@ @stfold University College

MASTER'S THESIS

Network Traffic Behavior Analysis
A method for pattern recognition in 10T networks

Iraj Lohrasbinasab

June 2023

Master’s Degree in Applied Computer Science
Faculty of Computer Science, Engineering and Economics

NETWORK TRAFFIC BEHAVIOR ANALYSIS

A METHOD FOR PATTERN RECOGNITION IN IOT NETWORKS

Master’s Thesis in Applied Computer Science

Iraj Lohrashinasab

Faculty of Computer Science, Engineering and Economics
Ostfold University College
Halden, Norway
June 15, 2023

Abstract

Telecommunication networks and Internet of Things (IoT), as two important
sources of big data generation, have grown significantly in the last decade. The
data generation process in computer networks, in addition to the characteristics
arising from the network environment, is defined by three typical dominant
principles of big data including Velocity, Variety, and Volume, commonly
referred to as the 3V. In response to this explosive increase in the speed
and volume of generated data, in parallel with the development of data
processing infrastructures such as Cloud, Fog, and Edge, great steps have been
taken in developing network management methods. In network management,
maintaining different issues such as supporting Quality of Service (QoS),
Service Level Agreements (SLAs) and Key Performance Indicators (KPIs),
security, and resource efficiency calls for consistent monitoring of the network.
These concerns will be addressed on the foundation laid down by Network
Traffic Monitoring and Analysis (NTMA) techniques like Network Traffic
Prediction (NTP), Network Traffic Classification (NTC), security and privacy
managmement techniques, and fault management. However, IoT, is mostly
established on the resource-constrained ad-hoc networks, which impedes
applying the heavy-weight NTMA’s techniques, namely that of Network Traffic
Analysis (NTA), in such environments. Change Point Detection (CPD) is an
appropriate statistical technique that is gaining popularity due to its capability
to offer lightweight and practical solutions for NTA in IoT ad-hoc networks.
By observing and evaluating network traffic streams represented in the form of
time series data in a near-real-time manner, CPD can provide an useful insight
into the network traffic behaviour in terms of the metric(s) of concern.

In this master’s thesis, we have proposed an efficient method of CPD that paves
the way to effectively utilizing NTA in IoT ad-hoc networks. The proposed
method builds upon an existing CPD method named TONTA and aims to
enhance its performance in various aspects. By applying some innovative
improvements to the base method, we have achieved a highly effective approach
that outperforms its predecessor significantly. To highlight its coherence
to the original method, the proposed method has been named ”pTonta”.
The report offers a thorough theoretical overview of the topic followed by
a literature review on similar applications of CPD, which is supplemented
by our independent research on statistical and machine learning-based NTP
approaches. In the next step, along with analyzing the base method and
identifying its potential for optimization, the proposed improvements are
elaborated. Furthermore, we have conducted a comparative performance

evaluation of both methods that shows the proposed method has significant
advantages over the base method in several key areas, including accuracy, time
complexity, and detection delay.

Keywords: Network Traffic Monitoring and Analyzing, NTMA, Network
Traffic Analysis, NTA, Change Point Detection, CPD, Machine Learning,
Statistical Forecasting Methods, Network Traffic Time series Data, Internet of
Things, IoT

Contents

Abstract

List of Figures

List of Tables

Introduction

1.1 Introduction
1.2 The Overall Direction of This Thesis
1.3 Research Questions e
1.4 Method e
1.5 Deliverableso
1.6 Report Outline e

Background and Theory
2.1 Computer networks
2.1.1 Internet of Things (IoT)
2.2 Network Traffic Data
2.2.1 Network Traffic Data Acquisition
2.3 Network Performance Measurement
2.3.1 Common Network Traffic Metrics
2.3.2 One-Way-Delay (OWD)
2.3.3 OWD Extraction Using Packet Sniffing Technique
24 NTMA . . o e
2.4.1 NTMA Framework i
2.4.2 Feature Selection in NTMA
2.4.3 Challenges With Network Traffic Data Analytics
2.4.4 Challenges Of Applying NTMA Tasks In Ad-hoc Networks
2.5 Network Traffic Prediction
2.5.1 Change Point Detection
2.6 Big-data Analytics
2.6.1 Time Sries Data; Definition and Attributes
2.6.2 Statistical Analysis and Forecasting Techniques
2.6.3 Machine Learning Based Approaches
2.7 Related Works

iii

3 The Proposed Method
3.1 Introduction e
3.2 Fundamental Model
3.2.1 Model Explanations,
3.2.2 Technical Explanation of The Fundamental Model
3.3 Proposed Method
3.3.1 Our Improvements
4 Evaluation
4.1 Dataset e
4.2 Evaluation Policies and Rules
4.3 Evaluation Scenarios e e
4.3.1 Default Scenario
4.3.2 Evaluating The Effects of Interval_ Thr
4.3.3 Evaluating the effectsof €.o L.
4.3.4 Evaluating The Effects of Min_Thr, and Max Thr
4.3.5 Evaluating the effects of Imp_Thr
4.3.6 Evaluating The Trade-off Between ¢ and Min_Thr
4.4 Evaluating The Overall Performance
5 Discussion
6 Conclusion
Bibliography
A
B
B.1 The sampling procedure
B.2 Smoothing
B.3 Creating the sliding window oL
B.4 Connecting windows in a row. L e
B.5 Identifying the change point oL
B.6 To return the break position Lo 0oL

39
39
40
41
42
48
48

53
53
o4
54
o4
57
67
70
74
7
79

83

87

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14

2.15
2.16

3.1
3.2

4.1
4.2

4.3

4.4

4.5

4.6

4.7

IPv4 Packet Structure 6
The most popular basic network topologies 6
The typography of networks based on their spatial scope. 6
IoT Network schema L o 8
The most common Cloud services[12] 9
The IoT computing infrastructure including Edge, Fog, and Cloud 10
NTMA sub-fields o 16
A white noise graph shows stationarity 23
The sample autocorrelation function for 20 first observations of the data in Figure 2.8

with a boundary around £2 oL L 0oL 0oL 23
The blue areas indicate the confidence intervals for the approximated next value, established

by a statistical estimation methods (image adapted from [45]) 24
The ARIMA (p,d, q) specific modes 26
A typical regression model oL L L oL Lo Lo 28
a general Reinforcement Learning process« « vt oo oL 31
Data collection settings, (a) Batch Offline (b) Batch incremental (¢) Online

incremental (streaming) o Lo L 33
Typical structure of a Neuron 33
The the schematic of Deep neural network 34
The activity diagram in TONTA (adopted from [3]) 41
an example of curves and trends in a sub-section of the dataset 46

the obtained results in default settings, (a) by TONTA, and (b) by pTonta 56
the obtained results for (Interval Thr=10, Min_Thr=100, Max_Thr=300

Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta 58
the obtained results for (Interval Thr=20, Min_Thr=100, Max_Thr=300
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta 59
the obtained results for (Interval Thr=30, Min_Thr=100, Max_Thr=300
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta 60
the obtained results for (Interval Thr=40, Min_Thr=100, Max_Thr=300
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta 61
the obtained results for (Interval Thr=60, Min_Thr=100, Max_Thr=300
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta 62
the obtained results for (Interval Thr=70, Min_Thr=100, Max_Thr=300
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta 63

A%

4.8 the obtained results for (Interval Thr=80, Min_Thr=100, Max_Thr=300

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

Imp_Thr=0.5, ¢=100), (a) by TONTA, and (b) by pTonta
the obtained results for (Interval Thr=90, Min_Thr=100,
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta

the obtained results for (Interval Thr=100, Min_Thr=100,

Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta
the obtained results for (Interval Thr=>50, Min_Thr=100,
Imp_Thr=0.5, e=25), (a) by TONTA, and (b) by pTonta

the obtained results for (Interval Thr=>50, Min_Thr=100,
Imp_Thr=0.5, e=50), (a) by TONTA, and (b) by pTonta

the obtained results for (Interval Thr=>50, Min_Thr=100,
Imp_Thr=0.5, €¢=75), (a) by TONTA, and (b) by pTonta

the obtained results for (Interval Thr=>50, Min_Thr=100,
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta
the obtained results for (Interval Thr=>50, Min_Thr=100,
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta
the obtained results for (Interval Thr=50, Min_Thr=300,
Imp_Thr=0.5, e=100), (a) by TONTA, and (b) by pTonta
the obtained results for (Interval Thr=50, Min_Thr=100,
Imp_Thr=0.2, e=100), (a) by TONTA, and (b) by pTonta
the obtained results for (Interval Thr=>50, Min_Thr=100,
Imp_Thr=0.8, e=100), (a) by TONTA, and (b) by pTonta
the obtained results for (Interval Thr=>50, Min_Thr=100,
Imp_Thr=1, e=100), (a) by TONTA, and (b) by uTonta

the obtained results for (Interval Thr=>50, Min_Thr=125,
Imp_Thr=0.5,e=75)
the obtained results for (Interval Thr=>50, Min_Thr=150,
Imp_Thr=0.5, e=50)

Mazx_Thr=300
Max_ Thr=3800
Maz_Thr=300,

Comparison of pTonta and TONTA, based on their results over the 19

examined scenarioso

Comparing the delay of two methods in detecting true alarms over all

examined scenarioso

List of Tables

2.1

3.1

4.1
4.2

4.3
4.4
4.5

4.6
4.7

4.8
4.9
4.10

popular Machine Learning (ML) models in networking
The key parameters and how they effect accuracy and time complexity . . .

Packet generators
Detailed settings of investigated scenarios (to redirect to a figure click on its

NUMDET) e
The comparison of results on the default scenario, in pTonta and TONTA .
The effects of changing the Interval Thr on the results of yTonta.
Comparing the results obtained from pTonta with the same from TONTA

in terms of Interval Thr affection.
Comparing the effects of changing the € in yTonta and TONTA.
Comparing the effects of changing Min_ Thr and Max_Thr in pTonta and

TONTA . .
Comparing the effects of changing I'mp_ Thr in pTonta and TONTA
Comparing the effects of changing € in balance with Min_Thr
Comparison of yTonta and TONTA in terms of the growth percentage of

the obtained results oo

vii

o1

Chapter 1

Introduction

1.1 Introduction

The IoT has changed the way we interact with our daily devices and the world around
us [1]. From the technical lens, it offers an overlay network on top of existing network
infrastructures, from cellular networks to Near-Field Communication (NFC) [2]. The major
part of the IoT is established on so-called ”ad-hoc” networks. Ad-hoc network is a general
term referring to some types of networks constructed on-the-fly by a group of devices
without the need for a pre-existing infrastructure, which are widely used in IoT networking.
Monitoring and analyzing network traffic is vital to improve the performance of networking.
Network management is an ongoing task, aiming to provide and ensure optimal performance
of the network in various aspects such as availability, stability, security, efficiency, etc.
To achieve these objectives, network management benefits from NTMA’s capabilities.
NTMA refers to a wide range of methods and techniques that provide a comprehensive and
accurate perspective of the network, ultimately enhancing network management efficiency.
To this end, NTMA relies mostly on analysing massive network traffic data streams in form
of time series, and are therefore considered heavy-weight tasks. Generally, the common
approaches to NTMA can be classified into one of two groups: machine-learning-based
approaches and statistical approaches [3]. NTMA is an overarching concept that includes
various aspects of network management and analysis, like NTP and NTA. NTP deals
with predicting network traffic behavior, which involves forecasting future network traffic
patterns considering historical data, while NTA puts the focus on gaining insights into the
behavior and characteristics of network traffic through analyzing traffic data [4].

The unprecedented growth of IoT devices [2] increasingly demands for further efficient
and effective techniques for NTA to monitor and manage loT networks. However, some
structural limitations in IoT ad-hoc networks impede the effective leveraging of NTA
techniques in such environments. These challenges typically stem from the characteristics
and structural limitations of ad-hoc networks, including limited resources, dynamic topology,
and frequent changes in network traffic patterns. To deal with these challenges, some
specific lightweight NTA solutions capable of operating efficiently in ad-hoc IoT networks
are needed. In response to this need, some statistical techniques such as CPD are effective
due to their lightweight nature and ability to detect changes in network traffic patterns.
CPD techniques aim to identify abrupt changes in the statistical characteristics of a time
series that can provide a profile of fluctuations in network traffic behavior.

In this Master’s thesis, we propose a novel statistical-based approach for network traffic

CHAPTER 1. INTRODUCTION

behavior analysis in ad-hoc IoT networks. Our proposed method, called nTonta, builds
upon the strengths of a base method called Trend-based Online Network Traffic Analysis
in ad-hoc IoT networks (TONTA), which was introduced in 2020. The proposed method
introduces several new features to improve TONTA’s performance and makes significant
contributions to the field of NTA for ad-hoc IoT networks. The thesis commences with
a comprehensive review on the primary concepts in computer networks, a general IoT
framework, the key features and concepts of network traffic data analytics, as well as
review some related works on the topic of CPD. Meanwhile, coinciding with this thesis,
a comprehensive survey on network traffic prediction was conducted and is accessible in
Appendix A. We then introduce the base method, called “TONTA”, which focuses on
detecting change points in network traffic behavior using end-to-end delay data. TONTA is
a lightweight, modular, and efficient approach that is well-suited for online traffic analysis of
ad-hoc networks. However, there is some capacities for improving its performance measures,
such as detection efficiency, time complexity, and speed. To address these challenges,
we propose pnTonta, a statistical-based method that enhances TONTA’s performance by
reducing time complexity and detection’s delay along with enhancing the accuracy of
change point detection in stream analysis for ad-hoc IoT networks.

Along with the proposed approach, this thesis also provides an in-depth outline of
the adopted development and evaluation methodologies. Moreover, a comparative
performance evaluation between the proposed method and the base approach, exhibiting
the improvements achieved, has been conducted. This thesis is wrapped up by discussing
the implications of our findings and ideas for future studies on applicable NTA techniques
for ad-hoc IoT networks.

1.2 The Overall Direction of This Thesis

This thesis aims to tackle the issue of lightweight and agile solutions for network traffic
analysis in ad-hoc networks. Given the current deficiencies in this area, the focus is on
developing a statistical-based technique that can detect the behavior of ad-hoc IoT networks
in real-time. To this end, we follow these steps:

o First, various definitions and contents related to IoT, ad-hoc networks, NTMA, etc
are presented comprehensively to provide a concrete overview of what this thesis has
improved.

e A comprehensive literature review is provided to outline the ML-based and statistical-
based techniques for network behavior analysis challenges and future directions.

e A new model is proposed for network behavior analysis in such networks based
on a method called Trend-based Online Network Traffic Analysis in ad-hoc IoT
networks (TONTA) introduced 2021 [3].To highlight the relation between the proposed
framework and the TONTA model, we have named it as”uTonta”.

e The performance of the proposed method is evaluated in comparison with the TONTA.

1.3 Research Questions

The research aims to answer the following questions:

2

1.4. METHOD

RQ 1: What are the current approaches to predicting network traffic , and
how effective are they?

RQ 2: What are the challenges with utilizing NTA in ad-hoc IoT networks?
And which approaches are more suitable for analyzing network traffic on
ad-hoc devices in terms of accuracy and computational cost?

RQ 3: How can a method be designed to recognize the patterns of network
behavior in ad-hoc IoT networks, and how does it compare to existing
methods in terms of accuracy and computational cost?

1.4 Method

To answer the above questions, in this study, we, first, review the existing literature and
tried to investigate various types of NTP techniques focusing on NTA. In addition, we
review how the methods can be fitted into the ad-hoc IoT networks environment. In other
words, we need to investigate which types of NTP methods can handle the characteristics of
such networking environments. Then a new method is proposed to address the challenges
of NTP in these types of networks. The performance of the proposed method is evaluated
to show how the proposed method can achieve NTP goals in ad-hoc IoT networks. Last
but not least, future works are considered as a road-map for doing research in this area.

1.5 Deliverables

Among the achievements of this master’s thesis project, the following can be mentioned:

o literature review: A comprehensive review of the subject’s literature was provided
in a published survey (B). In this paper, the main approaches in NTP, including
ML-based and statistical-based methods, are introduced and the features and common
applications of each are explained. In addition, some of the latest research conducted
in this field are introduced and categorized based on the type of approach adopted.

e The proposed model: A statistical-based model for network traffic behavior analysis
in ad-hoc networks, called "y Tonta”, built upon the strengths of a base model called
TONTA introduced in 2020. The proposed model introduces several new features to
improve TONTA’s performance and makes significant contributions to the subject.

o Master’s thesis report: The report commences with a discussion of the theoretical
aspects and components involved in NTP for IoT networks, and then the process
of developing a proposed model through identifying the improvement opportunities
in the based model is elaborated. The remaining sections of the report focus on a
comparative performance evaluation between the proposed model and the base model
by replicating the experiments and settings used in the source model.

1.6 Report Outline

The rest of the this thesis is summarized as follows: In Chapter 2 we first introduce the
basic concepts and discuss the available types of techniques for applying NTMA tasks

3

CHAPTER 1. INTRODUCTION

in IoT networks. Chapter 3 is dedicated to introducing and analyzing the base method,
followed by the elaboration of the adopted solutions for enhancing it, which have resulted
in the proposed method. In Chapter 4, we have evaluated the performance of the proposed
method in comparison to the base technique. then, The results obtained in relation to
the research questions raised have been summarized and presented in Chapter 5. And
finally, Chapter 6 is dedicated to wrapping up and conclusion of this research. Moreover, a
supplementary research on the topic of NTP approaches, in which I, as the main author,
have made contributions, is provided in Appendix A. in Appendix B some pieces of codes
used in the main algorithms and procedures has been provided.

Chapter 2

Background and Theory

Understanding the concepts and phenomena that underlie computer networks is essential
to any discourse in the domain of NTMA. However, due to the diversity of these notions
and how they are intertwined with several distinct sub-domains, we have to narrow the
focus to most relevant topics. To this end, we first introduce some elements of computer
networks, including basic structures and features; then, the general NTMA framework,
including its applications and components, is described; and finally, this chapter will be
wrapped up with a brief look at IoT systems and involving issues with leveraging NTMA
techniques in a specific type of IoT network called "ad-hoc.”

2.1 Computer networks

Since the late 1950s, computer networks have come a long way. They have evolved to include
a variety of network architectures, such as LAN, MAN, and WAN networks, underpinned
by technologies like cable-based, optical, and wireless, as well as communication protocols.
Over the last two decades, there has been a fundamental change in network technology and
management in response to the exponential increase in data generation over networks [5].
Most computer networks are based on the packet-mode transmission model, in which data
is formatted and sent in the form of packets with a standard structure, such as that shown
in Figure 2.1. This structure enables efficient utilization of the communication media’s
bandwidth. However, computer networks vary widely in terms of other characteristics such
as topology and scale. Common topologies are Bus, Star, Ring, Mesh, Fully Connected,
and Tree networks (Figure 2.2).

The capabilities provided by technologies such as sensors and short-range communications
have also led to the formation of a range of networks, which can be classified, based on
their spatial range covered, into Nano Scale, Body Area Network (BAN), Personal Area
Network (PAN), Local Area Network (LAN), Campus Area Network (CAN), Metropolitan
Area Network (MAN), and Wide Area Network (WAN) (Figure 2.3).

2.1.1 Internet of Things (IoT)

)

The term "Internet of Things” describes a network of physical objects, so-called "things,’
capable of data generation and communication with computing infrastructures using sensors,
software, and connectivity where The processing infrastructure consists of local resources
and servers located at different hops away from end-nodes. IoT things are able to gather

5

CHAPTER 2. BACKGROUND AND THEORY

Bits
0 3 4 4 1

8 13 14 15 16 31

7
W DSCP . ECN Total Length

0 5 16 18 19 31

4 Identification Fragment Offset
7 8 1

0 5 16 3

Source Address

1
31

Words
Header

31
Destination Address
31

Options

Payload

Figure 2.1: IPv4 Packet Structure

Internet

Star Topology

R SO

“/
~

Mesh Topology

Fully Connected Topology

~
~
“ _ |
S
N\
“/
~
~

Figure 2.2: The most popular basic network topologies

Figure 2.3: The typography of networks based on their spatial scope.

.
/

2.1. COMPUTER NETWORKS

data from the environment in which they are housed and to exchange data over the Internet
to allow automated decision-making and control. An IoT system’s ultimate objective is
to enable the seamless integration of physical or virtual objects, data, and processes over
the internet, enabling real-time monitoring, analysis, and control of diverse systems and
processes. Enabling wiser decision-making, increasing efficiency, cutting expenses, and
improving user experiences are the objectives [6]. Figure (2.4) shows an overall schema of
ToT networks.

The main stages that make up the data flow throughout IoT architecture are as bellow:

e Sensing: The collecting of data from sensors or other input devices, such as cameras,
RFID readers, temperature sensors, motion sensors, and etc. is the first stage in the
IoT data flow. These sensors gather information about a range of environmental
elements, including temperature, humidity, light, sound, motion, and so on, depending
on the sensors are used.

e Processing: The raw data gathered by the sensors is processed in the second stage.
This processing may be carried out locally, on the device, or remotely, on a server
hosted in the cloud. The data is cleaned, refined, and converted into a structured
format for analysis.

e Analysis: To derive valuable insights and spot trends, the processed data are analyzed
in the third stage. Several methods, including machine learning, artificial intelligence,
and statistical analysis, can be used to conduct this analysis.

o Communication: The analyzed data are then sent to other IoT networked devices
or applications in the fourth stage. This communication may take place through
cellular networks, Wi-Fi, Bluetooth, or other communication protocols.

o Action: Adopting an action or decision based on the data analysis constitutes the
last phase. Either an automatic process or human activity can start this procedure.

TIoT Architecture

The design and deployment of hardware and software elements that provide the effective
transmission of data flow throughout the IoT network are referred to as IoT architecture.
IoT architecture typically consists of five layers:

1. Devices and Sensors Layer: The initial layer of the Internet of Things architecture is
made up of devices and sensors, which gather environmental data and transmit it to
the subsequent layer [6].

2. Network Layer: In this layer, the data is sent to the cloud or fog infrastructure over
a network. Wi-Fi, ZigBee, Bluetooth, and other wireless and wired technologies are
included at the network layer [7].

3. Fog/Edge Computing Layer: This layer consists of computing infrastructures made up
of devices like routers, smart switches, smart phones, etc. that offer processing power
near to the devices or sensors. This layer aids in lowering latency and enhancing the
functionality of IoT applications [8].

CHAPTER 2. BACKGROUND AND THEORY

4. Cloud Computing Layer: The fourth tier of the IoT architecture is the cloud computing
layer, where the gathered data is processed, analyzed, and stored. To manage the
enormous volume of data created by loT devices, cloud computing offers the required

infrastructure and services including storage, data analytics, and machine learning
[9].

5. Application Layer: This layer facilitates the interaction with IoT system through
user-facing applications With the ability of controlling data and devices.

me® Bs

f loT Ad-hoc Network \ e Edge Devices (IoT Fog)
S5
é_ o &= L

loT Cloud

Figure 2.4: IoT Network schema

IoT Computing Infrastructures

This feature of IoT comprises all resource-handling tasks for computing, data processing,
and storage retrieving in a real-time manner. Mainly, it consists of three types including
Cloud, Fog, and Edge computing infrastructure paradigms.A schematic of IoT computing
infrastructure is illustrated in Figure 2.6[10].

¢ Cloud Computing: The Cloud is a centralized infrastructure accessible via the Internet
for data storage and retrieval, processing, and analysis that relieves users from the
constraints associated with hardware and software resources by providing the various
resources required by a distributed system such as the 10T in the form of instant services
(Figure 2.5). Cloud services are generally provided in three modes including, Software-as-
a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS).
Networking equipment, servers, infrastructure for data storage and retrieval, a hardware
abstraction layer for virtualizing hardware, and software resources are the core elements
of the Cloud. The key features of flexibility and scalability of the Cloud infrastructure
provide the possibility of dealing with IoT big-data and real-time processing, which are
the main components of the IoT’s environment [11][12].

¢ Fog Computing: As a supplemental infrastructure for the Cloud, fog provides the
capabilities for processing, storage, networking, and managing data on the part of the
network that is near end nodes (for example, IoT devices and sensors). In general,
efficiency increases with the proximity of the processing resources to the end nodes.
By conducting some of the processing on the route between the end nodes and the
Cloud, Fog seeks to decrease the workload and the number of tasks forwarded to faraway

2.1. COMPUTER NETWORKS

"Saas"

Application, Data, Software for end-users

"PaaS"

Databases, Execution runtime, Middleware, OS

Servers, VMs, Network, Storage,
Load Balancers, Hardware

Figure 2.5: The most common Cloud services[12]

[43

Clouds [13]. Fog computing, according to the Open Fog Consortium’s definition is: “a
horizontal system-level architecture that distributes computing, storage, control and
networking functions closer to the users along a Cloud-to-thing continuum.” In contrast
to a vertical platform, which encourages isolated applications, the "horizontal” platform
used in fog computing allows computing functions to be dispersed throughout many
platforms and sectors [14].

Edge Computing: Edge computing refers to available resources at the network’s edge,
not more than one hop away from IoT endpoints. These processing resources include a
variety of devices with computing capabilities, such as routers, switches, access points,
smartphones, etc. Although fog computing and edge computing both take place on
the edge of the network, there are significant distinctions between them [15]. Fog is a
complementary structure to support integration and continuity within the continuum of
endpoints to the Cloud, in the core of the network, while edge computing deals with
the resources located at the edge of the network as an isolated system and independent
from the Cloud [13].

Ad-hoc IoT Networks

The IoT network infrastructure typically comprises two different kinds of structures: (1)
Infrastructure-dependent: This is the typical design of traditional computer networks,
which consists of fixed elements with specialised functions like routers, switches, etc. (2)
infrastructure-independent or "ad-hoc networks” that refers to a range of wireless networks
organized in a mesh topology with fully connected nodes. These networks can be classified
as Wireless Sensor Network (WSN), Mobile Ad-hoc NETwork (MANET'), Wireless Mesh
Networks (WMN), and other types, depending on their specific purpose [16]. In ad-hoc
networks as a main part of the IoT’s network platform, the stated roles like routers and

9

CHAPTER 2. BACKGROUND AND THEORY

\
jum|

L

)

Cloud computing

° O3 @O
<[
DR v
@)

el
v
=

Figure 2.6: The IoT computing infrastructure including Edge, Fog, and Cloud

v
@ O

Edge computing

{
K

{EH?H -

switches are carried out by some end nodes with appropriate processing and networking
abilities. In temporary cooperation with each other, these components are responsible
for the tasks assigned. Because these nodes are chosen based on the extra resources
that are available at the time, their selection is not fixed and is subject to change at
any time [17]. Such networks are under the general title of "ad-hoc networks,” form a
significant part of the IoT network infrastructure. In ad-hoc networks, nodes use various
protocols to communicate with each other namely, Wi-Fi and Wi-Fi Direct, Bluetooth
and BLE(Bluetooth Low Energy), Zigbee, 4G/LTE and 5G Cellular, long range(LoRa),
Lightweight M2M (LWM2M), etc [18].

2.2 Network Traffic Data

Network traffic data can be assumed in a hierarchy in terms of granularity consisted of
connection-level information, at the highest level, flow-related /time-dependent data in the
middle, and finally, the most often used data in NTMA applications, namely packet-level
data, is at the lowest level [[19]]. The packet-level data structure conforms to various
network protocols such as TCP, UDP, and ICMP. A wide range of packet-based networks
and the enormous number of various linked devices utilize packets to send and receive
information [20].

2.2.1 Network Traffic Data Acquisition

In general, network traffic data collection techniques can be divided into three categories,
Packet-based, Flow-based , and Connection-based , according to the granularity of these
data. Packet-based data acquisition techniques involve collecting data at the packet
level, which includes elements such as time stamp, source and destination IPs, source

10

2.2. NETWORK TRAFFIC DATA

and destination ports, and length [19], [21]. This type of data is essential for analyzing
network traffic [22]. On the other hand, Flow-based techniques focus on analyzing groups
of packets with similar attributes [23], such as source and destination, protocol types, and
more. Statistical data about flows is analyzed based on classification types, including size,
count, duration, direction, and rate [22]. At the highest resolution, connection-based data
acquisition techniques provide even deeper insight into the nature of network traffic between
two specific endpoints. This type of analysis involves extracting and inferring metadata
flagged by other data collection methods and includes information such as connection
duration, connection count, and connection type (TCP, UDP, or ICMP) [20].

Packet Inspection Methods

Capturing network traffic data in the form of packets underpins most of data extraction
methods in network traffic data analytics. However, one of these approaches’ drawbacks is
packet loss, which is especially noticeable when dealing with enormous volums of network
data. Furthermore, when it comes to data capture via high-speed lines, packet capturing
performance deteriorates significantly. Generally, there are two main methods used for
monitoring network traffic at the packet-level namely Deep Packet Inspection (DPI), and
Shallow Packet Inspection (SPI). DPI has a broad range of usage in network security
context where it is often known as stateful packet inspection or dynamic packet inspection,
referring to the process of analysing the packet’s header and payload data entirely. DPI
usually is carried out at firewalls in order to detect and block malicious content through
monitoring, control and filtering transmitting content [24]. Further, some kinds of buffer
overflow attacks can be prevented by using this technique. Among the other most popular
use-cases of DPI, one can mention to serving targeted advertising, lawful interception,
and policy enforcement [25]. Despite the significant capabilities and advantages of DPI in
the aforementioned use-cases, it is infeasible to leverage this technique for pace-attached
scenarios of NTMA applications, and at resource-constraint devices. The SPI technique,
on the contrary, is an alternative way that just examines the header data. This approach
may be implemented by employing software and devices capable of sniffing packet header
data, including source/destination IP, time stamp, etc. [19]. Some other deterrents to the
utilising DPT approach in NTMA techniques include [25]:

e Accessing and analysing packet text information may violate users’ privacy.

e Since the DPI method relies on processing all packet data, it takes more time and
requires more resources than the SPI method, which suffices with little header data.

o In network scenarios that involve encrypting network traffic and using a VPN, DPI
cannot be used due to the lack of access to packet content.

The above limitations have led most of the probes used in NTMA to exploit the SPI method.
Packet analysis may be applied in a variety of ways, depending on the capabilities and
processing capacity of the monitoring node [26]. On routers and switches, packet analyzer
software is used to capture, store, and analyse packet data. TCPdump and Wireshark are
two examples of such tools. These programs, among a range of profitable capabilities for
monitoring and managing the network, also provide the possibility of extracting the delay
data. In addition to common tools, packet sniffing can be performed directly with the help
of the Libpcap library, a frequently used package that underlies the most packet analysing

11

CHAPTER 2. BACKGROUND AND THEORY

products. The latter method is especially useful for use on poor-source devices. The direct
packet capturing method could be applied in different ways; either in the system core, in
the user space (i.e., programming environment), or using specific hardware [26], [27]. In
this context, a broadly prevalent protocol is the Network Time Protocol, which propagates
the time through a hierarchical structure from a precisely tuned clock server to lower-level
nodes for synchronization.

2.3 Network Performance Measurement

Collecting network traffic data is one of the essential tasks that must be addressed in the
initial steps of an NTMA procedure. The significance of this issue becomes more apparent,
particularly in monitoring techniques based on active or passive probes [21]. Probes are
one of the most efficient and common ways to gain insight into network status in terms
of end-to-end, QoS, and QoE performance. Active and passive probes are two different
strategies in this area. In the method based on active probes, by synthesizing a simulated
network traffic flow and sending it within the network, we aim to evaluate the observed
feedback and measure the performance parameters (e.g., one way delay) regarding the sent
testing flow. Passive methods, on the other hand, focus on monitoring the whole actual
network traffic on a given link. This structural difference leads to different perspectives
on the state of the network [[22]]. Several aspects affect the aims and approaches used
in collecting network traffic data through network management and the usage of NTMA,
including network type, type of NTMA application (c.g., NTP, traffic classifications, ctc.),
policies and strategies adopted in network management, and so on [[28]].

2.3.1 Common Network Traffic Metrics

Given the area of interest of this research, some of the most widely used metrics in
evaluating network performance in relation to QoS and Quality of Experience (QoE) are
[29]:

Throughput: Network throughput indicates the actual amount of data packets
transmitted successfully via a network channel within a certain time slot [26]. It
reflects the dropped packets’” amount implicitly. Throughput is usually measured and
shown in bits per second (bps), but bytes per second (Bps) or packets per second
(pps) are also common [30].

o Bandwidth: Bandwidth refers to the accessible (or allowed) maximum data transfer
capacity of a network channel at a given time. Since handling data streams beyond
bandwidth capacity will trigger some proactive mechanisms at links, as well as
increase the rate of packet loss and resultant problems, maintaining the data rate to
this level, and avoiding exceeding it, plays a key role in guaranteeing optimal network
performance [27], [30].

 Jitter: The condition of packet delay variation is known as jitter. In some applications
requiring a steady transmission rate (e.g., video and voice traffic), exceeded jitter
may disrupt communication entirely [28], [30].

o Packet loss (loss rate): One of the causes degrading the quality of end-user services
is the loss or drop of data packets on the way from source to destination [30]. Given

12

2.3. NETWORK PERFORMANCE MEASUREMENT

the high speed and huge number of data packets being transmitted via networks,
some packet loss is unavoidable, while TCP enables for packet monitoring and
retransmission. However, beyond the defined thresholds, the high incidence of this
issue hinders data requests being fulfilled at a committed time, disrupting consumer
services [28], [30].

e Delay: One of the key functional features of the network used in predicting network
traffic is delay (or latency). This feature, while simple and low-cost data extraction,
effectively reflects the state of network performance to address issues like QoS and
SLA maintenance [23], [28], [31].

2.3.2 One-Way-Delay (OWD)

In its most basic definition, this feature is the time between the transmission of a packet
from the source sender and its arrival time at the receiver device . In practice, despite its
simplicity, this definition is not without flaws. Due to the complexity of networks, this
concept is tied to factors such as the scale and topology of the network, density of network
nodes, distance from source to destination, protocols used, and etc [32]. Furthermore,
OWD is strongly intertwined with clock synchronisation and most often, it is performed by
utilising special hardware. Otherwise, relying on operating system-level or software-level
techniques calls for clock synchronisation to an adequate degree between nodes that should
make data packets timestamped [29]. The packet’s OWD between two nodes over the
network is the absolute time from the instant of sending the first bit of packet by the
source device to the instant when the last bit of packet is received at the destination
node. Devices may be servers, user terminals, routers, switches, etc., connected through
a wired or wireless physical medium. As will be described later, different types of delay
contribute to the OWD [21]. In most applications, given the asynchronous network traffic
in round-trip routes, the delay related to one side of the packet communication from origin
to destination is more interpretable and provides more useful information, in comparison
to the overall delay of the round-trip data packet route (Round-Trip-Time) [26]. Typically,
depending on the scale of the network (LAN, WAN, etc.), each data packet would has to
traverse a route consisting of several nodes, such as switches and routers. As explained
below, passing through each of these nodes in the route will impose some time delay on the
packet transmission, which we denote by nodal delay (d;,04q;). The total network latency
between the source and the node receiving the packet results from the accumulation of the
nodal delays created by the previous nodes [33].

o Nodal delay: The delays that a data packet encounters in a node can be divided into
four major components that, when added together, constitute nodal delay [21], as shown
in Equation (2.1).

dnodal = dproc + dqueue + dtrans + dprop (21)

Equation (2.1) divides the nodal delay into a set of distinct delays based on their type
and triggers making it easier to measure and analyse them. These components are
outlined in more detail below [34]:

1. Processing delay (dproc): Processing delay is the time a node spends processing
packet information, including error checking, reading a packet’s header, and
searching for a link to the next node by destination address. This kind of delay is
usually negligible in compared to other types of latencies.

13

CHAPTER 2. BACKGROUND AND THEORY

2. Transmission delay (dirans): The time that it takes a data packet on the outgoing
link to be entirely transmitted through the communication medium. This time
depends on the transmission rate as well as the packet length.

3. Queue delay (dgueue): The queue delay refers to the time a data packet would have
to spend in the queue on the outgoing link waiting to be sent. Queue delay is
closely related to transmission delay (dirans) and the queue’s length (lgyeye). This
relationship can be roughly formulated as follows:

dqueue = dtrans * lqueue (2‘2)

In equation (2.2), lgyeue indicates the average queue length. lyyeqe, in turn, depends
on the load factor. The latter feature is equal to the ratio of the actual transmission
rate attempted by the link to its maximum transmission rate. The remarkable
thing about the load factor is that by exceeding its value of 1, the queue length
increases indefinitely, leading to queue overflow, which is one of the main causes of
packet loss.

4. Propagation delay (dprop): The amount of time it takes for a signal change to
traverse the distance between two adjacent nodes via the available communication
medium. The propagation speed is close to the speed of light where radio broadcast
is used as a communication medium, whereas it drops to approximately 60% and
80% of the light speed for wired and fibre-optic networks, respectively.

e Comparison of delay components: Among the types of delays mentioned,
processing latency is negligible, while the magnitude and effectiveness of other delays
vary based on the scale of the network and traffic load on the sending links. Based on
this, some general circumstances are foreseeable [33]. For example, in a LAN network,
for light-loaded links, the transmission delay (dirqns) would be more significant than for
other types of delays, whereas for high-loaded links, the magnitude of the queue delay
overrides the other ones. On the other hand, this order for a WAN network, where
the distance between two consecutive nodes may be hundreds of kilometers, changes in
favor of propagation delay [34].

2.3.3 OWD Extraction Using Packet Sniffing Technique

In this technique, a sniffing tool is used to capure packets and examine their timestamps
[30]. A timestamp is a snapshot of the current moment in time which typically would be
associated with a certain "packet” or “event” by a network device. A packet timestamp
is a value that indicates when a packet was sent through a network device [33]. In this
context, two terms are distinguishable:

1. The ingress timestamp: This indicates the instant when the device receives the first
bit of the packet

2. The egress timestamp: This indicates the instant when the first bit of the packet is
transmitted out of the device

Depending on the monitoring setting and purpose, one can leverage timestamps in two
approaches to measure the residence delay at a certain node, or calculate the overall latency
between sender and receiver (i.e, OWD) A device can compute the resident time of a packet

14

2.4. NTMA

by measuring both the ingress and egress timestamps, which reveals how long the packet
has been on the current network device [35].

In the proposed method, the OWD parameter is considered as the target feature that
can be extracted from the packet’s time stamp data. The OWD can be calculated by
catching the timestamp from the arrival packet header (i.e., the egress timestamp at the
previous node) and comparing it to the time of receiving the packet (i.e., the ingress
timestamp) on the node under observation. Although, as is discussed in section 2.3.2, there
are different types of delay in packet base transmition, owd is the feature among others
which effectively satisfys the demand for representative data reflecting the current state of
the route traversed by a packet from the source to destination node. It also allows us to
disregard the effect of some uncertain and constantly fluctuating factors like response time,
and differentiation of the transmission and acknowledge routes as is seen in the overall delay.
One-way delay (OWD) is strongly intertwined with clock synchronization [33]. most often,
it is performed buy utilising special hardware. unless, relying on operating system-level or
software-level techniques calls for clock synchronisation to an adequate degree [29].

2.4 NTMA

The NTMA refers to a diverse set of techniques that, through continuous monitoring of
network traffic at various granularity levels (e.g., packet, flow, and application), provide a
deep and applicable view of the network’s status and performance, and user behaviour.
This insight is critical to support network management tasks such as maintaining QoS and
QoE, security, network resource allocation optimization, among others. Some of the most
common areas for applying NTMA techniques are:

e To provide insight into the network’s status and performance

e To detect suspicious network security issues

o To forecast traffic patterns and take preventative measures to maintain QoS and QoE
e To improve the network’s resource allocation efficiency

NTMA techniques, in terms of traffic monitoring approach, can be divided into: 1) active
and 2) passive. In active approach, a synthesized probe traffic is injected into the network at
specified time intervals to evaluate its status, in real-time, in terms of network performance
criteria such as latency, packet loss ratio, and jitter. Given providing a real-time insight to
network performance, active methods are the primary approaches to determine whether
the actual state of the provided services conforms to the expected level within the SLA
framework [36].

In contrast to active approaches, passive methods analyse past data of real network traffic in
offline mode. These techniques may be used to manage and plan for increased performance
and productivity. Their ability to precisely monitor network traffic, especially in post-event
scenarios like fault tolerance and diagnostics, as well as evaluate and monitor the QoE, is
remarkable in this context.

In network management, maintaining different issues such as supporting QoS, security and
resource efficiency call for consistent monitoring of the network. These concerns will be
addressed on the foundation laid down by NTMA.Generally, NTMA comprises various
sub-fields; some of their most prominent and widely used ones, including NTP, NTC, fault

15

CHAPTER 2. BACKGROUND AND THEORY

L
el Tr_afflc a Pl fault + = = -|Network Security , = - -|Traffic Prediction
' Classification | Management . !
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1
1 1
1 1 1 '
! _ Port-Based I\ _ _ | Fault Detection '\ _ _ _| Traffic Monitoring '\ _ _ | Traffic Analysis
1 1 ' 1
1 1 1 1
1 1 1 '
1 1 1 '
1 1 1 1
- - Payload-Based i -~ Faultlsolation ;== AbuseDetection t = = | Resource Allocation
1 1 1 1
1 1 1 1
1 1 1 '
1 1 1 '
1 1 1 1
*---4 Flow-Based * = = Fault Correction :— - =4 Intrusion Detection IL - - {Congestion Handling
1 '
1 1
1 1
1 1
' 1
~ = = { Malware Detection ~ = = {Bandwidth Forcasting

Figure 2.7: NTMA sub-fields

management, and network security, as well as the sub-techniques used by each, are shown
in the Figure 2.7. Moreover, each of these managerial tasks, on the other hand, has its
own specific goal, requirements, methodologies, and a set of criteria and determinants that
must be set up within unique situations based on the nature of the problem at hand [23].

2.4.1 NTMA Framework

The more networks grow in terms of scale, complexity, and volume of traffic data, the
more advanced and efficient approaches and techniques will be needed to establish the
network’s availability, stability, and efficiency. In most studies, the general framework
offered for NTMA is, more or less, the same. As it will be discussed, this framework may
be formulated into the following main steps.

(¢ :) At the highest level, i.e., the first step, the main purpose of the NTMA application
and related functional goals are defined. As stated in the introduction, NTMA techniques
could be used for NTP, NTC, security oriented tasks like anomaly detection, or other
purposes. The main goal(s) must be defined clearly and precisely while determining certain
sub-goals as prerequisites for obtaining the primary goals is usually required, as well. For
instance, if the primary purpose of employing NTMA is to predict network traffic, then
determining breakpoints in network traffic data will be one of the sub-goals to serve the
primary goal.

(73 :) The second step involves collecting network traffic data using active and passive
methods. Given the different views obtained through each of these monitoring methods,
combining them together can lead to a more comprehensive and accurate view of the
status and performance of the network. (iii :) The data must next be preprocessed and
cleaned. This step is critical, especially in applications like NTP, because refining the data
and removing duplicate and superfluous elements like re-sent packets and repeated ACKs
can greatly improve the ML model’s performance.

(iv :) Network traffic data contains a range of parameters, some of which are crucial

16

2.4. NTMA

depending on the kind of NTMA applications, while others have no meaningful and
decisive association with the usage context. Based on this, applying feature selection as
a subsequent stage of data preprocessing constitutes an important part of the NTMA'’s
procedure. Although algorithms created for this purpose undertake most of the feature
selection work automatically, a significant portion of the task is left to data analysis
experts to be accomplished manually, relying on their domain knowledge.

(v :) Performing the aforementioned steps on the raw network traffic data enables data
engineers to extract useful data related to the primary goal for which NTMA is performing
through in-depth data analysis. For this purpose, various methods are available that
can be classified into statistical, ML-based, and big-data methods [23]. Each of these
methods focuses on specific aspects of data analysis and serves different purposes. One
of the most important tasks is to identify and select the most appropriate and relevant
solution, considering the nature and inherent requirements of each NTMA application in a
way that ensures accuracy, usefulness, and reproducible results.

Identifying the pattern of data changes, and predicting the trend of these changes, is the
dominant aspect and the main purpose of most NTMA applications in the field of network
management [37].

2.4.2 Feature Selection in NTMA

The raw data gathered using data collection methods allows for the compilation of a wide
range of metrics that may be used to analyze the status of the network from various
perspectives. Choosing the appropriate metrics is a critical step in network monitoring
and management [28][38] that entails consideration of several factors of the subject matter
being monitored [31]. However, some general principles to consider while selecting the
appropriate metrics are:

e The existence of a meaningful relationship between the metric in question and the
goal set in the NTMA application (e.g., QoS and SLA status assessment, security, or
resource management) [23], [39]

o Availability of the considered metric within the requirements and limitations of the
technique adopted in the NTMA process.

 Replicability of the generation process and utilisation of metric data [28], [39].
e Ease of use in terms of data collection, processing, and analysis methods.

o Cost-effectiveness in terms of the resources required for measurement, storage, and
processing [31], [39].

2.4.3 Challenges With Network Traffic Data Analytics

In comparison to traditional big-data analytics, what distinguishes the NTMA process is
the set of some environmental factors, intrinsic needs, and limitations that make network
traffic data generation encounter certain unique challenges. The following are some of the
factors that influence network management data [23], [36]:

17

CHAPTER 2. BACKGROUND AND THEORY

o Heterogeneity: Due to the great variety of connected devices on the network, the data
produced or consumed forms a vast range in various aspects, such as data structure,
data volume, data production rate, communication protocols, etc. This is especially
the case in IoT networks, where a wide range of nodes, such as smartphones, sensors,
vehicles, and other IoT devices, generate or consume data in different ways.

e Data generation and streaming rate: One of the distinguishing and inherent aspects
of the network traffic data generation process is the high rate of data production
and transmission in the form of continuous and bulky streams. This feature is
especially noticeable in scenarios such as media streaming, online gaming, and P2P-
based applications. These specifications face network management with persistent
challenges in terms of resource management and the efficiency of adopted techniques
for data collection, storing, and analysis, especially in areas that serve QoS and QoE.

e Strong temporal-spatial correlation: The increasing prevalence of smartphones, which
typically would host a bunch of different apps, as well as the pervasiveness of
multimedia platforms and social networks, are among the factors that have extremely
amplified the penetration of the Internet into various areas of daily life. Along with
this progress, the pattern of network users’ activity has also evolved from simple data
transfer based on more or less rigid and predictable scenarios to complex and fluid
behaviours with high dependence on temporal and geographical factors. Thanks to
achievements in communication technologies, especially in IoT and cellular networks,
as well as improvements in multi-hop processing infrastructures, we are witnessing
ever increasing applications whose distinctive feature is mobility. In this sense,
smartphones with a plethora of data-generating apps and autonomous vehicles (AV)
are both well-known examples. As a result of these shifts in user behaviour patterns,
network traffic data frequently exhibits significant temporal-spatial correlation.

o Security and privacy: The widespread use of network traffic encryption techniques and
security protocols such as Hypertext Transfer Protocol Secure (HTTPS) as well as the
use of VPNs in Internet communications has significantly improved security and users’
privacy. Nevertheless, that puts the use of NTMA in a conflicting position due to
restricting access to network packet information and source-destination information.

o Noisy data: The environment of generating and sending network traffic data at its
various stages, including generation, sending, routing, and receiving, is prone to
interruptions and errors. Noise detection and removal from network traffic data is a
fixed and important component of a communication system’s tasks. In this context,
packet loss and jitter are both common occurrences.

2.4.4 Challenges Of Applying NTMA Tasks In Ad-hoc Networks

The capacity of NTMA techniques to support network performance management has gained
considerable interest from both industry and academia. However, as we see in the case of
the IoT, along with the consistent growth of computer networks in all directions, including
prevalence, scale, and complexity, as well as the emergence of new network technologies
and paradigms, managing and supporting network performance has become even more
challenging [23].

The IoT network is one of the main sources of big-data generation, where massive data

18

2.5. NETWORK TRAFFIC PREDICTION

streams are constantly produced by a huge number of interconnected components that are
capturing and transmitting their operating environment data over the Internet; However, it
is not only the tremendous volume of data that has made IoT the focal arena for innovation
and research in NTMA techniques; characteristics such as diversity of data generation
patterns, heterogeneity of data sources, speed of data production, and severe temporal
and spatial correlation of data have also made management of this type of networks
more complex and challenging than conventional computer networks and calls for further
improvement [3].

2.5 Network Traffic Prediction

NTP is a general term for the process of predicting changes in a network performance
metric based on observed changes in its previous values and current state. The aim of traffic
prediction is to forecast traffic performance metrics, such as bandwidth, packet loss, and
delay, up to a specific horizon. An extended horizon shows traffic patterns in subsequent
stages and provides sufficient time to take appropriate action [40]. However, this process
can be pursued in different ways, both in terms of the final purpose and the way it is
realized. In predicting network traffic fluctuations, the desired horizon for prediction plays
a key role in choosing the NTP method. Depending on the intended application, forecasting
can be focused on a long-term or short-term horizon. Long-term forecasting usually covers
ranges between milliseconds and minutes, while short-term forecasting focuses on predicting
values of the investigated parameter in time frames less than milliseconds. In applications
such as resource management, it is usually necessary to recognize the pattern of changes
for the regarded metric by using long-term forecasting techniques such as Trend Change
Detection (TCD) and CPD. On the other hand, short-term forecasting is focused on the
one-step-ahead horizon to predict instantaneous fluctuations, as is common in applications
like congestion detection and dynamic bandwidth allocation [41]. In an NTP process,
several factors are concerned in choosing the appropriate method and model to proceed
the task. The final purpose of performing NTP (the NTP application in request), the
forecast horizon (short/long-term), characteristics related to network traffic data such as
dataset size, data feeding type (batch or stream), attributes of concern, as well as other
characteristics such as available processing resources, are among these factors. However, in
a broad sense, the existing approaches could be categorised into statistical analysis models
and supervised machine learning models [42].

2.5.1 Change Point Detection

One of the most popular approaches in NTMA, which uses statistical analytic techniques
to uncover the pattern of data changes in a time series, is pattern recognition. Different
performance criteria may be sought in network monitoring. One may get an overview of
the present and future status of the network in terms of the desired measure by carefully
selecting a metric that properly represents the intended performance criterion, monitoring
its changes over time, and analysing the pattern of these changes. For instance, measures
like throughput, jitter, and latency can offer a precise and useful perspective of network
traffic behaviour. These data are produced as time series data streams that accumulate
temporary datasets and exhibit a certain pattern that may be identified by pattern
recognition techniques. CPD is one of the widely used techniques in pattern recognition

19

CHAPTER 2. BACKGROUND AND THEORY

that divides the time series dataset into separate segments according to the trend of the
data points [43]. Implementing CPD may be done in one of two ways:

e Offline: The full dataset is processed at once in this scenario. This approach is
suitable for situations that call for long-term forecasting.

e Online: In this case, the data is received as an intermittent or regular stream of
data, and the purpose of monitoring this data stream is to detect and interpret
the meaningful changes in the data at the moment in order to take an appropriate
reaction to the detected trend immediately [44].

Typically, the process of analysing network traffic behaviour through CPD includes two
tasks. First, the points in the dataset where the dominant trend changes (i.e., CPs)
are identified, and then the direction and intensity of the dominant trend between two
successive CPs are determined. In online CPD applications, the data stream is received
on-the-fly, and according to the necessity of immediate response to trend changes, CP
detection is done in near-real-time. In addition, trends are classified according to their
direction, intensity, and duration, and in the form of descriptive terms such as ”increasing,”
"decreasing,” and "level-off.” The lightweight of CPD techniques and their lack of training
and retraining are the most important advantages of these methods compared to ML-based
techniques [3].

2.6 Big-data Analytics

From a data analysis perspective, big-data refers to a situation where, extracting information
from data is under the pressure of factors such as volume, velocity, variety, and veracity.
Applying NTMA techniques to high-speed, complicated and dynamic networks like IoT and
mobile is one of the main areas, among others, where the big-data phenomenon is present
and influences extensively. Modern networks have been increasingly dominated by the
relatively new phenomena of big-data, which stems from the fundamental characteristics of
network management data, such as volume, velocity, variety, and veracity [8], [32]. Network
traffic data refers to all the data that reflects the network’s state and situation. So, the
circumstance will not appear surprising when we consider that the main source of such data
is the tremendous volume of packets flowing, in the form of high-speed streams, between
the huge number of linked devices and end-points. This puts NTMA at the forefront of
big-data consumers and makes it one of the most important areas of research in big-data
analytics.

In general, common data processing techniques in Big-data analytics can be divided into
two categories [22]:

e Mathematical and statistical methods based on time series analysis

o Data mining approaches, and methods based on machine learning algorithms (for
example, SL for predicting network traffic in applications such as congestion handling.)

The collection and conversion of raw data into useful information in each big-data analytics
process , per se, requires a series of complex steps. However, when it comes to NTMA, the
process faces additional challenges arising from concerns such as accuracy, data generation
rate, and real-time big-data processing. Aside from these concerns, the rapidly changing

20

2.6. BIG-DATA ANALYTICS

nature of networks and the exponential growth in the number of connected devices, as
well as the emergence of new paradigms like vehicular ad-hoc networks highlights the need
for more efficient big-data analytics methodologies in terms of processing load, processing
speed, and accuracy, to name a few. Beyond conventional big-data analytics, given the
need for real-time or near real-time processing in most time sensitive IoT applications, loT
data calls for fast and streaming data analytics, which is not possible to be accomplished
in the Cloud. This circumstance highlights the necessity of lightweight and small-scale
data analytics working at the edge layer or on resource constrained IoT devices. In the
following, the two primary approaches in dealing with big-data analysis problems in network
environments i.e., statistical and ML-based approaches will be discussed. However, before
delving into statistical methods, it is crucial to grasp the time series concept and it’s
general attributes, which is widely employed in statistical techniques [39].

2.6.1 Time Sries Data; Definition and Attributes

The term time series refers to any phenomenon that is observed consecutively over time
and at certain intervals. The mentioned time interval can be any measurable time unit
such as milliseconds, minutes, hours, weeks, years, etc.[45] In each time series at least one
of the following patterns can be observed that reflect the behaviour of data during the
time period:

o Trend: A trend is a pattern that demonstrates how the relative values of a time
series rise or fall over an extended period of time. The slope of the time series change
graph that represents the trend would be either rising or decreasing.

e Seasonality: Seasonal pattern occurs when the time series fluctuations are dependent
on a fixed frequency. In other words, seasonality refers to similar patterns that repeat
in constant time periods.

e Cyclic Pattern: Cyclic pattern refers to those fluctuations in the time series that
are not bound to a fixed period of time. In general, if the fluctuations in the time
series are of a constant frequency, they indicate a cyclical pattern; if the repetition
frequency of fluctuations is an unchanged time unit, they display a seasonal pattern.

e Noise: The remaining after decomposing a time series into trend, seasonal, and cyclic
would be a random fluctuation without any predictable behaviour. Figure 2.8 shows
an instance of such data graphs.

o Stationarity:The concept of stationarity refers to time series whose statistical
characteristics (mean, variance, etc.) do not depend on time. In a more precise sense,
“statistical behavior” of a stationary time serie doesn’t change over the time which
could be considered as a constant probability distribution in time. Simply put, for
any randomly-selected pair moments of a stationary time series, that segment reflects
the general behavior of the process. Based on this, stationarity in a time series can
be effectively expressed in the form of the relationship between the ~ coefficient and
the autocovariance between any pair of arbitrary points of the time series, as shown
in Equation 2.3.

Yy (k) = Cov(yt, Y+k) (2.3)

Where, k is the number of time lags. The two takeaways from this equation are: (1)

21

CHAPTER 2. BACKGROUND AND THEORY

22

the expected value of the time series is independent of time. (2) the autocovariance
function defined as Cov(y, yr1x) is only a function of k and is unaffected by time.
As a result, a strong and slowly fading ACF will also point out departures from
stationarity when analysing the pattern of a time series process. a sample of a
stationary data and its ACF graph in presented in figures 2.8 and 2.9.

Accordingly, time series with a trend or seasonality would be non-stationary. On
the contrary, a time series without trend and seasonality, so-called ”"white noise,” is
considered stationary. Stationarity in a time series means unpredictability, especially
over long periods. Therefore, to approximate the pattern of changes in a stationary
time series, statistical estimation techniques come into play, focusing on providing an
estimate of the future values of the time series with the least possible error. Figure
2.10 demonstrates an example of such process.

Differencing: Differencing process could be thought of as substituting a time series
with its own modified one in order to get rid of persistent patterns that dominate
the data. as a matter of fact, by performing a proper-order differencing on a
non-stationary time series, it would yield a stationary time series. In this process, a
time series of values is differentiated into a time series of changes in values over time.
The method used to achieve this most frequently is to compute pairwise differences
between two adjacent time points, where the value of the differenced series at a given
time t is equal to the value at time t minus the value at time ¢ — 1. Although, from a
theoretical aspect, there is no limitation to performing more levels of differencing, in
practice, differencing of order one or two is the most often used [46]. To make it
easier to describe the differencing process and also to apply linear algebra to it, the
concept of 'Backshift Value’ with the symbol B is used (in some sources, the concept
of Lag Value symbolized by L is used instead) [45].

Assuming that:

Byt = yt—1
then,

By, = yi_q
And based on this, the values of L variable y can be shown as follows:

Y=y — Yr—1 = (1 — By
Which can be generalized as:
yfl =(1-B)dyt

that is, the dy-order difference of y [45].

2.6. BIG-DATA ANALYTICS

—— VarData
1.5 1

0.5 4

0.0

—0.5 1

-1.0 4 J

—-1.5 4

—2.041

]

T
0 20 40 60 80 100
Time

Figure 2.8: A white noise graph shows stationarity

Autocorrelation

101 ¢

0.8

0.6 1

0.4 1

0.2 4

e o] 1 .4
bl 1 l ll llb loo T

—0.2 1

Figure 2.9: The sample autocorrelation function for 20 first observations of the data in Figure 2.8 with a
boundary around 42

23

CHAPTER 2. BACKGROUND AND THEORY

e’

2005 2010
Time

)

Figure 2.10: The blue areas indicate the confidence intervals for the approximated next value, established
by a statistical estimation methods (image adapted from [45])

2.6.2 Statistical Analysis and Forecasting Techniques

Statistical models have good efficiency in the linear analysis of time series data. These
methods focus on the correlation between the previous values of a time series variable
(lagged data) and its future values, so that by presenting the model of this aouto-correlation,
they provide the possibility of predicting future values. When discussing a time series
forecasting, it is assumed that each one consists of both a deterministic and a random
component. This assumption is based on the idea that the unpredictable behavior of a
time series is due to random noise that is completely independent of time. Although this
assumption is generally correct and forms the basis of many prediction techniques like
exponential smoothing, there are situations where it may not hold true in practice. based
on this, even in time series with a high degree of stationarity, serial dependencies between
succeeding observations may be recognised. This situation has laid down the foundation
for the invention of methods that, in the most effective way, exploit the serial dependence
feature of observations for prediction. The most pervasive of these methods is a series of
forecasting models grouped under a general class named ARIMA [47]. In this section we
discuss ARIMA models and the simple linear regression model.

Auto-Regressive Models (AR)

An auto-regression model leverages the concept of auto-correlation to forecast the next
value in a time series. Simply put, it is based on the fact that the value of a variable at any
time (t) can be represented as a linear combination of its previous values plus an additional
value called error. The term auto-correlation emphasises the fact that the model represents
the regression between the variable and its lagged values. Say y as the desired variable
and p as the order of the model (i.e., the number of lagged values considered in this linear
combination), and the amount of error created at time ¢ is shown by &;, an auto-regressive
model can be expressed as Equation 2.4:

Yt =c+oryi—1+ Y2+ -+ OpYt—p + &t (2.4)

24

2.6. BIG-DATA ANALYTICS

Normally, the application of AR models is limited to stationary data and up to order 2,
and the following constraints are applied to the model parameters:

e forp=1:-1<¢p<1
o forp=2:-1<¢2<1,(p1+¢2) <1,(p2—¢1) <1

[45]

Moving Average Model (MA)

Moving Average model is another popular linear forecasting model which in comparison
with AR model, instead of using the previous values of the desired variable, uses previous

consecutive prediction errors (i.e., ‘€’) in a linear combination as shown in Equation 2.5:

Yi=c+e+0iei—1 + 0212+ -+ 04514 (2.5)

the model is referred to as MA(q), where ¢ is white noise and q is the order of the MA
model. Moreover, the equation highlights the fact that each value of Y; can be assumed as
a weighted moving average of forecast errors belonging to a given number of recent lags.
Since the MA model deals with an abstracted parameter i.e. £, rather than the relevant
variable itself, it could be considered somehow a pseudo-regression process.

Auto Regression Integrated Moving Average (ARIMA)

The ARIMA model, which is frequently used in time series forecasting for the near-term,
is a generic class of statistical models constructed by integrating AR and MA models [46].
Since the fundamental premise of this model is that the time series are stationary, it is
required to apply differing to make our time series stationary in lack of stationarity. In
this situation, it may be necessary to combine differing with non-linear transformations
like logging and deflating throughout the time series transformation process.

A time series is stationary if its statistics remain the same across time. In this scenario,
there is no permanent or long-term pattern to the time series, and its range of variations
will be a fixed value centered around the mean. This means that the time series’ short-term
patterns at arbitrary time intervals, are identical. The key implication of such a condition
is that a time series’ random variable’s autocorrelation, which means its correlation with
the deviation from the mean in previous moments, remains unchanged over time. Such a
random variable can be thought of as a combination of noise and signal, while the signal
may be any regular and predictable pattern (e.g., sinusoidal oscillation, frequent sign shifts,
or gradual/accelerated mean reversion), potentially displaying certain seasonal behaviors
as well. Based on this, an ARIMA model can be considered as a filter that decomposes the
time series into noise and signal in order to enable prediction by extending the signal into
the future [48]. The ARIMA model uses a linear equation to predict stationary time series,
in which the predictors are a linear combination of random variable lags and forecast errors
associated to those lags. The model in its full form can be written as Equation 2.6:

Yy =c+ (¢1y/t,1 + -+ qbpy/t,p) + (9161571 + -+ ‘9q€t7q) + &¢ (2.6)

25

CHAPTER 2. BACKGROUND AND THEORY

Some spesific modes of ARIMA(p,d,q)

ARIMA(0,0,0) White noise

ARIMA(0,1,0) when constant =0 Random walk

ARIMA(0,1,0) when constant #0 Random walk with drift
ARIMA(p,0,0) Autoregression (i.e., AR(p))
ARIMA(0,0,q) Moving average (i.e., MA(q))

Figure 2.11: The ARIMA (p,d, q) specific modes

where y/, is the differenced time series considering that more level of differencing is possible,
and “e” is the error term. This equation is notated by ARTAMA(p, d, q), where:

o p is the order of the autoregressive part;
e d is the degree of first differencing involved
e ¢ is the order of the moving average part.

Equation 2.7 formulates the ARIMA model in another form using backshift operator (B).

@, (B) (1= B)! (Vi) = 6, (B) <, (2.7)
where :
$,(B)=1—¢pB—---—@,BP and ©y(B)=1+6,B+---+6,B9,
(1-B)! = PO (j) (=1) B/ with (j > (-1) = % and e; ~ N (0,0?)

as the error terms [49].

In addition to the extant components of the conventional AutoRegressive Integrated
Moving Average (ARIMA), the Seasonal-ARIMA (SARIMA) [50] model also includes the
frequency component (known as seasonality and shown by (S) [51]. An SARIMA model
would conduct prediction based on a linear combination of past observations and their
related errors. As its name implies, the seasonality factor plays a key role in the structure
and performance of this model. The SARIMA process often would be shown as models in
the form of SARIM A(p,d,q) x (P,D,Q)S. For given time series {Y;} with seasonality
length (S), the SARIMA process is indicated by the Eq. (2.8), while the differenced series
wy; = (1 — B)4(1— B%)Py, is a stationary Autoregression Moving Average (ARMA) process
and, d and D are non-negative integer values.

¢p(B)®p(B%)w; = 0,(B)O(B%)e; ,t=1,2,...,n (2.8)
Where:

e n is the number of observations up to time ¢ and the backshift operator B is defined
as: BaWt = Wt—a~

o ¢ is defined as Identically and Independently Distributed (i.i.d) samples with a zero
mean and variance o2, which for all K # 0 we have: Cov(es, €;_1) = 0

26

2.6. BIG-DATA ANALYTICS

« AR: ¢(B) = 1 — $,B —

S — ¢, BP
e The non-seasonal components are:
e« MA: 9(B) = 1—-6,B —
. —0,BY
o Seasonal AR: ®(B%) =1—®B% —... — ®pBF"
e The seasonal components are:
o Seasonal MA: ©(B®) =1-01B° — ... — 9B

As an another ARIMA’s extension, Fractional AutoRegressive Integrated Moving Average
(FARIMA) is a generalization of the ARMA model customized to support those applications
like NTP in which, besides short-term dependencies, there are considerable linear long-term
dependencies between the observations. Unlike the ordinary ARIMA process, the difference
parameter (d) in FARIMA model could take non-integer values [52]. The general FARIMA
process is expressed in Eq. (2.9) where B is the backshift operator.

(1 - Zp: ¢>Z-Bi> (1—B)y, = (1 + Zq: 9,-37?> £t (2.9)
i=1 i=1
[47][53].

GARCH

One of the other standard statistical models widely employed in time series problems is
that of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) [54]. This
model is an extension of the Autoregressive Conditional Heteroskedasticity (ARCH) model
innovated by Engle in 1982 to estimate the target variables’ volatility [55]. The main goal
is to model the changes in variance of target variables whose part of the total variance is
conditioned on lagged values of target variance and model’s residuals. To this end, the
concept of Conditional Variance (also referred to as Conditional Volatility) plays a key
role. Considering {e;} as a real-valued discrete-time stochastic process, as:

€t = OrWe

where w; is discrete white noise given i.i.d (u = 0,02 = 1), the GARCH(p,q) process is
then denoted by Eq. (2.10).

q p
0f = ag + Z i€+ Z ﬁjaf_j (2.10)
i=1 j=1

Where o; and 3; are model’s parameters meanwhile, to avoid negative variance the following
constraints are imposed [56],[57]:

{p207q>07a0>0,ai207i:17"'7Q75jZoa.j:]-w"up}

in addition to combined approaches based on integrating different models with ARIMA,
some hybrid models based on the ARIMA’s foundation have been proposed. For instance,
Fuzzy-AutoRegressive Integrated Moving Average (Fuzzy-ARIMA) is an invented method
which fuzzifies ARIMA’s parameters using the fuzzy regression method [58]. In terms of
acronyms, as seen sporadically in some references, Fuzzy-ARIMA is also referred to as
FARIMA; which should not be confused with the Fractional-ARIMA model. Meanwhile,
The latter is recorded as ARFIMA in some sources as well [59].

27

CHAPTER 2. BACKGROUND AND THEORY

Y: Response Variable

X: Regressor Variable

Figure 2.12: A typical regression model

Linear Regression Analysis

Regression analysis is a statistical method for analysing and modelling the relation between
one or more predictor variable(s), (also known as regressor variable,) and an outcome
variable (also known as response). The model developed via this inquiry is used to forecast
the future values of the response variable based on the values taken by the predictor
variables. The general Equation 2.11 does formulate the link between one predictor variable
and its associated response variable.

y=po+pr+e (2.11)

where, y is the response variable, x is the predictor variable, 51 and fy are the regression
parameters, and ¢ indicates the error value. As can be seen in Figure 2.12, the linear
regression relationship actually gives the equation of a straight line where the slope of
the line (i.e. 81) is the amount of change in the mean of the dependent variable (y) per
unit change in the predictor variable z. The term ¢ in the regression equation reflects the
deviation of the actual data from the predicted value (points on the regressor line) and is
usually referred to as statistical error.The error term ¢ assumed to be independent and
identically distributed (i,i,d) variables sampled from a normal distribution with zero mean
and constant standard deviation. The distribution function of such variable is generally
represented by the symbol N(0,0?))[47].

2.6.3 Machine Learning Based Approaches

Another group of widely used methods and tools in data analysis can be grouped under the
title "machine learning-based methods.” ML is a sub-branch of Al that extracts patterns
from data using learning algorithms and makes predictions and decisions based on those
patterns. Overall, ML, works well for that kind of problem in which there is an adequate

28

2.6. BIG-DATA ANALYTICS

amount of relevant data. Basically, the problems in which ML could be involved are
categorized into the following fundamental tasks:

o Clustering: Clustering refers to the inclusion process of the objects examined in a set
of distinct groups based on the similarity of their characteristics. The basic condition
in this grouping is that the similarity between members of a group must be greater
than their similarity with those of other groups. A well known example of use of
clustering in the networking context is Elephant/Mice flows detection.

o Classification and Regression: Classification task refers to predict and mapping data
points to a finite set of discrete quantities or nominal values while, estimating a
continuous-value feature is what a regression task entails. To name a few, some most
common classification algorithms are Linear classifiers, decision trees, support vector
machines, and random forest, whereas the frequent regression methods are linear
regression, logistic regression, and polynomial regression.

e Rule Extraction: Another sort of problems that benefits ML is the rule extraction
task. Rule extraction is focused on identifying the dominant statistical correlations
among data, which makes it fundamentally different than other types of tasks.

To address such problems, ML techniques are designed and used in the framework of
various scenarios and settings to uncover the concealed patterns within data. An overview
to some of those learning scenarios and settings, which are more relevant to NTMA context,
are discussed in the following.

Learning Paradigms

ML techniques and models have been developed in the framework of approaches that
we call Learning Paradigms. Obviously, these approaches are adopted according to the
on-hand problem, in order to satisfy the essential criteria of it. In general, four main types
of LP can be listed as: (i) Supervised, (i) Unsupervised, (ii7) Semi-supervised, and (iv)
Reinforcement, which are briefly introduced.

¢ Supervised: An SL algorithm’s goal is to build a model from the existing data. It gets

a feature vector as input and gives the predicted value for the label of that vector as an

output.[60] In SL, data is a collection of labelled samples in the form of {(z;, yl)}i\il
In fact, such a data set can be thought of as a matrix with each column denoting an
attribute or dimension of the data sample, and rows that represent the feature vectors
(X;) [61]. The label Y;, a variable that relies on the feature vector, can belong to a finite
set of classes, including nominal values, real numbers, and even more intricate structures

like matrices, vectors, and so on. The sample’s class is indicated by the label’s value.[62]

¢ Unsupervised: in unsupervised learning, machine learning algorithms are used for
analysing and clustering unlabelled data sets. These algorithms are referred to as
“unsupervised” since they identify hidden patterns in data without the assistance of an
individual. Clustering, association, and dimensionality reduction are the three basic
tasks that unsupervised learning models are applied for[61].

e Semi-Supervised: In real-world scenarios, we frequently encounter situations in which
a sizable portion of the data is unlabelled for a variety of reasons. In problems with

29

CHAPTER 2. BACKGROUND AND THEORY

the nature of SL, the pragmatic solution to analyse and model such data is to use the
SSL approach. At first glance, it may seem that unlabelled data is just a source of
uncertainty and that only labelled data is useful in the learning process. However, some
crucial information on the problem can be discovered in this portion of the data. The
probability distribution of the labelled data, as a valuable additional information for
the learning algorithm, is more accurately depicted the greater number of these data
points there are. [62], [60],[61]

o Reinforcement: Reinforcement Learning (RL) encompasses some specific type of
machine learning algorithms where the machine is constantly interacting with its
environment, allowing it to perceive the state of that environment as a vector of features.
A RL algorithm’s objective is to learn a policy. A policy is a function that takes the
feature vector of a state as input and produces the best course of action to take in that
state (similar to the model in supervised learning) [61]. If the action maximises the
expected average reward, it is the best course of action. In every state, some actions
can be performed by the machine. Each action leads to a different reward and has the
potential to alter the environment around the machine. In order to build a state-action
pair table during the learning process, the algorithm randomly explores the state-action
pairs within a given environment. Once the algorithm has learned the information, it
then uses the state-action pair rewards to select the best action for each state that will
lead to a particular goal state [60]. Figure 2.13 illustrates the general schema of the RL
process.

Model Training Settings

Having the suitable and, if feasible, unbiased representative data is critical for developing
an efficient model for a problem [42]. Because of the variety of data in various networking
applications, as well as the alternation of data over time, it is critical to choose an
appropriate approach for data collecting for ML methods to train their models. The
pattern of data generation and transmission in networks is truly diverse and fluid. This
situation, as a set of environmental characteristics of a network ecosystem, imposes its
own requirements and limitations on a ML-based solution. Therefore, it is not possible to
create and train a universal model for all types of networks, and inevitably, the collection
and injection of training data into the model will be affected by the characteristics of the
host network ecosystem [63].

Data collection is often carried out either offline or online. The former approach uses
all of the data to train the model at once, and then the model is deployed to apply to
operational data. However, in the online method, training would begin concurrently with
deployment in the operational environment, and model would update itself by incoming
input datapoints received in sequential order [64], [65]. Those models that depend on
learning from lagged data points (i.e., supervised, semi-supervised, and unsupervised) often
read the training data in the form of batch feeding, while RL-based techniques such as
State—action-reward—state—action (SARSA) [66] and incremental learning techniques [67]
are mainly designed to update the model gradually by incoming data points.

Depending on the context and model training setting, training the model is accomplished in
one of two ways: batch, or incremental (also known as streaming). In a batch scenario, the
dataset is divided into three subsets: training, test, and validation. Separating a part of the
dataset as validation data helps to choose the suitable model, while the training and test

30

2.6. BIG-DATA ANALYTICS

Start

(]
el
©
L ol
(/]
A
3 5
N G £
—> 8 » I > §
= =
= (S} =]
£ & 2
(]
N 1]

Q-Value
Reward

Figure 2.13: a general Reinforcement Learning process

31

CHAPTER 2. BACKGROUND AND THEORY

sets are leveraged to adjust the model parameters (e.g., the weight of connections between
neurons in a neural network (NN)) and evaluating the model’s performance, respectively.
The incremental technique, on the other hand, streams input to the training model for a
variety of reasons (for example, enormous volume and impossibility of loading at once, or
gradual production of data) [64], [65]. Furthermore, in dynamic situations, particularly
online applications, the ML model must be constantly retrained. Given the significant
computational cost of starting from scratch in such circumstances, employing only recent
data for training is a cost-effective option provided by the incremental method while also
being helpful in solving the drifting problem [68]. Figure 2.14 shows different types of
collecting data to train ML models in networking.

Machine Learning Algorithms Classification

Machine Learning Algorithms Classification: A variety of algorithms and techniques fall
under the umbrella of machine learning, with each one tailored specifically to satisfy the
requirements of a certain set of problems or criteria. ML algorithms can be categorized
based on how they process and use data to build models, and their internal structure in
terms of transparency and the number of inferring layers. Based on this, different criteria
can be considered to distinguish ML models, including, model-based vs. instance-based
learning. The former refers to developing the model and adjusting its parameters using
training data, while the latter indicates modeling the whole dataset based on data samples.
Moreover, ML, models can be divided into two main types known as Shallow Learning
and Deep Learning. Shallow Learning involves methods that learn their parameters
directly from training data in a single step, while Deep Learning models use a multi-layer
network in their structure called Artificial Neural Networks (ANN), where each layer learns
its parameters from the output of the preceding levels. The number of layers in ANN
determines the model’s depth. On the other hand, from the application view, ML models
can also be categorized according to the NTMA problems they are applied in. Among
these applications we cane refer to security, performance, and fault management. In [20],
some popular algorithms along with the common areas in which they are leveraged are
listed as shown in the table 2.1.

Deep Neural Network algorithms

Deep Learning (DL) is a sub-field of ML which in its core benefits a multi-layer structure
called Artificial Neural networks (ANN). Inspired by the structure and function of
interconnected neurons in the human brain, ANN mimics some of their basic mechanisms
using a multi-layered network of computing nodes. Figure 2.15 depicts the overall anatomy
of a neuron. Each neuron in a certain layer is linked to all or some of the neurons in the
next layer, and the outputs from neurons in the preceding layer are processed as an input
feature vector. The internal mechanism of a neuron can be represented by an equation as:

y=> (wi*x;)+0b

this processing unit is designed in such a manner that the relevance of each component of
the input vector can be decided by assigning weights to them. To put it simply, the basic
premise of the work done throughout the model training process is altering the weight
coefficients plus the amount of bias offset in a way that leads to the best prediction or
classification in the output layer.

32

2.6. BIG-DATA ANALYTICS

new NT data raining | 3 trained
— model

NT features (delay,
jitter, ...)

representative
dataset

(@)

P —
mini batch || |
_/\‘
[—
mini batch trained

- N —>
~— i model

mini batch

| " _

new NT data
NT features (delay,
jitter, ...)

representative
dataset

incoming NT data current NT data previous NT data dispose

e = 1= 1= [

trained
model

NT features (delay,

(c)

Figure 2.14: Data collection settings, (a) Batch Offline (b) Batch incremental (c) Online incremental (streaming)

Input @

W / Wi lbias \
a Output
Ia bt

Activation
Function

X2

[a]

Figure 2.15: Typical structure of a Neuron

33

CHAPTER 2. BACKGROUND AND THEORY

Management area

Task

ML techniques

Network Traffic Prediction

(Ensemble) NN, BN, SVM,

QOE-QoS correlation

DT, BN, SVM, Q-learning

Performance
Adaptive resource allocation Q-Learning, Deep
Adaptive service configuration Q-Learning
Misuse detection NN, DT, BN, SVM
Security (Ensemble) NN, DNN, k-NN, k-means, (Ensemble)

Anomaly detection

DT, Ensemble BN, SVM

Fault management

Fault detection

Fault localization

NN, k-NN, k-Means, DT, BN, SVM

NN, k-NN, k-Means, DT

Automated mitigation

BN, SVM

34

Table 2.1: popular ML models in networking

Figure 2.16: The the schematic of Deep neural network

2.6. BIG-DATA ANALYTICS

The inputs and outputs of ANN are known as visible layers. The input layer is where
the deep learning model ingests the data points in the form of feature vectors. The final
prediction or classification generation takes place in the output layer, based on the inputs
received from the hidden layers. Between the input and output layers, there is a set of
successive layers called "hidden layers.” One of the key parameters in describing an ANN
model is "depth,” which indicates the number of hidden layers in the model. ANNs with a
depth greater than two are known as Deep Neural Networks (DNN)”deep neural networks.”
Figure 2.16 shows the general scheme of a DNN. In this structure, each layer takes its
inputs from the previous layer and, after applying weighting, projects the result as an
output to refine or optimise the prediction (or classification). This mechanism is called
"forward propagation.’

Back propagation is another mechanism that is frequently utilized in ANNs. This mechanism
is a repetitive cycle of trial and error that calculates and evaluates the error created in
the output during model training using algorithms such as gradient descending and allows
the weights and biases in the neurons to be modified in some way, resulting in the closest
prediction or classification. In conjunction, FP and BP enable prediction and refinement
of the prediction, accordingly. In recent years, NTMA, like many other disciplines of DL
use, has benefited from the unique characteristics of DL in various application like as NTC
and NTP. to name a few, FFNN, RNN, CNN, and LSTM, among lots of existing DL
algorithms, are the most prevalent ones in NTMA context. In general, deep algorithms
offer two major advantages over traditional ML methods:

e Deep learning has eliminated the feature engineering step through analysing and
choosing desirable and effective features during the learning process, which increases
performance compared to manual feature engineering.

¢ Deep models are inherently involved with large amounts of input data, which enhances
the model’s efficiency in terms of accuracy and loss.

However, some drawbacks with DNNs have limited the general use of them. For instance, in
cases of poor-resource environment, few training data, or frequent changes in data patterns
Utilization of these algorithms would face some pitfalls. the long training time and the
vast computing resources required to proceed with the training task, in parallel with the
fact that DNN models inherently show their best performance on large amounts of data,
could be mentioned as limitations in this respect.

Model Selection

Given the variety and multiplicity of ML algorithms and techniques, choosing the proper
model is one of the most important steps in the data analysis process. Since it is practically
impossible to achieve the optimal model through a trial-and-error process, including some
criteria could focus attention on a narrow number of potential models. Among these
requirements are:

e FExplicability: The visibility and traceability of the path taken by a model to achieve
its predictions would place it in one of two categories: opaque models, sometimes
called as "black-boxe” (e.g., NN and ensemble models), or explainable models (e.g.,
KNN and DT).

35

CHAPTER 2. BACKGROUND AND THEORY

e In-memory Vs. out-of-memory: The nature and characteristics of the problem’s
environment dictate whether the dataset has to be loaded into RAM all at once or
gradually and in chunks, as with incremental learning.

e Number of features and data points : The size of the dataset and the number of
characteristics in each instance are important considerations in model selection.
While certain models, such as SVM, work well with limited features, NN and gradient
boosting methods can handle large amounts of data with many features.

o Training Speed: The type of application of the algorithm, the conditions of the
problem, and the limitations of the host ecosystem determine the conventional and
acceptable time for learning and constructing the model. Generally, simple models
such as SVM , DT |, Logistic Regression , and Linear Regression are very fast in this
respect, while nonlinear and complex models such as NN are notorious for their long
training time.

o Other considerable Factors: Among other noteworthy factors, we can mention whether
the features are categorical or numerical, linear or non-linear in the data, and the
time complexity of the algorithm.

2.7 Related Works

A comprehensive survey (Appendix A) on NTMA and common NTP methods has been
published in which I, as the main author have made contribution [69]. In this research,
along with the theoretical aspects of the subject, we have reviewed and categorized the
existing research on the subject conducted in recent years. The evaluated works have been
assessed in terms of the insight and methodologies used, including ML-based and statistical
methods as well as integrated and heuristic approaches. The survey indicates the wide
application of neural network techniques as the dominant techniques in research that deals
with the topic with an ML-based approach, and on the other hand, the central role of the
ARIMA family algorithms in the statistical approach is underlined. In this section to wrap
up that evaluation, we discuss some instances of works accomplished by focusing on the
topic of CPD in different applications of NTMA.

The application of CPD covers a wide range of purposes. There are many different use
cases for CPD applications. Examples of such scenarios include handling processing load
fluctuations on network resources, monitoring topological changes, tracking odd behavioural
changes of network traffic brought on by cyberattacks, and improving IoT applications in
smart homes, etc.

Anomaly detection in network security is one of the typical uses of CPD, as was highlighted
in the discussion’s backdrop. In this context, the accomplished research by Segura et al. in
[70] and [71] could be referred to as an instance. These two research exhibit a great affinity
with the subject of this thesis in terms of dealing with the issue in a CPD framework along
with focusing on resource limitations in SDN networks and the lightness of the proposed
solution as an essential feature. In [70] the authors have established a lightweight DDOS
attack detection method tailored to the constrained SDN environments using the CPD
technique. Their adopted approach relies on the non-parametric Cumulative Sum (CUSUM)
test for the detection of changes in the concerned metrics as well as an indicator called
MACD to identify the direction of those changes by determining the moving average of

36

2.7. RELATED WORKS

convergence/divergence in the data sequence. They have extended their proposed method
in [71] by considering both centralized and distributed modes. Depending on the setting in
which this technique is used, metrics specific to each mod are considered. In the centralized
mode, the metrics of interest are the control packet overhead and the data packet delivery
rate of the network, while in the distributed mode, the system deals with the local metrics
of the hosting node. The proposal is a non-parametric statistical approach, that benefits
from a CUSUM-based CPD algorithm at its core to monitor the metrics in question, and
alert an attack at the abrupt change of the mean value of metrics.

Song et al. in [72] addressed network performance measurement at the application level
using a probabilistic Bayesian change point-based estimation method in the context of QoE
maintenance in cellular networks through congestion handling and bandwidth estimation.
In this work, the available bandwidth estimation is thought of as a change point detection
problem focused on observing the transport block size, over the aggregated data sequences
from the response time to prob signals, as a congestion indicator.

Network topology monitoring is important from different aspects, especially network security
and spotting abnormal changes brought on by cyberattacks. In this domain, dynamic
observation of network topology is another area of application for the CPD technique,
addressed by Liu et al. in [73]. The introduced method in this research is aiming at
discovering the minor changes in the network topology at certain intervals. Their approach
is based on statistical process control in which the network topology as a dynamic state is
reflected by a graph, constructed through measuring the topological metrics of the network
over time. A cumulative sum method (CUSUM) is employed to discover trendy changes in
topological parameters.

Aminikhanghahi et al. in [43] have addressed the issue of activity recognition in the
context of IoT health systems in smart homes, employing a CPD-based model to segment
time series data received from the behaviour-driven sensor network in a health-monitoring
system. Their proposed method focuses on recognizing time points of change in the pattern
of data generation, which reflect activity transitions and improve the performance of this
process compared to traditional window-based methods. In the same vein, in ref[44] and
[74] they have presented an online CPD method by density ratio technique called SEP.
It is an unsupervised non-parametric method that examines and detects change points
in multi-dimensional data using probability density as the primary criterion. In their
proposed method, by comparing the probability density function derived from two data
subsequences before and after a given time point, their difference is measured in terms of
probability density parameters, and if it exceeds a certain limit, it is considered a change
in trend.

37

Chapter 3

The Proposed Method

3.1 Introduction

Using ML-based techniques for performing network management tasks in ad-hoc IoT
networks is faced with certain structural obstacles including heavy weighted process and
abundance of unlabeled data. As an alternative option, for some applications such as NTP,
It seems that statistical methods are more suited to the constraints of ad hoc networks. In
general, IoT network infrastructure can be classified into two categories: (i) infrastructure-
dependent, referring to established networks with a fixed framework. In this framework,
certain hardware and software infrastructures, such as routers and smart switches, are in
charge of networking tasks. (ii) infrastructure-independent or "ad-hoc”. Ad-hoc networks
form the major part of the IoT network infrastructure. Despite structural distinctions
between ad-hoc and conventional networks, the need for monitoring and analyzing traffic
data in such networks, as in infrastructure-dependent networks, persists. NTMA tasks are
increasingly relying on ML-based techniques, which, despite their efficiency and accuracy,
are considered heavy tasks in terms of required processing resources. In infrastructure-
dependent networks, resource-rich devices such as routers and switches are well able to
perform such processes, while in ad-hoc networks, since the nodes involved are typically
low-resource devices, effective implementation of NTMA techniques faces serious challenges.
Two prominent cases of the challenges of applying ML-based methods in ad-hoc networks
are:

e Querhead processes of training and retraining: The need for training and periodic
retraining in response to the continuous changes in the network’s environment and
data is one of the barriers of these methods in IoT ad-hoc networks. The application
of ML in the network has significant differences from most other applications, from the
sense of how to train and retrain the model. Due to the special features of the network
ecosystem, the MLL model used in such an environment, in addition to training, needs
frequent and occasional retraining. This situation is caused by some factors, including
intermittent and rapid changes in network traffic behaviour, continuous changes in
network topology, the increase and decrease in the number of nodes, etc., all of
which go hand in hand and create an extremely dynamic environment. Training and
retraining of ML models, in addition to imposing a significant processing load on
the hosting devices and degrading network performance, are very time-consuming
processes. This is especially important for IoT networks, which are highly time-
sensitive, and is one of the main obstacles to using ML techniques in ad-hoc networks.

39

CHAPTER 3. THE PROPOSED METHOD

o Abundant unlabelled data: Most of the tasks of NTMA, such as network traffic
classification and network traffic prediction, are formulated as Supervised Learning
(SL) problems. SL-ML models need labelled data to operate at their optimum,
whereas real-world network data are either largely unlabelled or their labels cannot
be retrieved on time. Deep learning techniques have been extensively embraced as a
solution to this issue because of the remarkable efficiency they have demonstrated in
semi-supervised learning environments; nonetheless, these models are notorious in
the sense of required resources and lengthy training times.

In response to the demand for lightweight methods for effective monitoring and analysis
of ad-hoc network traffic, the investigation of methods compatible with the structural
limitations of such networks is the main goal of this research. In this regard, and intending
to offer an efficient method for online pattern recognition of the changes in network
traffic data, statistical methods appear to be a suitable solution. The inherent advantage
of statistical methods for dealing with time series data, combined with the capacity to
collect and process network traffic characteristics such as delay in the form of continuous
streams of time series data, as well as considering no need for training in this methods,
all together makes them a favourable alternative to traditional methods. As one of the
popular statistical pattern recognition techniques, CPD refers to the process of identifying
time points at which a time series data set exhibits an abrupt shift in its behavior. The
CPD procedure in the NTMA context seeks to identify the time intervals at which a major
trend shift in network traffic data happened [44]. Compared to other ML-based pattern
recognition methods, the CPD process based on statistical techniques is a very lightweight
alternative that does not require training or retraining, either.

In this research we concentrate on enhancing a CPD technique called TONTA. The ultimate
goal of this technique is to detect the occurrence of changes in the trend of network traffic
data flow while also recognizing the type of current trend in a near-real-time manner. We
can mention TONTA’s significant overlap with the topic at hand, as well as the existing
capacity to develop and improve its performance, as grounds for selecting it as the research
basis. Before diving into explaining our proposed solution, it is necessary to get acquainted
with the structure and workflow of TONTA.

3.2 Fundamental Model

Network traffic can be measured and analyzed from various aspects by focusing on specific
features of interest in the network traffic. However, the feature selection task is extensively
depended on the type of intended NTMA application. Based on the ultimate goal of
applying a specific NTMA technique (e.g., pattern recognition), one or more characteristics
of network traffic, such as jitter, throughput, or delay, become highlighted.

One of the factors involved in choosing TONTA as the base for our proposed solution is
its focus on the OWD variable in order to expose the changes in network traffic behavior.
This technique, within a time series dataset consisting of end-to-end delay’s data extracted
on-the-fly from network traffic by the shallow packet inspection method, tries to detect
change points with as little delay as possible. In addition to detecting the points of traffic
state change, classifying the dominant trend in the form of ascending, descending, or
horizontal types is another functional feature of TONTA. Moreover, other characteristics
such as light weight, a simple and modular design, and good efficiency make this model
a worthy choice for online traffic analysis of ad-hoc networks. However, in most of the

40

3.2. FUNDAMENTAL MODEL

main steps of the TONTA procedure, there seems promising potential for developing and
improving performance measures such as detection efficiency (percentage of False Positive,
True Positive, and False Negative detections), time complexity, and speed.

3.2.1 Model Explanations

The overall work-flow of TONTA is shown by an activity diagram in Figure 3.1. The
depicted diagram indicates the main tasks, elaborated as follows:

Recognizes the

network behavior |,
Extract OWD ‘— ‘ after the permanent
Data CP
vV Vv !
| Turns Temporary CP
to a Permanent CP

A new packet arrives
in Node-X No
| .
Compared the new

subsets as the

second-step of CP

verification
A

Perform the
sampling methaod as the
first-step of data
preprocessing

Enough
new data for
ampling?,

Perform the CDM as
the first-step CP
verification

Performs the
| smoothing method as the
second-step of data
preprocessing

Append enough’
sampled data?

Perform

| outlier detection method

as the third-step of data
preprocessing

Detects a
> temporary CP
and creates two new
temporary subsets

Store data

J

Figure 3.1: The activity diagram in TONTA (adopted from [3])

Adapt the
y liding window
and selects a subset to
process

1. TONTA’s procedure commence with sampling. The OWD raw data extracted by
Shallow Packet Inspection (SPI) technique are digested through a sampling method
in which each sampled data point(d) is calculated through the mean of a defined
number(s) of raw data points (r) (Equation 3.1). The sampled data is added to the
end of the time-series dataset. TONTA transforms every fifteen raw data points into
one sampled data point (e.i., s = 50)

- ijzl rf
o S

d (3.1)

Before each trigger, TONTA waits for enough fresh sampled data points, so that the
next stage is only reached if sufficient sampled data has been added to the time-series
dataset (Interval Thr)

2. To choose an appropriate amount of data points from the end of the time-series
collection, TONTA adjusts the size of a dynamic sliding window.

3. In the second stage of data pre-processing, to enhance data quality and remove
the effects of various packet generator distribution functions, the sampled date are
smoothed.

41

CHAPTER 3. THE PROPOSED METHOD

4. TONTA splits the subset into two new temporary subsets termed (Secl and Sec2)
after identifying a temporaryChange Point (CP)in each chosen subset using an unique
CPD approach.

5. In order to verify the temporary CP, a special Curve Detection Method (CDM) is
used in the initial stage. As demonstrated in Figure 3.2, curves are intermediate data
points that translate two continuous dominant trends, but they do not represent a
distinctive trend. The CDM approach aids in avoiding choosing any curve data point
or repeating CPs as CPs.

6. As the final stage in the pre-processing of the data, an outlier identification approach
is used to take outliers from the Secl and Sec2 subsets in order to make the subsets
ready for comparison.

7. In order to assess the temporary CP’s important level based on the strength of their
trends, two outlier-free subsets are compared as the second phase of the verification
process. The temporaryCPbecomes a permanentCPif the significance level of the
temporaryCPexceeds a threshold (Imp T hr), in the absence of which TONTA reverts
to the first stage and waits for fresh OWD data to be obtained from the network.

8. If the temporaryCPbecomes a permanent CP, the existing network traffic behaviour
is used to gauge Sec2 intensity.

9. To prevent further processing, Secl and all preceding data points are eliminated
from the dataset by choosing the permanent CP.

3.2.2 Technical Explanation of The Fundamental Model

In order to reveal the changes in network traffic behavior, TONTA divides the problem
into two primary tasks to accomplish: First, to recognize the borders of a trend shift by
detecting the change points, and second, to identify the dominant trend in the intervals
between two consecutive change areas [3|. To this end, TONTA follows five main steps,
which are described in the rest of this section:

Sampling Procedure

In general, the sampling method used in TONTA responds to the need to reduce redundant
or similar OWD raw data appearing in subsequent triggers, as well as to avoid unnecessary
processes that can significantly increase overall resource consumption. in this vein, TONTA
attempts to optimize the amount of data that has to be processed in the initial stage of
pre-processing. To increase the temporal complexity of the algorithm, the volume of OWD
raw data is first reduced using a sampling approach. Where r represents OWD raw data
and s is the fixed sample rate, sampling is performed using Equation 3.1. In addition, the
Interval Thr parameter is added to increase temporal complexity and prevent needless data
processing. In order to collect enough data before processing, as seen in the Algorithm 7?7,
TONTA is triggered every Interval Thr of d fresh sampled data points.

Setting the optimal size of Interval Thr is one of the challenging tasks. It is subject to the
trade-off between, on the one hand, decreasing the TONTA triggers by a large Interval Thr
and, on the other, adding more delay in identifying CPs as well as reducing accuracy by
concealing the CPs in numerous new data points.

42

3.2. FUNDAMENTAL MODEL

Dynamic-sliding Window

To determine CPs in an online manner, data points needs to be analyzed gradually on-
the-fly. As explained in Step 2, TONTA, in each trigger, processes a subset selected from
the time-series dataset by a dynamic-running window. The subset should not be very
big to consume a lot of processing resources. In addition, it should not be very small
resulting in reducing the accuracy. To achieve low time complexity and high accuracy,
the dynamic-sliding window is proposed which runs through the time-series dataset from
the end and select subsets in every trigger to process. The size of the window is highly
dynamic, adapted before each trigger, based on different factors like last permanent CP,
data density, and Interval_Thr.

The dynamic sliding window has two thresholds, Max_Thr and Min_Thr, which display
the maximum and least number of data points that the window has picked, respectively.
Max_Thr restricts the size of the window to increase time complexity and resource use. In
order to determine the pattern of network traffic, TONTA requires a minimum quantity
of data points. To offer sufficient data points for processing, Min_Thr is proposed. The
dynamic-sliding window’s pseudo-code, which is used to choose a subset of the time-series
dataset, is listed in Algorithm ??. The variable ”j” is used to eliminate unnecessary data
points when the sliding window contains more than Maxz_ Thr data points. The size of the
dynamic sliding window is maintained between Min_Thr and Max_Thr to reduce the time
complexity. The default value of j is set to 1.5, and the window’s subset consists of p data
points.

Smoothing Procedure

A temporaryCPin the chosen subset should be chosen at this phase. After adding enough
fresh sampled data points, the subset is smoothed to eliminate jitters and abrupt changes
in trend. It also helps to convert datasets produced by various distribution function types
into a dataset format that TONTA can handle, as described in step 3. Equation 3.2, where
d; is the 4, data point of the subset and m is a parameter to vary the size of the frame, is
used to smooth data based on a floating frame with a frame size of 2 * m + 1. The subset
is smoother when m is greater, although extreme smoothing may mask the CPs.

X; = median|[d;—m, di—m+i1, s ditm—1, ditm] fori=2,3,---,p—1 (3.2)

Where X1 = dy and X, = d,,.
TONTA uses the first order difference of the smoothed data obtained from Equation 3.3,
instead of the original subset to determine a temporaryCPfor each trigger.

The Steps To Locating A TemporaryCPIn The Sub-dataset

At this stage, TONTA deals with the task of locating a temporaryCPin the sub-dataset, as
a simple linear regression problem. In this method, to speak roughly, a value is predicted
for each data point using the standard deviation and then, this predicted value is compared
with its actual value so that the observed error reflects the position of that data point in
relation to the prevailing trend before it.

T,=Xi—X;-1 fori=23,-,p (3.3)

43

1
2
3
4

© 0w g o wm

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CHAPTER 3. THE PROPOSED METHOD

Algorithm 1: Dynamic-sliding window generator

Input: Data point d_ point extracted by SPI
Input: Interval threshold Interval_Thr
Input: Sampling rate s
Input: Minimum window size Min_ Thr
Input: Maximum window size Max_ Thr
InputDS + 0;
RawData < 0;
while stream is being monitored do
for i =1 to Interval_Thr do
RawData < s number of new d_ points extracted by SPI;
sample < Sampling(RawData);
InputDS[i + size(InputDS)] < sample;
end
if size(InputDS) < Min_Thr then
continue;
end
if size(InputDS) > Max_Thr then
| InputDS < InputDS|Interval_Thr X j : size(InputDS)];
end
if Min_Thr < size(InputDS) < Maxz_Thr then
InputDS < Smoothing(InputDS);
CP_empirical + TONTA(InputDS);
if CP__empirical is a Permanent CP then
| InputDS[1 : CP_empirical] < 0;
end
else
| continue;
end

end
end

44

3.2. FUNDAMENTAL MODEL

The most recent sampled data points are given priority using a unique exponential weighting
mechanism. The weighting method is useful to spot the recent trend changes that are more
important, as the current pattern of the network traffic. Each data point in the subset
gains or loses weight depending on the weighting strategy. The weight assigned to each
data point is determined using Equation 3.4.

0 =c;(1—a;)P" fori=1,2,3,---.,p (3.4)

To assign various weights to data points, Equation 3.5 calculates the value of ¢ as 0 < a; < 1.
The most recent selected data points are more significant than older ones when « is getting
close to 1. In contrast, all data points appear to have equal importance when « is close to
0. The smoothed data points must be weighted ranging from low to high, to determine the
error rates in order to detect the temporary CP.

1 1
o = o1 + - for j=23--- ¢ where o1 = Z (3.5)

¢ indicates how many times the data points have been compared using various weights. In
addition to using the weighting model, Equation 3.6 also calculates a finite second order
difference.

Aij = 0:(T; — Ti—1) for i=1,2,3,---,p and j=1,2,3,---,¢ (3.6)

The finite order difference effect is eliminated by Equation 3.7, which also determines the
standard deviation error for each weighted data point and totals the error rates for each 6

P
e, = > (Ay—T)? for i=1,23---,p and j=1,2,3,---,e (3.7)

i=1
Each €0;; that has the lowest prediction error is taken into account as the temporary CP’s
position in the subset. For instance, let say the minimum value of €0;; is occurred when
a; = 0.81 and p = 500 then, the position of related temporaryCPwill be as: 0.81x500 = 405
i.e. the 4054, data point in the subset.
Several factors are considered when determining the optimal value for ¢, including the
volume of network traffic, the processing power of the node hosting TONTA, and the
sensitivity of network traffic to find precise CPs. Notably, the subset is weighted from the
end, and the finalCPis chosen if there are multiple dominant trends in the subset.

Curve Detection Method

In the context of theNTA, dealing with curves is subject to some complexities. Since each
trend progressively gives way to the following one, a curve is formed by the data between
these two trends. The data of a network traffic flow that connects two successive trends
but is not itself a trend is referred to as the ”curve.”To better clarify the notion of the
curve, a part of a flow diagram containing the trends and the curves between them is
shown in Figure 3.2. Thick black lines represent the trends, and the curves between them
are indicated by orange lines.

Ensuring that the identified temporaryCPdoes not belong to a subset of the curve data is
one of the important steps in theCPverification task. For this purpose, a parameter called
Curve_Thr has been introduced. Two requirements (C1 and C2) must be satisfied, as

45

CHAPTER 3. THE PROPOSED METHOD

Data Value

e

N
k-

0 100 200 30(
Figure 3.2: an example of curves and trends in a sub-section of the dataset

given below, in order to approve that the temporaryCPis not in a curve. Pos(y) indicates
the location of data point y in the time-series dataset, whereas Len(z) gives the total
number of data points for X. The latest detected permanentCPis displayed by CPjys-
the temporaryCPdivides the dataset into two parts: the part before it (that is, from the
beginning of the dataset to CP) is called SecI, and the part after it (that is, fromCPto the
end of the dataset) is Sec2.

e C1 : (Len(Secl) >Curve_Thr)&& (Len(Sec2) > Curve_Thr)

o C2 : Pos(CPremporary) >P0s(CPigst)

Condition C1 provides a distinction between trends and curves based on their length, while
condition C2 guarantees that the identified permanentCPwill be located after the last one.

Verifying The Temporary CP

After locating the temporary CP, TONTA must decide if it is important enough to become
a permanentCPor to be rejected as a false alarm. Notably, the suggested technique always
establishes a temporaryCPfor each trigger, but depending on how much the network traffic
changes, thisCPmight be erroncous or negligible. As a result, Sec! and Sec2 must be
contrasted to determine the significance of the change. Before comparison, since TONTA
is extremely sensitive to outliers, Secl and Sec2 must be free of any outlier datapoints.
An outlier identification technique based on assigning scores to data points is suggested
as a solution to the problem. In order to identify outliers and delete them, the allocated
score is compared with a threshold. Equation (8) determines the slope of Sec! and Sec2
when y = ma 4+ b, where m is the line’s slope and b is its intercept. Assuming that the
line’s slope is known, the first order difference for x and y (i.e., z and y) can be used to
show the intensity of fluctuations in Sec! and Sec2. Equation 3.9 is used to get the score
for each data point based on detrending the subset. To identify whether each data point is

46

3.2. FUNDAMENTAL MODEL

an outlier or not, Equation 3.10 is employed in the last step. Before comparing Seci and
Sec2, if the answer to Equation 3.10 for a data point is 1, it will be detected as outlier and
will be deleted from the subset.

iy (@i —x) (yi —)
Zf:l (z; — 37/)2

Slope =m = (3.8)

Scores = |d — y| (3.9)

f() 0 Vx| Score(x) < Avg(Scores) 4+ +/Var(Scores) (3.10)
x) = .
1 Vx| Score(x) > Avg(Scores) + 1/ Var(Scores)

1 POS(CPtcmporary)

Cec1 = Len (Secl) ,z; (Xi — Xi-1) (3.11)
1 p
CSecz = m Z (Xz — Xj,_l) (312)

i=Pos (CPtemporary+ 1)

Diff displays the magnitude of difference between Seci and Sec2 subsets in terms of
trend’s slope. TheCPparameter, which can take one of the two values 0 or 1, is the
TONTA module’s outcome at the end of each trigger. The value 1 means converting the
detectedCPinto a permanent CP, while the value 0 indicates that the discoveredCPhas not
yet satisfied the requirements to be regarded as a permanent CP. Additionally, TONTA
benefits from a parameter called Imp_Thr to determine the sensitivity to the difference
between the trends of the two subsets, Secl and Sec2. The parameter Imp_ T hr is initiated
as the sensitivity threshold of TONTA for implying aCPas the permanent CP, and is used
to determine whether the detectedCPshould be accepted as a permanentCPor ignored.
For example, I'mp_Thr = 0.5 can be interpreted as meaning that the trend difference
on both sides of the temporaryCPmust be at least 50% in order to consider that point
as a permanent CP. The notation Clge.o represents the recent predominant behaviour of
the time-series subset, which can be a negative or positive value, indicating a decrease
or increase in packet flow’s delay, respectively. Additionally, shifting the C'g.c.o parameter
toward zero demonstrates the flow delay’s stability.

szf = ABS (CSecl - CSecZ) (313)

1 if: Diff > ABS (Cseer * Imp._ Th
CP:{ He o= (Cseer Imp_Thr) (3.14)

0 if: Diff < ABS (Csec1 * Imp_Thr)

After the position of the new permanent change point is specified, all data points before
thisCPare removed from the data set since they will not be processed anymore. Besides,
in the next trigger, by adding Interval_Thr new data points to the existing data, that is
Sec2, the size of the new data set may exceed the Max_Thr threshold (i.e., len(Sec2) +
Interval_Thr > Maz_Thr). In such a case, to fit the data set’s size to Maxz_Thr, some
data points from the beginning of the subset will be removed.

47

CHAPTER 3. THE PROPOSED METHOD

3.3 Proposed Method

Although TONTA has shown acceptable efficiency in providing a lightweight and agile
technique with appropriate accuracy, it still has the potential for improvement in some
respects. In this vein, identifying the hindering factors and challenges that this technique
is faced with is the first step in presenting any optimization. These challenges are mainly
seen in the following aspects:

e Time complexity challenges: As mentioned in section 4.3 of the TONTA paper, the
time complexity of their proposed method is O(Max_ Thr+(Max_ Thrxe).Although
Max_Thr is the main variable to increase the time complexity of TONTA it gets a
variable that is under control. The second important variable is € which has a fixed
value equals to 100 in their proposed method. Considering the procedure of TONTA,
¢ has a high opportunity to be optimized resulting in reducing the time complexity
of the proposed method considerably.

e Accuracy challenges: As the performance evaluation section of TONTA shows, it has
high accuracy compared to the RuLSIF as a benchmark dataset, but still the number
of False positive alarms and False negative alarms are high which is not negligible.
In addition, considering that the method is online, the number of true alarms are
not, convince able

e Latency challenges: One of the main challenges of TONTA is the latency as the
methods needs to wait for a while to discover the change point. Although by
considering that the method is online, a reasonable latency can be understandable,
in some cases, the latency is too high. As an example, considering that we have more
than one stream that can affect each other negatively, recognizing the change point
lately can ruin the performance of the system, especially for the other streams.

3.3.1 Our Improvements

To address the aforementioned challenges, our study has directed its attention towards the
identified weaknesses within the TONTA’s methodology. It is our belief that by eliminating
these recognized vulnerabilities, a resolution to the challenges at hand may be achieved.
Based on this, the upgrades that we have made in different parts of the base method can
be classified as follows:

Accuracy Oriented Changes

In general, one of the main performance criteria of a CPD model is their accuracy, which
can be measured by the number of FP, FN, and TA (TP) detections. In order to improve
the accuracy of the proposed model, some adjustments were made in the sampling and
smoothing procedures, which have led to a notable reduction in FP and FN diagnoses as well
as a rise in detected True-Alarm (TA)s. The earliest processing steps in TONTA’s workflow
are sampling and smoothing, which are aimed at improving the overall performance of
the model. These deterministic steps are designed to filter out raw data and reduce its
volume, as well as remove any noise or unimportant data. In order to further improve the
performance of the sampling and smoothing steps, some changes have been made to the
proposed solution. When it comes to network environments, and particularly loT networks,

48

3.3. PROPOSED METHOD

raw data can be full of repetitive values, outliers, and minor change points. To address
this issue, it is necessary to use sampling and smoothing methods to reduce the volume
of raw data, remove duplicate and similar data, eliminate outliers, and focus on major
change points. To investigate the effects of these methods on the system’s performance,
some changes have been made to the sampling and smoothing techniques. Since Tonta’s
method will be used as a cornerstone to compare and evaluate the performance of the
proposed method, the sampling and smoothing techniques have been set up in a way that
produces structurally similar datasets, allowing for replicating the same experiments.

1. Sampling: In terms of the sampling process, due to the high speed of data generation in

the network, it is essential to apply appropriate filters to reduce the large volume of raw
input data. The sampling process is a tradeoff between accuracy and time complexity.
The sampling rate can be shown as 1/s, where s is the number of raw data points taken
in every sampling execution. Increasing the sampling rate means increasing the amount
of raw data entered into the system, which puts more load on the system. Meanwhile,
it results in concealing the real and major CPs among redundant minor or false CPs by
raising False-Positive (FP) diagnoses. Conversely, a very small sampling rate causes the
removal of a larger number of potentially important raw data in early pre-processing
steps and raises the False-Negative (FN) detections.
To address this issue, we have decided to replace the sampling method used in Tonta
with a two-stage sampling process formulated in Equation (3.15). In the first round of
sampling, the mean of every 10 raw data points is calculated, and in the second round,
the mean of every five consecutive means calculated in the previous round would be
passed to the system as an input. This method adds further variability to the input
data to mimic the original pattern in the raw data more precisely in addition to to
reduce the loss of important data points.

Y (=),

d= . where s =10, and n=>5 (3.15)
n

2. Smoothing: Smoothing is a statistical technique that is commonly used to remove
noise and outliers from data. Its primary goal is to identify underlying patterns and
trends in the data by reducing the influence of random fluctuations. Particularly, when
data belongs to noisy and dynamic ecosystems, smoothing can be an effective way to
remove outliers and help to identify main trends.

Choosing the appropriate smoothing algorithm for a given dataset is crucial to the
success of the technique. Smoothing algorithms vary widely including simple moving
averages, kernel smoothing, and regression techniques, to name a few. The selection
of the most suitable smoothing algorithm depends on the nature of the data and the
research question being investigated. Common applications of smoothing include image
processing, finance, and machine learning. For instance, in image processing, smoothing
can help reduce the noise in an image while preserving its essential details. In finance,
smoothing can be useful for identifying trends in stock prices and removing short-term
fluctuations. In machine learning, smoothing can help to regularize models and prevent
overfitting.

In the context of IoT networks, packet streams are often exposed to high levels of noise
and changes in the pattern of packet generation due to variations in parameters such
as transmission rate and jitter. Therefore, smoothing can be an essential part of data

49

CHAPTER 3. THE PROPOSED METHOD

preparation, helping to reduce the impact of outliers, limit the effects of distribution
function variation, and eliminate short-term fluctuations.

The smoothing process is another part of TONTA’s workflow that has the enhancement
capacity to improve the functionality of the model by increasing the true alarms (True-
Positive (TP)s). In Tonta, a smoothing method based on the median of every three
adjacent data points is used to remove jitters and reduce the effect of variation of
packet-generating distribution functions. It also fades out the short-term fluctuations
from data. (Equation 3.2). After examining different smoothing methods, we chose the
Geometric Mean (GM) algorithm because of its ability to remove outliers caused by
noise.

The geometric mean filter could be useful for analyzing the traffic’s data in IoT ad-hoc
networks prone to ambient noise. In comparison with other algorithms such as the
median filter, the geometric mean filter can be a reasonable option considering the
specific characteristics of the IoT ad-hoc network data. Although, the median filter
is effective at removing impulse noise (sudden spikes in the data) , it may not be as
effective at reducing random noise. GM process is formulated in Equation (3.16)

noo\w
(H xl) = Yr1z9 - Tp (3.16)
i=1
where : [[=the geometric mean, n = number of values, and z; = values to average

Time Complexity Oriented Changes

The time complexity of TONTA is expressed as Equation 3.17, which shows its direct
relationship with parameters ¢ and Max_Thr. Although, according to this equation,
reducing the value of € results in a decrease in the time complexity of the algorithm, the
side effects of such a change on other performance metrics should be considered. As shown
in Table 3.1, the effect of different parameters on time complexity and accuracy is not the
same. For example, while the time complexity of the algorithm is mainly influenced by ¢
and Max_ Thr, without significant effect by Min_ Thr, the model’s accuracy is affected
equally by both ¢ and Min_ Thr. Thus, along with enhancing the time complexity of the
method, lowering the value of ¢ inevitably results in an overall decline in accuracy.

Time Complexity : O(Max_Thr + (Max_Thr <)) (3.17)

Considering the equivalence of € and Min_Thr in relation to accuracy, compensating
the side effects of reducing € on accuracy by increasing the value of Min_ Thr is the idea
that we have explored. Overall, By replacing ¢ with (X * (¢)) in Equation 3.17, the time
complexity can be formulated as:

O(Max_Thr + Max_Thr * (X x¢)),

which causes a significant reduction in complexity if X is a percentage less than 100.
Taking the default scenario as the base in which € = 100 and Min_ Thr = 100, as much
as the X factor decreases the ¢’s value, it adds to Min_ Thr concurrently. We examined
different values of X to come up with the balance point of ¢ and Min_ Thr, among which
two cases X = 50% and X = 75% caught our attention. Thus, by applying X to the

50

3.3. PROPOSED METHOD

default settings, we will have:

for X =50%: =50, and M =150
for X =75%: =75 and M =125
Although taking X = 50% yields more reduction compared to X = 75%, evaluating the

results in terms of accuracy leads us to prefer the latter case. The graph for each of these
two cases is shown in Figures 4.21 and 4.20 respectively.

Parameter Accuracy Time complexity
€ Strong Strong

Max_Thr Very Low Strong

Min_Thr Strong Low

Imp_Thr Strong Very Low
Interval_Thr Strong Low

Table 3.1: The key parameters and how they effect accuracy and time complexity

Latency Oriented Changes

To address the issue of delayed detection of TAs after each CP, we devised a modification
to TONTA’s algorithm. This improvement enables the system to reassess the potential
CPs against the subsequent close datapoints using flexible parameters. As is observed
in the base method, large ”"Interval_Thr’s can increase average delay ofCPdiscovery,
but it can also reduce the number of system triggers. The delay is calculated based on
the time of identifying aCPafter occurring. Furthermore, a large Interval_Thr may
decrease the accuracy of TONTA, because in some cases, CPs will be overwhelmed by the
redundant new data points. In addition, Table 3.1 indicates that this parameter has a
high impact on the delay of findingCPafter happening. based on this, we have introduced
a new algorithm to change Interval_Thr dynamically rather than having a fix value.
As shown in Algorithm 2 the value of the parameter is flexible and in each trigger, it
should be re-calculated. Although there is a default value for that, based on the possibility
of recognizing a newCPin the current sliding window, the value will be changed to give
more chance to the system to recognize a CP. The possibility of recognizing a newCPin
the current window depends on the lenght of Min_Thr—size(Cgec2) which reflects the
distance of the point in question from a real CP. If the proximity is too near, then
there will be a new opportunity that system re-evaluate the datapoint once additional
data are received. To avoid getting stuck in small intervals, the value of the parameter
is increased exponentially till reaching the default value of Interval_Thr or finding a
CP. Algorithm 2 shows the method of calculating the value of the parameter for each round.

51

1
2
3
4
5

© 0 N O

10
11
12
13
14
15
16
17
18
19
20
21
22

CHAPTER 3. THE PROPOSED METHOD

Algorithm 2: A function which Calculates Interval_Thr dynamically

Input: Pre_Calc

Input: CP_recognized

Input: Interval_Thr__Default = 50
Input: Min_Thr

Input: Cgeeo

Input: Imp_Thr

Input: Dif
X « 0
Y « 0;
Z + 0;
if CP_recognized then
| return Min_ Thr — size(Csee2);
end
else
if Pre_ Calc > Interval _Thr_Default then
X «|Imp_Thr — Dif|;
if X < 0.03 then
| Y3
end
else
| Y «Interval_Thr_Default xX;
end
return int(Y x In(Y));
end
else
Z <Pre_Calc xIn(Pre_Calc);
return int(72);
end
end

92

Chapter 4

Evaluation

To evaluate the performance of the improve version of TONTA, same scenarios are evaluated
that helps to understand the improvements better. In this case, scenarios that are evaluated
in the TONTA paper are exactly applied again with the new proposed method and the
results are compared to show the effectiveness of the the changes.

4.1 Dataset

In order to evaluate the proposed method, the same dataset is used to show the advantages
of the proposed method. As mentioned in the TONTA paper, the dataset includes various
scenarios that network behaviors can follow. To clarify, the packet generator’s distribution
functions performed at the source node for a period of 1000 sec, as they are used by
TONTA, are provided in Table 4.1. During this period, 99,800 packets have been generated
as raw data, which, by performing sampling method based on the rate 50 (i.e., s = 50),
has resulted in 1914 sampled data points.

Traffic behavior

Start time Distribution function Parameter (s)

(Trend) (Intensity)
0 Exponential 0.00980392 Uptrend High
100 Exponential 0.00990099 Side-Way Medium
0.01030927 .
200 Normal Downtrend High
0.001030927
300 Constant 0.01 Side-Way High
400 Poisson 0.0095238 Uptrend Very High
500 Exponential 0.01010101 Downtrend Low
600 Exponential 0.00970873 Uptrend Medium
0.0095238 .
700 Normal Uptrend Medium
0.00095238
800 Constant 0.01 Side-Way High
900 Poisson 0.01010101 Side-Way Low

Table 4.1: Packet generators

53

CHAPTER 4. EVALUATION

4.2 Evaluation Policies and Rules

To set the policies and rules for interpreting and evaluating the results of the proposed
method, we follow the principles adopted in TONTA. These principles stem from the
inherent traits of the network environment. For an online CPD method, the ideal
performance would be the immediate recognition, at the destination node, of emerging
CPs and the new data trend as soon as a change happens in the distribution function of
the packet generation process at the source node. However, this is often impractical due
to the effect of curves as well as delay in the intermediate nodes between the source and
destination nodes (see Section 2.3.2). Therefore, in evaluating model’s results, we need to
determine a time interval around the real change points in which the detected CPs would
be taken into account as true positive detection. It also enables the model to recognize
the new trend of data based on adequate data points after the CP. Based on this, since
the input data is simulated in such a way to show a change in the distribution function of
packet generating every 100 seconds, a time range of 30 seconds before and after each real
change point has been considered as the acceptable distance for calculating the recognized
CPs as true detection. The value of 30 seconds for the time range has been adopted in
accordance with TONTA to synchronize the results of the two compared methods.

4.3 Evaluation Scenarios

By generating the same dataset used in TONTA, we had the opportunity to replicate
the conducted experiments of that approach as a base to compare the performance of
the proposed method. In this framework, the results obtained by two methods in each of
these scenarios are discussed in the rest of this chapter. Different scenarios are considered,
mainly to evaluate the parameters of the proposed method. In this case, a default scenario
is used as same as TONA, to use as benchmark and develop other scenarios by changing
the values of parameters. All parameter settings of the investigated scenarios are listed in
Table 4.2 along with the links to corresponding graphs that exhibit the obtained results
using these parameter values.

4.3.1 Default Scenario

Figure 4.1 illustrates the comparison between TONTA and pTonta in terms of the
obtained results for default settings where, (Interval Thr=50, Min_Thr=100, Maz_Thr=300,
Imp_Thr=0.5, e=100). To more clarify, the results obtained by both methods on these
settings are categorized in Table 4.3. As can be seen in two graphs, despite the displacement
of most of the CPs compared to the TONTA method, the positions of the CPs are still
within proximity of their corresponding spots in TONTA. Overall, cutting down on false
alarms (FPs) is one of pTonta’s key benefits, which is visible in the mentioned graph,
where there are no false alarms between points 300 and 400 in addition to eliminating
three false alarms at points 143, 544, and 856. Considering the lower false alarms detected
by TONTA as one of it’s main advantages over RuLSIF, used as the benchmark model,
our proposed method has further enhanced this advantage by reducing the number of FP
detections even more. Although the distance between the recognized change points by
uTonta and the real time of the changes is a little bit higher than TONTA, the number of
true alarms has increased, meanwhile, false alarms shows a significant reduction.

o4

4.3. EVALUATION SCENARIOS

Table 4.2: Detailed settings of investigated scenarios
(to redirect to a figure click on its number)

Scenario Interval _Thr Min_Thr Max_Thr Imp_Thr & Figure

1 50 100 300 0.5 25 4.11
o R s 6 s00 6E T ORRETEE
o g s 66 s00 6E T
o PRRRREREEEERES s oo o 6k 66 44
o B s 0o G0 05 66 A
o P RRRRREEEEE s s60° G0 65 66 Aig
o e sg oo s00 0o 66" LT
o g s o6 S0 ig 66 Lis
o o sg 0o S0 o 60 i
16 (default) s o6 s00 65 66 AT
SN P REECEEEREEE R O REREEREEE s00 05 60 g
o g 5 oo s00 65 66 s
o g s 66 s00 6E 166 A4
o R N SERRRREEER o6 sg0 65 66 AE
o [E G 66 s00 6E 166 dg
o S ERERERERE R 0o . 05 66 AT
o g G o s00 65 667 is
o g o0 oo S0 05 66 g
o g 0 o6 s00° 65 66 4io
o GG s g sg0 6B e 80
o Gp s R s00° 05 0 Aal
Total CPs FP FN True Alarms (TP)
pTonta 11 2 1 9
TONTA 13 6 3 7

Table 4.3: The comparison of results on the default scenario, in pTonta and TONTA

55

CHAPTER 4. EVALUATION

14 T T
|
5
12 930978
10 gi
737
8 =1 o
!
6 | 01 i
920
4+ 85 4
2 | f a1 1414 A
0
0 200 400 600 800 1000
(a)
Estimated Chane Point Positions
% : Detected Change Points 78)
(777N\ jl'\A'i
12 “WH10)
10
0 "~ "[737)
= 60
g P 7)
a ,J ' (Kon [/
4 7) ‘
(43 @ (/
2 (2
0 /
0 100 200 400 500 600 700 800 900 1000

Time Unit (Sec)

(b)

Figure 4.1: the obtained results in default settings, (a) by TONTA, and (b) by pTonta

56

4.3. EVALUATION SCENARIOS

4.3.2 Evaluating The Effects of Interval Thr

Table 4.4 contains the results obtained by pTonta for different values of Interval Thr.
Further, the comparative data extracted from Table 4.4 and it’s equivalent in TONTA are
collected in Table 4.5. These data are illustrated, row by row, in the following Figures
from 4.2 to 4.10, and 4.1 (that represents the outcome in default setting). As shown in
Table 4.5, pTonta has always recognized lower number of CPs. Although in case of lower
Interval_Thr, this can be considered as an advantage, in high values of Interval Thr, this
causes inefficiencies as the number of True alarms reduced significantly; However, the
number of False positive alarms by pyTonta shows a significant reduction that helps to
reduce triggering the whole method falsely. In overall, yTonta has detected more true
alarms than TONTA, so that it demonstrates a 25% improvement on average, with only
a few exceptions. Another notable difference is that while TONTA has the best results
for true alarms in the case of Interval Thr=10, but the best results of pTonta belong
to Interval_Thr= 40 and 50. In this case, the time complexity of pTonta is better than
TONTA as lower Interval_Thr causes very higher time complexity. In case of false positive
alarms, pTonta has better results in most cases that help to reduce triggering the whole
method falsely.

Interval Thr Total detected Position of CPs Fa}s.e Fals.c True positive
— CPs positive negative (true alarms)
10 16 94,131, 203, 255, 313, 350, 398, 446, 538, 609, 660, 704, 803, 843, 941, 992 8 2 8
20 12 94,157, 212, 303, 331, 457, 506, 580, 637, 705, 909, 960 3 3 7
30 12 103, 157, 201, 294, 405, 453, 512, 565, 700, 791, 500, 969 4 2 8
40 18 39, 101, 143, 159, 200, 302, 363, 402, 504, 560, 588, 645, 733, 808, 866, 903, 955, 981 9 1 9
50 11 43, 87, 207, 290, 403, 507, 606, 737, 777, 910, 978 2 1 9
60 13 133, 210, 254, 320, 354, 410, 453, 517, 620, 688, 747, 815, 935 6 3
70 7 104, 160, 315, 408, 613, 708, 835 2 5 5
80 9 102, 301, 411, 449, 513, 593, 704, 867, 906 2 3 7
90 7 103, 202, 300, 702, 867, 938, 991 2 5 5
100 9 105, 193, 308, 394, 565, 636, 938, 960, 995 4 5 5

Table 4.4: The effects of changing the Interval Thr on the results of pTonta.

Total detected CPs False positive False negative True alarms
Interval_Thr
- pTonta TONTA | uTonta TONTA | pTonta TONTA | pTonta TONTA

10 16 21 8 11 2 0 8 10
20 12 18 5 9 3 1 7 9
30 12 15 4 7 2 2 8 8
40 18 13 9 7 1 4 9 6
50 11 13 2 6 1 3 9 7
60 13 10 6 6 3 5 7 4
70 7 7 2 3 5 6 5 4
80 9 6 2 1 3 5 7 5
90 7 5 2 1 5 6 5 4
100 9 5 4 2 5 7 5 3

Table 4.5: Comparing the results obtained from pTonta with the same from TONTA in terms of Interval Thr
affection.

57

CHAPTER 4. EVALUATION

Figure 4.2 illustrates the results by two methods, where Interval_Thr in the default
scenario has been changed to 10. Comparing the two graphs indicates that while TONTA
has reached the maximum number of true alarms, our method has better performance in
terms of false alarms. As can be seen, in this case, pTonta has been able to create a 27%
improvement in terms of FPs, but at the same time, the number of TAs detected by it also
shows a 20% decrease.

14 T

12} 801 i85
f o4

10+ 61 1

) 66200
6} ! 500 '¥gq5 b

4 f81 451 .

2r 03 402]

0 200 400 600 800 1000

(a)

Estimated Chane Point Positions

% : Detected Change Points (S(M (94
e

12 W (992)

10
(66Q) /j
8 (538) .
MM(V;OM
6 : f |
(94M03) ’/ (609)

s
Rl
. o
46)
S S
5 / ¥ 1350)

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

(b)

Figure 4.2: the obtained results for (Interval Thr=10, Min_Thr=100, Maz_Thr=300 Imp_Thr=0.5, e¢=100), (a) by
TONTA, and (b) by puTonta

o8

4.3. EVALUATION SCENARIOS

Figure 4.3 illustrates the results by two methods, where Interval_Thr in the default
scenario has been changed to 20. Comparing the two graphs indicates that TONTA
has still better performance in terms of TAs, while the proposed method has performed
significantly in reducing FPs. As can be seen, in this case, pTonta has achieved a 44%
improvement in terms of FPs, but at the same time, a 22% decline has occurred as well.

14 ; ;
12t 1

774
101 1

PAT 45 6 461 i

0 200 400 600 800 1000

(a)

Estimated Chane Point Positions

% : Detected Change Points

N\ (909)

6
4 g
12 W

10 f/
8 (506) (637)Wwiip
‘WOS)

58
6 , f -
(94M12)
(157)

P LY .
| /,/ N,

Data Value

EN

(303)

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

(b)

Figure 4.3: the obtained results for (Interval Thr=20, Min_Thr=100, Max_Thr=300 Imp_Thr=0.5, e=100), (a) by
TONTA, and (b) by pTonta

59

CHAPTER 4. EVALUATION

The graphs in Figure 4.4 demonstrate the results by two methods, where Interval__Thr in
the default scenario has been changed to 30. As can be seen, in this case, the improvement
in FPs by puTonta is considerable, while its performance about TAs is also as good as
TONTA where both have detected 8 TAs.

14 T T

12t a5 1

67
1071 g

05

115

0 200 400 600 800 1000

Estimated Chane Point Positions

% : Detected Change Points (900)

J JPAN989)
12 wr

91)
10

(70

8 (M\j“/“ '
‘ . [l 7w
(1M01)
(157) b\

4 H 3)
/ N

2 / (294) I

0 L

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

(b)

Figure 4.4: the obtained results for (Interval Thr=30, Min_Thr=100, Max_Thr=300 Imp_Thr=0.5, e=100), (a) by
TONTA, and (b) by pTonta

60

4.3. EVALUATION SCENARIOS

The obtained results by the two methods are shown in graphs of Figure 4.5, where
Interval_Thr in the default scenario has been changed to 40. As can be seen, in this
case, uTonta has achieved its best performance across all cases, in terms of TAs, by a 50%
increase in relation to TONTA. However, the number of FPs announced by pTonta is 2
more than that of TONTA, which is considered as a 20% decline in this aspect.

14 T T

|/ 954
12t AJRSS

31

645

0 200 400 600 800 1000

Estimated Chane Point Positions

(955)

% : Detected Change Points
d 66)

(

12 /JMYJM)
10
(/73/)
A
(504 o

6 ey V(5607645

MO) ’/ i

159)
. Y
(39 \.\ (36;’/

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

(b)

Figure 4.5: the obtained results for (Interval Thr=40, Min_Thr=100, Max_Thr=300 Imp_Thr=0.5, e=100), (a) by
TONTA, and (b) by pTonta

61

CHAPTER 4. EVALUATION

Figure 4.6 illustrates the results by two methods, where Interval_Thr in the default
scenario has been changed to 60. Comparing the two graphs shows an equal outcome on
FPs, whereas pTonta has managed to create a 75% improvement in TAs, in this case.

14 T T

121 932

46

28

2t 412]

0 200 400 600 800 1000

Estimated Chane Point Positions

% : Detected Change Points
12 M jV‘\ﬂ
i
(74{
10 fr
Vi
17)
(133) f‘ \f
ﬂ \ (453
4 f/!d (210

254)
’\\ (354) /
0 L

0 100 200 300 400 500 600 700 800 900
Time Unit (Sec)

Data Value

(b)

Figure 4.6: the obtained results for (Interval Thr=60, Min_Thr=100, Mazx_Thr=300 Imp_Thr=0.5, e¢=100), (a) by
TONTA, and (b) by pTonta

62

4.3. EVALUATION SCENARIOS

The obtained results by the two methods are shown in graphs of Figure 4.7 where
Interval_Thr in the default scenario, has been changed to 70. Overall, the illustrated
graphs indicate weak performance by both methods in this case. However, yTonta has
outperformed TONTA slightly at this settings.

14 T T T T

39
12 r 1

10 1

gl 718 1

5 L 414 |

0 100 200 300 400 500 600 700 800 900

(a)

Estimated Chane Point Positions

(835)

% : Detected Change Points N\
12 //J
h f/
8 e
(708)

r‘ (61

6 (1th M *
| (160)

AL g
2/,/ Ngen

Data Value

408)

0 100 200 300 400 500 600 700 800
Time Unit (Sec)

(b)

Figure 4.7: the obtained results for (Interval Thr=70, Min_Thr=100, Maz_Thr=300 Imp_Thr=0.5, e=100), (a) by
TONTA, and (b) by pTonta

63

CHAPTER 4. EVALUATION

The graphs illustrated in Figure 4.8 represent the outcomes by the two methods, where
Interval_Thr in the default scenario has been changed to 80. In this scenario, TONTA
has delivered its best performance across all cases in terms of FPs. Nonetheless, its overall
performance has been degraded due to the limited number of detected TAs. As can be
seen, pTonta has managed to improve the TAs detection with a negligible increase in FPs.

14 T T

1071 1

420

0 200 400 600 800 1000

(a)

Estimated Chane Point Positions

% : Detected Change Points N\ (906)
12 4 jW

//“ 86N
f o
B e
[AN

Data Value

(301

0 100 200 300 400 500 600 700 800 900
Time Unit (Sec)

(b)

Figure 4.8: the obtained results for (Interval Thr=80, Min_Thr=100, Maz_Thr=300 Imp_Thr=0.5, e=100), (a) by
TONTA, and (b) by pTonta

64

4.3. EVALUATION SCENARIOS

Figure 4.9 shows the graphs representing the obtained results by the two methods, where
Interval_Thr in the default scenario has been changed to 90. As can be observed, the
performance of both methods is still close to that of the previous scenario with a few
detected TAs.

14 T T

121 35

101 1

0 200 400 600 800 1000

Estimated Chane Point Positions
% : Detected Change Points Wﬂ 991)
12 /J “L'j (538) l
8 MW
M (702)
: : [W
(1?\/\"\

| A .
2 // Nopen/

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

(b)

Figure 4.9: the obtained results for (Interval Thr=90, Min_Thr=100, Max_Thr=300 Imp_Thr=0.5, e=100), (a) by
TONTA, and (b) by pTonta

65

CHAPTER 4. EVALUATION

Figure 4.10 illustrates the results by two methods, where Interval_Thr in the default
scenario has been changed to 100, which is the highest value of that parameter examined.
Like the three previous cases, in this scenario as well, both methods have had their worst
performance in terms of the total number of detections and TAs.

14 T T

121 942

1071 1

1Y3

0 200 400 600 800 1000

(a)

Estimated Chane Point Positions
% : Detected Change Points
N\ 95)
J P
12 / W *
10 /j
(565) Wi

™
| // Mo,

Data Value

(394)

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

(b)

Figure 4.10: the obtained results for (Interval Thr=100, Min_Thr=100, Maz_Thr=300 Imp_Thr=0.5, e=100), (a)
by TONTA, and (b) by pTonta

66

4.3. EVALUATION SCENARIOS

4.3.3 Evaluating the effects of £

Comparing the impact of changing the ¢ in pTonta and TONTA are shown in Table 4.6,
extracted from Figures 4.11, 4.12, and 4.13. As can be seen, in terms of the number of
FPs, pTonta has performed better, while in terms of the number of true alarms and FNs,
TONTA still has the advantage. In this regard, relatively speaking, the yTonta model has
shown its best performance for € = 50, where FPs have been halved without degrading in
the other aspects. This information are useful to the phase of hyper-parameter tuning.

| Falscpositive | Falsenegative | Truc alarms
€ | uTonta TONTA | pTonta TONTA | pTonta TONTA
25 3 3 4 3 6 7
50 3 6 1 1 9 9
75 2 7 2 1 8 9

Table 4.6: Comparing the effects of changing the ¢ in pTonta and TONTA.

14 . ‘
|
.
12) 81
74

10+

8 |-

03
5 5
°l e
91

4+ 86

o L4 414

o ‘ ‘ . ‘

0 200 400 600 800 1000
(a)

Estimated Chane Point Positions

% : Detected Change Points ﬁal)
12 f03) "lj .
10
<7o/j
8 (SWU
¢ Mm [/ ©
o V\\

] [
2
/ (403)

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

(b)

Figure 4.11: the obtained results for (Interval_Thr=50, Min_Thr=100, Mazx_Thr=300, Imp_Thr=0.5, e=25), (a)
by TONTA, and (b) by pTonta

67

CHAPTER 4. EVALUATION

14 T T

726

90
4l [es 468 |

0 200 400 600 800 1000

Estimated Chane Point Positions
% : Detected Change Points
Mo\

12 //v W (991)
10 /j
Y

6 MG)
4 T \ (348) /
W, M

g (301) (405)

Data Value
©
=S &
e
n
%
~
‘
)
~
3
o
g

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

(b)

Figure 4.12: the obtained results for (Interval Thr=50, Min_Thr=100, Maxz_Thr=800 Imp_Thr=0.5, €=50), (a)
by TONTA, and (b) by pTonta

68

4.3. EVALUATION SCENARIOS

14 T

12 947

27

86
473

0 200 400 600 800 1000

Estimated Chane Point Positions

(820)

A‘ v \ jV‘w 51)
w

% : Detected Change Points

12

10
N

Data Value
[o2]

3
,(}a

Y

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

(b)

Figure 4.13: the obtained results for (Interval Thr=>50, Min_Thr=100, Max_Thr=300 Imp_Thr=0.5, e=75), (a)
by TONTA, and (b) by uTonta

69

CHAPTER 4. EVALUATION

4.3.4 Evaluating The Effects of Min Thr, and Max Thr

The results of evaluating yuTonta and TONTA in terms of two parameters Min_ Thr and
Max__Thr is shown in Table 4.7 extracted from Figures 4.14, 4.15, and 4.16. In the first
scenario shown by 4.14 we have evaluated the values of parameters that are pretty close
to each other, which led to the small size of the window. As shown in the figure, for
Min_Thr =100 and Max_Thr = 150, the results are so disappointing, where TONTA
could not detect a lot of true alarms and the number of false alarms is so high. Although
uTonta detects more true alarms and the number of false alarms is lower than TONTA,
still the results are no satisfactory which shows that the values of the parameters close to
each other can negatively affect the performance of the proposed method. In the second
scenario (Figure 4.15) the values of the parameters are far from each other and the size
of the windows is so big in the highest case as Min_Thr = 100 and Max_Thr = 600.
In this scenario, the results of TONTA is more satisfactory than the previous scenario,
but also the results of the pTonta improved significantly where it was able to detect nine
positive alarms with a negligible rise in FPs, marking it as one of its best results in terms of
true alarms. It seems that the high distance between the values of the parameters can help
the proposed method detect more true alarms, given a more flexible scope of data available
to compare and more effectively discover extreme points. Although, in the case of false
alarms, the results are still challenging. In the last scenario to evaluate the parameters, we
consider high values for the parameters in addition to a high minimum size of the window.
In this case, Min_Thr = 300 and Maz_Thr = 600 and the results are shown in 4.16. As
shown in the figure, both TONTA and pTonta have missed most of the true alarms. The
main reason is that the minimum size of the window is high resulting in concealing the
true alarms in a bunch of data points. In other words, the high minimum window size
reduces the performance of the method significantly because the minimum size of the data
points is so high and the method is unable to detect the CP in large subsets of datapoints.
Based on evaluating the proposed method in these three scenarios, the optimal value for
the parameters is offered by the second scenario, where the size of the window is big but
the minimum size is small; however, compared to the default values, none of the evaluated
scenarios has yielded better results.

FP FN True Alarm
Min_Thr | Max_Thr
uTonta | TONTA | uTonta | TONTA | pTonta | TONTA
100 150 3 4 3 6 7 4
100 600 4 6 1 3 9 7
300 600 5 2 6 6 4 4

Table 4.7: Comparing the effects of changing Min_Thr and Max_Thr in pTonta and TONTA

70

4.3. EVALUATION SCENARIOS

12 - 839307

101 1

0 200 400 600 800 1000

Estimated Chane Point Positions

* : Detected Change Points (914)
12 / \vj y (98})

10

8 (515) ML 3)

Lo
/‘;‘/ Mo/

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

(b)

Figure 4.14: the obtained results for (Interval Thr=50, Min_Thr=100, Maz_Thr=150 Imp_Thr=0.5, €¢=100), (a)
by TONTA, and (b) by uTonta

71

CHAPTER 4. EVALUATION

14 T T

737

90

2 [f a1 414 |

0 200 400 600 800 1000

Estimated Chane Point Positions

(851)

% : Detected Change Points
12 /J WY ‘

” v

g ® (575) 4)
s
>
= (ms) FM
5 6 -
(=]

4 (21

;?J;) S /)‘
2 W (371
0 /

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

(b)

Figure 4.15: the obtained results for (Interval Thr=50, Min_Thr=100, Maz_Thr=600 Imp_Thr=0.5, £=100), (a)
by TONTA, and (b) by pTonta

72

4.3. EVALUATION SCENARIOS

14 : ; :
)
12+ %
10 b
8 L 4
| 05
61 ! .
4+ N
418
2 - -
0 100 200 300 400 500 600 700 800 900
(a)
Estimated Chane Point Positions (840)

% : Detected Change Points M
12 /
10
(666) /‘/
6 ﬂm 4
12) }'/

4 !

(39 \-ﬁZ) (40

v}

0 100 200 300 400 500 600 700 800 900
Time Unit (Sec)

Data Value
[o2]
-
T
(=2}
=
3
g K,

(b)

Figure 4.16: the obtained results for (Interval Thr=50, Min_Thr=300, Max_Thr=600 Imp_Thr=0.5, e=100), (a)
by TONTA, and (b) by pTonta

73

CHAPTER 4. EVALUATION

4.3.5 Evaluating the effects of Imp Thr

The results of evaluating pTonta and TONTA in terms of the parameter I'mp_Thr
is shown in Table 4.8 extracted from Figures 4.17, 4.18, and 4.19. Among the three
investigated cases, in the first scenario, the I'mp_ Thr parameter has the lowest value of 0.2.
Nonetheless, in this setting, while the pTonta model has successfully decreased the false
positive detections of the TONTA, this achievement has come at the cost of a decline in
the number of true alarms. Comparing the results of TONTA and pTonta for large values
of Imp_Thr,ie., 0.8 and 1, shows that adopting large values for this parameter visibly
degrades the performance of both TONTA and pTonta methods. However, this degrading
effect appears in each of the two methods in a different way, i.e., a drastic decrease of TAs
in TONTA and a significant increase of FPs in yTonta. Another noteworthy point is that,
unlike TONTA, puTonta is sensitive to changes in the I'mp_ Thr parameter in terms of the
number of FPs. In general, it seems that smaller values of the desired parameter lead to
better performance in both models.

fmp_ Thr FP FN True Alarm
- pTonta | TONTA | pTonta | TONTA [uTonta | TONTA
0.2 1 3 2 0 8 10
0.8 4 3 2 4 8 6
1 5 3 1 4 9 6

Table 4.8: Comparing the effects of changing I'mp_ Thr in pTonta and TONTA

74

4.3. EVALUATION SCENARIOS

12 r 9
781

10F g

90

425

0 200 400 600 800 1000

Estimated Chane Point Positions

% : Detected Change Points N\ 989)
12 /J ‘Alll'g |

10
(689r/
8 VN
(185) Fm‘/“/‘

Data Value

(43 \ (a1
X M
(308)
0
0 100 260 300 460 500 600 700 800 900 1000

Time Unit (Sec)

(b)

Figure 4.17: the obtained results for (Interval Thr=50, Min_Thr=100, Maz_Thr=300 Imp_Thr=0.2, €¢=100), (a)
by TONTA, and (b) by pTonta

75

CHAPTER 4. EVALUATION

14 T T
|}
5
12 9309V 8
10 7
737
B = -
|
6 01 4
78
4 b N
|
2r 316 .
0 1 1 : ;
0 200 400 600 800 1000
(a)
Estimated Chane Point Positions
% : Detected Change Points i) (936
. y,
12 mfo15) (987)
10
0 8 i 18)
2 0
3 -
]
5 6 g d08) (349) VY
n e
Ao oy
4
” \ ﬁ)/
2 (311)
0 |
0 100 200 300 400 500 600 700 800 900 1000

Time Unit (Sec)

(b)

Figure 4.18: the obtained results for (Interval Thr=50, Min_Thr=100, Maz_Thr=300 Imp_Thr=0.8, e=100), (a)
by TONTA, and (b) by pTonta

76

4.3. EVALUATION SCENARIOS

14 T T

12t 930978

78

2r 316 §

0 200 400 600 800 1000

(a)

Estimated Chane Point Positions

% : Detected Change Points (913)
/ JM\H
12 /‘V‘;\;"V " (979)

10 (741)

8 pwrin
(49M0\]rJ(v7‘04)
6 _ ﬁ (548) Wy
ﬂ Y (504)
08) :
. R

465)
AN
2 / (303)
0 |

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

(b)

Figure 4.19: the obtained results for (Interval Thr=>50, Min_Thr=100, Max_Thr=300 Imp_Thr=1, e=100), (a) by
TONTA, and (b) by pTonta

4.3.6 Evaluating The Trade-off Between ¢ and Min_ Thr

As was discussed in section 3.3.1, in order to reduce the time complexity through
adjusting the trade-off between lowering € and increasing Min_ Thr, two scenarios was
examined. In the first scenario, we compared the outcomes of ¢ = 50 and Min_Thr = 150
(illustrated in Figure 4.21) with ¢ = 50 and Min_Thr = 100. In the second scenario,
we evaluated the results of ¢ = 75 and Min_Thr = 125 (shown in Figure 4.20) against

77

CHAPTER 4. EVALUATION

e = 75 and Min_Thr = 100. Table 4.9 provides a comparative assessment of these
scenarios and their corresponding settings, both by pTonta. This evaluation indicates that
in parallel with the enhancement achieved on time complexity, the method’s accuracy
is maintained as well, specifically in the second scenario (i.e., ¢ = 75 and Min_Thr = 125).

(Min_Thr=100, £=50) (Min_Thr=150, £=50) (Min_Thr=100, ¢=75) (Min_Thr=125, ¢=75)
FpP 3 4 2 3
TA 9 8 8 9

Table 4.9: Comparing the effects of changing ¢ in balance with Min_Thr

Estimated Chane Point Positions

% : Detected Change Points
<M88M

12 =
(987)
(7)‘ bl

10

. . /j
51) N
(187) M
(489) (604)

AN

s N

2 (309)

Data Value
o

EN

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Figure 4.20: the obtained results for (Interval Thr=50, Min_Thr=125, Mazx_Thr=300 Imp_Thr=0.5, e=75)

78

4.4. EVALUATING THE OVERALL PERFORMANCE

Estimated Chane Point Positions

% : Detected Change Points
70)

12 / ,‘J%)
o
10
(/7.3])
8 (521) M

L

6 A f‘M \F32)
_WZZO) ,/
6)
J W
;7 (359) /
2 / e (407)
0 L

0 100 200 300 400 500 600 700 800 900 1000
Time Unit (Sec)

Data Value

Figure 4.21: the obtained results for (Interval Thr=50, Min_Thr=150, Maz_Thr=300 Imp_Thr=0.5, e=50)

4.4 Evaluating The Overall Performance

Overall, the conducted evaluations in this chapter evidence that the pTonta model
outperforms the TONTA method in various aspects. However, with appropriate parameter
adjustments, it is possible to enhance the performance of yTonta even more.

As mentioned in section 4.3, all scenarios discussed in TONTA were reproduced by pTonta
and compared in terms of FPs and TAs. Considering that to decrease FPs and increase
TAs were among the main objectives of the pyTonta method, a comparison of two methods
in terms of these objectives has provided in Figuer 4.22. Further, Table 4.10 provides some
useful information on how pTonta performs in various scenarios, including the percentage
change of TAs and FPs and the resultant of them in relation to TONTA. This table helps
to gain insights into how the considered parameters influence pTonta’s performance as well
as outlines the settings in which pTonta has had the best and worst results.

The results show that the proposed method has reduced the number of false alarms for
about 2% and improve recognizing the number of true alarms for about 24% across all
scenarios. However, these measures have been adversely affected by certain boundary and
non-applicable parameter settings in some scenarios like 6, 17, 18, and 19. On the other
hand, the method has achieved its best results at scenarios 4 and 10 (the default scenario),
where the resultant of TAs and FPs shows an improvement of 100% and 95%, respectively.
In addition, as discussed in Section 4.3.6, the time complexity of the proposed method
can be significantly reduced by appropriately adjusting parameters € and Min_ Thr. This
optimization improves the model’s efficiency, making it more applicable to run on poor-
resource IoT devices.

Last but not least, since the method is online, recognizing change points closer to the time
that they happen is a big advantage. Figure 4.10 shows the comparison between the two
methods in terms of TA delay. Although calculating the total average of delay by pTonta
method across all scenarios shows a 41% reduction, a closer look at the graph reveals that

79

CHAPTER 4. EVALUATION

this average is skewed by a few exceptional cases. In fact, for the majority of scenarios we
see a noteworthy enhancement in this aspect.

uTonta TONTA
Scenario TAs growth FPs growth Resultant
T4 FP TA FP

1 8 1 9 4 -11.11% -75.00% 63.89%
2 € 3 8 6 12.50% -50.00% 62.50%
3 8 2 7 7 14.29% -71.43% 85.71%
4 7 3 4 4 75.00% -25.00% 100.00%
5 9 4 7 6 28.57% -33.33% 61.90%
6 4 5 4 2 0.00% 150.00% -150.00%
7 8 1 10 3 -20.00% -66.67% 46.67%
8 8 4 6 3 33.33% 33.33% 0.00%
9 9 5 6 3 50.00% 66.67% -16.67%

10 (default) 9 2 7 6 28.57% -66.67% 95.24%
11 8 8 10 11 -20.00% -27.27% 7.27%
12 7 5 9 9 -22.22% -44.44% 22.22%
13 8 4 8 7 0.00% -42.86% 42.86%
14 9 9 6 7 50.00% 28.57% 21.43%
15 7 6 4 6 75.00% 0.00% 75.00%
16 5] 2 4 3 25.00% -33.33% 58.33%
17 7 2 5 1 40.00% 100.00% -60.00%
18 5 2 4 1 25.00% 100.00% -75.00%
19 5 4 3 2 66.67% 100.00% -33.33%

Overall average: 23.72% 2.24%

Table 4.10: Comparison of yTonta and TONTA in terms of the growth percentage of the obtained results

80

4.4. EVALUATING THE OVERALL PERFORMANCE

True Alarms
12

10

oI|IiI |Iil|l|iilili

10 11 12 13 14 15 16 17 18 19

oo

a

IS

N

B puTonta = TONTA

(a) in terms of the true alarms

False Alarms

12

10

ojlliillii]iliilinnh

10 11 12 13 14 15 16 17 18 19

0o

a

IS

N

B puTonta mTONTA

(b) in terms of the false alarms

Figure 4.22: Comparison of pTonta and TONTA, based on their results over the 19 examined scenarios

The average delay of TA detection

25

ittt

10 11 12 13 14 15 16 17 18 19

[y
wv

=
o

uv

M puTonta ™ TONTA

Figure 4.23: Comparing the delay of two methods in detecting true alarms over all examined scenarios

81

Chapter 5

Discussion

The increasingly expansion of IoT in the recent years has gained a lot of attention from
the community as different methods and techniques are introduced aiming to improve the
performance of networking in [oT. As an important topic, monitoring the performance of
networking in loT is investigated significantly by the community.

NTMA is an umbrella term for various tasks and techniques such as NTA, NTP, NTC,
and so on, serving the network management goals like QoS/QoE, SLA, security, and fault
detection among others. Each of these tasks are relying on some specific techniques that
benefit from big data analytics techniques and tools. Network traffic behavior analysis
and pattern recognition can be thought of as sub-techniques of NTP which by providing
knowledge about the current state and the pattern of fluctuations in traffic data enable
a prediction model to predict the future changes of data. The focus of this master’s
thesis is on the use of Pattern Recognition, one of the key NTA techniques, in this
framework, we raised three research questions that served as the central themes of our study.

RQ 1: What are the current approaches to predicting network traffic , and how effective
are they?

in order to investigate RQ1, we conducted a comprehensive review on the topic (presented
in Appendix A). Based on the outcomes from that research, the common approaches to
NTP and its sub-field i.e. NTA can be categorized mainly into two groups: ML-based
and statistical methods. However, some heuristic and combined methods can also be
mentioned. While ML-based approaches leverage machine learning and deep learning
algorithms to predict the future changes in network traffic data by learning the pattern
of historical data, statistical approaches use statistical modeling techniques to analyze
the statistical properties of the data and make predictions based on those properties.
Statistical methods in particular, demonstrate significant capabilities for dealing with time
series data. On the other hand, ML-based approaches offer flexibility and can handle
complex relationships. Nonetheless, they are strictly depended on train an retraining from
the new emerging data , which demands extensive processing resources. In this sense, they
are categorized as heavy processes.

RQ 2: What are the challenges with utilizing NTA in ad-hoc IoT networks? And which
approaches are more suitable for analyzing network traffic on ad-hoc devices in terms of
accuracy and computational cost?

In Chapter 2, along with other fundamentals and features of NTMA, we discussed the

83

CHAPTER 5. DISCUSSION

challenges associated with applying NTA techniques in ad-hoc IoT networks, namely that
of dynamic environments, network traffic encryption, limited processing resources, and
time-dependent applications. These complexities make it difficult to effectively utilize
ML-based solutions in ad-hoc IoT networks. In comparison with ML-based techniques,
statistical methods benefit from the two key advantages of being lightweight and requiring
no training. In addition, these methods have special capabilities for analyzing time series
data, particularly, when cracking on metrics such as delay, jitter, and throughput, which
are produced in the form of continuous streams of time series data. To wrap up, Despite
the good reputation of ML methods and especially deep learning techniques in dealing with
complex problems and working with big data, the generic resource limitation of ad-hoc
devices , and extensive time-dependence of IoT applications are considerable barriers
to the effective leveraging of such techniques. Hence, in many circumstances, statistical
techniques can be thought of as acceptable alternatives which reduce the computational
cost considerably.

RQ 3: How can a method be designed to recognize the patterns of network behavior in
ad-hoc IoT networks, and how does it compare to existing methods in terms of accuracy
and computational cost?

In response to last research question, which constitutes the core of this thesis project,
it was shown that Any solution in the topic’s realm should focus on two thoughts: (1)
a methodology devoid of the complexity and weight of ML-based approaches, and (2)
selecting suitable metrics in terms of direct accessibility and simplicity without the need
for extra processing. By these two principles in mind, we have opted for a statistical
approach as a more practical alternative of heavy ML-based techniques. Statistical methods
are well-suited to this field due to their lack of training requirements and their specific
capabilities to deal with time series data. Among the various available techniques, CPD is
a popular technique for analyzing network traffic behavior that, while being lightweight,
can effectively satisfy a significant portion of the current network behavior analysis needs.
In this vein, we introduced a new method (as an extension of a method called TONTA
which is introduced in 2020 [3]) entitled pTonta which is mainly focused on improving the
performance of TONTA and solves the challenges mentioned in the cornerstone research.
In chapter 3, The base method has been explained and analysed along with explaining
our proposed improvements to it. To show the effect of adopted enhancements, in chapter
4 we replicated all the scenarios examined in TONTA. Based on this, then, a through
comparison between the proposed method and its base method was conducted.

The results indicate that pTonta has reduced the number of false alarms and improved
the recognition of true alarms across the majority of scenarios. However, there were some
scenarios where certain parameter settings adversely affected the performance. On the
other hand, pTonta achieved its best results in more practical scenarios, demonstrating
significant improvements in TAs and FPs.

Considering the typical characteristics of highly dynamic environments like IoT networks
Applying NTA in online manner, calls for light weight and agile techniques that can deal
with challenges like insufficient historical data and temporal dependency. In this sense,
the proposed method offers noteworthy enhancements in terms of time complexity and
less delay in detecting true alarms. As shown in the evaluation chapter, Adjusting the
parameters of uTonta can significantly reduce the time complexity, making it more efficient
and suitable for resource-constrained IoT devices. Moreover, thanks to the alterations in

84

the change point detection algorithm, we managed to considerably decrease the time gap
between the actual occurrence of a change point and its detection by the model (i.e. TAs).
Although the proposed method still suffers from false alarms, the improved version has
higher performance which is so valuable for various applications, especially applications
that are sensitive to triggering network reconfiguration frequently. Last but not least, the
higher performance of the proposed method compare to TONTA can allow the users to
run it on weaker devices with lower over head. Finally, it should be considered that both
TONTA and yTONTA have not been implemented in real world environments and they
are limited to simulated experiments. This deficiency opens up a new chapter for future
research in this field, with the aim of developing and improving the proposed method in
the real-world environment and using real data.

85

Chapter 6

Conclusion

The expansion of IoT has sparked significant interest in optimizing networking performance
through various methods and techniques. All these solutions are gathered under the title
“Network Traffic Monitoring and Analysis (NTMA)” by focus on different tasks and goals
within network management frame. One of the most important tasks in that frame is
Network Traffic Analysis (NTA), which provides applicable insight into the state and
behavior of network traffic data. In this master’s thesis, within NTA paradigm, I have
focused on a promising technique for pattern recognition in ad-hoc IoT networks. According
to the raised research questions as the main pivots of this thesis the obtained results can
be summarized as follow:

The common approaches and techniques adopted under NTMA umbrella, mainly, take
place in one of statistical or MIL-based approaches. While the former extracts knowledge
from evaluating the statistical parameters of network traffic data, the latter learns from
historical data. In parallel with the desirable accuracy, ML-based techniques typically need
significant processing resources. On the other hand, IoT is extremely relayed on some types
of networks constructed on-the-fly by a group of end nodes without the fixed topology
and dedicated devices for control and routing. These devices typically are limited-resource
which obstacles running heavy ML processes on them.

In promising to develop a lightweight model applicable for online pattern recognition in
ad-hoc IoT networks, a cutting-edge change point detection technique called “TONTA”
was selected as the cornerstone of the proposed method. TONTA is mainly designed for
evaluating the behavior of streams on poor-resource IoT devices. The new method called
“uTonta” aimed to improve TONTA’s challenges by reducing time complexity and detection
delay while enhancing accuracy. The evaluation shows that pTonta has achieved significant
enhancements in compare to its precedent approach regarding the defined objectives.
Considering the enhancements in performance obtained with the applied improvements,
we assess the proposed method as promising for smoothing network traffic management in
IoT networks. As an open area to the future research, implementation of the proposed
method in real-world environments using the real data is considered. Further, the proposed
approach may also be extended to different kinds of networks and can serve as a foundation
for developing more advanced NTA techniques. It is our aspiration that this thesis has
contributed towards the growing body of research on NTA for ad-hoc IoT networks and
provides valuable insights into the challenges and opportunities in this domain.

87

Bibliography

1]

A. Heidari, N. J. Navimipour, and M. Unal, “Applications of ml/dl in the management
of smart cities and societies based on new trends in information technologies: A
systematic literature review,” Sustainable Clities and Society, vol. 85, p. 104089,
2022, 1SSN: 2210-6707. DOI: https://doi.org/10.1016/j.scs.2022.104089.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S52210670722004061.

S. Siddiqui, S. Hameed, S. A. Shah, et al., “Toward software-defined networking-
based iot frameworks: A systematic literature review, taxonomy, open challenges and
prospects,” IEEE Access, vol. 10, pp. 70850-70901, 2022. DOI: 10.1109/ACCESS.
2022.3188311.

A. Shahraki, A. Taherkordi, and @. Haugen, “Tonta: Trend-based online network
traffic analysis in ad-hoc iot networks,” Computer Networks, vol. 194, p. 108 125,
2021.

P. Casas, A. D’Alconzo, T. Zseby, and M. Mellia, “Big-DAMA: Big data analytics
for network traffic monitoring and analysis,” in LANCOMM 2016 - Proceedings of
the 2016 ACM SIGCOMM Workshop on Fostering Latin-American Research in Datla
Communication Networks, Part of SIGCOMM 2016, 2016, 1SBN: 9781450344265. DOI:
10.1145/2940116.2940117.

B. M. Leiner, V. G. Cerf, D. D. Clark, et al., “A brief history of the internet,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 5, pp. 22-31, Oct. 2009, ISSN:
0146-4833. DOIL: 10.1145/1629607.1629613. [Online]. Available: https://doi.org/
10.1145/1629607 .1629613.

P. P. Ray, “A survey on internet of things architectures,” Journal of King Saud
University - Computer and Information Sciences, vol. 30, pp. 291-319, 3 Jul. 2018,
ISSN: 1319-1578. DOI: 10.1016/J.JKSUCI.2016.10.003.

S. Li, L. D. Xu, and S. Zhao, “The internet of things: A survey,” Information Systems
Frontiers, vol. 17, pp. 243-259, 2 Apr. 2015, 1sSN: 15729419. DOI1: 10.1007/S10796-
014-9492-7.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
of things: A survey on enabling technologies, protocols, and applications,” IFEE
Communications Surveys and Tutorials, vol. 17, pp. 2347-2376, 4 Oct. 2015, ISSN:
1553877X. DOI: 10.1109/COMST.2015.2444095.

89

BIBLIOGRAPHY

[9]

[10]

[12]

[19]

[20]

90

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future Generation Computer
Systems, vol. 29, pp. 1645-1660, 7 Sep. 2013, 18sN: 0167-739X. DOI: 10.1016/7J.
FUTURE.2013.01.010.

S. Svorobej, P. T. Endo, M. Bendechache, et al., “Simulating fog and edge computing
scenarios: An overview and research challenges,” Future Internet 2019, Vol. 11,
Page 55, vol. 11, p. 55, 3 Feb. 2019, 1ssN: 1999-5903. DOI: 10.3390/FI11030055.
[Online]. Available: https://www.mdpi.com/1999-5903/11/3/55/htm%20https:
//www.mdpi.com/1999-5903/11/3/55.

R. Hasan, M. M. Hossain, and R. Khan, “Aura: An iot based cloud infrastructure for
localized mobile computation outsourcing,” Proceedings - 2015 3rd IEEFE International
Conference on Mobile Cloud Computing, Services, and Engineering, MobileCloud
2015, pp. 183-188, Jun. 2015. por: 10.1109/MOBILECLOUD.2015. 37.

D. Sikeridis, I. Papapanagiotou, B. P. Rimal, and M. Devetsikiotis, “A comparative
taxonomy and survey of public cloud infrastructure vendors,” Oct. 2017. DOI: 10.
48550/arxiv.1710.01476. [Online]. Available: https://arxiv.org/abs/1710.
01476v2.

S. Yang, “loT Stream Processing and Analytics in the Fog,” IEEE Communications
Magazine, vol. 55, no. 8, pp. 21-27, 2017, 1ssN: 01636804. po1: 10.1109/MCOM.2017.
1600840. arXiv: 1705.05988.

A. Yousefpour, C. Fung, T. Nguyen, et al., “All one needs to know about fog
computing and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289-330, 2019.

F. Jalali, O. J. Smith, T. Lynar, and F. Suits, “Cognitive IoT gateways: Automatic
task sharing and switching between cloud and Edge/Fog computing,” in SIGCOMM
Posters and Demos 2017 - Proceedings of the 2017 SIGCOMM Posters and Demos,
Part of SIGCOMM 2017, Association for Computing Machinery, Inc, Aug. 2017,
pp. 121-123, 1SBN: 9781450350570. DOI: 10.1145/3123878.3132008.

V. Ramasamy, “Recent advances in ad-hoc networks,” in 2017 6th International
Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), 2017, pp. 132-132. DOI: 10.1109/ICRIT0.2017.8342413.

J. R. Parvin, “An overview of wireless mesh networks,” Wireless Mesh Networks-
Security, Architectures and Protocols, 2019.

T. Salman and R. Jain, “Networking protocols and standards for internet of things,”
in Internet of Things and Data Analytics Handbook. John Wiley & Sons, Ltd, 2017,
ch. 13, pp. 215-238, 1SBN: 9781119173601. DOI: https://doi.org/10.1002/
9781119173601.ch13.

A. Ghosh and A. Senthilrajan, “Research on Packet Inspection Techniques,”
International Journal of Scientific €& Technology Research, vol. 8, pp. 2068-2073,
2019.

P. Mallory. “Network traffic analysis for ir: Data collection and monitoring - infosec
resources.” (Dec. 2019), [Online]. Available: https://resources. infosecinstitute.
com / topic / network - traffic - analysis - for - ir - data - collection - and -
monitoring/.

[21]

[22]

BIBLIOGRAPHY

J. Kogel, “One-way delay measurement based on flow data: Quantification
and compensation of errors by exporter profiling,” International Conference on
Information Networking 2011, ICOIN 2011, pp. 25-30, 2011. DOI: 10.1109/ICOIN.
2011.5723108.

A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A survey on big
data for network traffic monitoring and analysis,” IEEE Transactions on Network
and Service Management, vol. 16, no. 3, pp. 800-813, Sep. 2019, 1SSN: 19324537. DOI:
10.1109/TNSM.2019.2933358.

M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for network traffic
monitoring and analysis (ntma): A survey,” Computer Communications, 2021.

F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “Towards the
Deployment of Machine Learning Solutions in Network Traffic Classification: A
Systematic Survey,” IEEE Communications Surveys and Tutorials, vol. 21, no. 2,
pp. 1988-2014, Apr. 2019, 1sSN: 1553877X. DOI: 10.1109/COMST. 2018 .2883147.

C. Brook. “What is deep packet inspection? how it works, use cases for dpi, and more |
digital guardian.” (Dec. 2018), [Online|. Available: https://digitalguardian. com/
blog/what-deep-packet-inspection-how-it-works-use-cases-dpi-and-more.

D. H. Hagos, P. E. Engelstad, A. Yazidi, and O. Kure, “A machine learning approach to
TCP state monitoring from passive measurements,” in IFIP Wireless Days, vol. 2018-
April, IEEE Computer Society, May 2018, pp. 164—171, 1SBN: 9781538656327. DOTI:
10.1109/WD.2018.8361713.

S. Niccolini, M. Molina, F. Raspall, and S. Tartarelli, “Design and implementation of
a one way delay passive measurement system,” IEEE Symposium Record on Network
Operations and Management Symposium, pp. 469-482, 2004. por: 10.1109/N0OMS.
2004.1317734.

M. Abbasi, A. Shahraki, M. J. Piran, and A. Taherkordi, “Deep reinforcement learning
for qos provisioning at the mac layer: A survey,” Engineering Applications of Artificial
Intelligence, vol. 102, p. 104 234, 2021.

H. Elbouanani, C. Barakat, W. Dabbous, and T. Turletti, “Passive delay measurement

for fidelity monitoring of distributed network emulation,” Computer Communications,
vol. 195, pp. 40—48, 2022.

0. TG, 0. DO, U. CC, and F. TA, “Qos performance metrics for analyzing wireless
network usability,” 2019.

H.-J. Lee, M.-S. Kim, J. W. Hong, and G.-H. Lee, “Qos parameters to network
performance metrics mapping for sla monitoring,” KNOM Review, vol. 5, no. 2,
pp- 42-53, 2002.

S. Qaiyum, I. A. Aziz, and J. B. Jaafar, “Analysis of big data and quality-of-experience
in high-density wireless network,” in 2016 3rd International Conference on Computer
and Information Sciences (ICCOINS), 2016, pp. 287-292. DOI: 10.1109/ICCOINS.
2016.7783229.

“One-way delay measurement techniques,” Accedian Networks Inc., Jan. 2012.
[Online]. Available: https://accedian.com/wp-content/uploads/2015/05/0ne-
WayDelayMeasurementTechniques-AccedianWhitePaper.pdf.

91

BIBLIOGRAPHY

[34]

[40]

[41]

92

G. Shute. “Network delays and losses.” (2016), [Online]. Available: https://www.d.
umn.edu/~gshute/net/delays-losses.xhtml.

T. Mizrahi, “Zen and the art of network timestamping white paper,” Dec. 2021.

M. Mohammadi, A. Al-Fuqgaha, S. Sorour, and M. Guizani, “Deep learning for iot big
data and streaming analytics: A survey,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 2923-2960, 2018.

J. Liu, F. Liu, and N. Ansari, “Monitoring and analyzing big traffic data of a large-
scale cellular network with hadoop,” IEEE Network, vol. 28, pp. 32-39, 4 2014, 1SSN:
08908044. por: 10.1109/MNET.2014.6863129.

A. Hanemann, A. Liakopoulos, M. Molina, and D. M. Swany, “A study on
network performance metrics and their composition,” Campus- Wide Information
Systems, vol. 23, 1. Melve, Ed., pp. 268-282, 4 Jan. 2006, 1SsN: 1065-0741. DOI:
10.1108/10650740610704135. [Online|. Available: https://doi.org/10.1108/
10650740610704135.

C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and Wireless
Networking: A Survey,” IEEE Communications Surveys and Tutorials, vol. 21, no. 3,
pp- 2224-2287, 2019, 18SN: 1553877X. DOI: 10.1109/COMST.2019.2904897. arXiv:
1803.04311.

A. Bayati, K. K. Nguyen, and M. Cheriet, “Multiple-Step-Ahead Traffic Prediction in
High-Speed Networks,” IEEE Communications Letters, vol. 22, no. 12, pp. 2447-2450,
Dec. 2018, 18SN: 15582558. DOI: 10.1109/LCOMM.2018.2875747.

M. Joshi and T. H. Hadi, “A Review of Network Traffic Analysis and Prediction
Techniques,” Jul. 2015. arXiv: 1507.05722. [Online|. Available: http://arxiv.org/
abs/1507.05722.

R. Boutaba, M. A. Salahuddin, N. Limam, et al., “A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities,”
Journal of Internet Services and Applications, vol. 9, no. 1, p. 16, Dec. 2018, 1SSN:
18690238. DOI: 10.1186/513174-018-0087-2. [Online]. Available: https://doi.
org/10.1186/s13174-018-0087-2.

S. Aminikhanghahi and D. J. Cook, “Enhancing activity recognition using cpd-based
activity segmentation,” Pervasive and Mobile Computing, vol. 53, pp. 75-89, Feb.
2019, 18SN: 1574-1192. por: 10.1016/J.PMCJ.2019.01.004.

S. Aminikhanghahi, T. Wang, and D. J. Cook, “Real-time change point detection
with application to smart home time series data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, pp. 1010-1023, 5 May 2019, 1ssN: 15582191. DOT1:
10.1109/TKDE.2018.2850347.

R. Hyndman and G. Athanasopoulos. “Forecasting: Principles and practice (3rd
ed).” (2021), [Online]. Available: https://otexts.com/fpp3/.

A. Nielsen, Practical time series analysis: Prediction with statistics and machine
learning. O’Reilly Media, 2019.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series
Analysis and Forecasting. Somerset, UNITED STATES: John Wiley & Sons,
Incorporated, 2015, 1SBN: 9781118745229. [Online]. Available: http://ebookcentral.
proquest.com/lib/hiof-ebooks/detail.action?docID=1895570.

[48]

[49]

[58]

BIBLIOGRAPHY

R. Nau. “Statistical forecasting: Notes on regression and time series analysis.” (Aug.
2020), [Online|. Available: https://people.duke.edu/~rnau/411home.htm.

C. Katris and S. Daskalaki, “Dynamic bandwidth allocation for video traffic using
farima-based forecasting models,” Journal of Network and Systems Management
2018 27:1, vol. 27, pp. 39-65, 1 Apr. 2018, 1SSN: 1573-7705. DOI: 10.1007/510922~
018-9456-1. [Online|. Available: https://link.springer.com/article/10.1007/
s10922-018-9456-1.

N. Dengen et al., “Comparison of sarima, narx and bpnn models in forecasting time
series data of network traffic,” in 2016 2nd International Conference on Science in

Information Technology (ICSITech), IEEE, 2016, pp. 264—-269.

W. C. Hong, “Application of seasonal SVR with chaotic immune algorithm in traffic
flow forecasting,” Neural Computing and Applications, vol. 21, no. 3, pp. 583-593,
Apr. 2012, 18SN: 09410643.

A. Biernacki, “Improving quality of adaptive video by traffic prediction with
(F)ARIMA models,” Journal of Communications and Networks, vol. 19, no. 5,
pp- 521-530, Oct. 2017, 18SN: 12292370. DOI: 10.1109/JCN.2017.000083.

A. Nielsen, Practical time series analysis: prediction with statistics and machine
learning. ” O’Reilly Media, Inc.”, 2019.

T. Andrysiak, L. Saganowski, M. Maszewski, and A. Marchewka, “Detection of
network attacks using hybrid arima-garch model,” Advances in Intelligent Systems
and Computing, vol. 582, pp. 1-12, 2018.

R. Engle, “Garch 101: The use of arch/garch models in applied econometrics,”
Journal of Economic Perspectives, vol. 15, pp. 157-168, 4 2001, 15SN: 0895-3309. DOTI:
10.1257/JEP.15.4.157.

T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” Journal of
FEconometrics, vol. 31, no. 3, pp. 307-327, 1986, 1ssN: 03044076. DOI: 10.1016/0304-
4076(86)90063-1.

H. Chen, J. Zhang, Y. Tao, and F. Tan, “Asymmetric garch type models for
asymmetric volatility characteristics analysis and wind power forecasting,” Protection
and Control of Modern Power Systems 2019 4:1, vol. 4, pp. 1-11, 1 Dec. 2019,
ISSN: 2367-0983. DOI: 10.1186/S41601-019-0146-0. [Online]. Available: https:
//pcmp . springeropen.com/articles/10.1186/s41601-019-0146-0.

H. Mehdi, Z. Pooranian, and P. G. Vinueza Naranjo, “Cloud traffic prediction based
on fuzzy ARIMA model with low dependence on historical data,” Transactions
on Emerging Telecommunications Technologies, Sep. 2019, 1SSN: 2161-3915. DOLI:
10.1002/ett.3731. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/ett.3731.

Z. Hajirahimi and M. Khashei, “Hybrid structures in time series modeling and
forecasting: A review,” Engineering Applications of Artificial Intelligence, vol. 86,
pp- 83-106, Nov. 2019, 1SSN: 09521976. DOI: 10.1016/j.engappai.2019.08.018.

M. T. Jones. “Models for machine learning.” (Dec. 2017), [Online]. Available: https://
developer.ibm.com/articles/cc-models-machine-learning/#reinforcement-
learning.

93

BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[66]

[67]

[68]

[70]

[71]

94

A. Burkov, The hundred-page machine learning book. Andriy Burkov Quebec City,
QC, Canada, 2019, vol. 1.

J. Delua. “Supervised vs. unsupervised learning: What’s the difference? | ibm.” (Mar.
2021), [Online]. Available: https://www.ibm. com/cloud/blog/supervised-vs-
unsupervised-learning.

S. Ayoubi, N. Limam, M. A. Salahuddin, et al., “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1, pp. 158-165,
2018.

M. Kulin, T. Kazaz, I. Moerman, and E. de Poorter, “A survey on Machine Learning-
based Performance Improvement of Wireless Networks: PHY, MAC and Network
layer,” Jan. 2020. arXiv: 2001.04561. [Online]. Available: http://arxiv.org/abs/
2001.04561.

S. Aroussi and A. Mellouk, “Survey on machine learning-based QoE-QoS
correlation models,” in 2014 International Conference on Computing, Management
and Telecommunications, ComManTel 2014, IEEE, 2014, pp. 200—-204, ISBN:
9781479929030. DOI: 10.1109/ComManTel.2014.6825604.

Z.-x. Xu, L. Cao, X.-1. Chen, C.-x. Li, Y.-l. Zhang, and J. Lai, “Deep reinforcement
learning with sarsa and g-learning: A hybrid approach,” IEICE TRANSACTIONS
on Information and Systems, vol. 101, no. 9, pp. 2315-2322, 2018.

A. Gepperth and B. Hammer, “Incremental learning algorithms and applications,”
in European symposium on artificial neural networks (ESANN), ESANN, 2016.

S. Ayoubi, N. Limam, M. A. Salahuddin, et al., “Machine Learning for Cognitive
Network Management,” IEEE Communications Magazine, vol. 56, no. 1, pp. 158-165,
Jan. 2018, 18SN: 01636804. por: 10.1109/MCOM.2018.1700560.

I. Lohrasbinasab, A. Shahraki, A. Taherkordi, and A. D. Jurcut, “From statistical-
to machine learning-based network traffic prediction,” Transactions on Emerging
Telecommunications Technologies, vol. 33, e4394, 4 Apr. 2022, 1SSN: 2161-3915. DOTI:
10.1002/ETT.4394. [Online|. Available: https://onlinelibrary.wiley.com/doi/
full/10.1002/ett .43947%20https://onlinelibrary.wiley.com/doi/abs/10.
1002/ett.4394%20https://onlinelibrary.wiley.com/doi/10.1002/ett.4394.

G. A. Segura, S. Skaperas, A. Chorti, L. Mamatas, and C. B. Margi, “Denial of
service attacks detection in software-defined wireless sensor networks,” 2020 IEEE
International Conference on Communications Workshops, ICC Workshops 2020 -
Proceedings, Jun. 2020. DOI: 10.1109/ICCWORKSHOPS49005.2020.9145136.

G. A. Segura, A. Chorti, and C. B. Margi, “Centralized and distributed intrusion
detection for resource-constrained wireless sdn networks,” IEEE Internet of Things
Journal, vol. 9, pp. 7746-7758, 10 May 2022, 1sSsN: 23274662. DOI: 10.1109/JI0T.
2021.3114270.

L. Song, E. Halepovic, A. Mohammed, and A. Striegel, “Cup: Cellular ultra-light
probe-based available bandwidth estimation,” 2021 IEEE/ACM 29th International
Symposium on Quality of Service, IWQOS 2021, Jun. 2021. por: 10 . 1109 /
IWQ0S52092.2021.9521270.

BIBLIOGRAPHY

[73] Y. Liu, L. Liu, and Y. Yan, “Network topology change detection based on statistical
process control,” ACM International Conference Proceeding Series, pp. 145-151, Jul.
2020. pOI: 10.1145/3409501.3409532. [Online|. Available: https://dl.acm.org/
doi/10.1145/3409501.3409532.

[74] C. Culman, S. Aminikhanghahi, and D. J. Cook, “Easing power consumption of
wearable activity monitoring with change point detection,” Sensors 2020, Vol. 20,
Page 310, vol. 20, p. 310, 1 Jan. 2020, 1SSN: 1424-8220. DOT: 10.3390/520010310.
[Online|. Available: https://www.mdpi.com/1424-8220/20/1/310/htm%20https:
//www.mdpi.com/1424-8220/20/1/310.

95

Glossary

ANN
Artificial Neural networks. 32, 35

ARCH

Autoregressive Conditional Heteroskedasticity. 27

ARIMA
AutoRegressive Integrated Moving Average. 26, 27

ARMA
Autoregression Moving Average. 26, 27

CP
Change Point. 42, 43, 45-47, 51, 54, 57, 70

CPD
Change Point Detection. i, 1, 2, 19, 20, 36, 37, 40, 42, 48

DL
Deep Learning. 32, 35

DNN
Deep Neural Networks. 35

FARIMA
Fractional AutoRegressive Integrated Moving Average. 27

FN
False-Negative. 49, 67

FP
False-Positive. 49, 54, 67, 70, 74

Fuzzy-ARIMA
Fuzzy-AutoRegressive Integrated Moving Average. 27

97

Glossary

GARCH

Generalized Autoregressive Conditional Heteroskedasticity. 27

GM

Geometric Mean. 50
i.i.d
Identically and Independently Distributed. 26, 27
IoT
Internet of Things. i, v, 1-5, 7-10, 18-21, 36, 37, 39, 48-50, 84, 87

KPI

Key Performance Indicator. i

ML
Machine Learning. vii, 2, 3, 16, 17, 20, 28-30, 32, 34-36, 39, 40
NTA
Network Traffic Analysis. i, 1-3, 45, 87
NTC
Network Traffic Classification. i, 15, 16, 35
NTMA
Network Traffic Monitoring and Analysis. i, v, 1-3, 5, 11, 15-20, 29, 35, 36, 39, 40
NTP
Network Traffic Prediction. i, 1, 3, 15, 16, 19, 27, 35, 36, 39
OWD
One-way delay. 15, 40-42
QoE
Quality of Experience. 12, 15, 18, 37
QoS
Quality of Service. i, 12, 13, 15, 17, 18
RL
Reinforcement Learning. 30
SARIMA

Seasonal-ARIMA. 26

98

Glossary

SL

Supervised Learning. 40

SLA
Service Level Agreement. i, 13, 15, 17

SPI
Shallow Packet Inspection. 41

TA
True-Alarm. 48, 74

TCD
Trend Change Detection. 19

TONTA
Trend-based Online Network Traffic Analysis in ad-hoc IoT networks. 2, 3

TP
True-Positive. 50

99

Appendix A

(A published research in connection to this thesis)

101

Received: 22 July 2021

W) Check for updates

Accepted: 6 September 2021

DOI: 10.1002/ett.4394

SURVEY PAPER

WILEY

From statistical- to machine learning-based network

traffic prediction

Iraj Lohrasbinasab! | Amin Shahraki®3 | Amir Taherkordi* | Anca Delia Jurcut?

'Faculty of Computer Sciences, @stfold
University College, Halden, Norway

2Department of Informatics, University of
Oslo, Oslo, Norway

3School of Computer Science, University

Abstract

Nowadays, due to the exponential and continuous expansion of new paradigms
such as Internet of Things (IoT), Internet of Vehicles (IoV) and 6G, the world
is witnessing a tremendous and sharp increase of network traffic. In such

College Dublin, Dublin, Ireland
8 large-scale, heterogeneous, and complex networks, the volume of transferred

Correspondence data, as big data, is considered a challenge causing different networking inef-
Amin Shahraki, School of Computer
Science, University College Dublin,
Dublin, Ireland.

Email:am.shahraki@ieee.org

ficiencies. To overcome these challenges, various techniques are introduced to
monitor the performance of networks, called Network Traffic Monitoring and
Analysis (NTMA). Network Traffic Prediction (NTP) is a significant subfield
of NTMA which is mainly focused on predicting the future of network load
and its behavior. NTP techniques can generally be realized in two ways, that
is, statistical- and Machine Learning (ML)-based. In this paper, we provide a
study on existing NTP techniques through reviewing, investigating, and classi-
fying the recent relevant works conducted in this field. Additionally, we discuss
the challenges and future directions of NTP showing that how ML and statistical
techniques can be used to solve challenges of NTP.

1 | INTRODUCTION

During the last decades, new networking paradigms, for example, Wireless Sensor Networks (WSNs), Internet of Things
(IoT), Internet of Vehicles (IoV) and 6th generation of cellular networks (6G)* have been emerging to establish the
network infrastructures for real-world applications, for example, smart cities, crisis management, smart roads, etc..?
Thanks to miniaturization of digital equipment, today’s networks include thousands of connected User Equipments (UEs)
(known as end node devices) that can generate and/or consume data. IoT as a new emerging networking paradigm,
provides an overlay network on top of other network infrastructures, from Near-Field Communication (NFC) to cellu-
lar networks to connect a virtually unlimited number of UEs.3 It is expected that in 2025, the number of connected IoT
devices will increase to 75 billion as predicted by Cisco.*> While managing such numerous devices is a challenging issue,
other characteristics of networks, for example, heterogeneity and mobility, can cause inefficiency in networking. Network
heterogeneity is not solely due to the diversity of device types, as it can also be related to some other factors such as the
volume of data generated by each connected UEs, the required services, and the diversity of network connections. Given
these characteristics of new networking paradigms, the volume of data generated may be very huge which has given rise
to the Big Data era.b

To provide an efficient network infrastructure to transfer and manage such a huge volume of data, different tech-
niques are introduced, mainly to prevent various network faults and inefficiencies, support Quality of Service (QoS) and

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Transactions on Emerging Telecommunications Technologies published by John Wiley & Sons Ltd.

Trans Emerging Tel Tech. 2021;e4394.
https://doi.org/10.1002/ett.4394

wileyonlinelibrary.com/journal/ett 10f 20

20f20 LOHRASBINASAB ET AL.
WILEY

provide security. Apart from the type of the network infrastructure, the QoS depends on the performance of route of data,
and even the ability of routing devices to analyze real-time network situation to make dynamic networking adjustments
and allocation decisions. Network Traffic Monitoring and Analyzing (NTMA) techniques are mainly introduced to mon-
itor the performance of networking by providing information to analyze the network and offer solutions to address the
challenges without human intervention.” There are four main subfields in the NTMA including® (i) Network Traffic Pre-
diction (NTP),’ (ii) Network Traffic Classification (NTC),!° (iii) Fault Management, and (iv) Network Security. Among all
these subfields, NTP focuses on analyzing the network load and prediction of the network traffic to avoid faults and ineffi-
ciencies in networking. In this study, we focus on NTP, as one of the most critical solutions to address various networking
challenges, for example, resource provisioning, congestion control, resource discovery, network behavior analysis, and
anomaly detection.®

Different techniques are introduced to perform NTP, but generally, existing solutions can be divided into two types,
that is, Machine Learning (ML)-based techniques and statistical-based techniques. As NTP can be designed based on
both types, we first review the most relevant techniques and then investigate the proposed solutions for each type. The
contributions of this study include:

- Investigating the existing NTP techniques and available solutions to predict the network behavior.
« Classifying the NTP techniques based on statistical-, ML-based, and hybrid techniques.

« Providing a concrete future direction based on real-world applications compared to the state of the art techniques,
models, and frameworks.

« Proposing a schema to integrate statistical-based techniques and ML-based techniques to improve the performance of
NTP techniques.

The rest of the paper is summarized as follows. In Section 2, we first introduce the basic concepts and discuss the
available types of techniques for the NTP. In Section 3, we survey and analyze existing solutions and provide a classification
of them. In Section 4, we discuss the challenges and future directions, and finally, in Section 5, we conclude this study.

2 | BASICCONCEPTS

This section briefly explains some key concepts of NTP and existing types of solutions. We first introduce the NTP concept
and then continue this section by discussing and comparing the statistical- and ML-based techniques which are further
reviewed in Section 3.

2.1 | Network traffic prediction

The continuous and exponential growth in scale, speed, and heterogeneity of network traffic streams, as seen in network-
ing platforms such as IoT and 5G, as well as emerging networking technologies like Software-Defined Network (SDN),
Network Function Virtualization (NFV), and Fog computing has proven the desperate need to NTMA solutions.®!! On
the foundation laid down by Big Data Analytics, and using techniques such as Traffic Prediction, Traffic Classification,
Anomaly Detection, and Fault Detection, NTMA is engaged in tackling a range of substantial problems. To name a few,
many aspects of network management including fault management, configuration management, accounting manage-
ment, security management, and performance management achieve effectiveness by utilizing the NTMA capabilities.'2

At the core of the mentioned techniques, sensing the network status in a real-time manner and analyzing the trend
of changes based on the data extracted from the network traffic plays a key role. Maintaining user satisfaction at the
desired level (known as Quality of Experience [QoE]) is one of the main goals of performance management which can
be achieved by continuously monitoring the status of the networking functions. Considering the inherent relationships
between user-oriented QoE and network-oriented QoS parameters, the performance management objectives could be
achieved through monitoring and measuring QoS parameters such as throughput, delay, jitter, or loss rate.!3

The network traffic data can be extracted from the packet inspection process by one of the Deep Packet Inspec-
tion (DPI) or Shallow Packet Inspection (SPI) methods.!? While the first is based on reading and analyzing the
full packet contents that include application headers and payload, the second method examines only headers of the

LOHRASBINASAB ET AL. 30f20
WILEY

network and/or transport layers in those packets selected based on the adopted sampling strategies.” Nevertheless, apart
from some specific applications of DPI, in cases such as filtering or troubleshooting—given the lack of feasibility of
applying this method due to privacy challenges and imposing significant computational and memory overheads on
the network—the real-time Traffic-Monitoring-Centric tasks would rely on SPI for extracting the required data from
packet streams.!>14

NTP as a subtechnique of NTMA is used to determine the status of the network, identify changes and predict the
network traffic behavior in a foreseeable future. Generally, the results of NTP techniques can be used in a wide range
of applications, for example, QoS provisioning, fault detection, and security attack detection. The problem of predicting
future network traffic volume is traditionally formulated in the form of a Time Series Forecasting (TSF) or rarely a spa-
tiotemporal problem aimed at constructing a regression model capable of estimating future traffic volume by extracting
the existing dependencies between historical and future data.'>!¢ Typically, low computational overhead, simplicity, and
the limited number of features can be referred to as advantages of TSF approaches.!” On the other hand, due to new
demands and exigencies stemmed from the ever-increasing rise in scale, speed, and heterogeneity of networks, non-TSF
approaches are becoming more and more propounded.'® These methods typically leverage flow and packet header data
to estimate future incoming flows instead of traffic volume.'®

Basically, popular NTP solutions are divided into statistical analysis methods and ML-based models.?>?! In the
following, we shed light on some differentiation aspects of common network prediction’s methods and techniques.

2.2 | Statistical techniques for NTP

Statistical techniques are mainly based on analyzing the data patterns without having any prior knowledge (without
training). Most of such techniques compare the current situation of the data, that is, the pattern of the data with the last
identified pattern to recognize important changes. Linear statistical-based models extract patterns from the historical data
as well as predict future points in time-series according to the lagged data. The well-known members of this category are
Autoregression Moving Average (ARMA) and AutoRegressive Integrated Moving Average (ARIMA), as well as variants of
the latter.?2 ARIMA, also known as Box-Jenkins model, is a prevalent paradigm among statistical models for time-series
prediction. Both of ARMA and ARIMA models are emerged from the convergence of autoregressive (AR) model which
involves with lagged values of observations, and moving average (MA) model which takes lagged errors. Nevertheless,
The distinction between them is in their approach to the notion of stationarity in time-series. While ARMA assumes
the time-series is stationary, ARIMA would provide the stationarity of data through differencing process which might
be applied multiple times, until establishment of stationarity. In “ARIMA” the I (stands for “Integrated”) refers to this
procedure. ARIMA model is denoted as ARIMA(p, d, q), where p indicates the order of the AR part, d shows the involved
differencing degree, and q is the order of the moving average part.2>** As concisely described below, ARMA and ARIMA
can be formulated, respectively, in Equations (2) and (3). Assuming a time series data X; consisting of real numbers (x;)
and an integer index (¢), an ARMA (p,q) model is given by Equation (1) where «; are the parameters of the (AR) model,
0; represents the (MA) model’s parameters, and ¢, are error terms assumed to be independent and identically distributed
(i,i,d) variables sampled from a normal distribution with zero mean.

Xt - (XlXt_l — = apX[_p =&+ 91£t_1 +---+ 0q£t—q~ (1)

Interchangeably, it can be shown as below where L is the lag operator:

(1 - iaﬂ))@ = <1 + queiLi> Er.)
i=1 i=1

Interested readers are referred to Reference 23. Assuming the ARIMA model as the generalization of ARMA, the
following formula defines an ARIMA(p,d,q) process given drift (#):

14 q
(1 - Z<p,~Li> (1-L)¥X, =6+ (1 + Z"iU) £ (3)
i=1

i=1

4 0f 20 LOHRASBINASAB ET AL.
sof0 |y EY

Diverse variations of ARIMA are proposed according to various applications and time-series; Among them, it is worth
mentioning “Seasonal-ARIMA (SARIMA)”? and “Fractional AutoRegressive Integrated Moving Average (FARIMA)”.*
The former is often used in NTP considering its compatibility with the nature of changes in networks which usually obeys
certain time patterns. A FARIMA forecasting model is an extension of the ARIMA (p, d, q) model in which the fractional
parameter d can take real values rather than just integers, and is given by the equation:

@Dp(L)(1 - L)' (Y1) = Og(L)ey, (4)
where L is the lag operator, ®@,(L)=1—¢L—---—¢,[P and O,L)=14+6L+---+64L9, (1- Ly =
w (d i d _ _I(=d4)) 2 27
>0 <J> (-1YL’ with (J) (-1) = TCar D and & ~ N (0,0?) as the error terms.

In addition to the extant components of the conventional ARIMA, the SARIMA?® model also includes the frequency
component (known as seasonality and shown by (S).?

An SARIMA model would conduct prediction based on a linear combination of past observations and their
related errors. As its name implies, the seasonality factor plays a key role in the structure and performance of
this model. The SARIMA process often would be shown as models in the form of SARIMA(p,d,q) X (P, D, Q)S. For
given time series {X;} with seasonality length (S), the SARIMA process is indicated by the Equation (5), while
the differenced series w, = (1 — B)4(1 — BS)PX, is a stationary ARMA process and, d and D are nonnegative integer
values.

¢p(B)Dp(BS)W, = 0,(B)O(BY)e, t = 1,2, ... ,n, (5)
where:

« nis the number of observations up to time ¢ and the backshift operator B is defined as: B*W; = W,_,,.

« ¢ is defined as i.i.d samples with a zero mean and variance o2, which for all K # 0 we have: Cov(e;, ;) = 0

[eAR: ¢B)=1— B~ ... — B

« The nonseasonal components are: {. MA : 0(B)=1—0,B— ... —0,B
« The seasonal components are:{ © SeasonalAR : ©(B%) =1 - ®,B° — ... — OpB"™
p "] @ SeasonalMA : ©(B5) =1-0,B5— ... — @B

As an another ARIMA'’s extensions, FARIMA is a generalization of the ARMA model customized to support those
applications like NTP in which, besides short-term dependencies, there are considerable linear long-term dependen-
cies between the observations. Unlike the ordinary ARIMA process, the difference parameter (d) in FARIMA model
could take noninteger values.>® The general FARIMA process is expressed in Equation (6) where B is the backshift
operator.

p q
(1 - 2@31‘) (1-B)x, = (1 + Zei3i> £ (6)
i=1

i=1

Generally, the family of ARIMA models is drawn on the assumption of time-series data stationarity; while, in
dynamic environments such as IoT, network traffic with severe and intermittent fluctuations could lead to degrading
model performance. Nonetheless, by using some transformations other than differentiation (eg, logarithms) to decrease
nonstationarity in input data, this deficiency can be overcome to some extent.?>3!

One of the other standard statistical models widely employed in time-series problems is that of Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH).*? This model is an extension of the Autoregressive Conditional
Heteroskedasticity (ARCH) model innovated by Engle in 1982 to estimate the target variables’ volatility.>* The main goal
is to model the changes in variance of target variables whose part of the total variance is conditioned on lagged values of
target variance and model’s residuals. To this end, the concept of Conditional Variance (also referred to as Conditional
Volatility) plays a key role. Considering {¢;} as a real-valued discrete-time stochastic process, as:

€ = oW,

LOHRASBINASAB ET AL. 50f20
WILEY

where wy is discrete white noise given i.i.d (u = 0, 6% = 1), the GARCH(p,q) process is then denoted by Equation (7).
q p
o-t2 =ay+ Zaief_i + Zﬂjof_j, (7)
i=1 j=1

where o; and f; are model’s parameters meanwhile, to avoid negative variance the following constraints are imposed:3+3>
{p>0,g>0,00>0,0,>0,i=1,...,q,420,j=1,...,p}.

Moreover, parallel to applying jointly with some nonlinear approaches (eg, ARIMA), some hybrid models based
on the ARIMA’s foundation have been proposed. For instance, Fuzzy-AutoRegressive Integrated Moving Average
(Fuzzy-ARIMA) is an invented method which fuzzifies ARIMA’s parameters using the fuzzy regression method.>® In
terms of acronyms, as seen sporadically in some references, Fuzzy-ARIMA is also referred to as FARIMA; which should
not be confused with the Fractional-ARIMA model. Meanwhile, The latter is recorded as ARFIMA in some sources
as well.>’

2.3 | ML techniques for NTP

In general, the logical framework of problems solvable by ML techniques can be formulated in four broad categories,
namely, classification and regression, clustering, and rule extraction.!® There are four ML paradigms in the same vein
corresponding to the nature of the problem at hand, namely Supervised Learning (SL), Unsupervised, Semi-supervised,
and Reinforcement Learning,®® respectively. Each of these paradigms has its own different effects on proceeding data
collection, ground truth creation, and feature engineering. Most of ML methods used in NTP are subtechniques of SL as
the models need to be trained by historical data. SL uses labeled data (historical data) to build up the models employed
in classification and regression problems, where predicting the outcomes in the form of discrete or continuous quantities
is intended. In many real-world problems, access to labeled data is subject to constraints. In networking, most of data
gathered from a network is unlabeled or semi-labeled.*® In the lack of sufficient knowledge or the abundance of missing
labels, the Semi-Supervised Learning (SSL) paradigm as a particular variant of SL exploiting different techniques such as
Active Learning® can be leveraged.®

One of the critical aspects in ML is choosing the proper model from the mass of available algorithms and techniques.
Different factors can be applied, for example, goals of applications, pros and cons of the operating environment regarding
the deployments and applications of ML models, the learning method (ie, supervised or unsupervised), how to access
data, etc.*! Some of the most widely used models are presented in the following:

« Neural Networks: Artificial Neural networks (ANNs) are among the most potent and widely used ML techniques.*?
Thanks to the Activate Function, ANNs can learn complex nonlinear dependencies among numerous variables, thus
they are generally known as Universal Function Approximators.** The general architecture of ANNs is a directed
graph® consisting of input and output layers, which are connected via the so-called hidden layer, which itself could
be consist of one or more layers. Input values reach the output layer by applying transformations through the hid-
den layers. The number of these layers is also referred to as the depth of the model. Based on the ANNSs’ depth, the
idiom “Deep Neural Network” denotes ANNs constructed of two or more hidden layers, opposed to “Shallow Neural
Network” referring to the traditional baseline ANNs.*? Due to their flexible structure, Deep Neural Networks (DNN)
have gained striking popularity in time-series prediction. In this context, Recurrent Neural Network (RNN), by allow-
ing inputs to be recycled in hidden layers around the recurrent connections has been a leaping advance. Different
RNN-based architectures can be defined as per adopted activation function and how the neurons connect to each other,
namely that of Fully Recurrent Neural Network (FRNN), Bidirectional Neural Networks (BNN), stochastic neural net-
works, and the well-known paradigm Long short-term memory (LSTM).** LSTM as an extension of RNN is proposed
to resolve the vulnerability of normal RNNs against the gradient exploding/vanishing problem caused by long-term
dependencies.**” LSTM with some innovations in its architecture including a triple gate mechanism to control inputs
to cells, and a feedback loop for data retention, can learn long-term dependencies and remove invalid inputs that cause
perturbation in cell’s outputs.>*® In practice, an implemented LSTM model usually consists of a set of blocks where
each block contains several LSTM cells.

FIGURE 1

LOHRASBINASAB ET AL.

sotn | \WiLEY

Intended QoS features (e.g., e
delay, jitter, throughput, ...) i

Y

State

!

Agent

@ O @.0
layer Lo =3
Observed AN
State ‘ e . - ‘
Reward Hidden ‘ ‘ ' .
> layers

Take
Action

lQ(s, a)

Action (e.g., bandwidth allocation, ...)

A schema that how deep reinforcement learning interacts with the network

Despite the unavoidable capabilities of deep learning-based methods, the slow training process of these models is a
significant problem in their application in dynamic environments. Moreover, the lack of transparency in the learning

process of these models is another limitation*°.%°

Reinforcement Learning: The Q-Learning algorithm, along with Deep Reinforcement Learning (DRL) (which is actu-
ally a combination of Q-Learning and DNN), is one of two algorithms representing the Reinforcement Learning (RL)
method.?1? As elaborated by Watkins,’! the Q-Learning algorithm provides learner agents that can act optimally in
Markovian environments relying on their knowledge stemmed from experiencing actions’ consequences, without the
need to mapping the environment.®' It relies on a function called Q-function to learn the table containing all available
state-action pairs and their long-term rewards.>? In NTP, RL and its variants have a good potential to interact with the
network to learn the network behavior and predict the behavior of the network in the future. As mentioned, RL can
be integrated with DNN which can help to improve the performance of RL techniques. Figure 1 shows a schema of
interacting DRL and the network regarding NTP.

Although the number of ML techniques used in NTP is not limited to the list above, DNN and RL are the most

important ML techniques based on our literature review explained in Section 3.

2.3.1 | Data collection

Creating an efficient model for a problem is highly dependent on the availability of appropriate and unbiased represen-
tative data.!® Due to the variety of data in different applications of networking as well as alternation of data over time, it
is essential to adopt a suitable method for data collection for ML methods to train their models.

In networking, traffic data can be extracted through the packet inspection process by the DPI and SPI methods.!?
While the former is based on reading and, if necessary, analyzing the full packet contents that include application

LOHRASBINASAB ET AL. 7 0f 20
WILEY

headers and payload, the latter method examines only headers of the network and/or transport layers in those pack-
ets selected based on the target sampling strategies.” Nevertheless, apart from some specific applications of DPI (eg,
filtering or troubleshooting), since this method imposes significant computational and memory overheads on the net-
work, the real-time traffic-monitoring-oriented tasks would rely on SPI for extracting the required data from packet
streams.!>14

Data collection is performed typically in offline or online manners. In the offline method, data are entirely used
for training the model at once, and then, the model is deployed and used for operational data analysis. In the online
method, throughout a continuous process, model training would launch in conjunction with deployment in the oper-
ating environment, and model knowledge is updated with new input data, which is received in a sequential order.!>>3
As SL, Unsupervised Learning (UL) and SSL are generally used in the offline learning setting, some of RL techniques,
for example, State-action-reward-state-action (SARSA)** and incremental learning techniques®® are mainly designed to
update the model gradually based on new data (2). Training the model using collected data can be achieved in one of the
batch or incremental (also known as streaming) ways depending on the situation and learning settings. In a batch set-
ting, the collected data are divided into three subsets, including training, test, and validation (which in some cases is also
called development set). The validation set is used when selecting the appropriate model, and its architecture is part of
the process. Otherwise, it would not be needed. Determining the optimal values for the model parameters (eg, the weight
of connections between neurons in a neural network [NN]) and evaluating the model’s performance would be accom-
plished, respectively, using the training and test sets. On the other hand, in the incremental method, the data is streamed
to the training model for various reasons (eg, large volume and infeasibility of loading at once, or gradual generation
of data).!>>3 Moreover, in dynamic environments, especially online applications, the ML model must be continuously
retrained. In such cases, to solve the concept drift problem, given the high computational cost of doing it from scratch,
using only the new data for training is an efficient solution by incremental approaches.!? Figure 2 shows different types
of collecting data to train ML models in networking.

2.3.2 | Feature engineering

As one of the ML'’s pillars, feature engineering includes feature selection and feature extraction in addition to data
cleansing and data preprocessing. Feature selection refers to selecting the effective discriminator features and remov-
ing the irrelevant and redundant features; whereas feature extraction involves extracting new extended features from
existing ones. These procedures both would lead to diminishing data dimensionality and computational overhead and,
consequently, increasing the model’s efficiency and accuracy.”®

In networking, features can be classified based on the granularity in three levels: packet-level, flow-level, and
connection-level.”” The finest level of granularity is packet-level features where the packet-related statistical data such
as mean, root mean square (RMS), variance, as well as time-series information are extracted or derived from collected
packets.!® The independence of these features from the sampling method adopted to collect data is their key advantage.

Features such as mean flow duration, mean of packets per flow, and average flow size in bytes are observable at the
flow-level. At the highest level of granularity, there are connection-level features that would be extracted from the trans-
port layer. Throughput and advertised window size in TCP connection headers are examples of these features. Despite
the high-quality information provided by connection-level features, the imposition of excessive computational overhead
and high distortion in facing with sampling and routing asymmetries are among their drawbacks. Feature extraction is
often performed using techniques such as Principal component analysis (PCA), entropy, and Fourier transform.'® Table 1
shows a summary of some popular network features.

3 | REVIEW OF EXISTING WORK

Using ML techniques and statistical-based techniques in NTP is a well-established research area. Historically, one of the
earliest works in applying ML in NTP belongs to Yu and Chen, carried out in 1993. They used multilayer perceptron (MLP)
NN (MLP-NN) motivated by enhancing the accuracy over traditional AR methods.'® Since then, many researchers have
lent themselves to improve the ML-based solutions for predicting network behavior as accurately and timely as possible.
However, in this survey we focus on the most important recent works in the field. To review the literature, we have used
the method shown in Figure 3 to refine the related literature. The NTP-related literature is classified as below.

LOHRASBINASAB ET AL.

FIGURE 2

—p trained
model .

Tammng ||
datase

= ————]
mini batch
_____/—\."
]

mini batch trained
- I - *
— model

mini batch
_J\

(B)

current NT data dispose

incoming NT data

= 11—
'
e,)

previous NT data

trained
model |

(€)

Data collection settings. (A) Batch Offline; (B) Batch incremental; (C) Online incremental (streaming)

TABLE 1 More popular features used in machine learning for networking

Feature granularity

Packet-level:

Content-based:

Time-based:

Connection-based:

Description and examples

Source IP address

Destination IP address

Source host number

Destination host number

Frame length

Frame number

Packet inter-arrival time

HTTP protocol used to submit data from client to server

Number of frames received by a unique destination in the last T seconds from the same source
Number of frames received by a unique source in the last T seconds from the same destination
The number of packets flowing from source to destination

The number of packets flowing from destination to source

LOHRASBINASAB ET AL. 9.0f20
WILEY

Scholar databases

Keywords Deletion
) / Deletion by title
Combination of: :
("Network traffic”, “Data IEEE Google L
flow ediction Scholar

Removing Deletion by Snowbollin Accepted
repetitions abstract 9 papers

ARIMA) ' :
Deletion by full

kEisewier Conferen? paper
\) \ A / J

FIGURE 3 The method adopted to refine the literature®®

. pr
forecasting, monitoring,
telemetry, “Machine

leaming >
ML, Online, Offiine, Active,
Batch, Streaming.
incremental, Learning,
Statistical,

Web of
Science

Science
Direct

NV

gLy

3.1 | Pure ML-based NTP solutions

Evaluation of performance and efficiency of ML-based methods is a significant part of the literature. LSTM is one of the
most widely used techniques in this field.

The survey by Alawe et al®® aims at Access and Mobility Management Function (AMF) in the 5G network. To this
end, two approaches, Feedforward neural network (FFNN) and LSTM are examined. The authors propose to use ML to
forecast the arrival time of requests from User Equipment (UE), and consequently, the scale-out/in process. This avoids
the rejection of requests and keeping the attach duration (how long do UE are connected to network resources) low. The
results indicate that LSTM outperforms FFNN in terms of prediction accuracy. The dataset is classified into 10 different
classes, based on the load and the number of AMFs needed. The first technique used for predicting the class of load of
the next period is FFNN. The second technique tested for predicting the average load of the upcoming period of time is
LSTM. Both networks are trained with the 60% dataset and then asked to predict the remaining 40%.The results indicate
that LSTM outperforms FFNN in terms of prediction accuracy.

Trinh et al*® have dedicated their work to present a network traffic prediction model in the LTE environment, using
the LSTM algorithm. The LSTM network consisting of multiple unified LSTM units is applied to the raw mobile traffic
data collected directly from the Physical Downlink Control CHannel (PDCCH) of LTE. By assuming NTP as a super-
vised multivariate problem, the proposed model aims at minimizing the prediction error with respect to the information
extracted from the PDCCH. This data gathering methodology and the multistep structure adopted for the predictive net-
work are emphasized as dedicated research aspects. According to comparison results, the composed model outperforms
ARIMA and FFNN models.

Pruning internal connections between NN neurons to diminish computational cost constitutes the idea underlying
the research by Hua et al.*’ Based on this, a heuristic architecture with sparse neural connections, called the Random
Connectivity Long Short-Term Memory (RCLSTM) is introduced, in which the complete (one-to-one) connection between
neural network neurons, as is in conventional LSTM, has given way to a random pattern of links between them. The
simulated model consists of a three-layer stack RCLSTM.

Wang et al®® puts forward a model that aims to improve cellular traffic prediction accuracy with limited real data and
support data privacy. The model is called (ctGAN- S2S) and consists of a cellular traffic generative adversarial network
and a sequence-to-sequence neural network, in which learning is fed by an arbitrary length of time-window from the
historical time-series data of cellular traffic. The augmentation model generates close-to-real cellular traffic data; thus,
eliminating the need for original data supports data protection and data privacy.

The main contribution of Vinayakumar et al® is to compare some nonlinear prediction methods, namely that of
FFNN, RNN, identity recurrent neural network (IRNN), gated recurrent unit (GRU), and LSTM (generally referred to
as RNN) in terms of performance in Traffic Matrix (TM) prediction in large networks under different experiments. The
arranged experiments in test scenarios help to identify the optimal network parameters and network structure of RNN.
The TM is passed by using the sliding window approach. The obtained results indicate the superiority of LSTM over other
models; meanwhile, GRU has relatively imposed less computational cost.

In considerable number of researches, Gaussian Process Regression (GPR) is the undergrounding leveraged technique.
The conducted research in Bayati et al®! is one among those who exploit GPR in this context. The proposed solution is

10 of 20 Wl LEY LOHRASBINASAB ET AL.

based on the Direct (or Parallel) strategy for multiple-step-ahead traffic prediction in which the entire process is divided
into H distinct models that are trained concurrently to conduct H-step-ahead time-series predicting. Each time-step fore-
casting is fed by the gained prediction in the previous time-step, as one of the input features. Subsequently, the prediction
error at a time-step (or the uncertainty in the feature vector) is propagated through the forecasts at the next time-step.
In order to tackle the error propagation, the paradigm has been investigated, indicating that the desired performance of
a multiple-step-ahead prediction is strictly depended on, and could be influenced by the classification of data at higher
levels.

Ensuring the QoS in the network in a way that simultaneously provides resource efficiency (bandwidth) requires an
accurate real-time estimation of the network’s future behavior. To this end, an online bandwidth allocation method based
on GPR has been proposed by Kim and Hwang.%2 The theorem that a stationary increase in the size of a given process
would lead to large-buffer asymptotics of the queue length process forms the basis of the proposed model for deriving the
proper bandwidth.

A combined solution to deal with complex network data flows is presented by Wang et al.%* The proposed solution
consists of a preprocessing step and a 2-fold prediction process using LSTM and GPR models. In the initial phase, the
data flow’s dominant periodic features are extracted through Fourier analysis, and then the LSTM model is applied to the
remaining small components. A complementary step adopting GPR is launched, estimating the residual components to
improve the prediction’s accuracy.

Poupart et al®* elaborate utilizing ML techniques to approximate each network flow’s size at its start, focused on
detecting elephant flows independent of source application or end host. The proposed estimation method benefits the
metadata exploited from the first few packets of a flow. In this regard, the authors explain three ML techniques, including
Gaussian processes, Gaussian Mixture Model with Bayesian Moment Matching, and neural networks to predict the flow
size based on existing historical data and online streaming data.

Mikaeil® proposes a method for near-time prediction of primary user (PU) channel state availability (ie, spectrum
occupancy) in Cognitive Radio Networks (CRN) using Bayesian online learning (BOL). Given that the nature of the
PUs channel state availability can also be considered a dual-states switching time series, the captured time-series repre-
senting the Pus channel state (ie, PU idle or PU occupied) are fed as an observations sequence into the BOL prediction
algorithm.

The primary use of cardinality estimation algorithms in computer networks is counting the number of distinct flows.
Cohen and Nezri® have investigated the application of flow cardinality estimation algorithms in SDN environments. their
focus was on common deficiencies faced by sampling methods, especially in adapting to changes in flow size distribu-
tion. Further, they have introduced and elucidated a framework which benefits from online ML, and to achieve the best
performance and accuracy, three popular linear regression ML algorithms, namely that of Stochastic Gradient Descent
(SGD), Recursive Least Squares (RLS), and Passive-Aggressive (PA), have been examined.

Cui et al®” discuss the Stochastic Online Learning (SOL) technique as a tailored model for that of environments
like Mobile Edge Computing (MEC), which can experience time-varying, stochastic traffic arrivals without the Markov
property. Among the multitude of articles, this paper is one of the few that addresses online learning from network behav-
ior. Unlike the majority of ML methods that rely on learning from the training data, SOL learns from network changes by
using SGD. This approach is aimed at establishing a trade-off between learning accuracy and learning time and increasing
network throughput.

Zhang et al® present an incremental deep computation model for wireless big data feature learning in IoT. The model
is constructed by stacking several incremental tensor auto-encoders (ITAE). To handle new arrival wireless samples,
two types of ITAEs, based on the learning strategy, are developed, namely the parameter-based incremental learning
algorithm (PI-TAE) and the structure-based incremental learning algorithm (SI-TAE). In facing new arrival samples, the
proposed model only needs to load the new samples to the memory to update the parameters and structure, respectively,
by PI-TAE and SI-TAE. This mechanism underlies this model’s capability to deal with wireless big data for feature learning
in real-time.

The cellular link bandwidth prediction in Long-Term Evolution (LTE) networks has been investigated by Yue et al.*
The authors have approached the problem by analyzing the correlations between various lower-layer information and the
link bandwidth. Thereupon, they propose a framework using a Random Forest-based prediction model, which through
an offline data feeding process, and exploiting the intrinsic capabilities of Random Forest, identifies the most important
features, and uses them to predict link bandwidth in real time.

Zhang et al’® have introduced an approach using Convolutional Neural Network (CNN) to collectively model spatial
and temporal dependence for cell traffic prediction. The key features of the proposed approach are considering the traffic

LOHRASBINASAB ET AL. 11 0f 20
WILEY

data as images, as well as utilizing a parametric matrix-based fusion method to estimate influence degrees of the spatial
and temporal dependence.

In a study by Pfulb et al,” the problem of estimating the expected bit-rate of network flows based on their metadata
has become a three-tier classification problem using a fully connected DNN with the ReLU activation function. Their
approach embraces three stages including data collection, data preparation, and data processing. In this approach, DNN
training is treated as a streaming problem by dividing the dataset into identical data blocks. The model is trained and
tested in a semi-streaming fashion applied on all blocks one by one such that all intended preparations being performed
block-wise.

To improve the self-management and active adjustment capabilities of base stations in wireless networks, by Li
et al’”? the temporal and spatial correlation of traffic data is addressed. To this end, they have composed a deep
network-based framework of network traffic prediction using CNN and LSTM, constituted of three main units by which
the spatio-temporal correlation of wireless network traffic data can be captured effectively.

The first part of Table 2 shows the list of the reviewed literature in this category.

3.2 | Pure statistical-based NTP solutions

The following articles mainly deal with the problem using statistical techniques such as ARIMA family and their
innovative combinations.

The conducted research by Tran et al’® is a study on different varieties of exponential smoothing method namely
single, double, Holt-Winters No Seasonal, and Holt-Winters Additive Seasonal (that are categorized as simple exponential
smoothing methods [S-ESM]), and Error, Trend, Seasonal exponential smoothing method (ETS-ESM) in terms of the
effect of their smoothing factors on accuracy of short-term NTP, as well as their suitability for dealing with voice and data
over the cellular network. The results show that HWMS outperform other methods.

Rafsanjani et al*? proposed a method called QARIMA as an extension of ARIMA to predict the queues in packet for-
warders in networks. Their proposed method determine the last trend of the behavior of the queue and make a linear
regression model to predict. They showed that their proposed method can predict the delay of packets with a high accu-
racy. Shahraki et al’* integrated and extended the ideas proposed in References 75 and 76 to propose an online network
behavior analysis technique for IoT networks. The proposed technique analyses the data gathered from IoT networks to
determine and predict important changes that can cause inefficiencies.

Mehdi et al*6 have incorporated fuzzy regression and ARIMA models (Fuzzy-ARIMA) in promising to take both meth-
ods’ advantages. Besides, to perform real-time predictions based on historical data, they have adopted a sliding window
technique called SOFA ,which reduces the effect of input data fluctuations over time.

In promising to allocate bandwidth efficiently in SDNs, Bouzidi et al,”” introduce a heuristic rules placement algorithm
in which an Online-Learning module, designated upon the linear regression, is utilized for the network delay pre-
diction. The overall framework of the proposed solution encompasses the formulation of the flow rules placement as
an Integer Linear Program (ILP) targeting to minimize the total network delay, And finally, to solve the defined ILP
problem through an excogitated algorithm, that leads to reducing the time complexity and enhancing the estimation
accuracy.

The second part of Table 2 shows the list of the reviewed literature in this category.

3.3 | Hybrid NTP solutions

In addition to the pure statistical- and ML- based NTP techniques, there are some proposed models that use both of these
approaches simultaneously called Hybrid solutions.

Xu et al®® have presented an extension of Reference 78, proposing an architecture for traffic prediction in the Cloud
radio access network (C-RAN) with the distributed remote radio heads (RRHs) and the centralized Baseband Units BBUs
pool bearing lots of parallel Baseband Unit (BBU)s. In such an architecture, an alternating direction method of multipliers
(ADMM) and the cross-validation empowered Gaussian Process (GP) framework is performed in which, the parallel
BBUS’ contribute in training process and the local predictions would be incorporated altogether via cross-validation to
create the final prediction. retaining the trade-off between accuracy and time consumption, and scalability are the two
focal claims in this method. Bouzidi et al,” have composed an extension to Reference 77 with a different experimental

12 of 20 Wl LEY

LOHRASBINASAB ET AL.

TABLE 2 Comparing existing works on Network Traffic Prediction (NTP)

References Network

Purpose

Pure ML-based NTP solutions

59

46

47

60

20

61

62

63

64

65

66

67

68

69

70

5G

LTE

Wireless
Network

5G

Cellular
Network

High-speed
networks

Internet

Cellular
Network

Cellular
Network

CRN

SDN- and
NFV-based
networks

Mobile edge
network

IoT

LTE

Cellular
network

Access and mobility
management

Optimal resource
allocation

Reducing the computing
cost of LSTM for NTP

Data privacy
protection-aware and
accurate prediction
with few real data

Traffic matrix estimation

Addressing the error
propagation

QoS, and resource
efficiency

Improving the prediction
performance

Flow size estimation

Predicting the near future
of spectrum occupancy

Cardinality estimation in
the field of network
measurement

Minimizing the
time-averaged
operational cost of MEC

Real-time feature learning

Real-time bandwidth
prediction

Modeling the nonlinear
dynamics of wireless
traffic

Tr.

f/b

f/b

f/b

f/s

f/s

f/b

n/s

f/b

f/b

n/s

n/b

n/s

n/s

f/b

f/b

Approach

LSTM and FFNN

LSTM

LSTM

LSTM

LSTM, FENN, RNN,
IRNN, GRU

GPR

GPR

LSTM, GP

GPR, NN

BOL

SGD, RLS, and PA

SGD

ITAE

Random Forest

CNN

Description

Comparison of LSTM and FFNN in predicting
network traffic state.

To Predict network traffic by a multi-step
LSTM model, using the raw data collected
from physical channel

Computational-cost-reduction by means of
reconstructing LSTM network in form of a
random sparse graph

A NTP model called ctGAN-S2S, based on data
augmentation.

Analyzing the performance of various RNNs
in forecasting TM

Multiple-step-ahead traffic prediction by using
a GPR framework which models the traffic
at different timescales

Online bandwidth allocation method based on
GPR

Two LSTM and GPR modules jointly are
adopted to improve the prediction
performance

Estimating the flow size and separating
elephant and mice flows using online ML
techniques based on historical data as well
as online streaming data under hybrid
learning settings.

Modeling the PU channel state indicator
sequence as a time series, of which changes
are predicted in advance by the proposed
BOL model

A sampling-based framework for adaptive
cardinality estimation utilizing sampling
and online learning

A SGD -based faramework for online learning
from the changes of the network without
needing training data

An incremental deep computation model
consisting of two incremental tensor
auto-encoders, that is, parameter-based and
structure-based incremental learning
algorithms

A ML framework (called LinkForecast) is
developed that utilizes both past throughput
and lower-layer information to predict link
bandwidth in real time.

Treating traffic data as images, and applying
the influence degrees of lagged spatial and
temporal data to the prediction

(Continues)

LOHRASBINASAB ET AL.

TABLE 2 (Continued)

References Network

72 Cellular
network

71 Cellular
network

Purpose

Spatiotemporal modeling
and prediction of
network traffic

Flow size estimation

Pure statistical-based NTP solutions

73 Cellular
network

22 TCP/IP

74 Ad hoc IoT
networks

75 Ad hoc IoT
networks

76 IoT

36 Cloud
network

77 SDN-based
network

Hybrid NTP Solutions

50 C-RAN

79 SDN-based
networks

80 IIoT

81 Cellular
network

investigating the

smoothing factor impact

QoS-aware routing

Trend change detection

Trend change detection

Contextual outliers
detection

Reducing dpendence on
historical data

QoS-aware routing

Large-scale NTP in a

cost-efficient manner

QoS-aware routing

Short-term traffic
prediction in Real-time

forecasting network-wide
traffic behavior

f/s

f/b

f/b

f/s

n/s

f/s

f/s

f/s

n/s

f/s

n/s

f/s

f/b

Approach
CNN, LSTM

DNN

S-ESM and
ETS-ESM
methods

ARIMA

Online data
analysis by
dynamic-sliding
window

Data analysis

Data analysis

Fuzzy-ARIMA

Linear regression

GP and ADMM

LSTM and DRL

RL,
MCL,Q-learning,
and KL

CNN, LSTM, and
DWT

Wl LEY 13 of 20

Description

A compound architecture to extract and
applying the spatiotemporal correlation of
network data using CNN multi-layer stack,
LSTM -based temporal information
processing unit, and an attention module

Altering the regression problem of estimating
flows bit-rate values to a three-level
classifying task, under a semi-streaming
fashion setting.

Different varieties of exponential smoothing
methods are investigated based on their
smoothing factor impact on NTP accuracy.

The delay of packets is predicted based on the
last trend extracted from the queue’s
behavior on the router

A statistical light-weight Trend Change
Detection (TCD) method in an online
manner

Recognizing majore trend’s change points in a
Poisson distribution dataset through a
recursive matrix-based model

Fragmenting time-series dataset into segments
based on trend change points to discover the
contextual outliers

The statistical Fuzzy-ARIMA model conducts
short-term traffic prediction in real time,
based on the historical data blocks provided
by a sliding window

Applying linear regression-based online
learning for dynamically predict the latency,
in order to updating the flow rules in
network devices

A C-RAN-based architecture on which, an
ADMM and cross-validation empowered
scalable GP framework could be performed.

Forecasting the future network traffic and
detecting the optimal route, dynamically by
using a DRL agent.

Real-time prediction of short-term
time-varying features of network traffic via a
RL approach, as well as adopting a
dictionary learning algorithm to reduce the
complexity of the proposed model

Temporal decomposition of the original TM
via a wavelet transform, as well as extracting
spatial patterns and long-term temporal
features correspondingly by CNN, and an
input sequence aware LSTM.

(Continues)

LOHRASBINASAB ET AL.

14 of 20 Wl LEY

TABLE 2 (Continued)

References Network Purpose Tr. Approach Description
82 Cellular To predict cell-station f/b K-means clustering, Decomposing the clustered network traffic
network traffic volumes Wavelet flows into high and low frequencies to
Tramsform, and facilitate the prediction process.
RNN (Elman
NN)
83 Cellular To improve network traffic f/b LSTM, ANFIS, and Accelerating the performance of prediction
network prediction by using FCM models by using preprocessing and
sequence mining clustering the training data
Comparative works
78 Cellular Comparison in terms of f/s GP,SARIMA,and Ina 2-fold process, the kernel is designed
networks complexity and sinusoid based on captured traffic patterns. As well
accuracy superposition as leveraging the Toeplitz structure of the
covariance matrix, the computational
complexity of hyperparameter learning is
decreased.
84 Cellular Long- and short-term f/b Auto regression, Traffic pattern forecasting, based on big data,
network traffic forecasting NN, and GP ML, and network KPIs
85 Wireless Decreasing the training f/b LSTM, SARIMA Studying the impact of the training-related
network overhead without factors on accuracy and overhead through
dilution of accuracy camparison of two approaches
43 LTE-A Comparison of approaches f/b LSTM, ARIMA, The survey highlights outperforming of
in terms of accuracy FFNN proposed LSTM model to FFNN and
and learning time ARIMA in terms of prediction performance
and training time efficiency
86 Wireless Real-time NTP f/b LV, MA, DES, AR, A comprehensive comparison, and analyzing
network ARMA, ANN, three main classes of predictors from
and Wavelet various aspects
87 Cellular Forecasting TM in large f/s LSTMand ARIMA Model parameters optimization to forecast
network networks large scale TMs
27 Internet Comparing various usage f/b FARIMA, Comparison between distict schemes of
schemes of models FARIMA/GARCH, applying composed approaches to dynamic
and NN bandwidth allocation task
88 Internet Comparing various usage f/b FARIMA, NN FARIMA and MLP models are used in a

schemes of models framework to compare different application
methods of traffic prediction, including

individual, hybrid, and selective schemes

Abbreviations: ADMM, alternating direction method of multipliers; AR, autoregressive; ARMA, autoregression moving average; ARIMA, Autoregressive
integrated moving average; BOL, Bayesian online learning; CNN, convolutional neural network; CRN, cognitive radio networks; DES, double exponential
smoothing; DRL, deep reinforcement learning; DNN, Deep Neural Networks; DWT, discrete wavelet transform; ETS-ESM, error, trend, seasonal
exponential smoothing method; FARIMA, fractional autoregressive integrated moving average; FCM, fuzzy-C-means; FFNN, feedforward neural network;
GARCH, generalized autoregressive conditional heteroskedasticity; GPR, Gaussian process regression; GRU, gated recurrent unit; IoT, Internet of Things;
IRNN, identity recurrent neural network; ITAE, incremental tensor auto-encoders; KL, Kullback-Leibler; LSTM, long short-term memory; LV, last value;
MYV, moving average; NFV, network function virtualization; PA, passive-aggressive; QoS, quality of service; RL, reinforcement learning; RLS, recursive least
squares; RNN, recurrent neural network; S-ESM, simple exponential smoothing methods; SARIMA, Seasonal-ARIMA; SDN, software-defined network;
SGD, stochastic gradient descent; Tr., Training: Online (n) or Offline (f) / Batch (b) or Stream (s)

setting in terms of the adopted learning algorithm, where the Linear Regression model has given way to an LSTM-based
model.

Nie et al® have modeled the NTP problem in the Intelligent Internet of Things (IToT) ecosystem as a Markov
decision process. In promising to extract short-term time-varying features of network traffic in real-time, and aim-
ing at minimizing the training data size, it proposes a RL-based approach consisting of Monte-Carlo learning (MCL),
Q-learning, and Kullback-Leibler (KL) divergence. Moreover, to deal with degrading impact of the vast state space of

LOHRASBINASAB ET AL. 15 0f 20
WILEY

Monte-Carlo-Q-learning in IIoT ecosystems, a greedy adaptive dictionary learning algorithm is proposed that reduces
the computational complexity. To discover future network-wide traffic behavior, Zhao et al®! introduce a TM prediction
method, coined WSTNet, a complementary combination of CNN and LSTM, and utilizing Discrete Wavelet Transform
(DWT) as a feature engineering tool. The method is comprised of three phases. First, at the preprocessing step using
DWT, the original TM series is decomposed into multilevel time-frequency subseries at various timescales; second, to
draw out the spatial patterns of traffic flows between endpoints, CNN without pooling is leveraged. Finally, the LSTM
with self-attention technique is adopted to extract the TM series’ long-term temporal dependencies.

Zang et al®? have composed K-means clustering, Wavelet decomposition, and Elman neural network (ENN) in a
framework to predict cell-station traffic volumes by using the spatial-temporal information of cellular traffic flow. After
clustering the multiple BS traffic flows, the integrated time series are decomposed into high and low frequencies through
Wavelet transform. This creates new subdivisions of data with higher stability and more tractable features facilitating the
prediction process.

The main idea of Aldhyani et al®3 is to make the adopted ML models robust by using specific techniques. It proposes
a 2-fold process to improve the performance of LSTM and Adaptive neuro fuzzy inference system (ANFIS) models in
predicting network traffic. In the first step, the data is preprocessed by using the weighted exponential smoothing model
then, the historical data is clustered by non-crisp Fuzzy-C-Means (FCM). The presented results show that identifying and
classifying existing patterns of data can improve the performance of LSTM and ANFIS models in forecasting the network
traffic behavior.

The third part of Table 2 shows the list of the reviewed literature in this category.

3.4 | Comparative works

Finding a good prediction solution by comparing the characteristics, shortcomings, and strengths of statistical- and
ML-based methods has formed one of the areas of interest in researches related to this discipline.

Xu et al”® have established a wireless traffic prediction model by applying the GP method based on real 4G traffic
data. Observation of network traffic to capture periodic trend and dynamic deviations of data, as well as leveraging the
Toeplitz structure in the covariance matrix to reduce the computational complexity of hyperparameter learning are the
two pillars of the proposed method. The proposed model claims a significant reduction in computational complexity, and
high accuracy.

In order to highlight the magnitude of the impact of network Key Performance Indicators (KPIs) on prediction accu-
racy, a comparative research by Le et al® has been conducted comprising two different settings. The first one addresses
the time-series traffic forecasting mainly drawn on exploiting the traffic’s historical traces, and the second involves with
traffic’s KPIs prediction through analyzing the relationship between KPIs and future patterns of network traffic. In this
analysis, the two main criteria considered are Mutual Information (MI) and Relative Mutual Information (RMI). The
performance of three algorithms, including GP, ANN, and AR, has been examined in both settings, reflecting a better
performance and accuracy from the GP.

The research by Soheil et al,®> beyond a solely theoretical basis, addresses some practical aspects of training and
deployment of ML models for predicting real-world network data streams in telemetry systems, issues that challenge
applying an ML model and achieving the expected accuracy. To this end, various training-related aspects, including the
volume, freshness, and selection of training data, have been examined to show their impact on the accuracy and overhead
(and thus feasibility) of both adopted models, namely LSTM and SARIMA. Further, utilizing separate models for different
segments of a data stream is explored as well. Drawn on the achieved results, the article concludes that any network
modeling often needs to be customized based on its target application for a specific data stream from a particular network.

Jaffry*® introduces a LSTM-based model for traffic prediction in the Long Term Evolution-Advanced (LTE-A) network.
It has been compared with similar paradigms based on ARIMA and FFNN in terms of performance and accuracy. The
results of this study indicate the superiority of LSTM over FFNN and ARIMA. In addition, the efficiency of LSTM in
working with small amounts of training data is another advantage mentioned for this model.

A comprehensive comparison between three predictor classes, focusing on considering some initiative criteria, is pro-
ceeded by Faisal et al.®® The compared techniques are Last Value (LV), Windowed MA, Double Exponential Smoothing
(DES), AR, ARMA, ANN-based predictors, and wavelet-based predictors. Besides considering the accuracy, as seen in
other similar studies, this study also investigates overhead in terms of both computation cost and power consumption. Fur-
ther, employing an initiative synthesized metric called Error Energy Score (EE-Score), accuracy and energy consumption

16 of 20 Wl LEY LOHRASBINASAB ET AL.

have been combined into a single global performance score for comparing predictors. Among the article’s conclusions,
this point is noteworthy that contextual conditions (ie, network characteristics) determine the proper predictor.

Azzouni and Pujolle®” have suggested an LSTM framework for predicting TM in large networks. The potency of
RNNs for sequence modeling tasks stems from their architectural characteristics. Having a cyclic connection over time
enables them to store the activation from each time step in an internal state indicator, which forms a temporal mem-
ory. To establish continuous data feeding and learning required for real-time prediction of the current traffic vector Xt,
a sliding window technique has been adopted which provides a fixed number of previous time-slots to learn of from. In
Reference 27 by Chriskatris and Daskalaki, under different application strategies, including single, hybrid, selective, and
combined, three models namely FARIMA, FARIMA/GARCH, and NN and their compositions have been applied to some
schemes of dynamic bandwidth allocation for video transmission through network. The comparison outcomes highlight
the predictive capability and cost effectiveness of a hybrid model consisted of FARIMA/GARCH, and NN.

In Reference 88 by Chriskatris and Daskalaki, individual, hybrid, and selective usage schemes of models for composing
prediction approaches are examined. To this end, FARIMA and MLP models and their hybridization are used, while in
the selective scheme, swapping between FARIMA and NN models is proceeded based on the White NN test considering
the nonlinearity of traffic data. Outcomes indicate the outperforming of the hybris method.

The last part of Table 2 shows the list of reviewed literature in this category by comparing them in different aspects,
for example, network type, purpose and approach.

4 | CHALLENGES OF EXISTING SOLUTIONS IN NTP

Given the inherent complexity of working with big data, especially in network environments, there are many challenging
issues that need further investigation. In this section, some open challenges in the field of NTP will be highlighted.

+ Lack of specialized theoretical framework: The ML methods used in NTP address prediction needs in the general
context of time-series-based problem solving. However, in practice, the impact of numerous environmental factors,
such as topology, speed, heterogeneity, etc., on the performance of ML models are very significant. In this regard,
establishing a dedicated and promising theoretical framework for the application of ML in computer networks is one
of the basic needs in this area.

« Ground truth: ML techniques are extremely correlated to what is known as Ground-Truth (GT). GT reflects the abun-
dance of labeled data as well as the validity of the labels assigned to the observations. In the main applications of ML,
regression, and classification, the GT extracted from the training data is the basis for comparison and inference to esti-
mate the new data labels and, in data categorization, it is used to evaluate the accuracy of model performance. One
of the main challenges involved, especially in dynamic environments such as network traffic, is the scarcity of labeled
data or delays in accessing labeled data; a situation in which the semi-supervised strategy becomes relevant. PCA tech-
niques, labeling manually or synthetically, or Active-Learning techniques are among the measures that could be taken
to overcome the problem.

+ Representative datasets: Shortage of public and representative datasets to train ML models is a fundamental
challenge network-related prediction scenarios.?® Due to the data-driven nature of ML solutions, lack of proper repre-
sentative data or poor quality can lead to reduced accuracy. On the other hand, gaining access to required representative
data is often subject of strict constrains.'?

« Accuracy versus speed: Since increasing accuracy of ML techniques may lead to higher computational load in some
cases as well as time, any improvement in accuracy will come at the cost of slowing down the training of the ML models
and vice versa. Finding the equilibrium point between these two parameters and using hybrid methods for NTP while
the model is being (re)-trained is recommended in this regard.'?

« Retraining: In dynamic environments, due to constant changes, model retraining is essential to maintain valid-
ity. Unlike static environments with a limited specific dataset, allowing model retraining at any time and retraining
dynamic models involve complex technical problems. Even if available in terms of access to previous data, the task
will not be feasible with conventional static methods due to high computational cost. In online environments such as
computer networks, as the acceleration of change increases, the barriers to model retraining become more complex.
One common solution is to use some incremental methods for retraining in which the model is only updated with new
observations.

LOHRASBINASAB ET AL. 17 0f 20
WILEY

« The Theory of Networks challenge: Introduced by David Meyer in 2017,'2 this concept explains that the trained
models by public datasets cannot be used in real-world applications. In this case, each ML model should be trained sep-
arately for each network in a real-world application. Considering this challenge, ML methods with very high training
time are not appropriate to use in NTP models as the network can not be left unattended for a long period of time.

« Deployment issues: In modern prevalent frameworks for software development and support, such as DevOps and
DevSecOps, the software life cycle in its traditional form has been fundamentally transformed and influenced by con-
cepts such as CI/CD, delivery flow, workflow, etc. These frameworks would impose specific rules, automations, and
restrictions to the operating environment regarding testing and deployment of software updates and changes.”® As
such, deploying online-generic NTP models that during test phase need to access to real-world network data is an
important challenge. In such environments, the criteria for evaluation of new updates and deployment licensing is
subject to passing a comprehensive test set to ensure that each component and the whole end-to-end workflow is not
degraded through new deployments. Due to the dynamic nature of live streaming data and the data-driven structure of
online-generic NTP approaches, gaining accurate and reliable results through testing, if not impossible, but is notori-
ously difficult.”! Although the classical AutoML accelerates the development of ML solutions, it does not address those
issues concerned in ML systems’ deployment. Auto-Adaptive Machine Learning (AAML) is a notion composed by*!
to respond to this problem. It proposes an architecture for ML systems lying in the bed of continual learning concept,
aiming to address the aforementioned challenge by continuous update of deployed models.

5 | CONCLUSION

Network Traffic Prediction is considered as an important solution to address the various challenges in networking, for
example, resource provisioning, congestion detection, and fault tolerance. The field of NTP is still in infancy as different
models and techniques are used to predict the network traffic depending on network’s type and purpose. Although ML
techniques are widely used for NTP, there are some challenges that should be addressed to improve their efficiency in case
of NTP, for example high computational cost, training, and retraining difficulties, Intrinsic large volatility of data, etc. On
the other hand, statistical-based techniques are used traditionally for network traffic prediction; however they suffer from
various challenges, for example, the excessive volume of needed historical data and their inherent constraints to deal with
nonstationary time-series. In this paper, we have surveyed both ML- and statistical-based techniques for NTP. Our study
shows that most existing solutions are not efficient in real-world applications due to the special characteristics of network
data processing in modern networking technologies such as Theory of Networks, retraining challenge and ground truth.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

REFERENCES

1. Shahraki A, Abbasi M, de Piran M, Chen M, Cui S. A comprehensive survey on 6g networks: applications, core services, enabling
technologies, and future challenges; 2021. arXiv preprint arXiv:2101.12475.

2. Shahraki A, Taherkordi A, Haugen @, Eliassen F. A survey and future directions on clustering: from WSNs to IoT and modern networking
paradigms. IEEE Trans Netw Serv Manag. 2020;18(2):2242-2274.

3. Shahraki A, Kaffash DK, Haugen O. A review on the effects of IoT and smart cities technologies on urbanism. Proceedings of
the 2018 South-Eastern European Design Automation, Computer Engineering, Computer Networks and Society Media Conference
(SEEDA_CECNSM); 2018:1-8.

4. Horwitz L. The future of IoT miniguide: the burgeoning IoT market continues Technical report. CISCO, San Jose, CA; 2019.

5. Shahraki A, Geitle M, Haugen @. A comparative node evaluation model for highly heterogeneous massive-scale Internet of Things-mist
networks. Trans Emerg Telecommun Technol. 2020;31(12):e3924.

6. Mohammadi M, Al-Fugaha A, Sorour S, Guizani M. Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun Surv
Tutor. 2018;20(4):2923-2960.

7. D’Alconzo A, Drago I, Morichetta A, Mellia M, Casas P. A survey on big data for network traffic monitoring and analysis. IEEE Trans Netw
Serv Manag. 2019;16(3):800-813. doi:10.1109/TNSM.2019.2933358

8. Abbasi M, Shahraki A, Taherkordi A. Deep learning for network traffic monitoring and analysis (NTMA): a survey. Comput Commun.
2021;170:19-41.

9. Kong F, Li J, Jiang B, Zhang T, Song H. Big data-driven machine learning-enabled traffic flow prediction. Trans Emerg Telecommun
Technol. 2019;30(9):e3482.

18 of 20 Wl LEY LOHRASBINASAB ET AL.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.
35.

36.

37.

38.

39.

40.

Shahraki A, Abbasi M, Taherkordi A, Kaosar M. Internet traffic classification using an ensemble of deep convolutional neural net-
works. Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility;
2021:38-43; IEEE.

Abbasi M, Shahraki A, Piran MJ, Taherkordi A. Deep reinforcement learning for QoS provisioning at the MAC layer: a survey. Eng Appl
Artif Intell. 2021;102:104234.

Ayoubi S, Limam N, Salahuddin MA, et al. Machine learning for cognitive network management. IEEE Commun Mag. 2018;56(1):158-165.
doi:10.1109/MCOM.2018.1700560

Aroussi S, Mellouk A. Survey on machine learning-based QoE-QoS correlation models. Proceedings of the 2014 International Conference
on Computing, Management and Telecommunications, ComManTel 2014:200-204; IEEE.

Bui N, Cesana M, Hosseini SA, Liao Q, Malanchini I, Widmer J. A survey of anticipatory mobile networking: context-based classification,
prediction methodologies, and optimization techniques. IEEE Commun Surv Tutor. 2017;19(3):1790-1821.

Jiang M, Wu C-M, Zhang M, Hu D-m. Research on the comparison of time series models for network traffic prediction. Acta Electron Sin.
2009;37(11):2353-2358.

Oliveira TP, Barbar JS, Soares AS. Computer network traffic prediction: a comparison between traditional and deep learning neural
networks. Int J Big Data Intell. 2016;3(1):28-37.

Yin X, Wu G, Wei J, Shen Y, Qi H, Yin B. A comprehensive survey on traffic prediction; 2020. arXiv preprint arXiv:2004.08555.

Malik S, Ullah I, Kim DH, Lee KT. Heuristic and statistical prediction algorithms survey for smart environments. J Inf Process Syst.
2020;16(5):1196-1213.

Boutaba R, Salahuddin MA, Limam N, et al. A comprehensive survey on machine learning for networking: evolution, applications and
research opportunities. J Internet Serv Appl. 2018;9(1):16. d0i:10.1186/s13174-018-0087-2

Vinayakumar R, Soman KP, Poornachandran P. Applying deep learning approaches for network traffic prediction. Proceedings of the
2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI); 2017:2353-2358; IEEE.
Nikravesh AY, Ajila SA, Lung CH, Ding W. Mobile network traffic prediction using MLP, MLPWD, and SVM. Proceedings of the 2016
IEEE International Congress on Big Data (BigData Congress); 2016:402-409; IEEE.

Rafsanjani MK, Rezaei A, Shahraki A, Saeid AB. QARIMA: a new approach to prediction in queue theory. Appl Math Comput.
2014;244:514-525.

Montgomery DC, Jennings CL, Kulahci M. Introduction to Time Series Analysis and Forecasting. Hoboken, NJ: John Wiley & Sons; 2015.
Krishnaswamy N, Kiran M, Singh K, Mohammed B. Data-driven learning to predict wan network traffic. Proceedings of the 3rd
International Workshop on Systems and Network Telemetry and Analytics; 2020:11-18; ACM, New York, NY.

Medhn S, Seifu B, Salem A, Hailemariam D. Mobile data traffic forecasting in UMTS networks based on SARIMA model: the case of Addis
Ababa, Ethiopia. 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017; 2017:285-290. 10.1109/AFRCON.
2017.8095496

AsSadhan B, Zeb K, Al-Muhtadi J, Alshebeili S. Anomaly detection based on LRD behavior analysis of decomposed control and data
planes network traffic using SOSS and FARIMA models. IEEE Access. 2017;5:13501-13519. doi:10.1109/ACCESS.2017.2689001

Katris C, Daskalaki S. Dynamic bandwidth allocation for video traffic using FARIMA-based forecasting models. J Netw Syst Manag.
2018;27(1):39-65. d0i:10.1007/S10922-018-9456-1

Dengen N. Comparison of SARIMA, NARX and BPNN models in forecasting time series data of network traffic. Proceedings of the 2016
2nd International Conference on Science in Information Technology (ICSITech); 2016:264-269.

Hong WC. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput Appl.
2012;21(3):583-593.

Biernacki A. Improving quality of adaptive video by traffic prediction with (F)ARIMA models. J Commun Netw. 2017;19(5):521-530. doi:10.
1109/JCN.2017.000083

Nielsen A. Practical Time Series Analysis: Prediction with Statistics and Machine Learning. Sebastopol, CA: O’Reilly Media, Inc.; 2019.
Andrysiak T, Saganowski L, Maszewski M, Marchewka A. Detection of network attacks using hybrid ARIMA-GARCH model. Adv Intell
Syst Comput. 2018;582:1-12.

Engle R. GARCH 101: the use of ARCH/GARCH models in applied econometrics. J Econ Perspect. 2001;15:157-168. doi:10.1257/JEP.15.4.
157

Bollerslev T. Generalized autoregressive conditional heteroskedasticity. J Econ. 1986;31(3):307-327. d0i:10.1016/0304-4076(86)90063- 1
Chen H, Zhang J, Tao Y, Tan F. Asymmetric GARCH type models for asymmetric volatility characteristics analysis and wind power
forecasting. Protect Control Modern Power Syst. 2019;4:1-11. doi:10.1186/S41601-019-0146-0

Mehdi H, Pooranian Z, Vinueza Naranjo PG. Cloud traffic prediction based on fuzzy ARIMA model with low dependence on historical
data. Trans Emerg Telecommun Technol. 2019;e3731. doi:10.1002/ett.3731

Hajirahimi Z, Khashei M. Hybrid structures in time series modeling and forecasting: a review. Eng Appl Artif Intell. 2019;86:83-106. doi:10.
1016/j.engappai.2019.08.018

Le Duc T, Leiva RG, Casari P, Ostberg PO. Machine learning methods for reliable resource provisioning in edge-cloud computing: a survey.
ACM Comput Surv. 2019;52(5):1-39. doi:10.1145/3341145

Alsheikh MA, Niyato D, Lin S, Tan H-P, Han Z. Mobile big data analytics using deep learning and apache spark. IEEE Netw.
2016;30(3):22-29.

Shahraki A, Abbasi M, Taherkordi A, Jurcut AD. Active learning for network traffic classification: a technical study. IEEE Trans Cognit
Commun Netw. 2021.

LOHRASBINASAB ET AL. 19 0f 20
WILEY

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

68.

69.

70.

71.

72.

Yousefpour A, Fung C, Nguyen T, et al. All one needs to know about fog computing and related edge computing paradigms: A complete
survey. J Syst Archit. 2019;98:289-330.

Park J, Samarakoon S, Bennis M, Debbah M. Wireless network intelligence at the edge. Proc I[EEE. 2019;107(11):2204-2239. doi:10.1109/
JPROC.2019.2941458

Jaffry S. Cellular traffic prediction with recurrent neural network; 2020. arXiv preprint arXiv:2003.02807.

Chen M, Challita U, Saad W, Yin C, Debbah M. Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE
Commun Surv Tutor. 2019;21(4):3039-3071. doi:10.1109/COMST.2019.2926625

Zhang X, You J. A gated dilated causal convolution based encoder-decoder for network traffic forecasting. IEEE Access. 2020;8:6087-6097.
doi:10.1109/ACCESS.2019.2963449

Trinh HD, Giupponi L, Dini P. Mobile traffic prediction from raw data using LSTM networks. Proceedings of the IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC; 2018:1827-1832.

HuaY, Zhao Z, Li R, Chen X, Liu Z, Zhang H. Deep learning with long short-term memory for time series prediction. [EEE Commun Mag.
2019;57(6):114-119. d0i:10.1109/MCOM.2019.1800155

He Q, Moayyedi A, Dan G, Koudouridis GP, Tengkvist P. A meta-learning scheme for adaptive short-term network traffic prediction. IEEE
J Select Areas Commun. 2020;38(10):2271-2283. doi:10.1109/JSAC.2020.3000408

WenJ, Sheng M, Li J, Huang K. Assisting intelligent wireless networks with traffic prediction: exploring and exploiting predictive causality
in wireless traffic. IEEE Commun Mag. 2020;58(6):26-31. doi:10.1109/MCOM.001.1900211

XuY,YinF, XuW, Lin J, Cui S. Wireless traffic prediction with scalable Gaussian process: framework, algorithms, and verification. IEEE
J Select Areas Commun. 2019;37(6):1291-1306. doi:10.1109/JSAC.2019.2904330

Watkins Christopher JCH, Dayan P. Technical note: Q-learning. Mach Learn. 1992;8(3):279-292. doi:10.1023/A:1022676722315

XieJ, Yu FR, Huang T, et al. A survey of machine learning techniques applied to software defined networking (SDN): research issues and
challenges. IEEE Commun Surv Tutor. 2018;21(1):393-430.

Kulin M, Kazaz T, De Poorter E, Moerman I. A survey on machine learning-based performance improvement of wireless networks: PHY,
MAC and network layer. Electronics. 2021;10(3):318.

Xu Z-X, Cao L, Chen X-L, Li C-X, Zhang Y-L, Lai J. Deep reinforcement learning with sarsa and q-learning: a hybrid approach. IEICE
Trans Inf Syst. 2018;101(9):2315-2322.

Gepperth A, Hammer B. Incremental learning algorithms and applications. Proceedings of the European symposium on artificial neural
networks (ESANN), ESANN; 2016.

Kuhn M, Johnson K. Applied Predictive Modeling. New York, NY: Springer; 2013.

Narudin FA, Feizollah A, Anuar NB, Gani A. Evaluation of machine learning classifiers for mobile malware detection. Soft Comput.
2016;20(1):343-357.

Abbasi M, Shahraki A, Barzegar HR, Pahl C. Synchronization techniques in “device to device-and vehicle to vehicle-enabled” cellular
networks: a survey. Comput Electr Eng. 2021;90:106955.

Alawe I, Ksentini A, Hadjadj-Aoul Y, Bertin P. Improving traffic forecasting for 5G core network scalability: a machine learning approach.
IEEE Netw. 2018;32(6):42-49. doi:10.1109/MNET.2018.1800104

Wang Z, Hu J, Min G, Zhao Z, Wang J. Data augmentation based cellular traffic prediction in edge computing enabled smart city. IEEE
Trans Ind Inform. 2020;17(6):4179-4187. doi:10.1109/tii.2020.3009159

Bayati A, Nguyen KK, Cheriet M. Multiple-step-ahead traffic prediction in high-speed networks. IEEE Commun Lett.
2018;22(12):2447-2450. d0i:10.1109/LCOMM.2018.2875747

Kim J, Hwang G. Prediction based efficient online bandwidth allocation method. IEEE Commun Lett. 2019;23(12):2330-2334. doi:10.1109/
LCOMM.2019.2947895

Wang W, Zhou C, He H, Wu W, Zhuang W, Shen XS. Cellular traffic load prediction with LSTM and Gaussian process regression.
Proceedings of the IEEE International Conference on Communications; 2002; IEEE Institute of Electrical and Electronics Engineers Inc.
Poupart P, Chen Z, Jaini P, et al. Online flow size prediction for improved network routing. Proceedings of the International Conference
on Network Protocols, ICNP; 2016; IEEE.

Mikaeil AM. Bayesian online learning-based spectrum occupancy prediction in cognitive radio networks. ITU J ICT Discov. 2017;(1):1-6.
Cohen R, Nezri Y. Cardinality estimation in a virtualized network device using online machine learning. IEEE/ACM Trans Netw.
2019;27(5):2098-2110. d0i:10.1109/TNET.2019.2940705

Cui Q, Gong Z, Ni W, et al. Stochastic online learning for mobile edge computing: learning from changes. IEEE Commun Mag.
2019;57(3):63-69. d0i:10.1109/MCOM.2019.1800644

Zhang Q, Yang LT, Chen Z, Li P. Incremental deep computation model for wireless big data feature learning. IEEE Trans Big Data.
2019;6(2):248-257. d0i:10.1109/tbdata.2019.2903092

Yue C,Jin R, Suh K, Qin Y, Wang B, Wei W. LinkForecast: cellular link bandwidth prediction in LTE networks. IEEE Trans Mob Comput.
2018;17(7):1582-1594. d0i:10.1109/TMC.2017.2756937

Zhang C, Zhang H, Yuan D, Zhang M. Citywide cellular traffic prediction based on densely connected convolutional neural networks.
IEEE Commun Lett. 2018;22(8):1656-1659. d0i:10.1109/LCOMM.2018.2841832

Pfiilb B, Hardegen C, Gepperth A, Rieger S. A study of deep learning for network traffic data forecasting. Proceedings of the International
Conference on Artificial Neural Networks; 2019:497-512; Springer, New York, NY.

Li M, Wang Y, Wang Z, Zheng H. A deep learning method based on an attention mechanism for wireless network traffic prediction. Ad
Hoc Netw. 2020;107:102258. doi:10.1016/J.ADHOC.2020.102258

20 of 20 Wl LEY LOHRASBINASAB ET AL.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Tran QT, Hao L, Trinh QK. Cellular network traffic prediction using exponential smoothing methods. J Inf Commun Technol.
2019;18(1):1-18. d0i:10.32890/jict2019.18.1.1

Shahraki A, Taherkordi A, Haugen @. TONTA: trend-based online network traffic analysis in ad-hoc IoT networks. Comput Netw.
2021;194:108125.

Shahraki A, Taherzadeh H, Haugen @. Last significant trend change detection method for offline Poisson distribution datasets. Proceedings
of the 2017 International Symposium on Networks, Computers and Communications (ISNCC); 2017:1-7; IEEE.

Shahraki A, Haugen @. An outlier detection method to improve gathered datasets for network behavior analysis in IoT. Journal of
Communications. 2019;14(6):455-462.

Bouzidi EH, Luong DH, Outtagarts A, Hebbar A, Langar R. Online-based learning for predictive network latency in software-defined
networks. Proceedings of the 2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings; 2018. IEEEInstitute of
Electrical and Electronics Engineers Inc.

XuY, Xu W, Yin F, Lin J, Cui S. High-accuracy wireless traffic prediction: A GP-based machine learning approach. Proceedings of the
2017 IEEE Global Communications Conference, GLOBECOM 2017 - Proceedings; 2017:1-6; IEEE.

Bouzidi EH, Outtagarts A, Langar R. Deep reinforcement learning application for network latency management in software defined
networks. Proceedings of the 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings; 2019; IEEE.

Nie L, Ning Z, Obaidat M, et al. A reinforcement learning-based network traffic prediction mechanism in intelligent Internet of Things.
IEEE Trans Ind Inform. 2020;17(3):2169-2180. d0i:10.1109/tii.2020.3004232

Zhao JJ, Qu H, Zhao JJ, Jiang D. Spatiotemporal traffic matrix prediction: a deep learning approach with wavelet multiscale analysis.
Trans Emerg Telecommun Technol. 2019;30(12):e3640. doi:10.1002/ett.3640

ZangY,NiF, Feng Z, Cui S, Ding Z. Wavelet transform processing for cellular traffic prediction in machine learning networks. Proceedings
of the 2015 IEEE China Summit and International Conference on Signal and Information Processing, China SIP 2015 - Proceedings;
2015:458-462IEEE Institute of Electrical and Electronics Engineers Inc.

Aldhyani THH, Alrasheedi M, Alqarni AA, Alzahrani MY, Bamhdi AM. Intelligent hybrid model to enhance time series models for
predicting network traffic. IEEE Access. 2020;8:130431-130451. doi:10.1109/access.2020.3009169

Le LV, Sinh D, Tung LP, Lin BSP. A practical model for traffic forecasting based on big data, machine-learning, and network KPIs.
Proceedings of the CCNC 2018 - 2018 15th IEEE Annual Consumer Communications and Networking Conference; 2018:1-4.

Soheil J, Hammoudeh Z, Durairajan R, Lowd D, Rejaie R, Willinger W. On the practicality of learning models for network telemetry.
Proceedings of Network Traffic Measurement and Analysis ConferenceNational Science Foundation; 2020.

Faisal IM, Zahid M, Habib D, et al. Efficient prediction of network traffic for real-time applications. J Comput Netw Commun.
2019;2019:4067135. doi:10.1155/2019/4067135

Azzouni Abdelhadi, Pujolle Guy. A long short-term memory recurrent neural network framework for network traffic matrix prediction.
arXiv preprint arXiv:1705.05690. 2017;.

Katris C, Daskalaki S. Comparing forecasting approaches for internet traffic. Expert Syst Appl. 2015;42(21):8172-8183. d0i:10.1016/J.ESWA.
2015.06.029

Shahraki A, Abbasi M, Haugen @. Boosting algorithms for network intrusion detection: a comparative evaluation of real AdaBoost, gentle
AdaBoost and modest AdaBoost. Eng Appl Artif Intell. 2020;94:103770.

Lohrasbinasab I, Acharya PB, Colomo-Palacios R. BizDevOps: a multivocal literature review. lecture notes in computer science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2020:12254; LNCS:698-713. 10.1007/978-3-030-
58817-5_50

Diethe T, Borchert T, Thereska E, Balle B, Lawrence N. Continual learning in practice; 2019. arXiv preprint arXiv:1903.05202.

How to cite this article: Lohrasbinasab I, Shahraki A, Taherkordi A, Delia Jurcut A. From statistical- to
machine learning-based network traffic prediction. Trans Emerging Tel Tech. 2021;e4394. doi: 10.1002/ett.4394

Appendix B

(The main parts of the implementation codes)

123

APPENDIX B.

B.1 The sampling procedure

if (samplingcounter==samplingvalue)
Input=mean(rawdataarray);
if any(ismember (round(rawdata(2),0),outliertimes))
% && (round(rawdata(2),0)>rawdata(2))
if mod((round(rawdata(2),0)),2)==
tempinput=Input;
Input=Input*1.1;
if abs(Input-tempinput)<5
Input=tempinput+5;
end
else
tempinput=Input;
Input= Input*0.9;

if abs(Input-tempinput)<5
Input=tempinput-5;
end

if Input<O0
Input=0;
end
end

end
time=rawdata (2);
rawdataaaray=[];
samplingcounter=1;
opcallerscript

elseif (samplingcounter-1<samplingvalue);

rawdataarray (samplingcounter)=rawdata (1) *multiplyval;

samplingcounter=samplingcounter+1;
end

B.2 Smoothing

%Hample filter Code

function [YY, I, YO, LB, UB, ADX, NO] = hampel(X, Y, DX, T, varargin)

% HAMPEL Hampel Filter.

% HAMPEL(X,Y,DX,T,varargin) returns the Hampel filtered values of the

% elements in Y. It was developed to detect outliers in a time series,

% but it can also be used as an alternative to the standard median

% filter.

)

% References:

% Chapters 1.4.2, 3.2.2 and 4.3.4 in Mining Imperfect Data: Dealing with
% Contamination and Incomplete Records by Ronald K. Pearson.

A

)

124

69

B.2. SMOOTHING

%% Error Checking
% Check for correct number of input arguments
if nargin < 2
error ('Not enough input arguments.');
end

% Check that the number of elements in X match those of Y.
if ~isequal (numel(X), numel(Y))

error (' Inputs X and Y must have the same number of elements.

end

% Check that X is either a row or column vector
if size(X, 1) == 1

X = X';

% Change to column vector [YY,I,YO,LB,UB] = hampel(X,Y);
elseif size(X, 2) == 1
else

error (' Input X must be either a row or column vector.')
end

% Check that Y is either a row or column vector

if size(Y, 1) == 1

Y =Y';

% Change to column vector
elseif size(Y, 2) == 1
else

error (' Input Y must be either a row or column vector.')
end

% Sort X
SortX = sort(X);

% Check that DX is of type scalar
if exist('DX', 'wvar')
if ~isscalar (DX)
error ('DX must be a scalar.');
elseif DX < O
error ('DX must be larger than zero.');
end
else
DX = 3*median(SortX(2:end) - SortX(l:emd-1));
end

% Check that T is of type scalar
if exist('T', 'var')
if ~isscalar(T)
error ('T must be a scalar.');
end
else
T = 3;
end

% Check optional input
if isempty(varargin)
Option = 'standard';
elseif numel(varargin) < 2
error ('Optional input must also contain threshold value.');
else

")

125

0 3 3 3 4 I 9 3 =1
= O © o N O U A W N

o}
%]

86

100
101
102
103
104
105
106
107
108
109

123
124
125
126
127
128
129

APPENDIX B.

% varargin{1}
if ischar(varargin{1})
Option = varargin{1};
else
error ('PropertyName must be of type char.');
end
% varargin{2}
if isscalar(varargin{2})
Threshold = varargin{2};
else
error ('PropertyValue value must be a scalar.');
end
end

% Check that DX,T does not contain NaN values
if any(isnan(DX) | isnan(T))

error (' Inputs DX and T must not contain NaN values.');
end

% Check that varargin does not contain NaN values
CheckNaN = cellfun(@isnan, varargin, 'UniformOutput', 0);
if any(cellfun(@any, CheckNaN))

error ('Optional inputs must not contain NaN values.');
end

% Detect/Ignore NaN values in X and Y

IdxNaN = isnan(X) | isnan(Y);
X = X(~IdxNaN);
Y = Y(~IdxNaN) ;

%% Calculation
% Preallocation

YY =Y;

I = false(size(Y));
S0 = NaN(size(YY));
YO = SO0;

ADX = repmat (DX, size(Y));

if numel(X) > 1
switch lower (Option)
case 'standard'
for i = 1:numel(Y)
% Calculate Local Nominal Data Reference value
% and Local Scale of Natural Variation
[YO(i), S0(i)] = localwindow(X, Y, DX, i);
end
case 'adaptive'
% Preallocate

YOTmp = S0;
SO0Tmp = S50;
DXTmp = (1:numel(S0)) '*DX;

% Integer variation of Window Half Size

% Calculate Initial Guess of Optimal Parameters YO, SO, ADX

for i = 1:numel(Y)
% Setup/Reset temporary counter etc.
J = 1;
SORel inf;

126

N
9 09 9 49 9 9 9 =
SN

o

~

end
end

B.2. SMOOTHING

while SORel > Threshold

e
Y
)
S
h
A
%

end

% Gau
DX =
ADX
SO
YO

otherwise

error

%% Prepare Output

UB
LB
Idx
YY (Idx)
I(Idx)
NO

YO + Tx
YO - Tx*
abs (Y -
Y0 (Idx)
true;

sum(I) ;

% Calculate Local Nominal Data Reference value
% and Local Scale of Natural Variation using DXTmp window
[YOTmp (j), SOTmp(j)] = localwindow(X, Y, DXTmp(j), 1i);

% Calculate percent difference relative to previous value
if j > 1

SORel=abs ((S0Tmp (j-1)- SO0Tmp(j))/(SO0Tmp(j-1) +SO0Tmp(j))/2);
end

% Iterate counter

i =3+

nd
0(1i) = YOTmp(j - 2);

Local Nominal Data Reference value
0(i) = S0Tmp(j - 2);

Local Scale of Natural Variation
DX(i) = DXTmp(j - 2)/DX;

Local Adapted Window size relative to DX
ssian smoothing of relevant parameters

2xmedian (SortX(2:end) - SortX(l:emd-1));
smgauss (X, ADX, DX);

smgauss (X, SO, DX);

smgauss (X, YO, DX);

('Unknown option ''Ys''.', varargin{1i});

S0; % Save information about local scale

S0; % Save information about local scale

Y0) > T#*S0; % Index of possible outlier

H % Replace outliers with local median value
% Set Outlier detection
% Output number of detected outliers

% Reinsert NaN values detected at error checking stage
if any(IdxNaN)

vy,

end

I, YO, LB, UB, ADX] = rescale(IdxNaN, YY, I, YO, LB, UB, ADX);

%% Built-in functions
function [YO,

end

%

Index r

Idx = X(4i

S0] = localwindow(X, Y, DX, i)
elevant to Local Window
) - DX <= X & X <= X(i) + DX;

% Calculate Local Nominal Data Reference Value

YO

= med

ian(Y(Idx));

% Calculate Local Scale of Natural Variation

S0

= 1.4

function M =

%

Isolate

826*median (abs(Y(Idx) - Y0));

median (YM)
relevant values in Y

127

APPENDIX B.

end

end

YM
NYM

sort (YM) ;
numel (YM) ;

% Calculate median
if mod (NYM,2) % Uneven

M = YM((NYM + 1)/2);
else % Even
M = (YM(NYM/2)+YM(NYM/2+1))/2;

end

function G = smgauss(X, V, DX)

end

% Prepare Xj and Xk
Xj = repmat(X', numel(X), 1);
Xk = repmat(X, 1, numel(X));

% Calculate Gaussian weight
Wjk = exp(-((Xj - Xk)/(2%DX))."2);

% Calculate Gaussian Filter
G = ij*V./sum(ij,l)';

function varargout = rescale(IdxNaN, varargin)

end

% Output Rescaled Elements
varargout = cell(nargout, 1);
for k = l:nargout

Element = varargin{k};

if islogical (Element)

ScaledElement = false(size(IdxNaN));
elseif isnumeric(Element)

ScaledElement = NaN(size (IdxNaN));
end

ScaledElement (~IdxNaN)
varargout (k)

Element;
{ScaledElement};

end

B.3 Creating the sliding window

finalbreak=0;
breakpoint=1;

result (1)=-1;
result (2)=0.0;
result (3)=0.0;

if (max(size(inputarray))>maximum_data)

inputarray=inputarray(round(interval*1.5) :length(inputarray));

end
if (intervalcounter<=interval)

intervalcounter=intervalcounter+1;
inputarray=[inputarray; Input(1)];

128

B.3. CREATING THE SLIDING WINDOW

alldata=[alldata;Input(1)];
allimp=[allimp;0];
intervalarray=[intervalarray;0];
timedata=[timedata;time];

else

if (max(size(inputarray))>=minimum_data)

result (2)=max(size (inputarray));
[meanbefore ,meanafter ,remaindata,removedata,breakarray]=
arimafinall (inputarray,plotnum,alphnum) ;
% [meanbefore ,meanafter]=meancalc(remaindata,removedata) ;

difference=abs (meanbefore-meanafter) ;
[fuzzyoutput]=evalfis ([meanbefore meanafter difference],fismat);

if (length(remaindata)>(interval/3))

% behaviour=fuzzyoutput (2) ;
% importance=fuzzyoutput (1);
behaviour=meanafter;
importance=difference;

else
behaviour=0;
importance=0;

end

if (behaviour==0 && importance==0)
%I1If the remainder is too small
inputarray=inputarray(7:length(inputarray));
disp('the remain data is so low');
% inputarray=inputarray(length(inputarray)- inimum_data+interval:length(inputarray));
intervalcounter=1;
else % If the remaining data was enough
inputarraytemp=inputarray;
if (importance>=imp_thr)
allimp(length(alldata)-length(remaindata))=importance;
intervalarray(length(alldata)-length(remaindata))=1length(remaindata) ;
end
intervalnum=intervalnum+1;
if (imp_thr<importance) 7 If the observed change was very significant
finalbreaktemp=length(alldata)-length(remaindata);
if ((finalbreaktemp>finalbreak)&& finalbreak+(interval#*3) <finalbreaktemp)
% If the found point was located after the previous point
finalbreak=finalbreaktemp;
breakpoint=breakarrayl (end) ;
breakarrayl=[breakarrayl;finalbreaktemp];

inputarray=remaindata;
%inputarray=dataappender (inputarray ,remaindata,removedata,interval ,minimum_data) ;
color='r"';

else

129

83
84
85

86

APPENDIX B.

color='b"';
end

else
color='g';

end
plotname=strcat ('Fig_',int2str(plotnum));
plotnum=plotnum+1;
allfname= savefigure (inputarraytemp ,removedata,remaindata,plotname,alldata,
outputmodel ,behaviour,importance,breakpoint,color,allimp,imp_thr,timedata,
intervalarray ,minimum_data ,maximum_data,interval,simname ,meanbefore,
meanafter ,alphnum,finalbreak);
result (1)=length(removedata) ;
result (3)=length(remaindata) ;
intervalcounter=1;
end
else
intervalcounter=1;
inputarray=[inputarray;Input(1)];
alldata=[alldata; Input (1)];
allimp=[allimp;0];
intervalarray=[intervalarray;0];
timedata=[timedata;time];
end
end

B.4 Connecting windows in a row.

function [inputarray] = dataappender(
alldata,remaindata,removedata,interval ,minimum)
x=minimum-(length(remaindata)+interval);

if (x>0)
%inputarray=[removedata(length(removedata)-x+1:length(removedata));remaindatal;
inputarray=[alldata(length(alldata)-length(remaindata)-x:length(alldata))];

else
inputarray=remaindata;
end

end

B.5 Identifying the change point

function [location]=breakfinder (aril,ar?2)
location=-1;
for (i=1:max(size(aril)))

if (aril(i)==ar2(1))
for (j=2:max(size(ar2)))
if (ar2(j)~=ar1((i+j-1)))
location=0;

130

B.6. TO RETURN THE BREAK POSITION

else
location=i+2;
end

end

end
end
end

B.6 To return the break position

function [databeforeshekast,datafinal,breakposition] = shekastkham(data,alshek)
dindex=[1:1length(data)];

ddata=data(dindex) ;

nogh_shek=round(length(ddata)*alshek) ;

if (nogh_shek==0)
datafinal=ddata;
databeforeshekast=[];
breakposition=[];
return;

elseif (nogh_shek==1length(data))

datafinal=[];

databeforeshekast=ddata;

breakposition=[];

return;

end

databeforeshekast=ddata(l:nogh_shek-1);
datafinal=ddata(nogh_shek:length(ddata));
% if (nogh_shek==1)

% breakposition=[-1;ddata(nogh_shek:nogh_shek+1)];
% elseif (nogh_shek==max(size(ddata)))

% breakposition=[ddata(nogh_shek-1:nogh_shek);-1];
% else

% breakposition=ddata(nogh_shek-1:nogh_shek+1);
breakposition=0.0;

end

131

