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Abstract

Cellular Automata (CAs) have potential as powerful paral-
lel computational systems, which has lead to the use of CAs
as reservoirs in reservoir computing. However, why certain
Cellular Automaton (CA) rules, sizes and input encodings
are better or worse at a given task is not well understood.
We present a method that enables identification and visual-
ization of the specific information content, flow and transfor-
mations within the space-time diagram of CA. We interpret
each spatio-temporal location in CA’s space-time diagram as
a function of its input and call this novel notion the CA’s
Canonical Computations (CCs). This allows us to analyze the
available information from the space-time diagrams as parti-
tions of the input set. The method also reveals how input-
encoder-rule interactions transform the information flow by
changing features like spatial and temporal location stability
as well as the specific information produced. This general ap-
proach for analysing CA is discussed for the engineering of
reservoir computing systems.

Introduction
Cellular automata have the ability to both produce immense
complexity from relatively simple rules as well as reduce
entropy through self organization (Wolfram, 1983). The
space-time diagrams of CA can produce complex patterns
that vary from repetitive to chaotic, and the dynamics that
produce these patterns have been shown to be able to trans-
mit information as well as store and compute on it (Lizier
et al., 2012). Some CA have even been shown to be Turing
complete (Cook et al., 2004). These capacities have led re-
searchers to attempt to use CA to solve a range of different
computational tasks (Mitchell et al., 2005).

A relatively novel approach to this is found in the field of
artificial intelligence where CA have been used as reservoirs
within reservoir computing systems (ReCA) (Yilmaz, 2014;
Nichele and Molund, 2017; Nichele and Gundersen, 2017;
Kleyko et al., 2017; McDonald, 2017; Morán et al., 2018).
This approach has multiple beneficial features compared to
traditional AI, like high energy efficiency and direct hard-
ware implementations (Yilmaz, 2014). While some guide-
lines may be derived for designing ReCA system based on
CA rule classifications and parameterizations like Wolfram’s

four classes (Wolfram, 1984) or Langton’s lambda parame-
ter (Langton, 1990), designing reservoir computing systems
using CA is challenging (Glover et al., 2021) because the
effect of the relevant ReCA parameters on the local compu-
tations of the CAs has not been explored at a detailed level.
More fine grained understanding of this topic is thus needed.

In this paper we develop a method to identify the exact
information content a given CA computes within its space-
time diagrams. Furthermore, we present a mathematical for-
mulation of how the CA transition rule operates on this in-
formation to transform it from one time step to the other.
Given a set of input that is encoded into the CA’s configura-
tions, our proposed method shows that CAs locally compute
functions of the encoded information. These functions in-
duce partitions of the input set, a notion we name canonical
computations. ReCA systems can then combine this local
information contained in the partitions to produce desired
outputs. Insights gained from this method is then used to
suggest reservoir system and CA choices that may improve
performance on computational tasks.

Background
Cellular Automata
Cellular automata consist of a d-dimensional grid Zd whose
elements are called cells. Each cell can be in a state from a
finite set S; each ensemble c ∈ SZ is called a configuration.
Every cell is further assigned a uniform, finite neighborhood
of cells. In this paper, we focus on the class of 1-dimensional
nearest-neighbor CAs; for such, the neighborhood of cell
i ∈ Z is simply (i − 1, i, i + 1). The dynamics of the CA
is given by a local rule f : S3 → S which updates the
states of all cells in parallel. This gives rise to the global
rule F : SZ → SZ given for each c ∈ SZ and each i ∈ Z:

F (c)i = f(ci−1, ci, ci+1). (1)

Furthermore, we restrict our analysis to the simplest form
of CAs which are called Elementary Cellular Automata
(ECAs) and are limited to state values in {0, 1}. The lim-
itations imposed on state values, neighbourhood size and di-
mensionality results in a limited number of transition rules,
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namely 256. These rules are enumerated according to Wol-
fram’s naming scheme defined in Wolfram (1983).

The rules produce different types of behaviour that can
be classified according to their dynamics. These classifi-
cations can often be used to guide rule selection for com-
putational tasks as certain rule types show complex behav-
ior that may be conducive to this purpose while others do
not. Multiple classification schemes and metrics exists, with
the ECAs informally classified by Wolfram into four classes
(Wolfram, 1984) according to how they evolve over time.
Other approaches have grouped CA based on features like
compression of space-time diagrams (Zenil, 2009) and tran-
sient length (Hudcová and Mikolov, 2020), while others
have used parametrizations (Langton, 1990; Wuensche et al.,
1992)

Reservoir Computing
Reservoir computing is a form of artificial intelligence sys-
tem that initially arose in 2001 and 2002 through the parallel
work of Herbert Jaeger and Wolfgang Maas et al. in the form
of Echo State Networks (ESN) (Jaeger, 2001) and Liquid
State Machines (LSM) (Maass et al., 2002). The main com-
ponents of a typical reservoir computing system consists of
an untrained reservoir and a trained readout. The readout or
decoder is generally some linear machine learning system,
like a support vector machine or ridge regression, that reads
out the states of the reservoir and transforms it into the de-
sired output. The reservoir serves as a form of memory and
computational substrate which allows an input to be mem-
orized while also allowing its dynamics to perform compu-
tations that utilizes the memorized input. This provides two
benefits to the readout; firstly it allows the readout to capture
entire sequences of a time series in a snapshot of the dynam-
ics of the reservoir. This is akin to how the waves of a pond,
caused by throwing pebbles in it, can tell us when, where,
and how many pebbles were thrown at the pond based on
its wave patterns. The second benefit comes from the poten-
tial of the reservoir to transform linearly inseparable input
to linearly separable reservoir states. Thus a simple linear
learning mechanism can be used, which reduces the energy
needs of the training process drastically compared to the oth-
erwise required non-linear readout. In Figure 1 we show an
overview of the components of a classical reservoir com-
puting system using artificial neural networks. An encoder
inputs the input example into the states of the reservoir and
the effects are propagated throughout the recurrent reservoir
while being decoded by the decoder.

The main task in reservoir computing research is finding
and optimizing good reservoirs. Multiples systems in addi-
tion to the classical artificial neural networks used in echo-
state networks and liquid state machines, have been tested
for various tasks, including in-vitro neural networks (Aaser
et al., 2017), a bucket of water (Fernando and Sojakka, 2003)
and an anesthetized cat (Nikolić et al., 2006) as well as cel-

lular automata.

Figure 1: Classical reservoir computing system consisting
of an untrained encoder and reservoir and a trained decoder.
The reservoir consists of a recurrent neural network.

ReCA
Reservoir computing systems utilizing CAs as the reservoir
component was proposed by Yilmaz (2014) due to CAs’
computations being drastically cheaper than the artificial
neurons used in the classical reservoir types. CAs can fur-
thermore be implemented in Field Programmable Gate Ar-
rays (FPGAs) and GPUs to provide additional increases in
computation speed.

The initial experiments tested CA reservoirs on the 5
and 20 bit memory tasks and demonstrated good perfor-
mance. Later studies have expanded on the original sin-
gle CA reservoir system using both deep (Nichele and Mol-
und, 2017) and non-uniform CAs (Nichele and Gundersen,
2017). ReCA have furthermore been tested on a range of
tasks like medical image modality classification (Kleyko
et al., 2017), square vs sine wave and iris data-set classi-
fication, non-linear channel equalization reconstruction and
chaotic laser time-series prediction (McDonald, 2017) and
lastly MNIST handwritten digit classification (Morán et al.,
2018).

Designing ReCa systems involves making a set of choices
concerning the encoder, the CA itself and the decoder
(Glover et al., 2021). An overview of a ReCA system and its
components is given in Figure 2 where the neural network
of the classical reservoir is exchanged with a CA. We here
list and describe the relevant components and choices.

Encoder The encoder transplants the input features of an
input example into the configurations of the CA. This can be
done either by encoding the input into the initial configura-
tion of the CA or they can be input over time as is the case in
the 5-bit memory task (Yilmaz, 2014; Glover et al., 2021).

In addition one can encode the input directly into the con-
figuration if the input and the CA size matches. If the CA
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Figure 2: ReCa system encoding the input into the initial
configuration of an ECA. A subset of the space-time dia-
gram (indicated in orange) is given to the readout each time
step.

is larger than the input, the input features may be mapped
to different locations in the CA configuration. This can be
done with redundancy such that the same feature is copied
multiple times. One may also systematically parameterise
the distance between each encoding location.

For temporal input injection, one must also choose how
many time steps one should allow the CA to compute before
injecting the next feature of the input example.

Lastly one must make a choice concerning how the values
of the feature dimensions of the input interacts with the cell
states of the CA. The simplest method is to copy the value
of the feature onto the encoding cell. Alternatively, one can
for example use an XOR encoding to ensure that the feature
value is more probable to have an effect on the configuration.

CA parameters The obvious choice one must make is
which CA to implement as a reservoir and whether to use
its classical version or to use a non-standard architecture
such as deep or non-uniform. One must also decide on us-
ing closed or open boundary conditions, i.e whether the grid
is cyclical or not. Furthermore, one must choose the spatial
size of the CA and how many time steps one shall run it for.

Decoder The decoder is often some linear machine learn-
ing system although an alternative method based on hyperdi-
mensional computing has also been suggested (Kleyko et al.,
2017).

Another choice that must be made for the decoder is the
readout method. One may run the CA for some number of it-
erations to produce a space-time diagram and use its entirety
directly as input to the decoder. Alternatively, one may use
only a subset of the space-time diagram at the time by using
a moving window over the time dimension as input to the
decoder.

Related Works

Information processing in CAs has been explored from mul-
tiple perspectives. A profound body of work explored
how to construct cellular automata capable of implement-
ing Boolean circuits in various ways (Codd and Ashen-
hurst, 1968; Banks, 1971). A more closely related line of
work studies the computation capacity in given family of
automata, rather than constructing new CAs. This has been
done, e.g., by assessing how many automata a particular CA
can simulate (Israeli and Goldenfeld, 2006; Hudcová and
Mikolov, 2021), by exploring the transformational effect a
local area of a CA has on another finite area (Biehl and
Witkowski, 2021), or by measuring the capacity of ECAs to
implement simple mappings with one input bit and assesing
the ECA’s semantic capacity (Dittrich, 2018). Intrinsic com-
putations in CA has also been analysed in (Feldman et al.,
2008) by assessing the statistical properties of such systems
via complexity-entropy diagrams.

We highlight that in contrast, we not only measure the
CA’s capacity to implement specific functions, but also vi-
sualize how the CA’s capacity evolves over time. We argue
that studying the evolution of CA computations is a novel
perspective to be explored.

Canonical Computations in CAs

Local Information Computation

In a ReCA system the decoder must utilize the information
available in the space-time diagrams produced by a given
encoder-CA combination to yield the desired output. The
question then is, what information is available?

To answer this question we first observe that the space-
time diagrams of ECAs are binary and entirely determinis-
tically produced. This means that any spatio-temporal loca-
tion is in the ”on” state for some partition of the input set and
in the ”off” state for the complimentary partition. Since each
partition is mapped to a Boolean state value this corresponds
directly to a Boolean function. We call such functions per-
formed by the spatio-temporal locations the canonical com-
putations of the CA.

Thus, the information available from a given cell is
whether the input example was in one or the other parti-
tion of the input set. In other words, from a reservoir com-
puting perspective, the canonical computation performed by
an ECA reservoir is to partition input sets through Boolean
functions. Each cell then potentially computes a different
partition which the readout can use to produce a desired out-
put. A simple case of linearlization within this framework
would be the case when a partition produced by the ECA
corresponds directly to a desired output categorization of the
input set.
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Figure 3: Boolean functions computed by an encoder-CA
using rule 110 for the input set {0, 1}2. We here use a fixed
encoder which maps the the two input features to two spa-
tial locations in the initial configuration of the CA, high-
lighted in yellow. Each 2D space time diagram in the stack
represents a different initial configuration based on differ-
ent input configurations. The diagrams are stacked such that
the spatio-temporal locations align. This produces a binary
string at each location, two are highlighted in blue and red.
These correspond to two different Boolean functions on the
input set as indicated in the bottom of the figure. The in-
put configurations contained within each colored circle indi-
cates that these map to the value indicated by the color of the
circle. Repeating the process of identifying the computed
boolean function across all cells in the space-time diagram,
associating these to labels and labeling each spatio-temporal
location produces a Canonical Computation Diagram (CC-
diagram) as indicated in Figure 4

In Figure 3 we illustrate this idea for the set of binary vec-
tors of size 2. The input examples are encoded into the ini-
tial configurations of the ECA, highlighted in yellow, which
is then ran for five time steps. The four possible space-
time diagrams are stacked on top of each other such that the
spatio-temporal locations align. Each position corresponds

to a Boolean function of the inputs, and we highlight two in
blue and red.

Formal Definition of Canonical Computations
Let us consider a CA reservoir task with inputs from the set
{0, 1}k. There are different schemes for encoding the inputs
into CA space-time diagrams.

Spatial encoding A spatial encoding of k input bits into a
cyclic grid of size n is simply a mapping enc : {0, 1}k →
{0, 1}n.

Let A be an ECA with local rule f , and global rule F
operating on a cyclic grid of size n and let us fix an encoding
enc : {0, 1}k → {0, 1}n. Each sequence of input bits b ∈
{0, 1}k induces a trajectory

enc(b), F (enc(b)), F 2(enc(b)), ...

We define the canonical computation at position i ∈
{0, . . . , n− 1} and time-step t to be the function:

gi,t(b) = F t
i (enc(b)) (2)

for any input b ∈ {0, 1}k.
In this context, we can view the ECA as evolving the set

of available canonical computations as opposed to evolving
the static configurations. We formalize this in Observation
1.
Observation 1 (CA Dynamics of Computation). Let A be
an ECA with local rule f and global rule F operating on a
finite cyclic grid of size n, and let enc : {0, 1}k → {0, 1}n
be an encoding of inputs. Then, the canonical computations
of A at time-step t+1 are obtained solely from the canonical
computations at time-step t and the local rule f .

Proof. Let us fix a position i ∈ {0, . . . , n− 1}, time-step t,
and input b ∈ {0, 1}k. Then:

gi,t+1(b) = F t+1
i (enc(b))

= f(F t
i−1(enc(b)), F

t
i (enc(b)), F

t
i+1(enc(b)))

= f (gi−1,t(b), gi,t(b), gi+1,t(b)) .

(3)

where the indices i− 1, i+ 1 are computed modulo n.

Fixing notation from Observation 1, each canonical com-
putation gi,t induces a partiton of the input set {0, 1}k into
sets P 0

i,t = {b | gi,t(b) = 0} and P 1
i,t = {b | gi,t(b) = 1} .

Then, we can reformulate Observation 1 in terms of the
partitions and show that the partitions at time-step t+ 1 can
be computed explicitly as:

P 0
i,t+1 =

⋃
a,b,c∈{0,1},f(a,b,c)=0

(
P a
i−1,t ∩ P b

i,t ∩ P c
i+1,t

)
P 1
i,t+1 =

⋃
a,b,c∈{0,1},f(a,b,c)=1

(
P a
i−1,t ∩ P b

i,t ∩ P c
i+1,t

) (4)
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Where again, indices i− 1, i+ 1 are computed modulo n.
Using either the functional notation in (3) or the partition

notation in (4) allows us to compute the canonical compu-
tations at time-step t + 1 just from the ones at time-step t
without having to reconstruct the full space-time diagrams
of the CA.

Temporal Encoding A common scheme of encoding in-
put bits into CA dynamics when using them as reservoirs is
to incorporate the input, bit by bit, with the CA configuration
at regular time intervals.

For an ECA with global rule F operating on a cyclic grid
of size n; the temporal encoding can be viewed as a mapping
enc : {0, 1} × {0, 1}n → {0, 1}n. Given a sequence of
input bits b1, . . . , bk and a time interval T ∈ N at which we
“inject” the input, we obtain the following CA “trajectory”:

c1 := enc(b1, 0
n), F (c1), F

2(c1), . . . , F
T (c1),

c2 := enc(b2, F
T (c1)), F (c2), F

2(c2), . . . , F
T (c2),

c3 := enc(b3, F
T (c2)), F (c3), . . .

...

In such a case, we can analogously define the canoni-
cal computations for each position and time-step of the tra-
jectory, which is just a function of the input bit sequence.
We would also obtain analogous relationships between the
canonical computations at time step t and t+1; the only ex-
ceptions being the time-steps at which a new input bit is “in-
jected” and the canonical computations have to be updated
accordingly.

Visualization Algorithm

A simple brute force algorithm can be made to visualize the
different partitions produced by a ReCA system and thus
the information flow within space-time diagrams. We can
in turn use this visualization to identify differences between
the possible ReCA parameters.

We first compute all space-time diagrams for a given
input set. Stacking the space-time diagrams as shown in Fig-
ure 3 produces a binary string for each space-time diagram
cell. This can be seen in the figure as the blocks highlighted
in blue or red. Since each string corresponds to a specific
binary partition we can then label it accordingly. Populating
a ”canonical computation diagram” (CC diagram) i.e a 2D
matrix of the same shape as a related space-time diagram
with these labels, then allows us to visualize the information
flow within the diagrams as seen from the perspective of
the decoder. A python implementation can be downloaded
from github:
https://github.com/DeepCANFR/
Canonical-Computations.git

Canonical Computation Diagrams
A collection of CC diagrams for all ECA rules, using
multiple sizes and input sets can be found at:
https://osf.io/dxgys/?view_only=
67c27e321f164ec88cad31d2f444d343

Here we present two examples of input set-encoder-CA
combinations.

Example 1:
Input set = {0,1}2
Encoder = enc : {0,1}2 → {0,1}n, 2 < n.

In this example we set up a CA on a cyclic grid of size n
as our reservoir substrate and encode binary vectors of size
2 to two locations in the CA’s initial configuration (indicated
in yellow in Figure 3). We tested variations of encoding dis-
tance, i.e the distance between the two transplanted input
features in the initial configuration, and grid size. We also
produce the full set of possible Boolean functions and as-
sign each a numeric label from 1 to 16. This means that the
colors in the CC diagrams corresponds to the same Boolean
functions across different rules, grid sizes and encoder set-
tings.

The CC diagram for rule 45 and color labels correspond-
ing to each Boolean function is shown in Figure 4. This
allows us to see how the available information changes over
time and space as the dynamics of the CA evolves. We can
also see that the system has linearlized problems like XOR
as the function corresponding to it can be found in the dia-
gram, highlighted in yellow. Additional diagrams for Rules
110, 70, 30 and 45 are shown in Figure 5

Example 2:
Input set = {0,1}k
Encoder = enc : {0,1}k → {0,1}n, k = n.

We produce CC diagrams for the set of binary vectors of
sizes k with k = n on a cyclic grid. Since the number of pos-
sible functions in this case is extremely large we label them
according to the order they are found as we iterate over the
CC diagram with the direction of time. Example diagrams
can be seen in Figure 6 for rules 110, 70, 30 and 45 at size
10.

Analysing Information Flow for ReCA
Number of Canonical Computations
The maximum number of CCs possible for a given ECA
is equal to the number of cells in the space-time diagram.
However, even if certain ECA rules rarely reach fixed point
attractors or limit cycles they may reach a limit to the cre-
ation of novel CCs. If one provides the full space-time dia-
gram to the decoder, there is at this point no reason to con-
tinue computation over additional time-steps as this would
not provide any new information and we can thus save com-
putational resources.
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Figure 4: Canonical computation diagram for rule 45, CA
size = 15, encoder distance = 5, with labels corresponding to
each possible boolean function on the input set {0, 1}2. The
input features were encoded into the two non-white cells in
the first row of the CC-diagram. In relation to Figure 3 the
boolean functions in the label list are displayed in the same
manner as in the bottom of Figure 3. The XOR function
is highlighted in yellow throughout the diagram and in the
label list.

It should here be noted that the nr of possible CCs grows
extremely fast with the size of the input set as it equal to the
size of the powerset of the input set.

If one uses temporal input in encoder-CA setups that
reach a maximum number of CCs, we may wish to wait until
the CC limit is reached before injecting the next input. This
way we allow the system to reach its richest computational
space. The method presented here may thus be used to iden-
tify the optimal waiting period between input injections.

It is however not obvious that maximizing the number of
CCs is optimal for a ReCA system as this will increase the
computational cost of finding the optimal encoder weights.

Temporal Stability
If only a subset of the space-time diagram is used as input
to the decoder at a time (illustrated in orange in Figure 2),
as is the case in Glover et al. (2021), we may find that the
availability of CCs at a given time-point becomes problem-

Figure 5: CC diagrams with input set = {0, 1}2, CA size
= 10, encoder distance = 5 for rules 110, 70, 30 and 45.
Note that at this encoder distance and CA size the distance
between the two input locations are identical on either side
of the cyclic grid.

atic. For CA rules that continuously generate novel CCs it
may be difficult for the decoder to produce any meaningful
output as the information the static weights capture contin-
uously changes. Furthermore, the larger the space of avail-
able CCs, the less probable it is that the decoder finds CCs
relevant to solving a given task if they exists.

This is illustrated in Figure 6 where we we can see how
rule 45 continuously generates novel CCs within the visu-
alized temporal extent of the CC diagram, while the other
rules reach cycles.

Spatial Stability
A similar problem to temporal stability arises from the sta-
bility of the spatial locations of information in the CC dia-
gram. Even if the same information is available to the read-
out over a given time interval, the spatial location of the
information may change. This again produces an issue in
interaction with the spatially static readout weights.

We can see this illustrated in the CC diagrams for rule
110, 70, 30 and 45 in Figure 5. For the binary vectors of
size 2 input set and encoder distance of 4, rule 70 quickly
produces multiple stable CCs that exist perpetually for sizes
10-30. Rule 110 at size 10, with encoder distance = 4, pro-
duces the same CC configuration in cycles of length 25 after
time point 5. Thus, the weights of the decoder will cap-
ture the same information within this cycle, but not between
the configurations of the cycle. This could be remedied by
using step sizes for the readout window equal to the cycle
length. Rule 45 with the same encoder and size settings does
produce cycles of length 1290, but the cycle length rapidly
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Figure 6: CC diagrams with input set = {0, 1}10 and CA size
= 10 for rules 110, 70, 30 and 45. Note that the because the
input size and CA are equal in this case we do not give an
encoder distance.

increases with grid size. Thus, while rule 45 produces the
largest number of CCs of the three rules it is likely not suited
well for temporal readout methods due to the lack of spatial
stability of information within the diagram.

Notably, the time to a CC cycle (time until the configu-
rations of computations in the CC diagram repeat) may be
larger than the time to a CA cycle (time until the configura-
tions of the space-time diagram repeat). For rule 45 at size
10 there are 210 = 1024 possible configurations, meaning
that the maximal cycle length possible at this size is 1024.
However, for rule 45 at this size, with the input set of all
binary vectors of size 10, the CC cycle we find is of length
2580. This is possible because each CC diagram is created
by combining multiple regular space-time diagrams. The cy-
cle length of the CC diagram is thus just the least common
multiple of the cycle lengths of each of the regular diagrams.

Figure 7: CC diagrams with input set = {0, 1}2, CA size =
10, encoder distance = 4 and 5 for rule 110. The CC con-
figurations are identical but spatially shifted in the encoder
distance = 4 case, while different in the encoder distance =
5 case. The difference between convolutions applied to the
CC diagrams are highligted in yellow

Shift Cycles
For rule 110, at size 10 with input set = {0, 1}2 and encoder
distance = 4, we also observe that the same information ap-
pears in the same configurations but spatially shifted at rel-
atively short cycles, which we name shift cycles. For rules
displaying this type of behaviour we can capture relevant
information more efficiently than described for standard cy-
cles by using convolutional readouts as these will capture
constellations of information independent of their spatial lo-
cation within the readout window. However, increasing the
decoder distance to 5 increases the cycle length to 75 even
though the appearance of the CC diagram is relatively sim-
ilar. In Figure 7 we highlight these difference by extracting
convolutions from the two CC diagrams. The two convolu-
tions are identical but spatially shifted for encoder distance
of 4, while they differ slightly with encoder distance 5 which
can be seen in the leftmost column of the convolution.

Encoding Distance
With the encoder set to use different distances between the
encoded input feature locations, we can see how padding the
input feature can be detrimental to certain rules. If the rule in
question maps the 010, 100 and 001 neighbourhood config-
urations to 0 the information contained in the input is always
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Figure 8: CC diagrams with input set = {0, 1}2, size = 10,
encoder distance = 0-3 for rule 151. In the cases where the
encoded input falls within the range of each others neigh-
bourhoods we see propagation of information over time and
space while any other distance leads to an instant collapse to
a single CC

destroyed. Alternatively if the rule only sends the 010 neigh-
bourhood unmodified left, right or forward we may similarly
see a lack of complex patterns as the features never interact.
This can be seen in the CC diagram for rule 151, size = 10
and input set = {0, 1}2 in Figure 8. Using an encoder dis-
tance of 0 or 1 between the two features produces more dif-
ferent CCs as well as longer cycles with information being
sustained over time and transmitted over space, while any
other distance only produces a collapse of computations.

CA Size
Varying the size of the CA is known to affect ReCA perfor-
mance (Glover et al., 2021). Fixing the encoder distance to
4 for rule 18 and input set = {0, 1}2, we can see this effect.
In Figure 9 we show CC diagrams for sizes 10, 15 and 20.
At size 10 the CA rapidly reaches a cycle of length 6 with no
shifts, while at size 15 we can see a quick collapse of com-
putation after only 8 time steps. At size 20 we get very long
cycles of length 372. Interestingly, at size 10 we compute
one more CC than at sizes 15 and 20.

Conclusion
The CC diagrams reveal the exact identity and location of
the information available within the space-time diagrams of
a given input-set and encoder-CA setup. This provides us
with a novel view into the computational dynamics of these
systems that may be useful for the general analysis of infor-
mation flow in CA. Our main contribution is thus introduc-
ing the novel notion of the CC diagrams themselves.

Figure 9: CC diagrams with input set = {0, 1}2, size = 10, 15
and 20, encoder distance = 4 for rule 18. The effect of chang-
ing the size of the CA is seen in the flow of CCs throughout
the diagram with rapid cycling in the size = 10 case, early
collapse to a single CC in the size = 15 case and long cycles
at size 20.

We also highlight how insights gained from canonical
computation diagrams may be useful for the specific use
case of ReCA design by guiding selection of encoder, de-
coder and CA parameters to increase a ReCA system’s per-
formance. Testing of these predictions would however be
necessary to verify the claims proposed in this paper, this
will be part of our extended work on the topic.
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