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Abstract—Distributed renewable energy sources, with wide
communication components in a microgrid infrastructure, make
cyber security assessment and mitigation a developing cyber-
physical system study. Extensive cybersecurity threads are
prevailing in modernized smart grid. Hence, to detect and mitigate
cyber threads an advanced cost-effective resilience cyber risk
assessment and mitigation mechanism is needed. To enhance
cyber-physical security in smart grids, a secured deep learning
algorithm with blockchain technology (BlockDeepNet) is
proposed. Distributed secured data analysis is carried by using
deep learning approach, while blockchain helps in the
implementation of secured decentralized resilient control. To
validate, real-time cosimulation on IEEE 15 bus system was
conducted. Also, for evaluating cyber security breach, four types
of cyberattacks were introduced to validate the effectiveness of
proposed security assessment and resilience operation. We
obtained normalized resilience index kR1k2 of 2.36 for grid
communication failure, 0.91 for replay attack, 1.34 for false data
injection, and 1.74 for DoS attack. The obtained results on
simulation case study by real-time hardware in the loop
implementation showed that the proposed BlockDeepNet
accurately reduce load loss for various cyberattack and provide
robust resiliency. Overall, this research provides a platform for
cybersecurity assessment and enhanced resilience operation of
cyber-physical power energy system.

1. INTRODUCTION

Smart grid technologies use many distributed renewable

energy sources (DRES). At present, the smart grid infra-

structure is managing connected DRES as a centralized

self-control cyber-physical system by a supervisory control

called SCADA. This centralized system aimed to provide

reliable, effective load balanced, economical, and resilient

smart grids. In smart grid infrastructure, most of the con-

nected DRES and connected loads are variable [1]. Hence,

coordination between the DRES and the load by secured
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communication is a primary task in the smart grid design
procedure. This coordinated communication can be realized
by a cyber-physical system, which depends on diversified
system variables and various system participation factors as
described in [2–4].

By employing blockchain support, secured cyber-phys-
ical system data processing by deep learning algorithm and
reliable peer-to-peer communication between power system
terminal units is achieved. Blockchain technology provides
immutable for securing the data processed by deep
reinforcement learning [5]. Then, each independent DRES
node is jointly maintaining the secured data for the source
bus. Cyber threads like forging data integrity and tamper-
ing are now making it difficult for collecting and process-
ing the data in each block. In smart grid cyber-physical
system, a federated blockchain is used to generate a list of
records as blocks. Each record is connected by secured
Hash code [6]. We implement blockchain to provide decen-
tralized deep learning processing to improve the cyber
security and reliability of smart grid. This blockchain with
distributed deep learning processing is providing a signifi-
cant improvement in mitigating cyber threads as well as a
resilient microgrid. Deep reinforcement learning provides
reliable operation of smart grid with coalitional cyber-
insurance design and have blockchain-based energy man-
agement architecture [7–9].

Naderi and Asrari [10] proposed a deep learning frame-
work to identify remedial action schemes against false data
injection cyberattacks targeting smart power systems. The
novel remedial action scheme inter-dependence between
transmission/distribution sectors to react to the cyberattack-
sis obtained. Moreover, there are various deep learning
framework, as suggested by [11], which enables toward
detecting cyberattacks targeting modern power grids. Since
smart grid networks include a plethora of intelligent dis-
tributed control and monitoring equipment for exchanging
data through information and communication technology.

Figure 1 shows the overview of proposed
BlockDeepNet layered architecture for smart grid cyberat-
tack mitigation and assessment scheme. The proposed mul-
tiagent intelligent system uses reinforcement learning to
enable quick responses against the cyberattacks. Each agent
learns its policy based on the local database and informa-
tion received from other agents, i.e., decisions and events.
Vulnerability assessments and threat analysis are analyzed
at smart grid physical layer. Then diverse attack models
are studied at edge layer. The weighted attack defence tree
is used to create various cyber-attack scenarios. Each attack
model also proposes potential mitigation actions. The

created cyber-attack scenarios are collected and used as an
input system data for the proposed BlockDeepNet training.
Finally, at management server, the mitigation actions
studied are stored for testing with real-time system.
Further, each component of the proposed BlockDeepNet
framework is described in the following sections.

The emergence of deep learning has provided a signifi-
cant improvement in various cyber-physical systems by
using reinforcement learning of each node generated by
DRES [12–16]. Each decentralized source can take decen-
tralized control action with reduced prior learning data.
This decentralized deep reinforcement learning makes the
smart grid to mitigate cyber threads. By employing a
Block deep reinforcement processing microgrid, this is
adapted to a real-time cyber thread adversarial environment
[17]. Deep learning approaches provide robust fault diagno-
sis and correction in induction motors in IoT-based archi-
tecture. Moreover, the robustness of the proposed approach
is tested against a false data injection attack. From the
result it is thought that the motor current signature analysis
is a promising approach since it is noninvasive, cheap, and
easy to implement [18]. In most of the power transformer
fault diagnosis ensemble, machine learning in IoT para-
digms is used by considering adversarial attacks. With
white Gaussian noise, the robustness of the developed
ensemble machine learning model is further demonstrated
by [19].

For cyber security implementation, each block with
reinforcement learning algorithm has been adopted with rep-
resentation learning. This block node has q-network for learn-
ing the DRES state and action. By learning the DRES state,
the reward function is calculated [20–23]. The real-time data
on each smart grid operation are used for q-learning and for
detecting cyber threads. Hence, a novel cyberattack mitiga-
tion and resilient decentralized control are formed to improve
the reliability of smart grid [24–28]. Guha et al. [29] pro-
posed a novel mitigation resilience improvement based on a
fractional-order sliding mode controller for frequency regula-
tion. Elsisi et al. [30] proposed reliable IoT Systems with
deep learning to support resilient demand side management
in smart grids against adversarial attacks. The proposed deep
learning algorithm provides a real-time signal processing
model and developed an industrial IoT platform with continu-
ous wavelet transform-based CNN. By verifying the IoT
architecture with different levels of adversarial attacks; the
authors conclude cybersecurity analysis for the smart build-
ings with demand-side energy management considering the
device-level attacks and developing defence strategies from
the aspects of detection, mitigation, and prevention.

2 Electric Power Components and Systems, Vol. 0 (2023), No. 0



1.1. Novelty and Originality of This Work

The work in this paper focuses on the design of Block
Deep Q-network to provide decentralized resilient control
for smart grids and to detect cyber threat and assess cor-
rupted grid. In particular, the research work contributes to
the isolation of cyberattacks, detection, and fast resilience
to normal operating condition. Compared with prior contri-
butions, the proposed Block Deep Q-network feasibility of
implementation and practicability is validated by develop-
ing real-time hardware in the loop testing system using
IEEE 15 bus model employing a real-time simulator. The
Merits and demerits of the proposed approach are as
follows:

� The proposed BlockDeepNet improve the reliability
and efficiency of targeted system and remediate during
cyber-attack.

� It also maintains the optimal power flow in smart grid
system during various cyberattack.

� Resilience of the proposed BlockDeepNet is high as
compared with the existing algorithm.

As a demerit, the proposed BlockDeepNet needs differ-
ent train dataset with ensemble learning for parallel proc-
essing and implemented on secured decentralized resilient
control.

A main contribution summary of the proposed
BlockDeepNet for facilitating smart grid cyberattack detec-
tion and cyber security resilient is listed below:

FIGURE 1. Overview of proposed BlockDeepNet layered architecture for smart grid.
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1. We propose a Block Deep Q-network to provide
decentralized resilient control for smart grids and to
detect cyber threads and assess corrupted DRES on
smart grids. The performance of the proposed
decentralized control technique is verified by different
cyber-attacks.

2. Four time-varying cyberattacks on DRES,
communication links, and network topologies of the
smart grid are formulated and the proposed Block Deep
Q-network isolation of cyberattacks, detection, and fast
resilience to normal operating conditions are
demonstrated.

3. The proposed Block Deep Q-network feasibility of
implementation and practicability is validated by
developing real-time hardware in the loop testing
system using IEEE 15 bus model employing a real-time
simulator.

4. Various resilience performance index is defined and
assessed to verify the performance of the proposed
blockchain-based decentralized controller. Also, the
cyber security of smart grid cyber-physical systems is
assessed by intruding various cyberattacks.
The remaining section of this research article is organ-

ized as follows. Section 2 presents the various cyber-phys-
ical layers and components with detailed architecture.
Section 3 describes the mechanism of the proposed novel
deep blockchain network. Section 4 demonstrates the
evaluation setup in the cosimulation scenario and its imple-
mentation. Section 5 presents the simulation results and
discussion under various cyberattacks. Finally, Section 6
addresses the concluding remark of this paper.

2. SMART GRID-LAYERED ARCHITECTURE
AND ITS CYBER VULNERABILITIES

In this section, we discuss the detailed cyber-physical lay-
ered architecture of the smart grid and possible cyber vul-
nerabilities on the connected devices in the network.

2.1. Various cyberattack Generation Modules in
DRES

In smart grid, various associated components like routers,
monitoring PMU, links, and local controllers are vulnerable
to cyber threads. In this section, vulnerable cyber threads
on communication routers, network topology, and local
controllers are modeled. For modeling, consider a commu-
nication node a − b is vulnerable. Let’s consider that cab is
the cyberattack applied on node a − b power exchange
between renewable source and local load connected. By a

false data injection, the power transfer is changed into
Pa−b:

Pa−b ¼ −
XN
i¼1

dai − dbi þ cabð Þ − Ni dai − dbið Þ (1)

Here, Ni is the number of nodes, −
PN

i¼1dai −
dbi þ cabð Þ is the measured data from the source bus and
dai − dbi is the decentralized controller’s control signal. The
state of error change is given by ei ¼ dai − dbi: The dynam-
ics of each node under attack is given by _eðtÞ, as it is
shown in Equation 2.

_e tð Þ ¼ − Lþ Dð Þcab þ Ilab tð Þ (2)

Where lab tð Þ is the attack signal imposed on node
a − b: L denotes Laplace matrix if smart grid topology, D
is the node pinning matrix for i ¼ 1, 2, :::n, while I denotes
the bus incidence matrix. The dynamics of DRES error is
given by Equation 3.

e tð Þ ¼ e toð Þ þ
ðt

0

e− LþDð ÞtIl tð Þdt (3)

Here − ðLþ DÞ is a negative definite matrix with zero
initial value. For a positive attack on communication
routers in smart grid topology, given by cab > co >
0 8ða, bÞ 2 R, the node incidence matrix is changed to
non-negative when t ! 1:

lim
t!1e tð Þ ¼

ðt
0
e− LþDð ÞtIl tð Þdt (4)

lim
t!1e tð Þ ¼ Lþ Dð Þ−1Ilo (5)

Hence from Equation 5, the total network error is a
positive value. This indicates a non-zero false data injec-
tion between node a − b makes the loss of synchronization
between DRES connected on source bus. This false data
injection in the node leads to unstable power sharing.

2.2. Problem Formulation by Cyber threads in Smart
Grid

For continuous optimum power flow between various sour-
ces, loads, and DRES; effective communication plays a
vital objective function in smart grid. To establish secured
power flow and device communication with system man-
agement in the smart grid, secured connections are needed;
the following steps are used to establish a secured
connection.
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1. DRES source power flow is defined by state variable
n of the cyber-physical system and is given by
Equation 6.

W nþ 1ð Þ, C nð Þ, M nþ 1ð Þ ¼ 0 (6)

Where, W nþ 1ð Þ gives the weight matrix, CðnÞ denotes
the control signal in various local and master controller,
and MðnÞ denotes the number of cyber threads in cyber-
physical power system.
From the optimal power flow between the source and the
load bus, distributed controller monitors the information
flow between load bus and source bus. By physical
layer’s data input, the parameterized data is given by
Equation 7.

e nð Þ ! m nð Þ ¼ L�e nð Þ (7)

Where mðnÞ denotes sensor measurement and L represents
the Lagrangian matrix.
From the error measurement, each decentralized controller
generates control signal CðnÞ in the presence of
cyberattacks, like false data injection and spoofing in
smart grid topology. This is expressed by Equation 8, as:

C nð Þ ¼ argmin W c, tð ÞjM n,Lð Þ � cab (8)

Here M n,Lð Þ � cab for optimized network topology.
For control signal implementation, the command signal
from each decentralized controller is updated by using
Equation 9.

C nð Þ ! b nð Þ ¼ L�C nð Þ (9)

The updated objective function for each cyberattack impact
on system variable is given by

p nð Þ ¼ f W nþ 1ð Þ, LC nð Þ, LM nþ 1ð Þ� � ¼ 0 (10)

Hence, the minimization of cyberattack impact is repre-
sented as the minimization of modified objective function
between node a − b:

min
Xn
i¼1

pi nð Þ (11)

With minimization p nð Þ, the modified objective function
pðtÞ is given by Equation 12.

p tð Þ ¼
X
a,b

pla,b nð Þ (12)

This modified objective function is subjected to various
smart grid constraints such as real power constraint, react-
ive power constraints, total power, voltage, and phase angle

limits. Benford’s Law was used for cyber threads formula-
tion with various power system operation constraints as
mentioned above.

By employing Benford’s Law (1st-digit Law), each
anomalous number can be obtained for a wide range of
smart grid data. This Benford’s Law is highly sensitive to
data manipulation and tampering of data. Hence, hackers
introduced in the smart grid can be detected by the pro-
posed BlockDeepNet. The general form of Benford’s Law
is expressed by Equation 13.

Bb nð Þ ¼ logb 1þ 1
i

� �
c nð Þ i ¼ 1, 2:::n (13)

where i is representing the digit of interest and b is the
base number for logarithmic scale. In general, we assume
that b ¼ 10 for standard testing conditions in smart grid
system. The frequency of the cyberattack in each node
(DRES) is given in Equation 14.

B10 nð Þ ¼
X10
i¼1

log10 1þ 1
i

� �
ci nð Þ i ¼ 1, 2:::n (14)

The frequency component of each digit is given by m
measurement made at a given time tm: For the power sys-
tem threads, the vector of malicious data has changed the
measured data from sensors in the smart grid. These meas-
urements are given by Equation 15.

m tð Þ ¼ m tmð Þ 2 R
m (15)

Each state variable of the smart grid is given by xðmÞ ¼
xðtmÞ2 R

m of the cyber-physical system, by updating the
cyber thread intruded on smart grid node a − b:

m tð Þ ¼ h a mð Þð Þ þ e nþ 1ð Þ þ u kð Þ k ¼ 1, 2:::n (16)

Where e nþ 1ð Þ is the sensor measurement error, uðkÞ
is the data introduced by cyber thread, without any data
change by cyberattack, we assume u kð Þ ¼ 0: Hence, 1st

-digit has been changed by the cyberattack, which is given
by Benford’s Law. This modified 1st-digit is given by
Equation 17.

u mð Þ ¼ ẑ mð Þ − z t,mð Þ
z mð Þ (17)

Where, zðt,mÞ is the reference value of measured quan-
tities and zðmÞ is the vector base value of each parameter
measured by sensor to identify per unit value of smart grid
physical parameters. This Equation 17 is adapted to each
smart grid measured quantity. For measured voltage
ẑ mð Þ ¼ Vm, with Vm operating voltage point at the time of
measurement. Similarly, the nominal active and reactive
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power is ẑ mð Þ ¼ Sbase: Here, Sbase is the total measured
power and also the phase angle is assumed to be uref at
load bus.

Hence, various cyber security thread can be adversarial
within measured parameter. Also, malicious source attack
smart meter by Eavesdrop or tampering useful information.
Smart grid is a complex cyber-physical system, and
intruders can attack the network by routers IP spoofing,
Denial of Service (DoS) attack on load and source bus
communication, Distributed Denial of Service (DDoS), and
perpetrator Man in The Middle (MITM) attack. Some
cyber intruders can install smart grid monitoring software
illegally to change smart meter billing. This illegal smart
grid monitoring true value of voltage, current sensor,
PMU, relays, circuit breakers, and transformer.

3. DEEP BLOCKCHAIN NETWORK DESIGN

In this section, it is described the proposed deep learning
network with blockchain operation. To establish a secured
decentralized deep reinforcement learning of smart grid
data, we designed five major components between the
physical layer and the Blockchain server layer. Figure 2
shows the proposed BlockDeepNet with detailed encryption
and decryption contract agreements.

3.1. Mechanism of Proposed Reinforcement Deep
Learning Network

In this section, it is describes the mechanism of proposed
decentralized reinforcement learning for detecting attackers
and mitigating them in cyber-physical power system.
Various cyber thread and its model in previous section is
processed by using the proposed decentralized deep learn-
ing network. Also, a detailed cyber thread model and train-
ing dataset formation are discussed.

3.1.1. Cyber Thread Model. The cyber thread by bus
switching of DRES, transmission line attack, falsifying
data of sensor and network topology change are considered
for normal operating true value. We have used the pre-con-
tingency value of grid voltage, where the current and
power flow are taken as nominal value of cyber thread.
The attacks are applied online a − b by changing bus con-
necting transmission line, manipulating circuit breaker, fal-
sifying relay data etc. For the attacker’s objective function
to reach the maximum value of Equation 8, the thread is
introduced in the connecting grid. By applying cyberattacks
on transmission line a − b, islanded decentralized grid was
formed. The DRES real power generation limit has
changed due to violation of constraints leading to mismatch
in supply and load. This is given by E2 tð Þ, as it is shown

FIGURE 2. Proposed BlockDeepNet with detailed learning and processing contract.
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in Equation 18.

E2 tð Þ ¼
Xn
i¼1

PGi −
Xn
i¼1

Pdi (18)

Where PG is real power generation by DRES and Pd is
the load bus demand. For load shedding, the demand mis-
match by scalar r, given by Equation 19 as ratio between
power generation and load power.

r ¼

Xn
i¼1

PGi

Xn
i¼1

Pdi

(19)

The overcurrent limit for cyberattack intruding was used
to verify if the attack maximum value is reached or not.
For node, a the power flow Pi and estimated limit fi is
tripped to current overloaded by Equation 20.

Dĥ tð Þ ¼
ðt
0
E2 tð Þ − Ê2 tð Þ
� �

dt E2 tð Þ > 0

0 otherwise

8<
: (20)

Here Ê2ðtÞ is the estimate of power. Hence, to generate
a cyberattack for proposed deep reinforcement learning for
the estimate Ê2ðtÞ, Algorithm 1 was used. Algorithm 1
gives the sequence of training data generation.

Algorithm 1. Cyber-attack Training Dataset Generation

3.1.2. Proposed Reinforcement Learning. In this section,
we describe the proposed decentralized deep reinforcement
learning with policy gradient for optimal cyberattack
reclosing. The proposed reinforcement learning aims to
minimize Q-function reward by the network trial and error
search of data. In reinforcement learning each state S was
seen. To calculate the reward of action, Equation 21 was
used. From the obtained reward value, the proposed decen-
tralized DRCNN assesses the quality of action taken. To
get the maximum value of the reward function, the training
of network makes the parameters yield reward value.

Q� sð Þ ¼ E Dþ # max ŝ,Dð ÞjSab
� �

(21)

Where ŝ is the estimated reward and # is the discount
factor. Considering the complexity of computation,
Convolutional Neural Network architecture was used for
data processing. Figure 3 shows the proposed architecture
of decentralized reinforcement learning convolutional
neural network.

By optimal reclosing strategy and training by reinforce-
ment learning, each cyberattack recovery was detected.
Figure 4 shows the proposed cyberattack recovery scheme by
reinforcement learning of nominal value. This scheme con-
sists of two major processes such as actor action and critic
state.

By the trained DRCNN continuous action for state 0s0 was
generated, which has been changed by cyberattack 0a0:
During the training of DRCNN, an initial value of the reward
to the cyber-physical smart grid was considered. Equation 22
gives the random initial value while the corresponding value
of critical policy gradient is given by Equation 23.

r tð Þ ¼ Q s, a,/ð Þ (22)

rs tð Þ ¼ r sjað Þ/ (23)

1 Initialize Replay memory D
2. Compute Load bus data
3. for bus 1 to n
4. Calculate power flow, obtain nominal value
5. Set initial value VN nominal vector
6. Generate error from Equation 3.
7. for event control signal
8. Set potential action
9. Take random attack action
10. Execute Equation 11
11. Calculate losses, from Equation 18
12. Set t ¼ t þ 1
13. Update Q-table using Qtt ¼ RA þ

Xn

i¼1
VatðiÞ

14. While max ĥðtÞ from Equation 20
15. Store total cascaded attack
16. end while
17. end for
18. Find nominal value using vector VN

19. Check for steady state
20. Check for all bus
21. end for FIGURE 3. Proposed Convolutional Neural network

reinforcement learning structure.
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The replay memory for filtering the presented data
depends on batch transition as expressed in Equation 24.

D ¼ si, ai,/igni¼1

�
(24)

The minimization of batch loss is given by Equation 25.

argmin L ¼
Xn
i¼1

Q si, aij/ið Þ½ �2 (25)

Where L represents the squared error value and the updated
policy of the cyber-physical system is given by Equation 26.

r/J ¼
Xn
i¼1

rQ si, aij/ið Þ � r sijaið Þ (26)

Actor parameter for this updated policy is given by
Equation 27.

/i new ¼ /i þ ar/J (27)

Where r/ updated policy gradient and learning rate a
with weight r/J : This process deployed to mitigate the
cyberattack as an online computation to measured continu-
ous action space 0a0 of the physical layer.

4. PROPOSED RESILIENCE SECURITY
ASSESSMENT METRICS AND SIMULATION
SCENARIO

This section presents the proposed resilience assessment
metric during cyber thread conditions and simulation scen-
arios. Also, in this section, we present four resilience meas-
ures to assess the status of cyberattack and to set the
islanded condition to connected smart grid systems. The
resilience measures are Attack Clearing Time (ACT),
Breaker Relay Margin (BRM), Load Loss Margin (LLM),
and Grid Recovery Time (GRT).

The detailed computation of each resilience metrics is
as follows.

i) Attack Clearing Time (ACT)

The ACT gives the time taken by the proposed
BlockDeepNet to mitigate the cyberattack after it occurs, to
ensure cyberattack mitigation, and to make the smart grid
works at stable equilibrium point. For working at a stable
operating point, the component in smart grid is removed at
time tACT : By Benford stability for a power cyber-physical
system, the time of cyber-attack clearing should be a func-
tion of region of stability, as given by Equation 28.

x tACTð Þ 2 XACT (28)

For a post-cyberattack system, the regional trajectory will
never reach clearance of attack at equilibrium. Hence, the min-
imum value of attack clearing time is expressed in Equation 29.

ACTx :¼ argminf VN x tð ÞVN xð Þ� � � cn
� �

(29)

Where VN xð Þ is voltage at post-attack, f is the number
of attacks intruded. For an attack sequence h kð Þ 2 f , its
resilience measure is given by Equation 30.

ACT h kð Þ :¼ argmin ACTf h kð Þ (30)

ii) Relay Breaker Margin (RBM)

Every smart grid is protected by relays as to monitor the vari-
ables. Cyber intruder produces tripping signal to make false
tripping even the grid components are healthy. This led to
loss in load power generation. Hence, resilience breaker relay
margin is used to predict the robustness of smart grid during
false tripping. Each variable is made to work in mho circle,
during attack condition by finding its impedance value. For
effective resilience, the proposed BlockDeepNet keep relay
margin as low as possible during as many numbers of false
intervention given by Equation 31.

RBMf ,i :¼ argmin
r,c

ja − bj2 (31)

Where a − b is the node in smart grid at a distance, f is
the number of attacks, i is the number of buses, r and c
are the radius and center of mho-circle of smart grid. For a
sequence of attack u kð Þ, the resilience measure of smart
gird is given by Equation 32.

RBMu kð Þ,i :¼ argmin
r,c

RBMF,i (32)

Where F gives the last attack in the sequence of cyber-
attack uðkÞ�F:

FIGURE 4. Cyberattack detection scheme implementation
by proposed BlockDeepNet.
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Iii) Load Loss Margin (LLM)

We use LLM to measure the performance level resilience
of the proposed BlockDeepNet during a cyberattack. This
LLM is the measure of security limit violation during
cyberattack. The cyberattack intruder introduces or falsify
voltage, transformer load limit, and power limit. Hence, the
variable in smart grid decides the security during a cyberat-
tack. During cyber thread conditions, the grid load varies
from nominal operating value to critical limit. This makes
security limit violation of the smart grid by intruders. For
calculating the LLM, continuous power flow was used. By
the parameter k 2 R � 0 to adjust load, the real and react-
ive power constraints are given by Equation 33 and
Equation 34.

Pi ¼
XM
i,j¼1

ViVj cos hi − dj
� �þ kPij (33)

Qi ¼
XM
i,j¼1

ViVj sin hi − dj
� �þ kQij (34)

Where Pij is nominal real power limit, Qij is the nom-
inal reactive power limit, and k indicates the critical value
of load. The minimum value of kuðkÞ is given by Equation
35.

LLMu kð Þ :¼ argmin
a,b

0, kPij, kQij
� �� �

(35)

Where kuðkÞ is sequence of attack at load loss at
bus a − b:

iv) Grid Recovery Time (GRT)

GRT is a resilience measure to the server for time taken by
the proposed BlockDeepNet to restore to pre-attack condi-
tion. Assessment of GRT gives location of cyberattack. By
having history of data, we can measure the recovery of
smart grid from cyberattacks. Considering a cyber intruder
having recovery action E and the sequence of recovery
action denoted by /ð�EÞ: The set of cyberattacks A :¼
f [ / Fð Þ for attack recovery is given by Equation 36.

w :¼ argmin wa, tað Þ::: wb, tbð Þ� �
� R (36)

a wð Þ ¼ �E¼) f ,wa,wbð Þ (37)

Where a wð Þ denotes attack recovery to attack action
uðkÞ: The recovery time for each cyberattack is given by
Equation 38.

GRTa wð Þ :¼ argmin
i¼1,n

tatb � / kð Þ� �
(38)

Where the set of faults sequence a wð Þ� 0, 1½ � denote the
probability w 2 uðkÞ: Hence, recovery time of grid
depends on grid parameter. For effective and robust resili-
ence, a minimum of four index is needed for all cyberat-
tack condition.

4.1. Simulation case study Implementation

In this section, we analyze the intuitive of proposed
BlockDeepNet by assessing and mitigating cyber-physical
attack and by defining a simulation case study.

The proposed simulation case study is executed using
MATLAB R2020a software program on an Intel i10 pro-
cessor with 7800 CPU runs at 5.2GHz and 24GB RAM,
NIVDIA processor for hardware in the loop simulation.
The physical model of IEEE 15 bus smart grid system is
realized using RTDS. Each bus communication is imple-
mented on Common Open Research Emulator (CORE),
and the proposed BlockDeepNet is developed as control
algorithm in Python. For building a smart grid real-time
emulator, the following components are used: 2MW load,
0.5MW high priority load, electric vehicle battery, 2.5 kW
EcoSense solar emulator, and 5 kW hybrid wind energy
system, which are connected to Fort Carson smart grid
architecture, as shown in Figure 5. Also, the detailed simu-
lation scenario of the proposed cyberattack assessment and
mitigation by using BlockDeepNet is shown in Figure 5.

In the proposed cosimulation model, for validating the
cyberattack severity vulnerability assessment, the sources
like PV array, wind emulator, and fuel emulator are kept

FIGURE 5. Proposed smart grid cyber-physical testbed
Cosimulation system based on Fort Carson smart grid
architecture.
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nearer to high priority load. The smart grid components
can be connected or disconnected to/from the grid by using
the switches S1 and S2. In this way, the smart grid can
operate in islanding mode. The low-priority load is con-
nected to secondary grid through synchronizer. A generator
is connected to main grid for suppling the high-priority
load. By using breakers and relay, the substation 1 and
substation 2 can be isolated from the main grid during
cyberattack. In the CORE model, the sensors collect the
continuous PMU data, which is routed to the network and
reaches the control center (Application layer). The pro-
posed BlockDeepNet receives the data in server layer. It
analyses the attack severity and mitigates the cyberattack.

Table 1 gives the classification of various cyberattack
scenarios for cosimulation case study. From Table 1, in
this research work, jamming attacks can be considered as a
special case of DoS attacks, which are defined as any event
that diminishes or eradicates a network’s capacity to exe-
cute its expected function. Spoofing Attacks are popular in
wireless networks, in this attack, nodes are faked identity,
such as media access control, to gain access to the network
illegitimately. This illegal penetration may lead to man-in-
the-middle, or DoS attacks. Malware Attacks, the most
challenging malwares of IoT devices is the zero-day
attacks, which exploit publicly unknown security vulner-
abilities, and until they are contained or mitigated, hackers
might have already caused adverse effects on computer
programs, data, or networks.

The meaning of the proposed cyberattack scenario is to
confirm the proposed BlockDeepNet in cyber threat assess-
ment by mitigating the power sharing. Based on the sensor
data xðtÞ, PMU obtained the distortion among the harmonic
component features from the sensor data. This sensor data
was represented as voltage magnitude Vð�Þ, frequency f ð�Þ,
phase angle hð�Þ, total harmonic distortion Tð�Þ, current
Ið�Þ, and real power Pð�Þ: This is represented as a vector

for each time sampling for all the phase signals. The
BlockDeepNet resilience is validated on an IEEE 15 bus
grid-connected system on a real-time distributed simulator
platform. With five DRES, and three critical loads on bus
12 with three switches, secondary node synchronizer con-
verters, and transformers. This communication is a fully
connected CORE-emulated network.

5. EXPERIMENTAL RESULTS AND DISCUSSION

For validating the proposed BlockDeepNet, four different
cyberattack scenarios are developed. In all the cyberattack
cases, the simulation time was kept at 120 s. The nominal
operating smart grid frequency is 50Hz with an accurate
droop controller for active power sharing in DRES. To val-
idate the applicability of our proposed BlockDeepNet
framework toward cyberattack mitigation, we have tested it
using the IEEE-15 bus test system having various commu-
nication nodes. Figure 6 shows the single-line diagram of
the IEEE 15 bus system. This IEEE-15 bus test system is
widely employed in various power system cyber security
benchmarking applications. The following five cyber

Scenario Type of attack Element with thread Cyberattack Technique

Cyberattack generation Jamming attacks Substation 1, load
synchronization, PV
source

Replay attack, swapping
data, false data injection,
sudden irradiance change

Cyberattack activation Spoofing attacks Substation relay, load
discontinuation

Transient stability limit, loss
in load margin

Cyberattack assessment Malware attacks State estimation, Resilience
index

Estimation of index, decision
making

Cyberattack mitigation Attacks in adversarial
environments

IoT devices, edge node Communications between
client application and
server

TABLE 1. Classification of proposed cosimulation cyberattack scenario.

FIGURE 6. Single line diagram of IEEE 15-bus test sys-
tem with proposed BlockDeepNet implementation.
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threads have been introduced on a cosimulated IEEE 15
bus smart grid system.
A. Cyberattack on sensor data (Falsifying sensor data).
B. Cyberattack on communication node (DoS attack).
C. Synchronizer replay attack.
D. Breaker false Data Injection Attack (DIA).
E. Sudden irradiance change (Falsifying source data).

A) Cyberattack on Sensor Data

In the proposed BlockDeepNet, a learning-based decentral-
ized classifier is used to avoid effectively the potential
defects intrusion. For the successive scenario, the learning
of the proposed BlockDeepNet occurs. In this case, at sen-
sor data of t ¼ 30s switch S1 is opened. At t ¼ 60 s, IoT
device data are falsified. At t ¼ 90 s, PV is disconnected
on source bus 1. At t ¼ 120 s, synchronization of the sec-
ondary grid is removed. For all the scenarios, a constant
time-varying malicious signal is intruded. Figure 7 shows
the mitigation of four cyberattack scenarios imposed on
main grid voltage (pu) and real power sharing (p.u). Also,
Figure 7 shows the proposed controller mitigation and con-
trol during four attack scenarios.

In Figure 7a, the false data from the intruder has
changed the sensor-measured value of DRES1. Hence, an
equivalent real power is changed in the main grid in t ¼ 30
s. The synchronizing frequency is varied at t ¼ 30s to
53.4Hz. Hence, the nominal value of 50Hz is altered by
false data. After the breaker S1 is opened, the DRES1 and
critical load are isolated from the main grid. The proposed

BlockDeepNet provided the command signal of the refer-
ence imposed on other decentralized energy source to acti-
vate the power-sharing by keeping the frequency at 50Hz
and kept the total real power sharing on the main grid, as
shown in Figure 7b.

B) Cyberattack on Grid Communication (DoS Attack)

In a communication link attack, the node where the PV is
connected and the node with connection battery i:e: at bus
1 and bus 2 are attacked by an intruder. At the time t ¼ 30
s, the impact of attack scenario is visualized by monitoring
the change in voltage (p.u) at 1.7 p.u. from 1.2 p.u. The
communication line between PV and battery is lost and the
droop controller produces time-varying oscillation of the
voltage and real power in the main grid. At the time t ¼
30 s, the process of real power sharing to the main grid
starts oscillating and at t ¼ 60 s, the connection between
measuring sensor affects the measured value of the voltage.
By using the droop controller, the frequency is kept con-
stant at the time t ¼ 60 s. At the time t ¼ 90 s, islanding
of DRES in bus 1 and DRES and bus 3 occurs. This makes
the islanded grid operation by cyberattack to disable the
line a − b:

In Figure 8, real power sharing and corrupted voltage
variation for a cyberattack are shown. The corrupted line
makes the variation in the main grid real power sharing to
critical load and frequency synchronization. Also, the per-
formance of the proposed BlockDeepNet to keep the real
power sharing and smart grid operating frequency was
shown. Using the proposed assessment scheme, the
attacked bus link 1 and link 2 are isolated and after a small
disturbance variation of cyberattack, the nominal values are
retained on the corrupted smart grid.

C) Synchronizer Replay Attack

In this case, it is shown how the difference between phys-
ical fault and data injection attack is detected by the pro-
posed decentralized BlockDeepNet. By using a confusion
matrix, the fundamental classification index is obtained.
For a detailed analysis, we computed accuracy, sensitivity,
specificity, and F1 score. Here, True Positive (TP) and
True Negative (TN) describe replay and system fault,
respectively. False Positive (FP) and False Negative (FN)
describe physical power system faults and cyberattacks,
respectively. Also, true and false indicate the detection of
attacks and faults in the smart grid.

FIGURE 7. Performance of proposed BlockDeepNet for
various cyberattack scenario a) voltage variation; b) real
power sharing.
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Performance Measure ¼

Accuracy ¼ TPþ TN

number of testing

Specivicity ¼ TP

TPþ FN

Sensitivity ¼ TPþ TN

number of testing

F1 Score ¼ FP

TN þ TP

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(39)

From Section III, training process of proposed
BlockDeepNet has been performed. Figure 9 shows the
obtained confusion matrix for training and testing of pro-
posed BlockDeepNet.

In Figure 9, N1 shows the replay attack, N2 indicates an
open circuit fault, N3 represents a short circuit fault and N4

indicates normal grid operation. Table 2 defines the replay
attack and smart grid simulation events.

From the event testing, the proposed BlockDeepNet was
able to detect the cyberattack. The viability of assessment
and mitigation by replay attack and false data injection are
shown in Figure 10. As can be seen in Figure 10, replay
attack on bus 3 shows PV current distortion but also the
loss of synchronization in the secondary grid. At the time
t ¼ 30 s, the proposed BlockDeepNet detects the replay
attack and isolates the DRES-5 connected on bus 7. At the

time t ¼ 60 s, the isolation makes a current if distortion, as
shown in Figure 10.

E) Sudden irradiance change (Falsifying Source Data)

In this scenario, the false data was injected into the PV
panel. Suddenly, the irradiance has been changed in
DRES-1 connected to bus 1, which makes the main grid
current increase. To mitigate the sudden irradiance changes
of irradiance, the proposed BlockDeepNet observe the fea-
ture of current value if in main grid by PMU. Initial PMU
data if at �X are compared with sudden irradiance change
current data îf from main grid.

�X ¼ if , îf ,Ri, R̂i

n o
(40)

Where if is grid fault current (nominal value), îf falsi-
fied current value, Ri is operation finding point. The differ-
ence in normal operating grid current and fault grid current
is given by Equation 41.

Px ¼ max if , îf
� 	

(41)

Here Px is the difference in the fault current of the grid.
Figure 11 shows the abnormal sudden irradiance changed
and current waveform distortion. Hence, in Figure 11 we
can easily predict that the falsified data was injected on
solar irradiance changed and detected by proposed
BlockDeepNet.

FIGURE 8. Performance of the proposed BlockDeepNet
with impact of various cyberattack on communication bus
and main grid: a) grid voltage; b) active power sharing; c)
grid frequency.

FIGURE 9. Confusion matrix for training and testing by
proposed BlockDeepNet.
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5.1. Comparison of Various Baseline Methods and
Proposed BlockDeepNet

To validate the performance of proposed cyberattack miti-
gation method, we apply and compare four cyberattack on
relay, DRES, synchronizer and switch as given in Section
4 and Section 5. All four malicious data have distinct lev-
els of resilience. The total duration of cyber intruders is
decided by the components in which cyberattack was
injected. For four attacks, the clearance time by proposed
BlockDeepNet is set as 40 s. Here, 40 s denotes 4 cycles
for 50Hz main grid frequency. The critical load is discon-
nected during DRES-1 failure, which makes the switch S1
to isolate the faulty component.

By using Equations 30–38, the normalized resilience is
represented as scatter plots in Figure 12. The median value
of resilience probability of each measure is represented in
dark circle. Figure 12 shows scatter plot of averaged nor-
malized resilience with averaged median measure. The
overall resilience to stand for all cyberattack is given by
Equation 42.

kR1k2 ¼
Xs

/¼1

/ ACT/ 	 RBM/ 	 LLM/ 	 GRT/ð Þ (42)

Where s denotes the number of attacks as a function of
attack sequence and 	 denotes composite function of four

resilience index. The level of averaged resilience measure
is given in Table 3. In Figure 12a, triangle indicates the
average value of attack clearing for testing four fault scen-
arios. In Figure 12b, cross shows the average value of relay
breaker margin for testing four fault scenarios. In Figure
12c, square shows the average value of load loss margin
for testing four fault scenarios. In Figure 12d, rectangle
indicates average value of grid recovery time for testing
four fault scenarios. In Figure 12, star points indicate the
average value of average resilience index, which corre-
sponds to Equation 50.

From Table 3, the proposed BlockDeepNet provide
faster mitigation of various cyberattacks line grid commu-
nication failure, replay attack, false data injection and sen-
sor data DoS. For grid communication failure, the
BlockDeepNet has ACT of 0.61, this validates faster
response on failure detection compared to Deep reinforce-
ment learning and resilient distributed control. From the
value of resilience index and corresponding averaged value
of probabilistically normalized resilience, the severity of
cyberattack was assessed by GRT. By comparing the index
value and the average index value in Table 3, we conclude
that the severity of all aggregated faults was Replay attack
> FDI > DIA > communication link failure, since the

captured measure provide assessment toward the severity
of measured variable. Hence, the quantification of index by
the proposed method is supplying the ability of the smart
grid to identify and withstand for the cyberattack intruders
and their sequence of impact.

Event Bus Link

îf ¼ 0:3if Critical busload
Replay attack on if Bus 1
Open circuit fault Switch S1-Fault F1
Short circuit Switch S2-Fault F2
Synchronizers disconnect DRES 3
Coordinated data injection if¼0:4, irradiance variation at Bus 1

TABLE 2. Cyberattack definition for replay attack testing event in
smart grid.

FIGURE 10. Impact of proposed BlockDeepNet for replay
attack and DOS attack mitigation.

FIGURE 11. Impact of false data on DRES-2 on bus 3.
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FIGURE 12. Performance comparison by scatter plot (1-D) for resilience index. (a) ACT; (b) RBN; (c) LLM; (d) GRT; (e)
kR1k2 normalized resilience index for various cyberattack.

Baseline method Cyberattack ACT RBM LLM GRT kR1k2
Deep Reinforcement Learning [14] Grid communication Failure 0.72 0.15 0.49 0.39 1.62

Replay attack 0.61 0.3 0.61 0.46 0.46
False data injection 0.41 0.18 0.48 0.75 0.92
Sensor Data DoS 0.39 0.12 0.36 0.21 0.73

Resilient Distributed Control [17] Grid communication Failure 0.81 0.19 0.53 0.24 1.90
Replay attack 0.44 0.24 0.63 0.33 0.23
False data injection 0.40 0.16 0.57 0.40 0.93
Sensor Data DoS 0.43 0.19 0.43 0.34 0.78

Our Proposed BlockDeepNet Method Grid communication Failure 0.61 0.2 0.61 0.20 2.36
Replay attack 0.69 0.31 0.70 0.15 0.91
False data injection 0.42 0.28 0.65 0.19 1.34
Sensor Data DoS 0.48 0.21 0.69 0.13 1.74

TABLE 3. Various cyberattack and resilience measure comparison with baseline methods.
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6. CONCLUSION

In this research work, the proposed deep reinforcement
learning approach with blockchain for detection and mitiga-
tion of cyberattacks was discussed. The proposed
BlockDeepNet provides accurate detection of various cyber-
attacks that are quantified by the resilience index. Four resili-
ence measures were proposed for avoiding the possible
cyberattack like communication link failure, replay attack,
false data injection, and denial of service. After the computa-
tion of various resilience indexes, the normalized resilience
measure was obtained. This overall normalized value is use-
ful to decide the assessment and mitigation of cyberattacks.

The proposed novel BlockDeepNet algorithm receives
continuous time-series data being processed by a decentral-
ized edge node to provide information from the blockchain
layer. The physical device and cyber-physical layer monitor
the smart grid topology and the grid energy management
system. Finally, the proposed BlockDeepNet was evaluated
by a real-time cosimulation environment on IEEE 15 bus
system, by several cyberattack impacts including the resili-
ence index. By composite resilience measure, the mitiga-
tion was analyzed. We obtained normalized resilience
index kR1k2 of 2.36 for grid communication failure, 0.91
for replay attack, 1.34 for false data injection and 1.74 for
DoS attack. Hence, by the value of obtained normalized
resilience index, it is shown that the proposed
BlockDeepNet has reduced the load loss during cyberat-
tack, making the smart grid to quickly mitigate and recover
to nominal operating conditions. Thus, numerical results
demonstrated the effectiveness of the proposed blockchain
employing deep reinforcement learning by providing a sen-
sitive and prompt response to cyberattack on cyber-phys-
ical in smart power systems. As a limitation in this
research work, the proposed BlockDeepNet needs to train
with ensemble learning for parallel processing and imple-
mented on secured decentralized resilient control. Hence, it
needs different attack dataset in real time to train the pro-
posed network for real-time implementation.
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