
@ Hgskolen i stfold

MASTER'S THESIS

Automatic Speech Recognition
Within Air Traffic Control Domain

Lars Formoe and Dan Bruun Mygind

June 15, 2023

Applied Computer Science
Faculty of Computer Science, Engineering and Economics

á

Abstract

This thesis investigates the complex issue of automatic speech recognition (ASR) in specialized
contexts, focusing predominantly on air traffic control (ATC) communications involving various
accents, noisy environments, and the challenges presented by limited training data. Acknowl-
edging the considerable advancements made by state-of-the-art frameworks such as wav2vec 2.0
when fine-tuned on niche corpora, we also underscore the enduring problem of minimal or absent
transcribed data in specific areas such as ATC.

Our research applies the wav2vec-U 2.0 model, an advanced unsupervised ASR framework capa-
ble of learning from raw audio and unpaired text. This reduces the need for time-consuming and
costly transcriptions. Additionally, we conduct experiments using self-supervised pre-trained
wav2vec 2.0 models, weak supervision with the pre-trained Whisper model, and supervised
models based on Deep Speech 2 and Transformer networks. Each model has been meticulously
trained on the ATC corpora ATCOSIM and Hiwire to scrutinize the models' effectiveness in han-
dling domain-specific ASR. Our findings reveal that the fine-tuning of the pre-trained wav2vec
2.0 model results in a downstream model exhibiting exceptional accuracy on ATCOSIM, with
a Word Error Rate (WER) of just below 1%. This strongly indicates wav2vec 2.0's capabilities
in dealing with the challenges posed by low-resource domains like ATC communications.

Furthermore, our application of wav2vec-U 2.0 on ATCOSIM shows promising results utilizing
a generative approach to ASR. In the broader context, we reflect upon the implications of these
results for the wider research community within ASR and propose potential directions for build-
ing an ATC base model for continuous ASR development using real-life ATC communications
data.

Keywords: automatic speech recognition · wav2vec 2.0 · wav2vec unsupervised
learning · generative adversarial network air traffic control communications
transfer learning

unsupervised
downstream ·

1

Acknowledgements

First and foremost, we would like to express our deepest gratitude to Kongsberg Defence &
Aerospace (KDA) for the opportunity to explore automatic speech recognition as part of their
remote towers systems (RTS).

We sincerely thank Espen Lokke, our primary contact from KDA, and our dedicated academic
adviser, Dr. Hasan Ogul. Their contribution to fostering an inclusive and inspiring platform for
open dialogue and exchanging ideas, concepts, and theories has been invaluable. This dynamic
forum has been instrumental in shaping our work throughout the project.

While KDA has generously provided the project guidelines and supervision, it is important to
note that they were not involved in the direct execution of this research. As such, KDA cannot
be held accountable for any potential inaccuracies or oversights that may have been committed
by the authors.

Our appreciation also goes to the Department of Computer Science and Communication at 0s t -
fold University College. Their provision of crucial hardware resources enabled the experiments
integral to our research.

We are grateful to our families for their constant belief in us and the sacrifices they have made
to support our academic pursuits. This achievement is as much yours as it is ours.

Thank you.

11

Contents

Abstract 1

Acknowledgements

List of Figures

List of Tables

11

Vl

V l l l

List of Listings

1 Introduction
1.1 Motivation
1.2 Research questions

1X

2 Background
2.1 Voice assistants
2.2 Early development

2.2.1 Audrey

1
1
3

2.2.2 IBM Shoebox 1962
2.2.3 Linear predictive coding (LPC)
2.2.4 Dynamic time warping (DTW)
2.2.5 Hidden Markov model
2.2.6 ARPA Speech Understanding Research program
2.2.7 Gaussian mixture model (GMM)
2.2.8 DragonDictate

2.3 Increasing vocabularies and continuous speech .
2.3.1 Mel-frequency cepstral coefficients (MFCC)
2.3.2 N-gram models

2.4 Deep Neural Networks (DNN) .
2.4.1 Recurrent Neural Network (RNN)

2.4.1.1 Long Short-Term Memory (LSTM)
2.4.1.2 Gated Recurrent Unit (GRU) .

2.4.2 Connectionist temporal classification (CTC) .
2.4.3 Convolution Neural Network (CNN)

2.5 Common corpora
2.5.1 Word error rate metric .

5
5
6
6
6
6
7
7
7
7
8
8
8

12
13
13
14
14
15
16
18
18

3 Related work
3.1 ATC Communications Characteristics
3.2 Supervised learning .

3.2.1 Deep Speech

20
20
21
21

3.2.2 Transformers
3.3 Self-supervised learning

3.3.1 wav2vec
3.3.2 wav2vec 2.0 .

3.4 Unsupervised learning
3.4.1 wav2vec Unsupervised
3.4.2 wav2vec-U 2.0

3.5 General ASR
3.6 ATC domain specific ASR .

22
23
23
24
24
24
25
26
26

4 Methodo logy
4.1 Schedule .
4.2 Setup

4.2.1 Hardware
4.2.2 Software .

4.3 Corpora
4.3.1 Preprocessing the corpora

4.3.1.1 Structure
4.3.1.2 Audio preprocessing
4.3.1.3 Text preprocessing .

4.4 Deep speech 2 .
4.4.1 Post-processing with edit distance

4.5 Transformer .
4.6 Wav2vec 2.0 .

4.6.1 Hugging Face .
4.6.2 Unsupervised

4.7 Whisper

29
29
32
32
33
33
36
36
37
38
39
45
46
54
57
59
64

5 Resul t s
5.1 Deep Speech 2

5.1.1 Cross-domain experiments .
5.2 Transformer .
5.3 Hugging Face
5.4 wav2vec-U 2.0 .
5.5 Whisper

68
68
71
73
78
82
85

6 Discussion
6.1 Deep Speech 2
6.2 Transformer .
6.3 wav2vec 2.0

6.3.1 Hugging Face .
6.4 wav2vec-U 2.0 .
6.5 Whisper
6.6 Hardware resources needed
6.7 Data
6.8 Future work .

87
87
88
89
89
90
92
92
93
94

7 Conclusion 96

Bibliography

Acronyms

98

104

1V

A Conference paper

B P y t h o n code
B.l grid search.py
B.2 unsup README.md
B.3 unsup preprocess.py .
B.4 unsup inputgan.py.
B.5 unsup rungan.py .
B.6 unsup generate.py .
B.7 IAI whisper.py .

106

117
117
118
119
124
126
126
128

V

List of Figures

1.1 Image showing the camera tower, installed at Berlevag lufthavn.
1.2 From the central control station in B o d .
1.3 Controller workstation.

2
2
3

2.1 Fast Fourier transform illustration
2.2 The MFCC process.

10
12

4.1 Gantt chart of thesis schedule .
4.2 Hardware setup .
4.3 Nano and Notebook IDEs interface
4.4 Word distribution per transcript in ATCOSIM and Hiwire corpora
4.5 Characters distribution per transcript in ATCOSIM and Hiwire corpora
4.6 Corpus original structure
4.7 Custom structure .
4.8 Spectrogram illustration of downsampling
4.9 Train/validation/test partition
4.10 Overview of the DNN and its main components.
4.11 CTC decoding example
4.12 Greedy decoding example
4.13 The final model configuration.
4.14 Levensthein distance illustration
4.15 The Transformer architecture
4.16 1 millisecond from a 16KHz sample .
4.17 1-D convolution operation
4.18 Positional embedding vectors
4.19 3D plot of the character positional encodings
4.20 Multi-head self-attention .
4.21 Linear transformations throughout a head
4.22 Hyper-parameter loop
4.23 Wav2vec 2.0 Architecture
4.24 ATC base model
4.25 Model downstream.
4.26 Fine-tuning architecture.
4.27 Custom corpus noise levels.
4.28 Wav2Vec-U 2.0 macro architecture.
4.29 Automation of wav2vec unsupervised .
4.30 GAN architecture .
4.31 Algorithm macro functionality
4.32 Intersecting features of ASR methods .
4.33 Whisper multilingual and multipurpose capabilities .

31
32
33
35
36
36
37
38
39
40
41
42
45
46
47
47
48
49
50
50
51
53
56
56
57
58
59
60
61
63
65
66
67

Vl

5.1 Loss function for ATCOSIM and Hiwire combined
5.2 Loss function for ATCOSIM only .
5.3 Loss function entire Hiwire.
5.4 Loss function for Hiwire clean .
5.5 Model performance comparison between Hiwire sub-corpora.
5.6 Hugging Face pipelines graphs.
5.7 Wav2Vec-U 2.0 training details, 53% WER model.
5.8 Wav2Vec-U 2.0 training details, 23.7% WER model.

6.1 Proposed ASR setup.

70
70
70
71
72
79
82
83

95

Vll

List of Tables

2.1 WER examples.

ATC specific corpora.
Deep Speech 2, feature size comparision
Deep Speech 2, STFT as features .
Deep Speech 2, Mel-scale as features
Deep Speech 2, MFCC as features
Hyperparameters(P)
Pre-trained base models.
Whisper specifications of small, medium, large architecture

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1 Deep Speech 2, ATCOSIM and Hiwire results .
5.2 Deep Speech 2, Hiwire sub-corpus comparison .
5.3 Deep Speech 2, individual predictions with WER from the Hiwire corpus.
5.4 Deep Speech 2 corrected output examples.
5.5 Transformer, STFT features .
5.6 Transformer, STFT output samples.
5.7 Transformer, MFCC features
5.8 Transformer, MFCC output samples.
5.9 Cross-domain results, pretrained models on ATC02-ASR-ALL.
5.10 Hugging Face pipelines best performance.
5.11 Hugging Face WER details
5.12 Hugging Face output samples.
5.13 wav2vec-U 2.0 phoneme predictions, early stage.
5.14 wav2vec-U 2.0 phoneme predictions, best model .
5.15 Whisper performance comparison.
5.16 Whisper (small) output samples.
5.17 Whisper (large) output samples.

6.1 Transformer early prediction development.

19

34
43
44
44
44
53
57
64

69
71
72
73
74
75
76
77
78
79
80
81
83
84
85
85
86

89

Vlll

List of Listings

1 GitHub repositories .
2 Missing code snippet in w2v-U 2.0
3 Kaldi docker image .
4 System wide error message.

60
62
62
91

1X

Chapter 1

Introduction

This study is a cooperative endeavor between Kongsberg Defence & Aerospace (KDA) and
0stfold university college (H i) , investigating the potential of incorporating automatic speech
recognition (ASR) technology within applications tailored to support air traffic controllers op-
erating remote towers systems (RTS) developed by KDA. The primary goal is to ascertain the
feasibility and benefits of integrating state-of-the-art ASR techniques underpinned by artificial
intelligence (AI) into specific applications designed for remote air traffic control (ATC) con-
texts.

ASR technology transforms audio input into textual output, requiring several conversions from
analog sound waves to digital representations that can be associated with sequential characters,
yielding coherent text. This study focuses on recent advancements in ASR systems that utilize
deep neural networks, which have shown substantial progress in diminishing dependence on vast
quantities of transcribed data by leveraging end-to-end architectures.

The research thoroughly reviews the current literature on ASR technology and delves into the
complexities of deep neural network-based ASR systems. In addition, it evaluates various end-
to-end models that have significantly improved ASR performance while reducing the need for
extensively labeled corpora. Through analyzing these advancements, the study aims to lay a
foundation for integrating ASR into applications crafted for remote ATC, offering insights into
potential benefits and challenges associated with such systems.

In summary, this research contributes to the ongoing dialogue on optimizing air traffic manage-
ment by assessing the prospects of integrating cutting-edge ASR technologies into applications
for remote ATCs. By examining the latest developments within the field and their practical
implications, this study can potentially guide future research and development efforts toward
creating more efficient ATC operations.

1.1 Motivation

RTS represent an integrated approach to the remote orchestration of ATC duties, employing
sophisticated electro-optical sensor technology as an integral system component. This technology
essentially extends the most progressive sensor technology in military applications globally.

The Electro-Optical Sensor Suite is designed as a rotating platform housing a visual and infrared
camera capable of 360-degree imaging (Figure 1.1.) It further accommodates a pan-tilt platform,
which includes a visual zoom camera, a fixed lens infrared camera, a laser range finder, and a
signal lamp. This intricate combination of advanced technologies enables the comprehensive

1

capture and transmission of critical sensory data1.

Figure 1.1: Image showing the camera tower, installed at Berlevag lufthavn.

Currently, the RTS is recognized as the most extensive remote tower operation worldwide, with
deployment across 11 airports in Norway. Additional locations are being considered for future
deployment, indicating the system's expansion potential. From the control center in Bodo,
Norway (Figure 1.2), simultaneous operation of multiple airports can be done from a single
workstation.

I l!il'l •

7

Figure 1.2: From the central control station in Bodo.

This workstation has ten high-resolution screens displaying live image feeds from various remote
locations. Furthermore, a large screen directly in front of the controller at the workstation
provides critical information in real-time (Figure 1.3).

'https://www.kongsberg.com/kda/what-we-do/defence-and-security/aviation-security/
remote-and-digital-towers

2

Figure 1.3: Controller workstation.

This setup facilitates efficient monitoring and control of multiple locations simultaneously, effec-
tively advancing the reach and effectiveness of air traffic management practices. This innovative
approach to ATC exemplifies technological advancements in the field and underscores the po-
tential for further enhancements in operational efficiency and safety.

KDA is interested in further enhancing the functionality of RTS by investigating the prospective
benefits of real-time analysis and processing of audio communications between pilots and air
traffic controllers. The proposed enhancement involves the generation of textual transcripts
from these communications, which could be augmented with visual cues for controllers upon
detection of anomalies. This strategic integration of ASR and natural language processing
(NLP) techniques aims to expand the capabilities of remote ATC systems, thereby improving
their operational efficiency.

The provision of real-time text transcripts of audio communications seeks to reduce the cognitive
load on controllers, potentially contributing to overall safety improvements. Given that aircraft
callsigns remain constant, identifying an aircraft through ASR can assist controllers in recogniz-
ing the current aircraft in communication. This can be facilitated by visually highlighting the
aircraft on the controller's screen or adding additional graphical cues to the transcript, such as
color codes.

The primary objective of these proposed enhancements is to aid air traffic controllers by pro-
viding confirmation tools designed to augment situational awareness. This would liberate con-
trollers' cognitive resources, enabling them to manage two or more airports simultaneously
without compromising safety levels. In addition, integrating these advanced ASR and NLP
techniques with existing systems can transform the landscape of ATC operations, making them
more efficient, safe, and capable of handling increased air traffic volumes.

1.2 Research questions

First, in order to suggest a suitable technology for KDA we need to get an understanding of
the current research being done in the field of ASR specific to ATC. In addition to this, we also
need to conduct our own experiments to get a measure of how well the different methodologies
perform on ATC domain audio:

RQ 1 What are the current State-of-the-Art technologies for ATC ASR, and how can we effec-

3

tively implement these?

Second, an important consideration in addressing the challenges associated with working with
ATC audio collected from airports in Norway is the stringent requirement for data security, given
the sensitive and confidential nature of the data being handled. Detailed specifications of these
restrictions and regulations cannot be disclosed in this document due to their confidentiality.
However, it is unequivocal that any leakage or mishandling of this sensitive data could have
severe implications. Therefore, proposed solutions to the ASR challenge must adhere to strong
safety guidelines. Notably, the training data must not be exposed, uploaded, or subjected
to third-party analysis under any circumstances. This non-negotiable requirement safeguards
against potential data breaches, underscoring the primacy of data security in the development
and implementation of these solutions

RQ 2 Which solutions meet the requirements for implementing ASR in KDA RTS?

4

Chapter 2

Background

This chapter introduces ASR and its significance in modern society. We discuss popular voice
assistants employed by prominent tech giants such as Apple, Amazon, Microsoft, and Google
to establish familiarity. Subsequently, we offer a concise historical overview of ASR develop-
ment, tracing its origins from early integrated circuit-based designs in the 1950s to the current
revolution facilitated by the combination of deep neural network (DNN) and hardware advance-
ments capable of handling the extensive computational demands required for state-of-the-art
ASR systems.

Moreover, we look at some of the underlying technologies that drive modern ASR advance-
ments. This includes an examination of key breakthroughs that have facilitated the shift from
labor-intensive, meticulously annotated, and synchronized corpora employed in early ASR de-
velopment to the present-day emergence of end-to-end models that can generate coherent text
from audio files without relying on transcribed data.

2.1 Voice assistants

Voice-activated digital assistants, including Apple's Siri1, Amazon's Alexa2, Microsoft's Cor-
t a n a , and Google Assistant4, share several commonalities in their architecture, functionality,
and integration. These digital assistants primarily rely on advanced automatic speech recogni-
tion (ASR) systems, natural language processing (NLP), and machine learning (ML) algorithms
for processing and interpreting spoken commands issued by users. These algorithms enable the
understanding of complex linguistic structures and facilitate the conversion of speech signals
into text or actionable commands.

A central component of these digital assistants is their ability to perform various core functions,
such as answering questions, setting reminders, providing directions, sending messages, and
controlling smart home devices. In addition to their core ASR, NLP, and ML components,
these digital assistants most likely also employ various optimization techniques and algorithms
to enhance their performance.

Moreover, these voice assistants leverage cloud-based computing infrastructures to process and
store user data, allowing for continuous learning and improving recognition capabilities. This
distributed architecture enables rapidly scaling computational resources, ensuring that the dig-
ital assistants remain highly responsive and adaptive to changing user demands and require-
ments.

'https://developer.apple.com/documentation/sirikit
https://developer.amazon.com/en-US/alexa
'https://github.com/microsoft/cortana-skills-samples
"https://developers.google.com/assistant

5

The recent advancements in ASR technology culminate with persistent research efforts across
multiple decades, tracing back to the 1950s. A comprehensive understanding of present-day
ASR challenges necessitates an examination of the field's historical context and pivotal devel-
opments. Since the inception of early systems, numerous influential breakthroughs have been
made, shaping the trajectory of ASR research and contributing to the present state of the tech-
nology. By appreciating the evolution of ASR, one can better contextualize current challenges,
elucidate the underlying factors, and inform future research directions. Furthermore, this histor-
ical lens offers critical insights into the ongoing pursuit of enhanced ASR performance, resilience,
and applicability across diverse scenarios, ultimately facilitating the design and implementation
of robust, versatile, and efficient systems that cater to the needs of contemporary users and
applications.

2. 2 Early development

The evolution of Automatic Speech Recognition (ASR) has seen numerous significant advance-
ments since its inception. Beginning with early systems limited by computational resources,
the focus was predominantly on recognizing isolated words or digits. Researchers laid the faun-
dation for more advanced feature extraction techniques as technology progressed, subsequently
enhancing ASR systems' performance.

2.2.1 Audrey

Bell Labs' Automatic Digit Recognizer was an early speech recognition system developed in
the 1950s [23]. Audrey was designed to recognize isolated spoken digits from zero to nine
using analog electronic circuits and a unique feature extraction approach. Researchers at Bell
Telephone Laboratories aimed to develop a system capable of understanding spoken numbers to
facilitate automated telephone dialing. To achieve this, Audrey analyzed the sound patterns of
spoken digits and extracted distinctive features. These were matched to predefined templates
to recognize the spoken digits accurately.

Despite its limitations, it laid the groundwork for further research and development in the field,
ultimately leading to more advanced systems like the Hidden Markov Model-based speech recog-
nition systems in the 1970s and 1980s and, more recently, the deep learning-based models.

2.2.2 IBM Shoebox 1962

Developed in the early 1960s by a team of researchers at IBM's Thomas J. Watson Research
Center, the Shoebox was an electromechanical system that employed a microphone to receive
spoken input from the user. The system was designed to recognize 16 spoken words, including
the digits from zero to nine, and basic arithmetic operations like addition, subtraction, multi-
plication, and division. Upon receiving the speech input, the Shoebox used a set of relay-based
circuits to process the voice signals, extract relevant features, and match them to predefined
patterns [3].

2.2.3 Linear predictive coding (LPC)

A widely used technique in speech processing for modeling the vocal tract and efficiently rep-
resenting speech signals. Based on the source-filter model of speech production, LPC aims to
capture the spectral envelope of the speech signal by approximating the vocal tract transfer func-
tion. This is achieved by estimating a set of linear prediction coefficients, which characterize the
speech signal's formant structure and fundamental frequency. LPC gained significant attention
in the 1970s through the pioneering work of Bishnu S. Atal [6] and Fumitada Itakura[43]. LPC

6

research laid the groundwork for numerous advancements in speech processing, particularly in
speech coding and compression, and speech recognition technology.

2.2.4 Dynamic t ime warping (D T W)

DTW is a robust algorithm for measuring the similarity between two-time series, allowing for
non-linear alignment between sequences [79]. DTW computes an optimal alignment between
two sequences by minimizing the cumulative distance between corresponding points, subject to
certain constraints. In early ASR systems, DTW was used for isolated word recognition, where
the objective was to identify individual spoken words from a predefined vocabulary [61].

It has been extensively applied in various domains, including Automatic Speech Recognition
(ASR), to account for temporal variations in speech signals caused by differences in speaking
rate and style among speakers. Template-based ASR systems were created using DTW combined
with feature extraction techniques, such as Linear Predictive Coding (LPC) and Mel-Frequency
Cepstral Coefficients (MFCCs). However, these systems faced limitations in scaling to large
vocabulary sizes and handling continuous speech recognition tasks.

2.2.5 Hidden Markov mode l

HMMs are a class of statistical models that have played a significant role in developing various
applications in speech recognition, bioinformatics, and natural language processing [46]. HMMs
are primarily used for modeling sequential data by employing an underlying stochastic process
that is not directly observable, hence the term "hidden" [27].

HMMs were initially introduced in the 1960s [12], and since then, they have gained widespread
popularity as powerful tools for modeling complex sequential data. Their success can be at-
tributed to the development of the Expectation-Maximization (EM) algorithm and the forward-
backward algorithm, which are utilized for model training and inference.

In the past, HMMs were employed as a key component in various applications, such as speech
recognition and part-of-speech tagging [20]. However, with the advent of deep learning and
the development of more powerful and flexible models like deep neural networks (DNNs), the
prominence of HMMs has diminished in recent years.

2.2.6 A R P A Speech Understanding Research program

The program was a groundbreaking initiative launched in the early 1970s to advance the state
of speech recognition and natural language understanding technology. As a significant mile-
stone in the history of artificial intelligence, the program aimed to develop systems capable of
understanding continuous speech, a significant leap forward from previous systems that recog-
nized only isolated words or digits. Under the program, several speech recognition systems were
developed, such as CMU's Harpy system, BBN's Hearsay-II, SDC's HWIM, and SRI's Speech
Understanding System (SUS) [76]. Of these, the Harpy system could identify over 90% of a set
of sentences from a 1000-word lexicon [49].

2.2.7 Gaussian mixture mode l (G M M)

GMMs are a probabilistic modeling technique used to represent the distribution of data points in
a multidimensional space. They have been widely used for acoustic modeling, mapping acoustic
features extracted from speech signals to phonetic units, such as phonemes [25].

A Gaussian Mixture Model combines multiple Gaussian distributions, each representing a spe-
cific cluster or component in the data. The overall model is a weighted sum of these individual

7

Gaussian components, with each element having its mean, covariance matrix, and a weight that
reflects the proportion of data points belonging to that component.

GMMs have been used in ASR since the late 1980s to model speech feature probability distri-
butions, such as MFCCs and LPC coefficients, for different speakers, accents, and styles [78].
GMMs were commonly combined with HMMs to create complete acoustic models in traditional
ASR systems. HMMs represent the time-varying nature of speech signals and model the pho-
netic units in spoken language, while GMMs model the acoustic feature probability distribution
given a specific state [74].

2.2.8 DragonDictate

Developed by Dragon Systems in the early 1990s, it was a pioneering Automatic Speech Recog-
nition (ASR) software designed for personal computers. The system enabled users to dictate
text and issue voice commands to their computers, making ASR technology more accessible to
a broader audience.

At its core, DragonDictate relied upon Hidden Markov models for acoustic modeling and statis-
tical language models to capture the structure and context of spoken language. The combination
of these models enabled the system to recognize and transcribe continuous speech accurately,
albeit with some constraints, such as a limited vocabulary and the necessity for users to pause
momentarily between words (a technique referred to as discrete speech) [11].

Despite limitations, it was a success and paved the way for more advanced ASR systems, in-
cluding Dragon NaturallySpeaking, which was released by Dragon Systems in 1997. Dragon
NaturallySpeaking improved upon DragonDictate by allowing users to speak in a more natural,
continuous manner without the need for pauses between words.

2.3 Increasing vocabularies and continuous speech

The adoption of HMMs, GMMs, n-gram language models, and improvements in feature extrac-
tion methods marked the ASR developments from the 1980s to 2000. In the 1990s, ASR research
focused on large vocabulary continuous speech recognition (LVCSR) tasks, which involved rec-
ognizing continuous speech with thousands or tens of thousands of words. The development of
the DARPA Wall Street Journal (WSJ) task [70] and the Switchboard corpus [32] provided new
benchmarks for LVCSR, leading to new techniques, such as decision trees for context cluster-
ing [65].

During this period, n-gram language models also became widespread in ASR, providing a simple
yet effective way to model the statistical properties of word sequences in natural language and
applying Mel-frequency cepstral coefficients (MFCC) for feature extraction, which improved
speech signal representation for ASR systems.

2.3.1 Mel-frequency cepstral coefficients (M F C C)

MFCCs have long been, and continue to be, a prominent feature extraction technique in Auto-
matic Speech Recognition (ASR) and other speech processing tasks. In the early 1980s, MFCCs
were introduced as an effective method for capturing perceptually relevant characteristics of
human speech signals [24]. This development was rooted in psychoacoustic research, particu-
larly the concept of the Mel scale [84]. The Mel scale represents the human perception of pitch
changes by assigning frequencies spaced approximately logarithmically, thus simulating how the
human cochlea responds to different frequencies [67].

Extracting the MFCCs from an audio signal is typically broken down into the following steps:

8

1 Frame the signal: The audio signal is divided into short, overlapping frames, typically
using a Hamming window, to reduce spectral leakage and maintain continuity between
adjacent frames [83]. The frame size is typically between 20-30 ms, with an overlap of
50-75%.

2. Compute the power spectrum: the Fast Fourier Transform (FFT) (Equation 2.1) is applied
to each frame, converting it from the time domain to the frequency domain, as illustrated
in Figure 2.1. The power spectrum is obtained by taking the squared magnitude of the
FFT.

X - i 2 m k n / N k = 0, 1, 2, ...e (2.1)

where Xn is the time-domain input signal, N is the length of the input signal, Xk is the
frequency-domain output signal, and i is the imaginary unit.

9

2

1

0

0.0 0.2 0.4 0.6 0.8 1.0

(a) Time domain.

t

Time

(b) Frequency domain.

Figure 2.1: Fast Fourier Transform illustration. Here the blue signal is the sum of the red, black,
and green signals. Applying the short-time Fourier transform, the blue signal is decomposed
into the individual signals that make up its composition.

3. Mel filterbank processing: The power spectrum is then passed through a set of triangular
filters, called the Mel filterbank, spaced according to the Mel scale as seen in Equation
2.2, where f is the frequency of the sound wave in hertz (Hz). The number of filters in
the filter bank is usually between 20 and 40. Each filter's output is the sum of the power
spectral components within its triangular window.

M e l (f) = 2595 • logo(1 + f
700

(2.2)

4. Logarithmic compression: Calculate the logarithm of the energy in each Mel-scaled filter
output . Logarithmic compression is applied to reduce the dynamic range and model the
logarithmic perception of loudness in the human auditory system.

5. Discrete Cosine Transform (DCT): The DCT is performed on the log-filterbank energies as
seen in Equation 2.3, where n are the input values, X are the transformed values, and N
is the total number of input values. This step decorrelates the filterbank coefficients and
results in a more compact representation, typically retaining the first 12-13 coefficients.

10

The DCT coefficients are the MFCCs.

X
1
2

k 0 ,1 , . . N 1 (2.3)

6. Delta and Delta-Delta coefficients: In some applications, the first and second derivatives
of MFCCs, called delta and delta-delta coefficients, are also computed and appended to
the feature vector. This provides information about the dynamics and acceleration of the
spectral shape, which can improve the performance of ASR systems.

The result of this process can be seen in Figure 2.2. The first cepstral coefficient (index 0)
represents the average power in the signal frame. In some applications, it is often discarded
or replaced with other features (e.g., energy, pitch), as it does not provide significant informa-
tion about the spectral shape. The higher-order cepstral coefficients capture various spectral
details, with lower-index coefficients representing broader spectral features, while higher-index
coefficients correspond to finer spectral details. In most ASR applications, the first 12 or 13
MFCCs (index 1 to 12 or 13) are used as they capture the most relevant information for speech
recognition.

11

0.4

0.3

0.2

0.1

0.0

- 0 . 1

- 0 . 2

- 0 . 3

•
I

0 20,000 40,000 60,000 80,000

(a) Waveplot of the raw audio signal.

4096

2048

1024

512

0.6 1.2 1.8 2.4 3.6 4.2 4.8 5.4

(b) Mel-scale spectrogram. The y-axis shows the frequency range in Hz, the
x-axis shows time.

12
11
10

9
8
7
6
5
4
3
2
1
0

0 0.5 1 1.5 2 2.5 3 3.5 4

(c) MFCCs with index position on the y-axis.

Figure 2.2: The MFCC process.

In the 1990s, MFCCs emerged as the state-of-the-art feature extraction technique for HMM-
based ASR systems, surpassing previous techniques such as LPC. MFCCs have been successful
in the ASR field because they are capable of representing the spectral envelope of speech sig-
nals. This representation is crucial as it encapsulates speaker-specific information and phonetic
content, vital for accurate speech recognition.

2.3.2 N-gram models

N-gram models are a class of probabilistic models that estimate the likelihood of a sequence
of words by considering the conditional probability of the next word given the preceding N-1
words [47]. By approximating the probability of a word sequence while considering the limited
context of N-1 prior words, N-gram models reduce the complexity of language models while still
capturing critical contextual dependencies [57]. For instance, bigram models (N=2) compute
the probability of a word based on the preceding word, while trigram models (N=3) condition
the probability of a word on the two preceding words, and so on.

The primary purpose of utilizing N-gram models in ASR is to leverage contextual information
about word sequences to resolve ambiguities and refine the output generated by the acoustic
model. By incorporating language models into the decoding process, ASR systems can enhance
recognition accuracy by selecting word sequences with higher likelihoods in the target language,

12

thereby mitigating the effects of recognition errors caused by acoustic variability and other
factors.

Large text corpora are typically employed to estimate N-gram models, providing the necessary
statistical evidence to compute conditional probabilities for various word sequences. In addi-
tion, smoothing techniques such as Good-Turing are often applied to ensure robust probability
estimation and address the data sparsity issue [17].

Despite their simplicity and reliance on the Markov assumption, N-gram models have been the
standard in ASR and other natural language processing tasks until recently. However, with the
emergence of deep neural networks, the predominance of N-gram models in applications such as
ASR is being contested [40].

2.4 Deep Neural Networks (D N N)

DNNs have delivered breakthroughs in various domains and outperformed earlier technologies
once considered state-of-the-art. These networks consist of multiple interconnected layers of
artificial neurons capable of learning complex representations and patterns from large amounts
of data. The key advantage of DNNs is their ability to extract features and representations from
raw input data automatically. This task previously relied on hand-crafted features and expert
knowledge. For instance, DNNs have demonstrated superior performance in tasks previously
dominated by HMMs, including image classification, natural language processing, and speech
recognition [40]. The rise of DNNs can be attributed to several factors, including advances
in hardware, such as graphics processing unit (GPU), which enable faster training of large-
scale networks, and the availability of large amounts of data, facilitating their ability to learn
increasingly sophisticated representations.

2.4.1 Recurrent Neural Network (R N N)

RNNs represent a distinct category of artificial neural networks designed to process and model
sequential data by capturing the temporal dependencies present within input sequences [28].
In contrast to feedforward neural networks, which generate output based solely on the current
input, RNNs utilize hidden states that retain information from preceding time steps, facilitating
the identification and learning of patterns. This unique attribute renders RNNs particularly
suitable applications such as speech recognition [55].

The architectural composition of an RNN encompasses input, hidden, and output layers. The
input layer receives the input sequence, while the hidden layer processes the input recurrently
at each time step and sustains the hidden state. Subsequently, the output layer generates the
ultimate output, contingent upon the hidden state [58]. The defining characteristic of RNNs
lies in recurrent connections within the hidden layer, which permits information sharing across
time steps, thus effectively empowering the network to "remember" prior inputs. This capacity
to retain information from previous time steps and leverage it in processing future inputs sets
RNNs apart from other neural network architectures.

Training RNNs usually necessitates using the backpropagation through time (BPTT) algorithm,
which modifies the conventional backpropagation algorithm employed in training feedforward
neural networks [90]. BPTT operates by temporally unfolding the recurrent structure of the
RNN, effectively transforming it into an equivalent feedforward network with multiple layers
corresponding to each time step. This process allows for the computation of gradients at each
time step and the subsequent update of the network's weights in a manner that considers the
temporal dependencies inherent in the input sequences [91].

While RNNs can model temporal dependencies, they encounter the vanishing and exploding

13

gradient problem when processing lengthy input sequences [13]. This challenge emerges during
training when the gradients either diminish or expand excessively, making it difficult for the
network to learn dependencies spanning long intervals effectively. The vanishing gradient issue
is particularly problematic, as it results in the network needing to be more capable of capturing
crucial information from earlier time steps, thus impeding its performance in tasks that require
an understanding of long-term dependencies [69].

2.4.1.1 Long Short-Term Memory (LSTM)

LSTM is a specialized type of RNN architecture introduced to address the limitations of tradi-
tional RNNs in learning long-range dependencies within input sequences [41]. As a result, LSTMs
have been particularly successful in various sequence-to-sequence learning tasks, such as natural
language processing, speech recognition, and machine translation. The key innovation in LSTM
networks is the introduction of a memory cell. This differentiable data structure can store infor-
mation over extended periods, allowing the network to learn and remember information across
long input sequences. A set of gating mechanisms regulates this memory cell [30]:

Input Gate: controls the flow of information from the current input and the previous
hidden state into the memory cell. It utilizes a sigmoid activation function, which outputs
a value from O to 1 to determine the degree to which the input should be incorporated.
The input gate's output is elementwise multiplied by the candidate memory cell state,
generated by applying a tanh activation function to a linear combination of the current
input and previous hidden state, allowing selective updates to the memory cell state.

Forget Gate: a critical component of an LSTM cell that manages the retention of infor-
mation in the memory cell across time steps. Like the input gate, the forget gate employs
a sigmoid activation function, producing an output in the range of O to 1, which signifies
the proportion of the previous memory cell state to retain. A value close to O indicates
that the corresponding element of the memory cell state should be forgotten, while a value
close to 1 suggests retaining the information. The forget gate's output is elementwise
multiplied by the previous memory cell state to regulate information retention.

Output Gate: modulates the contribution of the memory cell state to the current hidden
state, which is used to compute the network's output. The output gate operates similarly
to the input and forget gates, using a sigmoid activation function to produce a value in
the range of Oto 1 for each element of the memory cell state. The output gate's output is
elementwise multiplied by the memory cell state after applying a tanh activation function,
yielding the updated hidden state. This mechanism enables the LSTM cell to selectively
output information from the memory cell state based on the current input and previous
hidden state.

LSTMs have been further extended and refined through various modifications and improvements,
such as the introduction of peephole connections, which allow the gates to access the memory
cell's internal state directly. LSTM networks represent a significant advancement in RNN ar-
chitectures, enabling the effective learning of long-range dependencies in sequence data. Their
memory cell and gating mechanisms have proven instrumental in addressing the limitations of
traditional RNNs and have contributed to the success of LSTMs in various applications.

2.4.1.2 Gated Recurrent Unit (G R U)

GRU is a variant of RNN architecture introduced to address the vanishing gradient problem [18].
Like LSTMs, GRUs have gating mechanisms that regulate the flow of information within the
recurrent hidden layers. However, GRUs employ a simpler architecture with fewer gates, re-
sulting in a more computationally efficient model while still being able to capture long-range
dependencies in sequential data effectively.

14

The GRU architecture was introduced as an alternative to LSTMs in the context of machine
translation and natural language processing tasks. Since its development, GRUs have been
widely adopted and have demonstrated competitive performance in various applications, includ-
ing speech recognition, time series prediction, and even computer vision.

The architecture of GRU consists of two gates: the update gate and the reset gate. These gates
work in tandem to control the information flow within the recurrent hidden layers, enabling the
model to learn and maintain relevant information across time steps.

U p d a t e Gate : responsible for determining the extent to which the hidden state from
the previous time step should be retained. Like the gates in an LSTM, the update gate
uses a sigmoid activation function to generate values between O to 1 for each element of
the hidden state. An output close to Oindicates that the previous hidden state should be
replaced with new information, whereas a value close to 1 implies retaining the existing
hidden state.

Rese t Gate : The reset gate, also employing a sigmoid activation function, modulates
the incorporation of the previous hidden state when computing the candidate hidden state
for the current time step. The output of the reset gate is elementwise multiplied by the
previous hidden state, which is then combined with the current input and passed through
a tanh activation function to generate the candidate hidden state. A value close to Ofor
the reset gate output implies that the previous hidden state should have minimal influence
on the candidate's hidden state. In contrast, a value close to 1 indicates that the previous
hidden state should be considered.

The final hidden state for the current time step in a GRU is computed as a linear interpolation
between the previous hidden state and the candidate hidden state, controlled by the update
gate. This interpolation mechanism allows the GRU to balance the retention of long-range
dependencies and the incorporation of new information, enabling the model to learn complex
temporal patterns in sequential data.

Despite their reduced complexity compared to LSTMs, GRUs have demonstrated competitive
performance in various tasks, including natural language processing, speech recognition, and
time series prediction [19]. The choice between GRUs and LSTMs often depends on the specific
application and computational constraints. Both architectures have proven effective in modeling
sequential data with long-range dependencies.

2.4.2 Connectionist temporal classification (C T C)

CTC was introduced in 2006 as a novel training criterion for recurrent neural networks, specifi-
cally designed for sequence labeling tasks such as ASR, where the alignment between input and
output sequences is unknown [35].

Previous ASR systems typically relied on separate acoustic and language models to convert
spoken language into written text. The acoustic model, often based on HMMs or GMMs,
captured the relationship between speech signals and corresponding phonetic units [44]. The
training process involved estimating the parameters of these models using a large, labeled corpus,
where the speech features aligned with the correct phonetic units. The language model, usually
an N-gram model, was trained on text data to estimate the probability of word sequences [16].
During the decoding process, the acoustic and language models were combined to find the most
likely transcription of the input speech signal, considering both the acoustic evidence and the
linguistic context. These systems often required hand-crafted features and precise alignments
between input and output sequences.

CTC is primarily used with RNNs due to their ability to model time-series data effectively,
although it can also be applied to other deep learning architectures. It utilizes a novel approach

15

to labeling sequences by introducing a unique "blank" symbol alongside the standard output
labels. The blank symbol enables the model to output a variable-length prediction sequence,
which is subsequently collapsed into the final target label sequence. This process eliminates
the need for an explicit alignment between input and output sequences, implicitly allowing the
model to learn the optimal alignment during training.

Forward pass: During the forward pass, the input sequence is fed into the neural network,
which computes a probability distribution over the extended label set (including the blank
symbol) for each time step. The network output at each time step can be viewed as an
unnormalized probability distribution over the labels and the blank symbol.

Forward-backward algorithm: The forward-backward algorithm is employed to com-
pute the probability of the target label sequence given the unnormalized probabilities
obtained in the forward pass. This algorithm recursively computes the forward and back-
ward probabilities by summing over all possible alignments of the input sequence to the
target sequence, considering the blank symbol.

C T C loss calculation: The CTC loss, which measures the negative log-likelihood of the
target label sequence given the input sequence, is calculated based on the forward and
backward probabilities. CTC training aims to minimize this loss, increasing the likelihood
of the correct target sequence.

Backward pass: During the backward pass, the gradients of the CTC loss with respect
to the network parameters are computed using the backpropagation algorithm. These
gradients are then used to update the network parameters through an optimization process,
such as stochastic gradient descent or its variants.

Decoding: Once the model has been trained, it can generate label sequences for new
input sequences. The decoding process involves finding the most probable label sequence
given the output of the trained network. Several decoding algorithms are available, such
as the best-path and prefix search decoding, which aim to find the optimal label sequence
efficiently.

CTC can implicitly learn the optimal alignment between input and output sequences during
training, allowing it to model the temporal dependencies in speech signals directly. The network
inputs raw speech features and generates character or phoneme probabilities at each time step.
The CTC loss function ensures that the network learns to align the output sequence with the
input sequence without requiring precise alignments or hand-crafted features.

CTC simplifies the ASR pipeline and reduces the system's complexity by integrating acous-
tic and language modeling tasks into a single neural network architecture. This end-to-end
approach results in a more streamlined and efficient ASR system. It eliminates the need for
hand-engineered features, separate acoustic and language models, and precise alignments be-
tween input and output sequences. CTC-based ASR systems have demonstrated significant
improvements in performance and scalability compared to traditional ASR systems, solidifying
their position as a powerful and efficient approach to sequence labeling tasks, particularly in the
field of ASR.

2.4.3 Convolution Neural Network (C N N)

A CNN is a specialized artificial neural network tailored to process grid-like structured data, such
as images or time-series data [51]. Due to their outstanding performance in computer vision
tasks, including image classification, object detection, and segmentation, CNNs have gained
significant traction in recent years. Convolutional operations, which facilitate learning local
patterns in input data, are the cornerstone of CNNs, making them highly effective for image
processing tasks where features like edges or textures are often localized within small regions [50].

16

Furthermore, CNNs can autonomously learn these features without prior knowledge or manual
feature engineering, conferring a substantial advantage.

The ability of CNNs to exploit spatial relationships between input data renders them ideal
for object recognition tasks. In addition, CNNs learn hierarchical features, enabling them to
recognize complex patterns by building upon simpler ones, which makes them applicable to a
diverse range of applications.

Convolutional layers, the building blocks of CNNs, are critical in capturing local patterns and
features in input images or feature maps. These layers perform convolution operations by
applying filters, also known as kernels, designed to detect specific patterns like edges, corners,
and textures. The filters are composed of learnable parameters (weights) and are optimized
during training to learn the most informative features for the given task.

The output of a convolutional layer consists of a set of feature maps, each corresponding to a
particular filter. The dimensions of these feature maps depend on factors such as the number of
filters, their spatial dimensions, and the stride [33]. The stride, the step size for moving the filter
across the input, contributes to the network's computational efficiency by reducing the spatial
dimensions of feature maps when larger than one.

Padding, the process of adding extra pixels around the input image or feature maps, is applied
during the convolution operation to control the output feature maps' spatial dimensions. It
is beneficial for preserving spatial resolution, especially in deep architectures where successive
convolutional layers can significantly reduce the resolution.

Following the convolution operation, an element-wise non-linear activation function is applied to
the output feature maps to introduce non-linearity into the network. This is crucial for learning
complex, non-linear relationships between input and output data and modeling a broader range
of functions.

The Rectified Linear Unit (ReLU) is a popular activation function in modern CNN architectures,
known for its computational efficiency and effectiveness in addressing the vanishing gradient
problem [62]. The ReLU function is defined as f (x) = max(0,x), where x represents the input
value. By setting negative input values to zero and retaining positive values, ReLU offers a
piecewise-linear, non-linear transformation that accelerates the training process convergence.
Activation functions play a vital role in introducing non-linearity into CNNs, enabling them
to model complex input-output data relationships. The ReLU function and its variants are
prevalent in modern CNN architectures, given their computational efficiency and ability to
mitigate the vanishing gradient problem.

Pooling layers are essential for reducing the spatial dimensions of feature maps and enhancing
the network's computational efficiency and translational invariance. Typically placed between
consecutive convolutional layers, pooling layers condense the spatial information of feature maps
while retaining the most significant features. This results in a more robust network that can
recognize patterns even when subjected to small spatial shifts. This property is handy in object
recognition and classification tasks where the precise spatial location of a feature might be less
important than its presence in the input image.

A CNN architecture often uses one or more fully connected layers, with the final fully connected
layer generating the output predictions. The output layer uses a softmax activation function for
multi-class classification tasks, converting logits into class probabilities [14]. In addition, a linear
activation function is employed in regression tasks to generate continuous-valued outputs.

CNNs have emerged as a promising ASR technique due to their ability to model local and hier-
archical features crucial for speech pattern recognition. The most significant advantage of using
CNNs in ASR is their ability to automatically learn relevant features from input data without
manual feature engineering. CNNs exploit local dependencies in time-frequency representation

17

to capture critical patterns, such as phonemes, necessary for speech recognition.

In a typical CNN-based ASR system, input spectrograms or MFCCs pass through multiple
convolutional and pooling layers to learn high-level, abstract features representing speech signals'
acoustic properties. Fully connected or recurrent layers (e.g., LSTM or GRU) then use these
features to model temporal dependencies in speech data. Finally, the output layer generates
a probability distribution over target phoneme or subword classes using a softmax activation
function. CNN-based ASR systems have outperformed traditional techniques like GMM-HMMs-
based systems and have become essential in state-of-the-art ASR systems like hybrid CNN-HMM
or end-to-end architectures.

2.5 Common corpora

LibriSpeech is a large-scale corpus of read English speech comprising approximately 1,000
hours of speech data derived from audiobooks in the public domain [68]. The corpus is designed
for Automatic Speech Recognition (ASR) research and evaluation and includes over 2,500 unique
speakers and over 100,000 utterances. The recordings align with their corresponding text tran-
scripts at the word level, providing ground truth for training and evaluating ASR systems. The
corpus is publicly available and has been, and continues to be, used as a benchmark for numerous
studies in ASR, including the development and evaluation of deep learning-based models.

The Switchboard corpus is a corpus of telephone conversations in English collected in the
early 1990s by the Texas Instruments corporation [32]. The corpus contains transcriptions
of over 2,400 two-sided telephone conversations between native speakers of American English,
covering various topics and speech styles. Each conversation is approximately 5 to 10 minutes
long, and the corpus includes word-level and phonetic transcriptions, speaker information, and
metadata. Due to its size, diversity, and realistic nature, the Switchboard corpus has been widely
used for research in speech recognition, natural language processing, and other fields.

The Wall Street Journal (WSJ) Continuous Speech Recognition (CSR) Corpus is a com-
prehensive collection of read English speech, encompassing roughly 80 hours of audio data from
WSJ's business and economic news articles [70]. The corpus is tailored for Automatic Speech
Recognition (ASR) research and analysis, featuring 400 hours of speech and text data of 47
million words. The recorded speech aligns with its corresponding text transcripts at the word
level, providing an authoritative source for the training and evaluation of ASR systems. The
WSJ Corpus is publicly accessible and has been extensively utilized as a benchmark in numerous
ASR studies, including creating and evaluating advanced deep learning-based models.

The TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT) is a detailed col-
lection of read English speech with approximately 5 hours of audio data from reading tasks [29].
The corpus is designed for ASR research and phonetic and acoustic analysis, featuring 630 unique
speakers from 8 major dialect regions in the United States and more than 6,300 utterances. The
recorded speech is annotated at the word, phoneme, and stress level, providing a rich source
for training and evaluating ASR systems. The TIMIT corpus is publicly available and has been
extensively used as a benchmark in numerous ASR studies, including creating and assessing
sophisticated machine learning and deep learning-based models.

2.5.1 Word error rate metr ic

Word error rate (WER) [92] is ASR research's most widely used accuracy metric. It evaluates
ASR systems' performance and compares different models and techniques. After accounting
for insertions, deletions, and substitutions, it measures the percentage of words in the reference
transcription that differ from the recognized words produced by the ASR system (Equation 2.4).
Table 2.1 shows three examples of how substitution, deletion, and insertion can affect a model's

18

WER score.

W E R Substitutions + Deletions + Insertions
Total number of words

(2.4)

Table 2.1: WER examples.

W E R 9.1%

11 words 1 substitution 1 11 = 0.0909 0.091

hotel echo x ray downwind two five for touch and go
hotel echo x ray dowin two five for touch and go

W E R 28.6%

14 words 2 substitutions, 1 deletion, 1 insertion 4 / 14 = 0.2857 0.286

hello sydney good evening jetstar four seventy five climbing flight level two eight zero
-(hello) soydne +(tower) good evening fontak four seventy five climbing flight level two eight zero

W E R 66.7%

6 words 3 substitutions, 1 insertion 4 6 = 0.666 0.667

sierra alpha papa sion ground hello
hotel alpha + (b a) pa sion ground hellheur

19

Chapter 3

Related work

This chapter investigates learning strategies employed in Automated Speech Recognition (ASR)
within the academic research context. It commences by examining supervised learning methods,
including prominent models such as Deep Speech 1 and 2 and the transformative Transformer
model. These models rely on labeled corpora to establish precise mappings between inputs and
outputs, forming a foundational understanding of ASR methodologies.

The chapter introduces self-supervised learning techniques, specifically focusing on innovative
technologies like wav2vec and its refined variant, wav2vec 2.0. These models leverage both
labeled and unlabeled data to enhance performance.

Furthermore, the chapter explores the significance of unsupervised learning, particularly the
novel wav2vec Unsupervised model. This approach becomes crucial when labeled data is scarce,
as it uncovers inherent patterns and relationships within unlabeled data.

Additionally, the chapter delves into the practical applications of ASR in complex and high-
stakes environments, such as air traffic control (ATC). Given the intricate linguistic nature of
ATC communications, ASR research and implementation play a vital role in this domain.

3.1 ATC Communications Characteristics

ATC is a fundamental component of aviation safety and efficiency, offering vital instructions
and guidance to pilots to ensure the aircraft's secure and orderly movement. To facilitate clear
and unambiguous communication, specific rules and guidelines have been established that must
be followed, in English, as effective communication between pilots and air traffic controllers
is of paramount importance [73]. These communication guidelines include using standardized
phraseology, employing clear and concise language, repeating or confirming instructions to ensure
understanding, acknowledging the receipt of instructions to confirm compliance, and reporting
essential information promptly to maintain situational awareness [7].
Although they seem to have apparent similarities, ATC communications differ significantly from
standard spoken English and subsequently pose unique challenges for ASR systems compared
to other domains, primarily due to the following factors:

Specialized vocabulary and phraseology: ATC communications involve domain-specific
terminology and standardized phrases unique to aviation. This specialized language may need
to be better represented in general ASR training data, potentially leading to lower recognition
accuracy.

Accents and dialects: Pilots and air traffic controllers come from various regions and countries,
leading to a wide range of accents and dialects in ATC communications. ASR systems need to

20

be robust enough to recognize speech across these variations.

Radio communication artifacts: ATC communications typically occur over radio channels,
which can introduce noise, distortion, and signal degradation. These artifacts can make speech
recognition more challenging for ASR systems.

Background noise: The ATC environment often includes background noise from aircraft
engines, weather, and other sources. ASR systems must perform well in these noisy conditions
to accurately transcribe ATC communications.

Multi-speaker and overlapping speech: ATC communications involve multiple speakers,
including pilots and controllers, who may talk simultaneously or with a significant difference
in utterances per second. ASR systems need to be capable of handling overlapping speech and
distinguishing between different speakers.

Time-sensitive information: ATC communications involve critical information for main-
taining air traffic safety and efficiency; therefore, ASR systems must be able to process and
transcribe speech in real-time to ensure that the relevant information is available promptly for
decision-making.

High-stakes environment: Errors in ASR transcription can have severe consequences in ATC
communications, as misunderstandings or miscommunications can compromise safety. ASR
systems must achieve high accuracy and reliability to suit this high-stakes environment.

Given these unique challenges, ASR systems designed for ATC communications must be spe-
cialized and optimized to handle the aviation environment's domain-specific language, noise
conditions, and real-time requirements.

3.2 Supervised learning

This approach involves training a machine learning model utilizing a labeled corpus, where
each input data instance (speech signal) is accompanied by its corresponding output transcript
(label). Through this process, the model endeavors to establish a mapping from inputs to
outputs, to minimize the disparity between the model's predictions and the true labels, generally
quantified through a loss function. However, this learning paradigm necessitates the availability
of substantial amounts of annotated data, which can prove to be a time-intensive and costly
endeavor, particularly in the case of low-resource languages.

3.2.1 D e e p Speech

Introduced in 2014 by Baidu', Deep Speech is an end-to-end ASR system designed to simplify the
speech recognition pipeline by leveraging deep learning techniques [39]. The system addresses
the limitations of traditional ASR systems, which typically consist of multiple complex stages,
including feature extraction, acoustic modeling, and language modeling. By adopting a deep
learning approach, Deep Speech reduces the complexity of ASR, resulting in a single, end-to-end
model that directly maps input acoustic features to output character transcriptions.

The architecture of Deep Speech consists of three main layers: input, recurrent, and output lay-
ers. The input layer processes the raw audio features, such as log Mel-filterbank energies, which
represent the spectral content of the input speech signal. These features are fed into the recur-
rent layer, which models the temporal dependencies in the speech data. Deep Speech employs
bi-directional Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units
to capture context from past and future speech frames, enabling the model to learn complex
and long-range temporal dependencies.

'https://www.baidu.com

21

The model produces character probabilities in the output layer, decoded into the final tran-
scription using the CTC loss function. During training, the model learns to minimize the CTC
loss, which measures the likelihood of the target transcription given the input acoustic features.
In training, the model uses stochastic gradient descent with a learning rate schedule that de-
cays the learning rate over time. It is regularized using dropout and weight clipping to prevent
overfitting.

One of the main advantages of Deep Speech's end-to-end approach is that it eliminates the need
for hand-crafted features and separate modeling stages, which can introduce errors and limit
the system's ability to learn from the data. Instead, by directly learning the mapping from
input features to output characters, the model can exploit the raw acoustic information and
automatically discover useful representations for speech recognition.

Deep Speech demonstrated that an end-to-end deep learning approach could achieve competitive
performance on challenging ASR tasks, outperforming traditional, multi-stage systems in some
instances. In the original Deep Speech paper, the authors show that the model outperforms
hybrid DNN-HMM models on the Switchboard corpus with r-v 4 percentage points using the
WER metric.

Overall, Deep Speech represents a significant milestone in applying deep learning to speech
recognition, showcasing the potential of end-to-end models to simplify the ASR pipeline and
achieve high performance. The system's success laid the foundation for future research in end-
to-end ASR, leading to more advanced models.

D e e p Speech 2 incorporates additional convolutional layers before the recurrent layers, allow-
ing the model to capture local structures in the input data more effectively [4]. These layers
employ multiple kernel sizes, capturing different levels of granularity in the spectral features.
Deep Speech 2 also introduces batch normalization, which accelerates training and improves
generalization by normalizing the activations at each layer.

Designed to scale efficiently on large-scale distributed GPU clusters, it enables training deeper
and broader networks on massive amounts of data. This scalability allowed Baidu to train Deep
Speech 2 on a corpus of approximately 12,000 hours of multilingual and multitask supervised
data, showing a WER of 8.46% for regular data and 5.15% for the LibriSpeech test-clean set.
It also demonstrated the effectiveness of transfer learning in ASR by pretraining the model on
a large corpus and then fine-tuning it on smaller, domain-specific corpora.

3.2.2 Transformers

First introduced in 2017, transformer networks are a class of neural architectures that have revo-
lutionized various domains in natural language processing, such as machine translation and text
classification [88]. Transformers rely on self-attention mechanisms to process input sequences,
providing a more efficient and flexible alternative to traditional recurrent and convolutional
neural networks.

The Transformer architecture features two key parts: an encoder and a decoder, built from a
series of sub-layers. The encoder converts the input sequence into context-sensitive represen-
tations using self-attention mechanisms and feed-forward neural networks. This design enables
the encoder to capture the full context of the input sequence. The decoder, in turn, creates the
output sequence based on the encoder's output and its own previously generated tokens. Each
decoder layer contains two self-attention mechanisms and a feed-forward network. The first
self-attention mechanism is masked to ensure output dependency on known outputs only, while
the second attends to all encoder outputs, enabling context transfer from input to output. The
Transformer model thus effectively intertwines the roles of the encoder and decoder to produce
context-aware sequential outputs.

22

Transformer networks have proven to be a powerful tool in ASR, especially when combined with
other AI technologies. A CNN-based local feature extraction combination with a transformer
encoder called a "Conformer" achieved remarkable results in 2020 [36]. With a WER of 1.9%
on the LibriSpeech corpus, it demonstrated the effectiveness of this fusion approach. By lever-
aging the strengths of both components, the Conformer model enhanced the performance and
capabilities of end-to-end ASR systems, opening up new possibilities for accurate and efficient
speech recognition.

3.3 Self-supervised learning

Learning vector representations from a high amount of labeled or unlabeled data is a recent
trend to leverage the learned representations to improve performance on a local task for which
a relatively small corpus is available. It is accomplished by creating a pretext, or auxiliary, task
where the model learns to predict or reconstruct certain aspects of the input data based on other
parts. In the case of ASR, a common strategy involves masking out sections of the input audio
signal and challenging the model to predict the missing segments from the context provided by
the unmasked sections.

3.3.1 wav2vec

The original wav2vec framework introduced in 2019 presents a novel approach for unsupervised
pre-training of neural networks to improve ASR [80]. The wav2vec model is designed to learn
meaningful representations of raw audio waveforms, which can be subsequently fine-tuned for
supervised speech recognition tasks. The idea behind wav2vec is to leverage the structure in raw
audio waveforms to learn high-level features that can benefit ASR. The model consists of a multi-
layer CNN that operates directly on the raw audio waveform, followed by a context aggregation
module that captures higher-level temporal dependencies across the audio signal.

The learning process is unsupervised and relies on a contrastive predictive coding (CPC) objec-
tive, an unsupervised learning objective designed to create valuable representations of data by
predicting future samples from past contexts in a contrastive manner [66]. CPC works in two
main stages: encoding and prediction. In the encoding phase, an encoder network (often a CNN
or RNN) processes input data (like audio waveforms or image pixels) into a sequence of latent
representations or embeddings. In the prediction phase, another network, the autoregressive
model, uses the context of past embeddings to predict future embeddings. Using a contrastive
loss, the predicted future embeddings are compared against the true future embeddings.

The contrastive loss is the key to CPC. It encourages the model to make the predicted future
embeddings as similar as possible to the actual future embeddings (positive samples) while
making them as dissimilar as possible from other embeddings in the batch (negative samples).
This is typically achieved through a softmax function, resulting in a loss that can be optimized
with gradient descent. By learning to predict future embeddings, the model implicitly learns to
capture valuable information in the embeddings about the structure and content of the data.
The hope is that these embeddings, learned without any task-specific supervision, can serve as
a helpful starting point for downstream tasks, reducing the amount of labeled data required or
improving performance.

This approach has been efficient for audio and speech data, as in the wav2vec model, but has also
been applied to other types of data like images and text. Once the unsupervised pre-training
is completed, wav2vec representations can be fine-tuned using supervised data for the target
ASR task. The fine-tuning process typically involves training a shallow classifier on top of the
pre-trained wav2vec representations to predict phonemes, characters, or words, depending on
the desired output granularity.

23

The original wav2vec paper demonstrated significant improvements in ASR performance on
the LibriSpeech corpus compared to models trained from scratch or with traditional feature
extraction methods, such as MFCCs or filter banks. The results highlighted the potential of
unsupervised pre-training for ASR and set the stage for further advancements of wav2vec models,
such as wav2vec 2.0.

3.3.2 wav2vec 2.0

wav2vec 2.0 builds upon the original wav2vec framework by introducing a novel contrastive loss
that operates in the latent space of quantized representations, effectively turning the unsuper-
vised learning problem into more of a supervised learning problem [10]. The model architecture
consists of two main parts: a feature encoder and a context network.

The feature encoder in wav2vec 2.0 transforms raw audio into a sequence of latent representations
or embeddings through a stack of convolutional layers, capturing local audio patterns. This
results in continuous representations encapsulating short-term audio characteristics, which are
discretized into a codebook of audio features.

The context network, a transformer using self-attention mechanisms, models the dependencies
within the input sequence to capture higher-level temporal dependencies across these represen-
tations. This acknowledges the relational nature of audio elements over time. Training focuses
on correctly classifying accurate quantized representations at each time step, contributing to
more efficient training and superior performance in downstream speech recognition tasks.

3.4 Unsupervised learning

Unsupervised learning operates, as the name suggests, without a labeled corpus. In this paradigm,
algorithms identify inherent patterns, structures, and relationships within the provided data,
which can be highly beneficial when extensively labeled corpora are hard to come by. The ap-
proach often involves learning vector representations from significant amounts of data to enhance
task-specific performance. This includes creating a pretext task, wherein the model predicts or
reconstructs aspects of the input data based on the remaining data. This process allows the
model to understand complex features within the data, thereby enhancing its understanding of
the data's underlying structure and context.

3.4.1 wav2vec Unsupervised

This novel approach introduced in 2021 enables ASR without reliance on transcribed data [9].
Its novelty lies in its fully unsupervised training approach, which allows the model to learn
directly from unlabeled audio data and random text data from an unrelated source in the same
language.

Two key components at the wav2vec-U framework are the feature encoder and the context
network. The feature encoder is a convolutional neural network (CNN) that directly processes
the raw audio waveform, creating a sequence of latent speech representations. The context
network is a transformer model that processes these latent representations, capturing the higher-
level temporal dependencies in the audio data.

The unsupervised training of wav2vec-U involves a two-step process. First, the model is pre-
trained on a large corpus of unlabeled audio data. In the pre-processing stage, wav2vec-U
performs various feature engineering steps on the speech representations. These include k-
means clustering of input frames, dimensionality reduction using principal component analysis
(PCA), merging adjacent PCA features with the same k-means cluster, and mean pooling of
features from adjacent timesteps to align with the length of phone sequences. This pre-training

24

process mirrors that of wav2vec 2.0, using a contrastive loss function that encourages the model
to correctly identify true future audio samples from negative ones. This helps the model learn
meaningful representations of the audio data.

The second stage involves fine-tuning the model in an unsupervised manner. This is achieved
by training the model to predict pseudo labels generated by running the pre-trained model on
the unlabeled data and using its predictions as 'ground truth.' This novel approach allows the
model to learn from its predictions without needing human-annotated labels.

The pseudo labels are iteratively refined over multiple training rounds using a generative ad-
versarial network (GAN) setup [34]. This adversarial process involves two main components: a
generator and a discriminator. The generator is the pre-trained wav2vec 2.0 model, fine-tuned on
the pseudo labels, while the discriminator is another transformer model trained to differentiate
between the pseudo and true labels.

The GAN procedure begins with the generator creating an initial set of pseudo labels from the
raw audio data. These pseudo labels serve as the 'generated' data in the GAN setup. The
discriminator is then trained to differentiate between these generated pseudos and true pseudo
labels. In turn, the generator is updated to fool the discriminator by making the pseudo labels
more similar to the true labels. This adversarial process results in gradually refining the pseudo
labels over several iterations. This GAN-based approach allows wav2vec-U to overcome the lack
of labeled data challenge. It enables the model to improve its pseudo labels iteratively, hence
its ASR task performance.

3.4.2 wav2vec-U 2.0

In this updated framework, findings suggest that the pre-processing step in wav2vec-U may not
be necessary, as it was discovered that a generator could effectively perform unsupervised ASR
without speech segmentation [56]. The generator can achieve the desired output frequency by
utilizing the raw speech representation sequence as input, which refers to the number of phones
predicted per second. Adjusting the stride of the convolutional neural network was identified
as an effective method to control the output frequency. This approach demonstrated consistent
results across various languages tested in the study. The downsampling process involved treating
consecutive outputs sharing the same most probable phone as a single output through random
sampling. In addition, replacing PCA-based dimensionality reduction with batch normalization
along the time axis of the wav2vec 2.0 features was also a viable alternative.

The input consists of the raw representations extracted from the wav2vec 2.0 model, eliminating
the need for a complex pre-processing pipeline. The end-to-end learning approach addresses the
limitations associated with hand-crafted pre-processing, as it directly learned the mapping from
speech representations to phone sequences. Since speech transcriptions were not available in the
unsupervised setting, the generator relied solely on adversarial training to establish the mapping
between speech representations and phone units.

However, it was observed that the generator could potentially fulfill the adversarial criterion
without learning the correct mapping by consistently generating the most common n-grams,
regardless of the input speech. To mitigate this issue, an auxiliary objective function was
introduced to facilitate self-supervised learning. This involved reconstructing pseudo labels
derived from the input audio using k-means clustering on MFCC features with 64 clusters.
Incorporating the auxiliary loss served a dual purpose: it provided content-based regularization
to ensure the generator's output maintained a close relationship with the input speech, and it
offered explicit guidance by approximating the underlying phone sequence with pseudo labels
derived from speech.

25

3.5 General ASR

Significant advancements have been made in ASR for native-spoken English. However, the
performance of state-of-the-art models in low-resource languages has received limited attention.
In a 2021 publication, researchers explored applying the wav2vec 2.0 model to address ASR
challenges in Mandarin, English, Japanese, Arabic, German, and Spanish [93]. It demonstrated
a notable 20% relative improvement compared to earlier studies. This investigation sheds light
on the potential of leveraging wav2vec 2.0 in diverse language settings and highlights its capacity
to enhance ASR performance in low-resource language scenarios.

While unsupervised learning in ASR is highly relevant due to the challenges posed by low-
resource languages, published literature exploring the use of wav2vec-U 2.0 to tackle such tasks
remains scarce. A notable exception is a late 2022 study using Uyghur, Kazakh, and Kyrgyz
audio [26]. Despite only having access to 1.8 hours of Kyrgyz data from the Common Voice
corpus [5], the study achieved a character error rate (CER) of 14.9%. This accomplishment
underscores the potential of unsupervised learning in handling ASR tasks in resource-constrained
domains.

Regarding robustness in unsupervised speech recognition, a study analyzed the application of
non-corresponding text data in the same language across frequently employed corpora in ASR
studies [53]. The research encompasses three mismatch scenarios: varying speech and text cor-
pora, using noisy/ spontaneous speech, and adjusting the volume of speech and text data. Exper-
imental outcomes demonstrated that domain mismatches reduced performance; however, pre-
training the self-supervised model on targeted speech data significantly improved the phoneme
error rate. The results from this research indicate a relationship between the quality of the
text input for the GAN and the resultant performance metrics. Notably, it was observed that
out-of-domain text data generally yielded inferior results, reinforcing the necessity of text data
from the same domain to achieve optimal performance.

A comprehensive survey conducted in 2022 investigated the landscape of self-supervised learning
approaches for ASR, encompassing more than 30 models developed since 2015 [59]. The study
provided a detailed analysis of existing benchmarks and examined the progress in achieving
efficient zero-resource learning. Notably, the survey highlighted the exceptional performance
of Wav2vec 2.0 in speech recognition and its broad applicability to various downstream tasks.
Furthermore, the wide accessibility of pre-trained Wav2vec 2.0 models and their widespread
adoption within the ASR community have made them the preferred choice for ASR applica-
tions.

3.6 ATC domain specific ASR

A study published in 2020 outlines the CleanSky EC-H2020 ATC02 project, which seeks to
develop an ASR-based platform for ATC environments using the Kaldi toolkit [45]. The Kaldi
toolkit is an acclaimed open-source software package for building advanced ASR systems, offering
a flexible and modular framework with a comprehensive range of tools, algorithms, and training
techniques [71]. Kaldi supports various ASR components, including acoustic modeling with
HMMs, GMMs, DNNs, language modeling, and decoding algorithms. In addition, its modular
design facilitates experimentation and the development of new algorithms. Over 170 hours of
ATCo speech data was used to train an array of state-of-the-art ASR models (at that time),
including several DNN architectures. The results demonstrated an average WER of 7.75%
across four databases. A 35% relative WER improvement was recorded on one test set using
a Time Delay Neural Network (TDNN) and Factorized TDNN (TDNN-F) system with byte-
pair encoding. The optimal system combination of CNN+TDNNF attained a WER of 5.0% on
ATCOSIM with a trigram language model.

26

A study deviating from the wav2vec 2.0-based research presented an ASR model devised ex-
plicitly for the air traffic control (ATC) domain, intending to transcribe ATC communications
to text and extract operationally pertinent information [8]. Based on the Deep Speech ar-
chitecture, the model exhibited a WER of 17% on a composite ATC communication test set.
Incorporating an N-gram language model alongside the acoustic model improved accuracy by
26%. Interestingly, transfer learning and parameter fine-tuning with a pre-trained model did not
augment accuracy. The results underscored the anticipated benefit of employing diverse data
sources during training, leading to more generalizable models with better accuracy on varying
test corpora.

Moreover, this research illustrates a Named Entity Recognition (NER) based call-sign extraction
method and a rule-based grammar system for extracting runway information. The authors
envision that increasing the training data and refining the ASR accuracy could bolster the
precision of call-sign extraction. They also suggest potential improvements for ASR models in
the ATC domain, such as better language models, semi-supervised learning, superior priors or
context, and increased quantities of transcribed ATC speech data. These enhancements could
facilitate various practical applications, from real-time safety monitoring to speech assistant
tools for air traffic controllers.

A key challenge in ATC is the limited available data. A recent study addressed this challenge
by employing transfer learning techniques and leveraging multiple Chinese speech corpora [54].
This research proposes an unsupervised pre-training strategy involving a masking technique to
diversify samples first utilized to extract speech representations from unlabeled data. This is
followed by transfer learning to fine-tune a pre-trained model for ATC-specific ASR tasks. This
two-step approach leverages common ATC terminology, using a joint corpus of existing and
newly transcribed samples to enrich the training data, supplemented by speed perturbation to
enhance the corpus quality. The effectiveness of this approach is validated using three real ATC
corpora, demonstrating significant improvement in ASR performance compared to traditional
supervised training methods. The study showed promising results, with an overall reduction
of Character Error Rate (CER) of 2% when compared to the supervised learning approach. In
future work, the authors propose integrating adversarial learning for real-time data augmentation
and unifying the framework with the ASR model.

Another recently published study proposes a framework combining Self-Supervised Learning and
Multi-Task Learning in a two-stage training paradigm [37]. It utilizes the wav2vec 2.0 model to
learn universal acoustic representations and then fine-tunes it through joint training with ASR,
Speaker Role Identification, and Language Identification tasks. An attention-guided feature
aggregation module is introduced to capture task-specific representations, while an uncertainty-
based loss combination strategy balances the loss weights for each task. The study uses a corpus
of 1032 hours of unlabeled real-world Chinese and English ATC audio. Experimental evaluation
demonstrates superior performance compared to competitive baselines across all tasks, with a
Label Error Rate (LER) of 2.6% for this novel framework compared to an LER of 13.9% for a
Conformer-based model.

Recent academic research has concentrated on exploiting large-scale, unlabeled speech data for
constructing robust E2E acoustic models through self-supervised learning, with the goal of fine-
tuning these models on downstream tasks. However, fewer studies have analyzed the impact
of domain shift, where data properties significantly diverge between the pre-training and fine-
tuning phases. A study published in late 2022 ambitiously addresses this domain shift scenario,
scrutinizing the resilience of pre-trained Wav2Vec 2.0 and XLS-R models on the novel domain
of ATC for downstream ASR tasks [94]. By benchmarking these models against open-source
ATC databases, the research reports relative Word Error Rate (WER) reductions of 20% to
40% compared to hybrid-based ASR baselines, achieved merely by fine-tuning E2E models with
limited labeled data. The study also highlights gender bias within ATCOSIM, with speech

27

models demonstrating systematically superior performance on female recordings. The results
highlight the potential of implementing pre-trained wav2vec 2.0 models for ASR tasks within
specialized domains.

Using pre-trained wav2vec 2.0 models for ASR tasks in the air traffic control domain underscores
the value of transfer learning and domain-specific fine-tuning. The versatility and adaptabil-
ity of wav2vec 2.0 models make them ideal candidates for a range of specialized ASR tasks,
including those in the air traffic control domain. Furthermore, the end-to-end nature of these
models, as evidenced by their superior performance compared to hybrid-based ASR systems,
emphasizes the importance of investigating and developing more streamlined and efficient ASR
architectures.

28

C ha pt er 4

Methodology

This chapter offers a concise description of the key aspects involved in our research of Automatic
Speech Recognition (ASR) technologies in the Air Traffic Control (ATC) domain, as described
in Chapter 3. In accordance with RQ1 described in Section 1.2, our methodology has been
meticulously designed to facilitate a thorough understanding of the multifaceted aspects asso-
ciated with the development and evaluation of ASR systems while ensuring the reliability and
reproducibility of our research process. The chapter is structured into seven primary sections:
Schedule, Setup, Corpora, and the four ASR Technologies used in our research.

The Schedule section delineates an exhaustive timeline outlining the project's various stages,
from initial planning and preparatory phases to data acquisition, implementation, and evalua-
tion. The timeline functions as a guiding framework, enabling seamless execution of the project
and the effective monitoring of progress throughout the research.

Subsequently, the Setup section expounds upon the hardware and software prerequisites neces-
sary for the execution of the research, detailing the specifications of computational resources,
programming languages, and tools employed.

In the Corpora section, we present the assortment of the data employed in our exploration.
These corpora, comprising proprietary speech data and transcriptions, were selected to represent
a broad spectrum of speakers, accents, and acoustic environments. This strategy ensures a
comprehensive evaluation of the ASR technologies under scrutiny.

The last sections delves into the deployed methodologies and algorithms of the four ASR tech-
nologies utilized throughout our research. By providing a lucid and extensive account of our
methodology, we aim to contribute to the progress of ASR research and inspire further explo-
ration within the field. This condensed exploration aims to provide a clear understanding of
how the research questions in Section 1.2 are comprehensively addressed.

4.1 Schedule

The workflow throughout the project was heavily centered around the agile methodology1,
meticulously designed to accommodate a structured approach to achieving results within the
time frame of the project. This approach, particularly efficient for managing complex projects,
involves recurring biweekly meetings with the client and the supervising professor, fostering a
space for continuous presentation, integration, feedback, and dynamic adjustments.

Our workflow is cyclical, divided into a literature phase, two distinct loops, and a documentation
phase, each serving a unique purpose in the overall project life cycle as shown in Figure 4.1.

'https://agilemanifesto.org

29

The literature phase is concerned with project planning and conducting exhaustive literature
research. This phase aims to set the project's scope and direction, taking into account the goals
and requirements set academically and by the client. During this stage, a rigorous literature
review is conducted to ascertain the state-of-the-art in the field of ASR and map relevant corpora
utilized.

Upon completing the literature phase, we transition into loop 1, which focuses on data prepa-
ration, framework setup, implementation, and evaluation of the selected supervised and self-
supervised technologies. In this loop, the theoretical knowledge garnered from the previous
stage is transformed into tangible custom executables, enabling learning sequences with hyper-
parameter testing and model evaluation.

In alignment with the established pattern, loop 2 delves into an unsupervised generative ap-
proach to the subject matter, leveraging the self-supervised models utilized in loop 1. Owing
to the intricate nature of unsupervised learning and the early stage of the framework's devel-
opment, the central objective revolves around generating outcomes that can be benchmarked
against prior work, facilitating a comprehensive evaluation, and fostering continuous improve-
ment in the development process.

The three-phase process culminates in an extensive documentation effort comprising two deliv-
erables: a conference paper and a Master's thesis. The paper concisely presents the project's
aims, discoveries, and outcomes. The more extensive thesis delves into granular details of the
project's stages. It serves as a comprehensive chronicle of the project's evolution from its gen-
esis to fruition, underscoring the meticulous and adaptable approach that steered its trajectory
toward success.

30

Master thesis

Biweekly meetings

Litterature

Project planning

Research

SOTA

Loop 1

Prep & setup

DeepSpeech2

Transformer

Downstream

Results

Loop 2

Unsupervised

Results

Documentation

Conj. paper

Master Thesis

Project progress 2022-2023
2022 2023

Aug Sep Oct Nov Dec Jan Feb Mar Apr May June

y

y

y

y

>

Figure 4.1: Gantt chart showing the projected loops and sprints outlining the timeline of the
thesis project.

31

4.2 Setup

In order to successfully execute the project loops, the hardware and software setup is of paramount
importance. In this section, we describe the key elements and considerations for creating a re-
liable and efficient environment for project implementation. The setup process is divided into
two sub-sections: Hardware and Software.

The Hardware sub-section outlines the essential components and specifications to ensure optimal
performance and seamless project execution. These components provide a solid foundation for
the various project stages and minimize potential bottlenecks.

The Software sub-section delves into the necessary tools and applications that support the
project's requirements and goals.

4.2.1 Hardware

In Automatic Speech Recognition (ASR), the computational requirements for development and
training are substantial, necessitating robust hardware configurations, and resources are es-
sential to facilitate the experiments described in our research. Throughout the process, most
computational activities have been conducted on resources provided by the Faculty of Computer
Sciences, part of 0stfold university college (Hi@) (Figure 4.2).

The group had shared access to a dedicated machine-learning node containing two NVIDIA AlOO
Tensor Core graphics processing unit (G P U) s , each boasting 80 GB of RAM. The AlOOCPUs,
based on NVIDIA's Ampere architecture, are optimized for large-scale performance, making
them ideal for handling the complex tensor operations needed in machine-learning categories
that require substantial resources, like Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Generative Adversarial Networks (GAN), and Transformers.

Furthermore, the high memory allowance of 80 GB RAM per G P U is particularly beneficial
for processing large corpora, enabling faster data manipulation and model training. This con-
figuration is complemented by 256 AMD EPYC 7763 processors3. These processors provide
a substantial boost in processing power. In addition, the high core count allows for efficient
parallel computation and multitasking, essential for the data-intensive workloads in machine-
learning and ASR domain. However, it should be noted that the ASR frameworks utilized in our
experiments would not be achievable on the hardware of standard consumer-grade quality.

VPN

2 x NVIDIA A100
Tensor Core GPUs

gateway
node

work node L
Figure 4.2: Illustration of the hardware setup.

fhttps://www.nvidia.com/en-us/data-center/a100/
https://www.amd.com/en/products/cpu/amd-epyc-7763

32

4.2.2 Software

In the course of our research, we utilized a range of different tools to conduct experiments across
various project phases. Python emerged as the dominant programming language throughout
the project. For pre-processing and post-processing tasks, we relied on Jupyter Notebooks5 and
the JetBrains Dataspell° integrated development environment (IDE), leveraging the strengths
of each tool to achieve our objectives. Notebooks, with their cell-based execution and inline
visualizations, proved to be the ideal choice for gaining an overview of the corpus, manipulating
or structuring da ta , and producing superior post-processing in terms of visualizations.

Due to the resource-heavy nature of ASR implementation, testing, and training, only pre-and-
post-processing was conducted on low-resource machines. Everything else must be utilized on
hardware similar to that described in 4.2.1. While using the setup as shown in Figure 4.2 enabled
the runtime of the frameworks, it also offered several challenges in terms of connectivity, general
workflow, development, and testing. While remote accessibility through IDEs is possible, it
proved useless due to the two-step login setup paired with a virtual private network (VPN)
creating environment latency and unstable connectivity. The user interaction was reduced to a
Terminal platform with command-line execution and minimalistic capacities using the embedded
IDE provided by the UNIX7 operating system. This has contributed to a more time-consuming
process with less dynamic development functionality and overview.

I

Figure 4.3: Nano and Notebook IDEs interface

For environment and package management, we utilized Anaconda8 to create enclosed environ-
ments for each framework implemented. The dependencies needed in each environment can
often be a puzzle to assemble due to poor documentation, versions, and variations in hardware
configurations.

4.3 Corpora

Data is the foundation of machine learning, allowing algorithms to learn and adapt to vari-
ous domains. In supervised learning, labeled data helps models establish relationships between
input and output variables, while unsupervised learning relies on data to identify patterns or
associations. The quality, quantity, and diversity of the data impact model performance, gen-
eralization, and prediction capabilities. Well-crafted machine learning architectures paired with

*https://www.python.org
'nttps://jupyter.org
°https://www.jetbrains.com/dataspell/
7https://www.opengroup.org/membership/forums/p1atform/unix
*https://docs.anaconda.com

33

few samples or low-quality data will reflect that in the output. While many free high-quality
corpora exist, it becomes gradually more difficult to access in domains where labeling costs are
high and in the research field with a narrow audience like air traffic control (ATC). This lim-
itation is not present in general automatic speech recognition (ASR) where many options are
publicly available.

Furthermore, the scientific community has adopted the large-scale LibriSpeech [68] as the pri-
mary benchmark corpus to measure state-of-the-art. It consists of 960 hours of English speech
data with corresponding transcriptions. Divided into two sub-corpus, consisting of a clean and
noisy version, to facilitate the development of ASR models under various conditions. The clean
sub-corpus comprises 460 hours of relatively clean recordings. In contrast, the noisy sub-corpus
consists of 500 hours of recordings with more challenging listening conditions due to factors such
as varying recording quality, background noise, and speaker variability. The corpora include
speech from a diverse range of speakers, with more than 2300 speakers in total, ensuring a vari-
ety of accents, speaking styles, and ages. Through results on LibriSpeech indicates the current
best-performing research.

General models will not apply to the ATC domain due to their distinctive linguistical charac-
teristics. To address and get an overview of available corpora in the domain-specific area, we
created an overview shown in Table 4.1.

Table 4.1: ATC specific corpora.

Corpus Audio (hours) Samples S.rate (KHz) Published Ref.
Hiwire 28.3 32296 16 2007 50€/3500€ (81]

ATCOSIM 10.6 10078 32 2008 Free 142]

ATC Complete 70 8 1994 1150$ (31]

ATC Communications 20 8 2011 Free (82]

With no defined ATC benchmark corpus and overall limited access to relevant data. We agreed
with the client and supervisor to use the ATCOSIM corpus and purchase the Hiwire corpus to
create the data platform for the research.

ATCOSIM and Hiwire are two corpora designed explicitly for the research and development of
Automatic Speech Recognition (ASR) systems in the Air Traffic Control (ATC) domain. Both
corpora focus on ATC communications, providing valuable resources for exploring and develop-
ing ASR systems tailored to the unique challenges presented by the ATC environment.

The ATCOSIM corpus comprises clean simulated ATC operator speech. The corpus was cre-
ated in collaboration with professional air traffic controllers and covered three different English
accents: German, Swiss German, and Swiss French. ATCOSIM contains 10.6 hours of speech
data, with 8099 ATC commands, and has been manually transcribed to ensure accurate anno-
tations. The corpus is structured to represent various ATC communication scenarios, such as
departures, en-route flights, and arrivals. It includes environmental noise and radio interference
to emulate real-world control room conditions.

The Hiwire corpus, on the other hand, focuses on cockpit noise and non-native speech. The Hi-
wire corpus comprises approximately 30 hours of speech data simulated from authentic en-route
ATC communications between air traffic controllers and pilots. The corpus covers six different
accents: English, Spanish, French, German, Italian, and Greek. A key feature of the Hiwire
corpus is that it includes four levels of realistic environmental noise and radio communication
interferences, such as co-channel speech, which are inherent to ATC communications. The cor-

34

pus has been annotated with transcriptions, and the transcriptions have been time-aligned to
facilitate the evaluation of ASR systems. In addition to the speech da ta , Hiwire also provides
valuable metadata, such as aircraft types, flight levels, and positions, which can be leveraged to
enrich the context for ASR systems.

In comparing the characteristics of the ATCOSIM and Hiwire corpora, several key differences
and similarities can be observed. Both corpora focus on ATC communications and have non-
native English-speaking operators/pilots catering to a diverse range of English accents, which
reflects the global nature of air traffic control.

However, Hiwire differentiates in the number of accents represented, corpus size, and focus on
environmental noise. The four different levels of infused noise contain identical communications
and transcripts. Even though the corpus is larger than ATCOSIM, it contains the same sen-
tence compositions multiple times. The corpora also differentiate in sequence length and word
distributions, which indicates the complexity of the data .

30

25

15

5

0

11.29 word avg .
ATCOSIM

I

14

12

0 2 0 0 400 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

8

6

4

2

0

3.04 word avg .

I HWIre

J

0 2 0 0 0 4000 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0
Transcript count Transcript count

Figure 4.4: Word distribution per transcript in ATCOSIM and Hiwire corpora

The ATCOSIM corpus exhibits an average word distribution of 11.29 words per transcript, while
the Hiwire corpus contains only 3.04 words per transcript, as illustrated in Figure 4.4. The word

11.29 3.71, indicating that the ATCOSIM corpus has aboutdistribution ratio is approximate 3.04

3.71 times more words per transcript in comparison to the Hiwire corpus. The disparity between
the two corpora is further demonstrated in Figure 4.5, where an average ATCOSIM sentence
contains 63.67 words, and the Hiwire corpus averages 16.56 words.

The word distribution ratio, which is approximate 16.5663.67 3.84, suggests that the average word
in the ATCOSIM corpus is longer than in the Hiwire corpus. ASR data complexity can be
classified into two main aspects: audio quality, which pertains to sampling rate and noise, and
content complexity, which refers to the number of words spoken in a sequence.

35

300 200
63.67 avg 0 0

16.56 avg

• ATCOSIM 175 0 HiWire
250

150

0 0
0 Oo

200
125 0

0 0

R150 100
0

0
00

100
75 0

50
0 0

50
25

0

0 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Transcript count Transcript coun1

Figure 4.5: Characters distribution per transcript in ATCOSIM and Hiwire corpora

Both corpora possess distinct characteristics, advantages, and constraints. The emulated data
should ideally be substituted with actual ATC data for research purposes; however, due to
restricted accessibility, this was not an option.

4.3 .1 Preprocess ing t h e corpora

To attain a consistent representation of the corpora's audio and transcripts, we implemented a
systematic pre-processing procedure to harmonize the sample rate of the audio files and achieve
equivalent character representations across both sets. Moreover, we devised a unified file struc-
ture, incorporating essential metadata while maintaining references to the associated audio files.
This approach ensures congruence in the representation of the speech data and facilitates effi-
cient management and streamlined access to the corpora during subsequent stages of analysis
and modeling.

4.3.1.1 Structure

To effectively manipulate and analyze the information contained within the two corpora, it was
essential to establish a coherent and streamlined structure that would promote seamless data
integration throughout the project's duration. Figure 4.6 depicts the initial architecture of the
source data upon acquisition.

ATCOSIM HiWire

Transcriptions wav Clean

Sector ID Sector ID FR GR IT SP

Speaker ID Speaker ID Speaker ID Speaker ID Speaker ID

list.txt list.txt list.txt

Figure 4.6: Corpus original structure

36

Streamlining the data architecture and facilitating its integration into Python9 ecosystems,
we consolidated the information into a singular dataframe!° comprising audio mappings and
pertinent features relevant to the project's objectives. Additionally, we extracted the Waveform
Audio File (WAV) and structured them within a unified directory, illustrated in Figure 4.7.

Custom structure

Audio Folder Dataframe

I
+

wav

Figure 4.7: Custom structure

The data frame adheres to the Boyce-Codd Normal Form (BCNF) principles, as outlined in the
seminal paper by Boyce and Codd [22]. This compliance facilitates seamless integration with a
database infrastructure, potentially benefiting future data collection, feature enhancement, or
dynamic model training. The corpus comprises 40,000 records, which are organized in four
columns: file path, transcript, corpus, and sub-corpus.

4.3.1.2 Audio preprocessing

The Waveform Audio Files (WAV) supplied in the two corpora exhibit sampling rates of 16
and 32 kHz, respectively. To ensure uniformity and facilitate the analysis of these discrete-time
signals, it is necessary to harmonize their sampling rates. This can be achieved by employing
either upsampling or downsampling techniques. While there is no universally "best" sampling
rate, 16 kHz is often considered a good choice for ASR for several reasons.

In the Nyquist-Shannon sampling theorem, a signal can be reconstructed without loss of in-
formation if it is sampled at a rate at least twice the highest frequency of interest [64]. Most
speech energy lies below 4 kHz, and the human auditory system is most sensitive to frequencies
between 1 kHz and 4 kHz [60]. Therefore, a sampling rate of 8 kHz should be theoretically
sufficient to capture the perceptually relevant components of speech. However, in practice, a
higher sampling rate, such as 16 kHz, is preferred to avoid aliasing artifacts and provide more
accurate spectral resolution, resulting in better ASR performance.

°https://www.python.org
'nttps://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

37

Original Signal (32kHz)
15000

12500

10000

7500

5000

2500

0

- 2 5

- 5 0

- 7 5

- 1 0 0

Time (s)

8000
Downsampled Signal (16kHz)

6000

4000

2 0 0 0 :

0

40

20

0

- 4 0

Time (s)

Figure 4.8: Spectrogram illustration of downsampling

In order to downsample the ATCOSIM corpus, we processed the WAV signals represented by
the samples x[n] with a sampling rate of 32 kHz. Our goal was to downsample the signal to
a sampling rate of 16 kHz. To achieve this, we performed the following steps. First, we use a
low-pass filter to remove the high-frequency components from the original signal above 8 kHz
(half of the target sampling rate of 16 kHz). This is done to prevent aliasing, which can cause
distortions in the downsampled signal. The filter function H(w) (Equation 4.1) can be expressed
as:

H(w) =
1
0 otherwise

(4.1)

Here, We is the cutoff frequency, and the filter will only allow frequencies within the range of
-w to We to pass through.

After filtering, we have a new signal represented by the samples y[n]. To downsample, we take
every other sample from the filtered signal (Equation 4.2):

z[n] = y[2n] (4.2)

The resulting signal, z[m], has a sampling rate of 16 kHz. This is best illustrated in Figure 4.8
showing the spectrograms of one ATCOSIM sample at 32 KHz and 16 KHz.

4.3.1.3 Text preprocessing

In order to achieve consistency and uniformity in text sequence input representation, all corpus
transcriptions were subjected to pre-processing. This process entailed converting all alphabetic
characters to lowercase and removing any special characters not belonging to the alphabet. This
measure effectively reduced the unique character count for the Hiwire transcripts, which initially
comprised uppercase, lowercase, and special characters. Consequently, this reduction impacts
the training cost and the output probability distribution at the output layer. Furthermore,
samples containing missing audio files or empty transcriptions were omitted from the corpus to
avert data corruption and input uncertainty.

Subsequently, the new custom structure consists of a pre-processed collection of ATCOSIM and
Hiwire data . To get comparable results across all models, we partitioned the custom corpus into

38

training, validation, and testing sets at an overall level and a sublevel. That means we can work
with the data as a combined unit or separately as ATCOSIM and Hiwire. We used the split key
of 70%, 20%, and 10% distributions, respectively. The distribution resulted in an overall split of
29299/8371/4185, ATCOSIM sub-split of 6677/1907/954, Hiwire sub-split of 22622/6463/3232,
and each of Hiwire clean/LN/MN/HN with 5655/1616/808 as shown in Figure 4.9. The samples
were selected randomly to ensure a fair representation of the data. This partitioning strategy
allowed us to establish a robust evaluation framework across all the implemented models.

Customcorpus

ATCOSIM • HiWire

I

Train/Val/Test I 29299/8371/4185 Clean LN MN HN

TrainNal/Test I 6677/1907/954 TrainNal/Test I 22622/6463/3232 TrainNal/Test I 5655/1616/808]

Figure 4.9: Train/validation/test partition

4.4 Deep speech 2

In order to deepen our understanding of ASR technology and gain practical insights, we im-
plemented an architecture paralleling the characteristics of Deep Speech 2, one of the pivotal
end-to-end architectures employed in the transition from HMMs to DNNs as described in Sec-
tion 3.2.1. The informative guide provided by the official Keras website [15] served as a vital
resource.

A vocabulary array is initially constructed during the transcript preprocessing stage, encompass-
ing all distinct characters in the corpus transcript. In our case, the vocabulary size amounts to 30
units, including 26 alphabetical letters, numerical digits 1, 2, and 3, and a whitespace character.
These units are then mapped to unique integers that function as the models' output.

The initial script incorporates the STFT as the feature representation for the CNN layer in the
model. However, considering the demonstrated efficacy of Mel-scaled spectrograms and MFCCs
in capturing significant acoustic characteristics in speech data, we have included these alternative
features as potential candidates for the final training phase of the model. Given that the sample
rate is set at 16 000, in order to keep within the recommended window size of 20-25ms and step
size of lOms for ASR, these parameters do not exceed 400 and 160 (Equation 4.3) in any of the
training runs for this model.

window size
400

•100016000
25ms

step size
160

•100016000
10ms

(4.3)

39

As depicted in Figure 4.10, this model adheres closely to the original Deep Speech 2 architecture.
The architecture comprises two CNN layers, each having 32 filters. The initial layer employs a
stride of 2, yielding a feature map that is half the dimension of the original. This halved feature
map is then used as the input to the second CNN layer. The model's RNN segment incorporates
five bidirectional layers, each having 1024 units. The output of the RNN is then fed into a dense
layer, the unit count of which mirrors that of a single RNN layer (1024).

The output layer of the model has a dimension of 31 and uses the softmax activation function
to predict an output from a single time series step input. The potential output is a token drawn
from the pre-defined vocabulary (containing 30 classes) or the special "blank" token. This last
token is utilized by the CTC loss function, described in Section 2.4.2, to represent silence or an
additional special character outside the established vocabulary.

STFT CNN RNN DENSE CTC LOSS

Layer 1 GRU 1024 units Greedy search
32 filters 5 layers

MEL 11 x 41 kernel size Bidirectional
2 x 2 stride 1024 units per layer

Layer 2

MFCC 32 filters
11 x 21 kernel size
1 x stride

Figure 4.10: Overview of the DNN and its main components.

Alignment and decoding are the two primary functions the CTC loss serves. Alignment involves
mapping the sequence of predicted labels produced by the model for each time step to the
sequence of true labels, or ground truth transcript, without needing a pre-defined alignment.
This is crucial in ASR, where the exact correspondence between audio features and textual
characters is typically unknown.

During the training phase, the CTC loss function plays a pivotal role. It contrasts the predicted
sequence against the ground truth transcript, in this case, "lufthansa". In order to compute
the loss, the algorithm computes the total probability of all possible alignments between the
sequence generated by the model and the ground truth. This computation accounts for the
reduction of 'blank' labels and the combining of identical sequential characters, thereby enabling
the model's output sequence " lluffthaannsaaaa" to be compacted to align with the ground
truth, "lufthansa" (Figure 4.11).

40

t+1 t+2 t+18 t+19 t+20

I u f f t h a a n n s a a a a

l u f t h a n s a

Figure 4.11: CTC decoding the word "Lufthansa" using greedy search with Mel spectrogram as
features.

At the commencement of training, the ASR model tends to generate sequences far from the
intended target. For example, the model might initially generate a sequence such as "
hhhanccbbaasaa" in response to the mel-spectrogram of "lufthansa". The chief objective of
the training process is to direct this model toward generating coherent and accurate predic-
tions. The model is presented with pairs of Mel spectrogram inputs and their corresponding
ground t ru th transcriptions during training. After each input is processed, the model generates
a predicted output sequence. It is at this juncture that the CTC loss function is invoked.

This function takes as input the ground t ru th , and the model's current predicted sequence then
computes the total probability of all possible alignments between these sequences, facilitated
by the removal of 'blank' labels and merging repeating characters. The loss function further
measures the divergence between the most probable alignment and the ground t ru th , employing
the negative logarithm of the conditional probability of the ground t ru th given the predicted
sequence. This procedure yields a scalar value representing the current prediction's error.

An essential phase in refining the model's predictive capabilities involves minimizing this loss.
This is accomplished by backpropagating the error information through the model, leading to
an adjustment in its parameters. This iterative process incrementally enhances the model's
transcription accuracy. Consequently, over a period of time and given adequate training data ,
the model's outputs gradually transition from initially seeming nonsensical to sequences that
closely mirror meaningful utterances like "lufthansa".

Once the model has been fully trained, it enters the inference phase, wherein it interprets
an STFT spectrogram, mel-spectrogram, or MFCC input to generate a sequence that may
include 'blank' labels. Decoding techniques such as greedy (best path) decoding or beam search
transform this sequence into a legible transcript.

Greedy decoding involves selecting the label with the highest probability at each timestep (Figure
4.12), followed by the 'blank' labels being removed and any recurring characters being merged.
Beam search decoding maintains a track of multiple hypotheses at each timestep. It explores
extending each hypothesis with every possible label and retains only the top few based on their
total probabilities. Once a specific condition is met, such as reaching the end of the sequence
or when all active hypotheses surpass a specific score, the hypothesis with the highest overall
probability is selected.

While Beam search decoding is generally more computationally intensive, it often yields more
accurate results, particularly for longer sequences or when the model's confidence in its pre-

41

dictions is relatively low. Conversely, greedy decoding is more computationally efficient and
straightforward, making it a suitable choice when speed and simplicity need to be prioritized,
especially when dealing with shorter sequences where the disparity in accuracy between the two
methods may be insignificant. Given the type of corpora utilized in this study, both containing
short audio samples and with transcripts averaging three words for Hiwire and eleven words for
ATCOSIM (Section 4.3), the added computational cost and complexity of Beam search decod-
ing might not significantly enhance performance, and when considering time constraints and the
shared resources available to us, the greedy search decoding was chosen.

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 1 0 t + l l t + l 2 t + 1 3 t + l 4 t + 1 5 t + 1 6 t + l 7 t + 1 8 t + 1 9 t + 2 0

I 0.89 0.73

I

I

I
II
I

I

I

0 . 0 3 0.06

0 .05 0.06

0 . 0 2 0.01

0 .05 0 . 0 2

0 .05 0 . 0 2

0 .05 0.06

0 . 0 3 0 .04

0 . 0 3 0 . 0 2

0 .04 0.06

0 . 0 2 0.0

0.01 0 . 0 2

0 .05 0 . 0 2

0 .05 0.01

0.01 0.06

0 . 0 2 0.0

0 .04 0.06

0 .04 0.01

0 .05 0.0

0.01 0 . 0 3

0 .05 0 .04

0 . 0 3 0 . 0 3

0.04 0.0

0 .02 0 .03

0.06 0.03

0.01 0.03

0.01 0.03

0.06 0.04

0.04 0.05

0.03 0.06

0.05 0.01

0.0 0.05

0.0 0.05

0 .03 0.01

0.01 0.06

0 .02 0.06

0.04 0.01

0.05 0.0

0.04 0 .03

0.05 0.01

0.05 0.06

0.0 0.06

0.04 0.01

0.81 0.01 0.0 0 .04 0.06 0.0 0 .04 0 .05 0.05 0.07 0 .02 0.01 0.0 0 .04 0.0 0 .05 0 .05

0 .01 0.03 0.010.01 0.01

0 . 0 2 0.01

I
I
I
I
I
I
I
I

0 .05 0 . 0 2

0 . 0 2 0 . 0 2

0.04 0.01

0 .07 0.04

0.06 0.06

0 .02 0.05

0.0 0 .02

0.04 0.01

0.01 0.04

0.06 0.05

0.01 0.0

0 .03 0 .07

0.01 0.01

0 .05 0 .04 0.04

0.01 0 .07

0 . 0 2 0 . 0 3 0.05

0.03 0.03

0.05 0,01

0.04 0.06

0.04 0.04

0.04 0.01

0.01 0.03

0.01 0.04

0.06 0.0

0 .03 0.06

0 .03 0.03

0.0 0 . 0 2

0.05 0.06

0.06 0 .05

0.06 0 . 0 3

0.05 0.01

0.0 0 .04

0 ,03 0 .04

0.01 0.06

0.05 0 .05

0.06 0 . 0 2

0.05 0 .05

0.03 0.01

0,05 0 .05

0.01 0.74 0.660.740.66
0 .02 0.01

0 .04 0 . 0 2

0.05 0.01

0 .02 0 . 0 3

0,05 0 .05

0 .04 0 . 0 2

0.01 0 . 0 3

0 ,02 0,01

0.03 0 .04

0.05 0.01

0.01 0 .05

0.06 0 .05

0.01 0 .04

0.06 0 .04

0.890.670.89 0.67

0.03 0 . 0 3

0.01 0 .04

0.05 0.06

0 .04 0 . 0 7

0,06 0,0

0 . 0 2 0 .02

0 .02 0.01

0.06 0 . 0 3

0.01 0 .05

0 ,04 0 .05

0,06 0.06

0.05 0 . 0 2

0.01 0 .04

0,06 0 .04

0,03 0,85 0.00.85

0.04 0 .04

0 . 0 2 0.03

0 .01 0.06

0 . 0 3 0.03

0 .01 0.01

0 . 0 2 0.06

0 . 0 2 0 .04

0 . 0 3 0.9

0 .05 0.01

0 .05 0.06

0 .04 0.03

0 . 0 7 0 .04 0 .05 0.03

0 .05 0 .05

0 .05 0.01

0 .05 0.03

0 .04 0 . 0 2

0 .05 0 . 0 2

0 .01 0.01

0 .01 0 . 0 2

0.760.76 0 .04

0,0 0 .05

0.04 0.01

0.720.640.72 0.64

0.03 0.05

0.01 0,06

0,04 0,03

0.03 0,06

0.01 0 ,02

0.03 0.04

0 .02 0 .02

0 .02 0.05

0 .02 0.01

0.05 0 ,02

0.01 0.03

0.06 0.01

0 .02 0.04

0.06 0.01

0.06 0 .02

0.04 0 ,02

0.01 0.05

0.03 0.0

0.01 0 .02

0 .02 0.05

0.0 0.05

0 .04 0 .02

0 ,02 0.05

0 ,04 0.05

0 ,02 0 .02

0,01 0.03

0.0 0.05

0 .04 0.05

0.05 0.01

0 .04 0.0

0.0 0 .06 0.05

0.01 0.06 0.06

0 . 0 2 0 .04 0.05

0 .05 0 .04 0 .02

0 ,04 0.03

0,01 0,06 0.03 0 .04

0.03 0.05

0.820.720.82 0.72

0.01 0.04

0.06 0.01

0.03 0 .02

0,06 0.06

0.06 0.03

0.05 0 .02

0,03 0 ,02

0.06

0 . 0 2 0.06 0 .05 0 .05

0 .04 0,0

0 .03 0 .04

0.0 0 .05

0.06 0 . 0 3

0.0 0,01

0.01 0 . 0 2

0 .04 0 .05

0.01 0 . 0 3

0 .04 0.01

0,06 0.01

0.06 0.06

0.01 0 .05

0.06 0 . 0 3

0 .02 0 .05

0.0 0.01

0.01 0 .05

0,03 0 . 0 3

0.850.85 0 . 0 2

0.03 0 .05

0.06 0,06

0 .05 0 . 0 3

0 . 0 2 0.01

0 . 0 2 0 . 0 2

0 . 0 2 0 . 0 2

0 ,05 0 .04

0 .05 0 . 0 2

0 . 0 7 0 .05

0 .05 0 .04

0.0 0 .05

0.01 0.04 0.05 0.03 0 . 0 3 0.01 0.0 0 .04 0 .05 0 .03 0,03 0,06 0.04 0,06

0.06 0.04 0.03 0 . 0 2 0 .02 0.01 0 . 0 2 0.01 0.06 0.03 0.06 0.03 0.05

0.01 0.0 0.0 0.0 0 .06 0.01 0 . 0 2 0 .01 0.03 0.05 0 ,02 0,05 0.05 0 ,02

0.01 0 .02 0.05 0 .04 0.0 0 .06 0 .01 0 .04 0 .02 0.06 0.03 0.0 0.01

0.06 0 .07 0.03 0.03 0 .05 0.05 0 .04 0 .05 0.06 0.04 0 .02 0.01 0.04 0.06

0 .02 0.0 0.04 0,01 0 .05 0.0 0 . 0 2 0 . 0 3 0 . 0 2 0 .02 0.01 0.06 0 .02 0 .04

0 . 0 2 0 . 0 2

0 . 0 2 0 .05

0 . 0 7 0 . 0 2

0 . 0 2 0 .05

0 . 0 7 0.01

0.01 0 .05

0 . 0 2 0 .05

0 .05 0 .04

0.01 0 . 0 3

0 . 0 3 0 .04

0 . 0 3 0 . 0 3

0 . 0 3

0 .05

0 .05

0 . 0 2

0 .05

0 . 0 3

0 .05

0.01

0 .04

0 .04

0 . 0 2

0 .05

0 .05

0 . 0 3

0 . 0 2

0 . 0 3

0 .05

0.0

0 .04 0.0

0,01 0 .04 0.0 0 . 0 2

0 . 0 2 0 .04 0 .04 0.01

0.0 0 .04 0 .04 0 .04

0 .05 0 .04 0 .04 0 . 0 2

0,0 0.0 0.0 0 . 0 3

0 .04 0.0 0 .05 0 . 0 3

0 .03 0.01 0.01 0 .02 0 . 0 2 0 .04 0 . 0 3 0 .04 0 .04 0.04 0.05 0.01 0.06 0.0 0 .06 0 . 0 2 0 . 0 2 0 .05

0.04 0.06 0.04 0,05 0 .05 0,05 0,01 0 .01 0.03 0.03 0.01 0 ,02 0 .02 0.01 0 .05 0 . 0 3 0 .04 0 . 0 2

Figure 4.12: Greedy decoding of the word "Lufthansa" from simulated softmax outputs.

In this model, the keras.backend.ctc_batch_cost function'] is utilized. Despite sparse documen-
tation, it is established that this function applies the C T C loss algorithm to each batch element
by taking the following four tensor inputs:

• y true, encompassing the ground t ru th labels.

• y pred, representing the predictions or softmax outputs.

• input length, indicating the sequence length for each batch element in y pred.

''https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/keras/backend/ctc_batch_cost

42

• label length, storing the sequence length for each batch element in y true.

Before training can commence, the corpora must be processed to fit the TensorFlow framework.
Each audio and corresponding transcript sample is passed through a function producing a tensor
representing the selected feature and a tokenized version of the transcript. This tensor is subse-
quently fed into the model as the input layer, with a dimensionality equivalent to half the total
FFT bins plus one. For instance, if the number of FFT bins is predetermined as 512, the input
dimension would be + 1 257. For the mel-scale features, the input dimension matches the
number of mel-bands (60, 70, 80). In the case of MFCCs, the input size depends on including
delta and delta-delta coefficients, resulting in an input dimension of either 13 or 39 (13 MFCCs,
13 delta coefficients, 13 delta-delta coefficients).

In the initial stages of exploring the model performance using these three features, we noticed a
clear difference in the time each training pass would take. In Table 4.2, using a R::!6-second audio
sample, the difference in the amount of data used for gaining roughly the same result becomes
more apparent, and also why MFCCs as feature extraction is preferable, even with delta and
delta-delta coefficients added, as its cost is vastly less than that of waveforms or STFT. Still, as
an experiment, we continued to use both STFT and Mel-bands as features to compare WER in
the initial phase of training the model configurations.

Table 4.2: Deep Speech 2, feature size comparision

Type FFT bins Mel-bands Array shape Values total

Waveform (92884, 1) 92 884

STFT 512 (257, 581) 149 317

1024 (513, 581) 298 053

2048 (1025, 581) 595 525

Mel 60 (60, 581) 34 860

70 (70, 581) 40 670

80 (80, 581) 46 480

MFCC (13, 581) 7 553
(39, 581) 22 659

In the preliminary trials aimed at identifying the most optimal features, the number of filters and
units remained consistent with those detailed in the exemplary script. Hyperparameter tuning
involved adjusting window and step size, the number of FFT bins, mel-bands, batch sizes, and
dropout rates. These variables were tested in various configurations in a training loop, each
lasting for 50 epochs, conducted over two weeks commencing in late January 2023. The top 5
performing configurations of each feature extraction method are listed in Tables 4.3, 4.4 and
4.5.

43

Table 4.3: Deep Speech 2, STFT as features

corpus

ATCOSIM

Hiwire clean 65%

batch size

50

32

50

4

50

32

50

32

dropout

65%

80%

50%

w S1Ze step

400 160

400 160

256 128

400 160

FFT bins WER (test)

512 29.4%

33.3%

1024

512

99.9%

100%

100%

512

1024

512

1024

24.1%

28.6%

30.0%

38.2%

51.7%

Table 4.4: Deep Speech 2, Mel-scale as features

corpus

ATCOSIM

Hiwire clean

32

batch size

50

4

32

50

corpus

ATCOSIM

Hiwire clean

batch size

4

50

dropout

65%

70%

65%

65%

dropout

70%

65%

w S1Ze

400

400

w S1Ze

step

160

160

F F T bins

1024

1024

F F T bins

Mel bands

60

70

60

80

60

60

70

60

80

60

Table 4.5: Deep Speech 2, MFCC as features

Mel bands

WER (test)

42.1%

64.3%

97.6%

98.3%

99.5%

18.3%

20.4%

22.6%

30.1%

34.9%

WER (test)

400

step

160 1024 70 22.1%

60 29.6%

80 38.7%

4

16

80%

65%

70 41.3%

70 44.0%

50 65% 400 160 1024

32

256

400

128

160

512

1024

80

60

80

70

60

11.3%

17.1%

22.7%

22.3%

24.9%

44

In light of the findings gathered during the feature method examination, it was determined
that using MECCs in conjunction with delta and delta-delta coefficients would represent the
most viable strategy for the ensuing phases of the Deep Speech 2-inspired model. Accordingly,
the model underwent minor modifications from its initial configuration affecting the number of
filters in the CNN layers, the kernel size, and RNN units (Figure 4.13).

The final model architecture underwent an extensive training run lasting over two weeks, during
which various combinations of batch size, number of epochs, dropout rate, window, step size,
number of F F T bins, and number of mel-bands were examined. The two corpora were trained
in conjunction and isolation as single-domain-type corpora. Notably, the Hiwire corpus, en-
compassing sub-domain variations of identical da ta , received particular emphasis in the training
process.

CNN RNN DENSE CTC LOSS

MFCC
25ms window size
10ms step size
512 / 1024 / 2048 FFT bins
60 I 70 I 80 Mel bands
13 coefficients
13 delta coeff.
13 delta-delta coeff.

Layer 1
64 filters
39 x 40 kernel size
2 x 2 stride

GRU
5 layers
Bidirectional
256 units per layer

1024 units Greedy search

Layer 2
32 filters
20 x 20 kernel size
1 x 1 stride

Figure 4.13: The final model configuration.

4.4.1 Post-processing with edit distance

While WER is the most common metric for evaluating the performance of ASR models, it has
inherent limitations. Particularly, when deployed on short sentence or solitary word outputs, an
error involving a single character propels the error rate to 100 percent, a consequence of notable
gravity when such minor discrepancies add up. For instance, consider the scenario where a DS2
model predicts the word 'report ' as 'repor'. This minor deviation, albeit a single character,
results in a maximal error rate of 100% as per the WER metric.

In order to correct any minor mistakes like the aforementioned made during predictions, the
output from the model is processed using the Levenshtein distance, or "edit distance" [52]. It
is a metric implemented to quantify the dissimilarity between two strings. It calculates the
minimum number of single-character edits (insertions, deletions, or substitutions) needed to
transform one string into another.

In the context of ATC, where communication relies on a constrained and particular vocabulary,
we have applied this metric for an automatic error correction system using the transcripts as
vocabulary and the excellent guide made by Ahmed Fawzy Gad12. Our implementation starts
by scanning each word in a given transcript to check its presence in the designated vocabulary.
Words not found within this vocabulary, perhaps due to transcription errors or variances in
pronunciation, are flagged for potential replacement. Subsequently, we compute the Levenshtein
distance between the non-corresponding and every word within the controlled vocabulary. This
step aims to identify the word in the vocabulary that shares the least "distance" with the
non-corresponding word, making it the most probable replacement, as illustrated in Figure
4.14.

'https://blog.paperspace.com/implementing-levenshtein-distance-word-autocomplete-autocorrect

45

Audio input

I A ALA.,

Prediction
"yethalands air force four one four contact milan one three four five two bye" 7

J

- Preparation
['yethalands', 'air', 'force', 'four', 'one', 'four', 'contact', 'milan', 'one', 'three', 'four', 'five', 'two', 'bye']

L

L

L

yethalands 7 Is word in
vocabulary?

No

Yes

r

L

Replace with most
likely word from

vocabulary

Add to
output

['netherlands']
7
J

Figure 4.14: Leveraging domain specific vocabulary for post-prediction correction using Leven-
shtein distance.

4.5 Transformer

In order to get a progressive understanding and hands-on experience of the transformer concept
(Section 3.2.2) and observe its impact on automatic speech recognition (ASR), it is paramount
to gain insight into the underpinning mechanisms of the transformer (Figure 4.15) due to its
pivotal function in the domains of NLP and the ASR processes elucidated in the ensuing methods
described in this chapter.

Our implementation is based on the algorithm outlined in the Keras example, "Transformer-
based Automatic Speech Recognition" [63], which encapsulates the essential architecture of the
transformer combined with a CNN for feature extraction, an approach also referred to as a
conformer. In order to incorporate the code, we use the Keras!} framework, a choice guided
by the need for its rich repository of layers and sophisticated toolsets. While Keras supports
various back-end engines, it predominantly aligns with the TensorFlow framework14, providing
us with a powerful ecosystem for developing, accessing, and deploying the intended machine
learning models.

We chose short-time Fourier transform (STFT) and mel-frequency cepstral coefficients (MFCC)
(Section 2.3.1) as standalone inputs for training, to perform a side-by-side comparison of their ef-
fectiveness in the Automatic Speech Recognition (ASR) task. STFT's strength lies in generating
rich time-frequency representations, thus allowing an intricate understanding of speech dynam-
ics. Conversely, MFCCs, adept at mimicking human auditory perceptions, enable the capture
of phonetic subtleties with considerable precision. This strategy of isolating each feature ex-
traction method for separate model training permits an evaluation of their unique performance
attributes, leading to a nuanced understanding of their respective utilities under different task
conditions and requirements.

" n t t p s : / / k e r a s . i o
'*https://www.tensorfow.org

46

n

Linear

I

Nx

I

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

I I

Posistional
Encoding

I
I

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Input
Embedding

Output
Embedding

(MFCC, STFT} yoy1y2y3

Nx

Posistional
Encoding

Figure 4.15: The Transformer architecture

Before the input is transformed, each audio file is sampled into timesteps representing a segment
of the file. We implement various frame lengths, frame steps, and range of frequency bins to
explore the impact on prediction capabilities.

1

1
I
1Time (ms)

Figure 4.16: 1 millisecond from a 16KHz sample

Each frame is depicted as a matrix, with the number of row elements corresponding to the
quantity of sampled values, equivalent to a specific time interval. Considerations of length can
either be hardware or model quality concerns. If we want to work with vectors of a specific

47

length, for example, 16, we can calculate the frame time coverage (Equation 4.4):

t(s) = / s r
t(s) = 16/16000
t(s) = 0.001

(4.4)

where t(s) is time in seconds, which is illustrated in Figure 4.16 and sr is the sample rate. Each
second of audio contains as many values as the sampling rate. If we, on the other hand, want
to define the frame with a specific range of time of 12.5 milliseconds, we can do that by giving
us a vector embedding of 200 values for every 12.5 milliseconds (Equation 4.5).

V = sr/t(s)
V = 16000/0.0125
V 200

(4.5)

In order to create a sliding window throughout the audio file and not miss any vital informa-
tion, the frame steps must not exceed the defined frame length but , ideally, overlap at shorter
intervals.

Before being inserted into the encoder, every frame is subjected to a speech feature embedding
process. This entails using 1D convolutional layers (Section 2.4.3), which adeptly transform the
speech signals into a series of feature vectors, successfully capturing and preserving essential
information from the audio input. Each convolutional layer applies filters that convolve over
the input frame, producing intermediate output , often termed feature maps. Using multiple
convolutional layers allows the model to learn hierarchical feature representations where the
architectural depth enables the identification of more abstract features. Multiple kernel sizes
and stride lengths were tested to capture different temporal resolutions in the speech signal. The
equation that governs the discrete convolution operation15 is the sum of vector multiplications
when the kernel vector iterates through the input matrix and can be written as follows (Equation
4.6):

00

y[n] - (f * g)[n] f[m] • g [n - m (4.6)

Where y[n] is the output of the convolution at the n t h position, also referred to as the feature
map, f[m] is the input sequence at the m{} position, and g[n - m] is the kernel at the (n - m l h
position. The process is illustrated in Figure 4.17

Input
6x7

Rows Kernel
1x3

Feature Map
6x3

! 2 3 1] 2 [3 [1]1 14 11 10

n filters

6 4 4 [4 [4 [4 [2

Figure 4.17: 1-D convolution operation

15https://en.wikipedia.org/wiki/Convolution

48

The created feature maps of each frame then undergo a positional embedding to get contextual
feature representations of the temporal sequence. The process is illustrated in Figure 4.18.

Feature maps
6x3

Positional embedding
3x64

n_maps

I
I

I
I

14 11 10

2 11 10

15 3 10

14 11 13

1 6 17

16 13 10

14

2

15

14

1

16

11

11

3

11

6

13

10

10

10

13

17

10

[[2.259,-2.961, ..
[3.324,-2.766, ..
[1.423,-1.965,

.. , 1.971],
.. ,4.534],

,1.654)]

time

Figure 4.18: Positional embedding vectors

The organized succession of positional feature vectors is conveyed to the Transformer archi-
tecture, which provides the initial corpus to the encoder. To be more explicit, these ordered
vectors, each encapsulating unique positional information within the sequence, are utilized as
the primary input for the encoder, a crucial component of the Transformer system's ability to
learn the contextual patterns of the data. This is important because the transformer does not
have the recurrent capacities to learn the positional context as LSTM (Section 2.4.1.1) and GRU
(Section 2.4.1.2).

The decoder is provided with two inputs. The initial input consists of a sequence of previous
predictions (y), which is then converted into integer tokens utilizing a predefined vocabulary
dictionary. Notably, each sequence includes a start token, ensuring that the sequence is not
empty even in the absence of prior predictions.

Output(y) = <air france ready to takeoff>
Token Embedding

Pos. Encoding -
(99,1, 9, 18,0,6, 18,1, 14, 3, 5, 0, 18, 5, 1, 4, 25, 0, 20,15, 0, 20, 1, 11, 5, 15, ...]
[[-0.021017, 0.021590, -0.000352], [0.057699, -0.033303, -0.036072]...]

The model employs character-level positional embeddings; however, alternative approaches can
instead leverage word, sub-word, or phoneme embeddings. In the example, each integer token
corresponding to a character is projected into a dense vector space of fixed dimensionality. These
embedded vectors, representing the complex relationships and characteristics of the individual
characters, are visually represented in Figure 4.19.

49

a

0.08

0.06

0.02 2
0.00

0 0 2

0 0
0.06

0.100
0.075 0.075

0.050 0.050
0.025 - 0 . 0 2 5 1

0.000 0.000

- 0 . 0 2 s
0.050

0.025

0.075
- 0 . 0 7 5

0.100

Figure 4.19: 3D plot of the character positional encodings

Additionally, the encoder's output is integrated as an input into the decoder's second multi-head
attention layer. This process allows for linking auditory feature tokens with the character tokens
predicted earlier.

Both the encoder and decoder architecture consists of multiple stacked layers. Each layer addi-
tionally consists of two sub-layers. The first sub-layer is a multi-head self-attention mechanism
designed to capture different types of relationships in the data . It allows the model to focus
on different parts of the input sequence simultaneously, providing a richer understanding of the
context. The mechanism illustrated in Figure 4.20 functions by first partitioning the input data
into multiple "heads".

Input Sequence

Seq3

Scaled AttentionDot matrixQ*KT

heads

Scaled
Dot

AM*V
Concat Linear

Figure 4.20: Multi-head self-attention

50

For each head, the input data is linearly transformed into Queries (Q), Keys (K), and Values (V).
These transformations are implemented through learned weight matrices, enabling the model to
create distinct representations from the same input, thereby facilitating the capture of diverse
features or patterns. Queries determine which elements of the input sequence to focus on. The
Keys can be seen as an index system helping the model match the right parts of the input
sequence to the queries. Once the match between Q and K is determined, V vectors provide
the actual information to be used. The better the match, the more influence the corresponding
value vector has in the output . The attention process for each head starts by computing the
scaled dot product of Q and K T , which determines the compatibility or similarity between Q
and K. This value is then scaled down by the square root of the K dimension to prevent large
values from dominating the soft max function (Equation 4.7).

Attention(Q, K, V) - softmax
Q K T

d
V (4.7)

The softmax function applies to these scaled values, converting them into attention scores or
weights, which essentially quantify the degree of importance of each value in the sequence and
add them to the attention matrix. High scores mean the corresponding tokens are highly relevant
to the current processing token. These scores are then used to weigh the corresponding V,
producing the output for each head. Finally, the outputs from all heads are concatenated
(Equation 4.8) and passed through another linear transformation multiplying it with a learned
weight matrix to produce the final output for this sublayer as shown in Figure 4.21.

Multi-head(Q, K, V) - Conca t (head , . ., heads)Wo

Wo Q

z1
Wo z

\WK Input K
Q z

wv Input V

sqrt(d.)

z2

Figure 4.21: Linear transformations throughout a head

(4.8)

The first attention layer of the decoder incorporates a method known as "masking," a sophis-
ticated strategy that deliberately hides specific portions of the input data . Masking is crucial
since it guarantees that later stages do not influence the predictions produced at any stage in
the sequence. This is a vital precaution that confirms the sequence's predictions depend only
on previously known and present information but are unaffected by any details not yet revealed
at the prediction point. Essentially, masking maintains the sequential order of the input data .
Furthermore, it carefully preserves the time-based relationships between various data points,
keeping the natural sequence's timeline intact. Consequently, the masking technique effectively
mitigates the potential disturbance caused by future data on present predictions, validating and
strengthening the reliability of the sequence generation process within the decoder's architec-
ture.

51

The secondary sub-layer within the encoder is a fully connected feed-forward network(FFN).
While the self-attention mechanism enables understanding the interaction of different parts of
the input sequence, the FFN further processes this information, allowing the model to learn
more complex and abstract representations. The FFN consists of two fully connected layers
using Rectified Linear Unit (ReLU) as the activation function, applying a non-linear operation
to the data. The entropy of a single neuron in the FFN dense layers can be written as Equation
4.9:

output ReLu((W i * X i)1 6) (4.9)

Where the weighted sum is computed with the dot product of the input(X) and the weight(W),
adding the bias(b), ReLU sets all negatively valued neurons to 0. Notably, the FFN is applied
independently to each position in the sequence. This allows the model to learn and extract
features for each token position separately, enabling the detection of a wide variety of patterns
across the sequence. In essence, the FFN aids in processing the information obtained from the
self-attention mechanism and helps in learning complex intra-sequence relationships, thereby
contributing to the overall effectiveness of the Transformer model. The FNN output is a sequence
of the same length as the input. This sequence represents a new, more complex set of features
for each token.

Each sublayer incorporates an exclusive characteristic, a residual or bypass connection. This
beneficial feature effectively attenuates the gradient vanishing issue during the model's learn-
ing process, facilitating the acquisition of intricate representations. Subsequently, the outputs
generated from each sublayer, which includes attention mechanisms and feed-forward networks
(FFNs), are connected with their respective original inputs, constituting the formation denoted
as input(X) + sublayer(input(X)), representative of the residual connection.

An operation known as layer normalization is executed upon establishing this residual con-
nection. This process adjusts and realigns the inputs of the layer to attain a zero mean and
unit variance, thus significantly enhancing the stability of the network's training phase. This
normalization operation is represented as layernorm(input(X) + sub-layer(input(X)).

The last softmax layer assigns a probability distribution across the classes or tokens such that the
total sum of probabilities equals 1 (Equation 4.10). The highest scoring token is the prediction
in a given time step.

e
1 e i

(4.10)

Where z is the input vector ,e is the exponential of the 4 element in z and e®i the sum of all
elements.

The architectural build of the transformer and its powerful layer compositions and attention
capabilities provides a powerful sequence-to-sequence model. To utilize the Transformer archi-
tecture at its most basic form and test its capabilities on the ATC domain, we implemented a
hyperparameter loop (B.1) conducting continuous training of models at a scheduled timeframe
set in Loop 1 (Figure 4.1) or until a human level WER score of is achieved. Human-level scores
on the LibriSpeech corpus clean were validated at a WER score of 5.8% on clean data and
12.69% on noisy data by the authors of the Deep Speech 2 paper [4]. We set the threshold
to 5.8% WER to alert us if a model's test score surpassed that limit. Furthermore, during
the extensive training sessions, all trained models were saved for load or rebuild purposes and
safeguarding against data loss. Model parameters and WER scores on validation and test data
were continuously written to a CSV file for performance overview and inspection.

52

Corpora Input

STFT
Hyper-param.

ATCOSIM

HIWlre

MFCC

Transcriptions

WER Threshold

Transformer WER Score WER <Threshold-

Results.csv save model

Figure 4.22: Hyper-parameter loop

We can group our parameter focus into four main groups: Input , Convolution, Transformer, and
Training. The Input group consists of parameters that deal with the structure of the input data ,
such as the data source of the input, normalization techniques, and data augmentation methods.
The Convolution group refers to parameters within the 1D-convolutional layer applied, which
includes the number of filters per layer, kernel size, and stride. The Transformer group revolves
around the parameters of the transformer model, which mainly include the number of layers in
the encoder and decoder, attention heads, hidden dimensions, and neurons in FFN. Lastly, the
Training group encompasses parameters related to the training process, including learning rate,
batch size, and number of epochs. Each parameter has been selected to be in the hyperparameter
optimization loop due to their impact on the model's performance (Table 4.6).

Table 4.6: Hyperparameters(P)

Group Pl P2 P3 P4 P 5

Input Corpus Sub-set STFT/MFCC Mel-bins

Frame Length Step size

Convolution Kernel size Step size

Transformer Enc. layer Dec. layer Heads Head dim. Neurons (FFN)

Training Batch size Epochs Learning rate

Each training session uses a "warmup" strategy for adapting the learning rate over time. This
approach starts with a minimal learning rate that is increased linearly over 2000 "warmup"
steps. After the warmup period, the learning rate decreases in proportion to the inverse square
root of the step number. This approach was introduced because it often leads to better training
dynamics and model performance. When the weights are randomly initialized at the beginning
of training, the gradients can be very large or very small, leading to unstable and inefficient
learning. When starting with a small learning rate and gradually increasing it , the model can
make minor adjustments initially and avoid getting stuck in local minima.

Throughout the loop, both the optimizer and the loss function remain static. The Adam op-

53

timizer is used due to its well-known computational benefits and memory efficiency. It is dis-
tinct in its adaptive learning rate, which is especially suited for managing large-scale and high-
dimensional optimization problems. Meanwhile, the Cross-Categorical Loss function is also em-
ployed. This is typically used for multiclass classification tasks, and it offers a reliable and steady
way to assess prediction errors by computing the disparity between the model's predictions and
the actual transcriptions. Hence, pairing the Adam optimizer and the Cross-Categorical Loss
function forms a sound basis for a productive and proficient learning phase during training. The
Cross-Categorical Loss function can be described with the Equation 4.11.

L yelog(pa) (4.11)
i 1

Where Yi denotes the true label, assigned a value of 1 if true and Oif false. On the other hand,
Pi represents the predicted probabilities associated with each class.

Each unique hyperparameter configuration generated in the loop contributes to a model variant.
This iterative exploration of model variants permits us to investigate the potential impacts of
these hyperparameters on model performance, guiding us to a more refined understanding of
their roles within the ASR task and performance on ATC domain-specific data.

4.6 Wav2vec 2.0

Wav2vec 2.0, developed by Meta AI16, is an advanced self-supervised speech recognition model.
It expands on the foundations of wav2vec, using self-supervised learning techniques to learn
useful speech representations directly from raw audio waveforms, thereby removing the necessity
for additional tasks during pre-training.

Wav2vec 2.0's architecture, as shown in Figure 4.23, comprises four key components: a feature
encoder, a context network, a quantization module, and contrastive loss to connect and regulate
the model. The feature encoder and context network are equivalent with the CNN and encoder
described in the previous Section 4.5.

Instead of positional embedding used in the original transformer, the model relies on the feature
map's relative positional format. Furthermore, a certain percentage of the feature encoder
output is masked before passing into the Quantization module and context network. Masking
a portion of time steps encourages the model to learn valuable representations that capture
masked context based on sequences of unmasked information.

The quantization module act as a bridge between the feature encoder and the contrastive loss.
The module consists of a set of codebooks, which can be considered a predefined list or "dictio-
nary" of vectors. The vectors serve as a discrete set of possible representations for the latent
feature input. Each feature vector is assigned to a codebook vector where the Gumbel-Softmax
allows the module to create a probabilistic, differentiable mapping of all the codebook vectors.
The result of the quantization process is a sequence of distributions, which can be interpreted
as a sequence of discrete input representations. These assignments are optimized during the
training process.

Parallel to the quantization process, the representations from the feature encoder enter the
context network. This network employs the encoder model described as part of the transformer in
Section 4.5 to capture the temporal context within the sequence of feature representations.

'®nttps://ai.facebook.com

54

The contrastive loss function, a critical component of wav2vec 2.0's self-supervised learning
strategy, operates on the outputs of the context network and the quantization codebooks. The
contrastive loss function is designed to pair the context vectors with the codebook vectors. Here
the masking comes into play. The unmasked pairs are mapped and act as the ground truth
(positive pairs). The model's task is to map the masked context vector with the "correct"
codebook vector. The masked context vector is presented with codebook vectors, where one
is the ground truth and the rest is distractors (negative pairs). Through training, the model
adjusts its weights based on the ability to identify the correct quantized latent representation.
The model will work towards minimizing the distance between the positive pairs and maximizing
the distance between negative pairs.

The model's objective function consists of contrastive and diversity loss (Equation 4.12).

£ £ n + a £ a (4.12)

The contrastive loss function [38] is generalized in Equation 4.13.

L (W Y , x ' , XO Y) A o +) ° CV)AC m a o , m - Do)}3° (4.13)

Where W denotes the model parameters, Y represents the binary similarity label between pairs
of input samples Xi and X 2 . The loss function penalizes the model based on the distances Dye
between the input pairs. For similar pairs (Y 1), the squared distance determines the loss.
For negative pairs (Y 0), the loss is based on the maximum of zero and the difference between
the margin m and the distance. This loss function guides the model to minimize distances for
similar pairs.

a l a codebook diversity penalty is used if the variation of distractors is small. This discourages
the model from focusing on a limited set of codebooks and encourages it to explore a broader
variety.

After the self-supervised pre-training phase, wav2vec 2.0 needs to be fine-tuned utilizing labeled
data. This process allows the model to effectively leverage the pre-trained generalized weights
derived from the pre-training and fine-tune them toward the specific nature of the labeled data.
Furthermore, character tokens will be adapted to the sequential patterns learned. The fine-
tuning part will be described in Section 4.6.1.

55

Context Representation (CJ co Cl C2 C3 C4 csC6 C7 CB

Context Network I Encoder

r I
I I

Add & Norm

Feed Forward

Negative pair

Positive pair

Masking

Feature Maps (Z)

Feature Encoder

Qn Qn Qn

Qo[Q1 Q2 Q3IQ4 Q5 Q6 Q7 Q8

t

Add &Norm
Nx

Contrastive Loss

Multi-Head
Attention

t QoIQ1IQ2 Q3 Q4 Q5 Q6 Q7 Q8

t

Waveform

zo Zl Z2 Z3 Z4 ZS Z6 Z7 ZS Quantization Module Gumbel
Softmax

I I r r I I I r r

zo Zl Z2 Z3 Z4 ZS Z6 Z7 ZS

I I I
1D Conv. layers

T T1

Figure 4.23: Wav2vec 2.0 Architecture

Our initial implementation plan was to utilize the Wav2vec 2.0 framework17 to create a novel
ATC base model, leveraging the benefits of self-supervised learning to capture the underlying
patterns and semantics in the ATC domain. Using only a limited annotated corpus, the base
model should then be used for downstream airport-specific models adapting to the local tower
communications and the operator's linguistic specifications.

ATC base model
(Norway)

ATC Norway (Avinor)

Downstream models

Figure 4.24: ATC base model

The scope of the ATC base is highly dependable on data availability. It can be scaled as needed,
provided the magnitude of available audio hours can accommodate substantial size requirements.
For perspective, the smallest base model from Meta Research is trained on 53,000 hours of
audio, whereas we only have 38.9 hours of ATC data. Even though ATC is highly standardized,

"nttps://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec

56

controllers and pilots must demonstrate the ability to speak and understand English at a certain
level. Pronounce and accents can be problematic if a model has not been exposed to similar data.
Therefore, it is not plausible that creating a base model will sufficiently cover the ATC domain.
Instead, we will utilize Wav2vec 2.0 with different scopes in the following sections.

4.6.1 Hugging Face

Instead of creating an ATC base model downstream, we utilize the secondary step in the Wav2vec
2.0 framework, applying first and second-level fine-tuning on pre-trained models. The imple-
mentation was carried out with the Hugging Face framework [1] using the pre-trained models
described in Table 4.7.

Table 4.7: Pre-trained base models.

Model Param. Pre-trained (hr) Fine-tuning (hr) Corpora

Wav2vec2-base 95m 53 000 0

Wav2vec2-large-960h-lv60-self 317m 53 000 960 LibriSpeech

Wav2vec2-xls-r-300m 300m 436 000 0

wav2vec2-large-robust-ft-swbd-300h 317m 53 000 300 Switchboard

The Wav2vec2-base model was initially pre-trained using 53000 hours of unlabeled data sourced
from the Librilight sub-corpus of LibriVox [48] with no fine-tuning. The same base is used in
the wav2vec2-large-960h-lv60-self model with an additional level of fine-tuning on 960 hours
of data from the LibriSpeech corpus. Next, the Wav2vec2-xls-r-300m model was pre-trained
on an impressive 436,000 hours of unlabeled multilingual data obtained from multiple corpora,
including CommonVoice [5], VoxPopuli [89], Multilingual LibriSpeech (MLS) [72], VoxLingua107
(87], and the Babel project. Lastly, the Wav2vec2-large-robust-ft-swbd-300h model was pre-
trained on a combination of corpora, namely Librilight, CommonVoice, Switchboard [32], and
Fisher [21]. It was then fine-tuned using 300 hours of noisy telephone data extracted from the
Switchboard corpus.

The models are trained to map large amounts of audio at a base level, clustering the temporal
feature patterns within the base corpora. The levels of downstream fine-tuning add specialized
capabilities toward the desired ATC domain, as shown in Figure 4.25.

Model

Base level

Wav2vec2-base

53 000 hr

Wav2vec2-large-960h-lv60-self Wav2vec2-xls-r-300m wav2vec2-large-robust-ft-swbd-300h

53 000 hr 436 000 hr 53 000 hr

Stream lv l 1 Atcosim LibriSpeech Atcosim Switchboard
10 hr 960 hr 10 hr 300 hr

Stream lv l 2 Atcosim Atcosim
10 hr 10 hr

Figure 4.25: Model downstream.

The fine-tuning structure mirrors the pre-training configuration outlined in Section 4.6, with the

57

exception that the Quantization and contrastive loss modules are replaced by a Connectionist
Temporal Classification (CTC) module described in Section 4.4. The weights from the pre-
trained base model are imported into the fine-tuning framework, prompting subsequent updates
to the convolutional filters, transformer weight matrices, and Feed Forward Networks (FFN).
Fine-tuning aims to adapt the pre-trained weights to align with the specific ATC domain and
to associate the context vectors with tokens - in this case, characters.

I

Context Representation (CJ

Context Network / Encoder

co C1 C2 C3 C4 C5 C6 C7 cs
Linear

I
I I

Feature Maps (Z)

Feature Encoder

Waveform

Add&Norm

Feed Forward

Add&Norm

Multi-Head
Attention

I I

20 21 22 z3 24 Z5 Z6 27 z8

I I I I I
1D Conv. layers

I I I I I I I

Nx Connectionist Temporal
Classification (CTC)

Transcriptions (Target)

yn

Figure 4.26: Fine-tuning architecture.

Our implementation of wav2vec 2.0 follows a two-step process, divided into a stage before
and a stage after establishing the final corpora setup (Section 4.3). Firstly, we initiated the
development of a customized version of the ATCOSIM corpus. Our main goal was to enhance the
sample size to align with the larger scale observed in other paid corpora. This was accomplished
by augmenting three tiers of randomized noise into the original samples, creating three synthetic
versions, as shown in Figure 4.27. Consequently, our corpus expanded to encompass 42.4 hours
of data , a significant increase from the initial 10.6 hours.

58

Original Signal Noise (Level 1)

0.2 0.2

0.1

I
0.1

0.0 T 0.0

- 0 . 1 - 0 . 1

- 0 . 2 - 0 . 2

- 0 . 3 - 0 . 3

- 0 . 4 - 0 . 4

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 100000 1 2 0 0 0 0 1 4 0 0 0 0 0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 100000 120000 140000

Noise (Level 2) Noise (Level 3)

0.2
0.3

0.2
0.1

0.1
0.0

0.0

- 0 . 1
- 0 . 1

- 0 . 2
- 0 . 2

- 0 . 3
- 0 . 3

- 0 . 4

- 0 . 5

- 0 . 4

0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000

Figure 4.27: Custom corpus noise levels.

We employed a split key 70/20/10 to divide our data into train, validate, and test corpora.
Additionally, we conducted tests on the A T C 0 2 corpus [85] to evaluate the model's predictive
capabilities in a non-simulated environment. The A T C 0 2 corpus contains real ATC data , while
our model was trained on simulated ATC data . This allowed us to investigate the model's
robustness and ability to make accurate predictions in a cross-reality scenario.

In the second stage of training, we utilized the audio data and corresponding transcriptions as
described in Section 4.3. The training process involved multiple cycles of 50 and 100 epochs, em-
ploying batch sizes ranging from 8 to 32. Subsequently, we manually tested the best-performing
model to explore the potential for further optimization.

4.6.2 Unsupervised

Wav2vec Unsupervised 2.0, also referred to as Wav2vec-U 2.0, introduced in Section 3.4.2 is
the most recent ASR initiative by Meta Research's team and is made accessible as open-source
through their Fairseq GitHub repository [77]. It is important to note that the project's version
v0.12.2, as of May 15, 2023, is st i l l a work in progress. The project's current state can be
characterized as experimental, with room for improvement in documentation and code.

The Wav2vec-U 2.0 is an extension of the Wav2vec 2.0 described in Section 4.6 where the
fine-tuning 4.6.1 step is replaced with a generative adversarial network (GAN), this in order to
train a reliable generator with capabilities to predict sequences of phoneme tokens from context
representations and pseudo labels. Figure 4.28 illustrate the overall architectural structure of
the unsupervised setup.

59

Real / Fake

t
Discriminator

Phone sequence t Phone sequence

Generator

I
Wav2vec2.0

Unpaired
text

Pseudo labels

ulullJIdl h uAanLalla_

MFCC

Figure 4.28: Wav2Vec-U 2.0 macro architecture.

The process unfolds in several phases, including preparing speech representations and textual
da ta , GAN input, and training the Generative Adversarial Network (GAN).

Some fundamental steps need to be conducted before the three main phases can be initialized.
The first step is to clone a set of GitHub repositories to access the necessary toolkits utilized
throughout the process. This applies respectively to the Fairseq framework, rVADFast [86], and
kenlm[repos.

$ git clone https://github.com/facebookresearch/fairseq
$ git clone https://github.com/zhenghuatan/rVADfast
$ git clone https://github.com/kpu/kenlm

Listing 1: GitHub repositories

Every repository necessitates installation in accordance with its corresponding documentation.
This proved to be a prolonged process due to unclear formulations and code deficiencies in the
framework. Furthermore, we operated with limited user permissions on our own system. Conse-
quently, requiring admin approval and subsequent installation on each dependency encountered,
leading to a prolonged and time-consuming process.

Once the Fairseq base is established and the environmental variables are set. The implementation
of the primary phases can begin. Each phase consists of multiple subprocesses executed in a
stepwise fashion. In order to streamline and automate the process, we created an additional
module on top of Fairseq, enabling an end-to-end one-step training execution. The module
consists of three scripts, one for each phase which can be executed separately or sequentially

'*nttps://kheafield.com/code/kenlm/

60

(main) as shown in Figure 4.29.

Corpus Automation Trained model

csv main.py model_n

wav preprocess.py inputgan.py rungan.py model_n

output output

sub n model n

Unsupervised

Figure 4.29: Automation of wav2vec unsupervised

The module is designed to take our custom corpus structure (Figure 4.7) as input and, with a
one-click execution, produce a trained model as an output . Additionally, the module handles
downloads, directories, and file structuring throughout the run-time.

preprocess.py (B.3) covers phase one, where we structure the corpus transcripts into textual
input formats. These formats are described as wrd/ l t r /phn in the documentation, providing
some indications of what the files should contain. Following a series of exploratory trials, the
following formats could be utilized.

wrd = lufthansa three five zero eight
ltr = l u f t h a n s a [t h r e e

phn = l A f n s 0 1 i: f al v z i 1 om el t
f i v e z e r o e i g h tl

Dictionaries for training and validation are generated from the files, creating associations be-
tween words and phonemes. In addition, a 'sentence.txt' file, encompassing all unique sentences,
is produced. These resources are then used in the following phase.

Additionally, all silence is eliminated from the audio samples. This is accomplished by generating
manifest files (.tsv), which associate each audio file with the respective number of samples
it contains. Then the rVADFast voice activity detector is applied using short-time Fourier
transform (Section 2.3.1) and calculates the spectral flatness (SFT) as in Equation 4.14.

SFT(m) =
erp(Y o x , E D

+ YEW1xo.I (4.14)

61

where K is the number of frequency bins and X(m,k) signifies the magnitude spectrum of the k'
frequency bin in the context of the m{ frame. Threshold values decide if voice communication
is detected. The detected sampling range in each file is mapped in the .vads files, and a trimmed
version of the audio files is created.

The script inputgan.py (B.4) outlines the second phase, where the audio and text data used
in the GAN is readied. First, the trimmed audio is processed using frozen pre-trained weights
from Wav2vec2-large-960h-lv60-self described in Table 4.7. The contextual vectors outputted
from the encoder are stored in a NumPy array serving as an input. In parallel, pseudo labels
are created using k-mean clustering of the MFCC representations, attaching each timestep to a
centroid. Through a training cycle, the cluster centroid is recalculated to minimize the variance
in each cluster. Reducing the summed squared Euclidean distances between the centroid and
data points will optimize the precision and shape of each cluster. Important to note that lines
of code are missing in the Fairseq clustering script (Listing 2).

python $FAIRSEQ_ROOT/examples/hubert/simple krneans/learn krneans.py
$tgt dir/rnfcc $train split 1 $tgt dir/rnfcc/cls$dirn64

Listing 2: Missing code on line 67 in learn kmeans.py, one of many corrections needed to get
the framework running.

Moreover, the collection of unique sentences in the first phase is converted into a phoneme format.
This phoneme rendition serves as the "real" data in the GAN architecture. The collection is
also used to derive language models utilizing the KenLM toolkit for n-gram models (Section
2.3.2), providing probabilistic mapping of phoneme sequences of n length and Kaldi!° Finite
State Transducers (FST), mapping phoneme-to-phoneme with word split.

phn = l A f 0 n s 0 1 i: f al v z i 1 om el t
phn-to-phn word f al v Z 1 I OM el t

To the best of our knowledge, the language models are not used directly in the GAN module
but utilized when generating from a trained model. It is noteworthy that not only is the
recommended PyKaldi tool kit unable to be installed due to dependency conflicts, but the second
suggestion also encounters the same issue due to the repo not being maintained. This issue was
resolved using a Docker image for the installation, which was extracted (Listing 3).

$git clone https://github.corn/jjlin/docker-irnage-extract/

Listing 3: Kaldi docker image

Once all inputs have been adequately set up, the rungan.py script (B.5) will initiate the training

°ht tps: / /gi thub.com/pykaldi /pykaldi

62

process of the GAN. It is crucial to underscore that the original format of the root configuration
file corrupts execution and needs to be updated.

Feedback

CNN

- g e n e r a t e d rea

ou J J J k n k n I i : n er ro t E n k a: nt kt er n er d a :u w A n t u:

Linear

Linear real

Auxiliary
self-supervised

BatchNorm
objective

A
I I

context Pseudo label

Figure 4.30: GAN architecture

Overall, the GAN comprises two components: the generator and the discriminator. The genera-
tor tries to convert the speech signal into a transcript, and the discriminator tries to distinguish
between the transcripts produced by the generator and the actual transcriptions. The genera-
tor learns to improve its transcriptions to make them more convincing by using feedback from
the discriminator, which simultaneously becomes better at distinguishing real from generated
transcriptions. This results in a highly competitive process where the generator and the dis-
criminator keep improving over time. This competitive process can be described with Equation
4.15 [56].

min max Ey, [log C(Y,)] + Ex[log(1 - C(G(X)))] - C u p+ nCsp+" p a+wL,, (4.15)

The two first terms describe the objective function of the GAN, where the first term denotes how
well the Discriminator C identifies real phoneme sequences Yu, and the second term denotes how
well the discriminator C identifies generated phoneme sequences G(X). The discriminator works
towards maximizing the score in both terms, while the generator works to minimize the second
term. The third term describes the distributed penalties, imposing regulation in training.

The ALgpgradient penalty is used to stabilize the training process. It encourages the gradient of
the discriminator's output with respect to its input to be close to 1. Doing so prevents extreme
variations in gradients, avoiding issues like mode collapse and the vanishing/exploding gradient
problem.

ny7,, smoothness penalty is applied to discourage locally inconsistent predictions from the gen-
erator.

E"a Phoneme diversity penalty is applied if a generated sequence lacks phoneme diversity,
discouraging it from over-focusing on a limited set of phonemes and encouraging it to explore a
wider variety.

New to the Wav2vec-U 2.0 is the wC,, auxiliary self-supervised objective. Testing the generator's

G C

63

mid-architecture ability to predict a pseudo label at a given timestep in a sequence. The context
vectors are diverted through a dense layer with a softmax output with classes reflecting the
pseudo labels distributing probabilities that add up to 1. The penalty reflects the model's
predictive capacity.

This stabilizes the GAN training performance throughout each iteration and significantly influ-
ences the objective function when weights are optimized in the CNN and linear modules.

Ultimately, the stand-alone script, generate.py (B.6), utilize the trained .pt weight file and
generates corresponding transcripts from the preprocessed audio.

4.7 Whisper

OpenAI Whisper speech-to-text ASR-system takes a step towards generalized ASR modeling
with multilevel capabilities and a zero-shot approach delivered in an easy-to-implement GitHub
repository21 rooted in a paper published December 2022 [75]. The system is based on the well-
known encoder-decoder transformer model used and described in Section 4.5, focusing mainly
on large-scale weak supervision and a multitasking format during model training cycles.

The repository provides a range of five pre-trained architectural variations, spanning from tiny
to large, representing the input embedding, number of layers, and number of heads used in the
attention mechanism. Our primary emphasis was on assessing the performance of the small,
medium, and large configurations, with the architecture specifications shown in Table 4.8.

Table 4.8: Whisper specifications of small, medium, large architecture

Model Layers Width Heads Parameters

Small 12 768 12 244M

Medium 24 1024 16 769M

Large 32 1280 20 1550M

At the outset, leveraging the Whisper library for audio transcription seems deceptively straight-
forward: feed in raw audio files and receive corresponding transcriptions as output. Our ex-
ploration commenced with setting up an isolated computational environment, ensuring the
incorporation of requisite dependencies. This approach was designed to carry out the experi-
mental processes without undue influence on the root configurations of the computational node
4.2.1.

The next step was to craft an algorithm that could systematically feed the raw audio files from
our test corpus into each Whisper model architecture. In response to each audio input, the
models generated transcriptions. These output transcriptions were then juxtaposed with the
correct transcripts, and this comparison allowed us to compute a WER, providing us with a
quantifiable measure of each model's performance (B.7).

Upon initial analysis of the results, it became apparent that a direct comparison of transcriptions
was untenable due to differences in the output format. The Whisper models' original output
format encompasses a mix of numerical numbers, uppercase, lowercase letters, and special char-
acters. In contrast, our chosen format was much more uniform, strictly utilizing lowercase letters
and eschewing the use of special characters (Section 4.3.1.3). To reconcile these disparities and

nttps://openai.com
https://github.com/openai/whisper

64

obtain a meaningful WER, we incorporated a post-processing step to refactor the model out-
puts, aligning them with the formatting conventions of our corpus. This step was pivotal in
ensuring the accuracy of our performance metrics and providing a fair assessment of the models'
transcription capabilities.

The outlined functionality of the algorithm is illustrated in Figure 4.31, providing a macro
overview of the modules and the connections between them. However, the complexity of the
underlying processes can often lead to a disconnect between the user and the system. This
disconnect arises due to the sophisticated procedures operating beneath the surface of a few
lines of code. Decomposing the Whisper module and the work behind it reveals the complexity
and a new approach to the automatic speech recognition (ASR) domain, introducing large-scale
weak supervision, which addresses the techniques to attain a corpus of large-scale magnitude
with transcriptions. Weak supervision can be described as a hybrid version of supervised and
self-supervised learning. The Whisper base corpus consists of audio and paired transcriptions
identified and collected from the internet; this is, at a glance, the same structural construction
used in supervised learning. However, instead of a costly resource-heavy manual transcription
process with strict uniform labeling rules, the weak supervision technique lowers the bar of the
transcription quality. This enables an automated screening, scraping, and filtering process to
harvest paired web content and scrub the collected data for unwanted characteristics such as
ASR created data, duplicates, and misaligned language identification. A preliminary model is
trained. This model is tasked to identify the least effective or low-performing samples. These
identified samples are then manually inspected and reviewed, facilitating further refinement
of the corpus. This approach facilitates the development of extensive corpora akin to what's
typically observed in self and unsupervised methodologies.

Test-Set Whisper Architectures Output Normalize output Output

Small Prediction Prediction

Audio Whisper Medium Prediction Post-process Predictionwav

Large Prediction Prediction

Transcript
Original WER Altered WER

Figure 4.31: Algorithm macro functionality

65

A: Supervised B: Self-supervised

C: Weak

Figure 4.32: Intersecting features of ASR methods; Audio - A N B N C, Transcript = An C,
Low cost scalability = B n C.

The Whisper architectures implemented in our research are pre-trained on 680.000 hours of
multilingual and multidomain audio. The audio data are sampled at 16 KHz, segmented into
timesteps of 25 milliseconds with a ten milliseconds stride represented as log-magnitude Mel
spectrogram. The spectrograms then undergo feature extraction with two one-dimensional
Convolutional layers before sinusoidal positional encoding tag relevant sentence positions as
a precursor for the encoder's input embedding. The same underlying pre-process is instanti-
ated to the input audio files to utilize the pre-trained transformer system and get a zero-shot
prediction.

Whisper demonstrates multilingual and multipurpose capabilities in terms of English audio to
English transcriptions, Non-English Audio to English transcriptions, Non-English audio to Non-
English transcriptions, and no-speech detection (Figure 4.33). Achieved by a set of unique
tokens infused in the base corpus and used throughout the training phase to facilitate a multi-
tasking approach, respectively a start-of-transcript-token, a no-speech-token, a transcribe-token,
a no-time-stamps-token, and an end-of-transcript-token. Our scope utilizes a part aspect of the
system's capabilities by using English ATC samples as described in Section 4.3.1.3. The re-
sults produced by the Whisper implementation are significant because of its "general" model
approach.

66

a

t_(n) t (n +8) t (n +16) - Timesteps (t)

SOT EN Transcribe 0.0 t_(n) t (n+l) t (n+l) t (n+2) I (n+3) I (n+4) t_(n+5) t (n+6) I (n+7) t (n+B)

t_(n).....

Figure 4.33: Whisper multilingual and multipurpose capabilities

67

Chapter 5

Results

This chapter presents the results of implementing methods and strategies outlined in Chap-
ter 4, emphasizing the differing word error rate (WER) achieved by various automatic speech
recognition (ASR) technologies under more or less identical training conditions. We present
concrete examples of model predictions, supplemented by crucial feature extraction data and
hyperparameter adjustments during the training process. This side-by-side comparison shows
how these technologies perform differently and point out their potential when handling in- and
out-of-domain data in some instances.

Furthermore, we document the progression of models over the training period, offering a glimpse
into their evolution and refinement. Our findings, presented in various forms for comprehensive
understanding, aim to show how different methods perform when presented with identical data.
Our primary goal is to demonstrate these varied performances, enhancing the understanding of
ASR technologies' capabilities in the ATC domain.

5.1 Deep Speech 2

The optimal configurations for both corpora, limited to the top 5, accompanied by hyperparam-
eter details, are presented in Table 5.1.

The model's performance on ATCOSIM and Hiwire simultaneously exhibits comparable results
when trained on individual corpora such as ATCOSIM, Hiwire clean, and Hiwire low noise
(LN). However, a notable performance gap emerges when the model is trained on the entire
Hiwire set. The introduction of noise in Hiwire significantly affects performance. Nevertheless,
it remains within an acceptable range of approximately 20% Word Error Rate (WER), ensuring
a reasonable level of comprehensibility in the generated outputs.

Considering the impact of batch size, the model performs slightly better on ATCOSIM when a
smaller batch size is utilized. Conversely, with the Hiwire corpus, the opposite trend is observed.
As depicted in Figures 5.1, 5.2, 5.3 and 5.4, the training and validation loss exhibit a rapid
decrease within the initial 30 epochs, followed by a leveling out and reaching a steady state for
both training and validation loss.

68

Table 5.1: Deep Speech 2, ATCOSIM and Hiwire results

corpus epochs batch size dropout f size f step FFT bins Mel bands WER (test)

all 100 64 50% 400 80 1024 80 10.1%

60% 80 10.3%

50% 160 11.3%

60% 15.2%

ATCOSIM 100 8 50% 400 160 2048 70 8.8%

1024 80 10.9%

200 64 70 10.9%

150 512 11.0%

200 80 1024 11.1%

Hiwire all 200 64 50% 400 160 1024 70 5.3%

80 5.4%

Hiwire clean 100 64 50% 400 160 1024 70 9.3%

200 80 10.3%

100 160 10.3%

200 10.9%

150 32 70% 50 11.3%

Hiwire LN 100 50 50% 400 160 1024 80 10.2%

200 64 70 16.3%

80 16.4%

100 50 160 512 80 28.3%

200 80 1024 38.5%

Hiwire MN 200 64 50% 400 80 1024 70 18.5%

160 19.9%

100 50 80 21.5%

512 22.3%

200 80 1024 29.1%

Hiwire HN 400 50 40% 400 160 2048 80 21.6%

70 30% 22.9%

40% 23.1%

60 26.3%

30%

69

26.3%

120

105

90

75

60

45

30

15

0 15 30 45 60 75 90

24

21

15

12

9

a, 87 90 93 99

Epoch

Figure 5.1: Loss function for ATCOSIM and Hiwire combined

200--------t--
150

100

75

50

25

55

0 15 30 45 75

50

45

40

a 35

25

20

15

10 s, 84 87

Epoch
90 93 96 99

90

Figure 5.2: Loss function for ATCOSIM only

80

50

30

20

10

0
0 25 75 100 150 200

12

10

8

6

2

160 165 180 190 195 200

Epoch

Figure 5.3: Loss function entire Hiwire.

70

105

75

60

30

15

0 15 30 45 60 75 90

14

12

10

8

6

4

81 84 87 90 93

Epoch

Figure 5.4: Loss function for Hiwire clean

5.1.1 Cross-domain experiments

The Hiwire corpus allows cross-domain WER evaluations utilizing sub-corpora with varying
levels of synthetic noise incorporated into the underlying base data . When examining the best
performing model (Table 5.2), which was trained on all the sub-corpora simultaneously, the
numbers reveal that performance on the high noise subset is significantly worse than the rest.

Table 5.2: Deep Speech 2, best model trained on entire Hiwire corpus subset performance
comparison.

subset total samples O%WER Between 0% and 100% 100% WER

HN 342 65.2% 21.6% 12.9%

MN 328 88.7% 6.7% 4.6%

LN 309 91.9% 4.2% 3.9%

clean 336 89.0% 6.9% 4.2%

71

Table 5.3: Deep Speech 2, individual predictions with WER from the Hiwire corpus.

Subset Target Prediction

clean add ad 100%

clean pfd p3d 100%

clean maintaining maintaing 100%

clean select hf2 two eight three two select ho to 83.3%

clean eta delta golf alpha kilo alpha at six three eta delta golf alpfha kilalfoax sixthree 66.7%

clean speed one dot three three eight speed one dt three three eight 16.7%

HN wilco list 100%

HN descent to message 100%

HN route rote 100%

HN vhf3 one three six dot nine five potion juliet srit six edecema neine five 71.4%

HN position eight lima tango lima fox position ie nineaa ike fox 66.7%

HN hf2 six five zero nine hf2 six five zero 20.0%

HN request descent to five five two request descent thoe five five two 18.2%

The confusion matrix shown in Figure 5.5 provides some insight into the performance comparison
between the best-performing model configuration trained on the entire corpus and the same
model trained exclusively on a subset.

VALIDATION SUBSET WER

HN MN LN CLEAN ALL

z 0.292 0.969 0.992 1.36 0.903

1- z 0.201 0.642 0.957 0.711

3.9 1.67 0.163 0.911 1.66

z
1.44 2.74 1.5 0.119 1.45

0.156 0.0195 0.000596 0.0247 0.0502

Figure 5.5: Model performance comparison between Hiwire sub-corpora.

In a final post-processing step, the models' predictions undergo a basic correction function using
the Levenshtein distance as described in Section 4.4.1. This approach yielded a decrease in total
WER of 2.4 percentage points on ATCOSIM and 1.4 percentage points on Hiwire, examples of
which are listed in Table 5.4.

72

Table 5.4: Deep Speech 2 corrected output examples.

Target Prediction \VER Corrected WER

alitalia one one seven guten tag identified alitalia one one seven guten taeg identified 14.3% alitalia one one seven guten tag identified 0.0%

sabena nine three seven two calling sabena cninbe three seven two calling 16.7% sabena nine three seven two calling 0.0%

position charlie zero five papa nine position charlie zero five pava one 33.3% position charlie zero five papa one 16.7%

5.2 Transformer

The results produced by the Transformer are based on the looped hyperparameter cycles de-
scribed in Section 4.5. With a projected timespan stretching throughout loop one scheduled in
Figure 4.1, a set of 1250 individual models was trained. The main goal was to observe model
performances on the ATC domain and get familiar with the impact of the parameters on the
specific task. The set threshold of 5.8% WER did not subside the human-level scores achieved
on the LibriSpeech clean corpus. It is pertinent to note that the models' performance metrics
did not dictate the end of the experiment cycle but rather by the predetermined time frame as
mentioned in Section 4.1.

Table 5.8 presents the top five best-performing models in each sub-corpus with the STFT input.
We can observe that the differences in sub-corpus complexity and noise levels constitute the
most significant differences in prediction capability. It is also apparent that the top models have
similar hyperparameter settings with subtle differences. The vast amount of models trained
has created hyperparameter clusters, but the difference between the best and worst models is
significant.

We see that small batch sizes perform the best on the clean data , while the opposite is observed
on the noisy and aggregated data . We also note that the best-performing model's transformer
architectures are generally more shallow regarding the number of layers and attention heads
employed in the encoder and decoder.

73

Table 5.5: Transformer, STFT features

corpus batch size batch size val n hid n head n feed forward n layers enc n layers dee WER (test)

ATCOSIM 4 2 200 2 400 4 1 30 0%

8 4 31.0%

8 8 31.0%

16 16 32 0%

16 16 33 0%

Hiwire clean 4 4 200 2 400 4 1 9 7%

2 300 300 2 10 6%

200 4 1 10 8%

100 2 500 2 1 11.3%

4 200 300 2 11.3%

Hiwire HN 32 32 200 2 400 4 1 64 0%

16 16 65 0%

66 0%

8 70 0%

16 16 76 0%

All 8 4 200 2 400 4 1 50 0%

32 16 8 600 8 8 51.2%

16 8 2 400 4 1 53 0%

32 16 8 600 8 8 54 8%

400 55 7%

74

When observing selected samples from predictions made by the best-performing models in each
sub-corpora, we see that the Transformer excels in producing sentences without misspellings
(Table 5.6). However, the errors that occur show that the model is prone to substitutions which
significantly affect the WER.

Table 5.6: Transformer, STFT output samples.

Target

ATCOSIM

hamburg air two five zero zero good morning radar contact direct st prex

hapag lloyd ah six five three good morning climb to flight level two seven zero

alitalia four one six radar contact climb flight level three zero zero final level

aerovic one zero six one contact milano one three four decimal five two

topswiss four five five two climb to flight level three two zero

adria one six four two good afternoon squawk two seven one zero

delta mike echo fly direct to karlsruhe climb flight level two seven zero now

jet set four four two on heading one seven zero descend to flight level two nine zero

Hiwire clean

position bravo zulu whiskey lima one

request direct to yankee echo hotel due to weather

request speed four decimal zero due to performance

eta alpha november india golf victor at two three hours four three minutes

we cannot accept plus nine nine nine

position kilo november lima uniform hotel

level one eight three seven seven

fd engage

Hiwire HN

request direct to oscar four victor alpha zero due to aircraft performance

we can accept plus six five zero at six zero three minutes

select hf2 three four nine six

weather radar off

request speed zero dot nine one due to performance

request descent to five five two

switch frequency

position hotel quebec golf mike golf

Prediction

hapag lloyd two five zero good morning radar contact prex

hapag lloyd ah seven seven six five good morning climb to flight level two seven zero

alitalia four one six radar contact climb flight level three zero zero

air one zero six one contact zurich one three four decimal four

line five two four five two climb to flight level three two zero

hapag lloyd one six four good afternoon squawk two seven one zero

delta mike echo bravo echo climb flight level two seven zero now reading now

jet set four four two one eight climb to flight level two nine zero

position kilo four whiskey hotel seven

request direct to yankee due to weather

request speed four point zero due to performance

eta one six hotel mike foxtrot one three hours four one minutes

we cannot accept plus nine nine

position one alpha november one charlie

level one eight five seven zero

fd disengage

request direct to echo foxtrot oscar due to aircraft performance

we can accept nine six seven at three zero minutes

select hf2 three six five eight

weather radar

request speed zero dot six six nine due to performance

request descent to one

change frequency

position yankee three two yankee november

WER

38.0%

20 0%

21.0%

31.0%

33 0%

25 0%

43 0%

29 0%

66 67%

22 22%

12.5%

61.54%

14 29%

83 33%

33 33%

50 0%

42 0%

42 0%

50 0%

67 0%

33 0%

50 0%

50 0%

83 0%

75

In Table 5.7, we also see the clustering effect, with many parameter similarities. The main
difference from the STFT is the number of heads and layers in the encoder and decoder. When
handling a less complex input representation, the transformer's architectural depth seems more
complex.

Table 5.7: Transformer, MFCC features

corpus batch size batch size val me! bins n hid n head n feed forward n layers enc n layers dee WER (test)

ATCOSIM 4 2 40 400 8 600 8 8 28.4%

29.6%

32 29.7%

16 29.9%

8 30.0%

Hiwire clean 4 2 80 400 8 600 8 8 6.8%

40 200 4 300 2 2 7.8%

80 8.4%

40 400 8 600 8 8 8.8%

8.8%

Hiwire LN 4 2 80 600 8 600 16 16 14.9%

40 800 8 8 15.3%

16 15.3%

80 400 600 16 8 15.3%

16 800 32 15.3%

Hiwire HN 4 2 40 400 8 600 8 8 52.0%

80 54.3%

8 4 600 800 58.4%

16 16 32 58.7%

All 64 32 120 400 8 600 8 8 123.7%

128 64 80 131.9%

64 32 40 134.6%

80 145.9%

8 4 152.7%

76

The type of errors observed in Table 5.8 shows the same particular characteristics as observed
in Table 5.6.

Table 5.8: Transformer, MFCC output samples.

Target

ATCOSIM

lufthansa three five six six 1f cleared higher what would be rate of climb

four two zero mne 1 told you to contact rhem one three two decimal four

swissair nine three five two rhem radar identified proceed direct to gotil

air berlin five two six one geneva one three three decimal one five bye bye

transwede three five seven one turn right one zero degrees due traffic

georgia zero three seven contact rhem one two seven decimal three seven

air malta zero zero four for separation turn right by ten degrees

austrian two two contact m l a n one three four decimal five two bye

Hiwire clean

select vhf2 one two five

hf1 three zero seven eight

request climb to eight four five due to weather

eta seven romeo victor i d i a uniform at one one hours seven

select vhf2 one five two decimal zero

level one eight three seven seven

preferred level five two zero

preferred level five four three

Hiwire LN

position tango victor hotel golf zulu

request climb to eight four five due to weather

request direct to lima tango oscar six zulu

we cannot accept two zero zero five rune

position hotel quebec golf mike golf

preferred level four one eight

request speed zero dot rune one due to performance

1ls off

Hiwire HN

preferred level five four three

select hfl five four three four

select vhf2 one five two decimal zero

request climb to plus seven three six due to aircraft performance

request climb to eight four five due to weather

position tango victor hotel golf zulu

request direct to lima tango oscar six zulu

maintaining zero zero six one nine

Prediction

lufthansa three five six six three climb 1level three climb ilevel three bye

foxtrot zero rune contact rhem one three two decimal four

swissarr nme three five two rhem radar identified climb

berlin five two six one two contact geneva one three decimal one five bye bye

transwede three five seven one turn right one zurich east two three two three two due traff

german level three zero seven contact rhem one two seven decimal three seven

air malta zero zero for separ separar ah separation ten degrees

Oscar two three four contact m l a n one three four decimal five two bye

select vhf2 one five two five

hfl three zero seven eight zero

request climb to two four five due to weather

eta romeo papa four seven xray at one seven two

select hf2 five zero one two

level one two four dot three seven

preferred level five zero two

preferred level four one four

position tango victor hotel golf zero

request climb to nuke at five four weather

request direct to Inna tango oscar six zero due to weather

we cannot accept two zero zero five rune one

position quebec golf nine two

preferred level seven four zero

request level seven two nunutes

1ls on

preferred level nunus seven

select hfl five zero rune two

select hf2 two zero seven eight five

request descent to plus seven five six due to aircraft performance

request direct to whiskey oscar echo foxtrot delta due to weather

position one alpha november one charlie

request descent to plus seven five due to weather

maintaining seven five six

WER

64.29%

40.0%

33.33%

33.33%

66.67%

25.0%

41.67%

25.0%

20.0%

40.0%

11.11%

72.73%

71.43%

66.67%

40.0%

60.0%

16.67%

44.44%

50.0%

25.0%

50.0%

60.0%

88.89%

50.0%

60.0%

50.0%

85.71%

18.18%

66.67%

83.33%

87.5%

83.33%

77

5. 3 Hugging Face

The results achieved with the wav2vec 2.0 fine-tuning can be separated into two parts, before and
after the final corpora setup as described 4.6.1. Our early perception of a generalized ATC model
characterizes the first setup, which can cross from the simulated to real-world ATC domain. In
Table 5.9, the results from the augmented data are presented. The data is partitioned in a
clean version with three noise levels, and ATOCOSIM BIG encapsulates all versions. Testl
WER scores are conducted on samples from the corpus, and Test2 WER are samples from real
ATC.

Every model performs well on unseen data from its corpus pool, but there is a clear differ-
ence when the models are exposed to real ATC communications. The models 1-5, which were
fine-tuned on ATCOSIM BIG, substantially outperformed the top-performing sub-corpus of
ATCOSIM BIG, exhibiting a considerable 34.59 percentage point difference in WER.

Table 5.9: Cross-domain results, pretrained models on ATC02-ASR-ALL.

Index Model Corpus Epochs Batch size Testl WER Test2 WER

1
wav2vec2-large-a-ATCOSIM big-E50-B64 base-ATCOSIM ATCOSIM BIG 50 8 4 30% 29 57%big-E50-B8 base

2 wav2vec2-large-a-ATCOSIM big-E50-B64 base-ATCOSIM 16 4 64% 30.02%big-E50-B16 base

3 wav2vec2-large-a-ATCOSIM big-E50-B8 base 8 5 21% 30 92%

4 wav2vec2-large-a-ATCOSIM big-E50-B16 base 16 4 92% 31.39%

5 wav2vec2-large-a-ATCOSIM big-E50-B64 base 64 6 66% 32 27%

6 wav2vec2-large-a (baaddfaa495711edbd965723004f39d0) ATCOSIM clean 16 1.13% 64 16%

7 wav2vec2-large-a (52b9e0e0495911edb38d53b30a9f3c33) 8 1.12% 65 35%

8 wav2vec2-large-a-baaddfaa49571 ledbd965723004f39d0 ATCOSIM noise3 64 17 64% 71.01%(958c26784a241led80732959f50e2524)

9 wav2vec2-base-960h-clean-e50-b64 ATCOSIM noisel 50 2 30% 72 60%

10 wav2vec2-base-960h-NOISE1-el OO-b64 ATCOSIM noise2 100 4 30% 76 30%

11 wav2vec2-base-960h 1.70% 76 60%

78

The secondary setup was predominantly concentrated on the ATOCOSIM corpus. All the
pipelines performed exceptionally well, with near-perfect predictions in most cases. Table 5.10
and Figure 5.6 reveal minuscule differences in the different models. The results align with the
results produced in Table 5.9 and underscore the capabilities of the downstream method.

Table 5.10: Hugging Face pipelines best performance.

Model Batch size Train loss Val loss Test WER

wav2vec2-large-960h-lv60-self 8 0.018 0.045 0.95%

wav2vec2-large-robust-ft-swbd-300h 0.017 0.042 1.01%

wav2vec2-large 0.006 0.054 1.04%

wav2vec2-large 16 0.036 0.062 1.09%

wav2vec2-xls-r-300m 8 0.011 0.055 1.3%

wav2vec2-base 16 0.016 0.113 1.46%

Val loss Train loss

0.20
wav2vec2-base-B16

0.20
wav2vec2-large-960h-Iv60-self

0.18 0.18

0.15 0.15

0.12 0.12

0.10 0.10

0.08 0.08

0.05 0.05

0.03 0.03

0.00 0.00
0 6 12 18 24 30 42 48 0 6 12 18 30 42 48

0.20
wav2vec2-large-robust-ft-swbd-300h

0.20
wav2vec2-xls-r-300m

0.18 0.18

0.15 0.15

0.12 0.12

0.10 0.10

0.08 0.08

0.05 0.05

0.03 0.03

0.00 0.00
0 6 12 18 24 30 42 48 0 6 12 18 30 42 48

0.20
wav2vec2-large-a-B8

0.20
wav2vec2-large-a-B16

0.18 0.18

0.15 0.15

0.12 0.12

0.10 0.10

0.08 0.08

0.05 0.05

0.03 0.03

0.00 0.00
0 6 18 24 30 42 48 0 12 18 30 42 48

Figure 5.6: Hugging Face pipelines graphs.

79

Probing further into the individual WER scores for each sample in the test sub-corpus reveals
that most samples yield a WER of 0%, a perfect prediction. As seen in Table 5.11, the mean
WER for the samples which were not perfectly predicted remains low.

Table 5.11: Hugging Face pipelines WER details (* indicate that samples with character length
below 10 were removed from test sub-corpus).

Model O%WER 100% WER Between O and 100% 0-100% mean

facebook-wav2vec2-large-960h-lv60-self* 858 0 75 12.10%

facebook-wav2vec2-large-robust-ft-swbd-300h * 852 0 81 11.02%

yongjian-wav2vec2-large-a-B8* 848 0 85 12.65%

yongjian-wav2vec2-large-a-B16 868 2 86 16.04%

facebook-wav2vec2-xls-r-300m* 838 0 95 14.52%

facebook-wav2vec2-base 847 2 107 13.72%

80

The nature of errors in Table 5.12 is also observed in Section 5.2 regarding the Transformer
predictions.

Table 5.12: Hugging Face output samples.

Target

facebook-wav2vec2-large-960h-lv60-self

ah metavec one zero SIX one turn now nght headmg two one zero sorry

thats correct stand that routmg

airfrans one five zero nme yeah stand by

okay were fimshed thank you have a mce weekend

thank you tschuss

swissair four eight eight checked in

roger youre identified

facebook-wav2vec2-large-robust-lt-swbd-3OOh

okay were fimshed thank you have a mce weekend

ah expect higher later on after crossmg traffic above

amrtas one guten tag identified report your heading

ah metavec one zero SIX one turn now nght headmg two one zero sorry

roger youre identified

ho1 k I m three four six identified

lox sierra india climb to level three seven zero

yongjian-wav2vec2-large-a-B8

air adria one six two seven is identified

belgian airforce two three four own navigation direct to epinal

ah metavec one zero SIX one turn now nght headmg two one zero sorry

okay were fimshed thank you have a mce weekend

ah expect higher later on after crossmg traffic above

yeah you too

alnght one three three one five please

yongjian-wav2vec2-large-a-B16

climb to flight level three eight zero

and at level th r two nme zero

ah okay then we fimsh

air inter sierra oscar set course direct to kamas

speedbird one two four good mornmg radar contact

ohh la la whats gomg on behmd

and nme three SIX zero contact rhem one two seven three seven tschu

facebook-wav2vec2-xis- r-3OOm

georgia a!f zero three seven 1s 1 radar contact

alitalia one three five what 1s your mach number

thats correct stand that routmg

yeah should be with ah one two eight one five 1 think

one ah three three four please

alnght one three three one five please

merair six mine five two is identified 1ll call you back for higher soon

facebook-wav2vec2-base

Japanair four one nme zunch

airfrans three two six one no further speed restrictions

p s a five two SIX hotel contact rhem one three two decimal four

ah what 1s your full callsign

air adria one six two seven is identified

yeah follow flight planned route radar contact

gull a!f zero three two ah proceed direct fusse

Output

and medavic one zero six one h turn now nght headmg two one zero sorry

thats correct stand at routmg

airfrans one five zero nme yeahe stand by

okay we fimshed thank you have a nice week and

thank you schuss

swissair four eight eight checkeding

roger identified

okay we fimshed thank you have a nice weckand

ah expect higher later on 1 have crossmg traffic above

arrtors one guten tag identified report your heading

and medarovec one zero SIX one ah turn now nght headmg two one zero sorry

roger identified

ho1l k l m three four six identified

ah lox sierra india climb to level three seven zero

yeah adria one six two seven is identified

rogern airforce three three four own navigation direct to epinal

anh merarvec one zero SIX one turn now nght headmg two one zero sorry

okay we fimsh thank you have a nice wd agam

ah expect higher later on 1 have crossmg traffic above

yeah you too b

a rih one three three one five please

ah climb to flight level three eight zero

and at level th ro two nme zero

okay then were fimshed

air intera sierra oscar set course direct to kamas

speedbird ah one two four good mornmg radar contact

olla la whats gomg on behmd

ad nana three six zero contact rhem one two seven three seven tschu

georgia zero three seven 1s radar contact

alitalia one three five what 1s you mach number

thats correct and routmg

yea should be withe ah one two eight one five ai think

one three three four please

anght one three three one five please

merair six nine five two is identified 1ll call yu back for higher seveln

Japan au four one nme zunch

a!f!rans three two SIX one now further speed restrictions

be ls ar five two six hotel contact rhem one three two decimal four

ah what is your four callsign

eah adria one six two seven is identified

yeah lurlo flight planned route ahga radar contact

gulf a!f zero three thre ahd proceed direct fusse

WER

21.43%

20.0%

12.5%

33.33%

33.33%

33.33%

33.33%

22.22%

22.22%

12.5%

21.43%

33.33%

12.5%

11.11%

12.5%

20.0%

14.29%

44.44%

22.22%

33.33%

28.57%

14.29%

14.29%

60.0%

11.11%

12.5%

28.57%

15.38%

11.11%

11.11%

40.0%

25.0%

16.67%

14.29%

14.29%

40.0%

11.11%

21.43%

16.67%

12.5%

28.57%

22.22%

81

5.4 wav2vec-U 2.0

The results produced with the unsupervised method are the results of an extensive implementa-
tion phase of the novel generative approach to the ASR domain. Figure 5.7 show the results of
one of the first successful training runs after finally getting the framework operational.

90

85

80

75

W 70

65

60

55

Figure 5.7: Wav2Vec-U 2.0 training details, 53% WER model.

The wav2vec-U framework utilizes phoneme token representations, posing considerable diffi-
culty in generating comparative and interpretative outputs. The alignment of the source text
was a primary source of confusion, with initial runs yielding outputs that were difficult to deci-
pher.

The samples presented in Table 5.13 emerged from numerous iterations in training. Here, rather
than separating phonemes by spaces, they were joined together, consistent with the model output
regularly displayed on the terminal log to facilitate tracking of the WER progression.

82

Table 5.13: wav2vec-U 2.0 phoneme predictions, early stage.

model output

target

libri960

xlsr 53 56

target

libri960

xlsr 53 56

target

libri960

xlsr 53 56

target

libri960

xlsr 53 56

cross air six eight zero bonjour climb to flight level three zero zero

kuseisiksemtzi1oub:n3uuklaimtflartlevl0ii:zi1ouzi1ou

a: fa:k:seeisiksertziiouma:zuoufa:fklaimbartlvl0ri:ziiouzirouma:

Oi:pka:o:useusiksertziiouba:d3 klaimklaimlevl01i:ziiouiini:

delta mike echo turn right to trasadingen

deltmarkekout:naitttisidind3n

a:del tmarkkoutuartt i s id ima:

i:deltmaikekout:uartttisidini:

aero lloyd five three three is identified

eaoulidfarv0ii:0ii:izaidentifaid

a:ereuuvarfarv0ii:0ii:izardentifaid

meourdfarv0ii:0ii:1zardentifamni:

affirm swissair nine three six zero contact rhein radar one two orange seven decimal three seven

efa:mswisemnamn0ii:sikszixouka:ntktiemuerda:uwAntu:svndesiml0ii:sevn

a:eif3: swisemnam0ii:siksfizuouka:ntktiemnieida:uw.Antu:sevndesil01i:svmna:

e i f : msswiseinamn0ii:ssikssziziaouka:ntktemeida:siwAntu:sevndesiml0ui:sevni:

Figure 5.8 show the performance of the best model, yielding a final WER of 23.7% on ATCOSIM.
The variance in the two final results was traced back to misalignment between the transcript
and audio file in the test sub-corpora (referred to as validation files in the framework). Upon
discovering this misalignment, the WER dropped down to 23.7%.

96
Mismatched validation files

80

Matched validation files

88

80
72

72

64

56

48

40 32

32
0 400 800 1200 1600 2000 2400 2800 0 400 800 1200 1600 2000 2400 2800

Mismatched validation files, details Matched validation files, details
94 31

92 30

90 29

88
28

27
86

26
84

25
82

1200 1400 1600 1800 2000 2200 2400 2600 2800 1200 1400 1600 1800 2000 2200 2400 2600 2800

Figure 5.8: Wav2Vec-U 2.0 training details, 23.7% WER model.

83

The final prediction format is presented as a sequence of phonemes mapped against the ground
truth (Table 5.14). Identifying the error patterns before the post-processing is challenging at
first glanze yet there is an overall similarity present

Table 5.14: wav2vec-U 2.0 phoneme predictions, from the model achieving a WER/UER of
23.7%

alitalia four one three can you accept flight level three one zero as cruising level today

target a: 1 1 t er l io f omw An 8 J i: k a: n j u: e ks ep t f l art l e v l 0 1 i: w An z i:i J ou a: z k J u: z 1 q l e v l t d er

prediction l i t e r l i o f o u w A n 0 r i : k j nj u : k e k fl ar 1 e v l 0 ri : w An z i 1 ou f e z 1 d 1 1e v l t d 1 b ar

hamburg air two five four six climb to flight level three zero zero

target h a: ill b 3: g EJ t u: f ar v f otus I k s k l ar m t f 1 a, t l e v l 0 1 i: z i 1 ou z i 0v

prediction m b 1 g ertu: f a rv fo:u s 1 k s k l ar m f l ar t l e v l 0 1 i: z i r ov z i 1 0u

georgia air three correction zero three seven rhein identified

target d3 ou d3 e1 0 1 i: k 1 e k f n z i 1 00 0 1 i: s e v n r er n ar d e n t 1 f ai d

prediction t a u a: i : i ere 0 1 i : k 'a e k § z i 1 o0 0 i i: s e v n 1 er n ar e n t u:

delta echo charlie continue descent to flight level three five zero

target d e l t e k ov tf a:r 1i k :i n t I n j u: d I s E n t t of 1a, t 1e v l 0 1 i: f a , v z i:i J ou

prediction l k ov tf au 1 i k : i n t In j I O S E n t a: 1v 8 Ji: f a , v z i:i J

merair six nine five two climb to flight level two nine zero

target ill E J EJ s I k s n a, n f a , v t u: k l ar m t f 1a, t 1e v l t u: n arn z i I ov

prediction EJ J s I kt n f a , v tu: k l arm t u :

french air force five five one zero report your rate of descent

target f 1 e n tf er f or s f a, V f a, V w An z i a 00 I 1 p Out j I J eI t A V d I S € n t

prediction J a: n d f ou s f a , v f a , v w An z i ow 1 p ou t j r 1 er t v t I s E n d t

good afternoon lufthansa triple five zero squawk two seven five seven

target g u d f t n u n l A f 0 n s t 1 1 p l f a rv z i 1 ou s k w : k t u: s e v n f ar v s e v n

prediction g u d f t · n u n l A 0 n s t i i p l v a r v z i o x o u s k w : k t u : s e v n f a r v s e v n

britannia three two seven alfa contact rhein radar one three two decimal four

target b i 1 t n i o 0 r i t u : s e v n l f k a : n t k t r e r n i e r d a u w A n 0 i i : t u : d e s i m l f o

prediction e r 3 : 0 i i : t u : s e v n l f k a : n t k r e r n i e r d a u w A n 0 i i : t u : o v e r 1 v w a r

t ag lufthansa three five zero eight identified climb flight level two five zero

target t a: g 1A f 8 a: n s :i 8 J i: f a , v z i I ow er t a, d e n t I f a , d k l ar m f l ar t 1 e v l t u: f arv z i o

prediction t g l A f 0 n 0 i i : f a r v z i o r o u e r t e d e n t i f a r k l a r m f l a r t l e v l t u : f a r v z i r o v

lufthansa four six five two climb to flight level three four zero

target 1A f 8 a: n s :i f o:J s I k s f a , v t u: k 1a, ill t f l a r t l e v l 0 m i : f o m z i o a o v

prediction :i a: n s :i f o:J s I k s f a , v tu: k 1a, ill f 1a, t 1 e v l 0 a i: f ou z i a ov

airfrans zero zero nine november good afternoon squawk two seven four four

target er f a n z z i 1 ow z i 1 ov n a, n n ou v e m b 2° g u d a: ft 2° n u: n s k w o: k t u: s e v n f ou f ou

prediction e r f a n z i x o u z i x o u n a r n o u v e b g u d f t ' n u : n s k : k t u : s e v n f o u f o u

roger aerovic one zero six one for separation tu rn right heading one nine five

target

prediction

1 a: d3 e 1 ou v 1 k w An z i 1 ou s 1 k s w An f u s e p ' 1 e1f n t 3: n 1 ar t h e d 1 1 w An n arn f ar v

1 a: d3 e 1 ou v 1 k w An z i 1 ou s 1 k s k z w An n f o u s v p 1 erf n t 3: n 1 ar t h e n 1

84

5.5 Whisper

The results presented in Table 5.15 are directly comparable with the other methods utilized in
our research. It is discernible that architecture complexity correlate with increased performance
and WER score. However, it is also noticeable that the momentum of improvement begins
to diminish with increased parameters. This is evident by a substantial improvement of 14.8
percentage points when transitioning from a small to medium architecture but a significantly
smaller gain of only 1.7 percentage points from medium to large.

Table 5.15: Whisper performance comparison.

Model Original WER Corrected WER

small 91.1% 46.0%

medium 84.2% 31.2%

large 82.9% 29.5%

The original Whisper output was slightly corrected to create a comparable transcript to better
match the other output formats, as shown in Table 5.16. Again we see the same type of errors
as mentioned in Section 5.2 and 5.3.

Table 5.16: Whisper (small) output samples.

Original prediction Corrected prediction

swissair six five five two contact milan one three four five two good bye

WER

Swiss 6552, contact Milan 13452, goodbye. swiss SIX five five two contact milan one three four five two goodbye 21%

lufthansa four five seven five good mornmg radar contact contmue climb flight level three two zero willisau trasadigen nelli

Lufthansa 4575, good mornmg radar contact, country or client flight
L320, release our tnals at Nellie.

lufthansa four five seven five good mornmg radar contact country or client flight
I three two zero release our tnals at nellie 163%

tuna1r four eight zero two is identified youre cleared direct to fox fox mike

Turn F4802 as identified, Jekyllert, Directive Fox, Fox, Mike.

monarch two four four bonjour squawk five seven three seven

Monarch 244, Mojo Squawk 5737

p s a five two SIX hotel contact rhem one three two decimal four

BASTA 526 VATEL, Kontakt Rhem-Wandn-2-Desmal-4

turn f four eight zero two as identified jekyllert directive fox fox mike

monarch two four four mojo squawk five seven three seven

basta five two SIX vatel kontakt rhem-wandn- two-desma!- four

50%

10%

71%

85

Table 5.17: Whisper (large) output samples.

Original prediction Corrected prediction

swissair six five five two contact milan one three four five two good bye

WER

Swissair 6552 contact Milan 13452, goodbye.

lufthansa four five seven five good morning radar contact continue climb flight level three two zero willisau trasadingen nelli

Lufthansa 4575, good morning, radar contact, congeal climb flight
level 320, release our trials at lnleli.

lufthansa four five seven five good morning radar contact
congeal climb flight level three two zero release our trials at inleli

tunair four eight zero two is identified youre cleared direct to fox fox mike

Tower 4802 is identified, you're clear to direct to FOX, FOX Mike

monarch two four four bonjour squawk five seven three seven

Monarch 244, Mozeszkow 5 7 3 7 monarch two four four mozeszkow five seven three seven

p s a five two six hotel contact rhein one three two decimal four

Belfast 526H, contact R132.4

swissair six five five two contact milan one three four five two goodbye

tower four eight zero two is identified youre clear to direct to fox fox mike

belfast five two sixh contact r one three two four

14%

142%

21%

20%

50%

86

Chapter 6

Discussion

The main focus of this research endeavor has been to investigate and assess various methods
for ASR tailored explicitly for ATC audio. The ultimate goal is to equip Kongsberg Defence
& Aerospace (KDA) with comprehensive insights to facilitate informed decision-making for its
ongoing development of remote towers systems (RTS). To accomplish this, we have conducted
experiments on publicly available corpora containing ATC audio recordings in English.

By leveraging the methodologies outlined in Chapter 4 and analyzing the outcomes presented
in Chapter 5, we will attempt to answer the research questions proposed in Section 1.2:

RQ 1 What are the current State-of-the-Art technologies for ATC ASR, and how can we effec-
tively implement these?

Drawing upon the observations and trends discussed in Sections 3.5 and 3.6, we can confi-
dently assert that wav2vec 2.0 is the prevailing state-of-the-art technology for ASR, transcend-
ing domain-specific boundaries. Our experiments have achieved exceptional results, attaining
a WER below 1% on ATCOSIM by employing the general fine-tuning approach to develop a
downstream model customized for this particular domain.

These findings substantiate the efficacy and prominence of wav2vec 2.0 as a cutting-edge solu-
tion for ATC-specific ASR applications. It showcases the model's ability to deliver exceptional
accuracy and robust performance, surpassing previous methodologies in the field. By lever-
aging the strengths of fine-tuning techniques and domain-specific adaptations, the proposed
approach ensures optimal ASR performance, increasing the efficiency and effectiveness of ATC
systems.

Having pinpointed what we regard as the most sophisticated and relevant technology for ASR
in ATC, we turn to the second research question:

RQ 2 Which solutions meet the requirements for implementing ASR in KDA RTS?

We also encounter a significant safety concern against the backdrop of impressive results obtained
through ready-to-use frameworks such as the Hugging Face interface and pipelines, which use
pre-trained models from Meta Ai's GitIHub repository and the Hugging Face website itself. Given
the large scale of these frameworks, it necessitates a high level of expertise to navigate the source
code concerning security. Thus, to address the second research question, we will to the best of
our abilities, present the concerns that arose during our research.

6.1 Deep Speech 2

Despite its age, the Deep Speech 2 architecture still performs satisfactorily in certain scenarios.
The original paper described in Section 3.2.1 reports a WER of 5.15% on the LibriSpeech test-

87

clean set, which is on par with the results of 5.4% we observed when training on the entire
Hiwire test sub-corpus and 3.65 percentage points less than what we observed on the ATCOSIM
test sub-corpus at 8.8%.

However, the Deep Speech 2 model exhibits limitations when faced with out-of-domain audio
and noisy data, even within its specialized domain. Notably, when exposed to the high noise sub-
corpus of Hiwire, the performance deteriorates significantly, resulting in a WER of 21.3%. This
decline in performance highlights the model's vulnerability to noise and raises concerns regarding
its effectiveness in handling out-of-domain data. While overfitting is generally not desirable, in
some instances, such as specialized domains like ATC, it may be a consideration worth exploring,
as robustness may be of lesser concern when dealing with out-of-domain data.

Furthermore, cross-domain evaluation of the models reveals that training on the entire corpus
outperforms training on individual sub-corpora. The corpus size plays a crucial role, as models
trained on individual sub-corpora achieve WERs ranging from 29.2%

Regarding the second research question (RQ2), the Deep Speech 2 model initially appears to be
a suitable choice due to its simplicity and straightforward implementation. Its design, relying
on the TensorFlow framework, allows for the straightforward integration of an ASR module into
a system, where it can process audio inputs and generate transcripts with minimal additional
processing. However, the reliance on a third-party framework necessitates a thorough vetting
process to address potential safety concerns, as outlined in RQ2.

Considering the unique characteristics of ATC communications, the limited availability of train-
ing data, and the substantial requirements of supervised learning approaches that demand large
amounts of annotated data, the use of Deep Speech 2 in KDAs RTS does not appear feasible,
both when considering costs to transcribe the amount of training data required manually, and
considering the existence of more advanced ASR solutions available today.

Deep Speech 2 holds historical significance as one of the first end-to-end models available for
implementation (provided the corpus is correctly annotated). It is fair to say it served as a
stepping stone in the evolution of such systems. However, considering the technological leaps
made since this architecture was considered state-of-the-art, its primary purpose now seems to
be an introduction to the end-to-end ASR systems powering today's digital assistants.

6. 2 Transformer

Like Deep Speech 2 (DS2), the transformer is not a new technology, as its core principles were
described in 2017. It was initially intended to solve textual challenges through sequence-to-
sequence learning but has proven to handle most types of sequence-to-sequence tasks with great
success.

The results we observed in Chapter 5 show some overall trends. ATCOSIM and Hiwire clean are
comparable in noise levels as they are both simulated data recorded in controlled environments.
However, they differ in sentence and word complexity, which creates a significant difference in
the prediction ability of the transformer. The same pattern applies when we look at the noise
levels on the Hiwire results, indicating increased noise correlation with decreasing WER. It also
observed that using MFCC as input improves performance on the corpora-specific models, with
minor improvements on the clean models, respectively 1.6% WER on ATCOSIM and 2.2% WER
on Hiwire clean to a 12% WER improvement on Hiwire HN, indicating significant impact on
noisy data.

However, when observing models trained on both corpora, they encounter difficulties in estab-
lishing a baseline as the data becomes more diverse. Mainly, MFCCs appear susceptible to
this effect, exhibiting a substantial decrease in predictive proficiency compared to the STFT

88

input. This results in a stark 73.7% WER disparity on unseen data when juxtaposed with the
STFT.

Notably, the transformer's overall performance on the two corpora is worse than that of the
results observed with Deep Speech 2. However, the transformer is far better at forming coherent
words within a few training epochs, as shown in Table 6.1.

Table 6.1: Transformer early prediction development.

Epoch Target

1 range one hundred sixty

lufthansa four two one nine is identified

- delta fox sierra geneva one three three one five bye

5 aero lloyd five three three continue left t u r n heading of zero two zero

Prediction

request direct to sixto fo fo atherat fo fo t h r

alitalia th re zero one o t one tone tonee threee two threre

alitalia three two five o t onent o onee threee threee three t h r o

aero lloyd five two two two all three two zero zero aint

It must be noted that DS2 uses a CTC loss function, while the transformer uses a cross-
categorical loss function, which may have impacted the results we observed. The complexity of
the corpora seems to correlate as they both perform better on Hiwire than ATCOSIM.

Considering the research question (RQ2), the transformer architecture used in our experiments
is built with the TensorFlow framework, and as such, the same security concerns apply here as
with DS2. While more complex in architecture and implementation than DS2, the transformer as
a standalone module could also be implemented without additional adaption. It is also possible
to further research supervised down streaming, but as with DS2, this will require a substantial
amount of quality checked labeled data and highly specific for the domain.

6.3 wav2vec 2.0

As mentioned in Section 4.6, the initial premise for this thesis was the delivery of a substantial
package of unlabelled audio from one of KDAs partners. After identifying wav2vec 2.0 as the
most promising solution in terms of access and usability to solve KDAs problem as mentioned in
Chapter 1, our initial approach was to utilize this framework to create our own, novel ATC base
model using this unlabelled data for a downstream task within the same domain, and perform
experiments with various amounts of labeled data.

Due to unforeseen circumstances regarding legal concerns, the partner could not deliver the audio
data. This was not ideal and changed the nature of our research going forward. Our options
at the time were to start building a custom corpus containing ATC audio scraped from sources
like YouTube and various aviation enthusiasts' websites, with all the potential problems and
difficulties this would entail both legally and technically. This option was quickly scrapped, and
instead, a compromise was made utilizing the aforementioned public corpora, which would ensure
our experiments could be measured against previous research and, above all, be reproducible by
others.

6.3.1 Hugging Face

Initially, the plan was to train pre-trained models using the Hugging Face framework on both
corpora. However, when reading the fine print in the Hiwire EULA, this did not align with the
Hugging Face terms of service [2]:

89

• If you decide to create an Account for your Organization, you represent that you have
the authority to act on behalf of your Organization and bind your Organization to these
Terms.

• You own the Content you create! We will not sell your Content, nor will we use it in
any other way as permitted under these Terms. However, by posting your Content or
otherwise making it available on our Website, you must be aware that:

- You hereby grant us a worldwide, royalty-free, and non-exclusive license to use, dis-
play, publish, reproduce, distribute, and make derivative works of such Content to
provide Services and as otherwise permitted under these Terms and our Privacy Pol-
icy; and,

- Your Content will be viewed by others, and therefore:

* If you decide to set your Repository private, we will use reasonable and appropri-
ate measures designed to keep your Content confidential and protected from any
unauthorized access or disclosure. However, we may access or share your private
information pursuant to the terms set forth in our Privacy Policy.

As it is better to err on the side of caution, the experiments were conducted solely on the
ATCOSIM corpus, which is open-source and free to use.

As evident from the results presented in Section 5.3, the performance of pre-trained wav2vec
models is superior to both DS2 and basic transformer architectures when tested on unseen data.
Based on these observations, we are confident that the state-of-the-art solution regarding RQ1
is anchored in downstream models produced by fine-tuning much larger pre-trained models like
the wav2vec2-large-960h-lv60-self.

Unlike DS2 and Transformer, wav2vec 2.0 uses the raw wave plot as input to the feature ex-
traction layer, eliminating the need to pre-process the audio. When compared with the basic
transformer's performance (or lack thereof) when using MFCCs as a basis for feature extraction
on the combined ATCOSIM and Hiwire corpora, it is possible that MFCC as features make
the model handle diversity such as noise levels and sentence complexity in a less than optimal
way.

Wav2vec 2.0 produces near-perfect results with the best model predicting with sub-one percent
precision. The results also demonstrate increased robustness when the data is augmented and
tested on real ATC, but also show reduced capabilities on unseen data from the same source
as the fine-tuning pool. The employed cycles of 50 epochs showcase the framework's fast adap-
tation of the domain-specific language. Furthermore, the few errors produced exhibit the same
characteristics described in the transformer results.

As for the security aspect of using a third-party framework, Hugging Face does not meet the
requirements described in RQ2, but the results are firmly in favor of full implementation and
further testing on actual ATC data utilizing the underlying wav2vec 2.0 framework created and
managed by Meta AI.

6.4 wav2vec-U 2.0

At first glance, this framework and its presentation seemed to provide a feasible solution to the
problem facing KDA and its partners: having a substantial amount of unlabeled audio. The
core concept of wav2vec-U 2.0 (w2v-U) is the unsupervised approach to solving the common
problem in ASR related to domains with little to no transcribed audio. With the limitations
and challenges associated with ASR in the ATC domain, as described in 3.6, this framework

90

could potentially help lower the cost of implementing an ASR system as described in Chapter
1 with no labeled data necessary. However, development of the framework appears to be on
hiatus, with its latest commit tracing back to June 15th, 2022, as evidenced by this comment
at the end of the readme file:

*** Note: these instructions are a work in progress and will be updated over the
next few days

With our own experience working with this framework in mind, the sheer complexity and severe
lack of documentation might explain why mainstream adaption for the time being is lacking,
given the apparent benefits the framework promises. From an academic point of view, there
seems to be some traction in adopting the concept (Section 3.5), with nine publications in 2022,
followed by fourteen so far in 2023, according to Google Scholar.

The enthusiasm for potential generative ASR modeling soon turned into frustration as the
cascade of challenges started to mount, with what appeared to be two steps back for every
progress made. In Section 4.6.2, we describe the step-by-step processes. However, we have
omitted the numerous error messages, dependency requirements, code deficiencies, and lack of
documentation for each data processing step, challenges we nicknamed "The Framework Fairy."
During training runs using the wav2vec-U framework, the use of GPU memory would frequently
approach the limit, and on some occasions, the GPU would stall, throwing system-wide error
messages like the one in Listing 4. This would cause our processes running on the GPU to
terminate, and other users' processes would also be dropped (as we experienced first-hand).

kernel:[259395.394258] watchdog: BUG: soft lockup - CPU#159 stuck for
22s! [fairseq-hydra-t:2262736]

Listing 4: System wide error message.

Even though both authors were using the same server to configure the framework per the in-
structions, the path we undertook was quite different toward the end goal. In order to streamline
this process, we created a layer on top of the framework, listed in Section 4.6.2, automating the
preparation of both text and audio data, preprocessing the input to the GAN and initializing
the training cycles in a one-click setup.

Each training cycle with the hardware described in Section 4.2.1 would typically last 57 hours,
not including the steps involved in preparing the data. Given the relatively small size of the
ATCOSIM corpus, the total amount of GPU RAM used would be around 30GB, give or take. In
the scheduled time frame, the time allocated for researching the unsupervised approach was set
to eight weeks starting in February; due to the abovementioned challenges, the actual training
did not commence until early April, lasting approximately three weeks. During this period,
we would, at any given time, have four different models training simultaneously, with some
downtime due to other users needing access to the GPUs.

The results presented in Section 5.4 are from the best-performing models from each of the ap-
proaches that ultimately led to the framework running on our system. They are the culmination
of countless attempts to get the WER down to an acceptable level, with a trial-and-error ap-
proach as the only viable option, given the lack of documentation and support in the GitHub
repo. Compared with the basic Transformer model at 28.4% using the supervised approach, the

91

unsupervised result of 23.7% shows potential for further research and development.

Compared with downstream models the w2v-U framework cannot compete and, as such is not
currently state of the art, even though the underlying technology is the same. Second, the fact
that this framework is challenging even to get working means it is not ready for implementation,
neither streaming nor offiine. Regarding security, multiple potential risks are associated with
a highly experimental framework like this, with many dependencies, some more obscure than
others.

6.5 Whisper

OpenAI Whisper, described in Section 4.7, builds on the transformer architecture with a new
approach to data collection and labeling called weak supervision, resulting in a 680.000 hours
base for the pre-trained models. The results are based on three different architectures spanning
from small to large, describing the number of parameters in the architecture.

The top-performing model registers a WER of 29.5%. When juxtaposed with the best-performing
Transformer model that employs the MFCC input, as shown in Table 5.7, the Transformer ex-
hibits a WER that is 1.1 percentage points lower. This is particularly intriguing when considering
the data platform used and the architectural depth of each model. With the resources spent on
achieving these comparable results, Whisper and the basic Transformer are at opposite ends of
the spectrum. Whisper demonstrates a general ASR model's robustness when presented with
presumed unseen data. We say presumed because OpenAI has not disclosed what the 680.000
hours of training data consist of in detail. It is fair to assume that publicly available corpora,
like ATCOSIM, are included in this massive pool of audio data. Therefore, it may have seen
the data previously, yet it performs on the same level as a basic Transformer trained with less
than 10 hours of labeled domain-specific data.

Regarding RQ1, Whisper can not be considered state-of-the-art with the results presented here.
It is somewhat robust, but this could also be explained by the mysterious corpus they utilize,
the contents of which remain unknown as of the submission date of this thesis paper. However,
of all the methods tested, it is by far the simplest to implement, though at a considerable cost
regarding time, as it would take upwards of one hour to predict the 954 samples in the test split.
Implementation would result in a running cost currently set at 0.006S per minute of transcribed
audio and does not support streaming.

As for the security concerns in RQ2, using a black box API like Whisper does not conform
with the strict requirements listed in Section 1.2. Given that the other methods produce almost
instant predictions leads us to suspect that OpenAI is doing more behind the scenes than they
let on, but this would be pure speculation on our part. In any event, the many open questions
regarding OpenAis practice make Whisper an unsuited candidate for further consideration in
the remote towers systems (RTS) project, but rather as a benchmark of the abilities of one of
the leading AI companies in the world.

6.6 Hardware resources needed

To get a sense of scale when discussing the hardware resources needed to create pre-trained
models like the ones described in Section 5.3, let us take a closer look at what Meta AI has built
over the last decade as described by themselves 1 2.

Since establishing the Facebook AI Research lab in 2013, Meta has made notable advancements
in AI, particularly in self-supervised learning and transformers. This focus has driven the de-

'https://ai.facebook.com/blog/ai-rsc
https://ai.facebook.com/blog/supercomputer-meta-research-supercluster-2023/

92

velopment of high-performance computing infrastructures necessary for training large models.
The first iteration, crafted in 2017, was a single cluster with 22,000 NVIDIA VlOOTensor Core
GPUs, capable of 35,000 training jobs a day.

A strategic decision in 2020 set the course for a technological overhaul. A new computing infras-
tructure was designed from scratch to exploit the latest GPU and network fabric technologies.
This enabled the handling of massive corpora up to an exabyte in size and training models with
over a trillion parameters. The resulting system, the Research SuperCluster (RSC), comprised
760 NVIDIA DGX AlOOsystems, equating to 6,080 GPUs. This represented a substantial up-
grade from the VlOOGPUs used previously. A high-performance NVIDIA Quantum 1600 Gb/s
InfiniBand fabric facilitated rapid inter-GPU communication. The system also incorporated
a storage tier of 175 petabytes of Pure Storage FlashArray, 46 petabytes of cache storage in
Penguin Computing Altus systems, and 10 petabytes of Pure Storage FlashBlade.

By May 2023, Meta completed the second-phase buildout of RSC, significantly enhancing its
capabilities and positioning it among the fastest AI supercomputers globally. This expansion
integrated 2,000 NVIDIA DGX AlOO systems or 16,000 NVIDIA AlOO Tensor Core GPUs,
all linked via a 16 Tb/s NVIDIA Quantum InfiniBand fabric network. The computing power
reached nearly 5 exaflops, meaning quintillions of calculations per second. In parallel with these
upgrades, the storage solution named AirStore was refined. Developed in collaboration with
Penguin Computing and Pure Storage, AirStore featured 80 petabytes of cache and over half an
exabyte of bulk storage, delivering up to 16TB/s of throughput. This secure, scalable solution
was vital to managing the vast data inflow, ensuring sustained training for projects running on
thousands of GPUs over weeks, an essential factor in the success of RSC.

In comparison, the hardware resources available at H i , as described in Section 13, consists of
two AlOO80GB GPUs. Each of these currently retails at 220,000NOK / 20,500$ inc. VAT. Of
course, the RSC is not solely for ASR research and is designed to meet the demands of one of the
biggest tech companies in the world. However, the main point here is that for Kongsberg Defence
& Aerospace (KDA), the scale of resources needed correlates with implementation methods and
the corpora size. Suppose a novel supervised or self-supervised ATC base model is desired.
In that case, large amounts of audio data must be processed and require substantial hardware
capabilities compared to a downstream model built from pre-trained wav2vec 2.0 weights.

6.7 Data

One of the most vital parts of machine learning is access to relevant, quality data. Without
it, even the most advanced algorithms cannot produce reliable results, and though this can be
mitigated through various tricks and techniques, like data augmentation and synthetic data, for
a sub-field like ASR, the access to relevant data is paramount. For instance, in object detection
in the field of computer vision, labeling a custom corpus of images in the thousands can be
conducted in a matter of hours with relative ease using purpose-built tools like Supervise.ly3
or outsourcing to third party companies. Audio differentiates from other data types due to the
time-consuming procedure of obtaining accurate transcripts matched to their source. As an
example, keeping within the air traffic domain, consider the process needed to label 100 images
of airplanes with a simple box around the object for identification versus transcribing 1 hour of
audio which will require repeated start and stop in playback in order to correctly transcribe the
content, even for high quality and clean audio. It will naturally be even more time-consuming
when handling noisy data.

If we assume that transcribing 1 hour of data can be done in 1.5 hours by a professional, then we
can ruffly estimate the cost attached to transcribing 1000 hours of audio. A full-time position

"https://supervisely.com

93

in Norway is set to 1750 hours of effective work, and the average salary is 637,000 NOK as of
2023. This gives us a rough estimate of (837,000)1750 (1000* 1.5) 546, OOONOK.

The state-of-the-art methods described in Chapter 4 focus on their performance on common,
large-scale corpora and the race towards reaching sub 1% WER, but also on reusing large,
pre-trained models for domain-shifted ASR which can potentially help alleviate the costly and
tiresome process of manually labeling audio data.

However, it also appears that ASR has reached a pivotal point in terms of complexity 4.6.2 and
data/hardware resources needed for further advancement, centralizing the development to a few
tech giants. This can be problematic regarding RQ2, in which we are rapidly approaching a
situation where implementation of ASR is entirely dependent on third-party actors.

6.8 Future work

After a thorough exploration, the recommended strategy for Kongsberg Defence & Aerospace
(KDA) involves leveraging the substantial progress achieved by Meta AI in robust ASR model
development. This recommendation is drawn from our experiments on ATC-specific audio and
widespread academic agreement, which point to wav2vec 2.0's unparalleled downstream capa-
bilities in areas with limited resources like ATC.

However, there could be challenges when using large pre-trained models as a starting point and
adopting a fine-tuning downstream approach. These could include security risks and the need
to keep up with rapidly advancing AI technology. It is important to note that all technologies
used in this research are open-source. This brings several advantages, such as reduced develop-
ment costs, faster time-to-market, and ongoing community-driven enhancements and debugging,
which may improve robustness and security. However, open-source also comes with some draw-
backs. Remote towers systems (RTS), as a commercial product, might face potential licensing
issues and intellectual property complexities due to the use of open-source technology. Changes
to the frameworks could demand substantial maintenance, support, and compatibility resources.
The source code is publicly available, so it could expose security vulnerabilities if not properly
managed.

Regardless of the strategy KDA chooses, high-quality data is a non-negotiable requirement for
ASR development. Both self-supervised and unsupervised approaches require substantial ATC
audio from KDAs partners. While unsupervised learning has shown potential, it is still in its
early stages, and a fully functional end-to-end system that inputs an unlabelled audio signal and
outputs an accurate text transcript rather than phonemes is unlikely anytime soon. The self-
supervised approach similarly requires transcribed data for fine-tuning, and as for traditional
architectures using supervised learning, transcribed data is integral.

As usual, the problem and solution are the amount of data available. Large amounts of data and
some human involvement in the transcription process are inevitable. However, considering the
high accuracy achieved using wav2vec 2.0 pre-trained models with limited data for fine-tuning,
some parts of this process could be automated, effectively creating an annotation tool. If used in
an offiine sandbox environment, this would mitigate some of the concerns related to RQ2.

Expanding on the concept first presented in Section 4.6, this would involve using transcripts
produced by wav2vec pre-trained models from actual ATC audio, which undergoes a quality
control through human supervision, where errors found in the ASR transcripts are corrected and
then added to a main database as verified samples. This process is repeated with continuous
fine-tuning of the model, and as the number of verified samples increases, the model becomes
more accurate, ultimately eliminating human supervision and becoming autonomous.

"https://www.ssb.no

94

Considering the straight-forward design of both Deep Speech 2 and the transformer, and the
fact that these architectures can be built and controlled almost from scratch with either the
PyTorch or the TensorFlow back-end, we would also recommend KDA to keep the option open for
parallel development of supervised learning based models with potential downstream capabilities
utilizing the main verified corpus (Figure 6.1).

ATC base dynamic model
supervised/ self-supervised

SANDBOX ENVIRONMENT

BERLEVAG ATC

B0D0ATC

OSLO ATC

wav2vec 2.0
self-supervised

BERLEVAG NEW

B0D0 NEW

OSLO_NEW

HUMAN
SUPERVISION

B0D0 2

OSLO 2

BERLEVAG_

JOSLO 1

B0D0 1

I

I

I

I

I

I

I

I

I

I

I
I

L

Figure 6.1: Proposed ASR setup.

Even if a robust, all-knowing model may not be possible with the current tech, the fine-tuning
of large models with very little specific audio in connection with smaller airports seems like the
most viable path forward, similar to how the wav2vec 2.0 pre-trained models described in Section
4.6.1 were created. These fine-tuning steps could be down to the individual ATC operator level
but will, of course, require considerable research and development to distill into the streamlined,
easy-to-use process we envision.

95

C h a p t e r 7

Conclusion

The initial motivation of this thesis was to investigate the possibility of implementing automatic
speech recognition (ASR) within the air traffic control (ATC) domain, specifically for the remote
towers systems (RTS) made by Kongsberg Defence & Aerospace (KDA). KDA has expressed
interest in enhancing RTS capabilities using real-time transcriptions of pilot-controller audio
communication, augmented with visual cues. This integration of ASR and natural language
processing (NLP) intends to lessen the controller's cognitive load, boost situational awareness,
improve safety, and efficiently handle increased air traffic across multiple airports.

At the start of this project, the audio data needed for conducting research and experiments
were expected to be delivered by one of KDAs partners by mid-November. Due to unforeseen
legal circumstances, the data was not possible to obtain. As a result, we had to use the open-
source publicly available ATC corpus ATCOSIM for most of our research, along with the Hiwire
corpus available for purchase for academic and commercial use. The corpora contain simulated
ATC audio, with Hiwire having augmented levels of noise infusion divided into four sub-corpora,
giving us a total of 40 hours of transcribed audio to conduct our research.

Two research questions are discussed in this thesis. First, we identify the current state-of-the-art
technologies within the field of ASR today and provide a possible solution for implementation
in KDAs RTS. The second question investigates the potential security implications that may
arise when utilizing the technologies identified in the first research question. The advantages
and potential drawbacks of implementing these technologies are critically assessed, providing a
balanced view of their practical application.

In our work, we have explored various methods to solve the challenge described in research
question one, with limited data, and have identified downstreaming from large corpus pre-trained
models as the best candidate. We also utilize a novel, generative framework called wav2vec-
Unsupervised 2.0 for low-resource domains in which unlabeled audio can be transcribed using
a GAN network with unassociated textual data, the only requirement being that both audio
and text must be in the same language. Furthermore, we present a solution for automating
the unsupervised training process, reducing implementation time significantly, and providing a
(by comparison) far more streamlined process of instantiating unsupervised training in the ASR
domain.

Even though the results we achieved are more than acceptable regarding WER, one must re-
member that these results are from simulated data only and that real-world ATC will be far
more diverse and challenging. Nevertheless, we believe the research presented in this thesis can
serve as a general guide for which direction Kongsberg Defence & Aerospace (KDA) should take
in their future endeavors.

In closing, our main findings from this thesis have been accepted by the 26 International

96

Conference of Text, Speech, and Dialogue (TSD2023)1 and will be published by Springer in
their Lecture Notes in Artificial Intelligence series2. The conference paper is listed in Appendix
A.

'https://www.kiv.zcu.cz/tsd2023/index.php
https://www.springer.com/gp/computer-science/lncs

97

Bibliography

[1] IHuggingface platform. h t t p s : / /huggingface. co. Accessed: 2021-11-30.

[2] Huggingface terms of service. h t t p s : / /huggingface. co / t e rms-of - se rv ice . Accessed:
2023-05-30.

[3] Ibm shoebox. ht tps: / /www.ibm.com/ibm/history/exhibi ts /specialprod1/
specialprod1 7.html.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Bat-
tenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al.
Deep speech 2: End-to-end speech recognition in english and mandarin. In International
conference on machine learning, pages 173 182. PMLR, 2016.

[5] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh
Meyer, Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor Weber. Com-
mon voice: A massively-multilingual speech corpus, 2020.

[6] Bishnu S Atal and Suzanne L Hanauer. Speech analysis and synthesis by linear prediction
of the speech wave. The journal of the acoustical society of America, 50(2B):637 655, 1971.

7] Civil Aviation Authority. Cap 413: Radiotelephony manual. Civil Aviation Authority, 2020.

[8] Sandeep Badrinath and Hamsa Balakrishnan. Automatic speech recognition for air traffic
control communications. Transportation research record, 2676(1):798 810, 2022.

[9] Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and Michael Auli. Unsupervised speech
recognition. Advances in Neural Information Processing Systems, 34:27826 27839, 2021.

[10] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A
framework for self-supervised learning of speech representations, 2020.

[11] J Baker. Dragondictate 30k: Natural language speech recognition with 30,000 words. In
Proc. European Conj. on Speech Technology, Bd, volume 2, pages 161 163, 1989.

[12] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The annals
of mathematical statistics, 41(1):164 171, 1970.

[13] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157 166, 1994.

[14] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[15] Mohamed Reda Bouadjenek. Automatic speech recognition using etc. h t t p s : / / g i t hub .
com/keras- team/keras- io/blob/master /examples/audio/ctc a s r . py , 2021.

[16] Herve A Bourlard and Nelson Morgan. Connectionist speech recognition: a hybrid approach,
volume 247. Springer Science & Business Media, 1994.

98

[17] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. Computer Speech &&Language, 13(4):359 394, 1999.

[18] Kyunghyun Cho, Bart Van Merrionboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[20] Kenneth Ward Church. A stochastic parts program and noun phrase parser for unrestricted
text. In International Conference on Acoustics, Speech, and Signal Processing,, pages 695
698. IEEE, 1989.

[21] Christopher Cieri, David Miller, and Kevin Walker. The fisher corpus: a resource for the
next generations of speech-to-text. In International Conference on Language Resources and
Evaluation, 2004.

[22] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377 387, jun 1970.

(23] Ken H Davis, R Biddulph, and Stephen Balashek. Automatic recognition of spoken digits.
The Journal of the Acoustical Society of America, 24(6):637 642, 1952.

[24] Steven Davis and Paul Mermelstein. Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences. IEEE transactions on acoustics,
speech, and signal processing, 28(4):357 366, 1980.

[25] Li Deng and Douglas O'Shaughnessy. Speech processing: a dynamic and optimization-
oriented approach. CRC Press, 2003.

[26] Wenqiang Du, Yikeremu Maimaitiyiming, Mewlude Nijat, Lantian Li, Askar Hamdulla, and
Dong Wang. Automatic speech recognition for uyghur, kazakh, and kyrgyz: An overview.
Applied Sciences, 13(1):326, 2022.

[27] Sean R Eddy. What is a hidden markov model? Nature biotechnology, 22(10):1315 1316,
2004.

(28] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179 211, 1990.

[29] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, and David S Pallett.
Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1. NASA
STI/Recon technical report n, 93:27403, 1993.

[30] Felix A Gers, Jurgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with lstm. Neural computation, 12(10):2451 2471, 2000.

[31] John J. Godfrey. Air traffic control complete ldc94s14a. web download., 1994.

[32] John J Godfrey, Edward C Holliman, and Jane McDaniel. Switchboard: Telephone speech
corpus for research and development. In Acoustics, Speech, and Signal Processing, IEEE
International Conference on, volume 1, pages 517 520. IEEE Computer Society, 1992.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communi-
cations of the ACM, 63(11):139 144, 2020.

[35] Alex Graves, Santiago Fernandez, Faustino Gomez, and Jurgen Schmidhuber. Connec-

99

tionist temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international conference on Machine learning, pages
369 376, 2006.

[36] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,
Shiba Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented
transformer for speech recognition. arXiv preprint arXiv:2005.08100, 2020.

[37] Dongyue Guo, Zichen Zhang, Bo Yang, Jianwei Zhang, and Yi Lin. Boosting low-resource
speech recognition in air traffic communication via pretrained feature aggregation and multi-
task learning. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.

[(38] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'06), volume 2, pages 1735 1742, 2006.

[39] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling
up end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014.

[40] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal processing magazine, 29(6):82 97, 2012.

[41] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735 1780, 1997.

[42] Konrad Hofbauer, Stefan Petrik, and Horst Hering. The ATCOSIM corpus of non-prompted
clean air traffic control speech. In Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC'08), Marrakech, Morocco, May 2008. European
Language Resources Association (ELRA).

[43] Fumitada Itakura. Line spectrum representation of linear predictor coefficients of speech
signals. The Journal of the Acoustical Society of America, 57(S1):S35 S35, 1975.

[44] Frederick Jelinek. Statistical methods for speech recognition. MIT press, 1998.

[45] Zuluaga-Gomez Juan, Petr Motlicek, Qingran Zhan, Rudolf Braun, and Karel Vesely. Au-
tomatic speech recognition benchmark for air-traffic communications. Technical report,
ISCA, 2020.

[46] Biing Hwang Juang and Laurence R Rabiner. Hidden markov models for speech recognition.
Technometrics, 33(3):251 272, 1991.

[47] Daniel Jurafsky and James H Martin. Speech and language processing: An introduction
to speech recognition, computational linguistics and natural language processing. Upper
Saddle River, NJ: Prentice Hall, 2008.

[48] J. Kahn, M. Riviere, W. Zheng, E. Kharitonov, Q. Xu, P.E. Mazare, J. Karadayi,
V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhomanenko, G. Synnaeve, A. Joulin, A. Mo-
hamed, and E. Dupoux. Libri-light: A benchmark for asr with limited or no supervision.
In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7669 7673, 2020.

[49] Dennis H Klatt. Review of the arpa speech understanding project. The Journal of the
Acoustical Society of America, 62(6):1345 1366, 1977.

(50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84 90, 2017.

100

[51] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278 2324, 1998.

[52] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707 710. Soviet Union, 1966.

(53] Guan-Ting Lin, Chan-Jan Hsu, Da-Rong Liu, Hung-Yi Lee, and Yu Tsao. Analyzing the
robustness of unsupervised speech recognition. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8202 8206. IEEE,
2022.

[54] Yi Lin, Qin Li, Bo Yang, Zhen Yan, Huachun Tan, and Zhengmao Chen. Improving speech
recognition models with small samples for air traffic control systems. Neurocomputing,
445:287 297, 2021.

(55] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural
networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[56] Alexander H Liu, Wei-Ning Hsu, Michael Auli, and Alexei Baevski. Towards end-to-end
unsupervised speech recognition. In 2022 IEEE Spoken Language Technology Workshop
(SLT), pages 221 228. IEEE, 2023.

[57] Christopher Manning and Hinrich Schutze. Foundations of statistical natural language
processing. MIT press, 1999.

[58] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Interspeech, volume 2, pages 1045 1048.
Makuhari, 2010.

[59] Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D Havtorn, Joakim Edin,
Christian Igel, Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars M a a l e , et al. Self-
supervised speech representation learning: A review. IEEE Journal of Selected Topics in
Signal Processing, 2022.

[60] Brian CJ Moore. An introduction to the psychology of hearing. Brill, 2012.

[61] Cory Myers, Lawrence Rabiner, and Aaron Rosenberg. Performance tradeoffs in dynamic
time warping algorithms for isolated word recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(6):623 635, 1980.

[62] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), pages 807 814, 2010.

[63] Apoorv Nandan. Automatic speech recognition with transformer. https://github.com/
keras-team/keras-io/blob/master/examples/audio/transformer asr.py,2021.

[64] H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the American
Institute of Electrical Engineers, 47(2):617 644, 1928.

[65] Julian James Odell. The use of context in large vocabulary speech recognition. PhD thesis,
Citeseer, 1995.

[66] Aaron van den Oard, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[67] Douglas O'shaughnessy. Speech communication: human and machine. Universities press,
1987.

[68] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 5206 5210. IEEE, 2015.

101

[69] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310 1318. Pmlr,
2013.

[70] Douglas B Paul and Janet Baker. The design for the wall street journal-based csr corpus.
In Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New York,
February 23-26, 1992, 1992.

[71] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra
Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al. The kaldi
speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and
understanding, number CONF. IEEE Signal Processing Society, 2011.

[72] Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert.
MLS: A large-scale multilingual dataset for speech research. In Interspeech 2020. ISCA, oct
2020.

[73] O Veronika Prinzo, Alfred M Hendrix, and Ruby Hendrix. Pilot english language proficiency
and the prevalence of communication problems at five us air route traffic control centers.
Technical report, FEDERAL AVIATION ADMINISTRATION OKLAHOMA CITY OK
CIVIL AEROMEDICAL INST, 2008.

[74] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257 286, 1989.

[75] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision, 2022.

[76] D Raj Reddy. Speech recognition by machine: A review. Proceedings of the IEEE, 64(4):501
531, 1976.

(77] Meta wav2vec unsupervised (wav2vec-u).Research.
https:/ /github.com/facebookresearch/fairseq/tree/main/examples/wav2vec/unsupervised,
2023.

[78] Douglas A Reynolds and Richard C Rose. Robust text-independent speaker identification
using gaussian mixture speaker models. IEEE transactions on speech and audio processing,
3(1):72 83, 1995.

[79] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43
49, 1978.

[80] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsuper-
vised pre-training for speech recognition. arXiv preprint arXiv:1904.05862, 2019.

[81] J Segura, T Ehrette, A Potamianos, D Fohr, I Illina, PA Breton, V Clot, R Gemello,
M Matassoni, and P Maragos. The hiwire database, a noisy and non-native english speech
corpus for cockpit communication. Citeseer, 2007.

[82] Lubos Smidl. Air traffic control communication, 2011. LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguistics (UFAL), Faculty of Mathematics
and Physics, Charles University.

[83] Julius O. Smith. Spectral Audio Signal Processing. h t t p s : / / c c r m a . s t a n f o r d . e d u / - j o s /
s a s p / s a s p - c i t a t i o n . html. online book, 2011 edition.

[84] Stanley Smith Stevens, John Volkmann, and Edwin Broomell Newman. A scale for the
measurement of the psychological magnitude pitch. The journal of the acoustical society of
america, 8(3):185 190, 1937.

102

[85] Igor Szoke, Santosh Kesiraju, Ondrej Novotny, Martin Kocour, Karel Vesely, and
Jan "Honza" Cernocky. Detecting english speech in the air traffic control voice communi-
cation, 2021.

[86] Zheng-Hua Tan, Achintya kr. Sarkar, and Najim Dehak. rvad: An unsupervised segment-
based robust voice activity detection method. Computer Speech Language, 59:1 21, 2020.

[87] Ji:irgen Valk and Tanel Alumae. Voxlingual07: a dataset for spoken language recognition,
2020.

[88] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[89] Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza,
Mary Williamson, Juan Pino, and Emmanuel Dupoux. Voxpopuli: A large-scale multilin-
gual speech corpus for representation learning, semi-supervised learning and interpretation,
2021.

[90] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550 1560, 1990.

[91] Ronald J Williams and David Zipser. Gradient-based learning algorithms for recurrent.
Backpropagation: Theory, architectures, and applications, 433:17, 1995.

[92] J.P. Woodard and J.T. Nelson. An information theoretic measure of speech recognition
performance. 1982.

[93] Cheng Yi, Jianzhong Wang, Ning Cheng, Shiyu Zhou, and Bo Xu. Applying wav2vec2. 0
to speech recognition in various low-resource languages. arXiv preprint arXiv:2012.12121,
2020.

[94] Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Seyyed Saeed Sarfjoo, Petr
Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, and Qingran Zhan. How
does pre-trained wav2vec 2.0 perform on domain-shifted asr? an extensive benchmark on
air traffic control communications. In 2022 IEEE Spoken Language Technology Workshop
(SLT), pages 205 212. IEEE, 2023.

103

Acronyms

AI artificial intelligence. 1

ASR automatic speech recognition. 1, 3, 4, 26, 30, 32, 34, 39, 46, 59, 64, 65, 68, 82, 87, 88, 93,
94, 96

ATC air traffic control. 1, 3, 20, 26, 34, 66, 73, 78, 87, 88, 90, 96

C N N convolutional neural network. 16, 54, 64

CTC connectionist temporal classification. 15, 89

D N N deep neural network. vi, 5, 13, 26, 39, 40

D T W dynamic time warping. 7

G A N generative adversarial network. 25, 59, 60, 62 64, 91

G M M gaussian mixture model. 7

G P U graphics processing unit. 13, 32

GRU gated recurrent unit. 49

H i 0 s t f o l d university college. 1, 32, 93

H M M hidden Markov model. 7, 12, 39

IDE integrated development environment. 33

K D A Kongsberg Defence & Aerospace. ii, 1, 3, 4, 87 90, 93 96

LPC linear predictive coding. 6, 12

LSTM long short-term memory. 49

MFCC mel-frequency cepstral coefficients. 8, 12, 46, 62, 92

NLP natural language processing. 46, 96

P C A principal component analysis. 24

RTS remote towers systems. ii, 1, 3, 4, 87, 88, 92, 96

STFT short-time Fourier transform. 10, 46, 61, 73, 76, 88, 89

104

V P N virtual private network. 33

W E R word error rate. 19, 26, 64, 68, 75, 78, 82, 83, 85, 87 89, 92, 94

105

Appendix A

Conference paper

106

UNSUPERVISED LEARNING FOR AUTOMATIC
SPEECH RECOGNITION IN AIR TRAFFIC

CONTROL ENVIRONMENT

Lars Formoe}, Dan Bruun Mygind}, Espen L k k e , and Hasan Ogul}

1 Department of Computer Science and Communication
0stfold University College, BR A Veien 4, 1757 Halden, Norway
{lars.formoe,dan.b.mygind,hasan.ogul}@hiof.no

2 Kongsberg Defence & Aerospace, Drammen, Viken, Norway
espen.lokke@kongsberg.com

Abstract. This paper addresses the enduring challenge of domain-specific au-
tomatic speech recognition (ASR) with limited training data, particularly in air
traffic control (ATC) communications involving highly accented speakers. While
state-of-the-art models like wav2vec have achieved significant progress when
fine-tuned on smaller, specialized datasets, the issue of having little or no tran-
scribed data for specific domains like ATC remains unresolved. We present our
findings using the wav2vec-U 2.0 model, an advanced self-supervised ASR frame-
work that learns from raw audio and unpaired text without the need for transcrip-
tions. By fine-tuning wav2vec-U 2.0 on the domain-specific ATCOSIM dataset,
we explore its effectiveness in handling domain-specific ASR tasks with scarce or
non-existent transcribed data. Our results demonstrate promising speech recogni-
tion accuracy, suggesting that wav2vec-U 2.0 can effectively address the problem
with small amounts of transcribed data posed by highly specific ASR-domains
such as ATC communications. Furthermore, we discuss the implications of our
findings for the broader ASR research community and provide suggestions into
potential future directions for improving ASR accuracy in ATC communications
and other specialized domains with limited training data.

Keywords: Automatic speech recognition, wav2vec 2.0, wav2vec unsupervised,
unsupervised learning, generative adversarial network, air traffic control commu-
nications

1 Introduction

Automatic Speech Recognition (ASR) has been a topic of interest in the air traffic con-
trol (ATC) domain for several decades, with the potential to enhance safety and effi-
ciency by reducing controllers' workload and improving communication accuracy be-
tween pilots and controllers [30] [14]. However, the unique challenges associated with
the ATC domain have made developing effective ASR systems particularly difficult.

ATC communications is a highly specialized domain that requires precise and accu-
rate communication between pilots and controllers to ensure the safety and efficiency
of air travel. Unlike other speech recognition applications, ATC communications often

2 Lars Formoe et al.

involve technical terminology and specific communication protocols unique to the avi-
ation industry [6]. Furthermore, ATC communications typically occur in high-noise en-
vironments, such as airports and control towers, which can significantly degrade speech
signal quality and increase speech recognition tasks' complexity [9].

One key challenge in developing ASR systems for domain-specific applications is
the limited availability of training data. Recently, an innovative ASR system, called
Wav2vec-U 2.0, was released to address this challenge by learning from raw audio
and unpaired text without the need for transcriptions [22]. It employs a self-supervised
learning model and a generative adversarial network [13] to recognize words in audio
recordings.

To the best of our knowledge, the promise ofWav2vec-U 2.0 in the ATC domain has
not been explored yet. This paper presents our findings on implementing the wav2vec-U
framework in the ATC domain using the publicly available dataset ATCOSIM [15]. Our
experiments are geared towards assessing the efficacy of this ASR system in handling
domain-specific challenges and evaluating its performance. By employing unlabeled
data and the aforementioned framework, we have achieved word error rates below 30%.

2 Related Work

2.1 ASR in ATC Domain

The development of robust solutions for ATC involves addressing several challenges
that are specific to this domain. For instance, noisy radio channels, a wide range of
accents, and high speech rates are all individual challenges that coincide in the ATC
domain. Recently, a study on methods to extract operational information from ATC
audio yielded a Word Error Rate (WER) of 17% using a Recurrent Neural Network
(RNN) model trained on a combination of ATC datasets that contained a total of 84
hours of transcribed speech data [7].

However, a key challenge in ATC is the limited available data. A recent study ad-
dressed this challenge by employing transfer learning techniques and leveraging multi-
ple Chinese speech datasets. The study showed promising results, with an overall reduc-
tion of Character Error Rate (CER) of 2% when compared to the supervised learning
approach [21].

2.2 Self-supervised representations for speech

Learning vector representations from high amount of labeled or unlabeled data is a re-
cent trend to leverage the learned representations to improve performance on a local
task for which a relatively small dataset is available. Wav2vec is an attempt to pro-
vide a learning representations of raw audio for speech recognition by unsupervised
pre-training [26]. It is trained on large amounts of unlabeled audio data and the re-
sulting representations are then used to improve acoustic model training. The model is
a convolutional neural network that takes raw audio as input and computes a general
representation that can be input to a speech recognition system.

Wav2vec 2.0 presents an improved version of the original wav2vec model. Wav2vec
2.0 employs a self-supervised learning framework that utilizes a contrastive loss to learn

Unsupervised learning for ASR in ATC environment 3

speech representations from raw audio without labeled data [8]. In addition, the model
learns to predict future audio samples by employing a transformer-based architecture
and a masked language modeling objective. Experiments demonstrate that wav2vec 2.0
outperforms previous approaches, achieving state-of-the-art results on the LibriSpeech
and Switchboard-300 datasets, even with limited labeled data for fine-tuning.

Wav2vec-U 2.0 is an unsupervised model designed to learn and understand audio
representations, especially when labeled data is scarce [22]. It uses raw audio and un-
related text data, removing the need for transcriptions. The model combines the self-
supervised wav2vec 2.0, pre-trained on raw audio, with a generative adversarial net-
work (GAN) [13] to improve audio representations. Using contrastive learning, it aligns
speech representations with text embeddings, allowing effective word recognition with-
out labeled data.

2.3 Use of learned representations in ATC

wav2vec 2.0 fine-tuning A recent study conducted experiments on pre-trained Wav2Vec
2.0 models' robustness in downstream ASR tasks, explicitly targeting the air traffic con-
trol domain [31]. Using domain-specific datasets, a range of corpora has been utilized to
ascertain the effectiveness of fine-tuning these pre-trained models, which have been ex-
posed to substantial amounts of generic English audio. The results highlight the poten-
tial of implementing pre-trained Wav2Vec 2.0 models for ASR tasks within specialized
domains.

While this study does not present explicit results concerning ASR performance on
the ATCOSIM dataset [15], their experimental framework resembles the approach we
have undertaken in our work. Using pre-trained Wav2Vec 2.0 models for ASR tasks
in the air traffic control domain underscores the value of transfer learning and domain-
specific fine-tuning. Furthermore, the study suggests that the versatility and adaptability
of Wav2Vec 2.0 models make them ideal candidates for a wide range of specialized
ASR tasks, including those in the air traffic control domain. Furthermore, the end-to-
end nature of these models, as evidenced by their superior performance compared to
hybrid-based ASR systems, emphasizes the importance of investigating and developing
more streamlined and efficient ASR architectures.

wav2vec-U 2.0 A study investigated ASR for use with Uyghur, Kazakh, and Kyrgyz au-
dio, employing unsupervised learning by implementing the wav2vec-U 2.0 framework
[11]. With only 1.8 hours of Kyrgyz audio data from the Common Voice dataset [4],
their approach achieved a 14.9% Character Error Rate (CER), demonstrating the poten-
tial of unsupervised learning for ASR in languages with scarce resources.

Another study into the robustness of unsupervised speech recognition investigated
the utilization of unrelated text data within the same language across common datasets
used in ASR research [20]. The findings of this research suggest a correlation between
the nature of the text supplied for the GAN and the overall performance. It was observed
that out-of-domain text data generally yielded inferior results, reinforcing the necessity
of ATC-specific text data to achieve optimal performance.

4 Lars Formoe et al.

3 Methods

The primary objective of ASR research is to generate the most accurate textual rep-
resentation of audio possible. Here, we conducted an experimental study to assess the
performance of recent end-to-end speech recognition technology in the ATC domain.
To this end, we employed a rigorous preprocessing procedure on the text data to ensure
consistency and a uniform input representation. All corpus transcriptions were filtered,
transforming all letters to lowercase and removing special characters not part of the al-
phabet. The process reduces the number of tokens used in both models by 49%, impact-
ing training cost and the output probability distribution in the output layer. However,
the preprocessing of the models differentiates from this point. While fine-tuning the
wav2vec 2.0 model can be initiated with the raw audio files and the paired transcripts.
The wav2vec 2.0 Unsupervised preprocessing is more circumstantial. Although vari-
ous representations of sentences, words, and phones were mapped accordingly, given
the domain-specific nature of air traffic control communications, we elected to use the
actual text data from the same dataset to maintain relevance and accuracy. This deci-
sion was based on the understanding that air traffic control communication data exhibits
unique characteristics that may not be present in generic text data, thus requiring spe-
cialized treatment. Furthermore, the audio was files trimmed to remove silence [27]
and a Mel-frequency cepstral coefficients (MFCCs) [16] representations of the trimmed
audio was created for training purposes.

Subsequently, the ATCOSIM dataset of 9538 samples was partitioned into training,
validation, and testing subsets at 70%, 20%, and 10% distributions, respectively. The
distribution resulted in a split key of 6677/1907/954. The samples were selected ran-
domly to ensure a fair representation of the data. This partitioning strategy allowed us to
establish a robust evaluation framework, minimizing the risk of overfitting and ensuring
that the model's performance could be assessed on unseen data.

wav2vec 2.0: The experiment's first phase was conducted with the wav2vec 2.0
framework and weights from four pre-trained models to evaluate the downstream infu-
sion of the ATCOSIM dataset. Wav2vec 2.0 results are based on the following weight
pipelines. Wav2vec2-base (95m param.) pre-trained on 53000 hours with no fine-tuning,
wav2vec2-large-960h-lv60-self (317m param.) pre-trained on 53.000 hours of unla-
beled data from the LibriVox subset Librilight [19] and fine-tuned on 960 hours of
LibriSpeech [23]. Wav2vec2-xls-r-300m (300m param.) pre-trained on 436.000 hours
of unlabeled multilingual data from multiple corpora CommonVoice [5], VoxPopuli
[29], Multilingual LibriSpeech (MLS) [24], VoxLingual07 [28] and the Babel project.
Wav2vec2-large-robust-ft-swbd-300h pre-trained on Libri-light, CommonVoice, Switch-
board [12] and Fisher [10], then fine-tuned on 300 hours of noisy telephone data from
the Switchboard corpus. All pre-trained pipelines provide a diverse and comprehensive
source of training data for ASR systems, adding a robust context baseline for down-
stream tasks.

We implemented the pre-trained pipelines using the Huggingface platform [2], adapt-
ing the code for custom fine-tuning of the ATCOSIM corpus. Furthermore, we added a
hyper-parameter loop to examine different training arguments' impacts on the results.
The parameters used were warmup steps, epochs, batch size, and learning rate. All re-
sults are based on the 954 unseen samples from the ATCOSIM corpus.

Unsupervised learning for ASR in ATC environment 5

wav2vec 2.0 Unsupervised: The experiment's second phase was conducted using
the Wav2vec Unsupervised 2.0. To implement the wav2vec Unsupervised 2.0 frame-
work, we followed the guidelines in the Fairseq GitHub repo [l]. In addition, we cre-
ated an additional layer on the framework to execute the many steps involved in the
process seamlessly and efficiently. For preparing the input to the Generative Adversar-
ial Network (GAN), we used the pre-trained wav2vec2-large model with no fine-tuning
of the model, extracting the contextual representations in latent space from the raw au-
dio files. The wav2vec2-large model is equivalent to the Wav2vec2-base described in
the above section but has a feature dimension of 1024 instead of 768. Clustering it with
the recommended 64 centroids for the K-means training. For the language identification
model, we used fastText lidl 76.bin model [17, 18] instead of the proposed model.

We then conducted several training runs with minor configuration adjustments to
the training parameters, including learning rate, batch size, and the number of training
epochs. This iterative approach allowed us to refine the model based on the results of
each training run and facilitated the identification of optimal parameter settings for our
specific task. The results have also been generated utilizing 954 unseen samples derived
from the ATCOSIM corpus.

OpenAI Whisper: In addition to the first and second phases and for comparison
purposes, we used the Whisper models [25] from OpenAi's GitHub repository [3] to
conduct zero-shot predictions on our ATCOSIM test-set audio files. Using the small
(244M. param.), medium (769M param.), and large (1550M. param.) architectures.
Each model was pre-trained on 680.000 hours of labeled multilingual data. The inte-
grated pre-processing within the framework allows for the simple input of an audio file
as the sole requirement to receive a prediction. Subsequently, we developed a module
for post-prediction analysis to evaluate the WER against outcomes from earlier phases
while excluding upper- and lower-case letters and special characters from the output.

Table 1: Pre-trained models data foundation. Models containing unlabeled and labeled
data are pre-trained and fine-tuned before the experiments.

Model Unlabeled data (hours) Labeled data (Hours)

wav2vec2-base 53.000

wav2vec2-xls-r-300m 436.000

wav2vec2-large-960h-lv60-self 53.000 960

wav2vec2-large-robust-ft-swbd-300h NA 300

openai whisper (small, medium, large) 680.000

By comparing the performance of the unsupervised wav2vec 2.0 framework with
that of self-supervised and supervised approaches using pre-trained models, we aimed
to gain insight into the relative effectiveness of these methodologies in the context of
air traffic control communications.

6 Lars Formoe et al.

4 Results

4.1 wav2vec 2.0 downstream

The wav2vec2-large-960h-lv60-self pipeline described in section 3 had the best overall
performance of the pre-trained models. Figure 1 show the loss across the 50-epoch
training sequence. The model was used to predict text outputs from the unseen test
subset. Using the jiwer package for Python3, each prediction was given an individual
WER score, yielding an average WER of 0.97%.

0.12
Validation loss

0.10

Fig. 1: Results from large-960h-lvl60-self model training.

Training loss

0.08

0.06

0.04

0.02

0.00

4.2 wav2vec Unsupervised

In terms of accuracy metrics, there appears to be some ambiguity within the frame-
work itself. During training, there is a validation run performed every n-th epoch where
one of the metrics is valid uer. When running the script for generating phone labels
w2vu_generate.py - the metric used is WER. As both valid_uer and WER appear to be
the same, for consistency, we have elected only to use the term WER.

The two different perspectives in figure 2a and 2b shows the progress of the WER
throughout the training phase. The lowest WER achieved on the validation subset was
23.79% and 25.37% on the unseen test subset.

3 https://github.com/jitsi/jiwer

Unsupervised learning for ASR in ATC environment 7

90

70

60
UJ

(a) WER progression for an entire training run.

32

24

22

(b) Details from the latter part.

Fig. 2: wav2vec 2.0 Unsupervised on ATCOSIM dataset.

4.3 Whisper

Table 2 presents the performance metrics of the Whisper architectures on the test subset.
Original WER results are based on the output with full token representation, and the
corrected output is post-processed to match the token set used in 4.1 and 4.2. The best
WER achieved by Whisper was 29.54%.

Table 2: Whisper model performance.
model original WER corrected WER

small 91.13% 46.95%

medium 84.22% 31.32%

large 82.94% 29.54%

5 Conclusion

While ASR technology has the potential to significantly benefit the ATC domain, its
development and implementation face unique challenges. Recent advancements, such

8 Lars Formoe et al.

as transfer learning and the wav2vec-U framework, offer promising solutions to address
these challenges, paving the way for more accurate and reliable ASR systems in the
ATC domain.

The findings of this study underscore the potential of using unsupervised learning
and fine-tuning pre-trained Wav2Vec 2.0 models to advance research in creating robust
ASR systems for the specialized domain of air traffic control communications. Fur-
thermore, the results highlight the effectiveness of fine-tuning these models on smaller,
domain-specific datasets to yield improved ASR performance.

Future research endeavors should refine the fine-tuning process by applying the ex-
perimental setup to larger corpora of audio data specific to the air traffic control domain.
This process would involve using small transcribed datasets for fine-tuning across mul-
tiple airports within the same region. Exploring this approach is crucial, as it may reduce
dependency on large volumes of transcribed data and facilitate ASR system develop-
ment in low-resource languages and specialized domains.

In summary, this study has provided some insight into the potential of fine-tuning
pre-trained Wav2Vec 2.0 models using unsupervised learning techniques for advancing
research in robust ASR systems tailored to the air traffic control domain. Refining the
fine-tuning process and leveraging unsupervised learning benefits can contribute to the
ongoing efforts to develop more accurate and versatile ASR systems.

References
1 Fairseq facebookresearch. h t t p s : / / g i t h u b . c o m / f a c e b o o k r e s e a r c h / f a i r s e q ,

accessed: 2022-01-30
2 Huggingface platform. h t t p s : / / h u g g i n g f a c e . c o , accessed: 2021-11-30
3. Whisper openai. ht t p s : / / g i t h u b . c o m / o p e n a i / w h i s p e r , accessed: 2022-02-10
4 Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders,

L., Tyers, F.M., Weber, G.: Common voice: A massively-multilingual speech corpus. arXiv
preprint arXiv:1912.06670 (2019)

5 Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders,
L., Tyers, F.M., Weber, G.: Common voice: A massively-multilingual speech corpus (2020)

6 Authority, C.A.: Cap 413: Radiotelephony manual. Civil Aviation Authority (2020)
7 Badrinath, S., Balakrishnan, H.: Automatic speech recognition for air traffic control commu-

nications. Transportation research record 2676(1), 798-810 (2022)
8 Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: A framework for self-

supervised learning of speech representations. Advances in neural information processing
systems 33, 12449-12460 (2020)

9. Benzeghiba, M., De Mori, R., Deroo, O., Dupont, S., Erbes, T., Jouvet, D., Fissore, L.,
Laface, P., Mertins, A., Ris, C., et al.: Automatic speech recognition and speech variabil-
ity: A review. Speech communication 49(10-11), 763-786 (2007)

10. Cieri, C., Miller, D., Walker, K.: The fisher corpus: a resource for the next generations of
speech-to-text. In: International Conference on Language Resources and Evaluation (2004)

11. Du, W., Maimaitiyiming, Y., Nijat, M., Li, L., Hamdulla, A., Wang, D.: Automatic speech
recognition for uyghur, kazakh, and kyrgyz: An overview. Applied Sciences 13(1), 326
(2022)

12. Godfrey, J., Holliman, E., McDaniel, J.: Switchboard: telephone speech corpus for re-
search and development. In: [Proceedings] ICASSP-92: 1992 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing. vol. 1, pp. 517-520 vol.1 (1992).
https://doi.org/10.1109/ICASSP.1992.225858

Unsupervised learning for ASR in ATC environment 9

13. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial networks. Communications of the ACM 63(11), 139
144 (2020)

14. Helmke, H., Ohneiser, O., Muhlhausen, T., Wies, M.: Reducing controller workload with au-
tomatic speech recognition. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC). pp. 1-10. IEEE (2016)

15. Hofbauer, K., Petrik, S., Hering, H.: The atcosim corpus of non-prompted clean air traffic
control speech. In: LREC. Citeseer (2008)

16. Hossan, M.A., Memon, S., Gregory, M.A.: A novel approach for mfcc feature extraction.
In: 2010 4th International Conference on Signal Processing and Communication Systems.
pp. 1-5 (2010). https://doi.org/10.1109/ICSPCS.2010.5709752

17. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jegou, H., Mikolov, T.: Fasttext.zip: Com-
pressing text classification models. arXiv preprint arXiv:1612.03651 (2016)

18. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classifica-
tion. arXiv preprint arXiv:1607.01759 (2016)

19. Kahn, J., Riviere, M., Zheng, W., Kharitonov, E., Xu, Q., Mazare, P., Karadayi, J., Liptchin-
sky, V., Collobert, R., Fuegen, C., Likhomanenko, T., Synnaeve, G., Joulin, A., Mohamed,
A., Dupoux, E.: Libri-light: A benchmark for ASR with limited or no supervision. In:
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE (may 2020). https://doi.org/10.1109/icassp40776.2020.9052942,
h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 % 2 F i c a s s p 4 0 7 7 6 . 2 0 2 0 . 9 0 5 2 9 4 2

20. Lin, G.T., Hsu, C.J., Liu, D.R., Lee, H.Y., Tsao, Y.: Analyzing the robustness of unsupervised
speech recognition. In: ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). pp. 8202-8206. IEEE (2022)

21. Lin, Y., Li, Q., Yang, B., Yan, Z., Tan, H., Chen, Z.: Improving speech recognition models
with small samples for air traffic control systems. Neurocomputing 445, 287-297 (2021)

22. Liu, A.H., Hsu, W.N., Auli, M., Baevski, A.: Towards end-to-end unsupervised speech recog-
nition. In: 2022 IEEE Spoken Language Technology Workshop (SLT). pp. 221-228. IEEE
(2023)

23. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: an asr corpus based on
public domain audio books. In: 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP). pp. 5206-5210. IEEE (2015)

24. Pratap, V., Xu, Q., Sriram, A., Synnaeve, G., Collobert, R.: MLS: A large-scale
multilingual dataset for speech research. In: Interspeech 2020. ISCA (oct 2020).
https://doi.org/10.21437/interspeech.2020-2826, h t t p s : / / d o i . o r g / 1 0 . 21437%
2 F i n t e r s p e e c h . 2 0 2 0 - 2 8 2 6

25. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech
recognition via large-scale weak supervision (2022)

26. Schneider, S., Baevski, A., Collobert, R., Auli, M.: wav2vec: Unsupervised pre-training for
speech recognition. arXiv preprint arXiv:1904.05862 (2019)

27. Tan, Z.H., kr. Sarkar, A., Dehak, N.: rvad: An unsupervised segment-based robust voice
activity detection method (2022)

28. Valk, J., Alumae, T.: Voxlingua107: a dataset for spoken language recognition (2020)
29. Wang, C., Riviere, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., Williamson, M., Pino, J.,

Dupoux, E.: Voxpopuli: A large-scale multilingual speech corpus for representation learning,
semi-supervised learning and interpretation (2021)

30. Yi, L., Min, R., Kunjie, C., Dan, L., Ziqiang, Z., Fan, L., Bo, Y.: Identifying and managing
risks of ai-driven operations: A case study of automatic speech recognition for improving air
traffic safety. Chinese Journal of Aeronautics (2022)

10 Lars Formoe et al.

31. Zuluaga-Gomez, J., Prasad, A., Nigmatulina, I., Sarfjoo, S.S., Motlicek, P., Kleinert, M.,
Helmke, H., Ohneiser, O., Zhan, Q.: How does pre-trained wav2vec 2.0 perform on domain-
shifted asr? an extensive benchmark on air traffic control communications. In: 2022 IEEE
Spoken Language Technology Workshop (SLT). pp. 205-212. IEEE (2023)

Appendix B

P y t h o n code

B . 1 grid_search.py

def grid_search():
dataset = ['atcosim', 'hiwire']
subset = ['clean', 'ln', 'hn', 'all']
input types = ['mfcc', 'stft']
batch sizes = [32, 64, 128]
dropouts= [0.1, 0.2, 0.3]
frame sizes = [512, 1024, 2048]
frame steps = [256, 512, 1024]
fft bins= [512, 1024, 2048]
mel bands= [20, 40, 80, 100]
heads = [1, 2, 4, 8, 16, 32]
units= [100, 200, 400, 600]
neurons= [100, 200, 300]
num layers enc = [2, 4, 8, 16, 32]
num layers dec = [2, 4, 8, 16, 32]

ford, s, i, b, dp, fs, fss, fft, mel, h, u, nff, nle, nld in
it.product(dataset, subset, input types, batch sizes, dropouts,
frame sizes, frame steps, fft bins, mel bands, heads, units, neurons,
num layers enc, num layers dee):
if d == 'atcosim' and s in ['ln', 'hn']:

continue
elif d 'hiwire' ands 'all':

continue
e l s e :

print(f'Model:\nDataset - {d} I Subset - {s}\n'
f'Input - {i} I Batchsize - {b}\n'
f'Dropout - {dp} I Frame sizes - {fs}\n'
f'Frame steps - {fss} I Fft bins - {fft}\n'
f'mel bands - {mel} I heads - {h}\n'
f'units - {u} I neurons - {nff}\n'
f'num layers enc - {nle} I num layers dee - {nld}')

117

threshold= transformer atc(d, s
u, nff, nle, nld)

if threshold< 5.8:
print("WER threshold reached")
break

else: continue

b fs fss fft mel hdp

B . 2 unsup README.md

python main.py for full execution
python preprocesspy Imodule 1 execution
python inputganpy Imodule 2 execution
python runganpy Imodule 3 execution
python generatepyIfinal prediction on unseen data WER - standalone run after

training, remember to update variables.)
Hardware: gpu cluster of two Nvidia A100 80gb GPUs

Prerequesits: IFull install of the fairseq framework
(https://github.com/facebookresearch/fairseq) v0.12.2 as of 05.15.2023

I INB[!]remember to export environmental variables and follow the
installation documentation provided by fairseq I I

Default file structure: - place audio and dataset folder in run dir
-run

-audio
.wav files

-dataset
.csv train/valid

exe
-generated with sub structure when main.py or preprocess.py is executed.

-download: weights and language binaries
-ltr ohn_wrd: prep files
-manifest: tsv files path and byte size
-final: trimmed audio files, prep files, trimmed tsv.
-prepped data:model/final, preppedaudio, preppedtext

tmp
-generated when main.py or preprocess.py is runned.

-output
-generated by gan run.py saves log

-multirun
-generated by gan run.py saves model checkpoints

-predictions
-output dir for model predictions

nohup activation. Check export CUDA VISIBLE DEVICES=O in run_gan() matches your
GPU setup. pip install gpustat or use nvidia-smi in commandline to see if

progress running correct on gpu. cat logfile for training details.

118

B . 3 unsup_preprocess .py

import os
import re
import sys
import glob
import uuid
import shutil
import threading
import subprocess
import pandas as pd

Lars Formoe and Dan Bruun Mygind
The preprocess.py script is minted towards automating the

Authors:
Note:
preprocessing of the audio and text.
Prerequesits: - Full install of the fairseq framework
(https://github.com/facebookresearch/fairseq) v0.12.2 as of 05.15.2023

- train/valid/test.csv with path to audio files and
transcript.

- folder with raw audio, folder with dataset.
- place preprocess.py next to $FAIRSEQ_ROOT and run.

#id
ids
ids

uuid.uuid1()
ids.hex[:6]

path csv
path_audio

"dataset" #input("Enter path to dataset/root/dir:
"audio" #input("Enter path to audio/root/dir:

II

II

if os.path.isdir(path csv) is False or os.path.isdir(path audio) is False:
print("Invalid path to dataset.")
sys.exit("Error: invalid path.")

else:
print("Input paths acepted.")

audio files
audio_files = glob.glob(f"{path_audio}/*.wav")

def mkdir(dir):

check if dir exist else create new.
:param dir: name of directories.

if os.path.isdir(dir):
print(f"- {dir} dir exsist, no action needed.")

else:
os.mkdir(dir)
print(f"- {dir} directory created.")

def generate_wrd(datafile):

119

creating .wrd files by mapping audio/.wav order with text from .csv.
:param datafile: the dataset .csv files.
:return: print status

dataframe
df = pd.read csv(datafile)
#datafile name
reg = re.search(r"(?<=/)[* , datafile)
create .wrd
open(f"exe/ltr phn_wrd/{reg group(O)}.wrd", 'w+')

map audio JiLe and text from .csv
for wav in audio files:

wav_re = wav.replace("audio/","")
for index, row in df.iterrows():

if wav re in row["file"]:
try:

with open(f"exe/ltr phn wrd/{reg.group(O)}.wrd", 'a') as f:
#writer= csv.writer(f)
f.write(row["text"]+"\n")
#writer.(row["text"])
f.close()

shutil.copy(f"{wav}", f"{path audio}/{reg.group(O)}")
except:

print(f"{wav} not in {datafile}")
return print(f"- {reg.group(O)}.wrd created")

def generate ltr(datafile):

read .wrd files and replace space with special char.
:param: datafile: filename train/valid/test
:return: print status

with open(f'exe/ltr phn_wrd/{datafile}.wrd', 'r') as inf,
open(f'exe/ltr phn_wrd/{datafile}.ltr', 'w') as out:
for line in inf.readlines():

print(" ".join(list(line.strip().replace(" ", "DD) +
file=out)

return print(f"- {datafile}.ltr created")

II

def generate phn(datafile):

phominize the .wrd file en-us and saves it in .phn. The train.phn is split
in words and valid and test in letters.
:param datafile: filename .word to .phn
:return: print status

if datafile IItrain"
phn gen f'

echo II {datafile}.phn phoneme file II

120

cat "exe/ltr phn_wrd/{datafile}.wrd" I

PHONEMIZER ESPEAK_PATH=$(which espeak) phonemize
"exe/1tr phn_wrd/{datafile}.phn" -p '' -w ' ' 1 en-us -j 70
-language-switch remove-flags

0

bash generate(phn gen, ".phn")
e l s e :

phn gen = f'''
Iecho {datafile}.phn phoneme file

-Icat "exe/ltr_phn_wrd/{datafile}.wrd" I

PHONEMIZER ESPEAK_PATH=$(which espeak) phonemize -o
"exe/ltr phn_wrd/{datafile}.phn" -p ' 1 en-us
-language-switch remove-flags

II

j 70

bash generate(phn gen, ".phn")

def generate dict(datafile):

creating dictionary from .wrd file. key:value word"\t"phoneme:
:param datafile: filename train/valid/test
:return: print status

diet gen f II I

dict.{datafile} dictionary file
cat exe/1tr phn_wrd/{datafile}.wrdltr ' ' '\n'Isort Iuniq >

tmp/{datafile}.wl; cat tmp/{datafile}.wl I PHONEMIZER ESPEAK PATH=$(which
espeak) phonemize -o tmp/{datafile}.wl.phn -p '' -w ' -1 en-us -j 70
-language-switch remove-flags;paste tmp/{datafile}.wl

tmp/{datafile}.wl.phn > exe/ltr phn_wrd/dict.{datafile}

echo II II

I

bash generate(dict gen, "diet.")

def generate manifest(src, datafile, path):

creating manifest files .tsv. filepath"\n"bitsize
:param datafile: filename train/valid/test
:return: print status

mani gen = f'''
echo {datafile}.tsv manifest file
python $FAIRSEQ_ROOT/examples/wav2vec/wav2vec_manifest.py

{src}{datafile} --ext wav --dest {path}{datafile} --valid-percent 0

II

bash generate(mani gen, ".tsv")

def generate vads(datafile):

generating rVAD files, identifying scilence.
:param datafile: filename train/valid/test
:return: print status

121

vads gen f II I

echo
python $FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/vads.py

-r $RVAD ROOT< exe/manifest/{datafile}/{datafile}.tsv >

II {datafile}.vads rVAD file II

exe/final/{datafile}.vads

bash generate(vads gen, "VAD")

def remove silence(datafile):
remove = f'''

echo Removing {datafile} silence
python

$FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/remove_silence.py
exe/manifest/{datafile}/{datafile}.tsv --vads exe/final/{datafile}.vads
-out exe/final

II

tsv

bash generate(remove, "remove silence")

def generate sentence():

generates a sortet file with sentences.

sen 'cat exe/ltr_phn_wrd/*.wrd I grep I $' l sort] uniq>
exe/sentences.txt'''

bash generate(sen, "sentence")

def bash generate(name gen, type):

bash script engine.
:param name gen: what generator
:param type: type generated
:return: status

process = subprocess.Popen(['bash', '-c', name_gen],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)

output thread= threading.Thread(target=print output, args=(process,))
output thread.start()
process.wait()
output_thread.join()

def print output(process):
for line in process.stdout:

print(line.decode()strip))

if name ' main I

Preprocess.py Init

#default directories.

122

dir ["exe", "exe/ltr phn_wrd",
"exe/final", "exe/download", "tmp"

/manifest", "exe/prepped data",
"predictions"]

"exe

#add dynamic directories to dir, acording to dataset naming and split.
for file in glob.glob(f"{path_csv}/*.csv"):

reg = re.search(r"(?<=/)[* .]+", file)
dir.append(f"{path audio}/{reg.group(O)}")
dir.append(f"exe/manifest/{reg.group(O)}")

create default dir
[mkdir(name) for name in dir]

initiate wrd, ltr, phn, dict, tsv, vads creation.
for file in glob.glob(f"{path_csv}/*.csv"):

reg = re.search(r"(?<=/)[* .]+", file)
reg= reg.group(O)
print(f"- Generating {reg} files
generate_wrdstr(file))
generate ltr(reg)
generate phn(reg)
generate dict(reg)
generate manifest("audio/", reg, "exe/manifest/")
#rename manifest files.
t r y :

shutil.move(f"exe/manifest/{reg}/train.tsv",
f"exe/manifest/{reg}/{reg}.tsv")

except:

pass
generate vads(reg)
remove silence(reg)
generate manifest("exe/final/" ,reg, "exe/final/")
t r y :

shutil.move(f"exe/final/{reg}/train.tsv", f"exe/final/{reg}.tsv")
except:

pass
generate sentence()

#move files to final dir.
for file in glob.glob("exe/ltr_phn_wrd/*"):

shutil.move(file, "exe/final/")
#move final dir
shutil.move("exe/final",f"exe/prepped data/{ids}/final")
#change .tsv new path
for tsv in globglob(f"exe/prepped_data/{ids}/final/*tsv"):

print(tsv)
reg = re.search(r"([°/]+)(?=\.)", tsv)
reg= reg.group(O)
df = pd.read csv(str(tsv))
df.rename(columns

{str(df.columns[O]):f"exe/prepped data/{ids}/final/{reg}"}, inplace
True)

123

print(df)
df.to csv(f"exe/prepped data/{ids}/final/{reg}.tsv", index=False)

[shutil.rmtree("audio/"+str(x)) if os.path.isdir("audio/"+str(x))==True
else None for x in os.listdir("audio/")]

print("-"*100)
print(f"final directory moved to exe/prepped data/{ids}\nAlgorithm

successfully executed.")

B . 4 unsup_ inputgan.py

import os
import re
import sys
import glob
import uuid
import shutil
import subprocess
import pandas as pd
import preprocess as pre

Authors: Lars Formoe and Dan Bruun Mygind
Note: The gan_input.py script is minted towards automating the
process of generating the gan input.
Prerequesits: - Full install of the fairseq framework
(https://github.com/facebookresearch/fairseq) v0.12.2 as of 05.15.2023

- run preprocess.py
- For full process run main.py

def download(link):

downloading language identification binaries and model weights.

reg = re.search(r"([°/]+$)", link)

if not os.path.isfile(f"exe/download/{reg.group(O)}"):
download = f'''

echo II language identification binaries and model weights
II

echo "wget {link} downloading."
wget -P exe/download {link}

pre.bash_generate(download, "download")
e l s e :

print(f"Download: {link} allready exsist.")

def prepare audio(file):

preparing audio input for gan. Creating MFCC and vector clustering.

124

audio prep f II I

echo audio input prepare
export CUDA VISIBLE DEVICES=O
export OPENBLAS_NUM_THREADS=1
export GOTO_NUM_THREADS=1
export OMP_NUM_THREADS=1
echo "check hyperparams in

$FAIRSEQ_ROOT/examples/hubert/simple kmeans/learn kmeans.py"
zsh

$FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/prepare_audio_v2.sh
{file}/final {file}/preppedaudio exe/download/libri960_big.pt 64 14

II II

pre.bash generate(audio prep, "prep audio")

def prepare text(file, sentences):

preparing text input for gan.

text prep f II I

echo
zsh

II text input prepare II

$FAIRSEQ_ROOT/examples/wav2vec/unsupervised/scripts/prepare_text.sh en
{sentences} {file}/preppedtext 5 espeak exe/download/lid.176.bin 0.5

pre.bash generate(text prep, "prep text")

if name ' main I

download list
["https://dl.fbaipublicfiles.com/fairseq/wav2vec/libri960_big.pt",
"https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin"]

[download(link) for link in download list]

list_of_final = glob.glob('exe/prepped_data/*')
latest file= os.path.abspath(max(list of final, key=os.path.getctime))
sentence path= os.path.abspath("exe/sentences.txt")
print(latest file)
print(sentence path)

prepare audio(latest file)
prepare text(latest file, sentence path)
#move dict.phn.txt
shutil.copy(f"{latest file}/preppedtext/phones/dict.phn.txt",

f"{latest_file}/preppedaudio")
print(f"mv: {latest file}/preppedtext/phones/dict.phn.txt to

{latest file}/preppedaudio")

125

B.5 unsup_rungan.py

import os
import re
import s y s
import g l o b
import u u i d
import s h u t i l
import subprocess
import pandas as pd
import preprocess as pre

Authors:
Note:
process of executing the gan training.
Prerequesits:

Lars Formoe and Dan Bruun Mygind
The gan_run.py script is minted towards automating the

- Full install of the fairseq framework
(https://github.com/facebookresearch/fairseq) v0.12.2 as of 05.15.2023

- run preprocess.py
- run gan input.py
- For full process run main.py

def rungans(path):
rungan = f'''

export CUDA VISIBLE DEVICES=O
PYTHONPATH=$FAIRSEQ_ROOT PREFIX=w2v_unsup gan xp fairseq-hydra-train

-m --config-dir
$FAIRSEQ_ROOT/examples/wav2vec/unsupervised/config/gan

-config-name w2vu2.yaml
task.data={path}/preppedaudio
task.text data={path}/preppedtext/phones
task.kenlm path={path}/preppedtext/phones/lm.phones.filtered.04.bin

common.user_dir=$FAIRSEQ_ROOT/examples/wav2vec/unsupervised
model.code penalty=2,4 model.gradient penalty=1.5,2.0
model.smoothness_weight=0.5,0.75,1.0 'common.seed=range(0,5)'

pre.bash generate(rungan,"test")

if name ' main
list_of_final = glob.glob('exe/prepped_data/*')
latest file= os.path.abspath(max(list of final, key=os.path.getctime))
rungans(latest file)

I

B . 6 unsupg e n e r a t e . p y

import
import

OS

re

126

import sys
import glob
import uuid
import shutil
import subprocess
import pandas as pd
import preprocess as pre

Lars Formoe and Dan Bruun Mygind
The generate.py script is minted towards generating

Authors:
Note:
predictions with gan trained weights .pt.
Prerequesits: - Full install of the fairseq framework
(https://github.com/facebookresearch/fairseq) v0.12.2 as of 05.15.2023

- run preprocess.py
- run gan input.py
- run rungan.py
- For full process run main.py

def generate pred(model,checkpoint,data,out):
gen = f'''

python $FAIRSEQ_ROOT/examples/wav2vec/unsupervised/w2vu_generate.py
-config-dir $FAIRSEQ_ROOT/examples/wav2vec/unsupervised/config/generate
-config-name viterbi

fairseq.common.user_dir=$FAIRSEQ_ROOT/examples/wav2vec/unsupervised
fairseq.task.data={model}/preppedaudio
fairseq.common eval.path={checkpoint} fairseq.dataset.gen subset={data}
results_path={out}/{model}

pre.bash generate(gen,"generate")

if name ' main I

#config
model= "xyz"
checkpoint= "multirun/2023-04-11/00-52-15/0/checkpoint best.pt"
data = "valid"
#absolut path needed to run generator.
model abs= os.path.abspathf "exe/prepped_data/{model}")
check abs= os.path.abspath(f"checkpoint")
out dir = os.path.abspath("predictions")

127

B.7 IAIw h i s p e r . p y

import os
import whisper
import numpy as np
import pandas as pd
from csv import DictWriter
from datasets import load dataset, load metric

os.environ["CUDA VISIBLE DEVICES"] = "O"

df = pd.read_csv("/media/datastore/x/whisper/data/validation.csv")
print(len(df.index))
for index, row in df.iterrows():

if len(row['text'])< 10:
df.drop(index, inplace=True)

df = df.reset index(drop=True)
print(len(df.index))

model
name
ids

"medium"
"medium"

"whisper-"+str(model)

#Whisper
samples file = []
samples text = []
samples pred = []
model = whisper.load_model(model)
for index, row in df.iterrows():

out = model.transcribe(row['file'])
samples text.append(row['text'])
samples pred.append(out['text'])

#Post processing
diet num ={

"zero",
"1": "one
" 2 " : t w o
"3": "three",

four
"5": five
" 6 " :
" 7 " :

II

II

II II

II II

"six
"seven
"eight",

"9": "nine",
10 "ten"

II

II

II II

diet spec
1111

1111

11 I 11 1111

128

1111

1 1 1 1 1 1111

1111

#Correcting output
new samples pred = []
for i in samples pred:

new_seq = i
for j in diet num:

sub= new seq.replace(j,
sub= sub.replace("
new seq= sub

II II

" "+strdict_num[j]))

fork in diet spec:
sub= new seq.replace(k, strdict_spec[k]))
new_seq = sub.lower()

new samples_pred.append(new_seq)

wer metric = load metric"wer")
val_wer_org =(wer_metric.compute(predictions=samples pred,

references=samples text))
val_wer_new = (wer_metric.compute(predictions=new_samples pred,

references=samples text))
print("OpenAI Whisper original prediction WER: " + str(round(val_wer_org * 100,

2)) /o)

print("OpenAI Whisper Corrected prediction WER: " + str(roundval_wer_new
100, 2)) + "%")

+ °11

sample_wer= []
for index in range(len(new_samples pred)):

sample pred = [str(new_samples pred[index])]
sample ref= [str(samples text[index])]
sample wer.append(wer metric.compute(predictions=sample pred,

references=sample ref))

df samples= pd.DataFrame(list(zip(samples text, samples pred,
new samples pred, sample_wer)), columns=['Target text','Original
prediction','Corrected prediction', 'WER sample'])

df samples.to pickle("./evaluation/{a}.pickle".format(a=str(ids)+" dfSamples"))

Appending parameters to CSV file
headersCSV = ['ID', 'MODEL', 'ORIGINAL WER', 'CORRECTED WER']
diet={'ID': str(ids),

'MODEL' : str(name),
'ORIGINAL WER': val_wer_org*100,
'CORRECTED WER': val_wer_new*100,

with open('./evaluation/performance.csv', 'a', newline='') as write:
dictwriter_object = DictWriter(write, fieldnames=headersCSV)
dictwriter_object.writerow(dict)

129

p r i n t (" - " * 1 0 0)
p r i n t (" c s v - f i l e upda t ed ! ")
w r i t e . c l o s e ()

130

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Research questions

	Background
	Voice assistants
	Early development
	Audrey
	IBM Shoebox 1962
	Linear predictive coding (LPC)
	Dynamic time warping (DTW)
	Hidden Markov model
	ARPA Speech Understanding Research program
	Gaussian mixture model (GMM)
	DragonDictate

	Increasing vocabularies and continuous speech
	Mel-frequency cepstral coefficients (MFCC)
	N-gram models

	Deep Neural Networks (DNN)
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Connectionist temporal classification (CTC)
	Convolution Neural Network (CNN)

	Common corpora
	Word error rate metric

	Related work
	ATC Communications Characteristics
	Supervised learning
	Deep Speech
	Transformers

	Self-supervised learning
	wav2vec
	wav2vec 2.0

	Unsupervised learning
	wav2vec Unsupervised
	wav2vec-U 2.0

	General ASR
	ATC domain specific ASR

	Methodology
	Schedule
	Setup
	Hardware
	Software

	Corpora
	Preprocessing the corpora
	Structure
	Audio preprocessing
	Text preprocessing

	Deep speech 2
	Post-processing with edit distance

	Transformer
	Wav2vec 2.0
	Hugging Face
	Unsupervised

	Whisper

	Results
	Deep Speech 2
	Cross-domain experiments

	Transformer
	Hugging Face
	wav2vec-U 2.0
	Whisper

	Discussion
	Deep Speech 2
	Transformer
	wav2vec 2.0
	Hugging Face

	wav2vec-U 2.0
	Whisper
	Hardware resources needed
	Data
	Future work

	Conclusion
	Bibliography
	Acronyms
	Conference paper
	Python code
	grid_search.py
	unsup_README.md
	unsup_preprocess.py
	unsup_inputgan.py
	unsup_rungan.py
	unsup_generate.py
	IAI_whisper.py

