instead, one ought to delve
further and look at the inherent qualities, prominent characteristics, and constraints of
these facts.

The standard machine learning (ML) algorithm implementation sequence is depicted in
Figure 2.4 The training and testing phases are the two primary stages of an ML algorithm.
The ML model is first created during the training phase using a training data-set based on
the selected ML classifier models. Artificial neural networks (ANN), support supervised
learning machines (SVM), and random forests (RF'), the three most well-known ML models,
are used. The classifier model’s overall performance is guaranteed by the performance
validation of the training phase, which is also utilized to prevent the overfitting problem.
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Figure 2.4: Pseudocode for a typical machine learning implementation, encompassing
training and testing phases, as well as a final evaluation stage [80].

Compute classification accuracy and F-score Compute classification confusion matrix
The trained classifier is then used in the testing stage to verify the trained model using
the testing dataset as input. This testing dataset is made up of the additional partitioned
data from the initial dataset and shares all the same properties as the training dataset. 70
percent and 30 percent, respectively, of the original dataset are divided for training and
testing. Both phases are evaluated using performance measures. Any overfitting issues
can be identified by comparing the results of both the training and testing phases. It
happens when training performance is significantly better than testing performance.

According to the pseudocode of [81], Algorithm 2.1.4 displays the implemented
program ML classifier. Cross-validation was carried out k times. 10-time cross-validation
was applied in this investigation. Another ten times were spent repeating this cycle.
Random data rearranging and the total average performance were used. This check
assisted in preventing any overfitting problems. This was accomplished by presenting
the difference between the training and testing results to the random forest’s loss function.
The root-mean-square error (RMSE) function in Equation (1) is used to evaluate the
conventional technique, which is a regression-type problem. The proposed classifier uses
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Algorithm 1 Machine Learning Implementation
Input: Dataset D, number of repeats n, number of folds k
Output: Classification accuracy, F-score, and confusion matrix
Preprocessing: Shuffle-split D into training, validation, and testing sets, and import
necessary libraries
fori=1tondo
Shuffle-split D into training, validation, and testing sets
for j =1to k do
Train an ML algorithm on the training set
FEvaluate the performance of the trained model on the validation set
end for
Test the trained model on the testing set
Evaluate the performance of the tested model
end for
Compute the average classification accuracy and F'-score over n repeats
Compute the confusion matrix over n repeats
Output: Classification accuracy, F-score, and confusion matrix [80].

the following metrics: F-score, classification accuracy, and confusion matrix. Equation
(2)’s F-score accuracy metrics consider the importance of the ML model’s precision and
recall performance. While recall gauges sensitivity, precision gauges its positive predictive
value. The accuracy of classification in (3) was also measured. This measure represents
the proportion of correctly categorized levels over all levels taken.

=1 "
2 % Precision * Recall (2.4)

Precision * Recall
No. of correctly classified energy levels

F score =

A pu—
ceuracy Total number of classified energy levels

The classification performance of the model may also be seen using a confusion matrix
with a normalized range of 0 to 1. A platform that offers Python libraries and assistance is
called scikit learn in [82]. These three classifiers—ANN, SVM, and RF—were implemented
using ML models.

Linear Regression Method (LR)

Linear regression (LR) was employed to model the relationship between a scalar dependent
variable and one or more independent variables. In this study, the multivariate linear
regression (MLR) technique, a variant of LR, was utilized. MLR models have been
commonly applied in the prediction of energy loads for buildings due to their simplicity.
For this research, the linear time series regression model was employed with ordinary
least squares (OLS), which requires defining the data’s characteristics and the error term.
Various important asymptotic and finite sample results were reported and compared with
the statistical properties of time series regression. LR models have been widely used to
forecast energy consumption in buildings due to their ease of use. Catalina et al. (2008)
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developed regression models to predict monthly heating demand in single-family residential
buildings in temperate climates, offering architects and design engineers a valuable tool to
explore energy-efficient solutions during the early stages of their projects [83]. To assess the
energy performance of buildings in their initial design phases, Hygh et al. (2012) proposed
a novel modeling technique [84] based on multivariate regression. The main advantage of
the LR method lies in its simplicity, as it requires no hyperparameter tuning. However,
it is important to note that the LR approach is limited to solving linear problems and
cannot handle nonlinear ones [85].

Support Vector Machines (SVM)

Many machine learning applications, including pattern recognition, object classification,
and time series prediction, particularly the forecasting of energy usage, use support vector
machines. SVM was used by Dong et al. (2005) to forecast the energy use of buildings
in a tropical area [86]. To create and test models, they collected average monthly utility
bills. Their forecasts exhibited percentage errors of less than 4 percent and coefficients
of variance of less than 3 percent. For estimating short-term load, Bozic et al. (2010)
suggested a Least Squares Support Vector Machine (LSSVM) [87]. To forecast the hourly
and daily load, they used a week’s worth of hourly data. For daily projections, the findings
showed mean absolute percentage error rates ranging from 0.93 percent to 3.04 percent.

Hierarchical Forecasting

Due to temporal or geographical groupings, time series with aggregation constraints
are frequently encountered in energy forecasting. As an illustration, the total load at
a distribution feeder should be equal to the load at the corresponding transmission,
with fewer losses, which are normally a tiny percentage. Hierarchical forecasting, which
combines base estimates produced independently at several levels of a hierarchy, is crucial
in these cases. Comparing hierarchical forecasting to traditional forecasting, there are two
clear benefits. First off, a hierarchy’s ultimate forecasts are cohesive. To put it another way,
the total of lower-level projections is like or equal to the total of the corresponding higher-
level forecast. Second, compared to base estimates, reconciled forecasts are frequently, if
not always, more accurate. Hyndman’s research team has largely contributed to recent
advancements in hierarchical forecasting [88]. Numerous publications have addressed
computation issues that prevent the widespread use of hierarchical forecasting [89],[90].

Ensemble forecasting and Forecast Combination

As shown in Figure 2.5, ensemble models for wind and solar prediction are employed in [91]
two classes, each of which has two additional sub-classes. The competitive ensemble model
(CEM) makes predictions by using a variety of factors and models. The final projections
are calculated from the weighted average of the network’s various estimates. The CEM
divides the prediction process into several sections, using a variety of classifications at
different stages to produce the final accurate and trustworthy forecasts.
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Figure 2.5: Division of ensemble models for solar and wind energy prediction. [91]

One of the most effective forecasting techniques is the combination of forecasts.
In 1969[92] the benefits of forecast combination were formally articulated. Afterward,
many empirical studies were released to demonstrate both the beneficial and detrimental
consequences of integrating forecasts [93].

Probabilistic Forecasting
Artificial Neuron Network (ANN)

Artificial neural network (ANN) is a machine learning approach that models the human
brain and consists of several artificial neurons. Their ability to learn by example makes
them very flexible and powerful. Artificial neural networks (ANN) have been the focus of
ML-based models for building energy systems, both in terms of energy demand prediction
[94] and energy system design optimization [95]. The ANNs are a subset of Al that
act as superb modeling tools for analysis, just like its rivals, to ascertain the non-linear
network function assessment, pattern detection, data sorting, simulation, grouping, and
optimization. Black-box optimization techniques are a type of setup used to eliminate
non-linear tendencies. The hidden layer, input layer, biases and weights, output layer,
summation node, and activation function are the main components of the design. It is
split into two phases: learning and generalization (recalling) (training). Biases and weights
are used in the network training to create the desired output by reducing the network
function’s error. The networks in the model networks were trained using repetitions, which
are the final cycle of each dataset, and were used to improve the systems using machine
learning. The three types of modelling learning techniques are unsupervised, evolutionary,
and reinforcement supervised. For a specific application, these supervised models add the
variance between the desired output and the actual network output outcomes. Modelling
methods based on artificial neurons, or a network of connected units or nodes, are known
as artificial neural networks. ANNs models have been widely utilized to forecast residential
and commercial energy usage [96]. The efficiency of ANNs in forecasting was examined by
Adya and Collopy in 1998 [97]. Using ANNs, Ekici and Aksoy (2009) suggested a model to
forecast building energy needs and their correlation with orientation, insulation thickness,
and transparency ratio [98]. According to the outcomes of their simulation, ANN offers
satisfactory results with a variance of 3.43percent and an accuracy prediction rate of 94.8—
98.5 percent. To anticipate net electricity usage in Turkey, Hamzacebi (2007) created
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models [99]. The outcomes showed that the ANN technique outperforms the Model for
Analysis of Energy Demand (MAED) technique in terms of performance.

Hybrid Models In hybrid models, optimization strategies are used with machine
learning approaches. They are more effective than single models because they frequently
combine the benefits and make up for the drawbacks of the many methodologies used,
increasing the predicting accuracy. Hybrid models can be built with one or more phases
that correspond to various objectives for solving problems.

Energy Forecasting Competitions

One of the earliest notable energy forecasting competitions took place in the early 1990s,
specifically focused on day-ahead load forecasting and hosted by Puget Sound Power and
Light Company. This competition involved ten participants who employed various models,
including neural network models, state space models, and multiple regression models. Out
of the 14 competing models, a multiple regression model emerged as the top performer
[100]. Subsequently, one of the contestants further refined their algorithms, leading to the
development of a commercial load forecasting system [101], [102].

In 2001, the EUNITE network organized another competition, challenging participants
to predict daily load for a month. The winning submission prominently featured the use of
support vector machine (SVM), marking its initial successful application in load forecasting
[18]. Notably, the primary author of the publication detailing this competition is also the
creator of various SVM libraries, including the well-known MATLAB library LIBSVM.

Hong and his collaborators organized a series of Global Energy Forecasting
Competitions, also known as GEFCom2012, GEFCom2014, and GEFCom2017 [103], [104],
[105] with the goal of fostering reproducible research and recognizing effective methods.
The IEEE Power and Energy Society provided financial support for the competitions. More
and more energy organizations have recently begun to hold forecasting competitions for a
variety of reasons, including choosing software providers and hiring intern students. While
some of these challenges were designed to mirror the production environment’s forecasting
process, others weren’t. The results of these contests, including the information and
strategies used to win, have not been widely reported in the academic literature. We
should also be aware that some tournaments may not be able to identify winners if they
are not set up thoroughly. Competitions for forecasting include several restrictions, as
explained in [106].

Energy Forecasting Challenges

Net-load forecasting was a specific example given for the fusion of energy forecasting
issues back when the forecast was made in 2015. There weren’t many studies on net-
load forecasting and behind-the-meter solar estimating at the time. Five years later, the
literature contains several credible investigations on this subject [107], [108] Deep coupling
exists between load and locational marginal pricing (LMP). A study on how to create
probabilistic LMP projections while taking load uncertainties into account may be found
in [109]. In the upcoming years, experts anticipate that the variety of energy forecasting
difficulties will only increase.
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2.2 Review of Clustering Methods

In the literature, numerous clustering schemes have been suggested for time series
analysis. These schemes employ various distance measurements either directly on the
raw time series data (raw-based methods) or by transforming the sequences into feature
vectors to be used with traditional algorithms (feature- and model-based methods) [110],
[111]. Feature- and model-based techniques often rely on domain-specific considerations,
requiring adjustments to the features or models for different application domains. Among
the raw-based methods, the top three clustering approaches are agglomerative hierarchical,
spectral, and partitional clustering techniques.

2.2.1 Raw Based Clustering

This method of clustering includes techniques that use unprocessed data in the time or
frequency domain. Although the length (or number of time points) of the two-time series
under comparison is typically the same, this is not always the case.

Komelj and Batagelj [112] improved the relocation clustering method initially designed
for static data to accommodate multivariate time-changing data. Their approach involved
two key steps. Firstly, they devised a specialized model using the notion of compound
interest to calculate time-dependent linear weights. Secondly, they introduced a general
model employing a cross-sectional approach, which incorporated the time dimension to
measure dissimilarity between trajectories, as necessitated by the procedure. However, it
is important to note that the proposed cross-sectional method only considers time series
of equal lengths and overlocks any correlations that may emerge among the variables over
time. The clustering with the smallest generalized Ward criterion function, out of all those
that could exist, is the one that forms the desired number of clusters. With the aim of
forming a definite number of combat states, Liao et al [113] used a variety of clustering
techniques, such as K-means, fuzzy c-means, and genetic clustering, to multivariate battle
simulation time series data of unequal length. The simple linear interpolation approach
was used to uniformly sample the unbalanced original time series data. Data on daily
power use were agglomeratively hierarchically clustered by van Wijk and van Selow [114]
using the root mean square distance. With the use of calendar-based visualization, the
distribution of the clusters throughout the course of the week and the year was investigated
as well.

Agglomerative hierarchical

A hierarchical structure is not imposed by partitional clustering algorithms, which
simultaneously discover all clusters as a partition of the data. Algorithms for hierarchical
clustering identify nested groupings. These are examples of hierarchical clustering
algorithms:

1. Agglomerative mode. This is a bottom-up way of clustering. I begin with a single
data point as its own cluster and merge the most comparable pairs of clusters one
at a time until we reach a final cluster that contains all the data points.

2. Divisive mode - This is a top-down clustering technique in which all the data points
are first grouped into a single cluster, which is then recursively subdivided into
smaller clusters.
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Agglomerative hierarchical clustering methods frequently perform poorly because they
are unable to adapt after making a merger decision. The same is true for techniques
used in divisive hierarchical clustering. Time series of different lengths can be grouped
together using hierarchical clustering. If an appropriate distance measure, such as dynamic
temporal warping, is used to determine the distance/similarity, it is also applicable to series
of uneven length [115].

Hierarchical clustering groups data objects (e.g., time series) into clusters to form a tree-
like structure. There are two types: agglomerative and divisive. Agglomerative clustering,
the more popular method, starts with each object in its own cluster and progressively
merges them until all objects are in one cluster or specific termination conditions are met.
The single linkage algorithm merges clusters based on the smallest distance, while Ward’s
minimal variance procedure combines clusters with the least impact on the sum-of-squares
variance. It tests all possible mergers, selecting the one with the lowest value. [110]

The hierarchical clustering method CHAMELEON [116] is another one. Only when
there is a high level of interconnection and closeness (proximity) between two clusters
relative to the internal inter-connectivity of the clusters and the closeness of the items
inside the clusters are the clusters combined.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a clustering algorithm, It simply needs one input parameter and helps the
user choose a suitable value for it. It unearths clusters of any shape. Last but not least,
DBSCAN is effective even for big spatial databases. When using density-based algorithms,
like DBSCAN [117] the fundamental concept is to keep forming a cluster as long as
the density (number of objects or data points) in the "neighborhood” is higher than a
predetermined limit. OPTICS [118] computes an augmented cluster ordering for automatic
and interactive cluster analysis rather than constructing a clustering explicitly. The
ordering overcomes the challenge of choosing parameter values by containing information
that is equal to density-based clustering and collected from a wide variety of parameter
choices.

Partitional Clustering

Using a set of k non-overlapping groups, partition clustering methods divide the n objects.
The number of clusters we wish to split is indicated by the input parameter K. By
minimizing the objective function, partitioned clustering algorithms divide the data into k
clusters in an iterative manner. When using the partitioning procedure, finding two points
referred to as seed points to establish two clusters is necessary. The distance between a
point and both seed points must be determined in order to allocate it to the closest seed
point in order to determine the nearest seed point to all the points. The selection of the
seed point is crucial in this process. We could arrive at the incorrect solution if we choose
the wrong seed points. The best way to selecting good seed points is to select just two
of the available options rather than more. The benefit of this is that null clusters won't
exist. When selecting seed points, it’s important to keep in mind that they should also
be suitably far enough from one another in order for the right clusters to form. In this
category, algorithms like k-mean, k-modes, PAM, CLARA, CLARANS, fuzzy-C-means,
DBSCAN, etc. are researched. K-means is an algorithm that divides your items into K
number of groups depending on qualities or traits. The number K is a positive integer. By
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reducing the sum of squares of distances between the data and the relevant cluster centroid,
the data are grouped [119]. The k-means objective function is provided as follows:

B = 37 (% — (25)

E is the sum of square errors for all objects in the data, Xi is a point in a cluster C, and
mi is the mean of cluster ki in the expression above. K-means seeks to reduce the total
squared error across all K clusters. According to the technique, initial group centroids
should be placed at k places in space that reflect the items that need to be clustered. The
next step is to assign each object to the cluster center that is closest to it. then determine
the mean of each cluster to get new centroids. Until there is no change in centroids, repeat
these steps. Even though K-means was first presented more than 50 years ago, it is still
one of the most popular clustering methods [120].

As with k means, the fuzzy-C means (FCM) algorithm also uses centroid-based
clustering, but it requires that the number of clusters, k, be predetermined. Instead
of allocating each object to a distinct cluster, each object is given a membership number
between 0 and 1 to indicate whether it belongs to that cluster. Data mining, pattern
recognition, classification, and picture segmentation are applications of FCM. PAM,
CLARA, and CLARANS are some other partitioning algorithms that make use of the
idea of selecting the seed points from the available points [121].

Hierarchical Clustering

Using agglomerative or divisive methods, hierarchical clustering [122] creates a hierarchy
of clusters for cluster analysis. The bottom-up, agglomerative method treats each item
as a cluster before progressively merging the clusters. In contrast, the divisive method
starts with a single cluster that contains all objects and then breaks that cluster to find
clusters that only contain one object (top-down). Due to their inability to alter the
clusters after a cluster has been split in two using the divisive approach or after merging
using the agglomerative method, hierarchical algorithms are generally considered to be
of low quality. To address this problem, hierarchical clustering methods are frequently
paired with another algorithm to form a hybrid clustering solution. The performance of
hierarchical clustering is also improved by several extended efforts, such as Chameleon
[116], CURE [123], and BIRCH [124], where the merging approach is improved or created
clusters are improved.

A pair-wise distance matrix of time-series is used to create a layered hierarchy of related
groups, which is analogous to hierarchical clustering of time-series [125]. Hierarchical
clustering is a method that can be utilized for time-series clustering to a large extent
because it has excellent visualization capabilities [126], [L14]. For instance, Oates, Schmill,
and Cohen [127] build clusters of an autonomous agent’s experiences via agglomerative
clustering. With a dataset that includes 150 trials of actual Pioneer data in a range of
scenarios, they use Dynamic Time Warping (DTW) as a dissimilarity metric. Hirano and
Tsumoto apply average linkage agglomerative clustering, a form of hierarchical technique
for time-series clustering, in a different study [128]. Due to its strength in visualization,
hierarchical is also frequently used in research to assess dimensionality reduction or
distance metric. For instance, the authors of a study [129] provided a Symbolic Aggregate
Approximation (SAX) representation and utilized hierarchical clustering to assess their
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results. They demonstrate that hierarchical clustering produces results like Euclidean
distance when utilizing SAX.

Another well-known and notable characteristic of this technique is that unlike for
the most part algorithms, hierarchical clustering does not require the number of clusters
as an initial parameter. It is also a time-series clustering strength because it is typically
challenging to specify the number of clusters in real-world problems. Furthermore, despite
a variety of techniques, hierarchical clustering can group time series of different lengths.
If an appropriate elastic distance measure, such as Dynamic Time Warping (DTW) [130],
[131] or Longest Common Subsequence (LCSS) [132], [133] is employed to compute the
dissimilarity /similarity of time-series, it is possible to cluster unequal time-series using
this technique. The ability of this algorithm to tolerate unequal time-series is a result
of the fact that prototypes are not required during its procedure. However, due to
its quadratic computational complexity and limited scalability, hierarchical clustering is
essentially unable to deal with huge time-series [134]. As a result, it is constrained to tiny
data-sets.

K-Mean Clustering

One of the most well-known, widely used, and straightforward clustering methods is the
k-means algorithm [135], [136] which is frequently used to address clustering issues. The
given data set is categorized in this technique using a user-defined number of clusters, k.
To define k centroids, one for each cluster, is the main notion. This is how the objective
function J is presented.
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cj The k-means algorithm’s flow diagram is shown in Figure 2.6
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Figure 2.6: k mean algorithms [137].

The Linde-Buzo-Gray (LBG) algorithm, a k-means-like algorithm, was proposed for
vector quantization (VQ) [138] for signal reduction. Prototype vectors are referred to
as code words in this context, and together they make up a code book. VQ seeks to
minimize information loss while representing the data with fewer pieces. Although one
of the most widely used clustering techniques, k-means clustering has some limitations.
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These limitations include: The initial divisions and the number of clusters, k, cannot be
determined efficiently or universally, thus k-means is susceptible to noise and outliers. An
object is nevertheless driven into a cluster even though it is far from the cluster centroid,
(However, despite its effectiveness, many labelled data points are needed to produce the
ideal cluster centroid values.) changing the shape of the clusters [139).

Algorithm 2 K-means Algorithm
1: Initialization: Choose k distinct points randomly as the initial centroids.
2: Assign each object to the closest centroid.
3: Recalculate the positions of the centroids based on the objects assigned to them.
4: Repeat Steps 2 and 3 until the centroids no longer move. This results in a grouping
of the objects, allowing calculation of the minimized metric [137].

K-Medoid-Clustering

A traditional method of clustering that divides a set of n objects into k different groups
is known as K-medoid. This k: the necessary number of clusters must be supplied by
the user. Based on the idea of minimizing the total difference between each item and
its matching reference point, this method operates. The algorithm selects k objects at
random from dataset D to serve as initial medoids, or representative objects. A medoid
is the point in the supplied data set that is the most centrally placed and has an average
dissimilarity to all the other points in the cluster that is minimum. The new medoid
is then chosen for each medoid following each assignment of a data object to a certain
cluster [140]. Moreover, the fundamental drawback of the k-Means approach is that it is
susceptible to outliers because an object with an unusually big value has the potential to
skew the distribution of data. The most centrally situated object in a cluster, known as a
medoid, can be used as a reference point instead of the mean value of the objects in the
cluster. So long as the dissimilarities between each object and its matching reference point
are kept to a minimum, the partitioning approach can still be applied. The k-Medoids
approach is founded on this idea. In order to find k clusters in a set of n objects, k-Medoids
clustering algorithms first choose a representative object (the medoids) at random for each
cluster. The remaining items are grouped together with the medoid that they are most
related to. Instead of using the mean value of the items in each cluster, the k-Medoids
technique employs representative objects as reference points. The number of clusters to
be divided across a set of n items, represented by the input parameter k, is provided to
the algorithm [140].

2.2.2 Feature- and Model-Based Methods

Feature- and model-based techniques are frequently domain-specific, requiring their
adaptation for applications across a range of domains. Machine learning uses feature-
based and model-based techniques to draw out relevant information from data and
provide predictions or classifications. When employing feature-based techniques, relevant
features are chosen from the input data. These features can be extracted or pre-defined
using methods like reduction of dimensionality or feature engineering. In model-based
techniques, a suitable machine learning algorithm is chosen, and the input data are trained
on it to create a predictive model that can make precise predictions on new data.
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Feature Based Methods

When clustering based on raw data, especially for data taken at high sample rates, working
in a high-dimensional space is necessary. Working directly with excessively noisy raw data
is not something that is also advisable. To deal with these issues, several feature-based
clustering techniques have been put forth. Despite the fact that the majority of feature
extraction techniques are general in nature, the characteristics that are often extracted
depend on the application. In other words, a set of qualities that are effective for one
application could not be applicable to another. Some studies even go so far as to add
another feature selection stage to the feature extraction process to further cut down on
the amount of feature dimensions.

Modified k-Means (MKM)

Wilpon and Rabiner [141] modified the standard k-means clustering algorithm for the
recognition of isolated words with the goals of developing an automatic clustering
algorithm that could be implemented by any user with a minimal understanding of
clustering procedures and to provide the template sets as accurate as those created by
other clustering algorithms. The adjustments deal with issues like how to find cluster
centers, how to divide clusters to make more clusters, and how to make the final cluster
representations. Each pattern used to replicate a single spoken word has an inherent time
(for example, it lasts for a certain number of frames), and each frame contains a vector of
coefficients for linear predictive coding (LPC). Based on the Itakura distance for gauging
the separation between two frames, a symmetric distance measure was developed to gauge
the separation between two spoken word patterns. At that time, it was demonstrated that
the suggested modified k-means (MKM) clustering technique performed better than the
renowned unsupervised without averaging (UWA) clustering approach.

By employing two hierarchical clustering techniques, the Ward’s minimal variance
algorithm and the single linkage algorithm, to normalized spectra (normalized by the
amplitude of the highest peak), Shaw and King [142] indirectly grouped time series. The
original time series were used to create the spectra, with the means set to zero. When the
filtered spectra from principal component analysis (PCA) were grouped, it was discovered
that the 14 most important eigenvectors may produce equivalent outcomes. It made
advantage of the Euclidean distance.

Model Based Methods

Model-based approaches aim to best match the data to the presumptive model for each of
the clusters. Model-based methods can be categorized into two main categories: statistical
approach and neural network approach. Furthermore, AutoClass [143] which employs
Bayesian statistical analysis to determine the number of clusters, serves as an illustration
of a statistical technique. Competitive learning, including ART [144] and self-organizing
feature maps [145] are two well-known neural network approach to clustering techniques.

In model-based clustering, optimization tries to match the provided data to a certain
mathematical model. It is predicated on the idea that various underlying probability
distributions combine to produce data. It contains:

An effective iterative refining approach is the EM (Expectation Maximization)
algorithm. It is a development of k-means. Each item is given a weight (probabilistic
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distribution) before being assigned to a cluster, and the new means are computed using
weighted measures.

COBWERB: Fisher created it in 1987. It is a well-liked and straightforward approach to
progressive conceptual learning. It produces a classification tree-like hierarchical grouping.
Each node offers a probabilistic description of the topic to which it refers. It automatically
modifies the partition’s class count. The user is not required to supply this input parameter.
CLASSIT: It is a COBWEB extension for incremental continuous data clustering. It also
experiences the same issues as COBWEB [146] Auto Class: It was created in 1996 by
Cheeseman and Stutz. To determine how many clusters there are, Bayesian statistical
analysis is used. It enjoys huge acclaim in business.

SOM (Soft-Organizing feature Map) Kohonen Self-Organizing Feature Maps (KSOMs),
also known as SOMs or topological ordered maps. It converts every point from a high-
dimensional source space into a 2 to 3-dimensional destination space while preserving as
much of the topology (i.e., distance and proximity relationships) as possible. The cluster
centers typically lie in a low-dimensional manifold in the feature space, like k-means. The
clustering process in this case involves many units vying for the present object. The
winning unit has a weight vector that is most similar to the current object. By having
their weights changed, the winner and its neighbours gain knowledge. It is thought that
SOMs resemble the processing that can take place in the brain. It can be used to visualize
high-dimensional data in a two- or three-dimensional space [115].

Furthermore, Model-based clustering techniques use some mathematical models to
improve and assess the appropriateness of the supplied data. Model-based clustering
algorithms discover feature information for each cluster, where each cluster represents a
concept or class, in a manner similar to conventional clustering.

2.3 Data Analysis Tools

To extract valuable insights and knowledge, one must first examine and understand the
raw data. Data must be organized, cleaned, transformed, and visualized using statistical
and computational methods in order to find patterns, trends, and linkages that can guide
decision-making. The purpose of data analysis is to make sense of massive amounts of
data, find patterns and connections, and derive inferences from the data.

There are many tools for data analysis, particularly in Python, a well-liked
programming language with a number of potent tools and modules. Several of the
frequently used Python data analysis tools which listed below.

2.3.1 Numpy

A powerful library for numerical computation that offers capabilities for working with
arrays, matrices, and other types of data structures required in data analysis. It is far
more effective than conventional Python code because it was created in C and operates on
whole arrays and matrices. NumPy is widely used in the back-ends of the other libraries on
this website. A thorough user’s manual for the library, as well as tutorials and examples,
are available in the official NumPy documentation. A vibrant community for NumPy also
offers assistance and learning tools [147].
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2.3.2 Pandas

Data cleaning, filtering, grouping, and merging utilities are provided by a library for
data manipulation and analysis while working with tabular data. It features robust
plotting capabilities utilizing Matplotlib as the default plotting backend and employs
effective libraries like Numpy as its compute and data representation backend. Detailed
explanations and examples of how to use the library for data manipulation and analysis
can be found in the Pandas documentation, which is another great source [148].

2.3.3 Matplotlib

A library for data visualization that offers resources for making line charts, scatter plots,
bar charts, and histograms, among other types of plots. It can run interactively in
applications like Jupyter notebooks, although it is ideally suited for producing static plots
and figures of publication quality [149].

2.3.4 Seaborn

A high-level interface is provided by the Python data visualization library Seaborn, which
is based on Matplotlib and allows for the creation of intricate and aesthetically beautiful
statistical charts. It features pre-built color schemes and themes, supports popular
statistical plot types, connects with Pandas for simple data processing, and offers tools
for displaying intricate correlations between numerous variables. Overall, Seaborn is an
effective tool for sharing data ideas with others and conducting exploratory data analysis
[150].

2.3.5 Scikit-learn

An open-source Python machine learning package called Scikit-learn offers a variety of
supervised and unsupervised learning algorithms, tools for data preprocessing and feature
engineering, and tools for model selection and evaluation. Scikit-learn is built on top
of NumPy, SciPy, and Matplotlib and is intended to work in tandem with other Python
scientific computing tools. Scikit-learn is a well-liked option for data scientists and machine
learning professionals working on classification, regression, and clustering tasks because of
its intuitive API and comprehensive documentation [151].

2.3.6 Ts-Learn

A set of tools for time series analysis and classification are provided by the Python package
TSLearn. Preprocessing, feature extraction, model creation, and visualization are just
a few of the functions it offers. It comes with built-in time series data preprocessing
tools like scaling, imputation, and normalization. Other feature extraction techniques
include Singular Spectrum Analysis (SSA), Symbolic Aggregate Approximation (SAX),
and Piecewise Aggregate Approximation (PAA). The package also includes model-building
methods including K-Nearest Neighbors, Random Forests, Support Vector Machines
(SVM), and Hidden Markov Models (HMM) [152].
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2.3.7 Statsmodels

A variety of tools are available for analyzing data, estimating statistical models, and
running statistical tests in the Statsmodels Python package for statistical modeling and
econometric analysis. In addition to a variety of statistical models like linear regression,
generalized linear models, time series analysis, and survival analysis, Statsmodels also
contains tools for hypothesis testing, statistical inference, and model selection. It is built
on top of NumPy and Pandas. Statsmodels is a useful tool for data analysis and modeling
due to its interoperability with other well-liked scientific computing libraries in Python
and its extensive statistical capabilities [153].

2.3.8 Data Science and ML Frameworks

Frameworks for data science and machine learning (ML) offer a complete set of libraries
and modules for developing, testing and deploying data-driven models. Popular choices
for these frameworks include TensorFlow, PyTorch, Scikit-learn, and Keras, among others.
They make it possible for data scientists and machine learning (ML) specialists to work
with huge datasets, test out different model architectures, and carry out effective model
training and deployment. These frameworks frequently include a selection of pre-built
models as well as tools for feature engineering and data preprocessing. In addition, they
frequently integrate with other well-known Python libraries like NumPy and Pandas.
Overall, these frameworks are crucial for creating dependable and scalable data-driven
solutions for a range of applications and industries [154].

2.3.9 XGBoost

Machine learning models can be trained quickly and scaled up with the help of the
distributed gradient boosting library known as XGBoost. It is an ensemble learning
technique that combines the results of several ineffective models to yield a more accurate
result. The machine learning algorithm known as XGBoost, which stands for "Extreme
Gradient Boosting,” has grown to be one of the most well-liked and widely used due to
its capacity for handling large datasets and its ability to deliver cutting-edge results in a
variety of machine learning tasks, including classification and regression. One of XGBoost’s
important strengths is its effective handling of missing values, which enables it to handle
actual data with missing values without the need for a lot of pre-processing. Additionally,
XGBoost includes built-in parallel processing capabilities, enabling quick model training
on big datasets [155].

Due to its capability to manage enormous quantities of time-series data with high-
dimensional features, which are frequently present in energy systems, XGBoost is a
widely used technique for energy forecasting. Based on historical data and additional
pertinent variables like weather, time of day, and seasonality, this algorithm can be
used to forecast energy demand, production, and consumption trends. Overall, XGBoost
has demonstrated that it can greatly improve the precision and effectiveness of energy
management and planning in a variety of applications. In our thesis work, we utilized
XGBoost, a powerful machine learning algorithm, for the purpose of energy forecasting
for various appliances. XGBoost is known for its exceptional performance in regression. By
implementing XGBoost, we were able to generate highly accurate energy usage predictions
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for the appliances. These findings have significant implications for promoting energy
efficiency and sustainability.

2.4 Summary

In view of their capacity to predict energy consumption patterns in smart homes with
accuracy, and machine learning techniques for energy forecasting have drawn more and
more interest in recent years. In a literature review, a review of these techniques and their
usefulness in energy forecasting has been provided. For energy forecasting, clustering
techniques have also been investigated, notably time-series clustering, which can increase
the predictability of appliances. In general, the potential for increasing energy efficiency
in smart homes is very high when using machine learning and clustering techniques for
energy forecasting. Overall, the information presents a thorough analysis of the numerous
approaches utilized in energy forecasting and clustering, highlighting the advantages and
disadvantages of each strategy.
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Chapter 3

Time-Series Clustering for Smart
Homes Appliances Prediction

Since our time series data contains time samples, we must cluster them using certain time
series data-appropriate techniques. Specialized time series data clustering methods are
used to look for patterns and commonalities in the data. Static time series clustering
is a technique for putting time series data into groups depending on how similar their
patterns or traits are and the clusters are independent of any parameter like time-of-the-
day. Utilizing algorithms, the clustering process finds groups or clusters of time series that
display comparable behaviours. The clusters can then be studied to acquire insights into
the underlying patterns or trends in the data. The choice of clustering method will rely
on the specific features of the data. Static time series clustering can be used to discover
subgroups of data that need various kinds of analysis or action in a variety of industries,
we utilize it for the predictions of the smart home appliance. This can also be utilized in
future for the scheduling of appliances.

3.1 Static Time-Series Clustering

This section presents the time-series k-shape clustering algorithm and its incorporation
in Static Time-Series Clustering in measures other than Euclidean Distance (ED). In
[111] a novel time-series clustering scheme named k-shape is developed considering the
shortcoming of existing raw-based schemes. The k-shape time-series clustering algorithm
creates homogeneous and well-separated clusters. Therefore, we incorporate this algorithm
in this proposed static time-series clustering of different appliances in smart homes. More
details about the k-shape algorithm and its incorporation in the proposed intelligent data
processing scheme are provided in the next section after the discussion of basic definitions
which are required to understand time series data. These are presented as follows.

Time-Series Invariances

Sequences are frequently warped in some way depending on the domain, and to compare
sequences effectively, distance metrics must meet several invariances. The common
time-series distortions and their invariances are discussed in [156] for a more thorough
evaluation.

35



CHAPTER 3. TIME-SERIES CLUSTERING FOR SMART HOMES APPLIANCES
PREDICTION

Shift Invariance

Two time-series sequences can be treated as comparable if their phases are different (global
alignment) or if some parts of the sequences are aligned but not others (local alignment).
Heartbeats, for instance, may not be in phase depending on when the measurements are
taken (global alignment), and different people’s handwriting may require local alignment
based on the size of the letters and the spacing between sentences.

Time Series Distance Measure

The two cutting-edge methods for comparing time series first z -normalize the sequences
before using a distance metric to assess how similar they are and perhaps capture more
invariances. The basic ED [157] is the distance metric that is most frequently employed.
ED compares two time series & = (21, ..., 2Tm) and ¥ = (y1, ..., Ym) of length m as follows:

(3.1)

DTW, also known as Dynamic Time Warping, is a widely used distance measurement
method [131]. It can be seen as an extension of Euclidean Distance (ED) that allows for
local (non-linear) alignment. In DTW, a matrix M of size m-by-m is created, where each
element represents the ED between two points from vectors Z and g. A warping path,
denoted as W = wq,ws,...,w, with k > m, is a contiguous set of matrix elements that
defines a mapping between ¥ and 3. Various constraints are applied to determine this
mapping [158]:

Dynamic programming can be used to compute this path on matrix M for the
evaluation of the following recurrence:

’Y(iy.j) - ED(’:]) + minV(i - 17.7 - 1)7’7@ - 17.7)7’7@7.7 - 1) (33)

Constraining the warping path to only travel over a portion of matrix M’s cells is a
popular procedure. The warping window refers to the band’s width and the subset matrix’s
shape, respectively. The Sakoe-Chiba band is the most popular band for constrained
Dynamic Time Warping (cDTW) [131].

Figure 3.1 (b) shows the computation of the warping path (dark cells) for ¢cDTW
confined by the Sakoe-Chiba band with width 5 cells (light cells). Figure 3.1 (a) displays
the difference in alignments of two sequences supplied by ED and DTW distance measures.
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Figure 3.1: Similarity using: (a) ED (top) and DTW (bottom), (b) Sakoe-Chiba band
with the warping path computed under cDTW [111].

Wang et al. [159] has conducted a thorough evaluation of 9 distance metrics and their
variations. They discovered that ED is the most effective measure with a respectable level
of accuracy and that, in contrast to other measures, DTW and ¢cDTW work remarkably
well. DTW greatly saves computing time and performs marginally better than DTW. To
increase the speed of cDTW even further, some optimizations have been suggested [160].
A few time-series clustering techniques that make use of these distance measurements are
discussed in the next section.

Time-Series Clustering Algorithms

Various techniques have been developed in the literature to cluster time series. Typically,
a new algorithm modifies existing algorithms in two ways. Firstly, it may change the
default distance measures to those that are better suited for comparing time series, known
as raw-based methods. Secondly, it may transform the sequences into data that can
be directly used in traditional algorithms, known as feature- and model-based methods
[110]. Raw-based methods can readily benefit from the extensive literature on distance
measurements 3.1. This literature has shown that certain measures, such as DTW, provide
invariances that are generic and suitable for almost every domain [161]. On the other hand,
feature- and model-based techniques are typically specific to particular domains, requiring
modifications of features or models for applications in different domains. In this study,
we opt for a raw-based methodology due to the limitations of feature- and model-based
techniques.

Agglomerative hierarchical, spectral, and partitional clustering are the three main raw-
based techniques [156]. The single, average, and complete linkage versions are the "linkage”
criteria for hierarchical clustering that are most frequently used [122]. The success of
spectral clustering [162] in comparison to other data types [163] has lately caused it to
gain attention [156]. K-means [136] and k-medoids [122] are the most illustrative examples
of partitional algorithms. We classify partitional methods as shape-based strategies when
they employ distance measures that provide invariances to scaling, translating, and shifting.
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K-medoids is typically preferred among these methods [110] because, unlike K-means, it
computes the dissimilarity matrix of all data sequences and uses real sequences as cluster
centroids. K-means, on the other hand, requires the computation of artificial sequences as
centroids, which makes it difficult to easily adapt distance measures other than ED. Only
the k-means class of algorithms, though, can scale linearly with the size of the datasets
out of all these techniques. DTW [164] and a distance metric that allows for pairwise
scaling and shifting of time-series sequences [165] have both recently been added to the
list of k-means’ compatible modifications. Both of these changes rely on fresh approaches
to computing cluster centroids, which we are going to explore next.

3.2 K-shape Clustering

Our goal is to utilize a time-series clustering method that is accurate, scalable, and
invariant to scaling and shifting. In this scenario, k-Shape, a clustering approach that can
maintain the forms of time series and is based on (i) a distance measure and (ii) a centroid
computation technique is utilised herein. The distance measurement, which is based on
the cross-correlation measure (Section 3.2.1), is covered first. It determines the centroids
of time-series clusters based on this distance measure (Section. 3.2.4). k-Shape clustering
technique creates homogeneous and well-separated clusters via an iterative refinement
process that scales linearly in the number of sequences (Section. 3.2.4).

3.2.1 Time-Series Shape Similarity

As already stated, distance measurements that adequately account for amplitude and
phase distortions are necessary for capturing shape-based similarity. Unfortunately, the
most effective distance measures that provide invariances to these distortions, like DTW,
discussed in 3.1 are computationally expensive. In order to get around this efficiency
restriction, a normalized cross-correlation metric is used.

Cross-correlation is a commonly utilized similarity metric in signal and image
processing for time-lagged signals. However, recent comprehensive evaluations of state-
of-the-art distance measures for comparing time-series have largely overlooked cross-
correlation. Cross-correlation involves comparing individual points between signals, and
it was not considered in previous experimental assessments of various distance measures.
Several studies have examined different distance measures, such as 9 measures and their
variations in [161] [159], as well as 48 measures in [166], but they did not include cross-
correlation. The difficulty in finding suitable normalizations for both the data and the
cross-correlation measure contributes to its limited use, as different areas and applications
have diverse requirements. Additionally, slow implementations of cross-correlation can
give the false impression of it being as slow as Dynamic Time Warping (DTW). These
challenges associated with cross-correlation have hindered its widespread adoption as
a time-series distance metric. In the following sections, we will address these issues
and propose an efficient and domain-independent normalization approach that enables
the development of a shape-based distance measure for quick and accurate time series
comparison.
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3.2.2 Cross-Correlation Measure

A statistical tool for assessing the similarity of two sequences is cross-correlation ¥ —
(1,...,2m) and ¥ = (y1,...,Ym) even when they are not perfectly positioned. Cross-
correlation maintains y as constant and slides x across y to compute their inner product
for each shift s of x in order to achieve shift-invariance. In k-shape algorithm, a normalized
version of the cross-correlation measure is utilised as a distance measure to compare and
cluster the time-series. In cross-correlation process, the time-series ¥ is shifted over time to
check the correlation with other time-series /. In this way, it computes all the possibilities
of similarity between two time-series at different time-lags. A shift of sequence  is denoted
as follows.

Is|

—
2 (0,...,0,21,22, ..., Tm—s), >0 (3.4)
(=) (ml—Sw"ymm—lymmyOy"'70)7 §<0 .
~—

||

With all the possible shiftsz,) are considered, with s € [—m,m], cross-correlation
sequence C'CyW(Z,Y) = (c1, ..., Cy), is computed with length 2m — 1 which is given by.

COW(E, 7) = Rum(@, 7), we{1,2,...,2m —1} (3.5)

where Ry_m (2, ) is computed, in turn, as:

Z}i—lszw@ ‘Y, k=20

R_k(y7$), k<0

The point w at which C'Cy, (2, ¢/ is maximized is what we are trying to determine. The
best shift of Z with respect to ¢ is then Z((s)), where s = w — m, based on this value
of w. CCu(Z, 1 may need to be normalized differently depending on the domain or the
application. Time series may also need to be normalized to eliminate intrinsic distortions
in addition to the cross-correlation normalization.

3.2.3 Shape-Based Distance (SBD)

Based on the previous discussion, we use the coefficient normalization, which produces
values between -1 and 1, regardless of the data normalization, to create a shape-based
distance metric. The cross-correlation sequence is normalized by dividing it by the
geometric mean of the autocorrelations of the separate sequences. The objective is
to obtain a position w where C'C(Z,y is maximum. The cross-correlation sequence is
normalized by dividing it by the geometric mean of the autocorrelations of the separate
sequences.

SBD(#,y) = 1 — max < CCul@,h) ) (3.7)
w \ /Ro(Z,2) - Ro(¥/, 7))

The Shape Extraction Algorithm 3is a technique for grouping time series data
according to how similar their shapes are. Each time series in a dataset is first aligned to a
reference sequence, after which the Shape-Based Distance metric is used to calculate their
pairwise distances. Finally, spectral clustering is used to group the time series that have
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similar forms into clusters. Before applying a matrix transformation to this dot product
matrix to produce a matrix with the eigenvectors corresponding to the greatest eigenvalue,
the technique first creates a matrix of dot products between the aligned time series. A
centroid vector, which represents the average shape of all the time series in a cluster, is the
last result of the process. This approach can be used for a variety of purposes, including
predicting energy usage in smart homes, where clustering can increase forecasting models’
precision.

Algorithm 3 Shape Eatraction Algorithm: C' = SE(X, R)

1: Input: X is an n X m matrix with z-normalized time series. R is a 1 x m vector with
the reference sequence against which time series of X are aligned.
Initialize: X’ « | ]
fori=1,2,..,n do

[dist,2'] < SBD(R, X(4)) using Eq. 3.7
X'+ [ X5 2]
end for
Compute: S« X'T. X’
Compute: Q) « I — %.O
Compute: M « QT.5.Q
Compute: C' + Fig(M,1)
: Output: C' is a 1 x m vector with the centroid of clusters. [167]

—_ =
= o

3.2.4 Shape-Based Time-Series Clustering

The novel time-series clustering technique, k-Shape, is now described. To effectively create
time series clusters, k-Shape uses the shape extraction technique from Algorithm 3 and
the SBD distance measure from Section 3.2.1.

A partitional clustering technique called k-Shape is based on an iterative refinement
process similar to that of k-means. K-Shape minimizes the sum of squared distances
through this iterative process and is able to (i) construct homogeneous and well-separated
clusters and (ii) scale linearly with the number of time series. Under the constraints of
scaling, translation, and shift invariances, our algorithm computes centroids effectively
while efficiently comparing sequences. The only scalable technique that considerably
outperforms k-means is k-Shape, which is a nontrivial instantiation of k-means. In contrast
to earlier attempts in the literature, [164], [165] k-Shape’s distance measure and centroid
computation method make this the case.

Two steps are carried out by k-Shape in each iteration: Each time series is compared
to all computed centroids in the assignment step, and then each time series is assigned
to the cluster with the closest centroid; this updates the cluster memberships; and in
the refinement step, the cluster centroids are updated to reflect the changes in cluster
memberships from the assignment step. Until there is no change in cluster membership or
the allotted number of iterations has been reached, the algorithm repeats these two steps.
K-Shape uses the distance metric from (Section. 3.2.1) for the assignment stage and the
centroid computation method from (Section. 3.2.4) for the refining step.

The time series data and the number of clusters we wish to construct are the two inputs
that k-Shape expects. The algorithm first groups the time series into clusters at random.
The shape extraction approach is then used to calculate each cluster centroid (see Section.
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3.2.4). After computing the centroids, SBD distance metric is used to further narrow the
memberships of the clusters. This process is repeated until the algorithm converges or
hits the maximum number of iterations, which is typically a low number, like 100. The
algorithm’s output includes the centroids for each cluster as well as the assignment of
sequences to clusters.

The k-Shape algorithm utilizes two inputs: a time series set X and the desired number
of clusters, denoted as k. Initially, the time series in X are randomly clustered. The
algorithm computes the centroid of each cluster using Algorithm 3 (lines 5-10). This
process continues until the algorithm converges or reaches a maximum number of iterations,
typically set to a low value such as 100.

Algorithm 4 K-Shape Algorithm: [I Dcyster, C| = K — shape(X, k)
1: Input: X is an n x m matrix containing n time series of length m that are initially
z-normalized. k is the required number of clusters.

2: iter <0

3 IDICluster A [ ]

4: while I Degyster # 1Dy ster 80d iter < 100 do
5: IDICluster — I Dcpuster

6:  //Refinementstep

7: for j «+ 1 to K do

8: X' [ ]

9: for i < 1 ton do

10: if IDCluster(i) =7 then

11 X'« [ X' X (4)]

12: C(j) + SE(X',C(j)) using Algorithm 1.
13:  //Assignment — step

14: for i < 1 ton do

15: diStpin — 0O

16: for j «+ 1 to K do

17: [dist,x'] <+ SBD(C(j), X (1))

18: if dist < dist,ni, then

19: di8tymin < dist

20: IDCluster(i) — .7

21: iter « iter + 1
22: Output: I Doyyster is an n-by-1 vector of clusters) [167].

The algorithm’s output includes the centroids for each cluster and the assignment
of sequences to clusters. Algorithm 4 provides a comprehensive outline of the k-shape
clustering process. It takes as input all the time-series data and the desired number of
clusters, and it returns the number of clustered time-series of appliances that are used in
the forecasting process. The next section presents the evaluation of clustering performance
and its application in forecasting schemes.

3.3 Dynamic Time-Series Clustering

The use of dynamic clustering techniques in this thesis work is driven by the need to
investigate their potential in improving smart homes’ analysis and prediction of energy
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consumption patterns. This method aims to identify patterns and trends that may not
be apparent using static clustering methods. Dynamic clustering is significant because
it provides an opportunity to develop more accurate energy forecasting models, identify
opportunities for energy savings, and ultimately contribute to the development of more
sustainable smart homes. Furthermore, this thesis work offers valuable insights into how
clustering techniques can be used to analyze time-dependent data on energy consumption
patterns in smart homes, providing practical solutions that can benefit both homeowners
and the environment.

3.3.1 A Potential Solution for Dynamic Clustering

In this thesis work, to shift the cluster members dynamic clustering is employed
by segmenting a dataset of 43 smart home appliances into day and night periods
and applying separate clustering algorithms for each period. Given the variations in
energy consumption patterns between day and night, this approach provides a more
comprehensive understanding of the data and offers greater potential for optimizing energy
usage in smart homes. The day period was defined from 6:00 in the morning until
21:00, while the night period was from 21:00 to 5:59. By running separate clustering
algorithms for the day and night periods, this thesis work aims to gain deeper insights
into the dynamics of energy consumption during different times of the day. Additionally,
the methodology employed in this thesis work is also applied to forecasting appliance
consumption patterns to identify any impacts on accuracy. The use of separate algorithms
for day and night periods is expected to improve the accuracy of appliance consumption
forecasting in this thesis work.

The majority of clustering methods have traditionally focused on static data. But as
the frequency of data collection has increased, more focus has been placed on grouping
time-varying observations. Despite the fact that there have been many advancements in
this topic over the past few decades, Liao. [110] and Aghabozorgi et al. [169] provide a
useful overview of the most significant research.

In dynamic time series clustering, cluster membership is subject to change over time,
allowing for the identification of evolving patterns and trends in the data. As energy
consumption patterns can change over time, dynamic clustering enables the identification
of new clusters that reflect these changes in the data. This approach is particularly relevant
in the context of smart homes, where energy consumption patterns may vary according to
daily use, seasonal factors, and user behaviour. Dynamic clustering can provide a more
accurate depiction of energy consumption patterns and provide feasible options for smart
home energy use optimization by considering these aspects.

Illustration of a time series stretched across two clusters in which two of the time series,
shown by the orange colors, switch across clusters midway through the time window. As
shown in the Figure 3.2. The presented cluster analysis, indicated by the orange and
black clusters, remained consistent for the first 35 hours. However, beyond this period,
the consumption patterns of the orange cluster began to align more closely with those of
the cluster situated below it. This finding demonstrates the dynamic nature of cluster
membership, as changes in consumption patterns over time can result in shifts in cluster
membership. Such insights highlight the importance of employing dynamic clustering
methods in the analysis of time-dependent data, particularly in the context of smart homes
where energy consumption patterns are subject to evolving user behavior and external
factors.
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Figure 3.2: Time-series spread across two clusters, where two series change cluster
membership halfway through the time window, are shown in orange [168].

Clearly, one could contend that this behavior represents a third, new cluster. To
capture these changes, however, one would need a large number of clusters with very few
members in each of them, which in a way goes against the fundamental goal of clustering
as more observational units begin exhibiting this behaviour at various time-points.

3.3.2 Dynamic Time-series Clustering using K-Shape

The "Dynamic Time-series Clustering Algorithm” is a process that clusters time-series data

of appliances based on the time interval for dynamic clusters and the required number of

clusters. The process of dynamic time-series clustering is enumerated in Algorithm 5.
The Algorithm 5 follows the below steps:

1. The time-series data of appliances X is separated based on the time interval for
dynamic clusters 7, resulting in two datasets X7 and X T

2. Initialize an empty cluster ID list 1 Dgluster and [ Dguster for each time interval
dataset, and concatenate them into a single list I Dcyyster-

3. For each time interval in 7, perform K-Shape clustering on the corresponding dataset
using Algorithm 4 to obtain cluster labels IDX and centroids C.

4. Assign the cluster labels obtained in step 3 to the corresponding time interval in
IDCluster-
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Algorithm 5 Dynamic Time-series Clustering Algorithm
Input: Time-series data of appliances X, Time Interval for Dynamic Clusters T, k is the
required number of clusters.
1: Separating Time-series data based on Interval, T:

X — [XT XT’}

2. Initialize:
IDgluster - [ ’]7] IDgluster/ - [ ]
3 IDCZUSt@T - [IDCluster IDgluster]
4: for j « 1 to Length(T) do
5. [IDX,C| = K — Shape(X(j),k) using Algorithm 4.
6: IDCluster(j) =1DX
7. IDX =] |
8: end for
9: return Clusters for different time intervals, [Dcpyster = [I Dgluster I Dg;uster]

5. Return the clustering information for different time intervals, IDcyyster, which
contains the cluster labels for each time interval dataset.

The algorithm uses the K-Shape clustering algorithm to perform the clustering, which
is a method for clustering time-series data based on shape similarity described earlier.

3.4 Summary

This chapter presented the k-shape time-series clustering algorithm and its incorporation in
static time-series clustering. The k-shape algorithm is a novel time-series clustering scheme
that addresses the shortcomings of existing raw-based schemes by creating homogeneous
and well-separated clusters. The algorithm is accurate, scalable, and invariant to scaling
and shifting.

To investigate the potential of dynamic clustering techniques in improving smart
home analysis and prediction of energy consumption patterns, this thesis work employs
a segmentation approach of clustering algorithms for each day and night periods. By
running separate clustering algorithms for different time intervals (for example, the day
and night periods), the thesis aims to gain deeper insights into the dynamics of energy
consumption during different times of the day and provide practical solutions that can
benefit both homeowners and the environment. Additionally, the methodology is applied
to forecasting appliance consumption patterns to identify any impacts on accuracy. The
use of algorithms for datasets on different periods is expected to improve the accuracy of
appliance consumption forecasting which is evaluated and discussed in the next chapter.
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Chapter 4

Implementation and Performance
Evaluation

This section outlines the performance and evaluation of the proposed intelligent data
processing approach within the framework of forecasting appliance consumption and
presents a thorough discussion of the resulting outcomes across various dimensions.

4.1 Dataset Details

For the performance evaluation, we considered a public dataset [170]. This dataset
considers a house with 43 smart plugs installed on several circuits. Along with different
varieties of appliances, this dataset has a record of generation from solar panels installed
at the house and the total consumption and generation records. Thus, this dataset
contains all the possible values from a household. Different circuit names and their IDs are
summarized in Table. 4.1. The house is a two-story building with 1700 square feet of area.
The dataset is recorded in 2016, and it has hourly data samples of energy consumption
(in KW)from all the smart plugs installed on appliances and circuits.

The dataset utilized for this study was compiled from January 1 at 00:00:00 to
December 31 at 23:59:00 in 2016. The dataset consists of 499,635 instances, each of
which represents a distinct data point, and 44 attributes that describe various aspects of
each instance. At regular intervals of 0 days and 01:00:00, the data was gathered. The
data was cleaned, normalized, and divided into training and testing sets before to analysis
in order to assure its accuracy and dependability. In this thesis work, the variables that
were utilized to train and evaluate machine learning models were carefully chosen based
on their applicability to the research topics.

4.1.1 Deployment Scenario

The 1700 square feet, two-story Home is occupied by three people full-time. Eight rooms
in all, including the basement, make up the house. The living room, bedroom, kitchen,
and bathroom are located on the main level, and the second story houses two bedrooms
and a bathroom. The residence is devoid of central air conditioning (A/C). Three window
A/C units are used by the residents in the summer: one in the living room and one in
each of the bedrooms upstairs. The heating system in the house burns natural gas. Other
significant equipment includes a heat recovery ventilation (HRV) system, an electric dryer
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Appliance ID | Appliance Name Appliance ID | Appliance Name

Al Generation A2 House Panel

A3 Guest House Kitchen A4 Basement

A5 Fresh Air Ventilation A6 Studies

A7 Master Bedroom A8 Dining Room Receptacles
A9 Guest House Bathroom Al0 Guest House Bedroom
All Workshop Receptacle Bath Heater | A12 Second Floor Bathroom
Al3 Guest House Kitchen Al4 Second Floor Bathroom
Al5 Ground Source Heat Pumps Al6 Photovoltaics

Al17 Well Pump Al8 Range

Al19 Panel Receptacles A20 Washing Machine

A21 Refrigerator A22 Microwave

A23 Dryer A24 Net House Power Usage
A25 Garage Receptacles A26 Garage Receptacles
A27 Shed Receptacles A28 Shed Lights

A29 Panel Receptacles A30 Garage PV

A3l Guest House Living Room A32 Heat Circulator Pumps
A33 Domestic Hot Water Reserve A34 Kitchen Island

A35 Radiant Heat Reserve Tank A36 Basement Receptacles
A37 Kitchen Lighting A38 Guest House Dining Room Receptacles
A39 Porch A40 Veranda Lighting

A4l Hall Lighting A42 Outside Lighting

A43 Lights

Table 4.1: Different Circuit Names and their IDs in a House.

and washing machine, a dishwasher, a refrigerator, and a freezer. The house includes 35
wall switches, most of which control the lighting in the rooms and closets. Other switches
also operate each bathroom’s garbage disposal and exhaust fan. There are 26 separate
circuits in the electrical panel.

Power data is gathered from the entire home and each circuit every second using sensors
installed in the main panel. Installed devices broadcast on-off dim events for the switches
through the powerline to a gateway server in place of 30 of the home’s 35 wall switches.
The remaining five switches could not be replaced for a variety of reasons, including the
absence of neutral wires in the switch boxes for three basement switches, the garbage
disposal’s power exceeding the capacity of the programmable switches, and the lack of an
exact replacement for one kitchen switch. Because the switches in the basement are on
dedicated circuits, the garbage disposal is on a circuit with only the dishwasher (which
has a very different power profile), and the kitchen switch is on a circuit for kitchen lights
that has just one other instrumented load, the power usage can be determined from the
uninstrumented switches using the circuit data. Our data collection is further aided by
the electrical wiring of the house. Each circuit is assigned to one of three things: outlets
(which are monitored at plug meters), lighting (which is monitored at wall switches), or
specific major appliances (which are monitored at the main panel). Having the lighting
on separate rate circuits makes it straightforward to correlate lighting events with power
usage using the circuit data because our wall switches report on off-dim events rather than
raw power.

4.2 Exploratory Data Analysis(EDA)

Exploratory Data Analysis (EDA) of 43 appliances’ energy consumption trends in a
home is crucial for understanding energy use patterns and guiding energy forecasting.
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For accurate energy forecasting, it is essential to carefully examine historical data on
energy usage and take into account external variables. To make these techniques more
effective, data processing and analysis tools like numpy, scipy, and Data Science and
ML Frameworks are frequently used in conjunction with them. Energy forecasting can
optimize energy use, advance energy efficiency, and ultimately support sustainable energy
practices by making use of such tools and methodologies. EDA can assist spot anomalies
and outliers, detect relationships between appliance usage and environmental conditions,
and optimizing energy use. For managing energy systems, advancing energy efficiency,
and achieving sustainable energy use, EDA and energy forecasting are crucial tools.

4.2.1 Data Preprocessing

Effective data preprocessing is crucial for ensuring the accuracy and reliability of analysis
and modelling results, especially when working with real-world data that may contain
noise, redundancies, and discontinuities. The initial step typically involves noise reduction
to minimize the impact of random variations that are not related to the underlying
phenomenon being studied.

Outliers are another critical factor to consider when training machine learning
algorithms, as incorrect or anomalous values can have a detrimental impact on the trained
model’s performance. Such outliers are often the result of measurement errors or system
anomalies and should generally be removed from the data before proceeding to further
analysis or modelling. However, in the datset used, we could not find outliers.

Missing values can also pose a significant challenge in data preprocessing. It is
important to identify and address missing data, which can be either continuous or
discontinuous. For instance, if the data is missing continuously in large chunks, it can be
filled with data from the same time period in another year. If there is a missing segment,
nearby values can be used to fill in the gap. There were some missing values which were
filled using appropriate methods.

Overall, a rigorous data preprocessing approach is essential for generating reliable and
accurate analysis and modelling results. We caefully addressed noise reduction, outliers,
and missing data in the EDA process.

4.2.2 Re-sampling of Dataset

The dataset contains the values at every second, we resampled the data into hourly data
which is a common demand of several industrial players in the market. Total of 8784 data
samples of hourly data from 43 appliances is prepared.

An hourly time-series data of 43 appliances is presented in Figure 4.1, 4.2 and 4.3. Tt
must be noted from these figures that there is good variations in patterns of data between
several appliances.
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Figure 4.1: Hourly time-series data of appliances (A1-A14) is presented
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Hourly time-series data of appliances (A15-A28) is presented
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Figure 4.3: Hourly time-series data of appliances (A29-A43) is presented

The correlation matrix of all the appliances is also shown in the figure. 4.4.

4.3 Performance Evaluation of Static Time-Series

Clustering

We performed clustering Algorithm 4 on the dataset described in the Section 4.1, and
for this, we choose 5 clusters as a thumb rule (clusters are less than equal to the square
root of the total number of time series).The obtained result of correlation matrix before
performing the clustering algorithm is show in Figure 4.4 and result obtained after the
clustering process are shown in Figure. 4.5. It shows 5 different clusters and their
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Figure 4.4: Correlation Matrix of 43 Appliances

associated appliance as cluster members. It is important to note that the clustered time-
series within a specific cluster demonstrate comparable patterns. Moreover, the yellow
color in the correlation matrix represents the high correlation between the appliances.
The relationship between various appliances within each cluster was also analyzed in
addition to Static clustering of the time-series data using an Algorithm 4 with a group of
5 clusters. Figure. 4.6 displays the outcomes of this analysis. The k-shape clustered time
series display a strong correlation coefficient, which suggests that the appliances within
each cluster have similar usage patterns. This is demonstrated in the image. This is a
desirable result because it shows that the clustering algorithm was effective in assembling
appliances with comparable usage patterns. This implies that the clustering algorithm
was successful in grouping similar appliances based on their energy consumption patterns.

4.3.1 Forecasting Analysis using Static Clustering Information

This section discusses the use of static time-series clustering for forecasting, which involves
applying a clustering Algorithm 4 to a dataset and obtaining 5 clusters. The study
revealed that time-series shapes within a given cluster exhibit similar patterns, and a
strong correlation was observed between the various appliances in a cluster, particularly
for time series with a k-shape cluster. Leveraging these commonalities within clusters
provides an efficient and practical approach to forecasting the future values of appliances.
To demonstrate this, we performed energy consumption forecasting on various
appliances for different days, selecting one appliance from each of the 5 clusters for analysis.
In the following section, the impact of forecasting appliances will be discussed in detail.
After obtaining the clustering information obtained from k-shape algorithm, we
performed forecasting of the energy consumption of a device with ID - A37 which is a
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Figure 4.5: Correlation Matrix of 43 Appliances in the order of their Clusters

member of cluster-3. For forecasting we considered the extreme gradient boosting scheme
[155]. In the experiment settings, we trained the forecasting model with yearly data and
tested it on the last 10 days of the year. For computing the next-day energy consumption
of A37, we fed an extreme gradient boosting scheme with historical data of A37, its time-
lagged values and the time-series of other cluster members of cluster-3 which are A3, A11,
A12, A39, A42, A43. Further, to evaluate the impact of clustering, we also fed the extreme
gradient boosting scheme with only historical data of A37 and its time-lagged values, not
the time series from other appliances. The performance of the extreme gradient boosting
scheme without using the clustering information is shown in Figure 4.7, which shows the
result before performing Clustering. The performance of the forecasting method utilizing
clustering information is also presented in Figure 4.8 in terms of Root Mean Squared Error
(RMSE) 4.1, Mean Squared Error (MSE) 4.2 and Sum of Squared Error (SSE) 4.3 which
is defined as

N ; o 2
RMSE — \/Zizl ( Predlctejs i — Actual ;) oo (41)
LN
— : . )2
MSE = N Zl (Predicted; — Actual;) (4.2)
N
SSE = Z (Predicted; — Actual;)? (4.3)
i=1

The values of these different metrics are given in Table 4.2. It must be noted that all
these metrics are improved very significantly. This improved forecasting would result in
better flexibility models at the smart homes level.
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Figure 4.6: Static Time-series clustering of 43 appliances into 5 clusters. (a) Appliances
group of Cluster 1. (b) Appliances group of Cluster 2. (c) Appliances group of Cluster
3. (d) Appliances group of Cluster 4. (e) Appliances group of cluster 5. using k-shape
algorithm. The shape of different time series in a cluster shows strong similarity.
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Figure 4.7: The Performance of (a) 10 days Forecasting of Appliance A37 without utilizing
clustering. (b) shows a closer look.
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Figure 4.8: Performance evaluation of (a) proposed Static clustering for forecasting next-
day consumption of Appliance A37. (b) Shows a closer look. The forecasting experiments
evaluate the performance for the last 10 days (240 hours).

Table 4.2: Forecasting Performance for Appliance A37 (For last 10 days) using Static

Clustering
Metric | Without Clustering | With Static Clustering
RMSE | 1.662 1.646
MSFE 2.765 2.711
SSE 663.70 650.83
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Closer look: forcasting A24 without Time-Independent Clustering
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Figure 4.9: The Performance of (a) 20 days Forecasting of Appliance A24 without utilizing
clustering. (b) shows a closer look.

Table 4.3: Forecasting Performance for Appliance A24 (For last 20 days) using Static
Clustering

Metric | Without Clustering | With Static Clustering
RMSE | 0.6368 0.6251

MSFE 0.4055 0.3907

SSE 194.663 187.568

To compute the next 20-day energy consumption of A24, we used an extreme gradient
boosting (XGBoost) algorithm with historical data of A24, its time-lagged values, and
the time-series of other cluster members from Cluster 4 (A2, A4, A13, A14, A17, A21,
A25, A27, A29, A31, A38, and A40). Additionally, we evaluated the impact of clustering
by running the XGBoost algorithm with only the historical data of A24 and its time-
lagged values, without the time-series data from other appliances. Figure 4.9 shows the
performance of the XGBoost algorithm without using clustering information, while the
performance of the clustering-based forecasting method is presented in Figure 4.10 using
Root Mean Squared Error (RMSE) 4.1, Mean Squared Error (MSE) 4.2, and Sum of
Squared Error (SSE) 4.3 as evaluation metrics.

Table 4.3 presents the values of the different evaluation metrics for the forecasting
methods. It is important to note that all of these metrics show significant improvement.
The enhanced forecasting accuracy can lead to the development of more flexible models
at the smart home level.

To predict the next-day energy consumption of A7, for the next 30 days, we utilized
an extreme gradient boosting (XGBoost) algorithm with historical data of A7, its time-
lagged values, and the time-series of other appliances in Cluster 5 (A9, A15, A18, A26,
A32, A35 and A36. Furthermore, we evaluated the impact of clustering by running the
XGBoost algorithm only with the historical data of A7 and its time-lagged values, without
incorporating time-series data from other appliances. Figure 4.11 depicts the performance
of the XGBoost algorithm without clustering information, while Figure 4.12 presents the
performance of the clustering-based forecasting method, using Root Mean Squared Error
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Figure 4.10: Performance evaluation of (a) proposed Static clustering for forecasting next-
day consumption of Appliance A24. (b) Shows a closer look. The forecasting experiments
evaluate the performance for the last 20 days (480 hours).

Table 4.4: Forecasting Performance for Appliance A7 (For last 30 days) using Static
Clustering

Metric | Without Clustering | With Static Clustering
RMSE | 1.3287 1.3154

MSFE 1.7654 1.7305

SSE 1694.837 1245.980

(RMSE) 4.1, Mean Squared Error (MSE) 4.2, and Sum of Squared Error (SSE) 4.3 as

evaluation metrics.

"Table 4.4 summarizes the performance of the forecasting methods with different
evaluation metrics. It is noteworthy that all of the evaluation metrics show a significant
improvement. This improved forecasting accuracy can lead to the development of more
flexible models at the smart home level.”

For forecasting the energy consumption of appliance Al16 for the next 35 days, we
applied an extreme gradient boosting (XGBoost) algorithm. We utilized historical data of
A16, its time-lagged values, and the time-series of other appliances belonging to Cluster
2, which include Al and A34. To evaluate the impact of clustering, we also ran the
XGBoost algorithm using only the historical data of A16 and its time-lagged values,
without considering the time-series data from other appliances. The performance of
the XGBoost algorithm without using clustering information is illustrated in Figure 4.13,
while the performance of the clustering-based forecasting method is presented in Figure
4.14, using Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Sum of
Squared Error (SSE) as evaluation metrics. The improved accuracy of energy consumption
forecasting can facilitate the development of more flexible models at the smart home level.

Table 4.6 presents a summary of the forecasting methods’ performance of Appliance
A16 using various evaluation metrics.

To forecast the energy consumption of appliance A6 for the next 50 days, we employed
an extreme gradient boosting (XGBoost) algorithm that utilized both the historical data
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Figure 4.12: Performance evaluation of (a) proposed Static clustering for forecasting next-
day consumption of Appliance A7. (b) Shows a closer look. The forecasting experiments
evaluate the performance for the last 30 days (720 hours).
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Figure 4.14: Performance evaluation of (a) proposed Static clustering for forecasting next-
day consumption of Appliance A16. (b) Shows a closer look. The forecasting experiments
evaluate the performance for the last 35 days (840 hours).

Table 4.5: Forecasting Performance for Appliance A16 (For last 35 days) using Static
Clustering

Metric | Without Clustering | With Static Clustering
RMSE | 1.2765 1.2688

MSFE 1.6296 1.6100

SSE 1368.914 1352.426

of A6 and its time-lagged values, as well as the time-series of other appliances in Cluster 1,
which include A5, A8, A10, A19, A20, A22, A23, A28, A30, A33, and A41. To assess the
impact of clustering on the forecasting performance, we also ran the XGBoost algorithm
using solely the historical data of A6 and its time-lagged values, without considering
the time-series data of other appliances. The forecasting performance of the XGBoost
algorithm without using clustering information is illustrated in Figure 4.15, while the
forecasting performance of the clustering-based method is presented in Figure 4.16, with
Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Sum of Squared
Error (SSE) used as evaluation metrics

Table 4.6 summarizes the performance of different forecasting methods for Appliance
A16 based on various evaluation metrics.

Thus, time-dependent (dynamic), and online clustering of time-series data would
be interesting and crucial to explore. Also, the accuracy can be improved further by
eliminating outliers in time series.

Table 4.6: Forecasting Performance for Appliance A6 (For last 50 days) using Static
Clustering

Metric | Without Clustering | With Static Clustering
RMSE | 1.9386 1.9216

MSE 3.7583 3.6926

SSE 4510.033 4431.143
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Figure 4.15: The Performance of (a) 50 days Forecasting of Appliance A6 without utilizing
clustering. (b) shows a closer look.
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Figure 4.16: Performance evaluation of (a) proposed Static clustering for forecasting next-
day consumption of Appliance A6. (b) Shows a closer look. The forecasting experiments
evaluate the performance for the last 50 days (1200 hours).
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4.4 Performance Evaluation of Dynamic Time-Series
Clustering

In this study, we employed Algorithm 5 to cluster the dataset described in Section 4.1. To
enable dynamic clustering, we segmented a dataset of 43 smart home appliances into day
and night periods and applied separate clustering algorithms for each period. To achieve
this, we defined the day period as the interval between 6:00 in the morning until 21:00,
while the night period spanned from 21:00 to 5:59.

As highlighted in an earlier chapter, we partitioned the entire dataset based on these
time intervals, resulting in two sub-datasets: one for the day-time period and another for
the night-time period. Subsequently, we utilized Algorithm 5 to perform clustering on
both datasets, resulting in 5 clusters for each dataset.

This approach enabled us to capture the dynamic changes in appliance usage patterns
during the day and night periods separately, providing more accurate and granular insights
into energy consumption behaviour. By clustering each sub-dataset independently, we
were able to identify patterns and similarities unique to each period, improving the overall
clustering accuracy and reducing any potential noise and redundancies that may arise
from clustering the entire dataset as a single entity.

Overall, our dynamic clustering approach has demonstrated its effectiveness in
capturing the time-dependent patterns in energy consumption behaviour, offering new
avenues for energy-efficient smart home management.

4.4.1 Day-Time Clustering Analysis

The two figures show correlation matrices for a dataset consisting of 43 smart home
appliances, before and after performing dynamic (day-time) clustering.

Figure 4.17 displays the correlation matrix of the 43 appliances before performing
clustering. This matrix shows the pairwise correlations between each appliance in the
dataset, with correlations ranging from 0 to 1. The diagonal of the matrix contains the
correlations of each appliance with itself, which is always 1. As shown in the figure, the
matrix appears to be quite complex, with multiple appliances exhibiting strong correlations
with each other.

Figure 4.18 shows the correlation matrix of the 43 appliances after dynamic clustering
has been applied. In this figure, the appliances have been reordered based on their assigned
clusters, resulting in a clearer and more organized correlation matrix. This clustering has
resulted in the grouping of similar appliances, which are shown as clusters along the
diagonal. The figure also displays the correlation values between appliances, but now
they are easier to interpret, as we can see the relationships between the clusters and the
appliances within them.

By grouping similar appliances together, we can gain a more intuitive understanding
of how they relate to each other and how their energy consumption patterns change over
time thus utilizing it for improving the forecasting accuracy.
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Figure 4.17: Correlation Matrix of 43 Appliances before Performing Dynamic (Day-Time)
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Figure 4.18: Correlation Matrix of 43 Appliances in the order of their Clusters

Figure 4.19 shows the results of dynamic time-series clustering of 43 appliances into 5
clusters for the day-time period. Each subfigure corresponds to one cluster and shows the
appliances that belong to that cluster. The clustering is done using the k-shape algorithm,
which clusters the time-series data based on their shape similarity. The appliances within
each cluster exhibit strong similarities in their time-series shapes, which is evident from
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the plots of each appliance’s energy consumption over time. These clusters can be useful
for forecasting the future energy consumption of these appliances since appliances within
the same cluster are likely to exhibit similar energy consumption patterns.
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Figure 4.19: Dynamic (Day-Time) Time-series clustering of 43 appliances into 5 clusters.
Fach cluster shows its respective cluster members with similarities in their patterns.
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4.4.2 Forecasting Analysis using Day-Time Clustering

Figure 4.20 shows the performance evaluation of Dynamic (Day-time) clustering for
forecasting the next-day consumption of Appliance A37. The cluster member of A37
in this scenario is Al5, A36, and A42. And, we performed forecasting using XGBoost.
The figure presents two subfigures: (a) shows the comparison between the actual and
predicted values of the appliance consumption for the last 10 days (240 hours), while (b)
presents a closer look at the same comparison for the last two days.

Table 4.7 presents the forecasting performance metrics for Appliance A37 using
Dynamic Clustering (Day-Time). The table shows the comparison of metrics. The results
suggest that dynamic clustering for day-time data provides slightly worse performance
compared to the case without clustering, mainly because the day-time consumption
generally has more randomness in patterns. However, the difference is not significant.
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Figure 4.20: Performance evaluation of (a) Dynamic (Day-time) clustering for forecasting
next-day consumption of Appliance A37. (b) a closer look. The forecasting experiments
evaluate the performance for the last 10 days (240 hours).

Table 4.7: Forecasting Performance for Appliance A37 using Dynamic Clustering (Day-
Time)

Metric | Without Day-time Clustering | With Day-Time Clustering
RMSE | 1.426 1.5374

MSFE 2.034 2.3638

SSE 488.37 567.313

Figure 4.21 and Table 4.8 show the results of Appliance A24. Figure 4.22 and Table
4.9 show the results of Appliance A7. Figure 4.23 and Table 4.10 show the results of
Appliance A16. Figure 4.24 and Table 4.11 show the results of Appliance A6. The cluster
member information of these appliances is provided in Figure 4.19.
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Figure 4.21: Performance evaluation of (a) proposed Dynamic (Day-Time) clustering for
forecasting next- day consumption of Appliance A24. (b) Shows a closer look. The
forecasting experiments evaluate the performance for the last 20 days (480 hours).

Table 4.8: Forecasting Performance for Appliance A24 using Dynamic Clustering (Day-
Time)

Metric | Without Day-time Clustering | With Day-Time Clustering
RMSE | 0.6956 0.6427
MSE 0.4839 0.4131
SSE 232.275 198.297
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Figure 4.22: Performance evaluation of (a) Dynamic (Day-time) clustering for forecasting
next-day consumption of Appliance A7. (b) a closer look. The forecasting experiments
evaluate the performance for last 50 days (720 hours).

Table 4.9: Forecasting Performance for Appliance A7 using Dynamic Clustering (Day-
Time)

Metric | Without Day-time Clustering | With Day-Time Clustering
RMSE | 1.5047 1.5400

MSFE 2.2642 2.3716

SSE 1630.253 1707.574
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Figure 4.23: Performance evaluation of (a) Dynamic (Day-time) clustering for forecasting
next-day consumption of Appliance A16. (b) a closer look.. The forecasting experiments
evaluate the performance for last 35 days (840 hours).

Table 4.10: Forecasting Performance for Appliance A16 using Dynamic Clustering (Day-

Time)
Metric | Without Day-time Clustering | With Day-Time Clustering
RMSEFE | 1.0746 1.0606
MSE 1.1549 1.1249
SSE 970.164 944.926
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Figure 4.24: Performance evaluation of (a) Dynamic (Day-time) clustering for forecasting
next-day consumption of Appliance A6. (b) a closer look. The forecasting experiments
evaluate the performance for last 50 days (1200 hours).

Table 4.11: Forecasting Performance for Appliance A6 using Dynamic Clustering (Day-

Time)
Metric | Without Day-time Clustering | With Day-Time Clustering
RMSE | 1.4694 1.5839
MSFE 2.1594 2.5088
SSE 2591.314 3010.615
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4.4.3 Night-Time Clustering Analysis

Figure 4.25 shows the correlation matrix of 43 appliances before performing dynamic
(night-time) clustering. In this figure, the appliances are not ordered based on their
correlation with each other.

Figure 4.26 presents a correlation matrix of appliances but in the order of their clusters
obtained using night-time clustering. The clustering has organized the matrix in a way
that appliances that are highly correlated with each other are grouped together, resulting
in a pattern of distinct clusters.
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Figure 4.25: Correlation Matrix of 43 Appliances before Dynamic (Night-Time) Clustering
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Figure 4.26: Correlation Matrix of 43 Appliances in the order of their Clusters obtained
using night-time clustering
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These figures show the results of a dynamic (night-time) time-series clustering of 43
appliances into 5 clusters using the Algorithm 9. Figure 4.27 consists of five subfigures,
each showing the appliances’ group of a specific cluster. The x-axis represents time, and
the y-axis represents the power consumption of each appliance. Each line represents the
power consumption time-series of an individual appliance. The shape of different time-
series shows strong similarity within each cluster. These figures provide insights into
the usage patterns and behaviours of different appliances and can be useful for various
applications.
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Figure 4.27: Dynamic (Night-Time) Time-series clustering of 43 appliances into 5 clusters.
Fach cluster shows its respective cluster members with similarities in their patterns.
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4.4.4 Forecasting Analysis using Night-time Clustering

This section presents the forecasting of different appliances using the clustering information
presented in the previous section.

The figure and table show the performance evaluation of dynamic (night-time)
clustering for forecasting the next-day 10 days consumption of Appliance A37. we
employed an extreme gradient boosting (XGBoost) algorithm that utilized both the
historical data of A37 and its time-lagged values, as well as the time-series of other
appliances in Cluster 3,in night time energy forecasting which include A5, A8, A29, A42,
and A43. To assess the impact of clustering on the night-time forecasting performance, we
also ran the XGBoost algorithm using extensively the historical data of A37 and its time-
lagged values, without considering the time-series data of other appliances. By using Root
Mean Squared Error (RMSE) 4.1, Mean Squared Error (MSE) 4.2, and Sum of Squared
Error (SSE) 4.3 as evaluation metrics as mentioned in the earlier sections.

Figure 4.28(a) shows the comparison of the actual consumption of A37 with the
predicted consumption using night-time clustering. The orange line represents the actual
consumption, while the green line represents the predicted consumption using night-
time clustering. Figure 4.28(b) shows a closer look at the performance of the predicted
consumption using night-time clustering.

Table 4.12 summarizes the performance metrics for forecasting the next-day
consumption of Appliance A37 with and without night-time clustering. The performance
metrics evaluated are root mean square error (RMSE), mean square error (MSE), and
sum of squared error (SSE). As can be seen, the performance of the forecasting model
with night-time clustering outperforms the model without night-time clustering in all
three metrics, indicating that dynamic clustering can help improve the accuracy of the
forecasting model.
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Figure 4.28: Performance evaluation of (a) Dynamic (Night-time) clustering for forecasting
next-day consumption of Appliance A37. (b) a closer look. The forecasting experiments
evaluate the performance for last 10 days (240 hours).

68



4.4. PERFORMANCE EVALUATION OF DYNAMIC TIME-SERIES CLUSTERING

Table 4.13: Forecasting Performance for Appliance A24 using Dynamic Clustering (Night-

Time)
Metric | Without Night-time Clustering | With Night-time Clustering
RMSE | 0.5490 0.5225
MSE 0.3014 0.2730
SSE 144.689 131.042

Table 4.14: Forecasting Performance for Appliance A7 using Dynamic Clustering (Night-

Time)
Metric | Without Night-time Clustering | With Night-time Clustering
RMSE | 0.6848 0.6766
MSE 0.4690 0.4578
SSE 337.697 329.6221

Table 4.12: Forecasting Performance for Appliance A37 using Dynamic Clustering (Night-

Time)
Metric | Without Night-time Clustering | With Night-Time Clustering
RMSFE | 1.317 1.0361
MSFE 1.735 1.0735
SSE 416.625 257.6555

Figure 4.29 and Table 4.13 show the results of Appliance A24. Figure 4.30 and Table
4.14 show the results of Appliance A7. Figure 4.31 and Table 4.15 show the results of
Appliance A16. Figure 4.32 and Table 4.16 show the results of Appliance A6. The cluster
member information of these appliances is provided in Figure 4.27.
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Figure 4.29: Performance evaluation of (a) Dynamic (Night-time) clustering for forecasting
next-day consumption of Appliance A24. (b) a closer look. The forecasting experiments
evaluate the performance for the last 20 days (480 hours).
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Figure 4.30: Performance evaluation of (a) Dynamic (Night-time) clustering for forecasting
next-day consumption of Appliance A7. (b) a closer look. The forecasting experiments
evaluate the performance for last 30 days (720 hours).
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Figure 4.31: Performance evaluation of (a) Dynamic (Night-time) clustering for forecasting
next-day consumption of Appliance A16. (b) a closer look. The forecasting experiments
evaluate the performance for last 35 days (840 hours).

Table 4.15: Forecasting Performance for Appliance A16 using Dynamic Clustering (Night-

Time)
Metric | Without Night-time Clustering | With Night-time Clustering
RMSE | 0.9998 1.0968
MSE 0.9996 1.2030
SSE 839.671 1010.573
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Figure 4.32: Performance evaluation of (a) Dynamic (Night-time) clustering for forecasting
next-day consumption of Appliance A6. (b) a closer look. The forecasting experiments
evaluate the performance for last 50 days (1200 hours).
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Table 4.16: Forecasting Performance for Appliance A6 using Dynamic Clustering (Night-
Time)

Metric | Without Night-time Clustering | With Night-time Clustering
RMSE | 1.5038 1.5022

MSE 2.2616 2.2568

SSE 2713.970 2708.273

4.5 Comparative Analysis of Time-Series Clustering

Table 4.17 and Figure 4.33 present the comparison of the forecasting performance of
Appliance A37 for 10-day forecasting of A37 under different clustering methods using
three different metrics, namely Root Mean Squared Error (RM SE), Mean Squared Error
(MSE), and Sum of Squared Errors (SSE).

Both static and dynamic clustering methods result in lower RMSE, MSE, and SSE
than without clustering. Dynamic clustering performs better than static clustering, with
the lowest values for RMSE, MSE, and SSE. The improvements in accuracy between
the different methods are relatively small but still important for some applications.
Overall, these results suggest that dynamic clustering is the most effective method for
improving the accuracy of the A37 forecasting, based on the metrics analyzed in this table.
Additionally, it is worth noting that the improvements in accuracy between the different
methods are relatively small, particularly in terms of RMSE and MSE. However, even
small improvements in accuracy can be important for some applications, and the results
here suggest that dynamic clustering is a promising approach for improving time-series
forecasting.
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Table 4.18: Comparative Analysis of A24 using Different Time-Series Clustering Methods
Metric | Without Clustering | With Static Clustering | With Dynamic Clustering
Day Night | Average
RMSE | 0.6368 0.6251 0.6427 | 0.5225 | 0.5826
MSE 0.4055 0.3907 0.4131 | 0.2730 | 0.3430
SSE 194.663 187.568 198.297 | 131.042 | 164.66
Table 4.17: Comparative Analysis of A37 using Different Time-Series Clustering Methods
Metric | Without Clustering | With Static Clustering | With Dynamic Clustering
Day Night | Average
RMSE | 1.6629 1.6467 1.5374 | 1.0361 | 1.2867
MSE 2.7654 2.7117 2.3638 | 1.07356 | 1.7186
SSE 663.705 650.830 567.313 | 257.655 | 412.484
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Figure 4.33: Comparison of RMSE, MSE and SSFE (forecasting A37, for 10 days) for
Different Clustering Methods

The RMSE value for forecasting Appliance A24 for 20 days without clustering is 0.6368,

while the values for A24 with static clustering and dynamic clustering are 0.6251 and
0.5826, respectively. This indicates that both static and dynamic clustering methods
perform better than those without clustering, with dynamic clustering producing the
lowest RMSE value. Similar trends are observed for MSE and SSE.

Overall, these results suggest that dynamic clustering is the most effective method
for improving the accuracy of the appliance A24 forecasting model, based on the metrics
analyzed in Table 4.18. These results are also presented in Figure 4.34.

The comparison of other appliances A7 (for 30 days), A16 (for 35 days) and A6 (for
50 days) are presented in Table 4.19, 4.20 and 4.21 respectively. And, we observed
performance trends similar to the earlier appliances. These results are also presented
in Figure 4.35, 4.36 and 4.37 respectively.

Table 4.21: Comparative Analysis of A6 using Different Time-Series Clustering Methods

Metric | Without Clustering | With Static Clustering | With Dynamic Clustering
Day Night Average
RMSE | 1.9386 1.9216 1.5839 1.5022 1.5430
MSE 3.7583 3.6926 2.5088 2.2568 2.3828
SSE 4510.033 4431.143 3010.615 | 2708.273 | 2,859.444

72




4.5. COMPARATIVE ANALYSIS OF TIME-SERIES CLUSTERING
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Figure 4.34: Comparison of RMSE, MSE and SSFE (forecasting A24, for 20 days) for
Different Clustering Methods

Table 4.19: Comparative Analysis of A7 using Different Time-Series Clustering Methods

Metric | Without Clustering | With Static Clustering | With Dynamic Clustering
Day Night Average
RMSE | 1.3287 1.3154 1.5400 0.676615 | 1.1083
MSE 1.7654 1.7305 2.3716 0.4578 1.4147
SSE 1694.837 1245.980 1707.574 | 329.622 | 1,018.598
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Figure 4.35: Comparison of RMSE, MSE and SSE (forecasting A7, for 30 days) for
Different Clustering Methods

Table 4.20: Comparative Analysis of A16 using Different Time-Series Clustering Methods
Metric | Without Clustering | With Static Clustering | With Dynamic Clustering
Day Night Average
RMSE | 1.2765 1.2688 1.0606 | 1.0968 1.0787
MSE 1.6296 1.6100 1.1249 | 1.2030 1.1663
SSE 1368.9148 1352.426 044.926 | 1010.573 | 847.073
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Figure 4.36: Comparison of RMSE, MSE and SSFE (forecasting A16, for 35 days) for

Different Clustering Methods
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Chapter 5

Conclusion and Future Scope

This thesis presents a comprehensive investigation into the use of clustering techniques for
improving energy consumption forecasting in smart homes. The research demonstrates
that incorporating the connections between various appliances through clustering can
enhance the accuracy of energy consumption forecasts compared to conventional models.
The proposed static and dynamic clustering algorithms are particularly effective in this
regard.

To enhance the precision of energy consumption forecasting, the thesis introduces
a dynamic time series clustering technique. The k-shape algorithm is employed for
static clustering, which partitions a dataset of 43 smart home appliances into five
clusters. Subsequently, using static clustering, the forecasting model predicts the energy
consumption of five appliances from each cluster. The dataset is further segmented into day
and night periods for dynamic clustering purposes. By applying dynamic day and night
time clustering, the model forecasts the energy consumption of the same five appliances
for durations of 10, 20, 30, 35, and 50 days, and compares the results with static time
series clustering. The findings clearly indicate that the proposed algorithm significantly
enhances the accuracy of energy consumption forecasting in smart homes. Moreover,
the thesis explores the efficacy of time series clustering and investigates the potential of
incorporating time of day and night time periods in energy forecasting.

Moving forward, there are several avenues for future research in this domain. One area
of focus could be the exploration of machine learning approaches to further improve the
accuracy of energy consumption forecasts. Additionally, incorporating additional factors
such as weather information and occupancy statistics may enhance forecasting precision.
Overall, this research provides a solid foundation for future studies on leveraging machine
learning and clustering techniques to enhance energy consumption forecasting in smart
homes.
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Chapter 6

Publications

Peer-Reviewed Conference

S. Redhu, R. Raja, B. Bremdal, “COGNITIVE DATA FUSION FOR IMPROVING
FLEXIBILITY IN SMART HOMES”, Accepted to appear in CIRED 2023, Rome.

In Progress

R. Raja, D. Nga, “Dynamic Time-Series Clustering for Improving Appliances’ Forecasting
in Smart Homes”, (work in progress).
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