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Engineering, Kaunas University Aims: This study aims at using TextBlob and VADER analyser with historical tweets, to

of Technology, Kaunas, Lithuania analyse emotional responses to the coronavirus pandemic (COVID-19). It shows us how
much of a sociological, environmental, and economic impact it has in Nigeria, among
other things. This study would be a tremendous step forward for students, researchers,
and scholars who want to advance in fields like data science, machine learning, and
deep learning.

Methodology: The hashtag’'COVID-19"was used to collect 1,048,575 tweets from
Twitter. The tweets were pre-processed with a Twitter tokenizer, while TextBlob and
Valence Aware Dictionary for Sentiment Reasoning (VADER) were used for text mining
and sentiment analysis, respectively. Topic modelling was done with Latent Dirichlet
Allocation and visualized with Multidimensional scaling.

Results: The result of the VADER sentiment returned 39.8%, 31.3%, and 28.9%, positive,
neutral, and negative sentiment, respectively, while the result of the TextBlob senti-
ment returned 46.0%, 36.7%, and 17.3%, neutral, positive, and negative sentiment,
respectively.

but a few were disappointing for various reasons.

Conclusion: With all of this, information from social media may be used to help
organizations, governments, and nations around the world make smart and effective
decisions about how to restrict and limit the negative effects of COVID-19. Also, know
the opinion and challenges of people, then deal with the problem of misinforma-
tion. It is concluded that with popular belief a significant number of the populace
regards COVID-19 as a virus that has come to stay, some believe it will eventually be
conquered.
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Introduction

Coronavirus known as COVID-19 is a virus that broke out globally in the year 2019 from
Wauhan, China, and for a long time was the most widely disseminated disease and most
widely discussed in the world. COVID-19 affected many sectors of the world, ranging
from health, the economy, and education just to mention a few. As at the time of this
study, over 119 million individuals have been infected by the disease, 67.2 million have
recovered, and more than 2.63 million were recorded dead around the world [1]. This
showed it is perhaps the most natural infection outbreak in the most recent twenty years
in the century [2]. With statistics obtained from social media usage, especially Facebook
and Twitter, the advent of technology has allowed us to comprehend the impact of this
pandemic in numerous sectors. It is well known that information travels quickly over the
Internet, resulting in a wide range of emotions among social media users, particularly
on microblogs like Twitter. Within the twentieth century, social connection advanced
to a technical level, allowing people to connect with others all over the world to pro-
mote society’s acceptance. Twitter is one of the social programmes that is widely used
for opinion polling, with 100 million users posting 250 million tweets [3]. Infection with
COVID-19 became a threat not only to public health but also to global development.
COVID-19 could be a highly contagious disease that targets the respiratory system and
the lungs. According to studies, COVID-19 is coronavirus-related and shares character-
istics with an ailment that first surfaced in 2003 under the name of severe acute respira-
tory syndrome (SARS). Beginning in China, the SARS virus infected 29 countries.

With sentiment analysis, a relationship can be established between the content of a
tweet and the emotions of the composer. Hence, mining opinion on social media micro-
blogs presents opportunities to extract meaningful insight from the public, especially on
trending issues [4]. Twitter is a social platform in which users can express their thoughts
in less than 280 characters per message on different ranges of topics. By applying sen-
timent analysis techniques to tweets, important bits of information are gotten with
respect to open opinions on the pandemic, open health measures, and the mental effect
on living all through the period of the pandemic [5]. As a result of a succession of disease
management measures such as travel barriers, community isolation, and social distance,
the infectious coronavirus has made the public reliant on online data for individuals to
stay educated and engaged. Individuals expressed their fears of contamination and shock
with respect to contagious diseases on social media, in addition to their sentiments
around contamination control methodologies. They also showed emotional responses to
a few health-unrelated topics, such as the economy and the worldwide natural effect of
COVID-19 widespread, according to studies. Meanwhile, racist speculations and hostile
statements about the populace, which have been shown to provoke negative attitudes,
have grown in popularity on social media. Anxiety and despair have increased because
of increased social media exposure [6].

As indicated in Abdulaziz et al. [7], an analysis of Twitter data, particularly individual’s
emotions, is valuable in numerous areas like the financial exchange, managing disasters,
voting in elections, and preventing crime. The traditional method of sentiment analysis
is a long and tedious process and oftentimes, certain feedback is not seen. With a large
amount of user-generating content on social media, it is difficult to read, analyse and
interpret all social media reviews because data generated online are usually disorganized
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and very unstructured. Drawing insights from online sources is a challenging task, and
the quality of opinions cannot be guaranteed since people post their content freely [8].
Twitter is one of the important sources that can be used to solve this problem by per-
forming sentiment analysis on the data extracted online. This allows researchers to gain
insights into users’ opinions towards the coronavirus pandemic in real time despite the
challenges posed by data volume and structure [9].

This study aims to underscore the sentiments and opinion of Twitter users in Nigeria
towards the COVID-19 disease by collecting a corpus of COVID-19 text from historical
tweets, pre-process the text, conduct sentiment analysis and topic modelling and then
evaluate the performance of the developed model. The remaining part of the paper is
as follows: Sect. "Review of related work" discusses the related work, Sect. "Methodol-
ogy" provides a description of the methodology for the study, Sect. "Implementation and
results" presents the implementation and discussion of the results obtained, while the
paper concludes in Sect. "Conclusion”.

Review of related work
This section presents the literature reviews on the study.

The five tops subjects attached to the COVID-19 pandemic were: economy and trade,
health care, emotional support, psychological stress, and social change. These topics
conveyed the biggest worries for the populace [10].

Gao et al. [11] explored the outcomes regarding mental prosperity by the individuals
who were constantly revealed to online media during this pandemic. It was stated that
large numbers of mental health concerns, such as anxiety or bitterness, had a good asso-
ciation with the widespread use of social media during the COVID-19. In Konac et al.
[12], usage of social media as a source of information was associated with extending con-
spiracies concerning the pandemic, along with propagation of several unverified health
protection practices.

The severe situation in which people are unable to leave their homes necessitates an
investigation into what people are thinking about during the pandemic [13]. Overall sen-
timents conveyed in tweets during the pandemic were more positive, meaning that the
public remained hopeful even while confronting a global public health issue.

The highest degree of positive sentiments suggests that a lot of people were carefree
about the seriousness of COVID-19 at the early stage of the pandemic. One important
note is that tweets created in states experiencing lower rates of infection were gener-
ally positive, while those states more directly influenced by the pandemic were negative.
The negative sentiment catchphrases recommend that tweets might be an approach to
express negative feelings around the consequences of COVID-19 constraints. Negative
expressions normally included "know" and "think", words that identify with information
and information sharing [10].

A summary of related work on COVID-19 analysis using Twitter data is provided in
Table 1.

Methodology
This section presents the methodology for the study including data collection, pre-pro-
cessing and analysis.
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Method of data collection

Historical COVID-19 tweets were collected using the Scweet Twitter Library. Popular
hashtags connected to the coronavirus in Nigeria were used as keys. The tweet content
and other metadata such as timestamp, location, language, and number of retweets were
stored. Only tweets in English were collected.

Figure 1 depicts the architecture of the COVID-19 sentiment analyser showing the
study approach as divided into different categories which are: data collection, pre-pro-
cessing, analysis, and visualization.

The architecture’s modules are described in the following sections.

Data collection
In this study, Twitter data were used due to the level of its popularity and that its content
is typically smaller in both actual and aggregated file size for user’s sentiment analysis

and reaction to the coronavirus pandemic [7].

Data pre-processing
During this step, the obtained data are processed to prepare it for the following stage.

Several stages are included in this stage:

1. Punctuation Removal The purpose of the punctuation removal technique is to elimi-
nate punctuation marks from text data. This is yet another text standardization
method that will allow "hurray’ and "hurray! to be treated in the same way. Depend-
ing on the use case, the list of punctuations to exclude must also be carefully chosen.
The string. punctuation in Python, for example, contains the following punctuation
symbols. (I"#$%&\'()*+,—./;<=>?@[\\]"_{|}~"). More punctuations can be added or
removed depending on the need.

2. Remove Numbers Remove any numbers that aren’t related to the research. Regular
expressions are commonly used to eliminate numerals.

3. Remove duplicates/frequent words Stopwords are eliminated based on language data.
However, if a domain-specific corpus exists, this phase will remove any frequent
terms that aren’t important.

4. Remove URLs The next stage in the preparation process is to remove any URLs from
the data. When conducting a Twitter analysis, for example, there is a good probabil-

Emotional &
Sentiment Analysis
(TextBlob & Vader)

Database
(Cleaned
Dataset.csv)

Data Extraction
(Removing unnecessary
columns)

Data Cleaning
& Pre-
Processing

Twitter Search Data Collection
(e.g =StayHomeNigena) (RawDatasets csv)

Fig. 1 The architecture of the sentiment analysis of COVID-19 tweets in Nigeria



Abiola et al. Journal of Electrical Systems and Inf Technol (2023) 10:5

ity that the tweet will contain a URL. It will almost certainly be necessary to remove
them to do future research.

5. Remove Whitespaces A text may contain extra whitespace which is not desired as
they increase the text size and do not add any value to the data. Hence, removing
extra whitespace is a trivial but important text pre-processing step.

6. Lowering the text The lower casing is a text pre-processing technique that is widely
used. The purpose is to transform the input text to the same case as the output text,
so that ’text, 'Text, and "TEXT’ are all treated the same. This is especially useful for
text featurization techniques like frequency, as it helps to combine similar terms,
reducing duplication and ensuring accurate counts.

7. Stop words removal Stop words are frequently used words that have been eliminated
from the text since they provide no value to the study. These concepts are either
meaningless or have no significance at all. A list of terms that are stop words in Eng-
lish may be found in the NLTK library. Some of these words are Me, myself, we, our,
ours, ourselves, youre, you've, you'll, some, you'd, your, my, yours, yourselves, he,
most, other, such, no, nor, not, you, only, own, same, so, then, too, I, very, s, your-
self, t, can, will, just, don’t, should, should’ve, now. However, using the provided list
as stop words is not required because they should be picked carefully based on the
study.

8. Lemmatization It keeps the sense of the term while stemming it. Lemmatization
makes use of a pre-defined dictionary to keep word context and check the word in
the dictionary as it gets smaller.

9. Tokenization This is the process of breaking down the text into individual tokens.
Converting a corpus of text into tokens of phrases, words, or even characters is pos-
sible. This research usually aids in the conversion of text into word tokens during
pre-processing, as they are required for many NLP procedures.

Data analysis
At this point, all data should be examined and recognized based on the primary goal of
the study, such as polarity identification, sentiment analysis, or frequency analysis.

Visualization of data

Data visualization is the process of presenting complicated information using simple
diagrams and charts. Data visualization can present data-driven tales while also allowing
users to see data trends and linkages.

1. DataFrame Pandas DataFrame is a two-dimensional size-mutable tabular data for-
mat with labelled axes that can be heterogeneous (rows and columns). A data frame
is a two-dimensional data structure that organizes data in a tabular format in rows
and columns.

2. Bar Chart They are very useful for data visualizations and the interpretation of
meaningful information from datasets. One of the libraries used to create a bar chart
is matplotlib, which is a maths library widely used for data exploration and visualiza-
tion.

Page 7 of 20
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3. Seaborn Seaborn is also a visualization library based on matplotlib and is widely used
for presenting data. The library can be imported as sns.

4. pyLDAvis Learning about how subjects relate to one another, including potential
higher-level structure between groups of topics, is aided by showing the information
included in a topic model using an intertropical distance map.

Research method

All data were processed and then identified based on the study’s principal purpose, such
as polarity identification, sentiment analysis, or frequency analysis, at this stage. The
data studied were based on the content of the tweet, as well as some other data.

Natural language processing

The process of developing software and services that can understand human languages
is known as natural language processing (NLP). Speech recognition, for example, in
Google Voice Search, comprehending what the content is about, and sentiment analysis
is all instances of NLP in action. Running through some of the basic procedures with the
Natural Language Toolkit is the best approach to demonstrating NLP (NLTK).

The most widely used natural language processing software is NLTK, which was cre-
ated in Python to cope with human language data. It comprises classification, tokeniza-
tion, and lemmatization text processing packages, as well as user-friendly interfaces like
WordNet.

Sentiment analysis
Sentiment analysis is a step-by-step method of analysing textual data using natural lan-
guage processing algorithms. Hidden information could be discovered using VADER
and TextBlob Sentiment Analysis. This information is usually hidden in collected and
stored data. The analysis can show how positive or negative the text data is. There are
many practical applications for this process. For example, this report could help compa-
nies in creating customer-oriented strategies. With the enhancement in artificial intel-
ligence algorithms, it is much easier now to handle and study textual data. Moreover,
these algorithms are getting high accuracy rates for their assumption of sentiments
related to data. Another major example of using sentiment analysis is in Social Media
channels. Platforms like Facebook and Twitter are using this technique for preventing
the spread of fake and hateful news.

In Python, there are numerous packages that perform sentiment analysis using various
methods. The following are some of the most popular approaches and packages that will
be employed in this paper:

Sentiment analysis with TextBlob TextBlob is a text processing package for Python 2
and 3. It provides a basic API for doing common natural language processing (NLP) tasks
such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification,
and translation. For a given input sentence, it additionally returns two properties:
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1. Polarity The polarity determines the polarity of the emotions represented in the
statement under consideration. It has a range of [— 1,1], where — 1 indicates negative
sentiment, and + 1 indicates good sentiment.

2. Subjectivity Subjectivity is used to determine the speaker’s personal states, such as
emotions, beliefs, and opinions. It has a range of [4], with a number closer to 0 indi-
cating that the sentence is objective and is founded on facts, and vice versa.

TextBlob will ignore terms with which it is unfamiliar, and it will consider words and
expressions to which it can apply extremes and midpoints to arrive at the final score,
which is defined as;

def analize_sentiment(tweet):

try:

analysis = textblob.TextBlob(data_preparation(tweet))
except:

analysis = textblob. TextBlob(tweet)

if analysis.sentiment.polarity > 0:

return 1, int(analysis.sentiment.subjectivity)
elif analysis.sentiment.polarity ==

return 0, int(analysis.sentiment.subjectivity)
else:

return -1, int(analysis.sentiment.subjectivity)

Valence-aware dictionary and sentiment reasoner (VADER) It calculates text sentiment
using a collection of lexical features (for example, words) that are categorized as positive
or negative based on their semantic orientation. VADER sentiment gives the likelihood
of a given input statement being positive (+ 1), negative (— 1), or neutral (0), as well as
points. It can be optimized for social media data and generate good results when used
with data from Twitter, Facebook, and other social media networks. Its outcome dem-
onstrates the polarity of the word and their probabilities of being pos, neg neu, or com-
pound, as defined as;

def sentiment(x):

if x[ ‘compound’] >= 0.05:

return ‘positive’

elif (x[ ‘compound’] > -0.05) and (x[ ‘compound’] < 0.05:
return ‘neutral’

elif x[‘compound’] <=-0.05:

return ‘negative’

Calculate Compound Score VADER searches the text for known sentimental fea-
tures, modifies the intensity and polarity according to the rules, adds the scores of fea-
tures identified within the text, and then normalizes the final score to (— 1, 1) using the

function:
X

Va2 + o

The value of alpha in VADER is 15, which is close to the maximum predicted value of
x. VADER returns the percentage of positive, negative, and neutral sentiment elements
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in addition to the sentence’s compound score. Table 2 shows the distribution of senti-
ment scores of TextBlob and VADER.

Topic modelling

Topic modelling is a statistical technique for determining the abstract "themes" that
appear in a collection of texts. Topic modelling is a text-mining technique for discover-
ing latent semantic patterns in the body of a document. Given that a document is about a
specific topic, certain words should be expected to appear more or less frequently: "dog"
and "bone" should appear more frequently in documents about dogs, "cat" and "meow"
should appear more frequently in documents about cats, and "the" and should appear
roughly equally in both [23].

Method of topic modelling

The Latent Dirichlet Allocation (LDA) method of topic modelling was used in this study.
LDA is a widely used text mining method that classifies text in a document into one of
several topics using statistical (Bayesian) topic models. It generates a topic per docu-
ment and word per topic model based on the Dirichlet distribution. The LDA model is
a generative model that tries to recreate the writing process. As a result, it attempts to
construct a document based on the given topic.

Implementation and results

This section is based on the process used to implement sentiment analysis and topic
modelling based on COVID-19 historical tweets. The goal of this implementation is not
only to perform exploratory data analysis (EDA) instead to know the populace’s opinion
about the current pandemic across the world, particularly in Nigeria, which is the focus
of this paper, and to see the frequency of how each topic had been discussed using topic
modelling.

Mining COVID-19 text from online tweets

As shown in Fig. 2 at the first attempt, the total number of tweets mined was 11,859
starting November 2019 to May 2021. UserName, Text, TimeStamp, Likes, Retweets,
Embedded_text, Comments, Image link, Tweet URL, and UserScreenName were all
included in the Twitter search. After which some additional tweets of 1,036,716 were
gotten from a secondary source. With the challenge surrounding Twitter API the limi-
tation in the time frame of tweeting the needed data, a python library “Scweet” was
adopted, this allows the streaming of data up to the preferred date and can generate a
large sum of data.

Table 2 Table showing the sentiment score algorithm

Sentiment results VADER score TextBlob score
Positive >0.05 >0
Neutral >—0.05and <0.05 ==0

Negative <—0.05 <0
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import pandas as pd
from Scweet.scweet import scrap
from Scweet.user import get_user_information, get_users_following, get_users_followers

data = scrap(words=["StayHomeNigeria®,'COVID1SNIGERIA', 'coronavirusnigeria’, 'Covid-19Nigeria'],
start_date="2820-09-30", max_date="2028-11-32", from account = None,interval=1,
headless=True, display_type="Top", save_images=False,
resume=False, filter_replies=True, proximity=True)

Fig. 2 Searching of tweets using python library by keywords or word list

Scraping on headless mode.
looking for tweets between 2020-09-30 and 2020-10-01 ...

path : http er.com/search?q 9NIGERIA%2@0R%2@coro rus¥200R%20Co
vid-19Nigeri dCovid-19)%20unt: replies&src=typed_qu 1f=on
scroll 1

scroll 2

looking for tweets between 2020-10-01 and 2020-10-02 ...
path : http .com/search?q=( covid¥%2e
vid-19Nigeri. 2Covid-19)%20until¥3A2020-10
scroll 1

scroll 2

looking for tweets between 2020-10-02 and 2020-10-03 ...
path : https: er.com/search?q=(
vid-19Nigeria¥% Covid-19)%20until 0
Tweet made at: 20208-16-02720:50:20.000Z is found.
Tweet made at: 2028-10-02721:21:37.000Z is found.
Tweet made at: 20208-18-02705:29:00.800Z is found.
Tweet made at: 2020-10-02705:15:12.000Z is found.
Tweet made at: 20208-10-02T08:00:30.000Z is found.

Fig. 3 A progress showing if Tweets are available in the selected time frame

The tweet query searched was the hashtags #StayHomeNigeria, #covid19nigeria, #cor-
onavirusnigeria, #COVID-19Nigeria, #NCDC, ##fMOH. As shown in Fig. 3, the python
library has no limitation on tweets, and it only returns the available results. The con-
nection could be lost during the streaming of data, which is the more reason why the
streaming was done bi-monthly on several attempts to change the date when each pro-
cess finishes. After all, the process had been completed, and the data gotten were merged
and exported as a single Comma Separated Value (.csv) format or Excel (.xIsx) format.

Pre-processing of the COVID-19 tweets datasets

For the dataset to be suitable for the analysis, there was need for some cleaning and
transformations generally referred to as pre-processing. This involes tasks such as con-
version of all the text to lower case and dropping of irrelevant columns as described
below:

Removal of duplicate and unwanted tweets
The corpus contained 1,048,575 tweets originally but 115,914 was removed as retweets,
duplicates and irrelevant tweets containing words like “i follow’, “ifb’, “instant follow’,

“cases rise’, “follow back’, “fb asap’, “lets follow’, “following follows”, “im following’, “live
scores’, etc. Finallly, we have 932,661 unique valid tweets.

Remove hyperlinks, Twitter marks, and styles

After the removal of duplicate and unwanted tweets, some commonly substrings like the
hashtag, handles, retweet marks, multiple spaces, punctuation, special characters, and
hyperlinks were removed using REGEXP library. The search pattern was defined using
the sub () method to remove matches by substituting with an empty character (i.e. ‘)
since the focus on the text.
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Remove empty values

After removing unwanted tweets, it was discovered that some tweets have no content
which account to 100,000 “NAN” values, this resulted to further data cleaning by remov-
ing the empty values, Thus, leaving only 832,661 tweets using a “dropna” function.

Word cloud

The word cloud is a graphical representation of the spread and frequency of unique
tokens in the dataset. Text with higher frequency in the corpus is larger, while the less
frequent ones are smaller in size. Figure 4 shows the word cloud of tokens in the initial
raw dataset and the pre-processed dataset.

Conducting sentiment analysis
For sentiment analysis of the COVID-19 tweets, two sentiment analysis approaches were
employed, namely TextBlob and VADER analyser using 832,661 unique tweets.

TextBlob sentiment analysis
As shown in Fig. 5, this analysis classifies the text into two forms of sentiment which are
polarity and subjectivity, and these sentiment results were shown, respectively.

The result of the study shows negative, positive, and neutral sentiments. 832,661
instances were used, 305,345 of the instances prove that the authors are positively sen-
timental. 383,136 are neutral showing they are not sentimental in their opinions, while
144,180 are negatively sentimental as shown in Table 3.

VADER sentiment analysis

As shown in Fig. 6 unlike TextBlob, which employs subjectivity and polarity, this tech-

nique divides sentiments into four categories: positive, negative, neutral, and compound.
331,632 instances proved that the authors are positively sentimental, 260,641 instances

were negatively sentimental, while 240,388 were neutral in their opinions. The study

using VADER analyser as shown in Table 4 shows that authors have high positivity of

scaping through the pandemic period.

Tweets classification by VADER

From the study, as shown in Figs. 7, 8 and 9, the tweets were categorized according to
their respective sentimental results which are positive, negative, and neutral. It will be
appropriate to visualize these tweets according to their results.

Word cloud sentiment of tweets category using VADER analyser

As shown in Fig. 10a—c, the study categorizes each sentiment result based on positivity,
neutrality, and negativity using the VADER analyser. For proper analysis, a word cloud is
used to visualize each category.
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clean_tweet

sentiment_results

polarity subjectivity sentiment

0 hello #doctor,\n\ndo you want a robust and

1 proud
2

3

4

of my whatsapp group.\nwe raised 5m
for

#takeresponsibility\n\nplease clean all
surfac..

happy new month!l\ninevery pint of blood

youd..

the only tik tok video that matters
#covid19n..

hello do you want a robust and
user friendly p.

proud of my whatsapp groupwe
raised m for more.

please clean all surfaces like door
handles s...

happy new month every pint of
blood you donate.

the only tik tok video that matters
patients i.

{'polarity": 0.375, "subjectivity”: 0.5,
‘sent.

{polarity': 0.48250000000000004,
‘subjectivit.

{'polarity': 0.3206060606060606
‘subjectivity...

{polarity’: 0.3590909090909091
'subjectivity.

{polarity": 0.0, 'subjectivity”: 1.0
‘sentim.

0.375000

0.482500

0.320606

0.359091

0.000000

Fig. 5 Diagram showing category distribution of sentimental analysis using TextBlob

Table 3 Diagram showing the frequency distribution of sentimental analysis using TextBlob

0.500000

0.725000

0.500000

0.738636

1.000000

Positive

Positive

Positive

Positive

Neutral

Sentiment Count %
Neutral 383,136 46.0
Positive 305,345 36.7
Negative 144,180 17.3

0 clean_tweet compound Sentiment_Result

0 hello do you want a robust and user friendly p... 0.5859 Positive

1 proud of my whatsapp groupwe raised m for more... 0.5709 Positive

2 please clean all surfaces like door handles s... 0.7579 Positive

3 happy new month every pint of blood you donate... 0.8934 Positive

4 the only tik tok video that matters patients i... 0.0258 Neutral

Fig. 6 Diagram showing category distribution of sentimental analysis using VADER

Table 4 Diagram showing the frequency distribution of sentimental analysis using VADER

Sentiment Count %
Positive 331,632 39.8
Neutral 260,641 313
Negative 240,388 289
:0 clean_tweet compound Sentiment_Result
4 the only tik tok video that matters patients i... 0.0258 Neutral
10  shop your yanga facemask now on this online sh... 0.0000 Neutral
14 bella chaio bella chaio bella chaio chaio chaio 0.0000 Neutral
19 song for the soul and season 0.0000 Neutral
21 person papa what lockdown caused telemundo mrp 0.0000 Neutral
23  yanga branded facemask available shop online t... 0.0000 Neutral

Fig. 7 List of tweets classified by VADER as neutral sentiment
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clean_tweet compound Sentiment_Result

9
1"
18
20
26
28
32
33

dont mind our people jare they are laying curs...
everyone that will embezzle a dime from funds ...
writing challenge day of covid i am sick

people cant be sitting behind a sewing machine...

breaking newsour very own governor he seyi mak...

why are we attacking na had a houseparty too a...
so if no you wont disinfect the environment

the people at the war front of are humans like...

Fig. 8 List of tweets classified by VADER as negative sentiment

50
52
57
60
62
64
65
66
69
72

the world will smile again stay safe

in weeks the lagos state commissioner of heal...
will covid go on suspension for the some hours...
ventilators available for sale please reach out
has shown that health care is the most import...
dear friends celebrate easter in your house it...
my mums birthday is tomorrowi wish to buy her ...
this is what it is god only you can heal our ...

las las the video is here talent too much

easter is a season of hope lets celebrate in h...

Fig. 9 List of tweets classified by VADER as positive sentiment

Word cloud sentiment of Tweets category using TextBlob

Likewise, as shown in Fig. 10d-f, the study categorizes each sentiment result based

on positivity, neutral, and negativity using TextBlob.

Topic modelling

This is used to find abstract subjects in a corpus or data table using word clusters and
the frequency of each text. The dashboard indicates the weight of the issue in each

document because a text normally comprises multiple subjects of varied proportions.

Id2word and corpus

The LDA topic model requires two important inputs: a dictionary (id2word) and a

corpus shown as:

([0, 1), (1,1), (2,1), (3, 1), (4 1), (5,1), (6, D)]]

-0.7506
-0.6858
-0.4588
-0.3612
-0.7290
-0.7184
-0.3566

-0.3071

0.6597
0.3197
0.2263
0.3400
0.8173
0.8919
0.3741
0.2732
0.4215

0.9217

Negative
Negative
Negative
Negative
Negative
Negative
Negative

Negative

Positive
Positive
Positive
Positive
Positive
Positive
Positive
Positive
Positive

Positive
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Fig. 10 Diagram showing the word cloud of a positive tweets using VADER, b negative tweets using VADER,

c neutral tweets using VADER, d positive tweets using TextBlob, e negative tweets using TextBlob and f
neutral tweets using TextBlob

each word in the document is then assigned a unique id by Gensim. A mapping of
(word id, word frequency) is presented in the generated corpus. In the first document,
the word id 0 appears only once (0, 1). In the same way, the word id 1 appears once,
and so on. This is the input to the LDA model.

H (/comment/, 1), (/drop/, 1), (/friendly/, 1), (’platform/, 1), (/robust/, 1), (/user’, 1), (’want’, 1)”

Building LDA topic model

As shown in Fig. 11, the LDA model is made up of 20 separate topics, each of which is
made up of several keywords, each of which gives a specific amount of weight to the sub-
ject. Using lda_model.print_topics(), you can see the keywords for each topic as well as
their weight (importance).

Topic 0 is a represented as —0.256*"covid"+0.126*"be"+0.090*"good" + 0.089*"to
day" + 0.080*"well" +”0.028*"online" + 0.020*"cause" + 0.020*"listen" + 0.018*"crisis" +’
’0.017*"next".

The top 10 keywords that contribute to this topic are: “covid”; “be”, “good’; “today’,

» «

‘cause’, “listen’,

” «

“well’; “online’, crisis” and “next” as shown in Fig. 11, and the weight of
“covid” on topic 0 is 0.256. The weights represent the importance of a keyword to the

topic.

Visualize the topic keywords
It is best to inspect the created topics and associated keywords using Intertopic Distance
Map after the LDA model has been built via (multidimensional scaling).
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[(e,
'9.256""covid” + 8.126™"be" + ©.898%"good” + ©.889*"today” + ©.888*"well"” + '
'9.0828*"online" + ©.828%"cause” + 9.820%"listen” + ©.018*"crisis” + '
'9.817*"next" "),

(1,
'9.282*"state" + ©.133%"together” + 8.128*"person” + 8.079*"impact” + '
'9.888*"introduce” + 8.886%"storm” + 8.802*"implement” + 8.888*"pandemic” + '
'8.808*"hand" + 6.8@0*"work""'),

(2,

@

.280*"people” + B.166%"time" + 8.886™"government” + 8.869*"tell” + '
'9.845*"available” + 8.844*"family"” + ©.844*"hope" + 8.832*"long” + '
'9.821*"reach” + 8.813*"1lot""),

3
9.88%4*"really” + 8.885*"positive” + B8.865%"man” + 2.868*"share" + '
'9.868*"close” + 8.855*"try” + ©.853*"bad” + ©.842*"rate” + 8.841*"link" + '
'9.039%"wait""),

9.143*"guy” + ©.893*"look" + ©.883*"video" + 8.878*"health" + 8.878*"care” '
'+ 8.865*"break” + 8.853*"patient” + 8.846%"show” + @.835*"plan” + '
'9.828%"eat""),

9.121*"spread” + 8.117*"call” + B8.888%"test” + ©.888""stay_safe” + '
'9.873*"protect” + @.845*"dear” + 0.841*"update” + @.035*"big" + '
'9.825%"great” + 8.824*"stand"'),

9.388*"day” + @.155*"lockdown" + 8.8865*"move" + B.819*"extend” + °
'9.886" "boss" + 8.080*"last” + ©.800%"apr” + ©.880*"hair" + 8.808*"work" + '
'9.88@*"million_naira""),

9.173*"stay"” + 8.157*"home” + ©.133*"need” + 8.118*"virus" + 8.873*"die" + '
'9.858*"1ife" + ©.834%"body” + @.823*"affect” + @.828*"poor" + '
'9.828* "hunger" '),

Fig. 11 Diagram showing LDA model for 20 topics

As shown in Fig. 12, each bubble on the left-hand side plot indicates a topic. The larger
the bubble, the more well-known the topic. A strong topic model will have reasonably
sized, non-overlapping bubbles spread over the chart instead of being concentrated in
one quadrant. Many overlaps, or little bubbles crammed into one area of the graph, indi-
cate a model with too many topics.

As shown in Fig. 13, the text and bars on the right-hand side will update whenever the
cursor is moved over one of the bubbles. These are the main keywords that make up the
chosen topic such as covid, well, online, pray, sick, and pandemic. This is consistent with
the findings in Abdulaziz et al. [7] and Huangfu et al. [24] whose finds also revealed that
there were conflicting topics on Twitter throughout the pandemic period.

Conclusion

In this study, sentiment analysis of Twitter data was conducted using 1,048,575
tweets collected in csv format and converted to a pickle format for easy implemen-
tation, these tweets were mined using the COVID-19 hashtags to assess the user’s
opinion regarding the current COVID-19 pandemic in Nigeria. From the Twitter data
collected, the sentiment analysis of users towards COVID-19 was documented. The
study uses TextBlob and VADER sentiment analysers, which resulted in the differ-
ent analyses as follows: TextBlob sentiment analyser concludes that 46.0%, 36.7%, and
17.3% were neutral, positive, and negative sentiments, respectively, which resulted
that the users were mostly neutral about their opinion. VADER analyser returns
39.8%, 31.3%, and 28.9% which implies positive, neutral, and negative sentiments,
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Fig. 12 Diagram inspecting topic 1

respectively, which resulted that a larger percentage of the populace being positive
about their opinion. The study also concludes by performing a topic modelling analy-
sis of 20 topics to determine the weight of randomly selected corpus by LDA, to know
the weight of each token, i.e. how frequent each topic was discussed in the study, then
an inter-topic multidimensional scaling was used for the visualizing.

Using content analysis of Twitter data, this study was able to evaluate the performance and
assess social media opinion on the trending pandemic concern "Corona Virus". It has dem-
onstrated the extent to which it has sociological, environmental, and economic repercussions
in Nigeria, among other things. The study used a sizable sample of users’ thoughts through
tweets. To acquire relevant social data from multiple users, semi-structured, self-adminis-
tered, and Twitter data were used from both verified and unverified accounts. The outcome
provides a detailed examination of people’s sentiments towards the pandemic in Nigeria.

In Nigeria, a bill against hate speech on social media has recently been introduced
by the Senate. If data could be accessed using different API keys from each social

media site, a better understanding of how to tackle issues may be gained.
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