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Software testing identifes defects in software products with varying multiplying efects based on their severity levels and sequel to
instant rectifcations, hence the rate of a research study in the software engineering domain. In this paper, a systematic literature
review (SLR) on machine learning-based software defect severity prediction was conducted in the last decade. Te SLR was aimed at
detecting germane areas central to efcient predictive analytics, which are seldom captured in existing software defect severity
prediction reviews. Te germane areas include the analysis of techniques or approaches which have a signifcant infuence on the
threats to the validity of proposedmodels, and the bias-variance tradeof considerations techniques in data science-based approaches.
A population, intervention, and outcome model is adopted for better search terms during the literature selection process, and
subsequent quality assurance scrutiny yielded ffty-two primary studies. A subsequent thoroughbred systematic review was con-
ducted on the fnal selected studies to answer eleven main research questions, which uncovers approaches that speak to the
aforementioned germane areas of interest. Te results indicate that while the machine learning approach is ubiquitous for predicting
software defect severity, germane techniques central to better predictive analytics are infrequent in literature.Tis study is concluded
by summarizing prominent study trends in a mind map to stimulate future research in the software engineering industry.

1. Introduction

Software defect prediction (SDP) sufxes to determine faulty
parts of a software system proactively. It is one of the most
time-consuming and important stages of the software de-
velopment life cycle [1, 2], with diferent testing strategies
including cloud-based options [3, 4]. Early prediction and
identifcation of defective parts expectedly warrant imme-
diate debugging [5], which is a function of the severity level
of the identifed defect(s). Moreover, software requirement
gathering is a critical introductory phase of the software
development process [6–8]; hence, high priority is given to
software testing during development [9] with the aim of
ensuring compliance with the requirement specifcations.
Software defect has been broadly described as either a fault,

blunder, or bug in a software product, with a corresponding
unexpected output and or an unpremeditated behavioral
outcome [10] contrary to the quality intentions of software
engineers and expectations of the end-users. Whether
outsourced or developed in-house, critical success factors
are essential for software development [3, 11–13] in order to
avoid costly defects. However, advances in data science,
automation, and information technology are rapidly en-
hancing the aim of improving assurances across the software
development value chain [14], as better technological ad-
vancements are tailormade formassive datamining sequel to
its predictive analytics. Nonetheless, a review of such
problem-solving approaches is needed to guide practitioners
and the research community for continuous improvement
across the pipeline besides the dire need of an up-to-date
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understanding of trends, research direction, lapses, poten-
tials, etc., in the deployment of data science, in particular, for
software defect severity tasks.

While reiterating the applicability of data science in
virtually all felds of human endeavor, Olaleye et al. asser-
tions in ref. [15] underscore the global research community’s
interest in adopting predictive analytics for resolving in-
dustry problems just like for software defect predictive
modeling [16, 17], as evident in literature across digital li-
braries consulted for the purpose of this work. Terefore,
data science ofers a reliable functionality for scientifc
studies which avail review studies a retinue of sources of
investigations [18]. In the existing systematic literature re-
views on software defect severity prediction, the bias-vari-
ance tradeof consideration is seldom factored in research
questions, which has dire consequences on the eventual
performance metrics of the machine learning models. If
unaddressed, it is a major threat to the internal validity of
data science-based studies. Furthermore, only a few review
works are obtainable focusing on text analytics techniques
for software defect severity prediction. Te approach of text
analytics falls within the natural language processing (NLP)
use case of artifcial intelligence, which comes with diverse
functionalities that would make a robust literature review
with respect to encompassing research questions. For in-
stance, the basic but all-important preprocessing cycle of
NLP tasks, including tokenization, stemming, and other
feature engineering techniques of feature selection, were not
investigated in existing studies, including parameter opti-
mization considerations. Tese further constitute internal
threats to the validity of proposed frameworks. Investigation
of future recommendations on future works is also left out in
most of the existing reviews. Furthermore, the need to ex-
amine the level of multicollinearity inherent in training
datasets, which is the hallmark of data science-based pre-
dictive analytics [19], is not investigated. In addition, the
nature of datasets employed in literature is very important in
mitigating threats to the external validity of proposed
frameworks, a consideration hardly investigated by existing
review studies.

Tis study is therefore motivated by the need to address
the aforementioned gaps, which all constitute internal and
external threats to the validity of machine learning-based
studies.

Te objective of this study is to address the lapses while
carrying out a critical review of identifed primary studies
targeting techniques that speaks to the internal and external
validity of their approaches. Tese expositions are excep-
tionally paramount for researchers with the intent of unrav-
eling novel methodological concepts for future studies in the
domain of software quality assurance using text analytics.

Te main contribution of this study, therefore, is in the
analysis of studies with respect to techniques that have a
direct correlation with threats to the internal and external
validity of their work, as well as their bias-variance tradeof
consideration. Tis partly determines the research questions
formulated for this study and as well as unraveled the re-
search agenda for future studies. As recommended by the
authors of ref. [8], the guidelines for conducting a systematic

literature review in software engineering in ref. [20] are
employed in this study. In all, eleven research questions are
formulated, as inspired by the objectives of the study, and are
presented in Table 1. Te mind map in Figure 1 aptly
captures the focus of the paper and the internal validity
considerations to be investigated in primary studies.

To fll the aforementioned gaps amongst many others, an
SLR on the deployment of machine learning techniques for
software defect prediction is hereby presented based on
articles within the last decade (2011 and 2022). Other aims of
the study include the following theories:

(i) Investigating limitations to inspire future research.
(ii) Unraveling success variables adopted in the pre-

processing phase of text analytics (if any).
(iii) Contrasting current research trends with future

works.
(iv) Bias-variance tradeof consideration proposed in

methodologies, etc. Besides a review of existing
methodologies, this work equally aims to unravel
and present the confnes of the current approaches
including data sampling consideration, training set,
training strategy, and compliance with recom-
mendations in the literature.

1.1. Research Questions and Study Mind Map. Research
questions and objectives for this SLR are listed in Table 1.
From studies, the data sampling state, the most prevalent
public data, and the most popular learner algorithm in
literature are discovered through research questions R-Q1,
R-Q2, and R-Q3. Te learning approach employed in lit-
erature including cross-validation or hold-out, popularity of
parameter tuning, etc., is analyzed in R-Q4 to R-Q6. Te
signifcant area of feature engineering is covered in R-Q8
while R-Q9 answers the all-important question of the nature
of software metrics deployed. To inspire future studies,
threats to validity and proposed future works are determined
in R-Q10 and R-Q11. Figure 1 shows the simple mind map
of the SLR to identify software defect severity prediction
models, approach, framework, dataset, and test natural
language processing approach used in literature. Te mind
map will eventually be used to gauge observations from
primary studies at the end of this review.

2. Literature Review

Systematic literature reviews (SLRs) on software defect pre-
dictions majorly concentrate on the choice of algorithms,
methodologies, performance analysis, etc., without consid-
eration for data-based threats to internal and external val-
idities of primary studies. Hence, primary studies considered
for mapping are chosen carefully to ensure research questions
are efciently addressed, which necessitated a clear-cut search
criterion, and therefore, a limited number of primary studies
is considered since this study is only concerned with literature
that ofers adequate answers to set-out research questions.
Azeem et al. in ref. [5] focused on literature between 2000 and
2017 detecting code smell through machine learning
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techniques targeting setups of machine learning approaches,
how evaluation strategies are conducted, and a meta-analysis
of performance metrics from models under study. Teir
analysis revealed challenges that are not yet addressed by the
research community.Tework of Son et al. in ref. [21] focuses
on research studies from 1995 to 2018 with a systematic
mapping of literature in the software quality domain,
adopting amultistage process. It focused onmodels that could
classify software metrics from diferent projects to help or-
ganizations with little data, just as in ref. [10], aiming to
identify research trends, methods, frameworks, and datasets
in SDP deployed between 2000 and 2013.

While reviewing papers between 2004 and 2012, the
authors in ref. [9] categorized primary studies into several
parts. Tose executed within the framework of classifcation,
clustering, and ensemble with the profound investigation of

software metrics deployed for software defect prediction in
the works, including ISO standards, CMM, software testing,
and unique software metrics. Quality improvements were
central to the work of ref. [22] as it identifes contributory
factors with consequent remedial courses to improve soft-
ware productivity and quality. Models deployed in the lit-
erature were evaluated based on stated criteria with personal
observations related to the models discussed.

In ref. [23], the authors reviewed studies between 1991
and 2013 and identifed categories of machine learning
models, as well as including studying performance accuracy
analysis, reviewing statistical approaches while under-
studying the strength of machine learning models and
similarly; the authors of ref. [24] reviewed data mining
techniques deployed for software defect prediction works in
literature under review. Te authors thoroughly likewise

Table 1: Research questions guiding the SLR.

Research questions Objectives

∗R-Q1: which is the most widespread data sampling state? To realize the sampling state of dataset mostly deployed
so far

∗R-Q2: which public data are often deployed To identify public datasets popularly or frequently used
in literature

∗R-Q3: which machine learning approach is popular in literature? To identify the type of machine learning variate mostly
used

∗R-Q4: does the choice of learner algorithm/ensemble impact the performance
of defect severity prediction?

To realize the consensus learner algorithm recommended
in the literature

∗R-Q5: does training strategy impact prediction performance? To study various fold validation option-choice
∗R-Q6: is parameter tuning optimization popularly factored into predictive
analytics?

To know the extent to which results in the literature are
enhanced by tuning options

∗R-Q7: which training tool is mostly adopted? Way of identifying the utilitarian value of tools for ML
∗R-Q8: what feature selection algorithm is mostly deployed? To identify the most deployed dimensionality reduction

technique in literature
∗R-Q9: what is the course of action between “within” and “cross-project
adoption”?

A way of understanding the road map of SDP as
implemented in previous studies

∗R-Q10: what are the prominent threats to the validity of proposed models To identify from literature germane threats in literature
to inspire future studies

∗R-Q11: understanding the future direction of software defect prediction
studies with respect to threats to validity reported

To do a one-to-one mapping of threats reported with
future work directions

R-Q1: Data sampling approach

R-Q2: Public data choice

R-Q3: Learning approaches

R-Q4: Choice of Algorithm

R-Q5: Training strategy direction 

R-Q7: Mostly adopted ML tools

R-Q9: Course of action between 
within-cross projects

R-Q8: Most adopted feature 
selection algorithms

R-Q10: Prominent threats to 
models’ validity

R-Q6: Parameter optimization 
trend

R-Q11: Future direction of SDP 
studies 

Software 
Defect 

Severity 
prediction

Figure 1: Internal validity-aware mind map of the review study.
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reviewed datasets used, tools deployed for predictive ana-
lytics, performance measures used in literature, etc.

While working on an empirical study of literature be-
tween 1995 and 2018 for systematic mapping, the authors in
ref. [25] reviewed 98 primary papers out of the initial 156
accessed from reputable digital libraries to address nine
germane research questions centered on various aspects of
defect prediction through predictive analytics. Unlike other
SLRs, the authors factored in threat to validity items in their
study. In ref. [26], only three research questions were in-
vestigated in 208 studies published between 2000 and 2010,
trying to investigate how the performances of models are
afected by the context in which the models are developed,
the techniques upon which the models stand, and the in-
dependent variables deployed for the models.

A deliberate attempt to identify threats to the internal
and external validity of existing studies is missing from the
reviewed studies. Especially, studies do not make attempt to
relate the aims of primary studies with their future rec-
ommendations. Tis would easily reveal lapses in the future
direction. Notwithstanding the performance metrics of
primary studies, identifed threats to their internal and
external validity would avail optimized conceptual frame-
works in future studies. Tese lapses are to be investigated in
this study for future SDSP studies.

2.1. Contributions. Te relevance of this SLR is stated as
follows:

(1) Identifcation of ffty-two primary studies on software
defects predictive analytics within the last decade

(2) Analysis of feature engineering techniques, unsu-
pervised, supervised, semisupervised and clustering
learning approaches in the last decade to capture the
past while inspiring the future of the domain use case

(3) Tis study underscores the direct correlation be-
tween threats to validity and future research rec-
ommendations as observed in the reviewed literature

(4) With this work, a review of data preprocessing
techniques was sought-after, and other feature en-
gineering techniques

3. Research Methodology

Te research methodology adopted in this work is a sys-
tematic literature review (SLR) within the scope of software
defect prediction. Te study aims at addressing research
questions set out earlier in this work. As common with other
SLRs in the area of software engineering, guidelines stipu-
lated in ref. [27] are adopted in this work as best practices
while “snowballing” as defned by Wohlin [28] for a sys-
tematic inclusion of some references is likewise employed.
Specifcally, snowballing involves the study of the reference
list of a particular paper or the mention of the paper to detect
extra sources. Te process followed is described in the
subsections as follows.

3.1. Search Strategy. Te search process consists of activities
including selecting choice digital libraries, preferred search
strings, initial search, retrieving the initial list, and refning
the search string to get an initial list of primary studies from
digital libraries. Te following list of digital libraries was
consulted as those reputable for software engineering re-
sources [29] as recommended in several software engi-
neering-based reviews:

(1) IEEE digital library (@ieeexplore.ieee.org)
(2) ACM digital library (@dl.acm.org)
(3) SpringerLink library (@link.springer.com)
(4) Google Scholar (@scholar.google.com)
(5) Elsevier (@elsevier.com)

To identify search items relevant to the course of intent
and action:

(1) Search terms were infuenced by research questions
by identifying population, intervention, and
outcome

(2) Synonyms were identifed for major search terms for
an inclusive result

(3) Keywords were verifed and ascertained in all the
listed literature

(4) Boolean operators, for allowed database, were used
including OR and AND to either concatenate al-
ternative spellings and synonyms or inclusion of
major keywords, respectively

(5) Te search string was summarized sometimes for a
more compact and specifc search outcome

For (1), population, intervention, and outcome were
adopted so that better search terms could be obtained.

(i) Population: prediction of software defect severity
(ii) Intervention: machine learning techniques
(iii) Outcomes: severity level prediction

A sample research question with the detail mentioned
above is given below:
∗R-Q5: does the choice of learner algorithm/ensemble

(INTERVENTION) impact performance (OUTCOME) of
defect severity prediction? (POPULATION)

For (2 and 5), alternative synonyms and spellings as the
case may be included:

(i) Software defect: (“software bug” OR “software
smell” OR “software fault”)

(ii) Machine learning: (“machine learning” OR “pre-
dictive analytics” OR “text analytics” OR “super-
vised learning” OR “unsupervised learning” OR
“classifcation” OR “clustering”)

(iii) Prediction: (“prediction” OR “detection” OR
“identifcation”)

For (3), keywords in the literature were conventional;
hence, no suitable alternative was found.
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For (4), Boolean operators were deployed and were
acceptable to coin search queries.

3.2. Process of SelectingPrimary Study. Te selection process
overview of Figure 2 shows paths followed for capturing
the research articles concerning the study’s defned ob-
jectives. Emerging search results are shown in the second
column of Table 2 with their corresponding libraries with
an initial 2641 papers regarding the query. Table 3 indi-
cates the inclusion and exclusion criteria set out for this
study. Te title, abstract, and keywords of 2641 found
articles were difcult to study, and articles that met such
standards were removed, while the remaining were
adopted for the next screening with new additions from
snowballing (the process of identifying relevant literature
from the reference list of a paper understudy) as depicted
on Figure 2. Hence, 2.46% of the initial set comprising of
65 papers made the selection.

Specifcally, the title is frst considered: if it is out of scope
(i.e., if it is not about the predictive analytics of the use case),
the article is skipped; otherwise, if considered possibly
useful, abstract, introduction, methodology, and conclusion
sufxes to further ascertain appropriateness for the study.
Tus, the eventual sixty-fve papers passed all the steps. Once
selection papers are established to be considered for the SLR,
the quality assessment follows, primarily to confrm that all
fnal papers had the requisite information to answer the
research questions (see Table 1), culminating in the fnal
selection analyzed for this study. Te quality assessment test
turned out positive for each of the selected ffty-one studies.
Tus, the SLR study is based on ffty-two papers. Te in-
formation extraction process and form are later presented in
this section.

3.3. Inclusion and Exclusion Principles for Study Selection.
Te inclusion and exclusion criteria stipulated for primary
study selection or rejection are as shown in Table 3. Table 4
shows the data extraction form designed to acquire valuable
insights from the primary studies, which speaks to the in-
ternal validity observations inherent in their methodologies.
Te eventual list of primary studies, after the inclusion and
exclusion criteria have been implemented as is presented in
Table 5.

3.4. Quality Valuation of Papers. Te selected primary
studies are subjected to a quality assurance postfnal se-
lection process. Te following checklist was adopted for
credibility checks on selected publications:

(i) Q1: are the learning approach, cross-validation, and
class labeling presented?

(ii) Q2: is the choice of learner algorithms and ensemble
stipulated?

(iii) Q3: is the choice or otherwise of (i) feature engi-
neering and (ii) parameter optimization adopted
stated with reasons?

(iv) Q4: is the choice of public data noted, sampling or
resampling attempts, and metrics characterization
stipulated?

(v) Q5: does the study shows its domain choice of
software metrics between cross and within projects?

(vi) Q6: are there clearly stipulated aims, a threat to
validity, and clearly defned future work
suggestions?

Each question mentioned above attracts a “Yes,”
“Partly,” or “No,” while a study is considered as partial in
situations where questions not adequately answered are not
those addressed by Q3–5. Tese answers are graded as 1, 0.5,
and 0 for “Yes,” “Partially,” and “No,” respectively. For a
study, its quality grade was computed as the sum of the
graded answers with respect to the six questions. Te quality
level was regarded as good (with a grade ≥4), average (with
3≤ grade <4), and low (with a grade <3). Fifty-two studies
made the good and average sets which forms the fnal
selection.

As observed from Table 5, studies that made the fnal list
with average and good qualities range from papers presented
at conferences and international journals. Te aims of the
papers were clearly defned in the second column of the table
and the year of publications show a period of eleven years,
from 2011 to 2022 in the software defect severity prediction
research domain.

3.5. Data Extraction. Data extraction commenced, an-
swering stipulated research questions once the fnal papers
selected for the review were ascertained. Precisely, the data
extraction form earlier presented in Table 4 is used for
grading.

4. Result Analysis

In this section, the results of the review are discoursed to-
wards addressing the research questions.

4.1. Study Demographics. Table 5 shows the list of 52 kinds
of literature studied for this SLR review with corre-
sponding years of publication and the type of publication
in a journal or conference proceedings. Te works are
clearly executed between 2011 and 2022, spanning a de-
cade of software defect severity level prediction tasks using
machine learning. As may be observed in Figure 3, 64% of
the studies have been published in the last fve years,
indicating a rising profle of software defect severity
prediction interest amongst researchers in the engineering
genre, while over 58% of the publications are journal
articles.

4.1.1. R-Q1: Data Sampling Approach in Literature. Te
outcome of this SLR concerning the R-Q1 is in no way
diferent from trends observed from previous works where
the majority of datasets deployed for training learner al-
gorithms are grossly of imbalanced class distribution, which
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is a characteristic nature of software defect public data [67]
and hence is highly biased. Tis is attributed to the fact that
software metrics are more defect-free than defect prone;
hence the defect instances are seldom as much as the in-
stances without defect [48], which attests to why the de-
pendent variables are favorably skewed towards nondefect

instances, especially for binary classifcation since unsu-
pervised learning is devoid of labeling. Te result presented
in Table 6 speaks volumes of the data sampling and
resampling pattern in primary studies as only a few altered
training dataset distributions by way of resampling to ad-
dress the bias, which is essential for a better predictive

Table 2: Source of primary data with search results.

Library name Results found Initial selection Final selection after quality assurance
IEEE 531 17 14
ACM 201 9 6
SpringerLink 351 11 6
Google Scholar 1456 18 10
Elsevier 102 10 6
Total 2641 65 42
Snowballing 12 11 9
Final total 2653 76 52

Table 3: Inclusion and exclusion criteria.

Inclusion
criteria

Articles adopting predictive analytics and text analytics, natural language processing, and written in English for software
defect prediction

Articles adopting an addendum method to its machine learning approach

Exclusion
criteria

Studies not written in the English language
Studies not relevant to machine learning or text analytics

Studies that do not clearly defne every item of corpus preprocessing and or text analytics
Papers whose full text are not accessible

SELECT LIBRARY

IEEE (531); ACM (201); 
Springer Link (351); 
Google Scholar (1456); 
Elsevier (102)

INITIAL SEARCH

Refine 
String

2641
initial 

primary 
study 

listEXCLUSION 
CRITERIA

65 
selections 11 additions 

through 
snowballing

52 FINAL LIST OF 
PRIMARY STUDIES

Primary Studies 
Found????

NOYES

+++

Quality Assurance 
Considerations 

DEFINE SEARCH 
STRINGSTART

STOP

Figure 2: Interaction overview for primary studies selection.
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Table 5: List of reviewed primary studies.

Id Aim of research work Ref. Year Type of
publication

[L01] Prediction of software defect vulnerability level with the textual corpus [30] 2021 Conference
[L02] Deploying ensemble learning for software defect prediction [31] 2021 Journal
[L19] Software defect predictions with techniques [32] 2020 Conference
[L28] To use text analytics on apache projects for bug severity prediction [33] 2020 Journal
[L29] Questioning and answering approach to bug prediction [34] 2020 Journal
[L30] To use the machine in the prediction of software defect [35] 2020 Journal
[L31] Weighted extreme learning machine approach to predict software defect [36] 2020 Journal
[L36] Heterogeneous ensemble classifcation approach to defect prediction [37] 2020 Journal
[L12] To use a feature selection strategy for improved defect prediction [38] 2019 Journal
[L16] Virtual classifcation approach to software defect prediction [39] 2019 Conference
[L20] Code smell prediction using an extreme learning machine [40] 2019 Conference
[L27] To use CNN and random forest for the classifcation of bug severity [41] 2019 Journal
[L33] Approaching software defect prediction through feature selection [38] 2019 Journal
[L35] Predicting software bugs in closed-source projects [42] 2019 Journal
[L45] Cluster and hybrid feature selection approach to defect prediction [43] 2019 Conference
[L50] Software defect prediction using an unsupervised approach [44] 2019 Conference
[L11] Using bug report classifcation for incorporate and textual feld knowledge [45] 2018 Conference
[L38] Identifying impacts of imbalanced ensemble learning methods for cross projects [46] 2018 Journal
[L43] Semisupervised approach to defect prediction in cross-project and within-project [47] 2018 Conference
[L46] Heterogeneous piling and SMOTE approach to ensemble defect prediction [48] 2018 Conference
[L51] Deployment of the ensemble for class imbalance in defect prediction [49] 2018 Journal
[L10] Corpus vulnerability description approach towards defect prediction [50] 2017 Conference
[L17] Using feature-dependent Naı̈ve Bayes approach [51] 2017 Journal
[L26] Adoption of predictive analytics for code smell prediction [52] 2017 Journal
[L37] Assessment of bug severity in cross-project while in training candidates [53] 2017 Journal
[L42] SMOTE and ensemble approach to defect severity prediction [54] 2017 Conference
[L44] Unsupervised machine learning approach to defect prediction [55] 2017 Conference
[L04] Diversity selection approach to defect prediction using ensemble [56] 2016 Conference
[L09] Using a semisupervised approach on imbalance set for defect prediction [57] 2016 Conference
[L14] Machine learning techniques for defect prediction in android software [58] 2016 Journal
[L25] Machine learning and text mining approach to bug severity classifcation [59] 2016 Journal
[L48] Predictive analytics on software project report [60] 2016 Journal
[L49] Diversity selection and ensemble approach to defect prediction [61] 2016 Conference
[L08] Using a dictionary of critical terms for predicting software bug severity [62] 2015 Conference
[L03] Using a dictionary of known terms for defect prediction [63] 2014 Conference
[L05] Mining software repository for defect prediction [64] 2014 Book
[L07] Neural network approach to predictive analytics [65] 2014 Conference
[L15] Improving VAB-SVM prediction for defect prediction in cross-project [66] 2014 Conference
[L22] Evaluating learners performance on imbalanced dataset for defect prediction [67] 2014 Journal
[L23] Defect prediction using machine learning techniques [68] 2014 Journal
[L24] Comparing statistical and machine learning methods for faulty modules [69] 2014 Journal
[L47] Data mining and multi-layer perceptron approach to defect prediction [70] 2014 Journal

Table 4: Data extraction from.

S/
N Dimension Attribute: description

1 Te type of severity prediction class adopted Probability, severity levels, or binary classifcation

2 Data sampling status and metrics characterization Te distinction between balanced or imbalanced data together with data
attribute type either of nominal or numeric

3 Category of machine learning used and learner
algorithm used for prediction

Choice of either supervised or unsupervised with learner algorithm used for
prediction

4 Parameter tuning or optimization strategy adopted Identifcation of performance improvement tuning adopted in literature

5 Treats to validity with respect to future work
suggestion

Mapping of primary studies threats to proposed future work outlook in the
software defect prediction industry

6 Treat to validity and future work recommendations Juxtaposing vulnerability with future potentials

7 Use case application area Identifying application area of either cross-project or within the project use
case
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accuracy [31]. Considering literature with resampling ef-
forts, most of those adopting minority oversampling
deployed the synthetic minority oversampling technique
(SMOTE) for class distribution resampling amidst several
other options. Ensemble approaches were likewise imple-
mented in other literature, especially to limit the adverse
efects of class imbalance. Few pieces of literature adopted
the strategy of deploying a multivariate class labeling by
further decomposing class labels into various severity levels
to reduce bias.

(1) Summary for R-Q1. 72.5% of primary papers deployed an
imbalanced training set for SDP while 17.6% adopted
oversampling, with 1.96% adopting undersampling in their

attempts to resample. Hybrid approaches and others which
constitute 3.9% appease use other resampling methods.

4.1.2. R-Q2: Which Public Data Are Often Deployed?
Public data are often used for predictive analytics in SDP
literature [10]. As observed from primary studies for this
SLR, both within-projects and cross-projects have adopted
the same approaches with varying choices across publicly
available sets. Targets of researchers in choice of dataset vary
likewise but ultimately of high consideration is the nature of
metrics concerning independent variables under consider-
ation as noticed from this study. Concerning the graph plot
presented in Figure 4, twenty-two diferent datasets are

0 1 2 3 4 5 6 7 8 9
[2011]
[2012]
[2013]
[2014]
[2015]
[2016]
[2017]
[2018]
[2019]
[2020]
[2021]
[2022]

Years of publication plot

Figure 3: Distribution of primary across timelines.

Table 6: Data sampling approaches.

Data sampling Frequency Cited

Imbalanced 37
[L01], [L03], [L04], [L05], [L07], [L08], [L10], [L11], [L12], [L13], [L14],[L16],[L17],[L18], [L19], [L24],
[L25], [L26], [L27], [L28], [L29], [L30], [L31], [L32], [L33], [L35], [L36], [L39], [L40], [L41], [L43],

[L44], [L45], [L47], [L48], [L49], and [L50]
Resampled
Resampling
approach
Oversampling 9 [L02], [L09], [L21], [L34], [L37], [L38], [L42], [L46], and [L51]
Undersampling 1 [L06]
Hybrid 2 [20] and [L22]
Others 2 [L15] and [L23]

Table 5: Continued.

Id Aim of research work Ref. Year Type of
publication

[L06] Iterative and noniterative feature engineering approach for software defect prediction [71] 2013 Journal
[L18] Trying decision tree approach to software defect prediction [72] 2013 Journal
[L39] Deploying supervised and unsupervised learning approaches to defect prediction [73] 2013 Journal
[L13] Machine learning techniques adoption for bug severity prediction [74] 2012 Conference
[L21] Two-level data preprocessing approach to defect prediction [75] 2012 Conference
[L32] To identify the impacts of diferent classifers to predict software defect [76] 2012 Journal
[L34] Ensemble learning approach to improve software defect prediction [77] 2012 Journal
[L40] Feature selection approach to defect prediction in software [78] 2012 Conference
[L41] An AHP-based evaluation method for ensemble defect prediction [79] 2011 Journal

[L42] Enhanced random forest (extRF) approach in IOT-based application processing environment using a
business process management and improvement concept [80] 2022 Journal
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under consideration, with each spreading across one, two, or
more of the presented datasets.

(1) Summary for R-Q2. NASA dataset is the most adopted of
all 22 used in literature with a 49% deployment rate while
Promise follows with 29.41%. Eclipse, Mozilla, Apache, and
Azeem likewise enjoyed considerable adoption in literature.

4.1.3. R-Q3: Most Adopted Machine Learning Variant.
Machine learning variants adopted in the literature vary, and
it is the exclusive preserve of a researcher to adopt whatever
variant in the course of its SDP study. As observed in the
sunburst plotted in Figure 5, the SDP research community
highly deploys supervised learning with unsupervised
learning coming second. [L09] and [L43] deployed a sem-
isupervised approach in their study while [L34] adopted a
dictionary learning approach. Adoption of both unsuper-
vised and supervised learning variants is encapsulated in the
work of [L36], where training data are clustered for a
subsequent categorized supervised training while the work
of [L44] seeks to compare the predictive accuracy of su-
pervised and unsupervised variants of machine learning.

(1) Summary for R-Q3. Supervised learning is widely adopted
despite reports of better performance by unsupervised
learning. It is recommended that the unsupervised learning
approach be given more attention in SDP to further improve
the predictive accuracies of software defects.

4.1.4. R-Q4: Preferred Choice of Learner Algorithm and/or
Ensemble. With several machine learning algorithms at the
disposal of the software engineering research community,
Figure 6 captures the most deployed in the primary studies
across the various models proposed. While Näıve Bayes
enjoyed the biggest patronage in the supervised learning
subcategory, K-means was the most adopted in the unsu-
pervised learning category for base learning and clustering,
respectively. Bagging was mostly deployed across the liter-
ature in the ensemble set, as evident in Table 7 presented,
followed closely by Stacking and Boosting with fve (5)
representations each.

(1) Summary for R-Q4. Näıve Bayes is widely adopted in
literature, accounting for over 57% of the utilitarian value,
and it is the most recommended by literature in their
conclusions. Bagging tops the ensemble category.

4.1.5. R-Q5: What Training Strategy is Mostly Deployed?
Studies employed mostly 10-fold cross-validation with 5-
fold cross-validation methodology coming next in various
attempts to control the rate of variance in the estimation of
predictive models. Te stratifed approach employed by
some studies guarantees equal sampling of the minority
and majority class as in the original data for each fold,
avoiding folds founded only in the popular class. Table 8
shows the close range of the training strategy adopted in the
literature.

Machine learning variant adoption plot

Supervised
Un-supervised

Both
Semi-supervised

Figure 5: Choice of machine learning approach.
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Figure 6: Learner algorithm distribution.
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Figure 4: Utilitarian spread of public datasets.
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(1) Summary for R-Q5. An average of 47% of primary studies
deployed fold cross-validation while 52.9% employed the
hold-out strategy for their studies, showing an almost bal-
anced representation in the population.

4.1.6. R-Q6: Is Parameter Optimization Popularly Factored
into SD Predictive Analytics? Parameter tuning has been
highly recommended in the literature for any predictive
analytics [10] study for improved accuracy in an attempt to
optimize performance by changing parameter settings. [L22]
created two versions of K-Nearest neighbor 2NN and 5NN
by tuning values of k (2,5) and [L04] likewise tuned two
parameters of K-NN learner including the k-value (denoting
how many neighbors be taken into consideration) and the
nearest neighbor searching algorithm. As evident in Table 9,
few studies reported parameter optimization measures in
their research.

(1) Summary for R-Q6. To the best of our knowledge,
11% of the study population (6 papers) only reported
cases of parameter optimization to enhance prediction
performance.

4.1.7. R-Q7: Which Is the Most Adopted ML Tool? Some of
the models presented in the literature are simulations of the
SDP analytics, and other studies developed software codes to
implement proposed models. In an attempt to fully grasp
diferent approaches in primary studies, the inclusion of this
research question becomes imperative. As observed from
Figure 7, few studies explicitly mentioned specifc tools
employed to model their proposed architectures. However,
the Waikato Environment for Knowledge Acquisition
(WEKA) tool was majorly deployed in reported cases of
primary studies, and Python with Rapid miner was also
patronized for the modeling.

(1) Summary for R-Q7. Integrated development environ-
ments are mostly preferred, especially for simulation pur-
poses in analyzed primary studies.

4.1.8. R-Q8: Which Feature Selection Option Is Widely
Adopted for Dimensionality Reduction? Figure 8 shows the
adoption rate and choice of feature engineering algorithms
in primary studies with their respective rankers by way of
reducing dimensionality in training sets. While machine
learning thrives on huge datasets, feature engineering in
predictive analytics optimizes performance [10] towards
reducing redundancy, just as multicolinearity is topical for
better performance in software defect predictive analytics.
[L01] deployed Chi-Square and information gain algorithms
for removing irrelevant features by fnding dependence
between two variables by ranking features and retaining top-
ranking features for the SDP modeling.

(1) Summary for R-Q8. Feature engineering does not reg-
ularly feature in primary studies as only a few pieces of
literature specifcally aimed at deploying feature selection in
their works.

4.1.9. R-Q9: What Is the Course of Action between Inter- and
Intraproject Research Direction? Figure 9 shows that within-
project metrics are mostly deployed in primary studies with
respect to the choice of data. At the same time, few studies

Table 7: Distribution of ensemble methods in the literature.

S/N Ensemble Literature
1 Coding based [L3]
2 Stacking [L4], [L2], [L41], [L46], and [L49]
3 Vote [L37]
4 XGBoost [L2], [L30], and [L36]
5 Bagging [L1], [L2], [L14], [L22], [L28], [L36], [L37], [L38], [L41], [L42], and [L46]
6 Boosting [L15], [L27], [L28], [L36], [L38]
7 AdaBoost [L41], [L42], and [L46]
8 RF ensemble [L42]
9 Other [L17] and [L51]

Table 8: Training strategy.

Fold cross-validation [L04], [L06], [L12], [L13], [L14], [L21], [L28], [L22], [L24], [L23], [L30], [L36], [L39], and [L24]
[L26], [L35], [L36], [L39], [L40], [L41], [L42], [L43], [L44], [L48], [L49], and [L51]

Hold-out
[L01], [L02], [L03], [L05], [L07], [L08], [L09], [L10], [L11], [L12], [L15], [L16], [L17], and [L18]

[L19], [L20], and [L25]
[L31], [L32], [L33], [L34], [L37], [L38], [L45], [L46], [L47], and [L50]

Table 9: Application of parameter tuning across primary studies.

S/N Literature Area of tuning application
1 [L12], [L19], and [L22] K-NN
2 [L04] K-NN/SVM
3 [L32] N.B
4 [L36] N
5 [L51] R.F
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reported inadequate defect metrics in within-project metrics
which are used for both the training and testing phases of
their work. [L37] and a few others employed a cross-project
strategy between metrics from Eclipse and Mozilla as either
is deployed for training and the other for testing for a better
perspective on the model’s predictive accuracy. On the
contrary, [L38] adopted a cross-project to solve data im-
balance, especially for assessing the efciency of class dis-
parity in ensemble learning.

(1) Summary for R-Q9. Defect prediction in cross-project
needed further exploration in software defect severity pre-
diction studies as few studies adopted the approach in their
works.

4.1.10. R-Q10: Prominent Treats to Models’ Validity Across
Primary Study. Treats to validity (TTV) is germane in the
feld of software engineering for software defect severity
prediction to ascertain levels of threats to internal and ex-
ternal validity in literature and as observed from Table 10, a
sizeable number of studies that reported cases of TTV in

their proposed models, which uncovers grey areas that may
have impeded better performance in the models. Treats to
external validity in an experimental software engineering
study are circumstances that limit the generality of case
study outcomes [71], while threats to internal validity are
regarded as errors in empirical metrics and tool adoption
[50].Te level of compliance with reporting TTV of inherent
threats in studies is encouraging. However, studies like ref.
[47] claim compliance with best practices while asserting the
immunity of their study to threats. Table 10 clearly shows
prominent areas of research studies where diferent cate-
gories of threats are reported.

4.1.11. R-Q11: Does TTV Inspire the Direction of Future
Works in SDP. Mapping TTV with future work is an at-
tempt to tag the consistency of current studies with proposed
future studies as a continuous evaluation and improvement
mechanism towards ensuring informed decisions. Future
study direction in SDP could then be consistent with current
realities. Table 11 shows the link between threats identifed
from primary studies and their respective future direction as

0 2 4 6 8 10 12 14 16
Relief-F

Information Gain
Correlation Coefficient

Person's Correlation
Chi-Square

Clustering V
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Figure 8: Feature engineering trend in studies.
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Figure 7: Utilitarian spread of machine learning and testing tools.
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Table 10: Treats to validity subcategory spread.

S/N Treat subcategory References
1 Feature engineering-induced threats [L04], [L06], and [L12]
2 Human error proneness [L06], [L10], [L11], [L26], [L27], and [L29]
3 Data/software metrics related threats [L04], [L06], [L12], [L21], [L26], [L27], [L33], [L37], [L38], [L44], and [L45]
4 Evaluation-related threats [L15], [L21], [L43], [L38], and [L49]

Table 11: Mapping TTV with future work.

S/
N TTV subcategory Reference TTV Future work

1 Feature engineering-
induced threats

[L04] Failure to apply full parameter
search Intend to apply full parameter search in the future

[L40] Feature selection does not
consider semantics Evaluation of other feature selection schemes in literature

[L32] Choice of feature selection
algorithm Intent to deploy other feature selection algorithms

[L12] Treats from feature selection Checking for efects of imbalance & outliers on feature
selection

2 Human error
proneness

[L06], [L11],
and [L26] Varying degrees and kinds of

errors No mention in future works[L27] and
[L29]

3
Data/software
metrics related

threats

[L12], [L21],
and [L26]

Restriction of studies to particular
software metrics and repositories

Studies intended to try proposed models on other data
metric repositories as [L38] intend to address class

imbalance in future and [L29] aiming to try commercial
metrics repositories

[L27], [L33],
and [L37]

[L38], [L44],
and [L45]
[L34]

4 Evaluation-related
threats

[L15]
Standard deviation may not be an

optimal choice for model
evaluation

Other evaluation techniques to be considered except
standard deviation

[L21] Bias in choice of performance
parameters Root square means method to be adopted in subsequently

[L38] AUC & MCC may not be
appropriate measures Trial of other performance evaluation measures
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Figure 9: Within or cross-project study choices.
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observed from the concluding section of each study. All
twenty-two studies that reported threats to validity indeed
expressed intent to include in their future studies grey areas
enumerated in their TTVs.

(1) Summary for R-Q11. It is observed from the study that
TTV indeed inspires future work direction in the SDP
industry.

5. Discussion and Implications

Further discussion of the main fndings (which discusses
contribution to knowledge) is presented in this section
with respect to the research questions set out for this
study.

5.1. R-Q1: Limited Awareness of Various Implications of the
Imbalance Training Set. Consequent on the foregoing
evaluation of the class sampling status of the dataset
deployed in literature, it is evident that studies are fully not
yet abreast of the varying implications of a bias training set
for SDP studies, whereas some studies indeed noted the
implications, thereby deploying the ensemble learner ap-
proach or other techniques, other studies failed to ac-
knowledge the implications besides studies that employed
resampling techniques as part of their methodologies. Te
frst recommendation is for future studies to proactively
incorporate a resampling component in the data pre-
processing phase of software defect predictive analytics. To
ease the choice of resampling approach, the subsequent
research question shows the most adopted in the literature is
oversampling. Furthermore, an exploratory data analysis is
highly recommended to reveal actionable insights that could
inspire future conceptual frameworks.

5.2. R-Q2: Need for Inclusiveness in Software Metrics Repos-
itory Choice. Te majority of studies have concentrated on
either Nasa or Promise repositories, with others trailing far
behind in terms of application and analysis, whereas other
studies trained on the two most prominent alongside other
less popular repositories; there may be a need to spread
studies across repositories for an inclusive and robust
generalization of results during reportage which will situate
conclusions reliably. Tat will also eliminate the possibility
of a threat to the external validity of their experimental
results.

5.3. R-Q3: Supervision of the Learner Algorithm Takes Center
Stage in SDP Studies. A review in this work shows the
towering adoption of the supervised learning approach in
literature for SDP and the subtle adoption of semisupervised
alongside unsupervised learning. Te combination of both
unsupervised and supervised approaches for the training set
clustering and classifcation, respectively, is likewise gaining
interest in the software engineering genre. However, it is
pertinent to fully consider unsupervised learning as a way of

software metrics clustering as a precursor to severity level
prediction.

5.4. R-Q4: Towering Posture of Naı̈ve Bayes. As witnessed in
the study, the adoption of Näıve Bayes span through the
eleven years of study despite the relative choice of software
metrics adoption in literature. It is noteworthy that studies
that experimented on more than two base learners likewise
recommended the algorithm for its performance metrics in
the study, hence the need to factor its relevance into sub-
sequent studies while studying ways of its parameter opti-
mization for better performance.

5.5. R-Q5: Widespread Adoption of n-Fold Cross-Validation.
Tis study shows the widespread adoption of cross-valida-
tion predictive analytics for SDP alongside the traditional
hold-out approach. Reduction of overftting has been at-
tributed to the trend, but either way, they are considered as
efcient for SDP in primary studies.

5.6. R-Q6: Considerable Low Deployment of Parameter
Optimization. Revelations show a low rate of parameter
optimization in primary studies despite its efciency in
natural language processing with respect to the data pre-
processing phase in software defect severity prediction.
Tere is a dire need for its deployment for better perfor-
mance metrics in subsequent studies as some prominent
learner algorithms will be better efcient with parameter
tuning.

5.7. R-Q7: Widespread Adoption of Simulation in SDP
Modeling. As noted, integrated development environments
for simulation is widely deployed in literature, with WEKA
leading the pack of the most widely used environment for
SDP predictive analytics.

5.8. R-Q8: Information Gain and Correlation Coefcient Al-
gorithms for Feature Selection. An appreciable number of
primary studies adopted feature engineering as part of their
preprocessing techniques to reduce dimensionality, while
information gain and correlation coefcient enjoyed the
widespread application. Feature selection is recommended
as an integral part of the preprocessing phase of software
defect severity level prediction for enhanced performance
metrics, as studies can observe.

5.9.R-Q9:Need foraCross-ProjectApproach inFutureStudies.
Few literature gave consideration for a cross-project ap-
proach in their studies which is highly recommended to avail
models of the opportunity of cross-fertilization of software
metrics with respect to testing the efciency of training
through the deployment of the industry-based test set for
prediction. Restriction of data metrics to within-project or
closed-project metrics may constitute a threat to the external
validity of proposed models, especially at test time with a
cross-project test set.
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5.10. R-Q10: Software Metrics Posing Major Treats to SDP
Models’ Validity. As noted in studies with TTV included in
their structure, dataset-related threats pose a major chal-
lenge to research works under reference, hence the need for
future studies to undergo an in-depth analysis of software
metrics available in repositories while ensuring inclusivity
wider scope of databases for modeling of SDP studies.

5.11.R-Q11:MappingofTTVwithFutureWorks inLiterature.
Te future direction of SDP studies is clear-cut for re-
searchers in the industry as the consensus appears to be in
the direction of ensuring the adoption of appropriate feature
selection technique, ensuring data resampling, deployment
of parameter optimization, concatenation of widespread
software metrics of variant repositories to serve as the
training set for building SDP models, etc.

Figure 10 shows a graphical representation of the fnal
mind map of contributions in this study. With the initial
mind map presented in Figure 1, it clearly clarifes the
contributions of the primary studies with respect to the
research questions presented in Table 1. With this, future
studies on SDP could be guided by the various observations
from this study.

5.12. Future Agenda. Consequently upon the foregoing, a
descriptive statistical technique of exploratory data analysis
(EDA) is highly recommended in future conceptual
frameworks for data science-based Software Defect Severity
Prediction. Tis will avail actionable insights from the
dataset which should inspire conceptual frameworks. Tis
will address various gaps identifed from research questions
R10, R9, R8, R6, R5, R2, and R1, which all constitute threats
to the internal and external validities of primary studies. As
observed from the fnal mind map of Figure 10, an EDA
prior to predictive analytics would uncover the limitations of
predictor attributes in an adopted dataset (R-Q10), which is
caused by the prevalence of within-project choices (R-Q9).
Te threat to the external validity of studies is observed to be
majorly caused by the adoption of a within-project dataset,
whose results cannot be generalized when tested on a cross-
project. If multicollinearity is discovered through a corre-
lation test of EDA, this could infuence the choice of feature
selection (R-Q8) technique, depending on the degree of the
level of identifed correlation. Te usual loss function
problem without parameter tuning (R-Q6) will likewise be
averted with an in-depth understanding of the training set at
hand. While the cross-fold validation (R-Q5) helps reduce
variance problems, an EDA would further help the tradeof
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that must be considered between bias and variance. An EDA
would clearly infuence the choice of the tradeof to be
considered. Furthermore, the within or closed-project
choices in literature indeed inspire the choice of the public
repository (R-Q2) to adopt for historical data. Te
interquartile range (IQR) (through box plot), correlation
coefcient (through heat map plot), and other multivariate
plots of EDA would be needed to inspire required mitigating
techniques to be adopted especially in respect to R-Q1 which
reveals the adoption of highly imbalanced training sets
across studies.

5.13. Treats to Validity. A prominent threat to the validity
of this SLR is in the area of selecting primary studies, es-
pecially the quest of efciently rating the previous studies to
get the fnal ffty-one which constitutes the primary study. To
mitigate the threat, the Herculean task of painstaking study
of each and every 51 kinds of literature though time-con-
suming gave a robust and in-depth awareness of the subject
of discussion and elements that make up each methodology.
No step was speared in the process, just as the same exercise
was repeated thrice to ascertain noted claims consecutively.
In addition to the automated search of libraries, snowballing
was likewise adopted, which is an ofshoot of a thorough
study of each paper to fnd other relevant papers. Te ex-
clusion and inclusion criteria earlier adopted for this SLR
shaped the outcome in commendable ways as most papers
adequately answered the research questions, just as the data
extraction form plays a signifcant role in the whole process
for quality assessment.

Other threats are the reporting styles of authors, which
often encapsulate vital elements of their research away
from their model designs. It takes various repetitive studies
to identify some germane elements central to the quality
assessment of their studies. While some of these elements
are not included in their abstracts and keywords, glancing
through their introduction and conclusion will yet not
reveal their discovery until the entire study was studied
prior to the full-scale understudying of the primary
studies.

6. Conclusion

Tis study described an SLR on the deployment of machine
learning techniques for software defect severity prediction
in the software engineering genre. Eleven specifc areas
were targeted as an overview of how previous research
conducted since eleven years up till 2022 fared with respect
to (i) data sampling approach, (ii) choice of software re-
positories, (iii) most preferred machine learning variant,
(iv) prominent learner algorithm and or ensemble, (v)
mostly deployed training strategy, (vi) variant of param-
eter optimization adopted, (vii) most popular machine
learning tool, (viii) prominent feature selection algorithm,
(ix) choice between within and cross-project, (x) prom-
inent threats to validity, and (xi) future direction of SDP
with respect to threats aforementioned; which all speak to
the bias-variance tradeof considerations and likely threats

to validity of proposed methodologies. Te study was
conducted on papers from 2011 to 2022 comprising of an
initial 2653 study population, which eventually resulted in
a 52-primary study subset after thorough analysis. Te
analysis conducted highlighted a handful of observations
and limitations in primary studies which are essential to
shape future studies in the SDP industry. Te following are
observed from primary studies: (i) less-deployment of
unsupervised learning for SDP studies, (ii) less deploy-
ment of balanced data without resampling attempts by the
majority of studies that used imbalance data for training,
(iii) less-reportage of natural language processing tech-
niques efected on software defect reports before classif-
cation, (iv) nonconsideration of multicolinearity
problems, and (v) less consideration for cross-project
approach which are all essential for a better software defect
severity predictive analytics. Terefore, it is believed that
this study will be a reference for future works and that the
research community will fnd it as a signpost for better
research quality in the software defect severity prediction
case.
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