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Abstract

This thesis explores the suitability of machine learning (ML) applications to predict
bleeding events on a dataset collected from patients with thrombosis and contemporary
history of a cancer diagnosis. Simultaneously, it compares the effectiveness of various ML
models in processing this data.

The study seeks to understand to which extent this dataset is sufficient to
differentiate classes using state-of-the-art ML methods. Twelve different models’
performances were evaluated, revealing substantial variations across models. These
models included DecisionTreeClassifier, ExtraTreeClassifier, FxtraTreesClassifier,
GaussianNB, KNeighborsClassifier, LinearSVC, MLPClassifier, NearestCentroid,
QuadraticDiscriminant Analysis,  RadiusNeighborsClassifier, RandomForestClassifier,
and RidgeClassifier. Following an in-depth evaluation, three top-performing models —
MLPClassifier, DecisionTreeClassifier, and ExtraTreeClassifier — were identified based
on the selected performance metric. The initial results did not meet the expectations.

Consequently, several variations of the dataset were generated to better investigate
the suitability of the data for predicting bleeding events. Afterward, an extended
hyperparameter tuning process was performed on the three selected top-performing
models to enhance their predictive performance further. The findings suggest that while
no single model consistently outperforms others across all metrics, careful selection and
hyperparameter optimization can substantially improve prediction accuracy.

The study underscores the challenges of applying ML in healthcare, particularly
given the constraints of available data and the necessity of thorough model optimization.
Despite these complexities, this research contributes to understanding ML applications
in predicting bleeding events in thrombosis patients. It provides helpful information
for enhancing the accuracy of predictions that could improve individualized treatment
strategies for these patients.
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Chapter 1

Introduction

The application of machine learning (ML) in healthcare has been an area of increasing
interest due to its potential to transform patient care, enabling personalized treatments
and facilitating early detection of diseases. One such area of application is the prediction
of bleeding in thrombosis patients, a significant clinical challenge that has far-reaching
implications for patient management. In this context, this study explores the use of
ML to predict bleeding events in thrombosis patients. However, the focus of this study
extends beyond just the application of ML techniques. It also seeks to answer the crucial
question: 'Is the dataset sufficient in size and quality to utilize machine learning methods
effectively?’ Furthermore, it involves comparing various machine learning models in terms
of their effectiveness.

1.1 Motivation and research problem

Thrombosis, the formation of blood clots within the blood vessels, presents a significant
healthcare challenge. While anti-coagulation therapies mitigate the risk of clot formation,
they carry a substantial risk of inducing bleeding in thrombosis patients. Thus, predicting
the risk of bleeding in these patients is critical, necessitating a robust, accurate, and timely
approach.

The emergence of ML techniques, which can handle and derive patterns from complex,
multidimensional data, has opened new avenues for addressing this issue. However, the
application of ML in this context is underexplored, particularly in the comparative analysis
of different ML techniques.

Further complicating matters, there is generally a lack of sufficient data available
to train models for predicting bleeding in thrombosis patients. For this study, Ostfold
Hospital has provided a dataset to be investigated in this context.

This study takes on the clear need for systematic research to identify the most suitable
ML techniques for predicting bleeding in thrombosis patients. In addition, it investigates
the question of whether the dataset at hand is sufficient to utilize ML methods for this
purpose effectively.

1.2 Objective of the research

The main objective of this study is to investigate the performance of several standard
ML techniques. This study will focus on their applicability for predicting bleeding
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in thrombosis patients with a concurrent history of cancer diagnosis using a dataset
provided by @stfold Hospital. Each of these models, with its unique characteristics and
mathematical foundations, will provide a diverse set for comparative analysis. The study
will evaluate the models based on the F1 macro score, reporting several other performance
metrics such as accuracy, precision, recall, F1 score, and ROC AUC score. Additionally,
the study will touch upon the intricacies of hyperparameter tuning, bettering our
understanding of its impact on model performance and its importance for the problem.

Research question I To what extent does the dataset allow for the differentiation of
classes with state-of-the-art machine learning methods?

Research question II How do standard machine learning models compare in their
effectiveness in predicting bleeding events in thrombosis patients?

1.3 Structure of the thesis

This thesis is divided into several chapters:

e Chapter 2: Background - This chapter elaborates on thrombosis, its implications,
and current approaches for predicting bleeding in thrombosis patients.

e Chapter 3: Related work - This chapter will review previous work in the domain,
focusing on ML applications in healthcare prediction and describing the models
under consideration.

e Chapter 4: Method - This chapter will describe the dataset used, the preprocessing
procedure, and the model evaluation and comparison techniques.

o Chapter 5: Results - This chapter will present the comparative analysis results,
highlighting each model’s performance against various metrics.

e Chapter 6: Discussion - This chapter will interpret the results, discuss the
implications of the findings, and provide a comprehensive comparison of the models.

e Chapter 7: Conclusion - The final chapter will summarize the research findings,
discuss the contributions to the field, and suggest potential paths for future work.

By the end of this study, the aim is to provide a comprehensive understanding
of applying ML techniques in predicting bleeding risk in thrombosis patients. This
comparative study will facilitate informed model selection and optimization, improving
patient outcomes.



Chapter 2

Background

This chapter presents the topics to understand the scope of this study. It starts with
an analysis of thrombosis, its complications, and its societal implications. The existing
methods for predicting bleeding in thrombosis patients are then discussed, followed by an
introduction to the selected machine learning algorithms used in the study. Finally, the
concepts for model evaluation - performance metrics, cross-validation, and the confusion
matrix - are defined to provide the necessary background for understanding the study’s
analysis and results.

2.1 Machine learning algorithms

The selection of suitable machine learning algorithms is an essential part of this study.
Fach algorithm has unique attributes that make it well-suited for specific tasks, and its
performance can vary widely depending on the nature of the data. This section dives
deeper into the machine learning algorithms applied in this study. A brief overview of each
algorithm is presented. The reasoning for selecting these particular algorithms is discussed
in chapter 4. Also, the parameter tuning process, which is fundamental for enhancing the
performance of these algorithms, is elaborated in chapter 4. The chosen algorithms span
from traditional ones, like decision trees, to ensemble methods, like random forests, and
more complex models, like neural networks.

DecisionTreeClassifier

This type of supervised learning algorithm is primarily used in classification problems. It
works by creating a decision tree model that predicts the value of a target variable by
learning simple decision rules inferred from the data features (Mitchell, 1997, p. 52). An
illustration of a simple decision tree is depicted in figure 2.1.

ExtraTreeClassifier

The ExtraTreeClassifier is another type of decision tree algorithm. Unlike traditional
decision trees, it introduces randomness by choosing split points completely at random
(Geurts et al., 2006). This provides a way to reduce the variance of the model at the cost
of a slight increase in bias, often resulting in a better overall performance.

3
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Figure 2.1: Tllustration of a small decision tree and its components.

ExtraTreesClassifier

The ExtraTreesClassifier is a type of ensemble learning technique. It constructs multiple
decision trees during training and outputs the class representing the mode (most frequent)
of the classes for classification tasks. It is referred to as ”extra random” because, unlike
other tree-based algorithms, it picks cut points for each feature at random rather than
choosing the best possible split (Geurts et al., 2006). This introduces more randomness
into the model, helping to reduce the correlation between individual trees and making the
model less prone to overfitting.

GaussianNB

The GaussianNB, or Gaussian Naive Bayes, is an algorithm that applies the principles of
Naive Bayes with an assumption of normal (Gaussian) distribution (scikit-learn, 2023b).
This classifier assumes that the value of a particular feature is independent of the value of
any other feature, hence the term "naive.”

KNeighborsClassifier

This is a type of instance-based learning or non-generalizing learning. The algorithm
stores all instances corresponding to training data in n-dimensional space (Mitchell, 1997,
p. 232). It then classifies new instances based on their distance from existing ones, taking
the K-nearest ones into account.

LinearSVC

This linear approach to support vector classification can handle both dense and sparse
input. Like all Support Vector Machines, it aims to separate the data by finding the
hyperplane with the largest margin (Kuhn & Johnson, 2013, p. 151).

4
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MULPClassifier

The MLPClassifier, short for Multi-Layer Perceptron Classifier, is a feed-forward artificial
neural network model that maps input data sets onto a set of outputs (scikit-learn, 2023a).
As illustrated in figure 2.2, the MLP consists of multiple layers of nodes (neurons) in a
directed graph, with each layer fully connected to the next one. "MLPClassifier’ has many
parameters to adjust and optimize, allowing flexibility to model non-linear dependencies
in the data.

Hidden

Output

Figure 2.2: Tllustration of multi-layer perception with one hidden layer and four neurons.

NearestCentroid

This is a simple algorithm that represents each class by the centroid, also known as the
geometric center, of its members (scikit-learn, 2023e). It then classifies instances by finding
the class with the closest centroid.

QuadraticDiscriminant Analysis

This classifier fits class conditional densities to the data and uses Bayes’ rule to compute
probabilities (Kuhn & Johnson, 2013, p. 330). Unlike 'LinearDiscriminantAnalysis,” it
does not assume that the covariance of each class is identical, allowing for more flexibility.

RadiusNeighborsClassifier

Similar to the 'KNeighborsClassifier,” instead of considering the k-nearest neighbors, it
considers all neighbors within a certain radius to classify instances (Mitchell, 1997, p. 233).

RandomPForestClassifier

This is a robust and versatile classifier that fits several decision tree classifiers on different
sub-samples of the dataset and uses averaging to improve the prediction accuracy and
control over-fitting (Kuhn & Johnson, 2013, p. 386).



CHAPTER 2. BACKGROUND

RidgeClassifier

This classifier learns a separate regression model for each class in multiclass scenarios.
After converting the target values to -1, 1, the classifier treats the problem as multi-output
regression. The model predicts a continuous value for each class, and the class with the
highest predicted value is selected as the output class (scikit-learn, 2023d)..”

2.2 Model evaluation

Model evaluation metrics provide an essential way to quantify the performance of
predictive models in machine learning. Kvaluation metrics are how the quality of
predictions can be measured and provide important insight into how robust and
generalizable a model is. These metrics are essential in tuning model parameters,
selecting the appropriate machine learning algorithm, and ultimately understanding how
well the model will predict new, unseen data. This section covers the various model
evaluation metrics utilized in this study. These include accuracy, precision, recall, F1
score, and area under the Receiver Operating Characteristic (ROC) curve (AUC ROC),
each having its own specific interpretation and use case. The confusion matrix and
cross-validation are also explained, providing an essential context for assessing model
performance.

Precision, recall, and F1 score are reported using a weighted average to give a sense
of the classifier’s effectiveness when considering class imbalance. It is computed by taking
the average of the scores for each class, with the average being weighted by the number
of instances in each class (scikit-learn, 2023c¢). w; is the weight for each class ¢, Precision;,
Recall; and F1 score; are the precision, recall, and F1 score for each class ¢, respectively.

Number of samples in class i
Wy —

2.1
Total number of samples (2.1)

Accuracy

Accuracy is the ratio of correctly predicted instances to the total instances in the dataset.

Number of correct predictions

Accuracy = (2.2)

Total number of predictions made

Precision

Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations.

True positives

Precision = 2.3
True positives + false positives (2:3)
N
Weighted Precision = Zwi x Precision; (2.4)
i=1
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Recall

Recall is the ratio of correctly predicted positive observations to all observations in the

actual class. -
True positives

Recall = 2.5

eea True positives + false negatives 25)
N

Weighted Recall = Zwi x Recall; (2.6)
i=1

F1 score

The F'1 score is the weighted average of precision and recall. It tries to find the balance
between precision and recall.
Precision - recall

F1 =2 2.7
seore Precision + recall (2.7)

N
Weighted F1 score = Z w; x F1 Score; (2.8)
i—1

F1 macro

The F1 macro score, or simply F1 macro, is a measure used to assess a model’s performance
on multiclass classification problems. It is beneficial when the data classes are imbalanced.
The F1 macro is the unweighted average of the F1 scores of each class, treating all classes
equally regardless of their proportions in the dataset.

N
1
F1 macro = N z; 1, (2.9)
i
Where N is the number of classes, and F'1; is the F1 score of each class.

AUC ROC

The Receiver Operating Characteristic (ROC) curve is an evaluation metric for binary
classification problems. It is a probability curve that plots the true positive rate (TPR)
against the false positive rate (FPR) at various threshold values and essentially separates
the ’signal’ from the ’noise! The Area Under the Curve (AUC) measures a classifier’s
ability to distinguish between classes and is used as a summary of the ROC curve.

This concept does not directly apply to multiclass problems, so to use this, a variation
of the AUC ROC is applied to compare multiple classes; One versus One (OvO). The OvO
technique calculates the average AUC ROC of all possible pairwise class combinations.

Cross-validation

Cross-validation is a technique in machine learning that assesses how well a model can
generalize to unseen data. It works by partitioning the dataset into several subsets or
"folds,” then training the model on all but one fold and testing it on the remaining
fold. This process is repeated for each fold, providing a more robust measure of model

7
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performance. Since this study is dealing with an unbalanced dataset, stratified k-fold
cross-validation is utilized. This ensures that each class is equally represented across all
folds, as illustrated in figure 2.3.

StratifiedKFold

‘h B ‘alidation set
0 L (I Training set
- 1410 [ | I
=]
= 2471 [ I
b}
g 3471 | [
O
class —
I T T T T
0 20 40 60 a0 100

Sample index

Figure 2.3: Illustration of the partitioning of a dataset into four folds using stratified k-fold
cross-valdiation.

Confusion matrix

A confusion matriz is a table used in statistics and machine learning to visualize the
performance of a classification model. It is a 2 x 2 matrix (n x n for multiclass problems),
and is used to compute several performance metrics, such as accuracy, precision, recall,
and F1 score, and can help highlight model strengths and weaknesses. The confusion
matrix is made up of four components:

1. True Positives (TP): Correctly Predicted value

predicted positive classes. Hegaiive fositlie
2. True Negatives (TN): Correctly @ TN
predicted negative classes. B F P
g L true negative false positive
3. False Positives (FP): Incorrectly T
predicted positive classes. El
4. False Negatives (FN): Incorrectly < .
. . >
predicted negative classes. = F N TP
€ false negative true positive

Figure 2.4: The structure of the
confusion matrix.



2.3. THROMBOSIS AND ITS SOCIETAL IMPACTS

2.3 Thrombosis and its societal impacts

Thrombosis is a general term for a blood clot forming within and blocking a blood vessel,
as illustrated in figure 2.3. It can occur in any part of the vascular system, affecting veins
and arteries (Kyrle & Eichinger, 2005).

Blood clots in the veins, the blood vessels responsible for returning blood from the body
to the heart, are known as venous thrombosis. Conversely, when thrombosis occurs in the
arteries, it is termed arterial thrombosis. Arteries are the blood vessels that transport
oxygen-rich blood from the heart to the rest of the body (Johns Hopkins Medicine, 2019).

Thrombosis BloatJ]vessel Decreasefd blood flow

v
Thrombus Red blood cells
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down the blood vessel
Smaller bliwd vessel
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Cleveland L — = )
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Figure 2.5: "How thrombosis can lead to a blocked blood vessel.” From Cleveland Clinic.
(2023, January 16). Thrombosis illustration. https://my.clevelandclinic.org /health /
diseases/22242-thrombosis. CC Cleveland Clinic.

Deep vein thrombosis (DVT)

This type of venous thrombosis occurs when a blood clot forms in one of the body’s deep
veins, usually in the legs. DVTs can cause pain and swelling but can also occur without
symptoms (Kyrle & Eichinger, 2005). The primary concern with DVT is the risk of the
clot dislodging, traveling to the lungs, and causing a pulmonary embolism (PE).

Pulmonary embolism (PE)

PFE is a potentially life-threatening condition when a blood clot, usually originating from
a DVT, travels from where it was formed and lodges in the pulmonary arteries (National
Heart, Lung, and Blood Institute, 2022). If not treated quickly, this can lead to severe
issues like shortness of breath, chest pain, and sudden death.
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Venous thromboembolism (VTE)

VTE is a condition that includes both DVT and PE (National Heart, Lung, and Blood
Institute, 2022). It is essentially the formation of blood clots in the vein (DVT) that can
dislodge and travel to the lungs (PE).

2.3.1 Complications and consequences of thrombosis

Thrombosis can lead to severe complications and adversely impact a patient’s health and
quality of life (Kahn et al., 2002). When the body forms a blood clot in a vein or artery
(thrombosis), it can obstruct blood flow, leading to severe consequences if not treated
promptly.

Post-thrombotic syndrome (PTS) is a common complication of venous thrombosis.
This condition often arises after an episode of DVT (Kahn et al, 2002). PTS is
characterized by chronic pain, swelling, and discomfort in the affected limb, often leading
to significant disability and reduced quality of life (Stain et al., 2005). Over time PTS
can also cause skin changes and leg ulcers.

In addition to physical health complications, thrombosis and its aftermath can
significantly impact a patient’s mental health and overall quality of life. Dealing
with chronic pain, disability, and the constant fear of a recurrent episode can lead to
psychological distress, including anxiety and depression (Kahn et al., 2002; Fischer et al.,
2023).

Bleeding complications and the subsequent consequences of thrombosis significantly
contribute to the severity and complexity of this condition. Bleeding complications often
arise as a side effect of anticoagulant treatment, the primary therapy for thrombosis
(Beckman et al., 2010). While these medications effectively prevent clot formation, they
can also enhance the patient’s risk of bleeding (Prandoni et al., 2002). This can lead to
potentially serious complications ranging from minor to life-threatening, major bleeding.
The risk of these complications increases with the intensity and duration of anticoagulant
therapy (Palareti et al., 1996), as illustrated in figure 2.6.

Another serious complication of venous thrombosis is pulmonary embolism (PE), as
discussed in the previous section. Even if a PE is survived, it can lead to chronic leg pain
and swelling, known as post-thrombotic syndrome and chronic thromboembolic pulmonary
hypertension (CTEPH) (Tapson, 2008).

2.3.2 Societal impacts of thrombosis

Thrombosis is a significant financial and healthcare burden globally (Beckman et al., 2010;
Fernandez et al., 2015). This burden is affecting patients, healthcare systems, and society
at large.

From a financial perspective, the costs associated with thrombosis treatment are
substantial. These costs include diagnostic testing, hospitalization, outpatient care,
anticoagulant therapies, and treatment of complications. Notably, the treatment
expenses have been on an upward trajectory, exceeding the general rate of medical care
inflation (Fernandez et al., 2015). Indirect costs, such as loss of productivity due to work
absence or disability, further add to the economic burden (Braekkan et al., 2016).

Regarding healthcare, thrombosis has a notable impact on hospital resources and
capabilities. The condition often necessitates extended hospital stays, intensive treatment
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2.4. CURRENT APPROACHES FOR PREDICTING BLEEDING IN
THROMBOSIS PATIENTS

Fatal + major

Cumulative frequency
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Figure 2.6: ”Cumulative frequency (Kaplan-Meier curves) of fatal plus major and of minor
bleeding events during outpatient anticoagulant treatment.” From Palareti, G., Leali, N.,
Coccheri, S., Poggi, M., Manotti, C., D’Angelo, A., Pengo, V., Erba, N., Moia, M.,
Ciavarella, N., Devoto, G., Berrettini, M., & Musolesi, S. (1996). Bleeding complications
of oral anticoagulant treatment: An inception-cohort, prospective collaborative study
(ISCOAT). The Lancet, 348(9025), 423-428. https://doi.org/10.1016 /S0140-6736(96)
01109-9. CC authors.

regimens, and long-term follow-up care, increasing strain on already stretched healthcare
facilities (Fernandez et al., 2015). It also contributes to higher readmission rates and long-
term morbidity, which place additional pressure on healthcare services (Kyrle & Eichinger,
2005; Fernandez et al., 2015).

Thrombosis also has broader societal implications. In the workforce, employees affected
by thrombosis may face prolonged absence or disability, resulting in reduced productivity
and economic output (Brackkan et al., 2016). As illustrated in figure 2.7, the condition
often affects individuals in their prime working years, leading to premature withdrawal
from the labor market. This can have a direct economic impact and cause disruptions to
businesses and industries.

The social impacts of thrombosis also affect families, communities, and social networks,
with psychological and social consequences that include stress, depression, and reduced
quality of life. Furthermore, the condition carries a stigma that can lead to social isolation
(Jgssang, 2020; Fischer et al., 2023).

In summary, thrombosis imposes a significant financial and healthcare burden with
extensive societal consequences. Notably, bleeding complications pose a significant
challenge, often as a side effect of anticoagulant treatment - the primary therapy for
thrombosis. The risk of minor to major bleeding escalates with the duration and intensity
of this therapy.

2.4 Current approaches for predicting bleeding in thrombosis

patients

Traditional clinical assessment is often the first approach, with clinicians considering
patient characteristics and medical history. Factors such as age, history of previous

11
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No work-

related Work-related  Work-related

disability disability disability

after VTE after VTE after VTE*

(n=312) (n="172) (n=53)
Age 305+ 102 555+£60 55.1 £ 6.0
Sex (% men) 145 (46.5) 35 (48.6) 24 (45.3)
Pulmonary embolism 112 (35.9) 20 (27.8) 15 (28.3)
Deep vein thrombosis 200 (64.1) 52 (72.2) 38 (71.7)
Unprovoked 138 (44.2) 36 (50.0) 34 (64.0)
Provoked 174 (55.8) 36 (50.0) 19 (36.0)

Values are means + standard deviations in brackets or numbers with
percentages in brackets. ¥*When the date of disability was set 1 year
before the actual date of disability pension.

Figure 2.7: ”Characteristics of patients with venous thromboembolism (VTE) with and
without work-related disability.” From Braekkan, S. K., Grosse, S. D., Okoroh, E. M., Tsai,
J., Cannegieter, S. C., Naess, I. A., Krokstad, S., Hansen, J.-B., & Skjeldestad, F. E. (2016).
Venous thromboembolism and subsequent permanent work-related disability. Journal of
Thrombosis and Haemostasis, 14(10), 1978-1987. https://doi.org/10.1111/jth.13411. CC
Wiley Online Library and authors.

bleeding, kidney or liver disease, and alcohol or drug abuse, among others, are typically
taken into account (De Winter et al., 2021).

Risk scoring systems have been developed to standardize and improve this assessment.
Examples of such systems include the HAS-BLED and VTE-BLEED scores (Kooiman
et al., 2015; Badescu et al., 2021; De Winter et al., 2021). These scoring models consider
various risk factors to calculate an estimated bleeding risk. They offer a structured way
to assess bleeding risks and have been shown to have predictive value.

However, although these traditional methods are helpful, they also have notable
limitations. Risk scoring systems, for instance, often consider only a limited set of factors,
neglecting the complexity and the multifactorial nature of bleeding risk. Traditional
clinical assessments are subjective and dependent on the clinician’s expertise and
experience. They can therefore vary in accuracy and consistency.

These limitations indicate a need for more accurate and efficient predictive methods.
With the advancements in medical technologies, techniques like machine learning are now
being explored to better predict the risk of bleeding in patients with thrombosis (Mora
et al., 2023; Shohat et al., 2023). This technology can consider a broader range of factors,
learn from large datasets, and potentially provide more personalized risk prediction. This
is a promising field, but it is still in its early stages.
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Related work

The application of machine learning to healthcare problems has significantly increased in
the last few years. Advancements in algorithmic techniques drive this growth, greater
healthcare data availability, and the increasing need for more efficient and personalized
medical services (Jiang et al., 2017). The field of machine learning in healthcare has
matured to a point where several of these approaches have been incorporated into routine
clinical practice, delivering significant benefits to patient care (Alanazi, 2022).

This study has been focusing on using machine learning techniques to predict bleeding
in patients with thrombosis in this growing field. This chapter presents an overview of
machine learning applications in healthcare.

3.1 Overview of machine learning applications in healthcare

Machine learning predicts cancer-associated deep vein thrombosis using
clinically available variables.

Jin et al., 2022 developed five ML models for cancer-associated DVT and compared
the results with the Khorana score. Significant predictors were selected from randomly
extracted data from about 3000 patients, and models were trained on 70% of the data.
Linear discriminant analysis and logistic regression were the only machine learning models
that outperformed the Khorana score. A combination with the D-dimer feature showed
improved performance in all models.

Machine learning to predict venous thrombosis in acutely ill medical patients

A study assessing the performance of various machine learning models in relation to the
IMPROVE score was conducted by Nafee et al., 2020. The IMPROVE (International
Medical Prevention Registry on Venous Thromboembolism) is a recognized and verified
score utilized for assessing the risk levels of acute, medically ill patients. Using the
APEX trial dataset with 7,513 acutely medically ill patients, including 68 attributes,
they developed a super learner model to predict venous thromboembolism by combining
estimates from 5 families of candidate models. Using 39 machine learning models in 5
families of models and 10-fold cross-validation, they developed a super learning model
to predict VTE, and a reduced model (rML) was also developed using 16 variables
that were assumed to be associated with VTE. The candidate models’ families included
generalized additive models, elastic net (penalized logistic regression), extreme gradient

13



CHAPTER 3. RELATED WORK

boosting, random forests, a Bayesian logistic regression with default priors, and a simple
classification tree. Their results show that both the machine learning and rML models
outperformed the IMPROVE score, with c-statistics of 0.69 and 0.68, respectively,
compared to 0.59 for the IMPROVE score as illustrated in figure 3.1. This comparison
shows that the machine learning and rML models were more effective in predicting VTE
than the traditional IMPROVE score.

1.00 |
— IMPROVE: 0.59
ML: 0.69
— rML: 0.68
0.75 4
=
=
T 050
c
]
(7]

ML vs. IMPROVE: P <.001
0.25 , ML vs. IMPROVE: P <.001

ML vs. ML: P=.639

0.00 |

1.00 0.75 0.50 0.25 0.00
| - Specificity

Figure 3.1: ROC curve showing the performance of ML, rML, and IMPROVE risk score in
predicting combined VTE outcome. From Nafee, T., Gibson, C. M., Travis, R., Yee, M. K.,
Kerneis, M., Chi, G., AlKhalfan, F., Hernandez, A. F., Hull, R. D., Cohen, A. T.,
Harrington, R. A., & Goldhaber, S. Z. (2020). Machine learning to predict venous
thrombosis in acutely ill medical patients. Research and Practice in Thrombosis and
Haemostasis, 4(2), 230-237. https://doi.org/10.1002/rth2.12292. CC BY-NC-ND.

Using machine learning to predict venous thromboembolism and major
bleeding events following total joint arthroplasty.

In this study, Shohat et al., 2023 aim to create and validate a machine learning model
to predict the likelihood of VTE and major bleeding events (MBE) in patients following
total joint arthroplasty to support clinical decision-making.

The dataset consists of 35,963 primary and revision total joint arthroplasty patients
operated between 2009 and 2020 from a single institution. 56 variables, including
demographics, comorbidities, operative factors, and chemoprophylaxis, were included in
the data. The researchers manually reviewed patient notes to determine the type of
VTE prevention used postoperatively and the anticoagulant taken preoperatively. They
applied descriptive statistics to understand data distributions and compare patients with
VTE or MBE. They identified variables that increased the likelihood of developing VTE
or MBE using random forest, lasso, gradient boosting trees, and support vector machines.

MBE models were tested using repeated cross-validation, with the Lasso analysis
showing the highest AUC and being chosen for MBE algorithm development. The Lasso
analysis revealed the ten most important factors for MBE were revision surgery, chronic
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use of Warfarin preoperatively, operative duration, general anesthesia, peptic ulcer disease,
allogenic blood transfusions, older age, knee joint, varicose veins, and current or past
smoking.

Although the study has some limitations due to the low event rates, as there are only
308 VTE and 293 MBE patients out of the total 35,963 patients, it presents a valuable
predicting model for VTE and MBE risk.

Artificial intelligence in healthcare: Past, present and future.

The study by Jiang et al., 2017 surveys the current status of artificial intelligence (AI)
applications in healthcare, mainly concentrated on cancer, nervous system disease, and
cardiovascular disease. Their findings show that support vector machines and neural
networks are used in about two-thirds of the medical application of machine learning.
The IBM Watson system includes both machine learning and natural language processing
(NLP), showing results that are 99% coherent with the physician’s decision. One can
utilize narrative text and extract relevant information for machine learning prediction by
implementing NLP. Two hurdles are identified, the first being regulations lacking standards,
making it difficult to get approvals and assess the safety of Al systems. The second is
continually accessing data to improve and develop the system after the initial training.

Using machine learning for healthcare challenges and opportunities

Alanazi, 2022 presents a comprehensive analysis of machine learning in healthcare,
discussing various machine learning techniques and their applications in different health
sectors. Machine learning algorithms have demonstrated significant potential in healthcare
for predictive analysis, decision support, and efficient patient care (Alanazi, 2022). Key
machine learning techniques include linear regression, random forest, support vector
machines, decision trees, LASSO regression, logistic regression, K-nearest neighbors, and
Naive Bayes classifier, each having unique strengths and specific constraints.

There are many applications of machine learning in modern healthcare. These
include creating clinical decision support systems (CDSS) to help clinicians predict
patient outcomes and identify anomalies. For example, ensemble models have been used
to predict COVID-19 patient mortality risk, and CDSS has been employed to reduce
prescribing errors.

However, implementing machine learning models in healthcare is not without
challenges. These include the necessity for high-quality, representative data, maintaining
the interpretability of machine learning predictions, and dealing with complex legal
procedures. Fthical considerations are paramount, following the principle of "do no harm”
and efforts to ensure algorithmic fairness and avoid reinforcing existing inequalities.

The author concludes by developing ethical guidelines for machine learning applications
in healthcare, and methodological research must be included to ensure that machine
learning models do not maintain inequalities.
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3.2 Comparative studies on machine learning algorithms for
predicting medical events

Predicting thrombosis with machine learning

Abbas, 2021 presents a study comparing the performance of different machine learning
techniques in predicting thrombosis. The comparison is conducted on a full and reduced
dataset. The results in figure 3.2 show that XGBoost performs the best on the entire
dataset, followed by random forests, support vector machines, and artificial neural
networks. Random forests perform the best on the reduced dataset, followed by XGBoost,
artificial neural networks, and support vector machines. Support vector machines showed
the highest recall on the full dataset, followed by XGBoost, artificial neural networks,
and random forests.

Testing Data

Accuracy Precision Recall F1 Score AUC (PR)
RE 92.74 83.63 75.40 79.31 85.70
XGB 04.56 80.28 93.44 86.36 86.61
SVMs 02.14 71.08 96.72 81.94 79.65
ANNs B8.82 66.21 &80.32 72.09 7779

Training Data
Accuracy Precision Recall F1 Score AUC (PR)

RF 99.92 99.59 100.0 99.79 99.99
XGB 98.33 91.72 100.0 95.68 99.98
SVMs 90.92 67.22 99.18 80.13 85.23
ANNSs 94.09 76.77 97.54 85.92 94.55

Figure 3.2: From Abbas, K. (2021). Predicting thrombosis with machine learning. https:
//hdl.handle.net/11250/2770341. CC 2021 by author.

On the reduced dataset, XGBoost exhibits the highest recall, followed by support
vector machines, random forests, and artificial neural networks. The study concludes
that XGBoost is the most efficient algorithm for distinguishing between thrombotic and
non-thrombotic patients.

Comparison of machine learning algorithms for clinical event prediction

In the study, Beunza et al., 2019 tested various machine learning algorithms on the
Framingham Heart Study database, a publicly available database that "originated in 1948
in Framingham, Massachusetts as a prospective study of risk factors for cardiovascular
disease” (Beunza et al., 2019, p. 1) available on Kaggle. The aim was to predict the
risk of coronary disease. A thorough data analysis was performed, checking for missing
values and selecting eight key predictors for coronary risk using an automated ”stepwise”
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PREDICTING MEDICAL EVENTS

R-Studio RapidMiner
Model Model

A B C A B C

Decision tree 0.53 0.55 0531053 05 05
Boosted decision tree 0.53 0.60 0.52|0.67 0.7 0.69
Random forests NA 063 0.59| NA 0.71 0.69
Support vector machines | NA  0.68 0.68 | NA 0.75 0.71
Neural network NA 071 0.68 | NA 0.73 0.72
Logistic regression 0.5 0.68 0.68|0.68 0.73 0.73

Table 3.1: AUC score of the different algorithms with R-studio and RapidMiner. From
Beunza, J.-J., Puertas, E., Garcia-Ovejero, E., Villalba, G., Condes, E., Koleva, G.,
Hurtado, C., & Landecho, M. F. (2019). Comparison of machine learning algorithms
for clinical event prediction (risk of coronary heart disease). Journal of Biomedical
Informatics, 97, 103257. https:/ /doi.org/10.1016 /j.jbi.2019.103257. CC Elsevier

user licenses?.

technique. Three distinct data models were created using data mining techniques for
comparing algorithms. Model A used the original database, Model B excluded missing
values, and Model C filled in missing values with averages. These models were then
comparatively analyzed using the supervised machine learning algorithms, including
decision trees, random forests, support vector machines, neural networks, and logistic
regression. The positive labels were balanced using the ROSE library to boost the
algorithm’s predictive power, increasing coronary event prevalence from 15% to 50%.
This study evaluated several performance metrics: accuracy, recall, specificity, precision,
negative predictive value, and area under the curve (AUC). The overall selection criterion
for deciding the best hyperparameters and the data manipulation method was based
on the AUC. The highest AUC obtained was 0.71 using a neural network model with
R-studio and 0.75 with a support vector machines model using RapidMiner as shown in
table 3.1. The different machine learning algorithms had varying pros and cons. The
decision tree, for example, was fast and could handle missing data but had low prediction
power. The random forest and support vector machines improved accuracy but were more
complex. The neural network model required the most programming time but offered the
best results. Data normalization/standardization and balancing significantly improved
results, especially in cases where the incidence of the predicted event was unbalanced.

Zbeta.elsevier.com/about /policies-and-standards/open-access-licenses/elsevier-user
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Chapter 4

Method

This chapter will provide a detailed explanation of the methods and procedures adopted
in this study to answer the research questions. It will discuss the dataset, the reasoning
for selecting the particular ML techniques, the parameter tuning process, and the
experimental setup.

4.1 Dataset overview

Ostfold Hospital provided the dataset used in this study as part of a research project
in collaboration with @stfold University College. The research project is investigating
the possibilities of using artificial intelligence and ML to provide decision support for
healthcare. This section will present a detailed exploration of the dataset to understand
the information within a large number of features and patient records.

The dataset contains an extensive collection of healthcare records from 1080 patients,
targeted explicitly toward thrombosis patients with a concurrent history of a cancer
diagnosis and their risk factors. The data contains a lot of information about each patient,
associated risks, and bleeding episodes. The language used in the dataset is primarily
Norwegian.

Fach record is related to an individual patient, distinguished by a unique ID. This
allows for the identification of multiple records from the same individual. The hospital
ensured that all data were thoroughly de-identified before being shared with Ostfold
University College, removing personal identifiers and assigning anonymized identification
numbers to each patient. A total of 245 features are distributed across a selection of data
types, shown in table 4.1. Each feature provides different kinds of information, including
but not limited to:

Patient demographic information: These features include binary variables such
as gender (male/female) and continuous variables like age and Body Mass Index (BMI).

Clinical indicators: These features provide medical data on the patient’s health,
such as SpO2%, PESI score, respiratory rate, pulse rate, blood pressure (both systolic and
diastolic), CRP, and D-dimer result.

Risk factors: These include indicators such as smoking status and variables indicating
different types of known thrombophilia, past medical conditions, or trauma events. It also
contains information about the patient’s travel history, hormone intake, surgical history,
family disposition, etc.
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Treatment records: This includes a range of treatment types and associated
information such as start and end dates for different drugs (Dabigatran, Edoksaban,
Apixaban, Rivaroxaban, Marevan, Dalteparin, Enoxaparin, etc.), use of thrombolytic
therapy, and complications arising during the treatment.

Bleeding episodes: Variables like bleeding date and degree of bleeding capture
information about bleeding episodes experienced by the patients. The degree of bleeding
serves as the prediction label.

Features Count
Temporal 112
Binary 64
Numerical 33
Categorical 31
Text 5
Total 245

Table 4.1: Distribution of feature datatypes in the unprocessed study dataset.

Finally, the dataset includes a total of 3778 records, categorized into four different
classes: 'No bleeding,” ’Minor bleeding,” ’Clinically relevant minor bleed,” and 'Major
bleeding,” their distribution is presented in table 4.2. This allows ML models to predict
patient bleeding events based on a wide selection of factors. The data were preprocessed,
cleaned, and transformed as necessary to ensure their suitability for ML algorithms.

Understanding the dataset’s overall structure is critical for effectively modeling and
accurately predicting patient bleeding events.

Early in the data exploration process, an essential step was taken to refine the dataset
based on instructions received in a document from the hospital. This document served as
a guide, providing context and specifics about the relevance and utility of features in the
dataset. Following these guidelines, 152 columns were deemed unnecessary or irrelevant
for predicting bleeding events and thus were removed from the dataset. This process of
initial feature reduction significantly simplified the data set, reducing its dimensionality
and focusing the analysis on the most relevant information.

In addition to the feature reduction, another cleaning step involved the removal of
duplicated records. 870 records were found to be exact copies of other entries in the

Classes Records
No bleeding 2967
Minor bleeding 90
Clinically relevant minor bleed 448
Major bleeding 273
Total 3778

Table 4.2: Distribution of records in the unprocessed study dataset by bleeding type.
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dataset. These duplicated entries were dropped from the dataset to prevent any potential
bias in the analysis.

This cleaning process transformed the dataset’s structure. Table 4.3 illustrates this
procedure’s before and after comparison. After removing unnecessary features and
duplicated rows, the dataset was narrowed down to 2908 records and 94 features.

Original | Removed | Remaining
Records 3778 870 2908
Features 245 152 94

Table 4.3: Comparison of dataset structure before and after preliminary cleaning.

4.1.1 Relevance to research questions

With its complexity and variety, this dataset is suited to answer the research questions
(RQs) posed in chapter 1. It offers a wide range of relevant features to the study and
provides opportunities for exploration and analysis.

Considering RQ1, a range of numerical, categorical, temporal, and binary features
offers a rich input to determine how much the dataset allows for class differentiation using
state-of-the-art ML methods.

The categorical features in the dataset capture a range of patient-related information.
For instance, the ’'Diagnosis’ feature contains one or multiple diagnoses related to
thrombosis. 'Recent trauma ICD-10 code’ is associated with traumatic events or injuries
requiring medical intervention. Other features such as ’Orthopedic procedure code’ and
'Other surgery procedure code’ serve to identify the specific orthopedic or other surgical
procedures the patient has undergone. The "Trauma description’ feature provides context
to the incidents or conditions that might have contributed to a patient’s current medical
state.

The dataset also records the type of thrombophilia and any other relevant conditions
under 'Thrombophilia diagnosis’ and 'Other type! Patient smoking habits are captured
in the 'Smoking’ feature. It classifies patients based on their smoking status: ’No,’
'Former,” "Yes,” or, in instances where the information is missing, 'Unknown. ’Other
2" and ’Contraceptives, hormones, systemic’ provide insight into the types of birth control
pills or hormonal treatments a patient might use.

Additional factors like varicose veins, obesity, and infections, among others, are
cataloged under ’Other cause (specify).” The corresponding ICD-10 code is documented
in ’Ied-10 code’ for patients diagnosed with cancer. The ’Familial disposition’ feature
indicates whether the patient has a familial preposition for thrombosis, i.e., if there are
instances of thrombosis among the patient’s family members, further specified in "Familial
relationship. "Type of thrombolysis’ and "Tenecteplase / Alteplase’ features describe the
specific thrombolysis treatments administered to the patient. The patient’s gender is
indicated in the ’Gender’ feature.

Lastly, the outcome variable, 'Degree of bleeding,” categorizes the type of bleeding
experienced by the patient, dividing it into four distinct groups: No bleeding, Minor
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bleeding, Major bleeding, and Clinically relevant minor bleed, as previously illustrated in
table 4.2.

Numerical features in the dataset provide insight into each patient’s health condition,
physical attributes, and medical indicators, offering an objective framework to differentiate
bleeding classes. Unique IDs are given to each patient for tracking individual records
and maintaining patient anonymity. Diagnostic and oxygen saturation levels (SpO2%
value) indicate oxygen availability in a patient’s blood. At the same time, the Pulmonary
Embolism Severity Index (PESI) score is a prognosis of the mortality risk for patients
diagnosed with pulmonary embolism (Jiménez et al., 2010). Standard vital signs, such
as respiratory and pulse rates, are also included, representing the number of breaths and
heartbeats per minute.

Blood pressure readings are specified in diastolic and systolic values. Physical
attributes are represented by Body Mass Index (BMI) and the patient’s height and
weight. Other laboratory values, such as 'CRP’ and 'D-dimer values,” are included. 'Days
hospitalized’ reflects the number of days a patient was hospitalized in conjunction with a
diagnosis. Lastly, the ’Age’ feature informs us how old the patient is.

Numerous temporal features are present in the dataset. These features are primarily
about the diagnosis and treatment of thrombosis. The dataset shows the chronological
progression of the patient’s diagnoses and treatments. For instance, it records the date
when a primary diagnosis was made (’Diagnosis date’) and the dates of any previous
thrombosis diagnoses. Furthermore, the data also notes dates tied to specific activities,
such as flights lasting between 4-8 hours.

One of the most detailed aspects of the dataset is the timeline of various treatments.
The dataset records the start and end dates for numerous medications - including
Dabigatran, Edoxaban, Apixaban, Rivaroxaban, Marevan, Dalteparin, Encosaparin, and
others. These paired entries sketch out the distinct periods of medication usage, giving
us a picture of the patient’s treatment regimens. Finally, the dataset also identifies the
date of bleeding events ('Bleeding event date’).

Binary features in the dataset provide information about each patient’s unique
condition and risk factors. One group of these features is related to travel and mobility.
For example, some patients have undergone recent trips involving long flights ("Flight
>8h’, ’Flight <4h’, 'Flight 4-8h’) or vehicle journeys (*Travel by vehicle >4h’), which
are potential risk factors in thrombosis (Kyrle & Eichinger, 2005, p. 1164) as well as
experienced immobilization due to a medical condition(’Is immobilized’).

Another group of binary features reflects the patient’s medical history. This includes
prior incidences of thrombosis ("Previous other thrombosis’ and surgeries (both orthopedic
and other) within the last 12 weeks, indicated in ’Orthopedic surgery last 12 weeks’ and
'Other surgery in the last 12 weeks’, respectively.

Some binary features touch upon the patient’s current medication regime, such as birth
control pills or hormone replacement therapy. Furthermore, certain binary features register
important events during the patient’s treatment. This includes bleeding complications
during treatment and whether the patient received outpatient treatment.

Lastly, some features capture more specific situations, such as trauma requiring
hospitalization, casting, or immobilization within the last 12 weeks. Collectively, these
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binary features represent an extensive part of the data and contribute to understanding
each patient’s risk profile and medical background.

Missing data presented a significant challenge in the dataset, with approximately half
of the features having 80% or more missing values. This degree of missing values is
graphically represented in figure 4.1. Missing data inhibits class differentiation by reducing
the availability of information for accurately distinguishing between classes and could
potentially be a significant influence on the first RQ.

1.0

0.8

o
o

Missing values
o
~

0.2

0.0

0 20 40 60 80
Column index

Figure 4.1: Lineplot illustrating the number of missing values across all the columns in
the dataset.

RQ2 focuses on the comparative effectiveness of standard machine learning models in
predicting bleeding events in thrombosis patients. The collection of features, particularly
the classification of bleeding events in the dataset, is the foundation for systematically
training, evaluating, and comparing the effectiveness of various machine learning models
in their prediction task. Given the diversity of data, candidate models can be effectively
trained and their predictive performance carefully compared. Therefore, the dataset is
directly applicable to investigating RQ2.

4.2 Experiment setup

4.2.1 Preprocessing

In the preparation of the dataset, Python was the primary tool used. The Pandas library
was extensively utilized for data manipulation and processing, while the Numpy library
was applied for mathematical computations. Pandas is a powerful data manipulation
library (pandas development team, 2022) in Python that provides a flexible and efficient
data structure (dataframe) for handling and analyzing data (McKinney, 2010). Numpy
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(Numerical Python) is another Python library that supports a wide range of mathematical
functions for scientific computing tasks (Harris et al., 2020).

The dataset was delivered as an Excel file from the hospital. Initially, the FExcel file
was cleaned manually to remove irrelevant information. This also involved deleting the
first few rows containing group headers and descriptions irrelevant to the analyses.

i Dataset

Before cleanup

100 m  After cleanup

63
60

Features

41
40
31 &)
20 19 18
14
. 6
2
0 —
Temporal Binary Categorical  Continuous Text

Figure 4.2: Number of features by type, before and after initial cleanup.

In addition, certain columns not contributing valuable information for the study were
removed, as discussed previously in this chapter. The number of features by categories
before and after this initial cleanup is illustrated in figure 4.2. After these manual cleanup
steps, the Excel file was imported into a Pandas dataframe. The next step was to address
data redundancy, potentially leading to biases in the study result. Any duplicated rows
in the dataframe were identified and removed. The last step in this initial data cleanup
was to remove five patients with no cancer diagnosis, as they did not fall within the target
group for this study.

Improvements for readability were made to the DataFrame, such as changing column
names to English and adding semantic value, for example, changing 'Prosedyrekode’
(procedure code) to ’Orthopedic procedure code! Categories in columns such as ’Smoking
were translated from their original language to English. Similar translations were made
for several columns, including "Family relationship description” and ’Other risk factor.

To utilize the information in the 'Diagnosis date’ feature, the day of the year (1-365)
was calculated from the dates, as the date itself did not provide any helpful information.
Similar calculations determined the number of days since a previous thrombosis event.
Boolean flags were then created to indicate whether a patient had experienced previous
thrombosis events.

)

New features were created, including ’Diagnosis day of year,” ’Days since previous
thrombosis 2’, and 'Days since previous thrombosis 1’, and the now obsolete associated
date columns were deleted. One 'SpO2% value’ saved as a string (96-100") was replaced
with the mean value 98.0. ’Other risk factors’ containing text values were converted to
binary values, where 1’ indicated a risk factor was provided. An iteration was performed
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Degree of bleeding Substituted value
No bleeding 0

Clinically relevant minor bleed

1
Major bleeding 2
Minor bleeding 3

Table 4.4: Encoding 'Degree of bleeding’ values to numerical values performed during
preprocessing.

through a list of all treatments and their associated start and end dates, creating a new
boolean feature for each one to indicate if a patient had received that specific treatment.

Encoding was performed on the 'Gender’ column, with '0’ for males and ’1’ for females.
The 'ICD-10 cancer code’ column was transformed only to contain the leading numeric
digits in the ICD-10 code. The columns datatype was then converted to a numeric type.
The values in the 'BMI’ column were separated initially using a comma; this was replaced
with a period to convert the column to a float type. The 'Degree of bleeding’ column
was encoded to numeric values according to table 4.4. Missing "Degree of bleeding’ values
signified no bleeding, so the missing values were filled with values of ’0’.

Following the initial data cleaning steps, the dataset was divided into training and
testing sets to safeguard against data leakage during the subsequent imputation process.
The division was performed using the 'train_ test_ split’ function from sklearn, employing
stratified sampling with a test size of 0.2 and a random state of 42. Since each patient
could have varying degrees of bleeding (the target value) recorded on different rows, the
split was executed based on a list of unique patient IDs, each associated with their most
significant degree of bleeding. Following this, all rows corresponding to a specific patient
ID from the original dataset were collected and placed into the training or testing sets
according to the split list. Ultimately only one row for each patient will remain in the
dataset, so the current imbalance in the train/test split ratio is unimportant. Once the
extra rows for each patient are removed, the balance between the training and testing sets
will be correctly adjusted.

The next step in the data preprocessing involved imputing missing values on the
training and testing sets. The columns 'Orthopedic procedure code,” 'Other surgery
procedure code,” and 'Trauma description’ each had a corresponding boolean column
indicating whether the patient had experienced the procedure or event. It was found
that the values in the associated columns were not always coherent upon analyzing the
data. Therefore, the three columns mentioned were encoded, with ’1’ if the corresponding
values were true and ’0’ if not. Missing values in "Thrombophilia diagnosis’ were filled
similarly by iterating each row, checking the columns 'Known thrombophilia” and ’Other
type,” and setting the value to 1’ if either is true.

Columns where missing values equaled 'no’ were filled with ’0’. "Familial relationship’
was filled with ’yes’ if the associated ’Familian disposition’ column were true; elsewhere,
‘unknown.! Missing smoking status was filled with 'unknown,” ’Other diagnosis cause’
with 'no,” and "Days hospitalized” were filled with a temporary value of ’-1’ to facilitate
segmentation later on. Then all columns used to assist the imputation process were
dropped. For the remaining boolean and numeric columns, missing values were filled
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with the mode and mean of the respective column for the training set. These values were
stored for later usage in filling the test set to prevent data leakage. Missing 'BMI’ values
were calculated using the formula for BMI:

weight(kg)
(height(ecm)/100)?2

BMI = (4.1)

The last step in the imputation process involved consolidating binary values of the
columns ’Orthopedic procedure code,” 'Other surgery procedure code,” "Thrombophilia
diagnoses, ’ and ’Bleeding type’ by grouping the data by the patient ID and diagnosis
date and applying the max value to each column to ensure consistency for each unique
date across patients.

Then the days hospitalized, cancer diagnosis, smoking status, familial relationship,
other diagnosis cause, and thrombosis diagnosis features were one hot encoded. ’Days
hospitalized’ were segmented into the following bins before one hot encoded:

Short stay: 0-3 days, Medium stay: 4-7 days, Long stay: 8-14 days,
Extended stay: 15-30 days, Very extended stay: >30 days.

Group | | Foreach group: Filter groupto | |, s the record
Patient data atients [-»] 'dentily the most Omly conlzm with the earliest
pb? D important type of |~ | records with this diagnosis date
bleeding bleeding type g

3(

Is there
another patient group
to analyze?

No——

Remove the diagnosisdate from the final dataset l—)@n the refined patient data

Figure 4.3: This flowchart visually represents the multi-step process used to select a single
row of data per patient.

The ’ICD-10 cancer codes’ and ’Thrombosis diagnosis’ were segmented into categories
according to a document provided by Ostfold Hospital, rendered in table 4.6 and 4.5
respectively. Please note that a medical professional has not verified the translations of
the diagnoses from Norwegian to English. Therefore, for the sake of transparency, these
translations are presented in table A.1 in the appendix of this document.

During the one-hot encoding process, some values in the training set were not found in
the testing set. Consequently, the training set ended up with fewer columns than initially.
A function was therefore applied to ensure that the test set not only had the same columns
as the training set, but they also appeared in the same sequence.

In the final step of the data preprocessing, a procedure was followed, according to a
set of rules provided by the hospital, to ensure that one row per patient was accurately
selected for the study. The procedure is illustrated with the flowchart in figure 4.3.

Beginning with a collection of patient data, the procedure first identified the most
severe bleeding type registered for each patient. The data was then filtered, isolating only
the rows corresponding to this highest-severity bleeding type. Then the earliest diagnosis
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date among these rows was determined. If multiple entries corresponded to this earliest
date, the first of these entries was prioritized. This systematic procedure ensured that
a single most significant row was selected for each patient. The distribution of bleeding
types before and after the data preprocessing are shown in figure 4.4.
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B Proccessed dataset
2500
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No bl. Minor bl.  Clin. rel. minor bl. Major bl.

Figure 4.4: The distribution of target classes in the original and processed dataset.

Group | Diagnosis
1 DVT, Muscle vein thrombosis

2 Portal vein thrombosis, Hepatic vein thrombosis, Mesenteric vein
thrombosis, Splenic vein thrombosis, Inferior vena cava thrombosis

Pulmonary embolism

4 Ovarian vein thrombosis, Renal vein thrombosis, Other, Superficial
thrombophlebitis, Upper arm thrombosis, Jugular vein thrombosis

Table 4.5: Groups used for segmenting thrombosis diagnoses before one-hot encoding.

4.2.2 Normalizing data

Numerical features in the dataset were normalized using the StandardScaler function from
the Scikit-learn library. The process was integrated into a pipeline for execution with the
grid search cross-validation. This scaled the features to get a normal distribution with
a mean of zero and a standard deviation of one. The normalization can improve the
performance of multiple ML algorithms.

A ColumnTransformer was set up with StandardScaler applied to these columns. The
remainder of the features ('remainder=passthrough’) were left unscaled, which means they
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were unaffected by this preprocessing step and allowed to "pass through” the transformer.
By integrating the preprocessing steps into a pipeline, consistency in applying these steps
across different models and datasets can be ensured, helping in the reproducibility and
efficiency of the analysis. This pipeline configuration also ensured there was no data
leakage between the training and testing data, by only fitting the scalers to the training
data.

ICD-10 code | Label (description)

interval

[0, 15) + [30, | ENT (Ear-nose-throat)

33)

[15, 18) U-GIT (Upper gastrointestinal)

|18, 22) L-GIT (Lower gastrointestinal)

122, 26) LPB (Liver-pancreas and bile)

|26, 30) G and OL -GIT (Gastrointestinal tract and
overlapping lesion of digestive system)

[33, 40) RS and MT (Respiratory or mediastinal)

|40, 50) SCT (Skin, bone, and other connective tissue)

[50, 51) Breast

[51, 60) FGT (Female genital)

|60, 64) MGT (Male genital)

|64, 69) UT (Urinary)

[69, 73) CNS (Eye, brain, and other CNS tissue)

[73, 76) ET (Endocrine)

[76, 81) Sc and NS (Secondary or unspecified)

|81, 97) Hem (Lymphoid, hematopoietic or related tissue)

[97, 98) MultyPrime (Multiple primary sites)

Table 4.6: Intervals used for mapping ICD-10 cancer code to labels before one-hot
encoding.

4.2.3 Selecting models for evaluation

In the process of selecting ML algorithms for this study, the starting point was Scikit-
learn’s (Pedregosa et al., 2011) inherently multiclass models due to the multiclass nature
of the dataset’s target variable. However, not all these models were suitable for the
task. The first exclusion was the 'LabelPropagation’ and 'LabelSpreading’ algorithms,
typically used for semi-supervised learning tasks. As this study is dealing with a fully
labeled dataset, the semi-supervised algorithms were redundant, and they were therefore
eliminated.

’LinearDiscriminantAnalysis’ was the next to be excluded.  Despite being a
potent tool under the right circumstances, it was deemed unsuitable for this study.
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"LinearDiscriminantAnalysis’ makes specific assumptions about the dataset, specifically
that the features are normally distributed and that the classes have identical covariance
matrices. When the dataset was examined using the Shapiro-Wilk test for normality
and Levene’s test for equality of variances, it was clear that the dataset did not meet
these assumptions, and the model was deemed unfit for this particular task. Lastly,
'RidgeClassifierCV’ and ’LogisticRegressionCV’ were excluded as these classes already
contain built-in cross-validation. Including them in the grid search would result in
redundant cross-validation computations; hence they were replaced with their non-CV
counterparts, 'RidgeClassifier’ and ’LogisticRegression.! Multiclass models that were not
inherently multiclass were not considered. This was primarily to keep the complexity and
computational time within manageable boundaries.

After this elimination process, the list of models to be tested was narrowed down to
the following 12 models:

1. DecisionTreeClassifier (DTC)

2. ExtraTreeClassifier (ETC)

3. ExtraTreesClassifier (ETSC)

4. GaussianNB (GNB)

5. KNeighborsClassifier (KNC)

6. LinearSVC (LSVC)

7. MLPClassifier (MLPC)

8. NearestCentroid (NC)

9. QuadraticDiscriminant Analysis (QDA)
10. RadiusNeighborsClassifier (RNC)
11. RandomForestClassifier (RF)

12. RidgeClassifier (RC)

These models cover a wide range of ML techniques and offer different approaches to
the problem of predicting bleeding in thrombosis patients. The following section will dive
deeper into the hyperparameter tuning of the algorithms.

4.2.4 Hyperparameter tuning and top-performing model selection

The selection of hyperparameters for the initial grid search was primarily chosen after an
extensive literature review and exploring successful use cases for similar problems found
through online resources.

The aim was to balance a comprehensive exploration of the hyperparameter space and
computational feasibility. Therefore, the range of each hyperparameter was defined to be
broad enough to capture a variety of potential model behaviors but limited enough to keep
the computational time within manageable bounds.
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'random__state’ and ’'class_ weight’ were set for all models that supported it. Setting
random__state to a consistent number like 42 ensures that the output of the models is
reproducible. Furthermore, setting 'class_weight = "balanced”’ is essential when dealing
with imbalanced classes. This setting automatically adjusts weights proportional to class
frequencies in the input data, which can help improve the model’s performance on the
under-represented class.

In table 4.7, the specific hyperparameters used for all the models in the initial grid
search are presented. The selection of these hyperparameters represents an educated
starting point rather than an optimal solution. Different sets of hyperparameters could
potentially lead to better performance.

Parameter DTC ETC ETSC RFC
max__features 'sqrt’, None 'sqrt’, None 'sqrt’, None
n__estimators 100, 200 2, 10, 20, 100
class_weight 'balanced’ 'balanced’ 'balanced’ 'balanced’
random__state 42 42 42 42
criterion 'gini’, "entropy’ | 'gini’, 'entropy’ 'gini’, 'entropy’
max_depth None, 10 None, 10 None, 10 3,5, 10, 15, None
Parameter RC MLPC LSVC GNB
class_weight 'balanced’ 'balanced’
alpha 0.1,1.02
random__state 42 42 42
hidden_layer_sizes (50, 50, 50), (50,

100, 50), (100,)
activation "'tanh’, 'relu’
solver 'Ibfgs’, 'adam’
C 01,1
multi_class ‘crammer__singer’
var_smoothing 1e-09, 1e-08
Parameter QDA NC KNC RNC
reg_param 0.0,0.1
shrink__threshold 0.2, None
metric 'euclidean’,

'manhattan’
n_neighbors 3,5
weights "uniform’, "uniform’,

'distance’ 'distance’

radius 1, 500, 2000
outlier_label None,

'most_ frequent’

Table 4.7: The hyperparameters used for each model in the initial grid search.
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Fach model was subjected to a grid search. The models were trained and tested
on various combinations of hyperparameters using stratified 10-fold cross-validation to
identify the parameters that resulted in the best performance. This initial testing of
model performance provides a fundamental basis for assessing the ability of the dataset
to differentiate classes using ML and selecting the top models for further optimization.
Based on these results, the top three models will then be selected based on the F1 macro
score.

4.2.5 Dataset compositions

Identifying the top-performing models provides initial insights into how well machine
learning methods can differentiate classes in the dataset, thereby addressing RQI.
However, the selection process contains more than choosing the best-performing model
with default settings on a given dataset.

In the initial grid search, potential overfitting was considered across all models to
uncover any model that might perform artificially well on the dataset and not generalize
well to unseen data, an essential part of RQ1L.

Given the concerns about overfitting, an investigation into the composition of the
dataset is a part of the study. The next phase is 'model optimization,” contributing to
the RQs by evaluating the top ML models on a grid search with extended parameters
and testing on various dataset variations. This confirms the models’ robust and versatile
performance regarding class differentiation.

These dataset variations include a reduced feature set, an over-sampled dataset using
the Synthetic Minority Over-sampling Technique (SMOTE), a stratified split with random
shuffling, and a different split ratio of 90/10. The investigation of these various steps
is expected to answer RQI, assessing to what extent state-of-the-art ML methods can
differentiate classes amidst changing data conditions while countering potential overfitting
tendencies.

Oversampling with SMOTE aims to balance class distribution by creating synthetic
examples in the minority class, providing more information for the model to learn from.
This was done by applying Imbalanced-learn’s SMOTE algorithm to the initial dataset,
creating 1,917 new samples, and effectively adjusting the class balance to 694 of each
record.

The reshuffled and the 90/10 test/train split were created to assess the model’s stability
to varying selection of samples and proportions of training and testing data. This ensures
that any poor performance is not caused by 'bad luck’ in the dataset split.

Feature reduction

The last dataset variation was a reduced feature dataset. The feature reduction process
aimed to improve the model’s performance and complexity. This involved several steps,
such as calculating feature importance and permutation importance, then executing an
iterative feature elimination process.

Initially, feature importance was calculated, ranking each feature based on the
reduction of impurity using the random forest classifier. The permutation importance
was calculated using sklearn’s 'permutation_importance’ function, providing a robust
measure of a feature’s importance by evaluating the decrease in a model’s performance
when the feature’s value is randomly shuffled.
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A dataframe was constructed to capture various metrics to gain insights into the
significance of each feature: feature importance measures, variance, correlation with the
target variable, and the count of missing values per feature. This structured approach
facilitated a comprehensive understanding of each feature’s potential predictive power
and relevance to the study. Non-informative features with zero feature importance and
low variance (<0.01) were marked for elimination.

Then an iterative feature elimination process was executed, where a cross-validated
grid search was conducted using 'GridSearchCV’ to tune the parameters of a random
forest classifier. The grid search was wrapped in a custom function that took the
hyperparameters to tune and train data as parameters. Using cross-validation, the model
was optimized for the F1 macro score, also reporting ROC AUC, recall, precision, and
accuracy for each combination of hyperparameters.

After each iteration of the grid search, features that had an importance less than
a specified threshold (initially 0.001) were eliminated. The process was repeated for
several iterations until no features had importance below the threshold. The change
in performance across iterations was visualized using line plots to compare the training
and test scores for the different metrics. A confusion matrix was also plotted to assess the
model’s performance visually.

Overall, this feature reduction process combined several techniques to create a more
efficient, interpretable dataset to increase class differentiation while reducing complexity
and potential overfitting.

4.2.6 Extended hyperparameters grid search

The top-performing models are then further evaluated using an extended grid search.
This helped confirm that the best parameters were within the chosen range, improving
the chance of optimizing the model’s performance. The aim is to optimize the top models
to increase their effectiveness on the given data and ensure their robustness and reliability
when encountering new, unseen data.

In the initial model selection, the hyperparameters for each of the top three models
were configured within a defined range. This allowed for a thorough comparison to assess
their impact on the model’s efficiency in predicting bleeding events as guided by RQ2. The
choice of hyperparameters was driven by the need to balance computational feasibility and
extensive parameter space exploration.

Following the initial model selection, the top three models are then subjected to an
extended tuning process with GridSearchCV to facilitate a comprehensive exploration of
hyperparameters for each top model. This helps to ensure optimal performance by finding
the correct configuration of parameters that produces the most effective predictions while
reducing overfitting.

After the extended grid search, each top-performing model will be evaluated on the
entire dataset to verify the performance and confirm their effectiveness in predicting
bleeding episodes - an essential aspect called for in RQ2. This allows for a more robust
evaluation of the models’ performances under various conditions. The selection of top
models and hyperparameters is presented in the following chapter.
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Results

This chapter will present the findings of this study. The essence is understanding how
these models perform in different situations, their strengths and weaknesses, and the
extent to which the dataset allows for the differentiation of classes. To do this, stratified
10-fold cross-validation has been employed with a grid search, using the F1 macro score to
evaluate the model’s performance while also considering the accuracy, recall, precision, F1
score, and ROC AUC score. The first part of this chapter is dedicated to presenting these
results for each of the 12 selected models for the initial model selection. Fach model’s
performance will be presented using the metrics defined above.

The second part will examine the performance of these top models with different
dataset variations to better understand their strengths and weaknesses. Each model’s
behavior under different dataset compositions will be systematically evaluated, providing
key insights to answer RQ1 regarding the suitability of the dataset to predict bleeding and
RQ2 addressing the effectiveness of the models.

The last part of this chapter will evaluate the top models’ performance when trained
and tested on the entire dataset. This will provide a comprehensive assessment of their
ability to predict bleeding events in thrombosis patients under conditions that challenge
the robustness of their predictive capabilities. This part will therefore provide essential
insights into answering the research questions, particularly RQ2, while also addressing the
performance issues regarding RQ1.

By the end of this chapter, you should have a thorough understanding of these 12
machine learning models and their performance on the problem in this thesis.

5.1 Overview of initial results

The initial model testing was performed on 12 different models: DecisionTreeclassifier
(DTC), ExtraTreeclassifier (ETC), ExtraTreesclassifier (ETSC), GaussianNB (GNB),
KNeighborsclassifier (KNC), LinearSVC (LSVC), MLPclassifier (MLPC), NearestCentroid
(NC), QuadraticDiscriminantAnalysis (QDA), RadiusNeighborsclassifier (RNC),
RandomForestclassifier (RFC), and Ridgeclassifier (RC).

The evaluation metrics in table 5.1 reveal a substantial difference in the model’s
performance. The scores are a calculated mean of the cross-validations of ten splits
performed during the grid search. The train score is the result of the prediction made
on the training part of the data in each split, and the validation score is the outcome of
predicting the validation, or holdout, part in each split. As discussed in chapter 4, this
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study is particularly interested in the Fl-macro score, which considers both precision and
recall and treats all classes equally important.

Model | Accuracy Precision Recall Fl-score Fl-macro ROC AUC
DTC | 0.687 (0.038)| 0.689 (0.031) | 0.687 (0.038) | 0.686 (0.031)  0.287 (0.048) | 0.528 (0.039)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)
ETC | 0.657 (0.058) | 0.687 (0.030) | 0.657 (0.058) | 0.670 (0.044) | 0.269 (0.056) | 0.515 (0.042)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)
ETSC | 0.742 (0.033)| 0.674 (0.017) | 0.742 (0.033) | 0.705 (0.023) | 0.251 (0.028) | 0.614 (0.027)
0.971 (0.006) | 0.975 (0.004) | 0.971 (0.006) | 0.972 (0.006) | 0.945 (0.010) | 1.000 (0.000)
GNB | 0.187 (0.030) | 0.740 (0.047) | 0.187 (0.030) | 0.233 (0.045) | 0.150 (0.031) | 0.617 (0.055)
0.231 (0.009) | 0.836 (0.002) | 0.231 (0.009) | 0.262 (0.012) | 0.217 (0.006) | 0.831 (0.006)
KNC | 0.746 (0.020) | 0.675 (0.037) | 0.746 (0.020) | 0.704 (0.021) | 0.254 (0.040) | 0.558 (0.042)
0.813 (0.003) | 0.767 (0.025) | 0.813 (0.003) | 0.741 (0.007) | 0.288 (0.029) | 1.000 (0.000)
LSVC | 0.236 (0.057) | 0.749 (0.075) | 0.236 (0.057) | 0.282 (0.081) | 0.197 (0.037) | nan
0.314 (0.039) | 0.819 (0.011) | 0.314 (0.039) | 0.339 (0.056) | 0.295 (0.025)
MLPC | 0.738 (0.024) | 0.697 (0.039) | 0.738 (0.024) | 0.716 (0.029) | 0.311 (0.078) | 0.581 (0.073)
0.944 (0.015) | 0.945 (0.016) | 0.944 (0.015) | 0.941 (0.018) | 0.855 (0.044) | 0.976 (0.010)
NC 0.143 (0.133) | 0.432 (0.355) | 0.143 (0.133) | 0.125 (0.180) | 0.087 (0.043) | nan
0.158 (0.154) | 0.669 (0.058) | 0.158 (0.154) | 0.137 (0.195) | 0.098 (0.052)
QDA | 0.802 (0.011) | 0.670 (0.028) | 0.802 (0.011) | 0.725 (0.012) | 0.241 (0.028) | 0.506 (0.011)
0.830 (0.036) | 0.841 (0.038) | 0.830 (0.036) | 0.764 (0.058) | 0.346 (0.173) | 0.889 (0.025)
RNC | 0.808 (0.006) | 0.653 (0.009) | 0.808 (0.006) | 0.722 (0.008) | 0.223 (0.001) | 0.539 (0.073)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)
RFC 0.505 (0.058) | 0.676 (0.031) | 0.505 (0.058) | 0.567 (0.046) | 0.267 (0.051) | 0.560 (0.062)
0.846 (0.013) | 0.896 (0.006) | 0.846 (0.013) | 0.860 (0.011) | 0.729 (0.016) | 0.930 (0.007)
RC 0.424 (0.077) | 0.731 (0.044) | 0.424 (0.077) | 0.508 (0.071) | 0.264 (0.048) | nan
0.553 (0.017) | 0.835 (0.004) | 0.553 (0.017) | 0.607 (0.016) | 0.452 (0.013)

Table 5.1: Results from the initial grid search over all considered models. The mean and
standard deviation validation scores are reported with the mean and standard deviation
train scores in italics.

The results show a significant variation in model performance, which suggests
that no single model offers the best results across all performance metrics. However,
RadiusNeighborsClassifier, LinearSVC, QuadraticDiscriminantAnalysis, MLPClassifier,
and GaussianNB demonstrate top performances in at least one metric. On the other
hand, LinearSVC, NearestCentroid, and RidgeClassifier deliver less promising results
with the ROC AUC metric. The ROC AUC metric is calculated using a One-vs-One
approach, which averages the ROC AUC for all possible pairwise combinations of classes.
In multiclass classifications, if one or more classes have few or no instances in a split or
the model predicts only a single class, the ROC AUC cannot calculate a score and returns
NaN. Given the adjacent accuracy and recall scores for these models, it’s likely that their
poor performance is related to this.

Figure 5.1 clearly illustrates the considerable divergence between the training and
validation F1 macro scores across several models. This indicates the prevalent overfitting
tendencies displayed by these models, which demonstrate high performance on the training
set but struggle to generalize effectively to unseen validation data.
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Figure 5.1: Comparative barplot of F1 macro scores (train and validation) for all models
in the initial grid search. Error bars show the standard deviation.

DecisionTreeClassifier

The DecisionTreeClassifier showed a robust
precision and recall score of 0.68 though
a relatively mediocre ROC AUC score of
0.528. The model has a considerable difference
between its testing and training scores. It has
a relatively fast fit time of 13.36 ms. The
parameters that gave the best results on the
validation data were: Criterion: entropy,
max depth: None, max features: sqrt.

ExtraTreeClassifier

The ExtraTreeClassifier, similarly to the
DecisionTreeClassifier, performed relatively
well in accuracy and recall but displayed a less
impressive ROC AUC score of 0.515. Like the
DecisionTreeClassifier, the ExtraTreeClassifier
shows a considerable difference between testing

1.0

Train
0.8 N Test
0.6
04
0.2 I
0.0

eca// So

Ace, Pn
CC'(”.a J/ecl lha Cf'

Figure 5.2: Performance of the
DecisionTreeClassifier in the initial

grid search. FError bars show the
standard deviation.

and training scores. It also benefits from a relatively quick mean fit time of 16.75 ms.

The parameters that gave the best results on the validation data were: Criterion:

gini, max depth: None, max features: None.
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Figure 5.3: Performance of the ExtraTreeClassifier and ExtraTreesClassifier in the initial
grid search. Error bars show the standard deviation.

ExtraTreesClassifier

The ExtraTreesClassifier demonstrates a more restrained difference between training and
testing scores, signifying a better generalization capability than the DecisionTreeClassifier
and ExtraTreeClassifier. = However, the training time of 215.82 ms exceeds the
DecisionTreeClassifier and ExtraTreeClassifier.

Further refinement of the
ExtraTreesClassifier could be modifications to 0.8 Train
the 'n_ estimators’ parameter, which controls . Tost
the number of trees in the forest, and the 06
‘'max_ depth parameter’. An increase in

'n__estimators’ generally increases the model’s
performance. However, this comes with the
trade-off of enhanced computational expense.
Therefore, finding an optimal balance between 0.2

these factors is crucial. The parameters that I I I
gave the best results on the validation data 0-04 2
were: Criterion: gini, max depth: 10, n g, fcls nece// Seg, "’730,0
estimators: 100.

0.4

Figure 5.4: Performance of the
. GaussianNB in the initial grid search.
911 GaussianNB FError bars show the standard deviation.
Even though the Gaussian Naive Bayes
classifier has the highest ROC AUC score
amongst all the models, at 0.617, it showed a
noticeably low Fl-score macro score of 0.150. This could signify that the model has
difficulties establishing an effective balance between precision and recall during class
prediction. The relatively low contrast between the training and testing scores indicates
that this model can better generalize to previously unseen data.
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Regarding training time, the Gaussian Naive Bayes model is relatively efficient (15.65
ms), showing a smaller gap between training and testing scores than the previous models.
The parameters that gave the best results on the validation data were: Var smoothing:

1e-08.

KNeighborsClassifier

The KNeighborsClassifier showed a noteworthy
overall performance. Still, there is potential
for enhancement in its ROC AUC score of
0.558. The KNeighborsClassifier performs
proficiently across all metrics, hinting at a well-
balanced classifier. The parameters that gave
the best results on the validation data were: N
neighbors: 3, weights: distance.

LinearSVC

The LinearSVC model achieved the highest
precision score of 0.749, indicating a low false
positive rate. Despite this, the model failed to
compute a ROC AUC score, potentially due to
the previously discussed issues.

In contrast to the other models, the
LinearSVC model requires a longer training
time of 4.9 seconds. Despite the substantial
computational costs, its performance on the
ROC AUC metric remains poor.

The parameters that gave the best results
on the validation data were: C: 0.1, multi
class: crammer_ singer.

MLPClassifier

The MLPClassifier model displayed the highest
performance, with an F1 macro score of 0.311.
This score implies that this model is best at
getting an equal balance between precision and
recall for each class without a bias toward the
majority class.

Yet, the MLPClassifier model shows a
considerable gap between training and testing
scores, indicating overfitting. Its training time
is relatively long compared to the other models,
at 1.36 seconds.

The parameters that gave the best results
on the validation data were: Activation: tanh,

1.0
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0.6
0.4
0.2 I
L o y
Ce Qn, - 7 7< U,
Uracy 0/8/0/7 Cay SCOre macro c
Figure 5.5: Performance of the
KNeighborsClassifier in the initial

grid search. Error bars show the
standard deviation.
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Figure 5.6: Performance of the

LinearSVC in the initial grid search.
Error bars show the standard deviation.

hidden layer sizes: (50, 50, 50), solver: adam.
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Figure 5.7: Performance of the MLPClassifier and NearestCentroid in the initial grid

search. Error bars show the standard deviation.

NearestCentroid

The NearestCentroid model faced difficulties across most performance metrics, showing
the lowest F1 macro score out of all the models. Additionally, the model failed to return
a score for the ROC AUC metric. The parameters that gave the best results on the
validation data were: Metric: euclidean, shrink threshold: 0.2.

QuadraticDiscriminant Analysis

The QuadraticDiscriminantAnalysis model
exhibited noteworthy results, securing the
highest Fl-score (0.725) among the evaluated
models. However, its ROC-AUC score (0.506)
was the lowest, indicating potential challenges
with effective class discrimination.

The QDA model’s performance was less
than satisfactory across all metrics compared
to most other models. The parameters that
gave the best results on the validation data
were: Reg param: 0.0.

RadiusNeighborsClassifier

The RadiusNeighborsClassifier showed a
notable accuracy score of 0.808, which is
the best of all the models. It displayed less
promising ROC AUC and Fl-macro scores,
which were 0.539 and 0.223, respectively,

highlighting potential difficulties in distinguishing

between different classes. There is a significant
difference between the training and testing
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scores, indicating a tendency of overfitting. 1.0
Given its nature, the RadiusNeighborsClassifier Train
may not be the most suitable classifier for high- 0.8 . Test
dimensional datasets. Parameters with best
results on the validation data were: Weights: 06
distance, outlier label: most__frequent,
. 0.4
radius: 500.
0.2
RandomForestClassifier
. . 0.0
The RandomForestClassifier displayed Ag, Rs 7\
: c(/ra @C/S C‘8// '773
moderate performance, though it recorded ey, on C‘f
a slightly lower ROC-AUC score of 0.560.
This suggests it has room for improvement Figure 5.9: Performance of the
in distinguishing between different classes. RadiusNeighborsClassifier in the

The RandomForestClassifier model provided initial grid search. Error bars show the
acceptable performance across most of the standard deviation.

evaluated metrics. While its training duration

is comparatively longer (17.76 ms) than most of the models, it may be considered
justifiable when considered against the model’s performance. Parameters with best
results on the validation data were: Max depth: None, max features: sqrt, n
estimators: 2.

RidgeClassifier

The RidgeClassifiercould not compute the ROC AUC score. Its performance across the
remaining metrics was modest, with an accuracy score of 0.424. It is important to
remember that RidgeClassifier is a linear model that assumes the relationship between the
input and output variables is linear. If this assumption is incorrect, it could contribute to
the results we see here.Alpha: 0.1 achieved the best results on the validation data.

Train Train
— Test I — Test
(S ec A Ce, ec £,
Ura o, C/S 0/7 9// C‘ ,haC‘/- (//'a o, 8/017 a// C /haC‘r
(a) RandomForestClassifier (b) RidgeClassifier

Figure 5.10: Performance of the RandomForestClassifier and RidgeClassifier in the initial
grid search. Error bars show the standard deviation.
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5.2 Top model selection

Following the initial grid search, the top three models were selected based on their F1
macro score. These top-performing models are:

1.

MLPC Classifier: The MLPClassifier is the top-performing model according to the
F1 macro score. This suggests a better ability to classify instances from all classes
accurately. However, a noticeable difference between training and testing scores
indicates a potential overfitting issue.

. DecisionTreeClassifier: The DecisionTreeclassifier ranks second in regards to

the F'1 macro score. There is an even bigger gap between training and testing
scores compared to the MLPClassifier. Though, the DecisionTreeClassifier offers
the advantage of easy interpretation and visualization, which can be important in
understanding the underlying decision-making process.

. ExtraTreeClassifier: The ExtraTreeClassifier also presents a relatively good F1

macro score. Similar to the DecisionTreeClassifier, it has a noticeable difference
between training and testing scores. However, ExtraTreeClassifier could be less
prone to overfitting than DecisionTreeClassifier due to its randomness in splitting
nodes.

Based on the selection process, these three models have been identified as the top-
performing models. That being said, achieving high model performance is an iterative
process. Their current results are encouraging, but they don’t suggest the end of the model
refinement. Even though these models outperformed the others in the current setup, there
is room for improvement and fine-tuning to increase class differentiation capabilities and
model effectiveness.

Parameter Values

Hidden layer sizes | (10,), (50,), (10, 10), (50, 50),
(50,50,50), (50,100,50), (100,)

Activation tanh, relu

Solver sgd, adam

Alpha 0.0001, 0.05

Learning rate constant, adaptive

Max iter 500

Random state 42

Table 5.2: Hyperparameters for the MLPClassifier used in the extended grid-search.
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For the MLPClassifier, the hidden layer sizes, activation function, and solver were
specified. For DecisionTreeClassifier and ExtraTreeClassifier, the maximum depth,
criterion for the quality of a split, and the number of features to consider when looking
for the best split were specified.

After the initial model selection, an extended hyperparameter tuning was performed.
For the MLPClassifier, the learning rate and an alpha parameter for L2 regularization were
introduced. This additional step is aimed at adjusting the learning process and controlling
overfitting.

The hidden layers sizes search space was increased, and the maximum number of
iterations was defined with a higher value than default. Since the lbfgs solver was
associated with the poorest outcomes in the initial grid search, it was replaced with the
stochastic gradient descent (sgd) solver to explore the possibilities.

Table 5.2 presents the hyperparameter values used in further experiments with the
MLPClassifier.

For both DecisionTreeClagsifier and ExtraTreeClassifier, new parameters were
introduced during this phase. The splitter to choose the strategy used to split at each
node, the minimum number of samples required to split an internal node, and the
minimum number of samples needed to be at a leaf node were included.

These parameters add more controls to manage the size and complexity of the
decision trees. The option of unlimited max features did not provide any promising
results and was replaced with log2. The hyperparameters used with the DecisionTree and
ExtraTreeClassifier are presented in table 5.3

Parameter Options
Criterion gini, entropy
Splitter best, random
Max depth None, 3, 5, 10

Min samples split | 2, 5, 10

Min samples leaf | 1,2, 5

Max features sqrt, log?2
Random state 42
Class weight balanced

Table 5.3: Hyperparameters for the DecisionTree and ExtraTreeClassifier used in the
extended grid-search.
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5.3 Performance with different dataset variations

To evaluate the robustness and adaptability of the top models, they are assessed on
different compositions of the dataset. The datasets used are the initial dataset, reduced
features, over-sampled using Synthetic Minority Over-sampling Technique (SMOTE),
reshuffled with an 80/20 train/test split, a 90/10 split, and the entire dataset.

By examining how these top models perform across the different data subsets, we
better understand their strengths and weaknesses. Different dataset compositions can
impact the top models’ ability to differentiate between classes. By evaluating the models
across these varied dataset compositions, we can measure the models’ robustness and
ability to generalize to new data, providing insights to answer RQ1.

5.3.1 Initial dataset

The initial dataset is the same as used in the model selection process, with an 80/20
train/test split and a fixed random state. Table 5.4 presents the results from the best-
performing estimator for each of the top models from the grid search cross-validation based
on their F1 macro score. These estimators were then refitted to the entire training dataset.
The predictions made by these refitted models on the test data are presented in table 5.5.

Model | Accuracy Precision Recall F1 score Fl-macro ROC AUC
MLPC | 0.712 (0.048) | 0.701 (0.035) | 0.712 (0.048) | 0.704 (0.032) | 0.324 (0.057) | 0.567 (0.074)
0.968 (0.028) | 0.970 (0.027) | 0.968 (0.028) | 0.968 (0.030) | 0.919 (0.070) | 0.988 (0.014)
DTC | 0.687 (0.038)| 0.689 (0.031) | 0.687 (0.038) | 0.686 (0.031)  0.287 (0.048) | 0.528 (0.039)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)
ETC | 0.687 (0.038)| 0.689 (0.031) | 0.687 (0.038) | 0.686 (0.031)  0.287 (0.048) | 0.528 (0.039)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)

Table 5.4: Results for the extended grid search CV, using the initial dataset. The mean
and standard deviation validation scores are reported with the train scores in italics.

Model | Accuracy | Precision | Recall F1 score Fl-macro | ROC AUC
MLPC | 0.758 0.712 0.758 0.720 0.286 0.529
DTC 0.693 0.688 0.693 0.689 0.292 0.533
ETC 0.693 0.688 0.693 0.689 0.292 0.533

Table 5.5: Performance metrics of each of the best estimators after refitting with
GridSearchCV, evaluated on the initial test set.

MLPC Classifier

The MLPClassifier displays an improvement in all evaluated metrics except for the
ROC AUC score, which shows a slight decrease. This could indicate overfitting, further
supported by an increase in all metrics for the training set. The refitted MLPClassifier
shows promising results on the training data but performs poorly on the test data, as
illustrated in figure 5.11, with an F'1 macro score of 0.286. This is a noticeable decrease
from the cross-validation score. The parameters that gave the best results on the
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validation data were: Activation: tanh, alpha: 0.0001, hidden layer sizes: (50, 50,
50), learning rate: adaptive, max iter: 500, solver: adam.
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Figure 5.11: Confusion matrices for the MLPClassifier applied to the initial training and
test dataset.

DecisionTreeClassifier

The DecisionTreeClassifier displayed identical results in both the initial and extended
parameter grid searches. When refitting the model on the entire training set, there is an
indication that the model is overfitting to the training data with similarly poor results
as the MLPClassifier on the test data, illustrated in figure 5.12. Although, there is a
slight increase in the number of correctly predicted patients with bleeding. Unlike the
MLPClassifier, the DecisionTreeClassifier displays a higher F1 macro score of 0.292 with
the test data. The parameters that gave the best results on the validation data were:
Criterion: entropy, max depth: None, max features: sqrt, min samples leaf: 1,
min samples split: 2, splitter: best.

Training data Test data

Max

True value

= Min

Predicted value

Figure 5.12: Confusion matrices for the DecisionTreeClassifier applied to the initial
training and test dataset.

ExtraTreeClassifier

Interestingly, the ExtraTreeClassifier performs similarly to the DecisionTreeClassifier, a
minor improvement from the initial grid search. When the ExtraTreeClassifier is refitted
on the training data, we get an identical matrix to the DecisionTreeClassifier, illustrated
in figure 5.13. The DecisionTreeClassifier also displays an increased F1 macro score of
0.292. The parameters that gave the best results on the validation data were: Criterion:
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entropy, max depth: None, max features: sqrt, min samples leaf: 1, min samples
split: 2, splitter: best.

Training data Test data

Max

True value

= Min

Predicted value

Figure 5.13: Confusion matrices for the ExtraTreeClassifier applied to the initial training
and test dataset.

5.3.2 Reduced dataset

The reduced dataset consists of 47 columns in the initial dataset, as described in chapter
4. Table 5.6 presents the results from the grid search cross-validation. The predictions
made by the refitted models on the test data are shown in table 5.7.

Model | Accuracy Precision Recall F1 score F1-macro ROC AUC
MLPC | 0.753 (0.021) | 0.694 (0.021) | 0.753 (0.021) | 0.717 (0.019) | 0.286 (0.044) | 0.560 (0.046)
0.995 (0.002) | 0.995 (0.002) | 0.995 (0.002) | 0.995 (0.002) | 0.988 (0.005) | 1.000 (0.000)
DTC | 0512 (0.058) | 0.690 (0.018) | 0.512 (0.058) | 0.572 (0.049) | 0.298 (0.033) | 0.562 (0.039)
0.714 (0.051) | 0.884 (0.009) | 0.714 (0.051) | 0.754 (0.043) | 0.614 (0.045) | 0.972 (0.011)
ETC | 0512 (0.058) | 0.690 (0.018) | 0.512 (0.058) | 0.572 (0.049) | 0.298 (0.033) | 0.562 (0.039)
0.714 (0.051) | 0.884 (0.009) | 0.714 (0.051) | 0.754 (0.043) | 0.614 (0.045) | 0.972 (0.011)

Table 5.6: Results from the extended grid search CV, using the reduced dataset. The
mean and standard deviation validation scores are reported with the training scores in
italics.

Model | Accuracy | Precision | Recall F1 score Fl-macro | ROC AUC
MLPC | 0.763 0.657 0.763 0.704 0.235 0.484
DTC 0.577 0.654 0.577 0.611 0.242 0.471
ETC 0.577 0.654 0.577 0.611 0.242 0.471

Table 5.7: Performance metrics of each of the best estimators after refitting with
GridSearchCV, evaluated on the reduced test set.

MULPClassifier

Compared to the results from the initial dataset, the MLPClassifier has a noticeable
reduction in the F1 macro score of 0.286 from the cross-validation and even lower when
evaluated on the test data with an F1 macro score of 0.235. As illustrated in figure
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5.14, the MLPClassifier struggles to predict classes correctly. Looking at the confusion
matrix for the training data, we can see that it’s overfitting even more than the initial
dataset results. The parameters that gave the best results on the validation data were:
Activation: tanh, alpha: 0.05, hidden layer sizes: (100,), learning rate: adaptive,
max iter: 500, solver: adam.

Training data Test data
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Figure 5.14: Confusion matrices for the MLPClassifier applied to the reduced training and
test dataset.

DecisionTreeClassifier

The DecisionTreeClassifier exhibits a marginally better F1 macro score of 0.298, decreasing
the contrast between the train and test scores compared to the initial dataset results.
Though, the confusion matrix in figure 5.15 does not present promising results. The
model performs worse on the test data, with an F1 macro score of 0.242. The parameters
that gave the best results on the validation data were: Criterion: entropy, max depth:
10, max features: log2, min samples leaf: 1, min samples split: 2, splitter: best.

Training data Test data e

True value

= Min

0 1 2 3
Predicted value

Figure 5.15: Confusion matrices for the DecisionTreeClassifier applied to the reduced
training and test dataset.

ExtraTreeClassifier

Like the DecisionTreeClassifier, the ExtraTreeClassifier demonstrates an increase in the
F1 macro score and an improvement in the contrast between training and testing scores.
The two models display identical results for the reduced dataset, as we also saw with the
initial dataset. The parameters that gave the best results on the validation data were:
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Criterion: entropy, max depth: 10, max features: log2, min samples leaf: 1, min
samples split: 2, splitter: best.

Training data Test data

Max

True value

= Min

Predicted value

Figure 5.16: Confusion matrices for the ExtraTreeClassifier applied to the reduced training
and test dataset.

5.3.3 Up-sampled dataset

An up-sampled version of the training data was created to explore potential model
performance given balanced classes, effectively balancing the representation of minority
classes using the Synthetic Minority Over-sampling Technique (SMOTE). Table 5.8
presents the evaluated metrics from a grid search cross-validation on this dataset.
Despite the cross-validation results yielding the highest scores among all the subsets,
the confusion matrices in figure 5.18, 5.19 and 5.20, hints of that the models are
overfitting. Looking at the results from predictions of the test data in table 5.9, we see
a rather significant drop in the F1 macro score. SMOTE generates synthetic samples;
hence, the resulting augmented dataset is inherently more complex. This complexity
can create conditions for model overfitting as they tune their parameters to the noise

Model | Accuracy Precision Recall F1 score F1-macro ROC AUC
MLPC | 0.923 (0.016) | 0.924 (0.016) | 0.923 (0.016) | 0.923 (0.016) | 0.923 (0.016) | 0.983 (0.004)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)
DTC | 0.826 (0.019)| 0.826 (0.019) | 0.826 (0.019) | 0.823 (0.020) | 0.823 (0.020) | 0.884 (0.013)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)
ETC | 0.826 (0.019)| 0.826 (0.019) | 0.826 (0.019) | 0.823 (0.020) | 0.823 (0.020) | 0.884 (0.013)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)

Table 5.8: Results from the extended grid search CV, using the up-sampled dataset. The
mean and standard deviation validation scores are reported with the training scores in
italics.

Model | Accuracy | Precision | Recall F1 score Fl-macro | ROC AUC
MLPC | 0.688 0.696 0.688 0.690 0.301 0.531
DTC 0.567 0.660 0.567 0.609 0.217 0.476
ETC 0.567 0.660 0.567 0.609 0.217 0.476

Table 5.9: Performance metrics of each of the best estimators after refitting with
GridSearchCV on the up-sampled dataset, evaluated on the initial test set.
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and artificial nuances of the synthetic samples. Consequently, while the models display
superior performance on the SMOTE training data, they fail to generalize effectively to
the original, unseen test data.

MULPC Classifier

As illustrated in 5.18, the MLPClassifier displays a marginal increase in correctly classified
bleeding cases compared to the initial dataset. On the other hand, it shows a noticeable
reduction of contrast between training and validation scores. The curves illustrated in
figure 5.17 depict the trade-off between sensitivity (True Positive Rate) and specificity
(False Positive Rate) for different decision thresholds. In an ideal scenario, we hope to
see the ROC curve close to the upper left corner, indicating an effective class separation.
The parameters that gave the best results on the validation data were: Activation: tanh,
alpha: 0.0001, hidden layer sizes: (100,), learning rate: constant, max iter: 500,
solver: adam.
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Figure 5.17: ROC curves and macro-averages for each class using the MLPClassifier
trained on both the initial and up-sampled datasets. The testing was conducted on the
test data set.

Training data Test data
Max
o
o _ 1 2 0
I
>
g 0 2
'|_— N
0 1
2 — Min
1 2 3

Predicted value

Figure 5.18: Confusion matrices for the MLPClassifier applied to the up-sampled training
and initial test dataset.
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DecisionTreeClassifier

Figure 5.19 illustrates the predictions with the DecisionTreeClassifier refitted on the
training data. Unlike the MLPClassifier, we see a decreased performance in predicting
bleeding and non-bleeding patients. The parameters that gave the best results on the
validation data were: Criterion: gini, max depth: None, max features: sqrt, min
samples leaf: 1, min samples split: 2, splitter: random.

Training data Test data
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True value
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Figure 5.19: Confusion matrices for the DecisionTreeClassifier applied to the up-sampled
training and initial test dataset.

ExtraTreeClassifier

As anticipated, the ExtraTreeClassifier maintains identical results with its related
DecisionTreeClassifier with the up-sampled dataset, showing a decreased contrast in
train/validation scores. The parameters that gave the best results on the validation data
were: Criterion: gini, max depth: None, max features: sqrt, min samples leaf: 1,
min samples split: 2, splitter: random.
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Figure 5.20: Confusion matrices for the ExtraTreeClassifier applied to the up-sampled
training and test dataset.

5.3.4 reshuffled dataset

As discussed in chapter 4, we are dealing with a relatively small dataset, and the
composition of the train and test subsets could affect the results. To ensure that the
previous results were not simply a product of this particular split, an additional analysis
is conducted on a reshuffled dataset, using the same 80/20 split as the initial dataset.
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5.3. PERFORMANCE WITH DIFFERENT DATASET VARIATIONS

The evaluated metrics from the grid search cross-validation are presented in table 5.10,
and the predictions made by the refitted models on the test data are presented in table

5.11.

Model | Accuracy Precision Recall F1 score F1l-macro ROC AUC
MLPC | 0.695 (0.046) | 0.686 (0.025) | 0.695 (0.046) | 0.689 (0.032) | 0.278 (0.042) | 0.510 (0.041)
0.986 (0.016) | 0.986 (0.015) | 0.986 (0.016) | 0.985 (0.016) | 0.962 (0.040) | 0.996 (0.007)
DTC | 0.587 (0.055) | 0.692 (0.028) | 0.587 (0.055) | 0.630 (0.041) | 0.289 (0.085) | 0.534 (0.061)
0.882 (0.011) | 0.926 (0.005) | 0.882 (0.011) | 0.892 (0.010) | 0.796 (0.012) | 0.991 (0.001)
ETC | 0.587 (0.055)| 0.692 (0.028) | 0.587 (0.055) | 0.630 (0.041) | 0.289 (0.085) | 0.534 (0.061)
0.882 (0.011) | 0.926 (0.005) | 0.882 (0.011) | 0.892 (0.010) | 0.796 (0.012) | 0.991 (0.001)

Table 5.10: Results from the extended grid search CV, using the reshuffled dataset. The
mean and standard deviation validation scores are reported with the training scores in
italics.

Model | Accuracy | Precision | Recall F1 score Fl-macro | ROC AUC
MLPC | 0.498 0.699 0.498 0.562 0.289 0.618
DTC 0.530 0.670 0.530 0.587 0.219 0.478
ETC 0.530 0.670 0.530 0.587 0.219 0.478
Table 5.11: Performance metrics of each of the best estimators after refitting with

GridSearchCV, evaluated on the reshuffied test set.

MULPClassifier

The MLPClassifier demonstrates a decrease across all metric scores compared to the results
from the corresponding initial dataset. However, the F1 macro score from the test data
is marginally better. The confusion matrices in figure 5.21 show an increase in correctly
classified major bleeding cases. The parameters that gave the best results on the validation
data were: Activation: tanh, alpha: 0.0001, hidden layer sizes: (50, 50, 50), learning
rate: constant, max iter: 500, solver: adam.
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Figure 5.21: Confusion matrices for the MLPClassifier applied to the reshuffed training
and test dataset.
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Figure 5.22: Confusion matrices for the DecisionTreeClassifier applied to the reshuffled
training and test dataset.

DecisionTreeClassifier

The DecisionTreeClassifier shows an improvement across the precision, F1 macro, and
ROC AUC scores and a decrease in accuracy, recall, and F1 scores. The F1 macro score
decreases when predicting the test data. The parameters that gave the best results on the
validation data were: Criterion: entropy, max depth: None, max features: sqrt, min
samples leaf: 1, min samples split: 5, splitter: best.

ExtraTreeClassifier

Like the results for the up-sampled dataset, the ExtraTreeClassifier shows less contrast
between training and validation scores with the reshuffled data. The parameters that gave
the best results on the validation data were: Criterion: entropy, max depth: None,
max features: sqrt, min samples leaf: 1, min samples split: 5, splitter: best.
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Figure 5.23: Confusion matrices for the ExtraTreeClassifier applied to the reshuffled
training and test dataset.

5.3.5 90/10-split dataset

A dataset with a more significant training portion was also constructed to evaluate how
increased exposure to training data would impact the performance of the models. A
more extensive training set can help improve the model’s generalization ability. Table
5.12 displays the results from the cross-validation on this expanded training dataset. The
predictions made by the refitted models on the test data are presented in table 5.13.
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Model

Accuracy

Precision

Recall

F1 score

Fl-macro

ROC AUC

MLPC

0.714 (0.052)
0.930 (0.028)

0.701 (0.039)
0.934 (0.025)

0.714 (0.052)
0.930 (0.028)

0.705 (0.033)
0.928 (0.029)

0.205 (0.084)
0.831 (0.073)

0.584 (0.074)
0.972 (0.018)

DTC

0.664 (0.062)
1.000 (0.000)

0.679 (0.032)
1.000 (0.000)

0.664 (0.062)
1.000 (0.000)

0.669 (0.046)
1.000 (0.000)

0.285 (0.041)
1.000 (0.000)

0.532 (0.032)
1.000 (0.000)

ETC

0.664 (0.062)
1.000 (0.000)

0.679 (0.032)
1.000 (0.000)

0.664 (0.062)
1.000 (0.000)

0.669 (0.046)
1.000 (0.000)

0.285 (0.041)
1.000 (0.000)

0.532 (0.032)
1.000 (0.000)

Table 5.12: Results from the extended grid search CV, using the 90/10-split dataset. The
mean and standard deviation validation scores are reported with the training scores in
italics.

Model | Accuracy | Precision | Recall F1 score Fl-macro | ROC AUC
MLPC | 0.750 0.661 0.750 0.701 0.250 0.513
DTC 0.750 0.667 0.750 0.706 0.244 0.505
ETC 0.750 0.667 0.750 0.706 0.244 0.505

Table 5.13: Performance metrics of each of the best estimators after refitting with
GridSearchCV, evaluated on the 90/10-split test set.

MULPClassifier

When comparing the cross-validation scores with the initial dataset, the MLPClassifier’s
performance metrics display minimal difference, except the F1 macro score showing a
dip and the ROC AUC score seeing an improvement. The confusion matrices in figure
5.24 display a moderate ability to predict the classes on the training data correctly. The
parameters that gave the best results on the validation data were: Activation: tanh,
alpha: 0.0001, hidden layer sizes: (50, 50, 50), learning rate: adaptive, max iter:
500, solver: adam.
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Figure 5.24: Confusion matrices for the MLPClassifier applied to the 90/10-split training
and test dataset.

DecisionTreeClassifier

The DecisionTreeClassifier displays a marginally lower score across all metrics than
the initial dataset, and the confusion matrices in figure 5.25 indicates overfitting. The
predictions made on the test set do not differ significantly from the comparable results
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with the initial dataset, given the change in the ratio between training and testing data.
The parameters that gave the best results on the validation data were: Criterion:
entropy, max depth: None, max features: log2, min samples leaf: 1, min samples
split: 2, splitter: best.

Training data Test data "

—

g _ 0 0 0
T
>
3 0 i 0
|: N
0 2 0
« - Min
0 1 2 3

Predicted value

Figure 5.25: Confusion matrices for the DecisionTreeClassifier applied to the 90/10-split
training and test dataset.

ExtraTreeClassifier

With the 90/10 split dataset, the ExtraTreeClassifier does not show any differentiation
from the DecisionTreeClassifier. The parameters that gave the best results on the
validation data were: Criterion: entropy, max depth: None, max features: log2,
min samples leaf: 1, min samples split: 2, splitter: best.
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Figure 5.26: Confusion matrices for the ExtraTreeClassifier applied to the 90/10-split
training and test dataset.

5.4 Performance on entire dataset

This section presents the performance of the top models tested on the entire dataset.
The motivation for this approach is rooted in the persistently underwhelming results
shown across the various subsets analyzed so far. These outcomes have suggested that
the available data may be insufficient for generating robust, predictive models. This
investigation aims to comprehensively evaluate the model’s capabilities by fitting the
models to the full dataset. A persisting poor performance on the entire dataset will
further substantiate the hypothesis that insufficient data is a major limiting factor in
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model development. The grid search results performed on the whole dataset are presented
in table 5.14.

By comparing the performance of the top models on the entire dataset, we can better
understand how these standard ML models differ in their effectiveness
bleeding events, providing a robust foundation for answering RQ2.

in predicting

Model | Accuracy Precision Recall F1 score F1-macro ROC AUC
MLPC | 0.759 (0.024) | 0.690 (0.036) | 0.759 (0.024) | 0.717 (0.021) | 0.287 (0.074) | 0.575 (0.060)
0.936 (0.026) | 0.938 (0.024) | 0.936 (0.026) | 0.930 (0.030) | 0.844 (0.072) | 0.984 (0.008)
DTC | 0.670 (0.046) | 0.682 (0.024) | 0.670 (0.046) | 0.675 (0.034) | 0.276 (0.043) | 0.522 (0.030)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)
ETC | 0.670 (0.046) | 0.682 (0.024) | 0.670 (0.046) | 0.675 (0.034) | 0.276 (0.043) | 0.522 (0.030)
1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000)

Table 5.14: Results from the extended grid search CV, using the entire dataset. The mean
and standard deviation validation scores are reported with the training scores in italics.

Model | Accuracy | Precision | Recall F1 score Fl-macro | ROC AUC
MLPC | 0.842 0.861 0.842 0.794 0.451 0.899
DTC 1.000 1.000 1.000 1.000 1.000 1.000
ETC 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.15: Performance metrics of each of the best estimators after refitting with
GridSearchCV, evaluated on the entire test set.

MULPClassifier

The MLPClassifier experiences a slight increase in accuracy, recall, F1, and ROC AUC
score, leaving the precision score with a slight dip. In this instance, the confusion matrices
in figure 5.27 are identical, which is expected as were using the same dataset for training
and testing. The parameters that gave the best results on the validation data were:
Activation: relu, alpha: 0.0001, hidden layer sizes: (100,), learning rate: constant,
max iter: 500, solver: adam.
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Max
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Figure 5.27: Confusion matrices for the MLPClassifier applied to the full dataset.
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DecisionTreeClassifier

For the DecisionTreeClassifier, we see an all-over decrease across all cross-validation
metrics. As we saw in the preceding section, the confusion matrices in figure 5.28 illustrate
that the model might be overfitting the data. The parameters that gave the best results
on the validation data were: Criterion: gini, max depth: None, max features: log2,
min samples leaf: 1, min samples split: 2, splitter: random.
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Figure 5.28: Confusion matrices for the DecisionTreeClassifier applied to the full dataset.

ExtraTreeClassifier

The ExtraTreeClassifier demonstrated the same results as the DecisionTreeClassifier. The
parameters that gave the best results on the validation data were: Criterion: gini, max
depth: None, max features: log2, min samples leaf: 1, min samples split: 2,
splitter: random.
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Figure 5.29: Confusion matrices for the ExtraTreeClassifier applied to the full dataset.
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Chapter 6

Discussion

This chapter analyzes and interprets the results obtained from the performance evaluations
of the 12 selected machine learning models. The discussion aims to answer the following
research questions introduced in chapter 1:

1. To what extent does the dataset allow for the differentiation of classes with state-of-
the-art machine learning methods?

2. How do standard machine learning models compare in their effectiveness in
predicting bleeding events in thrombosis patients?

6.1 Class differentiation

The results from the experimentation suggest a significant challenge in class differentiation
within the datasets. In regards to the first research question, the majority of models
encountered issues with overfitting and class differentiation.

In the individual analysis of the results, it was found that most models showed potential
overfitting issues and difficulties distinguishing between classes. The top three models,
MLPClassifier, DecisionTreeClassifier, and ExtraTreeClassifier, were selected based on
their F1 macro score, ensuring the model’s performance was not overly influenced by its
ability to predict the most common class.

The MLPClassifier’'s F1 macro score on the reduced dataset decreased noticeably,
indicating struggles with predicting classes correctly. The Decision Tree and
ExtraTreeClassifiers showed minor improvements and less overfitting but presented
similar results.

Using SMOTE up-sampling for balanced class distribution, all three models seemed to
overfit and struggled to generalize to the unseen test data. However, the MLPClassifier
did show a slight increase in correctly classified bleeding cases, suggesting potential
improvements with a balanced dataset. The reshuflled dataset showed decreased
performance for the MLPClassifier and improved performance for the Decision Tree and
ExtraTreeClassifiers. However, the contrast between training and validation scores for
all models raised concerns about their generalizability. Increasing the training dataset
to a 90/10 split led to a slight degradation in performance in the MLPClassifier and
marginally lower scores in the Decision Tree and ExtraTreeClassifiers.

The MLPClassifier showed a ROC AUC score of 0.529 on the initial dataset and a
slightly higher score of 0.531 on the up-sampled dataset. These scores, marginally above
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the 0.5 baselines, indicate that even the best-performing model struggles to separate the
classes in the data effectively.

However, we can see that the ROC curves of the MLPClassifier are significantly closer
to the diagonal line than the desired upper left corner. This affirms the difficulties the
model has when trying to discriminate between classes. The similarity of the curves
in figure 5.17(a) and 5.17(b) suggests that addressing the class imbalance through up-
sampling did not improve the model’s class differentiation ability.

This difficulty in class differentiation could stem from various factors. Further studies
and exploration are necessary to verify the precise reasons and potentially find solutions
to this challenge.

When examining the performance of the models, it is also essential to consider the
potential impact of the preprocessing steps. Handling missing values is a significant
preprocessing element that could impact the class differentiation ability. A high proportion
of the dataset was missing and imputed using mean values. While this is a common
strategy for handling missing data, it has potential drawbacks.

Imputation with mean values ignores any correlation between features, potentially
adding noise and reducing the overall variability of the dataset. This can distort the
relationships between features and obscure the patterns the models try to learn. It’s
plausible that this could be part of why the models struggled to differentiate between
classes effectively.

6.2 Prediction effectiveness

The results showed a degree of variation when evaluating the efficacy of the MLP, Decision
Tree, and ExtraTreeClassifier in predicting bleeding events among thrombosis patients.
The graph in figure 6.2 illustrates the changes in the performance across the different
datasets.

6.2.1 MLPClassifier

The MLPClassifier emerged as the top-performing model during the initial grid search,
with the highest F1 macro score. However, extended grid search on the initial dataset
led to a decrease in most performance metrics, except precision and F1 macro. The
MLPClassifier experienced a further decline in its F1 macro score in the reduced feature
dataset, signifying difficulties in class predictions.

Applying SMOTE up-sampling for class distribution balance showed a slight
improvement in predicting bleeding events. Still, the MLPClassifier struggled with
generalizing to unseen data. Its performance on the reshuffled and 90/10 split datasets
also decreased, indicating potential overfitting.

Surprisingly, the MLPClassifier shows a drop in the F1 macro cross-validation score.
This decrease suggests that the model may not predict effectively across all classes. The dip
in precision score further indicates potential limitations in the MLPClassifier’s ability to
predict bleeding instances correctly. The results are otherwise not particularly promising,
hinting at a bias towards the no-bleeding class.
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Figure 6.1: Line graph illustrating the changes in cross-validation and test scores for the
top three models across the dataset variations.

6.2.2 DecisionTreeClassifier

The DecisionTreeClassifier showed promise in certain areas, achieving a precision and recall
score of 0.68 during the initial grid search. However, a less impressive ROC AUC score of
0.528 suggest limitations in its ability to distinguish between different classes effectively.
The DecisionTreeClassifier had a considerable difference between its testing and validation
scores, indicating that it is likely overfitting to the training data. This is typical for a high-
variance model, suggesting that the model could be too tailored to the training data, which
might include noise and outliers, and thus struggles to generalize effectively to unseen data.
Despite these limitations, the DecisionTreeClassifier has a relatively fast fit time of 13.36
ms, which could make it a practical choice for real-time predictions. However, the issue of
overfitting remains a concern.

The DecisionTreeClassifiers’ performance remained consistent in both the initial and
extended grid search, indicating the optimal parameters for this classifier being covered
in the initial search range. The DecisionTreeClassifier improved F1 macro and ROC AUC
scores on the reduced and reshuffled datasets, signifying a better balance across classes
and discriminative ability between them.

More importantly, is a reduced contrast between the train and validation scores. This
indicates that the model has less overfitting. However, overfitting became apparent when
testing the entire dataset, characterized by a decrease across all metrics and a substantial
difference between testing and training scores.

6.2.3 ExtraTreeClassifier

Similar to the DecisionTreeClassifier, the ExtraTreeClassifier performed well in accuracy
and recall during the initial grid search, and the performance remained consistent in both
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initial and extended grid searches. This suggests that the models could extract similar
patterns from the dataset. However, the ROC AUC score of 0.515 presented potential
difficulties in class discrimination.

The ExtraTreeClassifier’s performance improved with the reduced dataset, showing
an increased F1 macro score and lower contrast between training and validation scores.
Performance remained similar to the DecisionTreeClassifier with the up-sampled dataset,
showing a decreased difference in train/validation scores. A more balanced dataset
indicates a potential for these tree-based models to excel. Still, a decrease across all
metrics and a substantial increase in contrast between training and validation scores on
the full dataset suggested potential overfitting, similar to what was observed with the
DecisionTreeClassifier.

In summary, the MLPClassifier showed more variation in performance across different
datasets variations but boasted the highest score in most cases. In contrast, the Decision
Tree and ExtraTreeClassifiers exhibited more consistent performances. However, all
classifiers showed signs of overfitting and struggled with generalizing to unseen data,
indicating a potential need for more data or improved feature selection techniques. Using
the F1 macro score as a selection criterion effectively identified models with balanced
performance across all classes, not just the majority class.
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Chapter 7

Conclusion

This study investigated the extent to which the dataset facilitates the differentiation of
classes using state-of-the-art ML methods and the application of ML models to predict
bleeding events in patients with thrombosis. However, due to the observed overfitting
characteristics and subpar results, questions were raised regarding the sufficiency of the
dataset.

The study initially evaluated 12 different models, revealing substantial variations
across them. The top-performing models, MLPClassifier, DecisionTreeClassifier, and
ExtraTreeClassifier, were identified based on their F1 macro scores, an essential metric
for unbalanced multiclass classification problems. Despite attempts to further enhance
the predictive performance of these models through an extended hyperparameter tuning
process, the results were not as promising as expected.

These findings, connected with the persistent issue of overfitting, pointed toward
possible weaknesses in the dataset. While there were some improvements in prediction
accuracy, no single model consistently outperformed others across all metrics. This
underscores the complexity and difficulty of the task.

The comparative analysis provided a deeper understanding of how different ML
models can predict bleeding events in thrombosis patients. It offers valuable information
for enhancing the prediction effectiveness, which could improve individualized treatment
strategies for these patients. However, the results also highlighted the challenges of
applying ML techniques in a complex medical context.

The study has also underscored the importance of understanding the intricacies of
hyperparameter tuning and its impact on model performance. It has demonstrated that
while the dataset allows some degree of class differentiation using state-of-the-art ML
methods, the impact of missing data and the limitations inherent in the models reduced
their effectiveness in predicting bleeding events in thrombosis patients.

Despite the less-than-optimal results, the study has contributed to the field by
comprehensively comparing ML models in a healthcare context, specifically in predicting
bleeding risk in thrombosis patients. It has shown that ML techniques can be applied in
healthcare prediction, ultimately improving patient outcomes. However, the outcomes
also emphasized the pressing need to address data-related issues, such as a lack of
sufficient data or a high volume of missing data.

While the research results did not meet initial expectations, the study has provided
valuable insights into the challenges and complexities of applying ML models in predicting
bleeding events in thrombosis patients, especially in the light of significant missing data.
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It has highlighted areas for improvement and has paved the way for future research in this
area. The findings of this research can potentially guide future studies and contribute to
the ongoing efforts to improve healthcare outcomes through ML, particularly emphasizing
the importance of high-quality, sufficient datasets.

7.1 Future work and recommendations

While this study has made meaningful steps in applying ML techniques to predict bleeding
risk in thrombosis patients, there are several possible paths for future work.

Handling missing data with mean imputation could contribute to the underwhelming
performance of the models. This underlines the importance of examining data
preprocessing choices and their potential effects on model performance. More advanced
imputation techniques could potentially mitigate some of these issues.

Future studies could focus on exploring advanced imputation methods, improving the
quality of data collection to reduce the extent of missing data, and extracting textual data
using natural language processing.

Secondly, further research could explore using more advanced ML models or ensemble
methods to improve prediction accuracy. Additionally, incorporating more diverse and
extensive datasets could enhance the robustness of the models.

By continuing to explore these paths, we can leverage ML to improve patient outcomes
in thrombosis and other medical conditions.
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Appendix A

Translation of diagnoses

Translations of the thrombosis diagnoses are presented in table A.1.

Diagnosis (Norwegian)

Diagnosis (English)

DvVT

Deep Vein Thrombosis

Muskelvenetrombose

Muscle Vein Thrombosis

Vena porta trombose

Portal Vein Thrombosis

Vena hepatis trombose

Hepatic Vein Thrombosis

Vena mesenterica trombose

Mesenteric Vein Thrombosis

Vena lienalis trombose

Splenic Vein Thrombosis

Vena cava trombose

Inferior Vena Cava Thrombosis

Lungeemboli

Pulmonary Embolism

Vena ovarica trombose

Ovarian Vein Thrombosis

Vena renalis trombose

Renal Vein Thrombosis

Annet

Other

Overfladisk tromboflebitt

Superficial Thrombophlebitis

Overarm trombose

Upper Arm Thrombosis

Vena jugularis trombose

Jugular Vein Thrombosis

Table A.1: Translation of thrombosis diagnosis from Norwegian to English
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Appendix B

Feature reduction results

Table B.1 presents the features with zero importance according to the trained random
forest model.

Feature Importance
hospitalization_ Very__extended_ stay 0.0
Other__diagnose_ cause_ Infection 0.0
Flight >8h 0.0
Familial_relationship_ Second-degree relative 0.0
Familial_relationship_ Unknown 0.0
treatment_ Trombolyse 0.0
treatment_ Marevan 2 0.0
Trauma description 0.0
Other_ diagnose_ cause_IBD 0.0
Other__diagnose_ cause_ Obesity 0.0
Travel by vehicle >4h 0.0
treatment__Acetylsalisylsyre 0.0
Other_ diagnose_ cause_ Peripheral venous catheter 0.0
Other__diagnose_ cause_ Varicose veins 0.0
Days since previous thrombosis 1 0.0
Days since previous thrombosis 2 0.0
Diagnosis_ group2 0.0
treatment_ Dalteparin 3 0.0
Flight <4h 0.0
Thrombophilia diagnose 0.0
hospitalization_ Never_hospitalized 0.0
treatment_ Apixaban 2 0.0
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APPENDIX B. FEATURE REDUCTION RESULTS

Feature Importance
Had previous thrombosis 1 0.0
treatment_ Dabigatran 2 0.0
treatment_ Kdoksaban 2 0.0
treatment_ Enoksaparin 2 0.0
Cancer__code_RS and MT 0.0
Cancer__code_SCT 0.0
CRP_is_filled 0.0
treatment_ Rivaroxaban 3 0.0
hospitalization_ Short__stay 0.0
Cancer__code_CNS 0.0
Cancer_code ET 0.0
treatment_ Rivaroxaban 2 0.0
Have myeloproliferative disease 0.0
Cancer__code_ MultyPrime 0.0
Flight 4-8h 0.0
Had previous thrombosis 2 0.0

Table B.1: Features with zero importance reported by the

random forest classifier.
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