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ABSTRACT The development of EV technology and EV migration is limited by various factors such
as sizing of batteries, short driving ranges, optimal operations, and so on. The EV charging faces many
difficulties such as waiting time, charging time, uneven charge scheduling, and uneven distributed charging
stations. In Charging Station (CS), EVs usually spend much time in queues, mainly during peak hours of
charging. Therefore, building a well-established charging station network should be derived from charging
demand and proper charge scheduling to assist EVs for getting charged with less cost, less waiting time. Also,
it should reduce the number of vehicles scheduling during the peak load time. This work aims to design a
scheduling system for EV charging using an optimization strategy of Chaotic Harris Hawks optimization
(CHHO) which reduces the total time spent on charging station and the distance of EV origin to destination.
CHHO is authenticated using Vehicular Ad-hoc Network (VANET) simulation, and the performances are
compared with algorithms Exponential Harris Hawk Optimization, Grey Wolf Optimizer, First in First Out
and RandomAllocation to demonstrate the efficacy of our technique. The proposed CHHO-based scheduling
system yields better performance with the maximum remaining energy and significantly cuts the average
travel time, and improves the utilization rate of EVs in charging stations compared to other algorithms.
A detailed result and discussions on different case studies by varying number of vehicles and number of
charging stations and the corresponding average waiting time were obtained and presented in this paper.

INDEX TERMS Charge scheduling, chaotic Harris Hawk optimization, electric vehicle, electric vehicle
scheduling, Harris Hawk optimization, VANET, waiting time.

I. INTRODUCTION
Electric Vehicle technology has been developed in recent
years to minimize the emission of Green House Gases (GHG)
and to maximize the utilization of renewable energy sources.
The replacement of conventional vehicles by adopting EVs
with highly supportive renewable techniques in metropolitan
cities is a significant way to reduce CO2 emissions [1]. In this
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21st century, the utilization of electric vehicles is rapidly
increasing as many countries diverted their attention from
fossil fuels to energy requirements. There are three main
challenges faced by EVs, driving range, long charging time,
and high cost [2]. Other obstacles to the migration of EVs are,
less charging efficiency, uncertainties in charging location,
lack of power, arbitrary procedures, and increases in the
grid’s maximum demand. In order to resolve this issue, areas
with high mobility rates, such as petrol stations, highways,
shopping malls, and parking lots, have been supplied with
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public charging stations in large numbers [3]. Due to the
multiple charging stations (CS), various issues may arise
related to charging time, cost, scheduling time, distance cov-
ered by EVs to reach the destination, improper information
management, and so on. To address this issue, a VANET-
based scheduling system can be used, to optimize charging
time and ensure grid stability [4], as shown in Fig.1.

It collects real-time data on charging demand and avail-
able charging infrastructure to allocate the optimal charging
schedule for each EV. It dynamically adjusts the charging
schedule due to unexpected events, which allows EVs to get
prompt charging. This VANET system uses machine learning
(ML) algorithms for scheduling charging stations based on
various features such as vehicle data, CS data, grid data,
and so on. The ML algorithms increase the complexity of
the VANET system due to the high-dimension data, [5], [6],
which reduces the scheduling performance. Feature Selection
(FS) is the required process in the ML methods, and extrac-
tion of required features and removal of irrelevant features is
the necessary process that has to be done by ML methods.
The proper features improve the performance of the ML
classifiers. The FS process typically consists of four steps:
validity, evaluation, search stop criteria, and feature subset
search. The suitable feature detection rate is improved by the
TLBO-JAYA algorithm-based intrusion detection technique.
This eliminates the irrelevant features and selects the required
features [8]. The long-term estimation of the charging station
can be analyzed by using this machine learning approach,
which estimates the possible rate of increase in the number of
vehicles that will be charged in the future. Also, an intelligent
transport model and chargingmanagement scheme associated
with CS have been developed. This method considers the grid
availability and on-road traffic scenarios to reduce the impact
on the grid as well as vehicle run time [9]. Additionally,
the total run time of EVs and its uncertain mobility were
been considered for improving the performance of charge
management systems. This inclusion reduces the cost of
communication between CS to EVs and increases the per-
formance. However, the advantages of this method are been
limited due to delay and inefficiency between the Vehicle
to Vehicle (V2V) Communications [10]. The communica-
tion between the charging station and between EV to EV is
been improved by the Hybrid Multi-Population Algorithm
(HMPA) based optimization. This helps to optimize Ev’s
route selection and charge scheduling in the distributed sys-
tems. Further, it reduces operational costs by considering
factors such as battery charging impact and energy consump-
tion [11]. The significance of this optimization algorithm is
further enhanced by incorporating more renewable energy
sources into the charging station, which reduces the con-
sumption cost and improves the grid stability [12]. The
integration of renewable energy with the charging station
improves the grid stability on the peak demand [13]. Smart
grids are the developed research area for managing the gen-
erating required power during the demand. The concept of

a smart grid can be integrated with the charging station to
improve the power stability of the charging station, and it
avoids the failure of charging stations during grid blackouts.
The CS powered with the smart grid requires more data
and optimization techniques for efficient operation. The data
classification and CS behavior were studied using various
heuristic algorithms as in [14]. Later Harris Hawks optimiza-
tion (HHO) has been incorporated with the grid, smart grid,
and renewable energy-based charging stations for improving
stability. Different case studies were been carried out to infer
the application of the HHO algorithm in the grid-connected
charging stations and coordinate the EVs accords to the
power availability on CS [15]. Along with that, the con-
verter selection on the battery charging station and vehicle
should be optimized for the better efficiency. The butterfly
optimization, reinforcement learning, deep learning methods
are been used to achieve this [16]. Also, the energy arbitrage
and distribution cost is been considered in the evaluation of
the developed optimization-based charge scheduling systems.
The inclusion of additional parameters improves the charge
scheduling process [17]. On the other hand, charge distribu-
tion from vehicle to grid (V2G), and various procedures or
algorithms used for effective scheduling were been reviewed
[18]. A new kind of algorithm called the Proposed Hybrid
Optimization Algorithm (PHOA) has been developed, which
is a meta-heuristic algorithm based on physics and nature.
It is a combination of atom search optimization and tree seed
algorithm. It involves the improvement of the charge schedule
in the most uncertain environment [19].

Routing of EVs to the charging station involvesmany prob-
lems like routing via shortest path, routing to a fast charging
stations and so on. Various optimization techniqueswere been
employed for this problems. The need of smart E-mobility
has been discussed and compared with the existing solu-
tions for the deep understanding of the routing concept [20].
An integrated charge scheduling and vehicle coordinating
technique is been developed based on exponential Harris
Hawks technique [21]. The accuracy of this networkmay fails
on the large scale integrated EV charging stations. In large
scale systems, many request may arise simultaneously and
the algorithm failed to collect the request and it overwrites
the scheduling details will leads to the confusion on the net-
work [22]. VANET strategy is been used for this problem to
improve the accuracy on the routing. Ant colony optimization
technique is used with the VANET network to classify the
requests and decision [23]. A novel intention-aware routing
system (IARS) enables vehicles on computing a routing pol-
icy. This reduces expected travel time with the considerations
of other vehicles and its requests. These considerations affects
the estimation of queueing time when other vehicles also
selects the same intentions and requests [24]. Deep learn-
ing approach [25] and Route search method [26] were been
used to address this issues and to improve the routing and
scheduling. Apart from the charge scheduling and routing,
another method is vehicle to vehicle charging system and
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FIGURE 1. Schematic diagram of VANET based routing environment.
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FIGURE 2. Scheduling graph of EV.

its coordination. In the smart city concept the EV charging
includes the grid to vehicle (G2V), Vehicle to Grid (V2G)
and Vehicle to Vehicle (V2). For this charge scheduling Intel-
ligent Transport System (ITS) framework has been developed
in [27] and [28]. Battery characteristics and SoC and SoH
measurement are one of the factors to be considered for the
charge estimation, travel distance and capable of reaching
charging stations [29]. The cost optimization is an essential
factor that needs to be considered [30]. The following prob-
lem statements were observed form the existing optimization
problems, such as less accuracy on charge scheduling, failed
to handle more data, scheduling/coordination of vehicle will
be overlapped when similar requests are raised, high com-
putation burden on the large scale systems and so on. For
addressing these problems in this work a novel combine
Harris Hawk and Chaotic Map optimization based VANET
system is developed with the improved exploratory behavior
of HHO. This method focuses on both charge scheduling and
vehicle routing by the consideration of n number of vehicles
and n number of charging stations. A detailed analysis is been
carried out with the different cases by varying the number
of available charging stations and number of vehicles to be
charged.

The organization of the proposed work is as follows:
Section II describes the architecture of proposed work,
Section III describes the combined Harris Hawk and Chaotic
Map optimization method, and the proposed system is been
validate in different scenario in Section IV, results and dis-
cussions is discussed in Section V and the proposed work is
been concluded in Section VI.

II. SYSTEM ARCHITECTURE
This section presents the framework for resolving the issue of
scheduling EV charging.

A. EVCS-SCHEDULING GRAPH
The EV charge scheduling can be done by collecting the
vehicle data and CS data, as shown in figure 2. A global
aggregator (GA) is developed to control the charging of
electric vehicles (EVs). The EVs communicate their arrival
and departure times, as well as the desired charge level, to the
GA. A charging schedule is calculated by the GA tominimize
costs based on the charging requests and limitations received.
Additionally, a routing algorithm is proposed to determine an
energy-efficient route with an optimal speed profile for the
EVs. The algorithm aims to achieve two objectives: 1) finding
the shortest journey time for drivers who prioritize energy
efficiency, and 2) generating an energy-efficient route and
speed profile for the EVs.

The scenario involves a city with a crowded environment,
a network of EVs (X) and charging stations (Y). A sequence
of static graphs represents the road network, with EVs and
charging stations forming a vehicular network architecture
routing scheme. Each graph represents a different scenario,
and the shortest delay time (tij) is calculated between an
EV (evx) and a charging station (csy). The charging sta-
tions have a fixed propagation delay (m) for each charging
pile, categorized as slow charging (s) or fast charging (f).
The shortest-delay computation is performed by modifying
Dijkstra’s shortest-path algorithm to account for time-varying
links. Each EV has a set of candidate charging stations it
can select from, based on the number of edges connected to
the charging stations. The edge weights represent the route
taken by the EV during the charging process. The number
of EVs currently plugged into a charging station indicates
its charging capacity. The following definitions outline the
charging times for EVs at different charging piles, assuming
all charging stations have identical fast and slow charging
piles.
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B. CHARGING TIME AND CHARGING CAPACITY
The waiting time for the battery to get full charged is one of
the major difficulties in EV charging methodology. The bat-
tery charging and discharging is lied between the upper bound
(Ehigher) and Lower bound (Elower). When the EV reached the
charging station the energy stored in battery is taken as arrival
energy (Ei,j) and it begins to charge. The waiting time is
differs with respect to the type of charging. When the vehicle
is plugged on slow charging pile, the charging time of the EV
can be expressed as equation (1),

T ci,j =
Ehigher − Ei,j

1eslow
(1)

When the vehicle is plugged on fast charging pile, the charg-
ing time of the EV can be expressed as equation (2),

T ci,j =
Ehigher − Ei,j

1efast
(2)

C. MAXIMUM DRIVING DISTANCE
The EV has the limited power to travel, it must be lied on
the region to reach the charging station. The vehicle needs
to reach the charging station before it reaches the Elower.
During the scheduling process, the algorithm takes the avail-
able energy on the vehicle as the initial energy (E inti ). The
maximum possible distance of the EV can be expressed as
equation (3),

ςi = F−1
(
E inti − Elower

)
(3)

D. IMPACT OF DRIVER BEHAVIOUR ON USER’S TRAVEL
The performance of a vehicle control strategy majorly
depends on the driving conditions and driving style of the
driver, as shown in Table 1. Driving conditions depend on the
geographical condition and prevailing traffic along the route.
In contrast, driving style correlates to the driver’s behavior
on how frequently applying acceleration and brakes to the
vehicle. The dynamic behavior of the user charging and dis-
charging load profile affects the endurance of the EV, where
scheduled trips need to be routed tomeet the charging demand
of the EV. Proper management of the battery charging and
discharging cycle of EV extends the reliability of battery life
over a longer period.

On considering the dynamicity of the driving behavior of
EVs, The first stage of the driver agent entails to appropriate
discharging load profile classified to be as economic drivers
(S1), average drivers (S2), and aggressive drivers (S3), the
second stage of the agents behave to the charging pattern
classified to the coordinated (P1) and uncoordinated charging
behavior (P2) and the final stage of the driver agent based
on the socio-economic thinking categorized as Time oriented
(E1) and cost-oriented behavior model (E2). Based on these
data, the charging station will provides the recommendations
to the uses. The deciding factor is been considered as 0 when
the user neglect the recommendation and it will be 1 when
user accept the recommendations.

TABLE 1. Driver behavior encoding.

E. BATTERY DEPTH OF DISCHARGE
According to Newton’s Second Law, the convenient power
corresponding to the net force exerted on the vehicle deter-
mines how much a vehicle’s speed (v), changes over time (t),
or its acceleration (dv/dt) with mass (m). The speed differen-
tial can be measured using equation 4.

Ft − Fr =
dv
dt

(m+ ξ ) (4)

where Ft is the tractive force, Fr is the resistive forces against
motion, and ξ is the rotational inertia. A vehicle acceler-
ating at a certain rate requires a certain tractive force to
overcome driving resistances which can be calculated using
equation (5),

Ft = Fr + (m+ ξ ).a (5)

The total force that is opposes the motion can be written
as in the equation 6, where, a, A, v, g, r, are the air mass
density, aerodynamic resistance coefficient, projected area on
the plane perpendicular to the direction of the vehicle’s move-
ment, relative speed to the wind, gravitational acceleration,
and coefficient of rolling resistance, respectively.

Fr =
1
2
.ρ.F .µa.A.v+ m.g.(µr + sinα) (6)

The instantaneous tractive power Pt can be calculated by
the equation (7),

Pt = v.Ft (7)

When the speed of an object is increased from vi to vj in the
period tj to ti, the energy consumption associated with the
motion on a particular edge (i, j), Eei,j, can be calculated using
equation 8.

Eei,j =

tj∫
ti

Ptr .dt (8)

The energy used on an edge (i, j) can be described as a
function of the kinetic and potential energy changes and the
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losses (Eloss) due to the rolling and air resistance can be
obtained using equation (9),

Eei,j = 1pi,j + 1pi,j + 1El i,jloss (9)

Also, it is considered is to attain the details of EVs that
it requires energy to recover or to drive. When Eei,j > 0,
it is possible to calculate the propulsion energy needed, Eproi,j
conversely, when Eei,j < 0, it is possible to calculate the

regenerative energy Eregii,j .

Eproi,j = Eei,j.η
−1
e (10)

Eregii,j = Eei,j.ηregi (11)

Assuming that rolling and air resistance are the key factors
to be fixed along the edges of the road graph affecting
energy consumption. Different driving style speed profiles
are selected and provided as input to the system. The system
utilizes these speed profiles to estimate the depth of discharge
of the battery, which helps in determining the amount of
electricity discharged by the battery. This estimation is crucial
for calculating the state of charge (SoC) of the electric vehicle
(EV) and enables effective management of the charging pro-
cess at the charging station. The model enables estimation
of the amount of battery power consumed by an EV during
travel to a charging station, considering the distance travelled.
This information is crucial for determining the remaining
battery power when the EV arrives at a charging station. This
leads to improved management of charging infrastructure and
resources, allowing for better optimization of EV charging
schedules.

F. ELECTRIC VEHICLES TRAVEL TIME
The trip time of multiple EVs to the same charging station
varies since they are spaced at varying distances from it.
This results in various CS queue patterns. For scheduling an
electric vehicle EVx to a charging station (nj), its trip time
(TT

i,j) can be stated as follows in equation (12),

T Ti,j =
di,j
vi

(12)

where vi denotes the speed of an EV and di,j the distance
between an EV and a CS(nj), respectively.

G. ELECTRIC VEHICLES QUEUING TIME
The queuing time for EVs at a charging station depends on
the charging completion time of the EVs ahead of them.
Factors such as the number of fast and slow charging stations
in use, the availability of remaining charging piles, and the
sequence of EVs arriving at the charging station influence the
queuing time. The time it takes for an EV to reach a chosen
location at the charging station is referred to as the arrival
time. The arrival time represents the travel time from the EV’s
current position to the selected charging station location. Both
the queuing time and the arrival time play a crucial role in
determining the overall charging process and efficiency at the
charging station.

Assume that charging station nj hasµ
f
j andµs

j fast charging

and slow charging piles. Let �
f
j (N

f
j = |�

f
j |) and �S

j (N
S
j =

|�S
j |) symbolize the ordered queue of EVs at charging station

nj that select the fast and slow charging piles for charging. The
EVs’ arrival time determines the queue’s fj and sj placement.
The queueing time for the EV at the station can be calculated
as equation (13)

TQi,j = β
f
i,j − T Ti,j − TCi,j (13)

If ufj + l^≤ mifj :

β
f
i,j = T Ti,j − TCi,j (14)

If l^=1 and ufj +l^> mifj :

β
f
i,j = max(min(τj),T Ti,j) − TCi,j (15)

If l^>1 and ufj +l^> mifj :

β
f
i,j = max(min(τj ∪ (β f1,j, β

f
2,j, . . . , β

f
i−1,j)),T

T
i,j) − TCi,j

(16)

where function min
(
τj

)
selects the lth smallest element from

set fj, and fj represents the set of EVs completion charging
times that pick the fast pile charging at charging station nj.

III. PROPOSED CHARGE SCHEDULING OPTIMIZATION
A population-based metaheuristic optimization algorithm
called Harris Hawks optimization (HHO) was developed to
mimic Harris hawks’ cooperative behaviour and hunting tac-
tics. HHO is hybridized with ten distinct chaotic maps to alter
its key parameters in this work.

A. PROPOSED CHAOTIC HHO
The proposed chaotic HHO algorithm combines the Estimate
Weighted Moving Average (EWMA) and HHO algorithms
to perform EV charging scheduling. It leverages the advan-
tages of both methods to improve solution quality. The
HHO algorithm promotes inquiring behavior and smoothly
transitions between exploitation and exploration using sinu-
soidal and tree maps. The solutions’ quality improves with
an increasing number of iterations. The HHO algorithm is
effective in handling complex search spaces and provides sat-
isfactory local optimum results. The EWMA algorithm intro-
duces modest changes in processing target values, addressing
certain problems encountered in theHHOalgorithm. The pro-
posed algorithm uses a fitness function that considers various
factors such as distance, average waiting time, energy, and
the number of EVs requiring charging. The fitness function is
designed to balance visual quality and forensic detectability.
The algorithm follows a solution encoding approach, involves
fitness evaluation, and utilizes the proposed exponential HHO
method. Fig. 3 illustrates the flowchart of the exponential
HHO algorithm, showcasing an ideal solution.

When an electric vehicle (EV) is started, its parameters
such as energy level and potential driving distance are cal-
culated and updated. If the EV has sufficient energy to
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FIGURE 3. Flow chart CHHO alterations.

reach its destination, it will immediately begin driving. If the
energy level is insufficient, the EV needs to perform charging
scheduling and charge planning. Once the EVs are charged,
they can resume driving mode. A Global Aggregator (GA)
acts as a bridge between the EVs and a cloud server (db),
providing an interface for communication and data exchange.
The cloud server database facilitates data storage and retrieval
for the EVs. In this system, EVs are considered nodes within
the Vehicular Ad-hoc Network (VANET), enabling com-
munication and coordination among vehicles and roadside
infrastructure.

1) SOLUTION CODIFICATION
This section discusses the encoding of solutions for elec-
tric vehicle scheduling using the proposed chaotic HHO
method. The encoding process involves two main steps:
charging schedule encoding and decision variable encoding.
For charging schedule encoding, a binary string is used to
represent the charging schedule for each electric vehicle.
The binary string’s length is determined by the number of
electric vehicles and time intervals. Each bit in the binary
string corresponds to a specific time interval, indicating
whether the vehicle is scheduled for charging during that
interval. Decision variable encoding involves representing the
decision variables of the chaotic HHO algorithm in binary
form. The binary string’s length is determined by the number

of decision variables, with each bit representing a specific
decision variable. To obtain the complete binary string rep-
resenting the solution, the binary strings for the charging
schedules and decision variables are concatenated. Also,
a minimal waiting period constraint is applied to ensure con-
tiguous charging schedules for each electric vehicle. A sliding
window approach is used to detect and invalidate any gaps in
the charging schedule. If a gap is found, the corresponding
bit in the binary string is set to 0. By following this encod-
ing scheme and incorporating the minimal waiting period
constraint, the proposed chaotic HHO method can generate
effective solutions for electric vehicle scheduling.

2) FITNESS
The proposed algorithm includes a fitness function and equa-
tions to calculate distance, average waiting time, energy, and
the number of EVs requesting charging. The fitness function
combines these variables using equal weight factors of 1/4 for
each. The fitness function as shown in equation (19), is given
by:

Fitness =
1
4

(k + l + (1 − m) + n) (17)

where k is the distance of each EV to the charging station,
calculated as in equation 18, m represents the energy required
for charging each EV, and it is assumed to be constant, n rep-
resents the number of EVs that raised a request for charging.

K =
1

α × P

P∑
i=1,i̸=0

s(adi − am) (18)

L represents the average waiting time for each EV, calculated
using Equation 19 and 20.

L =
1

α × P

P∑
i=1,i̸=0

sLdi (19)

Ldi = (LED − Sd ) (20)

where L id represents the waiting time of the ith EV at dth

iteration and Red indicates the predicted end time of charging
the ith EV, and Sd signifies the arrival Time of ith EV at CS.

B. CHHO ALGORITHM STEPS
The Chaotic HHO algorithm is utilized to search for opti-
mal charging schedules. It generates new candidate solutions
using existing charging schedules and search operators like
crossover, mutation, and selection. Chaotic maps or oper-
ators are employed to introduce diversity and enhance the
exploration-exploitation balance. The steps of the proposed
CHHO algorithm are as follows:

1) PROPOSED CHHO ALGORITHM
Proposed Algorithm shows the procedure of the CHHO opti-
mization algorithm to find the best possible solution for
scheduling the electric vehicle.
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Step 1: Initialization: Generate an initial population of
charging schedules randomly within the problem’s
constraints.

C = {C1, C2, C3, C4, C5......, Ci......, Cj} (21)

where Ci represents the ith solution and j is the
complete number of solutions.

Step 2: Chaotic Map: Apply a chaotic map to each charging
schedule to enhance the diversity of solutions and
improve the exploration-exploitation balance.

Step 3: Step 3: Selection: Select the best charging schedules
in the population based on their fitness.

Step 4: Step 4: Harris Hawk Behaviour: Update the position
of the selected charging schedules using the Har-
ris hawk behavior, which includes exploration and
exploitation strategies.

C (d + 1) = 1C (d) − T
...HCrab (d) − C (d) (22)

where h stands for the random strength of the rabbit,
crab(d) refers to the location of the rabbit at itera-
tion d, t stands for the energy of the escaping prey,
and δc(d) shows the difference between the position
vector of the rabbit and current Location during
iteration d.

Step 5: Crossover and Mutation: Apply crossover and muta-
tion operators to the selected charging schedules
to generate new candidate charging schedules and
evaluate the fitness of this new schedule

Step 6: Elitism: Select the best charging schedules from the
new population and the previous population to form
the next generation of charging schedules.

Step 7: Termination: Repeat steps 2 to 6 until a stopping cri-
terion is met, such as reaching a maximum number
of iterations or a threshold for the fitness value.

IV. DATA COLLECTIONS
A. DATASET ENVIRONMENT

For the validation of the proposed algorithm, a real-time EV
charging and scheduling environment is considered as shown
in Fig.4. The map shows the details of charging station and
routes in the Chennai city India which is one of the major
metropolitan cities in Asian continent. The various routes
available to reach the destination F from the starting point
A and the number of available charging station in midway
were considered. The algorithm possesses all these data and
creates the possible charging option for the EV. Also, these
data are fed to the SUMO simulation interface visualization,
which can display the movement of all the cars with the street
layouts, traffic conditions and speed limits during the simula-
tion process. This algorithms also takes the consideration of
Advanced Urban and Rural Transportation System (AURTS)
and Advanced Vehicle Control System (AVCS).

Algorithm Finding out the optimal parameter for scheduling
the electric vehicle
Input:
N: population size
T: maximum number of iterations.
n: Number of Groups
Output:
The rabbit’s fitness value and habitat.
Using combination of five different chaotic maps to create the
initial population’s point:
By means of chaotic variables yik ∈ [0, 1], where k = 1, 2,
3. . . , N. M denotes the initial population.
To obtain the starting population of the related solution space,
we used inverse mapping.
Start
While stopping condition is not meet do Increase layer l++

Step 1: Determine the Hawks’ fitness values;
Make Xrabbit the best location for rabbits.
Update the value of E for each Xi using Equation (3), and the
vector Xi is updated using Equations (2) and (18)
if |E| > 1; Generate randomly the parameters: r1, r2;
b = e((5x)pi.∗(2−t/tmax)))

if q < 0.6 then
Vector Yiis Updated
If q ≥ 0.6 then

Xi (t + 1) = Xrandom (t) ∗ ω (t)

− |Xrandom (t) ∗ b− 2 × r2 × Xi (t)|

end
end
end
Step 2: Select the nth groups
if |E| < 1 then
if r ≥ 0.6 and |E| ≥ 0.6 then
Update the vector Xi using Equation (7);
end
else if r < 0.5 and E | ≥ 0.5
Update the vector Xi using Equations (8)–(11);
end
else if r < 0.5and |E| < 0.5
Update the vector Xi using Equations (12) and (13);
end
end
end
Step 3: Find the optimal neighborhood CS
Optimal neighborhood disturbance
Find the X(t) and X∗(t)
End
Return x
Return Rabbit
Step 4: Majority vote the ln-1 layers node’s parameter and
send to MC for adjustment
End
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TABLE 2. Charging station parameters.

TABLE 3. Electric vehicle realistic features.

B. EV CHARGING PILES DATA
The algorithm takes the CS ID, CS location and number of
charging piles (including fast and slow) for the recommenda-
tion of the best routes and charge scheduling. The required
details collected from the CS shown in Fig.4. Specifications
are given in Table 2.

C. REALISTIC EV FEATURE
The realistic features of EVs are differed with respect
to the brands, motor specifications, and technology. So,
it is required to feed the data of different EVs to the
algorithm for the efficient recommendations. In this anal-
ysis, three different EVs from different manufactures were
considered and the corresponding details are given in
table 3. Based on these data EV model is built in MAT-
LAB/Simulink® to validate the behaviour of each EVs
with different drive profile like aggressive, moderate, and
conservative.

TABLE 4. Trip distance estimation.

D. DATA GENERATION AND PRE-PROCESSING
Based on the road network, available EV charging sta-
tions (specification of CS), and the EV specifications, the
algorithm builds the required data set to validate the fitness
function. The preprocessing of the data set includes the fol-
lowing details.

1) DATA GENERATION
Random GPS coordinates for EVs were created in Chennai
city (Figure 5). These GPS coordinates are adjusted with the
appropriate road network segments to simulate the position
of moving EVs. The GPS coordinates of each electric vehicle
are mapped to the nearest equivalent road network segments
in this stage using a global map matching method. Also,
it plots the possible destination of each EV based on the Point
of Interest (POI).

2) DATA CLEANING
This step uses a heuristic-based outlier identification
approach to clean the unprocessed CS location data. Convert
the CS GPS coordinates to the OSM road network’s coordi-
nate system.

3) TRIP DISTANCE ASSESSMENT
The OSM road network calculates the shortest navigational
distance between EVs and charging stations using the Dijk-
stra algorithm. The distance and time calculation for the EVs
to reach CS from various starting points using the algorithm
is given in the table 4.

4) ENERGY CONSUMPTION AND CHARGING TIME
CALCULATION
The total energy required for the EV is been calculated by
considering the SoC at the time of request and the required
to reach the charging station. Equations (1) and (2) are used
to measure the required energy needed to charge the EV
up to 100% SoC. Also it obtains the path for EVs to reach
the CS with minimum travel time. The sample calculation is
given in table 5. This continuous monitoring stores the user
priority related to optimum charging.

5) QUEUING TIME EVALUATION
The proposed algorithm measures the queueing time for
the EVs at each charge stations. This requires the vehicle
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FIGURE 4. Road map environment using OSM.

FIGURE 5. Queuing of EV in CS.

occupied on CS, details of available fast/slow piles, requests
raised for the charging, number of preference on the each
CS and so on as shown in Fig.6. The simulation model
used to determine the position of each EV in the queue is
shown in Fig. 7. The test results are collected from 200 EVs
and 20 EV charging stations in Chennai with the assumption
that the average speed is v=60km/h and the battery capacity
is 1000Ah.

V. RESULTS AND DISCUSSION
The performance proposed CHHO algorithm has been val-
idated using different possible cases between two points A,
B with six charging stations located in between at different
distances. The total distance between points A and B are
50 km. The real time data has been collected from the local
place as shown in figure 7. Two points A, B were fixed
where a point is the institution and B point is the Chennai.
The total distance between these two points is 50 km. The

TABLE 5. Time and energy efficient route comparison.

charging station location were given in table 6. There are
different possibilities of scenarios like vehicle starting point,
available SoC, maximum distance the vehicle can travel
with available SoC, most nearest and longest charging sta-
tion the vehicle can reach and so on. When the number of
vehicles are increased, the behaviour and complexity of the
charge scheduling algorithm will be increased. The efficient
algorithm should be capable to handle the complexity, com-
putation burden and charge allocation with minimum waiting
time. With this different behaviours the proposed CHHO
algorithm has been validated in different possibilities of eight
cases using ten vehicles with different drive cycle, differ-
ent types of vehicles, same starting point, same destination,
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FIGURE 6. Simulink model for queue time estimation.

TABLE 6. Details of charging stations.

FIGURE 7. Available charging stations between A and B.

different starting point, different destination, same SoC, dif-
ferent SoC and so on. Also the performance of the proposed
algorithm has been compared with the HHO, FCFS and ran-
dom allocation algorithm.

A. CASE 1: DIFFERENT STARTING POINT, DIFFERENT SoC
In this case, five vehicles are assumed to start it journey from
point A to destination B. Similarly five vehicles are started

from point B to point A. All the ten vehicles had different
SoC.When the charging request has raised from each vehicle,
the proposed algorithm collects the following data from the
vehicle such as starting point, current location, destination,
SoC, energy drained per 1%SoC, maximum distance it can
travelled and so on. Based on this it allocate the charging
station. For an example, when a vehicle has more SoC and it
can travel maximum distance as compared to other vehicles,
then the algorithm allocates the charging slot for the vehicle at
the longest distance with less charging time. In this case there
are five vehicles are started from point A and five vehicle are
started from B. In this case, the charging algorithm separates
the vehicle as two category based on SoC. The vehicle with
less SoC will be allotted to the nearby charging station, and
vehicles with higher SoC will be allotted to distant charging
stations. This allows the system to reduce the waiting time
of the vehicle. The vehicle scheduled at the nearest charging
station will be the charging station scheduled for the vehicle
with high SoC from the other point. The vehicle from the
distant point needs to spend more time for travel whereas,
this time reduces the waiting time at the charging stations.
In this case, the average waiting time of the proposed CHHO
algorithm is 0.4 mins whereas HHO algorithm has 5.75 mins,
random scheduling has 8.85 mins and FIFS algorithm has
8.08 mins as the average waiting time. The charging station
allotment, waiting time and total travel time of each vehicle
are given in table 7.

B. CASE 2: SAME STARTING POINT (A), DIFFERENT SoC
Case 2 discusses the behavior of proposed CHHO algorithm
to schedule the vehicles from same starting point to same
destination with different SoC. In this case the some of the
vehicles are having higher SoC and some of the vehicles
are having lower SoC. There are six charging stations are
available in between the starting point and destinations. The
vehicle with higher SoC can access maximum charging sta-
tions in the path whereas the vehicle with low SoC can access
limited charging station as it can travel with the available
SoC. The algorithm took all these things information, and
schedule the vehicle with higher SoC to the maximum dis-
tant charging station it can travel and schedules the nearest
charging station to the vehicles with lower SoC. Whereas
in FCFS, random scheduling algorithm, allocates the higher
SoC vehicle to the nearby charging station that makes the
distant charging station as idle and increases the waiting time,
total travel time. In this case the proposed CHHO algorithm
has the average waiting time of 6.03mins and the HHO,
FCFS, randommethod had 8.40mins, 13mins and 17.30mins.
The charging station allotment, waiting time and total travel
time of each vehicle is given in table.

C. CASE 3: SAME STARTING POINT (B): DIFFERENT SoC
This case is more similar to the case 2, where the starting
point is considered B instead of A. The distance between
the charging stations are differed as compared to the case 2.
The charging station 1 is located far away from the starting
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TABLE 7. Charge allocation of vehicle and average charging time in case 1.

TABLE 8. Charge allocation of vehicle and average charging time in case 2.

TABLE 9. Charge allocation of vehicle and average charging time in case 3.

TABLE 10. Charge allocation of vehicle and average charging time in case 4.

point B. This limits the number of accessible charging station
for the charge scheduling, which reflects on the waiting time

on nearby charging stations. The proposed CHHO algorithm
offers the minimum average waiting time as compared to
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TABLE 11. Charge allocation of vehicle and average charging time in case 5.

TABLE 12. Charge allocation of vehicle and average charging time in case 6.

the other methods and the corresponding charging times are
4.45mins for CHHO, 7.60mins for HHO, 9.90mins for FCFS
and 14.90mins for the random charge allocation. The alloca-
tion of charging station, waiting time and total travel time of
each vehicle is given in table.

D. CASE 4. SAME STARTING POINT (A), SAME SoC
In this case, all vehicles depart from point A with a similar
SoC of 30%. With this available SoC, the vehicle can be
scheduled for charging at the stations with in the distance the
vehicle can travel with 30% of SoC. The charging stations
CS1 is placed at 5km, CS2 is placed at 30 km, CS3 is placed
at 40km, CS4 is placed at 20km, CS5 is placed at 15 km
and CS6 is placed at 25 km away from point A. CS1, CS4,
CS5 and CS6 charging station can be accessible by all the
vehicles whereas, when the vehicle accessed by the by the
WLTC and FTP75 drive cycle, vehicle can reach the CS6 as
per the considerations discussed in section IV. The proposed
CHHO algorithm offers the minimum average waiting time
as compared to the other methods and the corresponding
charging times are 11.13mins for CHHO, 14mins for HHO,
19.03mins for FCFS and 20.25mins for the random charge
allocation. The allocation of charging station, waiting time
and total travel time of each vehicle is given in table.

E. CASE 5 DIFFERENT STARTING POINT, SAME SoC
(MINIMUM)
In this case, five vehicles are assumed to start it journey
from point A to destination B. Similarly five vehicles are

started from point B to point A. All vehicle are having same
SoC and these vehicle had the limits the available charging
stations for the scheduling. The charging stations CS1, CS2,
CS4, CS5, CS6 are accessible from the starting point of A,
and the charging stations CS2, CS3, CS4, CS6 are accessible
from the starting point of B. Here, the charging stations CS2
and CS6 can be accessible by the vehicle starting from both
the points of A and B. In this case, the common accessible
charging stations need to be carefully scheduled to avoid
the high waiting time. The proposed algorithm efficiently
handles this problem and allocates 1 vehicle from starting
point A, and 1 vehicle from starting point B, whereas the other
algorithm schedules 2 from one point and 1 from another
point which increases the waiting time of third allotted
vehicle. In this case, the average waiting time of the pro-
posed CHHO algorithm is 8.25mins whereas HHO algorithm
has 10.63mins, random scheduling has 13.00mins and FIFS
algorithm has 16.36mins as the average waiting time. The
charging station allotment, waiting time and total travel time
of each vehicle is given in table 13.

F. CASE 6 DIFFERENT STARTING POINT,
SAME SoC (MODERATE)
This case similar to the case 5, but the vehicle had moderate
amount of SoC of 45%. All the vehicles starts from point
A and point B can able to access all charging stations in
the network. This allows the system to choose the optimum
charging station with less repeated scheduling for reducing
the waiting time. The proposed CHHO algorithm efficiently
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FIGURE 8. Waiting time of each vehicles in different charging scheduling algorithms.

handles this scenario and allocates the charging stations with
the averagewaiting time of 6.75mins, which is the best among
other methods. The corresponding allotted charging station,
waiting time and total travel time is given in table. The
waiting time of each vehicle in all the 6 cases are plotted
as in figure 9 for the showing the efficient operation of
proposed CHHO algorithm. In each cases the waiting time
in CHHO algorithm is more optimized due to the distributed
charge scheduling. The average waiting time of each cases
are calculated and plotted as a comparative bar chart as given
in figure 11. The HHO algorithm based charge scheduling
has good performance as compared to the other two methods.
The proposed modification in HHO algorithm outperforms
the HHO and efficiently handles the charge scheduling
problem.

Apart from this 10 vehicle, 6 charging stations, the
efficiency of the proposed CHHO algorithm needs to be
evaluated in the real time environment. For that different
possibilities from the environment is considered like different
number of electric vehicles and different number of charg-
ing stations. In case 1, 50 vehicles are considered and its
average waiting time with respect to the number of charging
stations such as, 50 vehicles allotted to 10 charging sta-
tions, 50vehicsl allotted to 20 charging stations, 50 vehicles
allotted to 30 charging stations, and 50 vehicles allotted to

TABLE 13. Average waiting time on different scenarios.

40 charging stations. In each cases all vehicle can able to
access all charging stations with the available SoC in battery.
Similarly, the number of vehicles has been varied like 100,
150, and 200 to evaluate the performance with the available
charging stations. Figure 11 shows the average waiting time
over the 100 iterations when the 50vehicles are allotted to the
different number of charging stations. Each conditions has
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FIGURE 9. Average waiting time of charging scheduling algorithms.

FIGURE 10. Average waiting time of 50vehicles in different number of
charging stations.

FIGURE 11. Average waiting time of 100vehicles in different number of
charging stations.

been simulated for 100 iterations and average waiting time
on 100 iterations are given in table 13.
The proposed CHHO algorithm outperforms all other

charge scheduling algorithms in all cases. The various aver-
age waiting time of CHHO is when 50 vehicles are scheduled
in at 10 charging stations 44.95mins average waiting time,
when scheduled at 20 charging station it gives 32.84mins,

FIGURE 12. Average waiting time of 150vehicles in different number of
charging stations.

FIGURE 13. Average waiting time of 200vehicles in different number of
charging stations.

when scheduled at 30 charging stations it gives 20.47mins
and when scheduled at 40 charging stations it gives 10.1mins.
Similarly the corresponding average charging stations on
different number of vehicles and charging stations are given
in table. The charging time for each case on each iteration
are plotted as graphs using Python and MATLAB software.
Figure 10 shows the average waiting time of 50 vehicles
that are allotted to different number of charging stations in
100 iterations. Figure 11 shows the average waiting time of
100 vehicles allotted to different number of charging stations
in 100 iterations. Figure 12 shows the average waiting time of
150 vehicles allotted to different number of charging stations
in 100 iterations. Figure 13 shows the average waiting time
of 200 vehicles which are allotted to different number of
charging stations in 100 iterations.

VI. CONCLUSION
The proposed CHHO charge scheduling algorithm has been
proposed and validated in different scenarios to acquire
the performance. The attained results were compared with
the existing algorithms, such as HHO, FCFS. Generally,
EV charging is recognized as a time-consuming process,
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a factor that often prompts individuals to prefer conventional
vehicles for their convenience. Nevertheless, the introduction
of the CHHO algorithm has demonstrated some potential
in addressing the challenges associated with electric vehicle
charging scheduling, consequently reducing waiting periods.
By framing this issue as a multi-objective optimization prob-
lem and incorporating a newly developed fitness function,
the CHHO algorithm is capable of determining the opti-
mal charging schedule efficiently. This approach not only
minimizes the averagewaiting time but also takes into consid-
eration factors such as distance, energy consumption, and the
number of EVs in circulation. This proposed method holds
a significant advantage over traditional approaches, demon-
strating the capability to effectively manage the charging
demands of numerous EVs. Notably, it reduces the overall
waiting time by 12% compared to the HHO algorithm, thus
promoting the efficient utilization of resources. Addition-
ally, the CHHO algorithm outperforms other optimization
techniques by adeptly avoiding local optima and converg-
ing towards the global optimum. In conclusion, the CHHO
algorithm emerges as a promising solution for scheduling
electric vehicle charging. The performance can be further
enhanced by considering the real time data such as real-time
traffic and charging station status data which has been the
future scope of this work.
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